
Chapter 4

Mandatory-Access-Control Model

Introduction

Mandatory-access control (MAC) stands as a well-established model in com
puting security. Despite the fact that it lends itself well to military environ
ments, it represents clearly distinguishing aspects in controlling information
flow. Such information flow is foremost characterized as being deterministic.
We begin with an introductory to the foundations of information flow. We
describe the mathematical elements underpinning MAC as a lattice-
based information-flow model. Subsequently, we discuss the details of the Bell-
LaPadula and the Biba models. The first one is based on the need to preserve
confidentiality of information flow, while the second is concerned with main
taining integrity. We compare the two models and describe scenarios in which
they can be combined. Finally, we introduce the Chinese-wall policy as an
instance of the lattice-based information-flow policy applicable in commer
cial environments.

Mandatory-Access-Control Theory

In a system governed by the mandatory-access-control model, user privileges
are not resource-owner centric. In fact, no concept of ownership does exist in
MAC, which is rather based on a policy that is driven by the sensitivity of the
protected information. To access a MAC-protected object, one must hold the
proper security clearance required by that object. The security label of a
resource is matched up against the clearance of an attempting accessor. MAC
policies fall under what is known as lattice-based access-control system.
Information flow in these systems is formally determined by the mathemati
cal structure of the underlying lattice that reflects it. We begin by reviewing
the foundations behind the MAC model.

Partial Orders

A set S is said to be partially ordered along a binary relationship R between
S and itself if and only if the following conditions are satisfied:

129

130 4. Mandatory-Access-Control Model

• i? is reflexive: a Ra for every element a in S.
• i^ is transitive: if a Rb and b Re, then a Ra
• 7̂ is antisymmetric: if a Rb and b Ra, then a = Z?.

A partially ordered set is sometimes referred to in the literature as a poset
for short. Note that it is not required that every pair of elements in a partially
ordered set to be related, and hence the use of the tQvm partial ordering. When
every pair of elements x and ;; of a partially ordered set S can be compared
with each other (i.e., x R y or y R x) the set S becomes a totally ordered
set also referred to as a linearly ordered set or simply an ordered set.

Example: Partial Orders

Consider the elements of set S to be the subsets of {a,b,c} and R to be the
containment relationship denoted by c . The set:

S= {0,{a},{b},{c}, {a,b},{a,c},{b, c},{a,b,c}} forms a partial order along
the relationship e because

• c is reflexive: for every element xin S, xa,x.
• c is transitive for every x, y, and zin S, xa,y and j ; c z => x c z.
• e is antisymmetric: for every pair of elements x and yinS,xa,y and

y c,x=> X = y.

Similarly, (Z, <) is a total order, where Z is the set of negative and non-
negative integers.

Lattices

A lattice is a partially ordered set in which all nonempty finite subsets have a
least upper bound and a greatest lower bound. If < denotes a partial order over
S, then the least upper bound and the greatest lower bound of a subset F of 5
are, respectively, defined as follows:

• A least upper bound of V, denoted by lub, is an element w in 5 such that
X < w for all X in F, and
For any yinS such that x<yfox all x in F, it holds that u<y

• A greatest lower bound of F, denoted by gub, is an element linS such
that
/ < X for all X in F, and
for any yinS such that j ; < x for all x in F, it holds that y<l.

In particular, every two elements of a lattice have a least upper bound and
a greatest lower bound. It can be easily shown that the least upper bound and
greatest lower bound of any set are always unique: if x and ;; are both a least
upper bound of V, then it follows that x<y and y < x, and since < is anti
symmetric, it follows that x = y.

Mandatory-Access-Control Theory 131

Example: Lattices

The poset {P(S), e) , where P(S) is the power set (all possible subsets of a
three-element set 5), forms a lattice. Every pair of elements x and ;; in P(S)
has a unique least upper bound given hy xvj y and a unique greatest lower
bound given by x n j . Both of these bounds are computed based on the e
relationship. By definition, for every x and y in P(S), if w = gub(x, y) = xuy,
then X and y are necessarily contained in w, and for every other subset of S
(say, s) containing both x and y, it implies that u is contained in s. Similarly,
\i l-lub(x,y) = X n ; ; => / e X and l<^y and for every s in P(S) if 5- e x and
^ c j ; = > ^ e / = x n j ; . Figure 4.1 depicts a poset constructed from S = {a,b,c}.

Lattice-Based Access-Control Models

Predicting the paths of information flow is central to maintaining confiden
tiality and integrity of data. When information access in a protected system
is modeled along a lattice structure, any policies dealing with control of infor
mation flow are directly reflected by the lattice. Lattice-based access control
is an essential aspect of computing security in environments requiring strin
gent information-flow controls.

In lattice-based protection systems, information-flow policies bind system
objects and subjects to security classes. Flow of information from one object
to another is thereafter governed by this binding. Denning [DENN76b] for
mally defines an information-flow model denoted by FM as

F M = < 7 V , P , 5 C , e , ^ > ,

{a, b, c)

{a,b} {b,c}

FIGURE 4.1 A depiction of the lattice
corresponding to the poset {P({aJ),c}),

{}

132 4. Mandatory-Access-Control Model

where N = {a,b,...} is a finite set of system resources (objects) that includes
users that are, in effect, active objects of the system. P = {p,q,...} is the set of
system processes running on behalf of users. SC = {A,B,..,} is a finite set of
security classes corresponding to disjoint classes of information containers.
An example of SC corresponds to the classification:

SC = {TOPSECRET,SECRET,CONFIDENTIAh UNCLASSIFIED).

Each object o ^ N\s statically or dynamically bound to a security class O G
SC. As a result, each process/? G P is also bound to a security class from SC.
We adopt the notation of using upper-case characters to indicate a security
class while a corresponding lower-case character represents an object bound
to that security class.

The class combining binary operator defined within SC x SC to SC, 0 is
associative—that is,

A®B® C= A®iB@ C) = {A®B)@ Cfov?i\\A,BX^ SC

and is commutative—that is,

A®B = B® AioxdiWA^B^ SC.

Applying the ® operator to any pair of security classes A and B yields the
security class to which information derived from security classes A and/or B
belongs. The security class corresponding to any function that operates on
objects from classes A and B is thus ^ © ^ . By an intuitive extension, the
class of a transformation by an «-ary function/(^«p ..., a^ is A^®A2® ...A„.

The flow relationship of -^ is defined over the elements of SC x »SC and
is essentially what defines an information-flow policy. The notation A^B
is used to indicate the fact that information contained in an object whose
security class is A may flow to an object that has security class of B.
Simply stated A ^ B if and only if information from class A is permitted
to flow into class B through some kind of transfer. The information-flow
model as such is said to be secure if and only if any execution of a
sequence of operations in the system yields a state of information flow
that is consistent with a predefined flow policy expressed in terms of the
—> relationship. If a data value resulting from a series of operations
denoted by function/fap ..., a^) flows to an object b that is statically
bound to security class B, then A^®A2®...A„^B must hold as part of the
stated flow policy.

The Lattice Structure of the Information Flow Model

Denning's observation in her landmark paper [DENN76b] established a set
of axioms for which <SC,^»^, ®> forms a universally bounded lattice. Such
a lattice consists of a finite partially ordered set that has a least-upper
bound operator and a lower upper-bound operator with respect to the flow

Mandatory-Access-Control Theory 133

relationship -^. These axioms or rather assumptions are implied by the
intuitive semantics of information flow and are stated as follows:

1. < SC, ^ > is a partially ordered set.
2. SC is a finite set.
3. SC has a lower bound L with respect to the -^ relationship.
4. The join operator 0 is a least upper bound that is totally defined over SC.

The rationale behind these intuitive assumptions is discussed in the fol
lowing:

• First axiom of Denning's information flow SC along with the binary
relationship -^ yields a partially ordered set. This result is evidenced by
the nature of information flow.

1. The relationship -^ is reflexive (i.e., ^ ^ 4̂ for every A e SC), The source
containing information and the receptacle destination of information are
the same object. It is evident that information flow is permitted from
object a to itself Otherwise, an inconsistency in the definition of the -^
relationship arises.

2. The relationship -> is transitive (i.e., A ^ B and B^C^=^A^C).A^
B implies that information contained in object a of class A is permitted to
flow to object b of class B. Similarly, B ^ C implies that information con
tained in object b is permitted to flow to object c in class C. This basically
means that one can transfer information from object a to object c through
a two-step process and thus information might as well be permitted to
directly flow from objects of class A to the objects in class C. Otherwise,
an inconsistency arises in the semantics of -^.

3. The relationship -^ is antisymmetric (i.e., A^ B and B-^ A=^ A = B).li
information is allowed to flow from all objects of class A to objects in class
B and similarly information is allowed to flow from all objects in class B to
objects in class A then we are simply dealing with two redundant security
classes. Thus, classes A and B are the same.

• Second axiom of Denning s information flow Assuming that SC is a
finite set reflects a property of every practical system. One can always
adopt finitely as many security classes as needed. Note that the num
ber of objects associated with each security class can be unbounded.

• Third axiom of Denning's information flow This assumes the existence
of a lower bound class L G SC which means L -> ^ for all A e SC
First, this property can be assumed without loss of generality. Second,
it allows the modeling of publicly available information, which is a use
ful property in many information systems. Theoretically, this class can
be represented by an empty set as the availability of public information
in a system does not necessarily hold all the time.

• Fourth axiom of Denning's information flow To show that the class-join
ing operator 0 combines two security classes into their least upper

134 4. Mandatory-Access-Control Model

bound, Denning shows that the following two properties hold for all
A,B,Ce SC:

1. ^ - ^ ^ e ^ a n d ^ e ^ .
2. A-^ CmdB-^ C=>A@B-^ C,

Property 1 is intuitively arrived at. If ^ 0 ^ is the security class resulting
from information obtained collectively from objects in classes A and B, then
information from objects in class A as well as from objects in class B is per
mitted to directly flow into objects from class C = A®B,

Property 2 states that if information can flow individually from classes A
and B to class C, then information combined from A and B should also be
permitted to flow to C. For clarity, we refer to the example given by Denning
[DENN76b]. Consider five objects containing numeric values a, b, c, c^, and
^2, and corresponding to security classes A, B, C, Cp and C2, respectively.
Assume that we have A -^ C, B ^>^ Q and C = C^ = Cr^, Now consider the
following transformation affecting values a, h, c, Cp and c^.

c^: = a;
c^: = b;

Execution of this sequence of instructions assigns to c information derived
from a and b, and thus A®B^>' C. Generalizing this fact for all types of
transformations combining values from objects in classes A, B, and C, it fol
lows that A@B yields the least upper bound of A and B.

The four axioms of Denning's information flow imply the existence of a
greatest lower-bound operator over SQ denoted by ®. This, in turn, implies
the existence of a unique upper bound for SC, denoted by H, therefore lead
ing to the structure < SC, ->, ©, ® > being a lattice. The greatest lower-bound
operator, (8), is shown by Denning to be defined as

A®B=@L{A,B),wherQL(A,B)={C\C-^A3indC^B},

Applying the 0 operator to L(A,B) yields the greatest lower bound of A and
B. As with the least upper-bound operator 0 , the greatest lower-bound opera
tor (8) is also operable on subsets of SC It follows that for a subset S = {S^,...,
SJ e SC, ®S= Si® .,.® Sn, Information contained in object a with a secu
rity class A can flow into an object whose security class is a member of the
subset 5 i f and only if A -^ Si® ... (8)5„.

The totality of the operator 0 means that it should be defined for every
pair of security classes (i.e., A®BG SC for every A, B e SQ, An informa
tion-flow policy in which the class-combining operator is not initially totally
defined can incrementally add security classes as dictated by the 0 operator
until it is totally defined. In fulfilling this theoretical aspect one might end up
defining security classes that are not bound to any system resources.

Mandatory-Access-Control Theory 135

Implications of the Lattice-Based Flow Model
on Access Control

Access-control systems that are based on policies drawn from a lattice struc
ture as in Denning's flow model are automatically safe. The safety property
of such systems is due to the fact that an information flow taking place from,
say, object a to object b cannot occur without the policy stating that A ^*^ B
directly or indirectly through the transitivity of the -^ relationship.
Considering that a lattice structure maps directly to a directed graph, the
safety property of lattice-based access-control models reduces to deciding
whether a directed path exists between any two nodes in the graph. Although
both end nodes of this path would generally represent two passive objects, it
can also be illustrated using active entities. In this case the origin node of the
path represents the security class associated with an active entity such as an
end user, a host system, or some programming agent. The end node repre
sents the security class of an object in the system. This determination is
a straightforward process. Furthermore, the transitive closure of the graph
can be computed, and hence all access decisions become known a-priori.
A process/7 is capable of transferring information from object a to object b if
and only if A ^>^ P ^»^ B.

This flow property is further generalized io A\® ..,® An^^ P ^^ B\® ...®
Bmto indicate that process;? can transfer information from objects a^,...,a^ to
any of the objects b^,.,.,b^.

Examples of Lattice-Based Information-Flow Models

A basic lattice information-flow policy is one in which there are only two
security classes one is system low denoted by L and the other is system high
denoted by H, For instance, all resources with nonconfidential information
are bound to L, while those containing confidential information are assigned
to class H. In this case, SC = {L, H}. Besides reflexivity, the policy mainly
consists of a single rule L^> H 2L% shown in Figure 4.2A, where the lattice is
derived from a linear ordering of the security classes L and H. A generaliza
tion of this policy to a set of n linearly ordered classes is depicted in Figure
4.2B. A richer policy based on partial ordering is illustrated in Figure 4.2C.
Figure 4.3 shows a policy derived from a poset of {A, B},

Since the Cartesian product x of two lattices is a lattice, a richer lattice
structure of an information-flow policy can be generated from the product of
two lattices. An example of such structures is to combine one lattice from a
linearly ordered set and one from a partially ordered set. In practice, the
linear ordering is drawn from a set of authority levels referred to as security
levels. An instance of such a linear ordering consists of

SC = {unclassified, confidential, secret, TopSecret). The partial order
ing is derived from the poset of a set of properties known as categories.

136 4. Mandatory-Access-Control Model

H

I
t

SC={L,H}
L^H
L^L
H^H
L®H =
L®H =

max(/. ,H):
min(Z.,H) =

= {H}
L

B

SC={A^ ,...A}
Aj^ Aj<^ i<j
Aj ® Aj =

Aj<S>Aj =
L = A;H

max(>A/,y4y)
min(>4/,

= An
A,)

SC={A^
L^L
L^H
H^H
L -> AjJ
Aj^AjJ
Ai^H,
Aj®L =
Aj®H =
Ai®Aj=

,...,A

= 1,..
= 1,.
(=1 , .
AjJ =
HJ =
HJJ

n>L,H)

,n
.n
..n
^,...n

= 1 , . . . , A 7

= 1,...,n,h^j

FIGURE 4.2 Basic examples of lattice-based information flow policies

H={A, B}

SC={{]AA}AB],{AB]}
X^ / o X e Y
X@Y=X^Y
X(S>Y=XnY
/- = {}
H=[AB}

FIGURE 4.3 A simple lattice-based policy derived from poset of {A,B}

Mandatory-Access-Control Theory 137

An example of categories is the set of departments of an organization in
which a resource can be accessible. Security labels assigned to active system
entities such as users and processes are said to be bound to security clear
ances and system resources are assigned security labels.

The derivation of a lattice structure for an information-flow model can be
extended to a Cartesian product of n lattices. The resulting flow relationship -^
is determined by -^=A^*'iJ= 1,...«.

This means the flow relationship is computed as a logical AND over the
flows in all of the participating lattices. The flow relationship therefore must
hold in each of the lattices for it to hold in the lattice represented by their
Cartesian product. For instance, when combining a linear ordering of secu
rity levels with a partial ordering as represented by the poset, the flow rela
tionship is expressed as

A>B^B^A,(B-^A)^ A^^^^i > B,^^^^ and A^^^^^^^.^^ 3 B^^^^^^^.^,

The Bell-LaPadula Flow Model

Bell and Lapadula [BELL75, MCLE88] developed and formalized the con
cept of mandatory-access models, which falls in line with the information-
flow model of Denning. It is worth noting that the model of Bell-Lapadula
(BLP) preceded Denning's work on the information-flow model. The manda
tory access-control policy as defined in BLP consists of assigning security
labels {classes) to system subjects and objects. Labels assigned to objects are
dubbed as security classifications, while those assigned to subjects are referred
to as security clearances. BLP is stated in terms of two rules: the simple secu
rity policy and the "^-property (read as star property), both of which are
mainly concerned with the flow of confidential information:

• Simple security rule This is also known as the read-down property. It
states that information can be read only downward in the lattice struc
ture representing the MAC policy. Subject s can read object o only if
S> O where S is the security label (class in Denning's formalism) of
subject s, while O is the security label of object o. The security clear
ance of a subject has to dominate the security classification of an
object so it can be read.

• *-property This rule is also known as the write-up poHcy. It states that
subject s can write object o only if O > *S. This prevents leaking confi
dential information in that a subject can write only objects whose secu
rity classifications dominate the security clearance of the subject.
Writing objects takes place in an upward fashion within the lattice
structure of the BLP policy, while reading is performed downward, as
illustrated in Figure 4.4.

As has been indicated the flow model in BLP is motivated by the confi
dentiality of information. Consequently, the ability to read objects upward in

138 4. Mandatory-Access-Control Model

Read-down Write-up

FIGURE 4.4 Information-flow
direction in the BLP model as
abstracted by a lattice structure

the lattice structure is not permitted. Similarly, the ability to write objects
downward in the lattice structure is prohibited as both of these operations
lead to transferring confidential information from higher-level entities to
those having access to only lower-level objects.

The write-up property of BLP alone is not sufficient for preventing a
subject from corrupting information at levels dominating those of the sub
ject. Confidential information can be corrupted by subjects having lower
security labels even when the read-down property prevents reading the
information. To address this integrity problem, MAC policies have adopted
a modified *-property that allows subject s to write object o only if the sub
ject and the object are both bound to the same security class (i.e., S = O),

The integrity issue associated with the write-up property can in fact be
addressed by the second component of the BLP model, which enforces a dis
cretionary policy of resource-access control. In BLP the dominance relation
ship as stated by the MAC policy is augmented with a discretionary-access
policy. An access decision therefore depends on both policies, MAC and DAC,
being enforced at the same time. With this approach, corruption of confidential
information by processes at lower security classes is prevented by specifically
exposing resources that are intended to be receptacles of information from
lower processes and disallowing access to the ones that contain confidential
information through proper DAC policies. Similarly, the read-down property
may also be controlled in this manner, although generally enforcing DAC con
trols around the write-up property is the main concern of many MAC policies.

The Biba Model
As has been noted, the goal of the BLP model is to prevent downgrading
confidential information. The Biba model, on the other hand, is concerned

Comparing Information Flow in BLP and Biba Models 139

with the integrity of information [BIBA77]. This model follows along the
same ideas of the BLP model and as such does not present a fundamental
departure from the concepts introduced by BLP. The underlying concept in
Biba is that security classes are organized along a lattice structure in which
each class corresponds to some integrity level with the highest integrity at the
top of the structure and the lowest at the bottom. Information is allowed to
flow from high-integrity objects to low-integrity objects only. In a similar way
to BLP, Biba states its information flow policy using two rules: the simple-
integrity property and the integrity "^-property:

• Simple-integrity property This property states that subject s can read
object o only if the security class of o dominates that of s (i.e., 0>S).

• Integrity "^-property This property states that subject s can write object
o only if the security class of s dominates that of o (i.e., S > O).

Recall that a security class in Biba corresponds to an integrity label. A curi
ous aspect of the Biba properties is that they are duals of their counterpart
in BLP. For instance, while the policy in BLP is about read-down of infor
mation, the simple-integrity property of Biba states a read-up of informa
tion. Similarly, the integrity ^-property of Biba states a write-down type of
information flow as opposed to the write-up of the *-property in BLP.

Comparing Information Flow in BLP and Biba Models

The direction in which information flows in the BLP and the Biba models is
driven by the nature of protections sought in each model. The BLP is moti
vated by confidentiality of information, and hence information in objects at
higher levels is not allowed for read access by lower-level processes. Similarly,
information at lower levels is allowed to flow to objects from higher security
classes in the lattice structure. The write-up property of BLP represents an
interesting aspect of information flow. It can be used to upgrade the classifica
tion of information from the bottom of the lattice all the way to its top as illus
trated in Figure 4.5A. Once this information is copied to higher-level objects,
there is no rule that enforces its deletion from lower-level objects where the
information originates so that it can no longer be read by processes at those lev
els. Recall that the BLP as well as the Biba properties allow a process to simul
taneously read and write objects at the same level in the lattice.

A process;7j as depicted in Figure 4.5A reads object o^ situated at its imme
diate lower level, writes it to object o^ at the same level as/?p then writes it to
object 6>3 located immediately above the level of Py Similarly,/?j may also read
6>j and write it directly to Oy Thus the flow of information between a lower
level and any higher level may be achieved through a sequence of operations
or simply in by a single sequence of read and write operations.

The direction of information flow in the Biba model is the opposite of that
in the BLP model. As illustrated in Figure 4.5B information is allowed to
flow from the top of the lattice all the way to its bottom in accordance with

140 4. Mandatory-Access-Control Model

FIGURE 4.5 Scenarios of information flow
in the BLP and the Biba models

the Biba properties. Although this flow does not imply modifying the secu
rity classes of objects involved, it somehow represents a downgrade of infor
mation as it yields a transfer of information from higher to lower security
classes.

A curious reader may ask the question of why we need to enforce the
read-up property in the Biba model as it does not seem to interfere with the
integrity goal of Biba. Let us assume that in addition to the read-up capa
bility, processes are also able to read-down objects in the lattice structure of
a Biba integrity policy. As shown in Figure 4.6, process p^ reads down an
object o and writes it to object o^ located at the same security label as p^
(read and write at the same level are permissible due to the equality in the
dominance relationship >). Now an upper level process p^ reads down o^
and writes it to object o^ at the same level as that of ;?2- Performing these
steps in a bottom-up fashion along the lattice structure results in the flow
of information upward, therefore conflicting with the intent of the Biba
model.

Write at same level

Write at same level

02

Oi

P2

•Pi

FIGURE 4.6 The need for read-up
only in the Biba integrity model

Combining the BLP and the Biba Models 141

Implementation Considerations for the BLP
and the Biba Models

One implementation aspect that is worthy of mention for the BLP and the
Biba models is the need to provide safety of concurrency. At any level in the
BLP or the Biba policy lattice, objects have to be protected from concurrent
writes by processes of that level. In the BLP model, objects situated at level /
need to be further protected against concurrent writes by processes at levels </
(Figure 4.7A).

It is also desirable to prevent against a simultaneous read and write of the
same object. In the Biba model, objects situated at level / should be protected
against concurrent writes by processes at levels >/ as illustrated in Figure 4.7B.
Like in the BLP case, it is also desirable to prevent against simultaneous read
and write of the same object.

Combining the BLP and the Biba Models

Protected entities of a computing system (resources, subjects, and program
ming agents or processes) can be subjected simultaneously to the BLP and
Biba policies. We distinguish two ways in which such coexistence may take
shape. In the first scenario we draw the security classes for the combined con
fidentiality and integrity lattices from a single set SC in which every security

P2

Write-up

FIGURE 4.7 Synchronization requirement for concurrent reads and writes in the BLP
and Biba models

142 4. Mandatory-Access-Control Model

class applies as a confidentiality and an integrity label simultaneously. The
write-up in BLP requires the security class of the writing subject to be dom
inated by that of the receptacle object, while the write-up property of Biba
requires the opposite. Hence writing an object in this scenario is confined to
processes that are all at the same level as that of the object to be written. This
amounts to the trivial isolationist policy where no information flows across
security levels of a lattice. From the standpoint of information flow analysis,
this model is equivalent to using a single security class. The isolated classes
scenario is depicted in Figure 4.8.

The second and a more useful scenario of combining the BLP and the Biba
models results from adopting independent confidentiality and integrity
classes as shown by Sandhu [SAND93]. A composite model as such is the
product of two lattices, which is in turn a lattice. Let C = {c^,...,cj be a lat
tice of confidentiality corresponding to the BLP model, and let / = {i^ v?^^}
be a lattice of integrity representing a policy based on the Biba model. Let a
be a function that maps a system entity (subject or object) onto its confiden
tiality class (label), and let ß be the function that maps an entity onto its
integrity class. The composite BLP and Biba lattice is defined by the follow
ing constraints:

• Subject s can read object o only if a{s) > a{o) and ß{s) < ß(o).
• Subject s can write object o only if a(s) < a(o) and ß(s) < ß(o).

As has been noted, the composite model is the product of two lattices
which reduces to one lattice. Figure 4.9 illustrates an instance of this lattice
for C = {a^, a^} with a^ > a^ and / = {j8̂ ,)Ŝ } with ß^ > ß^, where L and H
denote system Low and High, respectively. Note that while information in the
BLP and Biba models flows in opposite directions, in the combined lattice
(Figure 4.9) information flows upward.

'^n-^

SC={A, A,}

Ai-^Ai,i='\ n

Ai®Aj=Aj,i=1,

Ai®Aj,iJ=1,...,

L = undefined, H

...,n

n,i ̂ j(undefined)

= undefined

:

FIGURE 4.8 Combining BLP and the Biba models: The case of security classes that
are used for both confidentiality and integrity

Comparing the BLP and the Biba Models 143

«H

«/.

ßi

ßH

FIGURE 4.9 An example of combining BLP and the Biba models in the case of inde
pendent confidentiahty and integrity classes

Figure 4.10 illustrates an access-control matrix representing the access pol
icy of the product lattice of Figure 4.9. Rows of this matrix represent sub
jects, and the columns correspond to resources. Each row of the table
specifies exactly the type of access a subject with a given label can have to a
resource on the column. For example, a subject with label a^ j8^ can read (r)
information contained in resources with label a^ j8^, and write (w) objects
with labels a^ ß^ but cannot (0) read or write resources with labels a^ ß^. The
diagonal of this matrix represents access modes that subjects can have to the
resources that are associated with the same levels as those of the subjects.
Read and write accesses are thus shown along the diagonal.

One characterizing aspect of the composite BLP and Biba model is the fact
that if information in the confidentiality-based model flows from one class
(say, C.) to another class Ĉ ., then information in the composite model flows
from classes C. I^ to classes Cj /^ for all A: = l,...,m (m being the cardinality of
set 7). Similarly, if information separately in the integrity model flows from

aißi

ocißh

(^nßi

(^nßh

aißi

rw

w

r

</>

(^ißH

r

rw

r

r

(^Hßi

w

w

rw

w

ocnßH

0

w

r

rw

FIGURE 4.10 An access-control table corresponding to the subjects and objects of the
example of Figure 4.9

144 4. Mandatory-Access-Control Model

one class (say, I^ to another class 4, it follows that information in the result
ing composite model flows from classes /. C. to classes 4 C. for all / = !,...,«
{n being the cardinality of set Q. These properties are an immediate result of
the fact that in either of the models information is always allowed to flow
from and to the same security class.

On the Mandatory-Access-Control Paradigm

As has been noted, the development of the mandatory-access-control model
was motivated mainly by the control policies found in military environments,
specifically, in the United States Department of Defense (DoD). Within the
DoD an information security policy assigns each system entity a linearly
ordered classification level L and a set of categories C. The categories gener
ally form a partial ordering along the poset relationship. The hierarchy of
entities and resources as imposed by military policies is certainly amenable to
the adoption of mandatory-access controls. In the commercial world, how
ever, this is not generally the case, even when the categories are designed to
reflect the organizational structure of an enterprise.

The authoritative policies of mandatory controls are inflexible and not
amenable to sharing resources as warranted by the needs for information shar
ing. MAC policies are static in nature. They cannot be changed dynamically and
without the intervention of an administrative authority whose immediate avail
ability can be an issue. Resources of the same security class are undistinguish-
able with respect to the access controls applied at their level. For instance, all of
the resources assigned the same confidentiality label in the BLP model can be
read by every subject with a security label that dominates those resources. MAC
policies do not support the concept of resource ownership and hence the
inability to discern access rights to the resource in a discretionary fashion.
Identification of resource ownership is a fundamental aspect of building access-
control systems in modern commercial operating environments. With all these
issues, Lipner [LIPN82] addressed optimum ways in which mandatory controls
can be applied in the commercial nonmilitary world. He gave a detailed exam
ple in which confidentiality and integrity labels are simultaneously used as in the
composite BLP and Biba models to achieve commercial uses.

Finally, it is worth noting that despite of the fact that BLP and Biba mod
els are based on the confidentiality and integrity of information, respectively,
they can be applied to any other types of information access. The semantics
of access rights in the lattice-based models therefore can take various forms.

The Chinese-Wall Policy

The Chinese-wall policy (CWP) was developed by Brewer and Nash
[BREW89] as an instance of lattice-based security models with applications

The Chinese-Wall PoHcy 145

in the commercial world. The intent of CWP is to enforce a conflict of inter
est policy in which a single user is prevented from having to simultaneously
access information that represents a conflict of interest. Specifically, CWP
was formulated to address a situation in which a financial institution provides
market analysis as part of its consulting services to other businesses. Each
analyst must not be able to advise a particular institution when he or she has
knowledge of business information about a competitor of that institution.
The analyst, however, is capable of advising any companies that are not in
competition with each other. Thus, every subject that is affiliated with this
consulting service must be confined to accessing information on businesses
that are not competing with one another. For example, information about
bank B should not be accessible to a subject that already has access to infor
mation about bank A. Unlike in BLP, where access to information is based
on a static relationships between subjects and objects, in CWP access is con
strained by what information the subject already has access to.

The elements of CWP are illustrated in Figure 4.11. A company maintains
information about other businesses that is hierarchically divided along a set
of conflict of interest classes. Within each class the company groups all
information about a particular business in a dataset. In turn, each dataset
consists of a number of individual objects containing data related to that
business.

In a way similar to the BLP model, CWP is stated in terms of its own for
mulation of the simple security and the *-Property rules. It is also worth not
ing that Sandhu developed a scheme in which he shows how CWP is mapped
to a lattice-based access-control model [SAND92a, SAND93].

Conflict- of-
interest classes

Company
datasets

Data
objects

FIGURE 4.11 Dividing information along a Chinese-wall policy

146 4. Mandatory-Access-Control Model

Simple Security

This represents the basis of the CWP enforcing the fact that a user is allowed
only access to information that is not in conflict with any information already
accessible to that user. Access by a subject to an object is therefore granted
only if

• The object is in the same company dataset that is already accessed by
that subject (i.e., the object is within the wall), or

• The object belongs to an entirely different conflict of interest class.

As a result. Brewer and Nash establish the following theorems:

Theorem 1: Once a subject has accessed an object the only other objects
accessible by that subject reside within the same company dataset or within a
different conflict of interest class.

Theorem 2: A subject can at most have access to one company dataset in each
conflict of interest.

Theorem 3: If for some conflict-of-interest class X there are Xy company
datasets, then the minimum number of subjects that will allow every object
to be accessed by at least one subject is Xy.
*-Property
This rule states that write access is permitted only if

• Access is permitted by the simple security rule, and
• Any object that is in a different company dataset with respect to the

one for which write access is requested cannot be read.

The *-Property is used to prevent the writing of information that results in
violating the simple security rule. An example of such scenario is the case of
two subjects s^ and 2̂ that have access to three companies as follows: s^ has
access to bank 1 and computer company 1, while ̂ 2 has access to bank 1 and
computer company 2. If s^ reads information about computer company 1
and writes it to objects containing information about bank-1, then ̂ 2 can read
computer company 1 information and thus yield a conflict of interest.

