
Chapter 3

Elements of Trust Paradigms in
Computing

Introduction

Assurance in an identity is established by way of authenticating it. The entity
claiming to hold a particular identity asserts its claim by providing verifiable
information to the authenticating entity. Trust in identity authentication is
founded on computing the following assertion: The entity performing authen
tication is presented with information that only the entity being authenticated is
able to provide. This information is referred to diS proof of possession (POP) of
identity. The authenticating entity establishes trust in this process through a
secure verification of the presented proof

While in Chapter 1 we discussed various authentication factors, the POP of
an identity has traditionally been based on shared secrets or derivatives
thereof, something the holder and the verifier of the identity know. The advent
of public key cryptography has led to establishing identities without having to
disseminate shared secrets, provided assurance in the binding between a pub
lic key and the identity being authenticated can be reliably established.
Advances in network-distributed computing have pushed the scope of an
established identity beyond the boundaries of hosting systems and local net
works to larger networks as wide as the Internet. An established identity yields
a verifiable security context, the strength of which depends on the processes
involved in providing an identity POP. We refer to the components that estab
lish and maintain the flow of secure contexts as identity trust mechanisms.

We survey the major paradigms and mechanisms of identity trust in com
puting. The objective is to highlight and classify the core techniques known
to date. Although some specific ones are broadly discussed, we do not intend
to enumerate all known techniques. Even when the elegance, strength, and
soundness of one method or another can be apparent, we do not recommend
a specific one. The intent is to expose the elements of trust that characterize
each method.

Although other aspects such as policy management and enforcement as
well as access-control subsystems are all relevant to trust [ABAD93,
BLAZ96, BLAZ99, GRANOO, LAMSOl, GRAN02], it is evident that trust

73

74 3. Elements of Trust Paradigms in Computing

in identity is the gate to all other factors of trust-management systems. As
such, our definition of trust here is specific to the confidence and assurance
in an identity. Trust in real-life practices is relative and can be rated along a
continuum scale varying from weak to strong [SHAN02]. Trust forms an
inverse relationship with the level of risk that can be associated with
processes, programming agents, and individuals [KONR99]. Trust as it relates
to identity is a reflexive relationship but not always transitive, symmetric, or
associative. However, transitive trust, also referred to as delegation, can be a
key requirement along a particular chain of computing tasks in the same way
it can be relied on by individuals accomplishing manual processes.

Brokered trust or trust through a third party has emerged as one of the key
trust paradigms. We classify third-party authentication schemes in two cate
gories. We refer to the first one as the explicit model, while we call the other
one implicit. We give examples of each, with detailed descriptions of the trust
elements of Kerberos being the most elegant of third-party authentication
protocols. The details of trust in the public key model including the Internet
public key infrastructure are presented. We conclude by reviewing three
mechanisms for expressing and conveying trust over the web. These are the
emerging Web services security, the security assertion markup language, and
Web cookies.

A Third-Party Approach to Identity Trust

The local paradigm of identity management, as we discussed in the previous
chapter, implies that user-identity information be maintained in the user reg
istry of every system used. Furthermore, a user's shared secret under which
the element of trust is built (e.g., a password) is expected to be different for
each system accessible by that user in order to minimize the scope of a poten
tial compromise. The complexity of managing multiple passwords and
secrets, therefore, increasingly becomes an inconvenience to end users as well
as to programming agents that rely on them.

Local identity management recognizes each identity as a local construct
that is defined within the scope of the system in which it is known. Identity-
and trust-management relations in this case can be modeled as a bipartite
graph in which n users and m computing systems are tied through the shared
secret relationship. As Figure 3.1 illustrates, this requires managing n x m
relations.

The complexity and lack of scalability inherent to the local identity- and
trust-management model has led to the emergence of the third-party authen
tication scheme. Here a single host in a networked environment is designated
as the sole entity trusted by all of the participants in the network, such as
users, computing systems, and applications. The user registry maintained by
this third-party service contains identity information for all network partici
pants. Trust is founded on the secret shared between each entity and the

A Third-Party Approach to Identity Trust 75

FIGURE 3.1 Managing secret sharing relationships
in the local identity model

Ô

ü'̂

ü"̂
o^

^ ^ ^

^ ^ - ^ ' ^ ' \ ^

=:5i-r^
^ W

Users Systems

third-party authentication service. No entity in the network has any direct
trust relationship with any of the other entities. Two authentication para
digms that are based on third-party have emerged:

• Implicit authentication by secure introductions of entities to one
another via a known and trusted third party-entity and

• Explicit authentication of an entity by invoking a third-party authen
tication service.

In the first scheme, authentication is cryptographically deduced from the
secret shared by an entity and the third party, while in the second case,
authentication is explicitly requested from a third party by the authenticating
entity. Figure 3.2 illustrates the secret sharing relationships that are in place
when an implicit third-party authentication scheme is in use. Providing
authentication across n users and m computing services requires managing
n^-m secrets, a considerable decrease from « x m required for direct identity
relationships between users and destination systems and services.

FIGURE 3.2 Reducing the complexity
of managing cross-entity authentica
tion relationships using a third party Users Systems

76 3. Elements of Trust Paradigms in Computing

Essentially, a third-party authentication scheme recognizes two broad
entities:

• A third-party authentication service and
• The rest of all other entities.

All of the entities participating in a third-party authentication realm form
peer relationships to one another with respect to authentication. As shown in
Figure 3.3, the differences between entities of a third-party authentication
realm are inexistent. The third party has a consistent view across all entities
regardless of whether an entity acts as a client or a server. Each of such enti
ties is now abstracted under the term of a principal

Below we discuss the Kerberos authentication protocol as being the most
reliable and well-known third-party authentication system to date. Kerberos
follows the implicit authentication paradigm, as we outlined above. We also
discuss the mechanisms suited for the third-party authentication that fall
along the explicit paradigm.

Kerberos: The Implicit Third-Party Authentication
Paradigm

Kerberos is the name that became famously associated with the third-party
authentication protocol developed at the Massachusetts Institute of
Technology (MIT) in the 1980s. The ideas preceding Kerberos go back to the
work published by Roger Needham and Michael Schroeder, in which the
third-party authentication concept was introduced [NEED87]. Here a third-
party key distribution center (KDC) is trusted by every entity participating in
a distributed computing environment to maintain its secret key (i.e., every
entity shares its secret key with the KDC). As a result, the trusted KDC

^ FIGURE 3.3 Peer-to-peer authentication
relationships enabled by a third-party

Principals scheme

Kerbers: The Implicit Third-Party Authentication Paradigm 77

becomes responsible for the secure introduction of the participating network
entities to one another. Trust is founded on the simple fact that two entities
A and B that wish to communicate with one another are introduced to each
other by the trusted KDC. Trust is not assumed. It is rather computed based
on the following:

Entity A whose secret key is known to the key distribution center authen
ticates itself to the KDC by presenting its proof of possession. The KDC,
also knowing the secret key of entity B (peer of A), communicates its
authentication of entity A to entity B (indirectly via entity A). Trust in this
communication is based on a channel encrypted with a key derived from the
secret key shared between the KDC and entity B.

A High-Level View of the Kerb er os Protocol

Three entities are engaged in the Kerberos protocol sequence:

• An initiating client,
• The third-party Kerberos server acting as the KDC, and
• The target entity, such as an application server.

A successful execution of the protocol steps results in the authentication of
the client to the application server, via the third party, and establishes a mes
sage protection channel that is governed by a secret session key between the
two entities. Kerberos v5 has evolved into an Internet standard that is widely
implemented [KOHL93].

The underlying data construct used in Kerberos is called a ticket. A client c
establishes its identity with a target server s by presenting a ticket denoted by
r̂ ^ issued by the Kerberos server and an authenticator denoted by A^. The
authenticator protects from replay attacks and indicates the freshness level of
its accompanying ticket by carrying a timestamp.

In the first message of this protocol sequence, the client contacts the
KDC, identifies itself and, presents a nonce such as a timestamp or some
nonrepeating value identifying the request. On receipt of the message, the
KDC generates a random encryption key K^ ̂ ^̂ , called a session key, and con
structs a special ticket, the ticket-granting ticket (TGT), intended for use
with the ticket-granting service (TGS), a component of the Kerberos server.
The TGT identifies the client, contains a session key, and indicates the life
time of the ticket (start and expiration times). The ticket is then encrypted
using the secret key K of the TGS that it shares with the KDC and is sent
in the response to the client. In addition to the ticket for the TGS, the
response includes the session key and a nonce, both of which are encrypted
in the client's secret key K^ (a derivative from the client's password). The
client receives the response, decrypts the portion that is encrypted using its
secret key, and thus unravels the session key K^^^^, used to establish an
encrypted channel with the TGS.

78 3. Elements of Trust Paradigms in Computing

The acquisition of the ticket first for the TGS instead of a target appUca-
tion server is introduced to reduce the risk of exposure of the client's secret
key K^, Once a TGT for the TGS is acquired, the client has no need to keep a
copy of its secret key in the runtime environment. With respect to clients, the
TGS represents no distinction from any server, such as one representing a
business application. The TGS represents a logical distinction from the KDC
but is physically colocated on the same host and has access to the same reg
istry of keys, as does the KDC. Furthermore, both the KDC and the TGS can
be implemented as separate components that run in the same address space.

A cUent that has successfully acquired a TGT for the TGS becomes ready
to request tickets for participating target-application servers. On each such
request, the client presents its TGT to the TGS and identifies the target appli
cation. The TGS verifies the ticket, along with the authenticator and the
associated request information. It then replies with a ticket for the target
application. The reply is protected using the session key with the TGS (as
determined from the TGT). The client uses its session key with the TGS to
extract its new session key with the target service. It forms a fresh authenti
cator, encrypts it with the session key, and sends it along with the ticket to the
target application. If the client requests mutual authentication from the
server, the server responds with a fresh message encrypted using the session
key. This establishes the fact that the server used its own secret key to decrypt
the ticket and determine the session key. Figure 3.4 illustrates the steps of the
Kerberos V5 protocol.

(1)
(2)

(3)
(4)

(5)

Client —> KDC: c, tgs, nonce
KDC -^ CUent: {K^ ,^, nonce } K^, {T^ ,^^} K,^^
Client ^ TGS: {AJ K^ ,̂ „ {T̂ ,^,} K,^^, s, nonce
TGS ^ Client: { K^,, nonce } K^ ,̂ ,, {T^^} K^

Client ^ Server: {A^} K^^AT^) K^

FIGURE 3.4 Kerberos V5 protocol steps

Kerbers: The Implicit Third-Party Authentication Paradigm 79

Federated Kerberos

Each Kerberos server is responsible for providing secure identity and trust
management to a single realm. A realm has well-defined network boundaries
and is made of a finite number of participating entities, such as hosts and
applications. A large network may suffer from the bottleneck exhibited by a
single Kerberos server managing identity trust for the entire network.
Scalability of Kerberos can be an issue for large networks. Kerberos
addresses this problem by dividing a large network into separate domains;
each is supported by its own Kerberos server. Cross-domain relationships are
provided by the inter-realm trust feature of Kerberos. This feature enables a
client from one realm to obtain a ticket for a service that resides in another
realm, referred to as 2i foreign realm. The aggregation of all realms in this
fashion makes it seem like a single large domain of trust.

Interrealm trust in Kerberos is based on sharing secret keys between ticket-
granting services of cooperating Kerberos domains. Recall that each TGS is
like any other entity with respect to its local KDC. A client obtains a ticket
for a server in a foreign realm by first obtaining a TGT to the remote TGS
from its own local KDC. Figure 3.5 illustrates the protocol steps used by
Kerberos V5 in support of the cross-domain trust relationship. It is assumed
that the client is already in possession of a TGT to its local TGS.

f Local ^

tgs^ ^ ^ c tgs

(2) TGS,„,„,^ Client: {K,,^,} K^,^„ {r^,,,.
remote

\ K
^remote' ^•'•S'»' - ^>'-^^remote ^S^remote

(3) Client -^ TGŜ ^̂ ^̂ :̂ {A^ K^ ^^^ ̂ ^^^^^, {T̂ ^^^ ^^^^^^} K^^^ ̂ ^^^^^, s^^^^^

(4) TGS^^^ ,̂̂ ̂ Client: { K^ ̂ , remote } K^^^^ , { r ^ } K^ ^
rtrnuit c, ^ (^ t^^^ remote ^ ^ remote '^ remote

(5) Client ^ Server̂ ^ ,̂̂ -{AJ^.s , ' {?-„ } K^ ,
rt:mun: c t, o remote ^ ^ remote •* remote

FIGURE 3.5 Kerberos protocol steps for cross-realm establishment of trust

80 3. Elements of Trust Paradigms in Computing

A Topology of Kerberos Federations

Bidirectional interrealm trust in Kerberos requires a pairwise of key
exchanges. Applying this arbitrarily to a set of n realms yields 0(n^) key
exchanges. This topology can be modeled by a directed-complete graph in
which the nodes represent the realms and the edges represent key exchanges,
as shown in Figure 3.6 for five realms.

To alleviate the problem of having to deal with a large number of key
exchanges, a Kerberos Version 5 specification recommends organizing the
realms in a hierarchical structure. Key exchanges across ticket-granting servers
from various realms are performed only along this hierarchy structure.
Specifically, key exchanges take place across realms that are directly descend
ing or ascending from one another. Exceptions to this rule are referred to as
shortcuts where two realms unrelated by the hierarchy relationship are directly
joined via a key exchange to optimize heavily used paths. A hierarchy defined
along domain names of the participating realms is a natural fit. The number
of key exchanges required by this topology is 0(log(«)). Figure 3.7 illustrates
the hierarchical interrealm trust in Kerberos. The dotted edge represents a
shortcut.

When an application needs to send requests to a server in a foreign realm,
it traverses the tree upward, downward, or through shortcuts until the desti
nation realm is reached. In each step of this traversal, a TGT is acquired for
the next foreign TGS.

Ticket Forwarding

Kerberos supports authentication forwarding, also referred to as delegation in
the form of impersonation. Here an entity that has authenticated to the KDC

REALM 1

REALM2 REALMS

REALM4 REALMS

FIGURE 3.6 A pairwise key exchange across five realms modeled using a complete
graph

Kerbers: The Implicit Third-Party Authentication Paradigm 81

REALM1

REALM2

\l/

REALMS REALM4

^ ^

REALMS k-

FiGURE 3.7 Cross-realm hierarchical key exchange

(i.e., holds a valid TGT) delegates its authenticated context to another entity
on a local or remote host. Thereafter, the delegated entity impersonates the
original entity and may acquire tickets to downstream servers on its behalf.
An example where delegating credentials is useful is the case of a server that
needs to access a file stored on a network file system that is accessible by the
client only. Such may be the case of a print server, for instance.

Delegation in Kerberos is enabled by way of the client forwarding its TGT
to a server. During the initial TGT acquisition, the client requests that the
ticket be marked forwardable. The session key established between the client
and the TGS is also forwarded to the target server so that it can form a fresh
authenticator as it attempts to acquire a service ticket from the TGS.

Entitlement Attributes in Kerberos

In addition to serving the purpose of authenticating clients to target services,
a Kerberos ticket may contain a set of authorization privileges that are asso
ciated with the holder of the ticket. The following definition expressed in
Abstract Syntax Notation 1 (ASN.l) illustrates the structure of authorization
information contained in a Kerberos ticket.

Ticket

}

= [APPLICATION 1] SEQUENCE {
tkt-vno[0]
realm[1]
sname[2]
enc-part[3]

INTEGER,
Realm,
PrincipalName,
EncryptedData

EncTicketPart :: = [APPLICATION 3] SEQUENCE {
flags[0] TicketFlags,
key[1] EncryptionKey,
crealm[2] Realm,

82 3. Elements of Trust Paradigms in Computing

cname[3] PrincipalName,
transited[4] TransitedEncoding,
authtime[5] KerberosTime,
Starttime[6] KerberosTime OPTIONAL,
endtime[7] KerberosTime,
renew-till[8] KerberosTime OPTIONAL,
caddr[9] HostAddresses OPTIONAL,
authorization-data[10]

AuthorizationData OPTIONAL

}
AuthorizationData ::= SEQUENCE OF SEQUENCE {

ad-type[0] INTEGER,

ad-data[l] OCTET STRING

}

Authorization information is marshaled in a Kerberos ticket as a sequence
of {ad-type, ad-data) value pairs with ad-type representing the parameteriza
tion factor. This parameter is an integer that classifies the value of the
authorization attribute with which it is associated. Negative values are
reserved for local use. Nonnegative values are reserved for registered use (i.e.,
one that is known to the Kerberos community at large). The fact that the data
type of an authorization attribute is a stream of octets allows it to be exten
sible and dynamic.

Cross-realm support in Kerberos enables the federated management of
user entitlements over widely distributed computing resources. Principal enti
tlements are maintained by the Kerberos service associated with the realm in
which the target service resides. This is expressed by the fact that a principal
obtains a service ticket directly from the TGS of the target service's realm.
Authorization privileges and user-profile attributes fit well with the local
management paradigm in which access control is performed by the local
resource managers. In this approach, the semantics of entitlement attributes
are locally scoped, and thus ambiguity and collision among attribute names
are prevented. The security model enabled by Kerberos therefore follows the
paradigm of global authentication and local management of authorization.
The latter encompasses the semantics of access privileges and provides
resource-access control. Adherence to this paradigm is an important aspect
of identity and trust management in highly distributed computing models.

A Kerberos service ticket carries information about the home realm of its
holder in the crealm field. This field indicates the name of the realm in which
the client is registered (i.e., with which the client explicitly authenticates).
Resource managers that receive service tickets from principals in foreign
realms can further qualify the semantics of the access privileges and entitle
ments by the foreign realm. This adds another parameterization factor that
can be used to scope or distinguish among entitlements for local versus for
eign principals. For instance, attribute A from a foreign user's profile may
require more stringent trust-verification procedures than when that same
attribute is associated with a principal that is local to the realm of a service.

Explicit Third-Party Authentication Paradigm 83

A Kerberos identity is always qualified with the name of the realm in which
it is defined. Even when two principal names from different realms are identi
cal, they differ when qualified by the respective realms. Principal name colli
sions across realms are therefore eliminated. The partitioning of Kerberos
naming space along realms plays an important role in the federated trust of
Kerberos. This information is reliably and securely carried in the encrypted
portion of a Kerberos ticket.

Explicit Third-Party Authentication Paradigm

The third-party authentication method via entity introductions is a novel
approach that advanced the state of art in the field of authentication, partic
ularly with the development of Kerberos. A number of aspects, however,
characterize this model with some level of rigidity. For one thing, it requires
all participating entities to adhere to a predefined authentication protocol.
Programmers need to abide by a relatively advanced programming model,
and the protocol has a degree of infrastructure complexity built into it. The
predominant alternate approach is a much simpler one, easy to use but of
lesser strength and eloquence. This approach uses an explicit authentication
scheme in which the authenticating entity does not manage its own user reg
istry; instead, it calls out to a third-party service or subsystem.

The explicit paradigm of third-party authentication is based on the principle
of outsourcing the authentication process within a distributed environment to
a third party that manages an identity repository, performs authentication, and
dispenses entity entitlements. Typically, an application server directly receives
an authentication credential such as an identity and a password from a request
ing client. The credentials are then forwarded to the third party for authentica
tion as well as the retrieval of entitlements. Various forms of third-party entities
have been used for this purpose. An example is a database system against which
a user credential is validated (e.g., by attempting to connect to a database using
the user's credential). A widely used third-party registry is the hierarchical
X.500 directory service exposed through the LDAP protocol [HOWE03,
WAHL97, HOWE95]. Here an identity is established by way of a successful
bind operation to the directory using the credential supplied by the client.

This trust model is characterized by being loosely coupled in that the inter
acting entities are not required to participate in a well-defined protocol
sequence. The client communicates with the target service using application-
level interfaces. Similarly, the server engages the third-party entity using
interfaces specific to that third party. The target-application service, in par
ticular, needs to secure the communication channel used for the transmission
of credentials between the client and the application, on one hand, and the
application and the third party, on the other hand. Typically, a secure socket-
layer (SSL) [FREI96] channel is used for that purpose. This model offers the
advantages of simplicity and extensibility. Connectors to various third-party
identity services can be incrementally built and used.

84 3. Elements of Trust Paradigms in Computing

Plugging an application server with a third-party identity and trust man
ager in this fashion is exploited by a number of evolving Web application
servers (WAS) such as IBM's Websphere [IBMC03]. Websphere further gen
eralizes this approach by abstracting the third-party authentication services
and repositories in what is referred to as a pluggable authentication mecha
nism. This can be represented by an LDAP service or some native operating
system repository such as IBM's RACF or one that is customized. Figure 3.8
illustrates the third-party explicit authentication paradigm.

The Public-Key Infrastructure Approach to Trust
Estabhshment

Public-key cryptography was developed with a revolutionary concept— t̂hat of
establishing trust without having to share secrets. The premise of freely dis
seminating a public key, however, remains a proposition that nevertheless
comes with cost, as well, perhaps only less than that of distributing secret keys.
Security services, particularly origin authenticity, rely on the single foundation
that a particular public-key material is indeed bound to its legitimate user. The
public-key establishment problem relates to trust in the binding that exists
between a subject and a public key. The novel paradigm brought about by
public-key encryption relies on the fact that public keys are intended to be uni
versally accessible. As long as the binding of a public key can be securely
established, the key material can be distributed over secure and nonsecure
channels and stored in public repositories. An established public key is one
that exhibits the property of being securely and unambiguously associated

Directory

Database
system

Nativeoperating
system

FIGURE 3.8 Layout of an explicit third-party authentication scheme

The Public-Key Infrastructure Approach to Trust Establishment 85

with its legitimate owner. This association should remain invariable no matter
the transport over which the key is being communicated or the storage
medium in which it resides or an execution runtime where it is processed.

In the Internet world, public-key establishment is defined through the
X.509 digital certification performed by a trusted third party known as the
certificate authority (CA) [BENA02]. The result of this certification process
is a data construct in the form of an X.509 certificate representing a crypto
graphic binding between the public key material and its holding entity
referred to as a subject. The foundation of such certification rests on the dig
ital signature of the authoritative CA vouching for the trustworthiness of
the certified public key and hence the associated private key. We begin by
taking a brief overview of public-key cryptography, pointing out its under
lying strength in representing trust. An instance of that is expressed by
the capability of public-key cryptography in realizing digital signatures. We
subsequently elaborate on the trust elements that form the foundation for
the Internet public-key trust.

Foundations of Public Key-Cryptography

Public-key cryptography emerged in the mid-1970s with the work published by
Whitfield Diffie and Martin Hellman [DIFF76a, DIFF76b] as well as by Ralph
Merkle [MERK78]. The concept is simple and eloquent yet it has had far-
reaching impacts on the science of cryptography and its applications as a whole.
Public-key cryptography is based on the notion that encryption keys come in
related pairs—^private and public. The private key remains concealed by the key
owner, while the public key is freely disseminated. Data encrypted using the pub
lic key can be decrypted only using the associated private key and vice versa.

In the following, we consider a simple example that illustrates the dual key
concept of public-key cryptographic systems. We restrict our plaintext to 27
characters drawn from the 26-letter English alphabet plus the blank charac
ter. We then assign numerical equivalents to our plaintext alphabet sequen
tially from the integral domain of [0...26] with the blank assigned the
numerical 26. We consider our encryption function E to be the affine trans
formation that takes in a plaintext character P and maps it into a ciphertext
C as follows:

E{P) = {a*P + b)mod21 = C,

with a and b being fixed integers. Solving for P in terms of C in the prior
equation yields the inverse transformation, decryption D:

D(C) = (a'* C+ b')mod21 = C, where

a'=a~^mod21, and

b' = -a-'*b.

For a to be invertible while computing in Z/27Z, it is necessary and suffi
cient to have a and 27 relatively prime. That is to say, there is no number that

86 3. Elements of Trust Paradigms in Computing

divides both a and 27 but for the trivial divisor of 1. Note that this condition
guarantees a one-to-one mapping between P and C Z/27Z is the set of equiv
alence classes (residue classes) with respect to the relationship of congruence
modulo 27.

The parameterized affine transformation in the example, and its inverse
can be used for a basic public-key cryptosystem with the private and public
keys being (a, b) and {a\ b% respectively. An example would be to have a = 2
and b = I, resulting in (a\ b') - (14, - 14). The premise here is for an entity
to maintain secrecy of the private key while freely distributing the public key.
An encryption performed using the public key can be decrypted only using
the corresponding private key. Since the owner of a public-key pair is pre
sumed to be the sole entity with knowledge of the private key, encrypting
information using the private key leads to establishing data-origin authentic
ity. Furthermore, with tamper-proof storage and manipulation of private
keys, nonrepudiation can be established as well. Besides the provision for
data integrity and confidentiality, public-key encryption is about establishing
authenticity without having to disseminate or manage secrets.

In practice, however, the public-key cryptographic system in our example
is easily defeated, even with its generalization to longer blocks instead of sin
gle characters. A block of size s yields a ciphering transformation that maps
each block to a value in the range [O...Â ^ - 1], where TV is the size of the alpha
bet. The weakness of this algorithm rests in the ease by which a decryption
key can be deduced from an encryption key in a deterministic fashion, using
very simple operations (multiplication and additions modulo {N^ - 1)). But
first and foremost is the fact that the encryption function admits a determin
istic inverse function.

The premise behind public-key cryptography is that it should be computa
tionally infeasible to compute the private key by simply knowing the public
key. Along this key premise, we discuss some of the mathematical founda
tions of the processes by which modern public-key cryptosystems derive their
strength and reliability when it comes to the generation of public and private
key pairs. Figure 3.9 is an illustration of the duality between corresponding
public and private keys.

Modern public-key cryptography derives from eloquent mathematical
foundations that are based on the one-way trapdoor functions existing in the
abstractions of number theory. Encryption is the easy one-way trapdoor.
Decryption is the hard direction. Only with knowledge of the trapdoor (the
private key) can decryption be as easy as encryption. Three of these currently
known trapdoor one-way functions form the basis of modern public-key
cryptography, and we discuss them in the next sections.

The Problem of Factoring Large Numbers

The first of the well-known trapdoor one-way functions is based on the ease
of multiplying two large prime numbers, while the reverse, factoring a very

The Public-Key Infrastructure Approach to Trust EstabHshment 87

Encryption
Decryption

Private key Public key

Public key Private key

Decryption Encryption

Key generatte

FIGURE 3.9 The duality between public and private keys in public key cryptosystems

large number is a far more complex task. Factoring an integer n is the process
of finding a series of prime factors, such that their products together yields n.
A prime number, by definition, is one that has no divisors other than 1 and
itself; otherwise, a number is called composite. Factoring large numbers (over
1,024 bits) is known to be computationally infeasible with today's computers
and technology. Modular arithmetic renders the multiplication of such num
bers a far easier task. Consequently, the one-way trapdoor problem here is to
make a very large number a public knowledge and secretly maintain its prime
factors. Note that the trapdoor function discussed here in essence requires
deciding on whether a randomly picked very large number is prime. Primality
testing is a much easier task than the actual factorization [GORD85].

A number of methods have been devised to determine the primality of an
odd number N. The most trivial of which is to run through the odd num
bers starting with 3 and determine if any of such numbers divides N. The
process should terminate when we reach /N , Due to the time complexity
that this method requires, in practice it is stopped much earlier before
reaching //V and is used as a first step in a series of more complicated pri
mality test methods.

The best example of this class of public-key cryptosystems is the Rivest-
Shamir-Adleman public-key algorithm, known by its acronyms of RSA
[RIVE78].

Computing Discrete Logarithms in a Large Finite Field

The second well-known trapdoor one-way function that exists in number the
ory is the ease of computing a function/that consists of raising a number to
a power in a large finite field, while the inverse function/^ ^ of computing dis
crete logarithms in such a field is known to be a much harder problem. A finite

88 3. Elements of Trust Paradigms in Computing

field, also known as a Galois field, denoted by GF(p), is the field of integers
modulo a prime number;?, and thus each element a of GF{p) is guaranteed to
have a multiplicative inverse or ̂ that is also in G¥{p\ such that

The time complexity required for the computation off(x) =a^ = yin ZlpZ
is polynomial in log x. Computing x =f~^ (y) = log^ (y) given j^ is a much
harder task known as the discrete logarithm problem. Here both x and ;; are
constrained to be elements of the discrete set ZlpZ as opposed to the much
easier continuous problem in the set of real numbers, for instance (hence the
use of the term discrete in qualifying this problem).

The one-way trapdoor function as defined by the discrete logarithm prob
lem can be stated as follows:

Knowing a and x, it is an easy operation to compute a^ in Z/pZ (using the
repeated-squaring method). On the other hand, if we keep x secret and hand
someone the value ;; that we know is of the form a^ and ask to determine the
power of a that gives y, they can use up all the computing resources that they
have available but will indefinitely fail to hand back a response.

A number of modern public-key cryptographic algorithms are based on
the discrete logarithm one-way trapdoor function. Most notable is the Diffie-
Hellman key exchange algorithm [DIFF76b] and the El Gamal crypto
graphic system [ELGA95].

Elliptic Curves over Finite Fields

Elliptic curves over finite fields have been proposed for use with existing public-
key cryptographic systems [KOBL87, MILL86]. Given a point P from an ellip
tic curve E, defined over a finite field, and an integer a, the one-way function
here consists of the ease of computing the product a*P, while the inverse of
finding a such that a*P results in a point over E is intractable. Elliptic curves as
such form a reliable and secure source for computing public keys. The elliptic-
curve analogs of existing algorithms that are based on the discrete log problem,
such as Diffie-Hellman and ElGamal, can be deduced in a straightforward
manner. The discrete log problem on elliptic curves is likely to be harder to tract
than its counterpart on finite fields. This property has led to the adoption of
elliptic cryptosystems in many situations requiring stringent security measures.

Digital Signatures

The advent of public-key cryptography combined with the strength and reli
ability of intractable one-way hash functions gave rise to the digital signing
of a document. This process inherently enables data-origin authenticity and
can be strengthened to further withstand repudiation. Using the private key
of a public-key pair to encrypt a data stream automatically binds the subject
with whom the key is associated to the data. The cost of encrypting an entire
document to simply establish this binding can be prohibitive, particularly in

The Public-Key Infrastructure Approach to Trust EstabUshment 89

light of the compute-intensive public-key cryptosystems. Fortunately, the
alternative is eloquent and is computationally affordable as it does not
require encrypting an entire document. Two of the well-known digital signa
ture algorithms are the RSA and the DSA [NIST94]. We briefly outline the
RSA algorithm below.

RSA Signature

The RSA digital signature algorithm proceeds along two main steps:

• Using one of the common hashing algorithms such as MD5 or SHA-1
[RIVE92, [NIST95], a document is first digested into a much smaller
representation, a hash value.

• Encryption is applied to the hash instead of an entire document

Provided there is no need for a confidentiality service, the signed document
is then transmitted in its cleartext form, and the signature is provided to the
recipient for verification. Figure 3.10 illustrates the RSA signature computa
tion and verification procedures.

Trusting a Public Key

From the outset, public-key cryptography seems to eloquently solve the key
distribution and management problem introduced by secret key cryptography.

Private key

Document
to sign Hash

function

' r

Digest
Encrypt

Signature

pubiic Vey

\ '

Signature Decrypt
Digest

Document
to verify Hash

function

Digest

FIGURE 3.10 A Generating a RSA signature and B verifying the signature

90 3. Elements of Trust Paradigms in Computing

Anyone can use the public key to encrypt data, but only the owner of the pri
vate key can decrypt it. A community of users that wishes to communicate in
confidentiality can adopt a public-key cryptosystems, publish the public keys
of its community members in a directory, and completely dispel any concerns
that may otherwise arise when distributing secret keys. Unfortunately, the
secure binding of a public key to its legitimate holder remains a critical prob
lem on which trust is completely dependent. In a sense, the authenticity of a
public key with respect to its holder is at issue.

One promising answer to the question of assurance in a public key lies in
the certification process that di public key infrastructure (PKI) can provide. At
the heart of a PKI is the digital signature technology that we outlined earlier.
Parties relying on public keys confine their trust in a single entity, known as
the certifying authority (CA). Before a user's public key is disseminated, the
underlying high-assurance CA uses its own private key to digitally sign the
user's key, which is then distributed to a public repository. The concept of a
verifiable public-key certification can be traced back to the work published in
[KOHN78].

A relying party securely installs the public key of the trusted CA and uses
it to verify the signature of each user's public key that might thereafter be
used. Only on a successful verification does the reliant party initiate a com
munications channel. This simple method of certification thwarts against an
attacker who does not have a public key signed by the same CA as that of the
two communicating parties but fails when the attacker is in possession of a
key signed by the same CA.

To yield a reliable assurance, a comprehensive public-key certification
process necessitates more security elements than simply signing an encryp
tion key. These elements are embodied in the data construct that is to be cer
tified. For the Internet realm this construct is called an X.509 Version 2
certificate, and the secure infrastructure that makes it is the public-key infra
structure for X.509 (PKIX) [HOUS99a, HOUS99b]. We discuss the main
PKI trust elements in the next section.

Foundations of Trust in PKI

An Internet public-key certificate (PKC) provides a high degree of assurance
in the public key that it certifies. At the core of this assurance is a trusted issu
ing authority that is either the signer of the PKC or one situated along a
chain of certificates leading to that PKC. Such a chain is called a trust path;
its meaning will become clear in the next sections. The trust provided by PKI
is demonstrated by a provable binding between the public-key material and
its associated subject and hence the private key. Recall that the public and pri
vate keys are mathematically related values that are associated with one
another. In addition to the public-private key pair, the certified binding impli
cates a set of attributes that a subject may possess. Such attribute may include
an X.500 distinguished name (DN), an electronic mail address, or further yet

The Public-Key Infrastructure Approach to Trust Establishment 91

{-- the signed portion

Version number
Serial number
Signature algorithm
Issuer name
Validity period
Subject name
Subject public key
Issuer unique identiHer
Subject unique identifier
Extensions
}

v3
xxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxx

Signature algorithm
Signature value

xxxxxxxxxxxx

xxxxxxxxxxxxxxx

FIGURE 3.11 Data elements of the X.509 v3 certificate

a customized personal attribute profiling the certificate holder. Figure 3.11
illustrates the major elements that are implicated in a certified public key
using X.509 V3 certificates.

The trust model in PKI is anchored through the degree of assurance in the
public-key certificate of the issuing CA. The public key of the issuing CA as
determined from its own PKC is, in turn, used to verify the digital signature
of that CA in the user's PKC. That signature is computed over the data ele
ments of the certificate as illustrated in the bottom part of Figure 3.11
including, of course, the public key material. Given the assurance in the PKC
of the issuing CA, a successful verification of this signature establishes trust
in the binding of the public key being verified and hence the corresponding
private key to the end entity that holds the PKC.

The need for the secure verification of an end entity's public key is likely
due to the involvement of that entity in a public-key-based security protocol
or simply in data signing or encryption. Besides the signature verification
step, establishing trust in a PKC is foremost based on the certificate itself
being valid. Two key factors are decisive in determining the validity of a cer
tificate:

• Revocation of the certificate First the certificate is checked for mem
bership in a certificate revocation list (CRL). A revoked certificate is
invalid regardless of its signature being valid. A PKC may be revoked
before at any time before expiry arrives. Various revocation policies
may be instituted based on circumstances. A CRL is the second major
data construct that is available for PKI consuming entities. It attests

92 3. Elements of Trust Paradigms in Computing

that the PKCs to which it refers are no longer vaUd for use. Like for
PKCs, CRLs are constructs that are digitally signed by certificate
authorities. Below we shed more light on the links between a PKC and
its entry in a CRL.

• Time of use The certificate use has to be valid with respect to its desig
nated lifetime as indicated in the PKC itself.

The elements that contribute to the validity or invalidity of a PKC are all
included in data over which the PKC digital signature is computed. A num
ber of aspects can affect the level of trust in a PKI. Below we discuss two
such aspects. The first is the serial number embedded in a PKC and its rela
tion to a CRL. Subsequently, we shed Ught on the element that is without a
doubt the cornerstone of trust in PKI—^that of protecting the private key of
a certificate signing authority.

Identification Links Between a Certificate and a CRL

As it is shown in Figure 3.12, the certificate serial number is about the only
field that identifies a certificate membership in the list of revoked certificates
contained by a particular CRL. A collision in certificate serial numbers there
fore may lead to erroneous decisions by validating entities. Since it is only
within the confines of a particular certificate authority that the serial-
number-generation process can be controlled, it becomes an implicit require
ment that a certificate be revoked by the same authority that had issued it.
Furthermore, assuming that the serial numbers are generated in some incre
mental fashion, the serial-number-generation functions need to maintain a
persistent representation of the current number over the lifespan of the
authority. Due to the importance of using a unique number for each certifi
cate, the persistent form of the current serial number may need to be
encrypted while it is saved in auxiliary storage.

Certificate membership in a CRL needs to be decided by the identification
parameters as represented by both the serial number as well as the issuer name.

X.509 certificate X.509

Serlai ftifmlief xxxxxxxx ORt Issuer xxxxxxxxxx
- ^ — • •

PKCIsöu^ xxxxxxxxx Serial nymNir xxxxxxx

FIGURE 3.12 Identification links between a certificate and a CRL

The Public-Key Infrastructure Approach to Trust Establishment 93

Protecting the CA Signing Key

The CA private key deserves being the object in need of most protection pos
sible within a public-key infrastructure. After all, the verification of assur
ance in the certification process is entirely dependent on the security of this
key. Indeed, once a CA signing key is compromised, the whole infrastructure
and any relying entities and applications are breached. A compromised CA
key can lead to all sorts of attacks. Issued and published certificates can be
modified. Others can be illegitimately revoked. Most dangerous is that cer
tificates can be issued under the auspices of the compromised CA to subjects
that are not entitled to certificates. It is prudent measure to treat the CA sign
ing key with particular care. Software solutions can provide an increasing
degree of security to the signing key through encryption. However, because
the key must be exposed to generate signatures, it may become vulnerable to
interception and capture.

One approach that affords the CA key a high level of security is the use of
tamper-resistant hardware in the form of PCI-based cards to store crypto
graphic keys and perform encryption and signing operation without expos
ing the key. One reliable product in this category is the IBM 4758 coprocessor
card that is delivered with a high level of assurance and manufacturing certi
fication. This cryptographic coprocessor provides a simple access interface
using the IBM Common Cryptographic Architecture (CCA) APIs as well as
the RS A Laboratories PKCS #11 interfaces (cryptoki) [RSA99]. It relies on
a key-encrypting key, the master key, stored in a tamper-resistant circuitry
that withstands physical attacks.

The IBM 4758 provides a whole set of cryptographic operations such as
random number and key generation, hashing, encryption, generating mes
sage-authentication codes (MACs) as well as signing and verifying signa
tures. These operations are based on common cryptographic algorithms
such as SHA-1, MD5, DES, Triple-DES (DES3), RS A, and DSA. In addi
tion to the cryptographic hardware engine, the card includes a small
general-purpose processor. The access-control module serves as an authen
tication mechanism used to log on users to the coprocessor as well as per
forming access-authorization checks based on the different roles a user
might assume. Enforcing access policies as such is achieved by the hardware
and protected software. The coprocessor manages DES and public-key algo
rithm (PKA) keys separately.

PKI Trust Topologies

Trust verification in PKI may involve more than one CA certificate.
Depending on the trust topology in use, the validation process can become a
recursive process involving a chain of CA certificates. We outline the trust
topologies commonly found in PKI in the sections below.

94 3. Elements of Trust Paradigms in Computing

Hierarchical Trust

A hierarchical topology is one that maps the trust layout of an organization
top down into a tree structure [HOUS99a]. At the top of the tree is the root
certificate authority. Extending branches may lead to leaf nodes that repre
sent end entities in the organization or may lead to other subauthorities. The
rational for the partitioning may stem from the need to manage a large organ
ization as a set of smaller entities, each with its own authoritative CA. Figure
3.13 shows an example of a hierarchy structure. Generally, there is no
requirement that one CA certify end entities only or other CAs only. A par
ticular CA may issue certificates to end entities as well as to other certificate
authorities. But for all practical purposes, however, the role of each CA may
be best managed by requiring that it certify subordinate CAs only or end enti
ties only. Such a separation enforces the authoritative hierarchy structure of
an enterprise and points out the controlling elements of trust.

The hierarchical trust topology enables the delegation of trust down to
subordinate authorities. The root, high-trust authority becomes concerned
with the trust-delegation task down to a smaller number of subordinate
authorities. The fact that the top CA is concerned with the dissemination of
trust to a small number of entities allows for managing the strict controls and
policies that need to apply at this highest level. One such policy may require
the offline distribution of the root CA certificate in a highly secured fashion
to the immediate subordinate CAs that it manages. There is a fundamental
reason behind the secure distribution of the top certificate; the process of
building a trust chain begins at the root CA.

Building a trust chain consists of backtracking the path from an end entity
certificate all the way to the root-trusted CA. This backtracking process

Root CA

Subordinate CAs

End entities

FIGURE 3.13 A hierarchical trust topology with one root governing a two- and a
three-level hierarchy

The Public-Key Infrastructure Approach to Trust Establishment 95

entails a number of validation steps, two of which are fundamental. The first
is the determination of the chain by starting at the leaf end-entity certificate,
associating an issuer name at this level with a subject name in a certificate of
an authority at the immediate upper level until the root is reached. Figure
3.14 depicts this process of computing a trust path. For each subject name
determined as such, the corresponding CA certificate is retrieved, perhaps
from a repository such as a directory service or one referred to through
some URL

The second step consists of validating the series of cryptographic signa
tures in the previously computed trust chain. This process begins with the
certificate of the root trusted CA and proceeds until it reaches the leaf end-
entity certificate.

As illustrated in Figure 3.14, the determination of the path via the back
tracking of issuer and subject names is computed in a bottom-up fashion
starting with the end-entity certificate. By contrast, the signature-validation
process is performed in a top-down fashion beginning with the certificate of
the trusted authority.

Signature validation is the process during which the fundamental trust of
a certificate is built. It is all based on the basic assumption that the public key
of the root CA is trusted. Recall that assurance in this assumption is based
on the secure distribution of the root CA certificate. This distribution process
defines what can be termed as the "boot-strap" of trust.

The high-assurance public key of the root is used to validate the signature
value in the CA certificate immediately below it in the hierarchy as deter
mined by the path. Once this is validated, the immediate subordinate CA

Sublet rmme
Signature

^

FIGURE 3.14 Computing a trust path in a hierarchical trust model

96 3. Elements of Trust Paradigms in Computing

implicitly inherits the highly assured trust property and becomes the trust
root. This procedure continues recursively until the signatures in the leaf end-
entity certificate is validated. A special case of this path-validation scheme is
one in which there is only one level of hierarchy, and thus the self-signed root
CA certificate is used to directly validate the signature in the end-entity PKC.

The fundamental element of trust in a certificate chain rests in the secure
distribution of the root CA certificate to all of the entities below it in the
hierarchy. The dissemination of the root CA certificate may involve an offline
distribution method to increase security. For instance, the certificate can be
mailed to the respective human entities in a nonvolatile medium such as a
diskette or a compact disk. On receipt, each entity computes a digest of the
certificate using, for example, SHA-1 or MD5 and then calls the human
trusted with the administration of the CA to confirm the digest value and
hence this distribution process.

The notion of a single point of trust does not necessarily concern the
root CA only. Rather, it can be applied down the tree hierarchy in a dele
gated fashion. The property that makes this delegation stand is that the
recursive signature-validation scheme, as described, can also be started at
some highly trusted intermediate CA. Any compromise in the signing keys
above this intermediate CA will ultimately be detected once validation
reaches the trusted intermediate CA. The trust path therefore requires the
existence of at least one high-assurance authority along the path irrespec
tive of its position in the tree hierarchy. A delegation scheme of this kind
lends itself well to situations in which end users of some global enterprise
need only to be aware of "regional" certificate authorities that directly
manage their part of the business but need to be concerned with the cor
porate CA.

The advantage of setting up a multilevel trust hierarchy is to bridge multi
ple organizations (public-key infrastructures within, say, a large organization)
without having to reissue the public-key credentials already deployed within
each of the individual organizations. Let us assume that an enterprise that
has grown due to a merger decides to join its existing and distinct public-key
infrastructures into a single hierarchy so that services in one organization can
be accessible to the members of the other organization and vice versa.

The hierarchical scheme of trust can provide a solution in this case by hav
ing each of the disjointed CAs become subordinate to the root CA, one that
is perhaps designated and managed at the corporate level. Figure 3.15 illus
trates a hierarchy consisting of two intermediate CAs and joining two differ
ent organizations.

The procedural steps required to effect this merge may consist of the fol
lowing:

• Have each subordinate CA revoke its existing self-signed certificate and
publish it in a certificate revocation list, actually an authority-revocation
list (ARL). This will ensure that a trust path should always lead to the
new root CA.

The Public-Key Infrastructure Approach to Trust Establishment 97

New root CA

Previously root CAs now
becoming intermediate
CAs

FIGURE 3.15 Joining two organizations using the hierarchical trust model

• Have each subordinate CA acquire a new certificate from the new root
CA. To avoid a CA key-update process, each CA may use its current
public key when requesting the new certificate.

• Distribute the new root CA certificate in a secure fashion to all of the
end entities in the merged organizations including the two subordinate
Cas, and have each entity replace this certificate for the old trusted root.

The net effect of this join operation is the dissemination of trust across the
two previously disparate organizations via the new root CA that represents
the trust anchor for the larger organization. Note that if so desired one can
split the two organizations by reversing each of the steps in the join opera
tion as described. To accompUsh this, first, each CA requests revocation of its
own certificate from the root CA. Each subordinate CA then uses its current
public key to issue a self-signed certificate for itself and push it down to each
of the entities it certifies through a highly assured channel.

Joining existing public-key infrastructures by building a single multilevel
hierarchy results in a unified trust model. In this model, a single authority
represents trust in the entire organization. Similarly, the affected trust join
operation enables the organization to continue delegating to each subordi
nate CA the PKI management tasks for its own domain of operation.

The use of multilevel hierarchies, however, extends a certificate trust path
and thus may affect performance of the certificate validation process. To mit
igate the extent of this problem, a PKI deployment as such may resort to
computing and then pushing the trust paths to each end entity's local envi
ronment ahead of any validation processing.

Cross-Certification

The proliferation of PKIs, particularly in the Internet space, ultimately
leads to the need for extending the benefits provided by public-key certifi
cation across the boundaries of certification domains. Such domains may

98 3. Elements of Trust Paradigms in Computing

span disparate organizations and departments within a single enterprise. In
many cases, the requirement for automated interaction across multiple
organizations is what drives the need to maintain the benefits of PKI-based
security in applications that bring about those interactions. The basic issue
here is that of joining independently deployed PKIs with a minimum dis
ruption and a maximum transparency to end users. Most important, in join
ing disparate PKIs it is sometimes desirable to maintain the independence
characteristic that each domain enjoys whereby each certification authority
remains the sole authority for its own domain of operations.

Functionally, the hierarchical scheme that we previously discussed can be
sufficient for bridging two certification domains, the result of which is tightly
linked organizations, virtually becoming a single domain. The drawback of
the hierarchical merge is that end entities will not be completely shielded from
the join operation. Cross-domain certification, on the other hand, achieves
similar trust semantics in joining disparate PKIs, yet it maintains a complete
transparency of the process with respect to end entities.

Cross-certification is a method of joining two disparate PKIs without
incurring any effect on the end entities and without subordination of either
infrastructure to a new authority. It is a peer-to-peer contract between two
CAs to honor certificates exchanged, through security protocols, on service
requests crossing each other's domain. Each end-entity member in the com
munities joined via a cross-certification process remains in possession of the
certificate of its respective trusted root CA prior to the merge taking place.
This is contrary to the hierarchical scheme in which end entities are to
acquire the certificate for the new root CA. The trust model remains invari
able in the cross-certification case while it takes a different form in the hier
archical scheme.

A CA A that issues a cross-certificate to authority B underscores the fact
that end entity certificates issued by B to its own community members are
now trusted for use within the domain certified by authority A. Similarly,
authority B may issue a cross-certificate for authority A, and thus domains
A and B are said to be mutually cross-certified, also referred to as a two-way
cross-certification. In essence, a two-way cross-certification is equivalent to
joining two domains under a single trusted root CA but without a direct
impact on end users.

It is worth noting that structurally a cross-certificate is simply an X.509 v3
certificate with a base constraint extension indicating that it is a CA certifi
cate and in which the subject and issuer names represent two different CAs.
It certifies the public key of an already operating subject CA as a signing key
used for issuing certificates.

Cross-Certification Grid

Given a network of CAs, the cross-certification process can be modeled as a
direct graph whose nodes represent the participating CAs while the edges rep
resent the direction of the certification. A directed edge from A to B indicates

The Public-Key Infrastructure Approach to Trust EstabHshment 99

a one-way cross-certification of authority B by authority A, Figure 3.16 illus
trates a cross-certification grid comprised of five CAs.

Note that because the cross-certification in one direction is a transitive
relationship, CA2 becomes implicitly engaged in a two-way cross-certification
with CA5. This is because CA2 is explicitly cross-certified by CA5.
Meanwhile, CA2 cross-certifies CAl, which in turn cross-certifies CA3, and
hence CA2 indirectly cross-certifies CA3. In turn, CA3 cross-certifies CA5
and thus CA2 implicitly cross-certifies CA5. In that sense, the respective com
munities of CA2, CAl, CA3, and CA5 are now entitled to interact across the
domains represented by these CAs. For a purist, such communities are
defined by the strongly connected component in the directed graph repre
senting the cross-certification network of trust [DIESOO].

Hub-Based Cross-Certification

Because of the transitivity property exhibited by the cross-certification
operation in each direction, a common hublike CA can be used to bridge
a network of CAs, thereby establishing a complete cross-certification grid
(one in which each CA is cross-certified with each other CA in the net
work). In this trust topology, every CA is mutually cross-certified with the
hub CA only. Trust is then disseminated by way of the transitivity prop
erty. Figure 3.17 depicts this topology. Note that the advantage here is that
the number of cross-certifications performed in this case is linear in the
order n of the number of CAs involved, while in the previous case it is in
the order of n^.

Hybrid Model

The hybrid model is a trust scheme that combines the hierarchical and the
cross-certification methods. A multilevel hierarchy can be the result of merg
ing of two organizations, while the cross-certification process might be driven

FIGURE 3.16 An example of a cross-
certification network

100 3. Elements of Trust Paradigms in Computing

Hub CA

FIGURE 3.17 A network of CAs mutually cross-certified through a hub CA

by the need to extend the trust to a third-party business partner in one
direction or another. The complexity of a federation formed by a hybrid
configuration may directly affect the performance of constructing a trust
path. Implementations may need to optimize path construction by caching
constructed paths for subsequent uses. Figure 3.18 shows a trust path
between two communicating entities. The path spans two domains in a hybrid
scheme of trust.

Web-of-Trust Model

The web model evolved with the advent of the SSL as a security protocol
between two HTTP endpoints, mainly the client browser and a target Web
server. It uses a more relaxed trust model in which a user can pick and choose

Cross-certification

, t .
•Hierarchical

FIGURE 3.18 An example of a hybrid trust scheme bridging two entities

The Public-Key Infrastructure Approach to Trust EstabHshment 101

among the trust anchors that he or she deems worthy of being root CAs.
An end entity in the web-trust model maintains one or more root CA certifi
cates in its local environment (the browser's key store, for example). Validating
a certificate as such consists of finding a trust path to one of the trusted CAs.
Generally, these trust paths are shallow and in the most part consist of two
certificates, the end entity's and that of the root CA from the local key store.
The reason for this is to achieve high performance of the web-based applica
tions. Figure 3.19 illustrates a web-trust model of completely disjointed CAs.

A variant of this trust model is defined by the pretty good privacy (PGP)
web of trust. PGP, which evolved into a family of software, was initially
developed by Philip Zimmermann as an email encryption program
[CALL98]. It uses public key encryption for the distribution of strong secret
encryption keys. The trust scheme in PGP known as the PGP web of trust is
a simpUstic model founded on the discretionary trust of individuals. There is
no concept of an authoritative entity that certifies public keys in PGP. An
individual user generates a public-private key pair that he or she binds to a
unique identifier usually in the form of (name, emailaddress) and is respon
sible for its distribution to other individual entities or key distribution serv
ices. The simplistic information model of PGP certificates is intended for the
main purpose of securing email exchanges. Each user maintains a set of pub
lic keys of other individuals deemed trustworthy. Furthermore, a key can be
signed by a trusting entity and distributed to other individuals. The signing
entity is referred as an introducer. Trust in the PGP model like in the Internet
PKI is not transitive. The fact that A trusts B as an introducer and in turn
B trusts C does not necessarily estabUsh that A trusts C. This basic trust
scheme has evolved from real-life behaviors. Because PGP has gained popu
larity mostly as an email encryption tool, its web-of-trust model has naturally

Local key store

A A
A

FIGURE 3.19 The web-trust model: Discretional trust of certificate authorities

102 3. Elements of Trust Paradigms in Computing

evolved along a paradigm that mimics trust in human relationships. For this,
it is sometimes referred to as a model of the grassroots in which authority is
equally distributed across all participating entities.

The PGP web of trust can be modeled by a directed graph G = (N, E)
where the set of nodes Â represents the collection of entities participating in
a PGP web of trust, and edge e GE from entity A to entity B represents the
fact that A trusts the public key of B.

Proxy Certificates: Delegated Impersonation in PKI

Impersonation, the simplest form of delegation, allows an entity A to grant
to another entity B the right to establish itself as if it were A. In that process
entity B generally inherits a subset of privileges of A. In computational terms
entity A may represent an end user, while entity B can be a programming
agent running on the user's behalf. Similarly, the initiating entity A can be an
identifiable programming agent as well. The use of inherited privileges can be
subject to various constraints that may result in what is referred to as
restricted impersonation, a benefit of which may be to limit damage from a
potential compromise. Impersonation can be recursively applied along a
chain of requests, where, for example, a sequence of computing tasks are
composed then executed in the course of servicing an end-user request.

Proxy certificates have recently been advanced by the IETF as the mecha
nism by which chained impersonation can be accomplished in a PKI using
X.509 certificates. They were originally introduced by the Globus Project
(www.globus.org) as a means for providing single sign-on and delegation in
what has come to be known as the grid security infrastructure (GSI), a key ele
ment of grid computing.

The main motivation behind proxy certificates appears to be the strong
requirement imposed in the public-key arena for safeguarding the private key
associated with a public-key certificate. Excessive use of the private key
increases the probability of exposure and hence compromise. The proxy cer
tificate (PC) concept remedies this problem by allowing an entity that initi
ates a distributed multitasked request to access its private key only once
during initiation. Processes and tasks involved thereafter all impersonate the
same initiator yet without having to access its private key.

The Proxy-Certificate Approach

A PC is a public-key certificate that conforms to the X.509 profile
[HOUS99a] and has the following properties:

• The signer (issuer) of a PC is either a holder of an end-entity certificate
(EEC) or another PC. A PC-holding entity that issues another PC is a
participant in an impersonation chain.

• It contains its own public- and private-key pair, distinct from any other
certified key pair.

http://www.globus.org

The Public-Key Infrastructure Approach to Trust Establishment 103

• It can be used to sign another PC but not an entity certificate (i.e., an
EEC).

• A PC certificate chain must have a signing end-entity root certificate,
which is a PKC. This underscores the fact that impersonation is con
trolled by a single delegating entity at the root of the chain.

• An EEC acting as a proxy issuer must have a nonempty subject name.
• A PC does not stand on its own in binding an identity to the certificate.
• A PC inherits its identity from the subject field of a signing end-entity

certificate. This may possibly be inherited from the subject alternate
name extension of the EEC.

• The subject field of a PC is used as a unique identifier in tracing back
the chain of certificates leading up to the original signer. It does not
define a new identity by its own.

Typically, a proxy certificate is generated along a delegation chain. An
entity B that is authorized to impersonate A generates a public-private key
pair, forms a PC and signs it using the private key corresponding to its own
PKC. Similarly, a PC that is received by another entity C, during the authen
tication of a cascaded request, can be used by C to issue another PC, thus
further extending the impersonation chain. The entity issuing a PC is called
a proxy issuer (PI). A PI represents either an end entity or another PC. One
key difference between a CA signing a certificate and a PI signing a PC is the
fact that the CA performs a unique key to name binding, while the PI does
not. Recall that the identity associated with a PC has to be traced back to an
EEC. Figure 3.20 illustrates an example of an impersonation chain using
proxy certificates.

FIGURE 3.20 Proxy certificate chain

End-entity
proxy issuer

PC
proxy issuer

PC
proxy issuer

104 3. Elements of Trust Paradigms in Computing

Elements of the X.509 Proxy Certificate

A proxy certificate conforms to the X.509 profile. Two elements make this
profile dynamic and flexible. The first is the specification of optional fields
that may or not be present in a certificate. The second and the most impor
tant one is the extensions field intended to be exploited by various PKI-based
applications. Besides being simply an X.509 PKC, the characterizing elements
of a PC are described below.

• The PC extension The PC profile describes a new X.509 certificate
extension designated to identify a PC and to place constraints on its
use. This extension, called the ProxyCertlnfo, must be present and
marked critical in every PC. Its pC field of a Boolean data type must
be set to TRUE.

• Naming requirements Because a PC does not represent a name binding
of its own, it must not contain the issuerAltName extension. The sub
ject field of a PC must be a sequence of one or more proxy identifiers
concatenated together. A proxy identifier is a common name (CN)
attribute and should be unique among all PCs issued by one proxy
issuer. This characteristic is an important element in tracing back a
path of a PC chain when evaluating trust. For example, if the proxy
issuer of a PC is an EEC, the subject field must be one single proxy
identifier—say, idy When that same PC becomes a proxy issuer, the
subject field is the concatenation of id^ and id^, where id^ is the unique
identifier of the PC (the entity that became a proxy issuer). The proxy
identifier value can be the same as the PC serial number. Finally, the
subject of PC should be used for path validation only and not for name
binding or for use in authorization decision for instance.

• Extended key usage Because a PC inherits the attributes of its issuer, if
the issuer certificate includes the extKeyUsage extension, then the PC
must include that same extension. The key contained in the PC cannot
be used for any purpose for which the issuer certificate is not designated
for. Key usage in the PC must be a subset of the issuer's key usage. If the
issuer certificate does not contain the extKeyUsage extension, then
the PC may or may not include such extension. The criticality of this
extension must be preserved top down along a chain of PCs.

• Basic constraints The basic constraints extension that is used to desig
nate a CA certificate must not have the cA field set to TRUE.

Computing Trust in Proxy Certificates

A PC is a representative of some end-user entity with an actual EEC.
Ultimately, the binding of a PC to an identity has to involve the root
EEC. Validation of a chain of PCs needs to trace back a PC to an EEC. To
make the appropriate PCs and the EEC available for path validation, an

The Public-Key Infrastructure Approach to Trust Establishment 105

authentication protocol using a PC may pass the entire PC and EEC chain as
part of that protocol.

Computing a PC trust path consists of tracing an issuer name in the PC
being validated to a subject name in the issuer's certificate until an EEC is
reached. The EEC, in turn, is subjected to the standard trust-path validation
that we outlined before to arrive at a trusted root authority CA^, After the
EEC is validated, its subject name can then be used for authorization pur
poses. Figure 3.21 illustrates the construction of a PC trust path.

In computing a PC trust path, the issuerCertSignature part of the
ProxyCertlnfo extension found in a PC can be used to add accuracy to the
computed path. The optional issuerCertSignature field, when present, can be
used during path validation to ensure that each PC path starting with an EEC
and ending at the PC is unique. If certificate N+l in a certificate path is a PC,
then issuerCertSignature is used to verify that certificate N is actually the PI
that issued it and not some other certificate with the same name and public
key. Without this field, if a PI were to issue two different proxy certificates
(Pj and P2) with the same subject and public key but different proxy restric
tions or validity time constraints, then the path-validation algorithm would
accept a path in which P^ appears as the issuer of a certificate that in reality
was issued by P^

PC
Proxy-issuer

FIGURE 3.21 Constructing a PC trust path

106 3. Elements of Trust Paradigms in Computing

Attribute Certificates: Entitlement Management in PKI

An X.509 PKC is signed and issued by a CA. It binds an identity with a pub
lic-private key pair. An attribute certificate (AC) is a data construct that is
similar to a PKC; it is signed and issued by an attribute authority (AA). The
main difference between a PKC and an AC is that an AC contains no public
key. Instead, an AC carries with it a set of attributes associated with its
holder. These attributes may specify privileges in the form of group member
ship, roles, a security clearance, or any information profiling its holding user.
In essence, an AC binds a user with a set of authorization attributes, capa
bilities, or in general terms a profile.

Authorization attributes of an entity can be placed in the extensions field
of its PKC. The key arguments against this proposition stem first from the
fact that certificate extensions are intended for describing certificates and
thus expressing user attributes in certificate extensions overloads the seman
tics of X.509 extensions. The second argument is due to the difference in life
time between a PKC and an AC. Given that a PKC binds its holder with a
public key, its validity period is likely to outlast the lifetime of an AC. User
entitlements are much more of a dynamic nature and are constantly subject
to change. In contrast, a PKC is likely to remain unchanged and valid for a
long period of time. Extending a PKC to include user privileges therefore
may increase the cost and complexity of managing the underlying PKI.

Elements of Attribute Certificates

Among pieces of key information contained in an AC is a set of user attrib
utes, a validity period, and a signature certifying the integrity of the AC and
establishing the authenticity of its issuing authority. Except for the signature
information, all attributes are encapsulated in the AttributeCertificatelnfo
data type as expressed by the ASN.l notation of Figure 3.22.

Binding Information

To enable an AC verifier to assert trust, AC binding information defines the
association between an AC, its issuer, and its holder. The following data fields
represent this binding:

• Issuer The issuer of an AC is represented by its X.500 distinguished
name. All AC issuers must have nonempty distinguished names. It is up
to the AC verifier to appropriately map the issuer name to a PKC for
the issuer before asserting trust.

• Holder In an environment where the AC is passed in an authenticated
message or a protocol session in which authentication is based on the
use of X.509 PKCs, such as is the case with TLS/SSL, the holder field
should contain the holder's PKC serial number and issuer (it asserts the

Attribute Certificates: Entitlement Management in PKI 107

{-- the signed portion

AttributeCertificatelnfo

Version
Holder
Issuer

Signature

SerialNumber

AttrCertValidityPeriod
Attributes

IssuerUniquelD
Extensions

}

Signature algorithm

Signature value

::= SEQUENCE {

v2,
Holder,
AttCertlssuer,

Algorithmldentifier,

Certificate Serial Number,

AttCertValidityPeriod,

SEQUENCE OF Attribute,
Uniqueldentifier OPTIONAL,
Extensions OPTIONAL

xxxxxxxxxxx

xxxxxxxxxxxxxx

FIGURE 3.22 Elements of the X.509 v2 attribute certificate

holder in way analogous to establishing its security context). The
holder can also be expressed as the subject name or the subject alter
nate name from its corresponding PKC. This binding leads to estab
lishing an authenticated security context in which the AC can be used
to perform authorization checks.

• Serial number The serial number assigned to the AC. For any con
forming AC, the (issuer, serial number) pair must be unique.

Attribute Information

This field contains a sequence of uniquely identifiable attributes. Each con
tains a set of key-value pairs. Privilege attributes that are designated for use
in access control form the basis of an AC. At least one attribute must be pres
ent in an AC. Evidently the absence of attributes altogether defeats the basic
purpose of an AC. To foster interoperability across various security domains,
a number of AC attributes have been standardized. The following is a brief
description of some of them:

• Service authentication information This attribute identifies the AC
holder to a target service by name. It may also include optional service-
specific authentication information. Typical application of this attribute
is to communicate the holder's identity and password to a legacy appli
cation service. An encryption scheme is likely to be used to provide
for the security of the password. The use of the target service's public
key to encrypt such information lends itself well for the protection of

108 3. Elements of Trust Paradigms in Computing

•

authentication information. As shown in Figure 3.23, the verifier of an
AC, a target service, first establishes the trust path to the holder's PKC.
It then uses its private key to decrypt any authentication information.
The latter can be passed to a legacy application that is based on such
authentication information to establish the identity represented by this
attribute.
Charging identity This attribute identifies an identity that can be used
by the AC holder for charging purposes. Such attribute can be
exploited by a billing service for example.
Role Used to specify a role that the AC holder is capable of assuming.
Additionally, it may specify the name of the authority issuer of the role
specification as a reference.
Clearance It carries clearance information associated with the AC
holder. This attribute can be exploited by systems enforcing multilevel
security. The clearance is scoped within an associated policy identifier
field in which the semantics of the clearance are defined.

A Note About AC Attributes

The data types used to describe an attribute are designed to provide a high
degree of flexibility and extensibility through a parameterization that
describes an attribute as a (type, value) pair expressed by the following ASN. 1
syntax [BENA02]:

PKC of AC issuer

Public key

PKC of AC holder

Public key

AC holder

Service authentication information:
(target service, identity, encrypted

^(password))

Service PKC

Public key

Legacy
application

FIGURE 3.23 View of trust verification elements for an AC and its service attributes
protected using the PKC of the service

Generalized Web-of-Trust Model 109

Attribute :: = SEQUENCE {
type AttributeType,
values SET OF AttributeValue
— at least one value is required

}
A t t r i b u t e T y p e : : = OBJECT IDENTIFIER
AttributeValue :: = ANY DEFINED BY AttributeType

The extensibility of AC attributes is due to the opacity of an attribute's value
with respect to the structure of the AC itself Entities can exploit an attribute
embedded in an AC only when they are capable of interpreting both its type
and value—of course, provided they are also able to verify any trust elements
associated with that attribute. The syntactic and the semantics scope of AC
attributes is unbounded and thus can be exploited by various applications.

Extensions

Although most PKC extensions provide information about the certificate
itself instead of its holder, some extensions defined for ACs provide a way for
associating additional information with holders. Below we enumerate some
of the AC extensions relating to identity management and trust:

• AC targeting An AC may be designated for use by a specific target
entity. The AC targeting extension is intended for that purpose. Target
information may specify multiple services. Relying parties not explicitly
named in this extension must reject the AC. This targeting information
can be useful in the transactional web. The absence of this extension is
an indication that the AC can be used by any relying party.

• Audit identity To satisfy cases where data privacy laws, for example,
require that audit trails not reveal or even contain records that identify
individuals, an audit identity extension can be added to an AC. This
extension allows the logger of an audit trail to use an identity designated
by the value of this extension. This value along with the AC issuer name
or the AC serial number should be used for audit or logging purposes

• Trust-related extensions By this we mean not one specific extension but
a set of AC extensions relating to the evaluation of trust in an AC.
These are all defined by the X.509 v3 certificate profile [HOUS99a].
The first is the authority-key identifier, which can be used to assist the
AC verifier in validating the signature of the AC. The second is the
Authority-information access, and the third is the CRL distribution
points. Both of these can be used by a relying party to verify the revo
cation status of the AC.

Generalized Web-of-Trust Model

The web-of-trust scheme that we discussed under the public-key models can
be generalized as a mechanism by which heterogeneous cross-enterprise

110 3. Elements of Trust Paradigms in Computing

identity models are joined in a federated web. The building block of this fed
eration is the trust relationship that can be established across heterogeneous
identity and trust-management systems using secure network-authentication
protocols, some of which we have previously discussed. The trust protocols
used can be negotiable between each of two domains entering into a rela
tionship as such. Trust can be one-way or mutual. The potential advantage
of this comes from the incremental weaving of trust across domains that
builds on existing heterogeneous trust and identity management schemes
that may exist in each participating domain. The basic element of trust here
relies on the principal of trust by introductions in which entity A that trusts
entity B may also trust entities presented to it by B, provided A establishes a
trust relationship with B in a secure and verifiable manner.

Federated domains that are based on the generalized web-of-trust model
that we propose are characterized by the following:

• Cross-domain identity-management systems are joined through a nego
tiated trust mechanism in which an agreed on authentication and trust
protocol is used. Authentication is performed between agents of two
domains entering in a trust relationship. The direction of trust (one-way
or mutual) is based on the policies of the participating domains.

• Subjects are registered to their, respective, generally local domains.
Subject authentication and profile management is performed with its
domain of registration only.

• Subjects authenticate to their respective domain of registration but can
seamlessly access services and resources managed by other domains via
the trust relationships established across these domains.

• Identity profile information can be used across domains that have
established trust relationships, provided its syntax and semantics are
similarly interpreted. Translation of profile information in any direc
tion can be performed by gateways local to each domain.

• Identity information of a subject remains attached to its original
domain of registration as it is passed across domains. The identity of
the home domain is attached to this information as it is passed across
domains with established trust relationships.

• Secure transports such as those based on strong cryptographic chan
nels are required for exchanging profile and identity information.
These channels depend on the trust scheme adopted between each two
domains.

Figure 3.24 illustrates this concept of the generalized web of trust, which
can be modeled by a directed graph where the edge directionality represents
trust (i.e., edge (x, y) represents trust of y by x). The transfer of profile infor
mation for subject s is shown across three domains.

Transitive trust may be used at the discretion of the security policies
implemented by each domain. Domain A that enters into a trust relationship
with domains B and C may apply the transitive trust policy with domain B

Examples of Trust-Exchange Mechanisms over the Web 111

2. Profile
attributes
for subject s

3. Profile
attributes
for subject s

1. Profile
attributes
for subject s in
home domain

FIGURE 3.24 An example of the generalized web of trust model federating five
domains

but not ŵ ith domain C. Once a trust relationship betw êen domains A and B
is designated as transitive, all domains reachable through B for example can
be trusted by A. Similarly, the depth of such transitive trust can be limited if
so desired. Figure 3.25 illustrates an example of a generalized web-of-trust
model in ŵ hich trust relations are all transitive. Trust paths in this case cor
respond to the transitive closure of the graph representation.

Examples of Trust-Exchange Mechanisms over the Web

Web services are at the leading edge of deploying highly distributed softv^are
components that can be published, discovered, and invoked seamlessly. They
build on two of existing technologies, HTTP and XML, which are widely
accepted and expected to dominate computing at least in the foreseeable future.
Due to the higher level of abstracting the programming components of

112 3. Elements of Trust Paradigms in Computing

A

B

C

D

E

F

A

1

0

0

0

0

0

B

1

1

0

0

0

0

c
1

1

1

1

0

0

D

1

1

0

1

0

0

E

1

0

0

0

1

0

F

1

0

0

0

1

1

FIGURE 3.25 Graph representation
of a web of trust across six heteroge
neous domains adopting the transi
tive trust policy. The resulting
transitive closure matrix is shown

netv^ork computing, web services appear to lay the foundation for composing
service elements together to provide complex services. This composition capa
bility may potentially revolutionize computing. It has all the aspects of achiev
ing seamless web navigation in a way analogous to what users have experienced
with the advent of manual navigation of the Web through browsers. Such com
posite computations over the seemingly unbounded frontiers of the Web fur
ther highlight the need for strong and reliable computational trust.

We look at three emerging mechanisms for the exchange of security con
structs to enable trusted and secure Web computing, all of which are com
plementing each other. The first is a method for exchanging trust enabling
constructs on Web service calls, web services security (WS-Security). The sec
ond one is a standard method for how to express trust and identity constructs
in the computing web, the security assertion markup language (SAML). The
third one represents a way to establish security sessions between a client and
a remote service, Web cookies. A programming model in which these three
techniques are used together expresses trust elements using SAML; trans
ports the SAML statements using WS-Security and then maintains a session
using Web cookies that contain SAML constructs.

Web'Services Security

Recently IBM, Microsoft, and VeriSign, Inc. have cooperated on the devel
opment of a Web-services security (WS-Security) specification submitted to

Examples of Trust-Exchange Mechanisms over the Web 113

the Organization for the Advancement of Structured Information Standards
(OASIS) [OASI03]. Web services are at the leading edge of deploying inte
grated Web softv^are components that can be published, discovered, and
invoked seamlessly. Furthermore and due to their higher level of abstraction,
Web services appear to lay the foundation for composing service elements
together to provide complex services. This composition capability may poten
tially revolutionize computing. It has all the elements of achieving seamless
Web navigation in a way analogous to ŵ hat users have experienced since the
advent of manual Web navigation driven through the end-user brov^ser. Such
composite computations over the seemingly unbounded frontiers of the Web
further highlight the need for computational trust that can be established
with reliability.

WS-Security is an attempt to retrofit security in the design of the Web-
services protocol referred to as the simple-object access protocol (SOAP). It
builds on existing mechanisms to generate security tokens for use across
SOAP interlocutors referred to as actors. Data transfer in SOAP is based on
exchanging XML documents. From a high perspective, such documents all
adhere to a well-defined XML schema [W3CO02a] that governs the structure
of SOAP messages. This structure consists of an enclosing envelope within
which are nested zero or more control headers, followed by one body con
taining the application-level message payload.

Because WS-Security is an attempt to fit security into an already specified
Web-service document format, the header portion of the document seems
like a natural fit. The header element <Security> provides a means for attach
ing security-related information that can be targeted for a specific receiving
entity. The latter can be an intermediate node traversed by the Web service or
some other endpoint target.

A SOAP message can have multiple < Security> elements embedded in its
header. Each of such elements may be designated to target a particular
receiver specified through the Sractor attribute. Security information targeted
to different receivers is required to appear within different <Security> ele
ments. The omission of a Siactor attribute from a security element indicates
that it is intended for consumption by all intermediate hopes of the message
including the endpoint. Only one <Security> header block can omit the
Siactor attribute, and no two elements can have the same Siactor attribute.
This enforces a consistent rule in which security information that is targeted
to all recipients or that is intended for a specific target is all structured respec
tively in a single <Security> element.

Security elements can be dynamically added to a Web-service message as
it navigates the Web. Figure 3.26 depicts two examples of embedding secu
rity information within the <Security> elements of a SOAP message. In A
we illustrate an acceptable syntax in which two <Security> elements are
inserted, one targeted to a specific SOAP actor, while the second one is
intended for all recipients. In B we show an invalid insertion syntax caused
by having two <Security> elements targeted for consumption by all
recipients.

114 3. Elements of Trust Paradigms in Computing

<S:Envelope>
<S:Header>

<SecurityS:actor="weburi"
S:mu s tUnde r s tand="TRUE">

</Security>
<Security S:mustUndertsand="TRUE">

</SecuritY>
</S:Header>

</S:Envelope>

B
<S:Envelope>

<S:Header>

<Security S:mustUndertsand="TRUE">

</Security>
<Security S:mustUndertsand="TRUE">
</Security>
</S:Header>

</S:Envelope>

FIGURE 3.26 Inserting security elements in a SOAP message

As subelements are incrementally added to the <Security> header block,
they are prepended to existing ones. The header therefore is an ordered
sequence of elements combining security tokens, XML signatures, as well as
encryptions. The processing of the security elements by a recipient is likely to
be performed in accordance to this sequencing rule where no forward
dependency across security subelements is permitted. When a subelement
refers to a key placed in another subelement, the security token containing
the key should be prepended following the subelement using that key. An
example of that is a key-bearing subelement that contains an X509 certificate
used for a signature. The X509 token in this case should be prepended fol
lowing the signature subelement.

The security mechanisms that can be used in WS-Security may span tech
nologies ranging from simple user identifier and password to more sophisti
cated constructs such as X.509 certificates and Kerberos tickets. Security
elements may also contain signatures and encryptions computed over partic
ular elements of the exchanged SOAP document. They also provide a natu
ral transport for SAML assertions that can be attached to Web-services
requests. We discuss the details of SAML shortly.

Examples of Trust-Exchange Mechanisms over the Web 115

Identity and Trust Tokens

WS-Security provides an extensibility mechanism that can be exploited to
embed any type of identity token. Three specific types of tokens are currently
defined. You may attach a simple user-identifier token that consists of a user
name and password, an X.509 v3 certificate, or a Kerberos v5 ticket. The
types of tokens that can be used are classified in two categories: simple user-
name tokens and binary tokens.

Simple User Name Token A user name token has the following XML structure:
<wsse:Security>

<UsernameToken Id =". . .">
<Usernaine>

</Usernaine>
<Password Type =". . .">

</Password>
</UsernameToken>

</wsse:Security>

The ID attribute can be optionally used to label the token. Username is a
required element that specifies the identity of the token holder. The optional
password element is intended to establish Username. Password information
includes a type and a value. Protecting the password may require at least
some level of transport security. Two formats for the password are currently
defined by the optional Type attribute: a plaintext form and a bse64 encod
ing of the SHA-1 digest of the UTF8-encoded password.

Binary Tokens Binary tokens provide a way to embed cryptographic iden
tity and privilege tokens in the security header block of a soap message. The
parameterization of these tokens is based on two factors. The first one
defines the type of encoding used. This allows the token to be handled appro
priately. Two encoding types are currently specified:

• Base 64 encoding (wsse:Base64Binary) and
• Hex encoding (wsse:HexBinary).

The second parameter defines the type of the token's value. Three such types
have been defined:

• X509 v3 certificate (wsse:X509v3),
• Kerberos v5 TGT (wsse::Kerberosv5TGT), and
• Kerberos v5 service ticket (ST) (wsse:Kerberos5ST).

wsse is the name space defined specifically for WS-Security. An X.509 cer
tificate and its data components such as the public key can also be embedded
in a <ds:KeyInfo> element defined by the XML name space of the digital

116 3. Elements of Trust Paradigms in Computing

signature standard [W3CO02b]. Below is an example illustrating the inclu
sion of an X509 v3 certificate as a binary security token within a <Security>
element.

<wsse:Security>

<wsse:BinarySecurityToken
xmlns2wsse="http://Schemas.xmlsoap.org/ws/2002/04/secext"

Id="myX509Token"
ValueType="wsse:X509v3"
EncodingType="wsse:Base64Binary">
MITEZzIQEmt9CgCCAJZ0cqr5ihk...

</wsse:BinarySecurityToken>

</wsse:Security>

Referencing Security Tokens A token may be embedded in a security ele
ment by reference instead of value. Referencing a security token consists of
specifying a URI for its location. The token can then be pulled by a relying
party. This approach affords the advantage of having to marshal less data on
a Web-services request. The following XML snippet illustrates the syntax of
specifying tokens by reference:

<SecurityTokenReference
Id="...">

<Reference ÜRI="...">
</Reference>

</SecurityTokenReference>

SAML Approach: Unifying Trust and Identity Constructs

The security markup language (SAML) is an evolving standard that defines
the syntax and semantics for XML-encoded statements that represent secu
rity assertions about a user or some programming entity [OASI02].
Assertions can be constructed by an initiating entity or can be acquired from
a third party and presented to another entity where they are validated based
on a predefined trust model. The unifying approach undertaken in SAML
stems first from its generality and second from the fact that it represents a
higher level of abstraction above any underlying security mechanisms, trust
paradigms, transport, or the security protocols being used. Furthermore,
SAML can be applicable irrespective of the trust model adopted whether
it is a two-party or a third-party scheme. It lends itself to forming trust
federations as assertions may span a large web of network endpoints and
intermediaries.

With SAML, security decisions are not computed based on the traditional
security context established by a controlling process in which an application

http://Schemas.xmlsoap.org/ws/2002/04/secext

Examples of Trust-Exchange Mechanisms over the Web 117

executes. With SAML, an application acts as a container and provides a
conduit for the security context associated with the underlying entity. This
context therefore becomes exposed to the transaction level as opposed to the
traditional paradigm in w^hich contexts are managed and kept by control pro
grams. Being part of the transaction's constructs, a SAML context follov^s
the netv^ork routes taken by a Web application. As such, the flow of SAML
constructs over a network may follow an arbitrary topology dictated only by
the chain of requests with which they are associated. The depth of such
request chains can be unbounded.

The vision of the network as a computer has indeed arrived with the fed
erated Web-based applications that can be limited only by the scope of the
Internet. The seamlessly unbounded journey of a network service request
requires single sign-on of the initiating endpoint and transparent forwarding
of user trust elements, such as authentication and authorization credentials.
Furthermore, an adaptive dissemination of the user's profile elements that
can be enforced by a dynamic and adaptive security policy is a key require
ment for privacy control.

The SAML approach defines three types of identity management and trust
assertions:

• Authentication The subject specified by the assertion was authenticated
by a particular mechanism at a particular time. Authentication asser
tions merely state acts of authentication that happened in the past.

• Authorization The specified subject is either allowed or denied access to
a particular resource.

• Attribute The specified subject is associated with the list of attributes
provided in the assertion. Attribute elements define what is commonly
known as a user profile.

An assertion may optionally be accompanied by one or more conditions
constraining its validity. Assertions have a nested structure in which an outer
generic element provides information common to all assertions. A series of
inner elements representing authentication statements, authorization deci
sion statements, and attribute statements all describe the specifics of the
assertion. Instead of duplicating the statements issued via other assertions,
one assertion may simply refer to those assertions via their unique identifiers
(e.g., by a URI). Entities consuming assertions with external references to
other assertions are responsible for resolving and validating those references
as well as the assertions that they contain.

To broaden the scope of SAML and make it independent of any particular
trust model, the concept of a SAML authority is introduced. SAML asser
tions are issued by SAML authorities that are distinguished based on the type
of assertions they can issue. A SAML authority can be an authentication
authority, an authorization authority, or an attribute authority. This distinc
tion is conceptual and logical but is not necessarily physical as all types of
assertions can be issued by a single authoritative entity. SAML distinguishes

118 3. Elements of Trust Paradigms in Computing

among three actors—a requester, a relying party, and an authority. The rely
ing party is the entity that consumes and validates SAML assertions. The
requester is the entity responsible for initiating the acquisition of assertions.
A requester may also be considered a relying party, and thus one might
broadly distinguish two main entities: an asserting party (an authority) and a
relying party (consumer of SAML assertions). Figure 3.27 provides a concep
tual view of the relationships across SAML entities. A dotted arrow linking an
assertion type with a SAML authority indicates that the authority makes use
of the assertion to issue new assertions. For instance, an authorization author
ity requires one or more authentication assertions to issue one or more
authorization-decision assertions.

SAML authorities rely on various information sources to issue assertions.
Most important, an external registry containing policy information may be
consulted by an authority before an assertion is formulated. Additionally,
SAML authorities may rely on previously issued and verified assertions to
compute new ones. Requesting entities send existing assertions to SAML
authorities when acquiring new assertions. Similarly, a SAML authority may
pull referenced assertions from specified network URIs. In that respect,
SAML authorities consume and produce assertions at the same time. On the
other hand, clients, requestors, or relying parties can only be consumers of
SAML assertions.

7r

\L

"TT

JL

TT

±.

TT

J^

Request/
validate
assertion

Consumer
entity

Authentication
autliority I

Registry

Wi-

Authentication
assertion

Jp^

Authorization
assertion

Registry

W. ^

Attribute
assertion

Attribute authority

I
Registry

Y

^

Authorization
assertion

SAIWL construeis

FIGURE 3.27 A conceptual view of the relationships across SAML entities

Examples of Trust-Exchange Mechanisms over the Web 119

In addition to the syntactic and semantic definition of assertions, SAML
defines a basic request and response protocol for the acquisitions of assertions.

SAML Constructs

Computations in SAML are performed over assertions. Each assertion is
composed of a nonempty set of XML statements characterizing a particular
subject with a temporal fact, such as an act of past authentication, an attrib
ute, or a decision on whether access is allowed to a specific resource. The fol
lowing is a discussion of major data elements of SAML.

Assertion An assertion is described by AssertionType, which is an XML
complex type. This type specifies the basic information that is common to
every assertion including the following attributes:

• MajorVersion A required attribute designating the major version of
this assertion,

• Minor Version A required attribute indicating the minor version of this
assertion,

• AssertionID A required attribute uniquely identifying this assertion (a
URI, for instance, can be used for such identification)

• Issuer A required attribute that unambiguously identifies the SAML
authority that issued this assertion (an issuer might be identified by a
URI), and

• Issuerlnstant A required attribute specifying the time of issue in UTC.

Conditions This is an optional element that adds constraints to an asser
tion. The use of the assertion is subject to the constraints specified in this ele
ment. For example, a time constraint may set the validity of an assertion to
some future time. Similarly, the validity of an assertion may be set to expire
after a specified time.

Advice An optional element containing additional information that aids in
processing an assertion.

Signature An optional element for marshalling XML signatures.

Statement This defines an extension point allowing the derivation of other
statement constructs by an assertion-based application.

Subject Statement Defines an extension point from which other subject-
related statements can be derived by various assertion-based applications. It
contains a <Subject> element that defines a single entity associated with the
statement. <Subject> encompasses two other elements: <NameIdentifier>,
which identifies the subject by name and security domain, and an optional
<SubjectConfirmation> element, which contains authentication information
establishing <NameIdentifier>.

120 3. Elements of Trust Paradigms in Computing

Authentication Statement This element is used by an issuing authority to
indicate that the subject of the statement was authenticated by a particular
authentication method and at a particular time in the past. An example of
such assertion is shown below:

<sainl:assertion MajorVersion="1" MinorVersion="0"
AssertionID="128.9.164.32.132547698"
Is suer="Company.com"
IssuerInstant="2003-04-26Tll:03:OOZ"
<saml:Condition

NotBefore="2003-04-26Tll:03:00Z"
NotAfter=""2003-04-26Tll:10:00Z"

<saml:AuthenticationStatement
AuthenticationMethod="pas sword"
AuthenticationInstant=
''2003-04-26Tll:03:00Z"
<saml:Subject>

SecurityDomain="Company.com"
Name="JohnDoe"

</saml:Subject>
< /s ami:AuthenticationStatement>

</sami:As sert ion>

Authorization Decision Statement This element provides a statement by the
issuer to the fact that the named subject is granted or denied access to a
resource which is unambiguously specified by means of a URL An example
of an authorization decision assertion is shown below:

<saml:assert ion MajorVersion="l" MinorVersion="0"
AssertionID="129.9.164.32.132547690"
Is suer="Company.com"
IssuerInstant="2003-04-26Tll:03:OOZ"
<saml:Condition NotBefore="2003-04-26Tll:03:OOZ"

NotAfter="2003-04-26T12:10:OOZ"
<saml:AuthorizationDecisionStatement

Dec i s ion="Permit"
Resource="http: / /Travel .com/Servlet /reserve"

<sami:Action
Namespace="http://WellknownURI">

Execute
</saml: Act ion>
<saml:Subject>

<saml: Nameldentif i e r
SecurityDomain="Coitpany. com"
Name="JohnDoe"

</saml :NameIdentif ier>
</saml:Subject>

< / s ami:AuthorizationDecisionStatement>
</saml:Assertion>

http://Travel.com/Servlet/reserve
http://WellknownURI

Examples of Trust-Exchange Mechanisms over the Web 121

Attribute Statement This element underscores a statement by the issuer that
the specified subject is associated with the attributes indicated. The following
is an example of an attribute assertion:

<s ami:as s e r t i o n Maj orVers ion="1" MinorVers ion="0"
AssertionID="130.9.164.32.132547691"
Issuer="Company.com"
IssuerInstant="2003-04-26Tll:03:OOZ"
<saml:Condition NotBefore="2003-04-26T13:03:OOZ"

NotAfter=""2003-04-26T13:10:OOZ"
<saml: AttributeStatement

<saml:Subj ect>
SecurityDomain="Company.com"
Name="JohnDoe"

</saml:Subject>
<saml:Attribute>

<saml:AttributeDesignator>
AttributeName="Department"
AttributeNamespace="http://Company.com"
</saml:AttributeDesignator>
<saml: AttributeValue>

Sales
</saml:AttributeValue>

</saml:Attribute>
</saml: AttributeStatement>

</sami: As sert ion>

Note how attributes are parameterized by names. This parameterization
exemplifies the degree of flexibility in SAML. Furthermore, the name of an
attribute is accompanied with a URI for the namespace in which the attrib
ute is defined. Thus the semantics of an attribute is resolved to its defining
source, which prevents ambiguity and collisions.

Trust Elements of SAML

SAML assertions are consumed by relying entities to establish subject identi
ties and confine the use of resources to predefined policies. Affirming such
assertions manifests itself through trust relationships that can be established
between a relying party and the authority issuing the assertion. Trust estab
lishment and verification in SAML is based on various constructs expressed
through SAML assertions. In the following, we enumerate the major such ele
ments that contribute to trust.

Digital Signatures The XML element <ds:Signature> may optionally be
part of an assertion. When present, it represents an XML digital signature
computed over the statements carried by the assertion. An assertion signed
by an asserting party (AP) such as a SAML authority provides support for

http://Company.com

122 3. Elements of Trust Paradigms in Computing

the integrity of the assertion, its authenticity, and possibly allows for nonre-
pudiation when a tamper-proof public-key mechanism is used. An assertion
can also be part of a request message made to a SAML authority. Likewise,
the signature over the assertion in this case supports data integrity, origin
authenticity, and possibly nonrepudiation between the message originator
and the destination authority.

User Confirmation A <SubjectStatement> contains a <Subject> element
used to describe an active entity. In turn, the <Subject> element consists of
two nested elements: <NameIdentifier>, which specifies a subject by name in
accordance with a particular naming scheme such as in X.509 [HOUS99a], or
an email address based on IETF RFC2822 [RESNOl]. The second element is
<SubjectConfirmation>, used to provide data allowing the subject to be
authenticated. This element may encapsulate any authentication token or cre
dential that can lead to establishing the named identity.

Authority Binding Information The <AuthorityBinding> element may
optionally be part of an authentication statement. It can be used to indicate
to a relying party that a SAML authority may be available to provide addi
tional information about the subject of an assertion. This authority is speci
fied by location and through its supported protocol binding.

Authorization Evidence An authorization statement may optionally contain
an <Evidence> element that carries an assertion used by the issuer in mak
ing the authorization decision. This assertion can be specified either by value
or by reference. Authorization evidence may also be supplied by an entity
requesting an authorization decision from a SAML authority.

Other Trust Elements of SAML

Other elements of trust in the SAML definition for an assertion include the
name of the issuer <Issuer>. A name in the form of a URI allows a relying
party to inquire further information about the subject of the attribute to ver
ify a particular trust relationship. The time of issuance of the assertion
<lssuelnstant> as well as a validity interval as defined by the <Condition>
element allow for the timely usage of an assertion. Additionally an <Advice>
element may encompass further trust-related information about the assertion.

A Note on Federated Trust in SAML

Federated SAML authorities are expected to play a key role in the prolifer
ation and success of the SAML constructs over the Internet. Forwarding
SAML authentication and authorization assertions across security domains
without re-authentication requires the existence of a well-defined trust
across participating SAML authorities. SAML in itself has not introduced a
new federated trust paradigm; rather, it relies on existing models of trust

Examples of Trust-Exchange Mechanisms over the Web 123

such as those based on PKI or Kerberos for instance. Trust verification in
this case will ultimately involve the low -̂level mechanisms producing the
SAML constructs.

Web Cookies

The HTTP protocol that made the World Wide Web a household name is
stateless and simple. The statelessness of HTTP precludes the need for man
aging persistent sessions and all the complexities that may arise thereof. Users
connect anew and identify themselves whenever needed, each time they nav
igate a Web link even with the same server. Although they face a number of
reliability and security issues, cookies were invented as an ad-hoc mechanism
to establish continuity and sate on the Web. Cookies are data constructs that
are initially sent from a Web server to the client's browser environment,
referred to as a user agent and subsequently exchanged between the browser
and Web servers visited by the user. They can serve many purposes from the
basic functions of keeping track of the display mode that a user selects (e.g.,
graphic frames or text only) to representing the current state of a shopping
cart for a Web store buyer. The concept of cookies is an interesting one in
that it simplifies managing HTTP states by involving the client yet in a seam
less manner. An end user is generally unaware of cookies placed in his or her
machine. The server maintains no state constructs in its runtime except for
when they arrive through client cookies. The server is said to forget about the
client until the latter reminds it of who he or she is.

Structure of Cookies

Cookies have a flat data structure that is simple and easy to manipulate.
A cookie is a sequence of attribute name and value pairs as defined in the
IETF RFC 2965 [KRISOO]. A few control attributes are introduced by the
standard. The most important aspect, however, is the generality of attribute-
value pairs that can be marshaled into a cookie. Application-level attributes
can be arbitrarily defined as indicated by the following syntax:

av-pairs = av-pa i r (" ; " av-pair)*
av-pair = attr ["=" value];optional value
attr = token
value = token | quoted-string

Attribute names, instances of attr, are case-insensitive. WTiile the above
syntax shows value as optional, evidently most attributes will have values
associated with them. Figure 3.28 illustrates the structure of a generic cookie.

Server Role

A server application that needs to establish a cookie-based session with a par
ticular client returns cookie information in the HTTP response header pre
ceded with the label of "Set-Cookie2" as shown by the syntax below.

124 3. Elements of Trust Paradigms in Computing

Attr1 = valuel Attr1 = value2 • • • AttrN = value N

FIGURE 3.28 Generic structure of a Web cookie

s e t - c o o k i e
cookies
cookie
NAME

VALUE

s e t - c o o k i e - a v

p o r t l i s t
portnum

"Se t -Cookie2 :" cookies
l#cookie
NAME "=" VALUE(";" s e t - c o o k i e - a v) *
a t t r
va lue
"Comment" "=" va lue
'TommentURL" ' '=" <"> http_URL <">
"Discard"
"Domain" "=" va lue
"Max-Age" "=" va lue
"Path" "=" va lue
"Po r t " ["=" <"> p o r t l i s t <">]
"Secure"
"Version" "=" 1*DIGIT
l#portnum
1*DIGIT

The Set-Cookie2 response header comprises the token Set-Cookie2: fol
lowed by a Hst of one or more comma-separated cookies. In turn, each cookie
begins with a required NAME=VALUE pair representing the cookie name,
followed by zero or more semicolon-separated attribute-value pairs. Among
the standard control attributes we point out the following list, which is to
some degree relevant to the security and reliability of the cookie mechanism:

• The optional Path attribute specifies the server URLs for which the
cookie is applicable.

• The optional Port attribute restricts the ports to which a cookie may be
returned by a client in an HTTP request header.

• The optional Secure attribute (with no value) indicates that the cookie
is secure. The security level or mechanism by which the cookie is pro
tected is unspecified and remains application-specific. When the client
sends a "secure" cookie back to the server, the level of security as indi
cated by the server should not be downgraded.

• The presence of the optional Domain attribute specifies the domain
name for which the cookie is valid. Generally, the domain of the server
is the one specified, although cookies can also be generated by one
server and consumed by another server located in a separate domain.
This attribute is a bit of information that can be used to further extend
the generation and consumption of cookies across federated domains.

Examples of Trust-Exchange Mechanisms over the Web 125

• The optional attribute Max-Age represents the lifetime of the cookie
in seconds. A value of zero means the cookie should be discarded
immediately. The absence of this attribute can be interpreted as repre
senting an indefinitely valid cookie.

• The optional attribute of Discard is used to instruct the client program
(the browser, for example) to discard the cookie unconditionally when
it terminates.

• The optional attribute of CommentURL is used by the server to
inform the client of any privacy-related information as well as the
intended use of the cookie. The client agent should give opportunity to
the user to inspect this information before he or she initiates a request.

Client Role

When a client wishes to continue interacting with a server, it returns cookie
information in the HTTP request header based on the Set-Cookie2 data that
it had received. The cookie header sent from the client to the server adheres
to the following syntax.

cookie = "Cookie:" cookie-vers ion 1

{ (" } " I ", ")* cookie-value)
cookie-value = NAME ''=" VALUE [";" path] ["}" domain]

["}" port]
cookie-vers ion = ''$Version" "=" value
NAME = attr
VALUE = value
path = "$Path" "=" value
domain = "$Domain" "=" value
port = "$Port" ["=" <"> value <">]

Attributes values returned by the client reflect those sent by the server
through Set-Cookie2.

Cookies already stored at the client side can be sent to the server based on
the following:

• The host and port designated by the request,
• The URI of the request, and
• The age of the cookie.

Example: Cookies Exchanged Between a Client and a Web Server

The following steps illustrate cookies exchanged between a client and a web
server presented through a fictitious URL of http://www.webstore.com. It is
assumed that the client has no stored cookies for the server and he just vis
ited the home of webstore.com that displays a login form. The client fills and

http://www.webstore.com
http://webstore.com

126 3. Elements of Trust Paradigms in Computing

then submits the form. The server receives client log on information and
processes it. Subsequent interactions between the client and that same server
result in the following exchange of cookies.

Server —> User

Set-Cookie2:Customer="JohnDoe";Version="1"} Path="/webstore"
Cookie identifies the client.

User -> Server User selects an item to order.

Cookie: $Version="l"; Customer="JohnDoe"; $Path="/webstore"
[form data]

Server —> User Shopping basket contains an item.
Set-Cookie2: Part_Number="Diesel_Engine_l01";
Vers ion="1";Path="/webstore"

User —> Server User selects shipping method from form.
Cookie: $Version="1";Customer="John Doe"; $Path="/webstore";
Part_Number="Diesel_Engine_l01"; $Path="/webstore"
[form data]

Server —> User New cookie contains shipping method.
Set-Cookie2: Shipping="UPS"; Version="l"; Path="/webstore"

User—> Server User chooses to process order.
Cookie:$Version="1"; Customer="JohnDoe;

Part_Number="Diesel_Engine_l01";
$Path="/webstore";Shipping="UPS";
[form data]

Server —> User
Transaction i s coitplete.

Issues with Use of Cookies

The concept of cookies is controversial in a number of aspects. Foremost is
the ability of a Web server to push data constructs into a user's machine. This
process may in fact be taking place without the user's full awareness of poten
tial consequences. Nonsavvy users in many cases are not cognizant of what a
cookie is. Indeed, this paints an element of intrusion under the auspices of
normalcy and thus users will tend to accept cookies. The user's Web naviga
tion behavior can be easily tracked thereby raising concerns over privacy.
Malicious servers may attempt to flood a user's machine with cookie files.
The transparency of uploading cookies to Web servers, the fact that cookies
issued for one host may be consumed by another one, and cookies stored in
one machine can be copied and used on another machine all are factors that
increase the risks associated with cookies.

Examples of Trust-Exchange Mechanisms over the Web 127

The risk factor is further exacerbated with the misuse of nonsecure cook
ies for identity management, such as authentication, single sign-on, and for
carrying entitlements. Although the IETF standard for the use and manage
ment of cookies emphasizes the adoption of informed consent where the end
user is made aware of cookies, the potential for misuse can be abound, par
ticularly when in fact the user is subsumed by his or her agent, the browser.
The fact that a cookie generally tends to have a lifetime that is sufficient
enough for an intruder or a malicious user to modify it or completely regen
erate it with new information poses a considerable risk. Park and Sandhu
[PARKOO] classify threats of using cookies into three types: network threats,
end-system threats, and cookie-harvesting threats. Network threats can be
carried by intercepting HTTP requests and responses, extracting cookies, and
implanting them for a malicious use. The use of secure connections such as
SSL protects cookies during transport but leaves them in cleartext once they
reach an endpoint. End-user threats stem from the fact that cookies can be
easily altered and copied from one machine to another. Attackers can there
fore forge cookies and perhaps impersonate other users in a scheme of iden
tity theft. An attack for harvesting cookies can be mounted by a Trojan Web
site that impersonates a site that accepts cookies from users. The harvested
cookies can later be used to compromise all other sites accepting them.

Secure Cookies

The level of security required by cookies depends on the sensitivity of infor
mation carried in a cookie, the type of potential threats and risks, as well as
the cost incurred in the event of a compromise. Usage of cookies may require
data integrity, origin authenticity, and confidentiality. Despite the contro
versy surrounding it, the cookie paradigm can be securely and reliably
exploited to the benefit of Web computing. Sometimes an encrypted trans
port channel such as one using SSL/TLS is established between a client and
a server to encrypt the entirety of a data payload exchanged just because a
few bytes of the payload require confidentiality. Instead, one might use cook
ies with only the sensitive information encrypted.

Any reasonable level of secure cookies will, in all likelihood, require
encryption. We distinguish three scenarios in which encryption of cookies
may take place.

Use of a Public Key on the Client Side Cookie information can be signed,
encrypted, or both signed and encrypted using the private key of the client.
Decryption as well as signature verification is performed by the destination
server. The public key of the client is established by the server according to a
predefined PKI trust scheme. This approach is applicable in situations where
the client is sending information that has no risk of exposure but requires
integrity and origin authenticity. An example would be the signing of a
shopping-cart cookie so that some level of nonrepudiation can be achieved.

128 3. Elements of Trust Paradigms in Computing

Cookies secured in this fashion can be used across multiple servers provided
the certified public key of the client is available.

Use of a Public Key on the Server Side In this model, the server uses its pri
vate key to sign or encrypt cookies before they are pushed into a client
machine. The client may elect to verify signed cookies to establish server
authenticity. The server may choose to encrypt sensitive information from the
user's profile or other session-related information using its public key. When
such a cookie bounces back on the server side, the server uses its own private
key to decrypt it and thus the cookie is guaranteed confidentiality, data
integrity, and authenticity of the origin server. In this scenario, encrypting a
cookie with the server's public key is relevant to sensitive data. Server signing
of the cookie enables data integrity, and enforces authenticity of the origin
server. Simply encrypting cookies using the server's public key, however, is
not adequate since the server's public key can be available to other entities
and thus eavesdropping and impersonation may take place. Such encryption
should be performed over data that is signed by the server to ensure both con
fidentiality of cookie information and origin authenticity of the server.

Use of a Shared Secret Key A symmetric encryption key shared between a
client and a server may also be used to encrypt cookie information or apply
a keyed MAC to cookies requiring data origin authenticity and integrity.
When the client origin authenticity is required, however, a shared secret key
needs to be distinct for each client-server pair. This does not lend itself to
scalability and faces the key distribution issue. A session key established
through key exchange protocols such as the encrypted key exchange (EKE)
or Diffie-Hellman can also be used [DIFF76a, BELL92].

