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Preface 

Secure identification of users, programming agents, hosts, and networking 
devices is considered the core element of computing security. Rarely is 
anonymity a desired goal of systems, networks, and applications. This aspect 
is dictated largely by the extent in which computing has evolved to automate 
many facets of critical human activities, such as in businesses and even in 
processes that can have direct effects on human lives. To that end every unit 
of computing in modern systems with a relative level of security is attached 
to an authenticated identity associated with it. This enables deterministic 
accountability and lays the foundation for responsible and secure computing, 
as we present in chapter 1. We emphasize the major aspects relating to iden­
tification and access control and define the basic concepts that collectively 
form the foundation for computing security. 

An identity in computing reflects real-life entities in that its level of gran­
ularity can be coarse (such as representing an organization; a group of peo­
ple) or can represent a specific individual or a particular computing device. 
The premise of achieving deterministic accountability is centered on the 
processes that support coherent and consistent identity management where 
a one-to-one correspondence of an identity to a real entity, its owner, can 
be achieved. Assurance in identity, referred to as identity trust, is estab­
lished through authentication. In computing security trust is computable. 
The authentication process is based on providing what is called ÜIQ proof of 
identity possession, while uniqueness of an identity is generally parameter­
ized by referencing a well defined naming space. The latter can be as simple 
as a local registry of a centralized system or as wide and global as the 
Internet. The level of trust in an identity varies depending on the proof pre­
sented to establish it. Although trust in computing spans all elements that 
contribute to enforcing system and networking controls including the 
integrity of identity repositories and that of governing policies, evidently it 
is all predicated on the trust that a system or a network establishes in an 
identity. 

The Evolution of computing—from centralized to distributed systems 
and now well into the global era of the Internet—has tremendously 
increased the complexity associated with identity management and trust. 
Chapter 2 introduces the reader to the elements of identity management. 
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We provide a taxonomy of various existing schemes based on the defining 
scope of an identity and discuss the benefits and Umitations of each. We 
present the elements of federated identity and show how identity has moved 
from being simply a concept and a manipulated data construct that has lit­
tle effect on processing to becoming, by its own right, the object of systems 
management in what is known as identity provisioning. 

The simplistic view in the centralized computing era is characterized by the 
scope of identity being limited to a locally managed user registry The nam­
ing space from which an identity is drawn is generally flat and implicitly qual­
ified by the computer system in which it is defined. It ceases to exist uniquely 
outside this limited boundary. Since the proof of identity possession 
remained in the confines of an organization's computing infrastructure, it 
largely relied on the use of passwords. 

The network-computing era raised the scope of an identity to the network 
level, thereby becoming visible to all computing systems attached to a net­
work. It pushed the limits into network wide identity registries and authenti­
cation protocols that are based on various encryption schemes, most notably 
secret key. When multiple registries are used, consistency and synchroniza­
tion of identity attributes became a necessity. This era also highlighted the 
need for network wide single sign-on and presented eloquent solutions to 
it. The network wide scope increased the functional requirements needed 
for securely establishing and maintaining trust in an identity. The network-
security context came into existence to represent this trust. 

The era of Internet computing is seeing an unprecedented need for reliable 
identity-management and trust mechanisms. Conducting business transac­
tions over public networks requires secure processes for establishing a secu­
rity context before it is attached to a particular transaction, verifying it, 
propagating it from end point to end point, and managing its life cycle. The 
multitude of Web services that can potentially collaborate behind the scene 
of a single-end-user transaction requires secure propagation of identity trust 
and interoperable models of profiling attributes. Several models of trust 
propagation have emerged. 

The Web model of computing necessitates a Web model of identity man­
agement. Identity attributes, known as profiles, need to be consistently 
interpreted and exchanged across organization boundaries in arbitrary ways. 
Profiles that are associated with the same entity may need to maintain a 
mapping to each other and be kept synchronized. Privacy concerns have 
emerged to an extent never seen before. Remedies to these issues need to 
apply to every level of profile attributes from coarse to finer components and 
should be based on individual concerns, organizational policies, and emerg­
ing standards. To facilitate and ease collaboration, organizations may find the 
need to be federated together to form entities whose boundaries are seamless 
to users. The transparency provided by these federations allows entities to 
undergo a single registration process and experience the benefits of single 
sign-on throughout a virtually larger organization. 
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Chapter 3 is concerned with the elements of identity trust. We survey exist­
ing models as they relate to assurance in an identity. We begin with the sim­
plistic method of sharing secrets and subsequently delve into the public-key 
aspect of trust. Various public-key-based trust models are presented. 
Identity-management processes alone are not sufficient if they are not cou­
pled with a strong foundation of trust, particularly across organizations. The 
ultimate need for the secure establishment of an identity is to impose controls 
over the entitlements, which can be granted or denied to the associated entity. 
The goal is to base access-control decisions on secure foundations. 

Trust in an identity and its associated profile attributes is generally intended 
as a prerequisite for a secure determination of entitlements. Access control 
is founded on the establishment of secure identity contexts. Assurance in 
that foundation is a key element in secure access-control implementations. 
Other important aspects include the processes enabling access decision mak­
ing and the adoption of access policies that are based on well-defined mod­
els. Management of access-control supporting constructs (such as policy 
maintenance) and of the provisioning of entitlements to various entities is 
also an important element. Subsequent to the initial introduction of existing 
paradigms of information access control in Chapter 1, we discuss the details 
of the mandatory-access-control (MAC) model in Chapter 4. We demon­
strate the ease of information-flow analysis in this model and present a few 
of its variants. In Chapter 5 we delve into the access-matrix model and focus 
on all aspects of discretionary access control (DAC). We introduce the reader 
to the elements of safety and show the complexity of analyzing access-con­
trol systems in a generalized form. Chapters 6 and 7 present the take-grant 
and the schematic models, respectively. These schemes are of lesser general­
ity than the access-matrix model but have computable safety properties. 
Chapter 8 presents the details of role-based access control (RBAC) beginning 
with the basic concepts to the complex aspects of mapping DAC and MAC 
onto RBAC. Information-flow analysis of RBAC is discussed and the RBAC 
standard is highlighted. 

Models help elevate access-control management to a level that is concise 
and in some cases even formal. Modeling is an important tool for attempting 
to define the bounds of information flow in any given computing environ­
ment. Access-control models follow along existing paradigms of information 
flow. Two major such paradigms are known to date, discretionary and 
mandatory. Discretionary access control empowers resource owners in 
divulging access to others. The flexibility of this paradigm, however, removes 
any possibility for defining the limits that can be reached by a given protec­
tion state. Such states are unbounded, and the flow of information is gener­
ally unpredictable. Nevertheless, DAC is the most widely adopted 
access-control paradigm. It naturally fits many of real-life processes that 
govern access to resources based on ownership. 

Mandatory access control leaves no powers to end entities in deciding the 
flow of information. Instead, select administrators of an organization grant 
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or deny access by assigning security classifications to resources and active 
entities (such as computing devices and programming subsystems and users, 
referred to as labels and clearances, respectively). Access decisions are then 
made in accordance with a partially ordered relationship between labels and 
clearances in what is known as dominance or the lack thereof. Contrary to 
DAC, dissemination of information in MAC is predictable as it follows a lat­
tice structure that accurately determines the bounds of information flow. 
MAC lends itself well to military environments, while it is generally regarded 
as a handicapping measure in commercial environments. 

Role-based access control has emerged in recent years as a generalized 
access model that although it encapsulates more of discretionary flavor than 
mandatory, it theoretically applies to DAC as well as MAC policies. RBAC 
seems to fit naturally into modeling access control. Its main advantage is in 
the simplification of management and administrative tasks of governing 
security policies. Additionally, it lends itself well to the separation-of-duty 
(SoD) principle. SoD can be viewed in many respects as a bridge between 
DAC and MAC policies. Like in MAC, the administrative tasks play an 
important role in how information is disseminated in RBAC. Like DAC, 
RBAC is capable of maintaining the concept of resource ownership. 

Although the elements surrounding RBAC are interpreted with relative 
uniformity across the computing industry, interoperabiUty of implementa­
tions remains elusive. The absence of common-role semantics and unified 
policy representations makes it difficult to switch from one environment to 
another. Nevertheless, a recent attempt by the National Institute of 
Standards and Technology (NIST) at standardizing some of the RBAC 
aspects can be an important step forward. We devote chapter 8 to this impor­
tant topic. 

This book is a modest attempt at discussing these elements of computing 
security. I hope you find it enjoyable to read and that it clarifies these con­
cepts for you. 

Messaoud Benantar 
Austin, Texas, USA 
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Chapter 1 

Foundations of Security and Access 
Control in Computing 

Introduction 

Access control in computing is motivated by the need to divulge access to 
information and available computing resources and services to authorized 
entities only. An entity is a generic term that refers to an active agent capable 
of initiating or performing a computation of some sort (for example, an end 
user invoking a command or a program, a programming agent acting on 
behalf of a user, a running daemon process, a thread of execution, a hosting 
system, or a networking device). Access modes can be broadly categorized 
into the ability to read or write information whether in the address space of 
an executing process, on a secondary storage, or on a network or a peripheral 
device. This ability can be explicitly expressed by a direct privilege possessed 
by the acting entity or indirectly through services and computing tasks that 
the entity is allowed to execute. A purist may pose the question of whether 
temporarily modifying computer information without having to read it and 
in a way that leaves its final state unchanged is consistent with the definition 
of access control. The likely answer is that such activity constitutes a breach 
to access control and thus it should be guarded against. Otherwise, one of the 
fundamental security tenets of resource availability becomes at risk of being 
compromised. Availability of computing resources has indeed stood as a sys­
tem and network security concern of its own. Furthermore, concurrent 
access to information that is being modified even temporarily by authorized 
or unauthorized entities is clearly unacceptable. 

Evolution of computing systems from single-user to multiuser machines 
led to the necessity of shielding users and running processes from one 
another. Early protection mechanisms consisted of hardware and operating 
systems components. Subsequently, policy-based authorization subsystems 
have emerged. Controlling access to computing systems is the first defense 
against disclosing information to unauthorized entities. Systems and 
network access is based on trusted methods for identifying users and pro­
gramming agents. Secure identification is the cornerstone of modern com­
puting security. The advent of networking and distributed computing has 
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led to the proliferation of computing identities. Consequently, identity 
management has evolved as a discipline of its own. The goal is to mitigate 
the cost of maintaining identity repositories that may exist in the poten­
tially a myriad of systems used by a single enterprise, enforcing consistency 
and achieving unambiguous mapping of identities representing the same 
entity or multiple entities collaborating together. Automation of interenter-
prise exchanges has further necessitated the drive for federated identity 
systems. As a result, the scope of an identity is extending well beyond the 
confines of an organization. With all the associated complexities, a purist 
perspective seeks a unified model of secure identification. Although this is 
far from being achieved in the real world, any such attempts can only ben­
efit computing security. 

Real-world examples of access control are abundant and vary according to 
the needs and policies dictated by the circumstances. At a basic level, users of 
the same organization are granted access to shared computing resources 
based on the roles each user is entitled to within the organization. An enter­
prise may be concerned over losing its competitive edge should its trade 
secrets become known to its competitors. A financial institution has every 
need to confine updates in its records to legitimate transactions only and to 
protect them from exposure to unauthorized individuals and institutions. 
While a patient's medical records may not be of any immediate financial gain, 
one cannot put a price to their privacy. 

Access control is evolving from its traditional host-centric paradigm to 
resources and entities that transact over large networks as wide as the 
Internet. The low-level access-control privileges of the basic read and write 
of information are now moving up a level higher to include attributes that 
make up a profile for an entity. These are the elements that mimic real-life 
user entitlements such as the privilege of having a banking account, having 
a credit-card number, or being assigned a well-defined role. The processes 
needed to maintain entity profiling gave rise to what is referred to as 
identity management, which is indeed a prelude to any access-control 
mechanism. It is concerned with the trusted methods of managing and 
exchanging entity entitlements on various computing systems and resource 
managers. Identity management forms the foundation on which access con­
trol is based. 

In this chapter we introduce the main concepts behind computing security. 
We begin with a brief overview of security threats. We then elaborate on the 
major elements of systems security, in particular the aspects surrounding 
identification and authentication. We highlight the importance of system 
integrity as a prelude to secure computing. We define what is meant by a 
security context and discuss its propagation along the units of computing 
work. Subsequently, we delve into the paradigms of access control and out­
line the elements surrounding trust and assurance, including an introduction 
to the confinement problem. We conclude with an overview of the major 
security-design principles. 
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Elements of Systems Security 

A threat by definition is a situation in which any protection mechanisms that 
govern access to a computing system may become subject to harm. Such pro­
tection mechanisms are driven by what is called a security policy. We discuss the 
concept of a security policy in further detail later in the chapter. Security 
threats are analogous to harmful activities that are bound to happen and thus 
convey the meaning of a pending attack. The latter makes the threat a reality. 
Threats are made possible due to vulnerabilities, also referred to as weaknesses, 
either in the mechanisms enforcing a particular security policy or in the opera­
tional controls of that policy (such as those having to do with configuration 
parameters). Mechanism-related vulnerabilities can be due to design or imple­
mentation flaws. Dormant vulnerabilities represent a risk. A risk is a measure 
of potential harm that can be realized when a threat is executed. Some of the 
known categories of security threats include identity theft through masquerad­
ing or spoofing, unauthorized access to resources, unauthorized disclosure or 
modification of data, and denial of service attacks. 

Security in computing can be viewed as having the following elements: 

o Secure entity identification, known as authentication and which we 
refer to as identity establishment; 

o Confining actions of an established identity to its designated entitle­
ments for services and computing resources, known as resource access 
control; 

a Data integrity, confidentiality, and origin authenticity, broadly referred 
to as data and message security; 

a Prevention from denial of taking part in a transaction, whether as an 
initiating or a receiving party, known as nonrepudiation; 

n Resource availability to thwart against the denial of service attacks. 

The fundamental prerequisite for the integrity and soundness of any access-
control or other security mechanisms is the secure establishment of identi­
ties. For example, the lack of enforcement for secure establishment of identities, 
makes all attempts to enforce an access policy virtually useless. 

Identity Establishment 
Identity establishment is concerned with the methods by which a user, a run­
ning process, or a thread of execution is securely associated with a legitimate 
entity. Recall that an entity may represent a single user, a group of users, an 
entire organization, a host system, or some networking device. Establishing 
an identity is the means of concluding that indeed the identity in use corre­
sponds to the entity that it claims to be and thus is said to be authentic. 
Authentication is the secure identification of entities in which a proof of pos­
sessing an identity is verified. An entity's access to a system is encapsulated in 
what has become known as an account. Engaging in an act of authentication 
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can take place on every attempt to access a controlled computing system, 
known as a login, when a service from an application is requested, or each 
time a network access is performed. Varying system and network security 
policies as well as application requirements can dictate the frequency of entity 
authentication. 

The evidence resulting from an established identity is maintained by the 
computing device in what is referred to as a security context. The latter 
remains securely attached to every unit of work requested by the correspon­
ding entity. A security context can be exchanged locally across address spaces 
and may be transmitted over a network embodied in the request with which 
it is associated. 

Resource Access Control 

Access control, one of the central themes of this book, is also referred to as 
access authorization or simply authorization. It is about enforcing a prede­
fined access policy. The goal is to confine the actions of an entity only to the 
services and to the computing resources that it is entitled to. To prevent an 
access policy from subversion, the controls that enforce it should be foremost 
capable of binding computing activities to authenticated identities at any fine 
level of computation, the scope of which may be an entire address space or 
at the task and thread level. These bindings are known as secure associations. 
A safe access-control policy prevents leakage of access to unauthorized users 
directly or indirectly in any state of the underlying computing system. As we 
have already mentioned, identity establishment is the cornerstone of enforc­
ing any resource access-control policy. 

Data and Message Security 

Although the term data security is generic, its use is mainly concerned with 
modification detection, origin authenticity, and confidentiality of data that is 
being processed in-memory, or while residing on a storage medium or during 
transmission over a computer network (i.e., a message). Modification detec­
tion or simply data integrity alone is not of value to data security unless it is 
combined with origin authenticity. An eavesdropping entity may apply the 
same data-integrity procedures after having intercepted and modified data 
items, leading the receiving entity to successfully verify the integrity of the 
breached data but without realizing it was modified. Thus, data integrity is 
usually combined with some form of origin authenticity, ensuring that an 
integrity-check sum is indeed generated by a legitimate entity, the original 
source of the data. Secure data integrity, one combined with origin authen­
ticity, protects against an unauthorized update of data. 

Confidentiality is the process of sealing data using a keyed data-scrambling 
algorithm so that only a designated entity, one with knowledge of the key, is 
able to apply the reverse transformation and retrieve the data in its original 
form. The goal is to prevent disclosure of information to unauthorized 
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entities. In a sense, data confidentiality can be used as a mechanism for 
enforcing access to information. The underlying cost, however, can be pro­
hibitive so that access-control mechanisms are generally not based on data 
confidentiality. Data confidentiality remains a discipline of its own in secu­
rity. It is selectively applied to sensitive information that when disclosed 
results in measurable or un-measurable loss of some kind. 

Nonrepudiation 

Nonrepudiation of action is the process by which an entity is prevented from 
denying participation in a transaction either as an initiating/sending or a 
receiving end. The definition is ultimately applicable to preventing any process 
or a thread of execution running on behalf of an end user to circumvent 
the binding of the acting identity with the legitimate entity. Although one 
might argue that nonrepudiation can be accomplished simply by producing 
audit and transaction trails in a secure and a controllable fashion, a purist 
would assert that a legally binding nonrepudiation can be very hard to realize. 
Denial may always take one form or another. Nevertheless, digital signatures 
based on public key cryptography and a combination of tamper-proof hard­
ware and software modules have come a long way toward establishing verifi­
able nonrepudiation services, particularly for initiating entities (i.e., those 
generating information). 

Availability 

Availability addresses the issue of disrupting access to computing resources 
and services. The type of disruption may range from compromising the func­
tions of a particular service or a system to completely denying access to it. 
Under all circumstances, it is natural for users of any computing service to 
expect reasonable response times that are comparable to or much better than 
human-to-human interactions (over a telephone line, for instance) to attain 
the same service. 

Protecting computing resources from extreme degradation of performance 
or from deliberate denial of service takes priority over the enforcement of any 
access-control policy. A denial-of-service (DOS) attack is one in which a 
deliberate high volume of bogus requests are sent to a service provider. The 
intent is to keep legitimate users of the service from using it. An attack as 
such may bring the service to its threshold capacity, leaving it dedicated to 
handling malicious requests instead of legitimate ones. The manifestation 
may result in extremely slow response times and potentially may lead to a 
complete inhibition of service and ultimately a shutdown due to the exhaus­
tion of runtime resources, such as real or secondary storage or network sock­
ets. Powerful attacks as such may further bring down an entire network as 
wide as the Internet to a crawl. 

When authorized users are not able to send requests or reach a service, it 
becomes a secondary concern to have that service enforce an access-control 
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policy. Furthermore, the mere existence of the service is entirely threatened. 
Security mechanisms that protect the availability of computing resources 
guard against various threats of interruption and deliberate actions of slow­
ing down a service or rendering it completely inaccessible. Detection and pre­
vention of DOS attacks have emerged as among the leading security issues in 
this era of computing over public networks. 

It should be noted that disruptions leading to denial of service may occur 
at different locations along the path between a client and a server, including 
the following: 

a In the environment of the service Here the service is prevented from 
obtaining resources needed for its proper execution. The attacker 
focuses on exhausting computing resources of the system in which the 
service is hosted. 

O In the environment of the client The target service is diverted from 
responding to legitimate requesters and dealing with useful communi­
cations by way of attempting to respond to a massive bombardment of 
random client messages instead. 

O Along the path between clients and the server The attacker intercepts 
and then discards useful requests to the service. 

Cost of Security 

Security in computing, as in anything else, comes with cost and overhead. 
That cost should be put in perspective with the value of the protected 
resources. The cost of security has to be proportionate to the losses incurred 
from any security breaches. Insignificant losses do not require significantly 
higher security costs. Measuring potential loss is not a deterministic process; 
worst-case scenarios therefore are to be assumed. In quantifiable terms, the 
cost of security should be less than that of entirely replacing a protected com­
puting asset including its data and functionality. Being able to quantify vari­
ous elements of risk enables the development of informed policies that 
balance the cost of security with the benefits of increased safety. Threats have 
to be considered even in highly secure environments. The probability of ruin 
in a computing infrastructure, even when relatively low, should be the driving 
factor behind the provision of security. However, one cannot always put cost 
to security. Invasion of privacy (such as publicly exposing a person's medical 
records) can be detrimental to the person, even when seemingly no quantifi­
able physical harm is inflicted on the person and the health-care provider. 

System Integrity: A Prelude to Security 

Integrity of information processing was the focus of attention in early stages 
of the developments in information technology (IT). First, the need for a 
strict separation between a running control program and user or application 
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programs was addressed even in basic single-user systems. Operating systems 
and hardware advancements such as those pioneered by the IBM System/360 
and System/370 family have led to multiuser systems that accommodate a 
large number of users. The execution of multiple processes addressing a com­
mon memory meant that one process must be prevented from overwriting 
memory locations that are assigned to another process. Address-space sepa­
ration, therefore, had to be maintained in both the virtual storage assigned to 
a process and the real memory blocks used at runtime. In early IBM systems 
this problem was addressed with storage-protection keys where a particular 
process and the storage assigned to it are associated with a unique storage key 
that must match if the process is allowed to access the storage. Any attempt 
by a process to store data outside of its assigned blocks of memory is recog­
nized by the hardware due to mismatched storage-protection keys. 

In IBM's System/360 through System/390 and beyond, the control program 
defining the operating system is isolated from user programs by means of a two-
state instruction execution environment. These two states are called supervisor 
state and problem-program state. A special set of machine instructions, includ­
ing input/output (I/O) commands to the I/O channels and memory as well as 
address-space-management instructions are operable only when the system is 
running in supervisor state. The control program typically executes in supervi­
sor state while user programs always execute in the problem-program state. 
When an application requests the services of the control program (such as per­
forming I/O), a request is issued to the control program. The control program, 
executing in the supervisor state, first examines the request to make sure that it 
will not exceed the logical boundaries of the problem program before the 
request is executed. 

The assurance provided by modern operating systems in isolating concur­
rently running user applications and control programs is the key to enforcing 
the security controls that a computer system provides. Such isolation is further 
extended to finer levels of computing units— t̂hat of execution threads. The 
needs for isolation equally apply to the threads executing in a single address 
space. Figure 1.1 illustrates the concept of isolation across operating system 
and user processes as well as threads. A classical example of the benefits from 
well-designed isolation mechanisms are found in the features that are embed­
ded in the control program of the System/390 and its derivative platforms. 
These mechanisms are extended to cover new software components that are 
tightly related to the control program. One of these components is the secu­
rity service layer, which is invoked by various resource managers and also by 
system components to mediate access to system resources. 

Trusted Computing Base 

A trusted computing base (TCB) is defined as the totality of protection mech­
anisms within a computer system, including hardware, firmware, and soft­
ware, the combination of which is responsible for enforcing a security policy 
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FIGURE 1.1 Isolation of program execution in modem operating systems 

[ABRA95]. The ability of a trusted computing base to enforce a security pol­
icy correctly depends foremost on the integrity, correctness, and protection of 
the mechanisms implementing the elements of the TCB itself. Similarly, a net­
work trusted computing base (NTCB) is defined as the totality of protection 
mechanisms within a network including hardware, firmware, and software, 
the combination of which is responsible for enforcing a networkwide security 
policy. A mechanism is the term used to refer to a specific paradigm, model, 
or a construct that is used in the implementation of a particular service. 
A security service enforcing a policy is therefore a combination of security 
mechanisms. Trust in a TCB means the components and mechanisms imple­
menting the enforcement of controls dictated by a security policy behave in 
an expected manner. The expectation here is that the TCB should not subvert 
the policy that it is designed to enforce. Basic to the element of trust in the 
TCB is its correctness and overall system integrity. 

The general method of defining the boundaries of a TCB is that any soft­
ware, firmware, or a hardware component that has the ability to subvert a 
security policy is considered to be part of an applicable TCB or NTCB. 
Breaching a TCB is usually accomplished by carrying an attack that the 
designer of the TCB had not anticipated. Building an ideal TCB, therefore, 
requires exhausting all possible attacks. While it may seem that the elements 
of network TCB are scattered and disjoint, in practice trust is a continuous 
concept throughout that follows the information flow. Applicable trust prop­
erties should remain invariant when information is residing on a storage sys­
tem, within a thread of execution, during an exchange of data across address 
spaces, or while in transmission over a network. 
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Users, Principals, Subjects, and Objects 

The term user in computing has been traditionally equated with a human 
being. Its use conveys a unique association between a computing system and 
an entity that can be a human being or some programmable agent. User 
information is generally encapsulated in an account, sometimes referred to as 
a profile. A user account contains information about authentication as well 
as authorization credentials and may contain a set of attributes describing 
the user (such as a name, a serial number, an organization name, and so 
forth). Each user account is associated with an identifier that must be unique 
in the naming space of the underlying computing system. 

While a user represents an entity external to a computing system, di princi­
pal generally refers to an entity's internal representation to a computing sys­
tem. Each user may have several principals associated with it. Each principal, 
on the other hand, is associated with one user only. The principal construct 
defines the runtime association between a computing task and a particular 
user and generally encapsulates a subset of the entitlements of that user. The 
scope of entitlement is dependent on the application to which the user signs 
in. For instance, besides being an employee of Zeta, Inc., user Aicha is par­
ticipating in two projects within her company codenamed Green and Blue. 
Each of these projects requires special privileges. In the absence of a dynamic 
policy that constraints the entitlements of an entity based on its role, Aicha 
may be assigned three principal identities, all of which point to the same user. 
The first is Aicha, being the basic identity in the system; AichaB and AichaG 
correspond to projects Blue and Green, respectively. The relationship of the 
secondary identities AichaB and AichaG to the main identity Aicha should 
be well maintained in the system to establish an accurate binding between a 
physical entity, such as a user and all of its principal identities. A profile rep­
resenting the primary identity of a user should point to all principal identi­
ties associated with that user. 

A subject is the term used to identify a running process, a program in exe­
cution. Each subject assumes the identity and the privileges of a single prin­
cipal. A principal may launch several processes within a single login session 
and thus will be associated with multiple subjects, each of which inherits the 
identity of the login session. Figure 1.2 illustrates the relationships between a 
user, a principal, and a subject. 

An object generally refers to a passive entity (i.e., one that is an informa­
tion receptacle such as a file, or a record in a database). An object, however, 
may indicate an active device from the system's resource pool (such as a net­
work printer, or further can be a programmable service that is managed as a 
resource). 

It is worth noting that in many cases we simply encounter the basic sce­
nario in the relationships among a user, principal and subject where the user, 
the principal, and the subject are all the same. In the security literature the 
term principal is generally used to mean an active entity that is capable of 
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FIGURE 1.2 Relationships between a user, a principal, and subject 

causing information to be retrieved, changed or flown between controlled 
objects of a computing environment. These three terms are in many cases 
interchangeably used to underscore the abstraction for "who". 

Identification and Authentication 

The process of establishing a user identity is known as identification and 
authentication (I&A). The goal is to have only authorized users access a com­
puter system, a network or a particular service. Users are assigned identities 
from the naming space of the underlying authentication system. Each identity 
is associated with an authentication credential that is known only to the user 
and that can be verified by the system. The premise that an entity maintains 
secrecy of its credential except sharing it with a designated computing system 
yields authenticity of the identity associated with that entity. Three methods 
of producing and presenting a secret to a computing system are in use: 

O Presenting something the user knows A password, a personal identifica­
tion number (PIN), and a pass-phrase are the common schemes in this 
category. Secret codes in the form of passwords are extensively used on 
various computing devices. Widespread use of passwords is, to a great 
extent, due to their simplicity and perhaps to their being inherently the 
natural approach. Passwords are generally chosen by users but can be 
system generated as well. Policies can put various constraints on pass­
words for instance, restricting the alphabet of the password, its syntax, 
its length, or its lifetime. As much as they are simple to use and present 
to a computing system, passwords present users with a number of 
management challenges. Foremost is the need to memorize a password. 
The proliferation of systems and applications that use passwords gen­
erally leave a single user handling multiple passwords. Unfortunately, 
to mitigate such challenges users resort to adopting weak passwords 
that are easy to recall. The result is an increased exposure risk. 
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O Presenting something that the user has This authentication scheme con­
sists of storing credential information in a device that generally is 
portable and as small as a credit card. This device, commonly known 
as a token, is presented as an input to a reader attached to the under­
lying computing system. The credential stored in the token is used to 
authenticate the user to the system based on a predefined protocol. 
Smart cards are a common example of such authentication technique. 

O Presenting something that the user is This scheme relies on biometrical 
traits that reliably distinguish users. Examples include fingerprints, 
hand geometry, eye shape, voice, and face recognition as well as hand 
signature. Fingerprints are steadily gaining acceptance. This method 
has remained limited in use partly due to the extra cost it incurs 
and perhaps to the inaccuracies of the related technologies. 

Authentication Factors: A Comparison 

The three authentication factors that are described in the previous section are 
fundamentally different from one another. Certainly, the biometrics 
approach has nothing in common with secret codes or physical tokens. The 
trust elements in each of these schemes are completely different. The compu­
tational aspects of asserting each of these authentication factors have no 
commonality. Passwords rely on secretive information, while physical tokens 
are based on the premise that the token is safely kept and guarded by its 
owner. Biometrics, on the other hand, depends on the uniqueness of biologi­
cal properties among humans. Although a functional comparison between 
these schemes may seem useless, we set them side by side as shown in Table 1.1 
and contrast them in terms of benefits and disadvantages. 

Regardless of which authentication factor is used, remote authentication 
requires a secure channel for the transmission of secrets or the distinguishing 
biometric attributes or some derivative thereof Such a secure channel generally 
requires end-to-end encryption of exchanged information. To prevent intercep­
tion at any level, the interacting end points may be required to be the direct par­
ticipants in the encrypted channel. For instance, a channel that connects a client 
with a brokering service such as a proxy or a Web server may leave the path from 
the Web server or the proxy to the target application exposed to interception. 

In the absence of an end-to-end secure transmission channel, the password 
technique becomes the most vulnerable and the easiest to breach. An attacker 
will need only to spoof the communication to learn about the passwords 
exchanged in clear text. Similarly, token and biometric methods become sub­
ject to replay attacks that at least can be limited in time. Damage from pass­
word interception, however, can go undetected for a long period of time. 

Multiple-Factor Authentication 

The majority of programmable systems adopt a single authentication factor 
in supporting identity establishment. In some situations, however, the risk of 
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TABLE 1.1. Authentication factors: Advantages and disadvantages. 
Passwords Tokens Biometrics 

Are easy to implement and 
low cost 

Need to be memorized 

Are susceptible to guessing 
and compromise by others 

User unaware of an active 
compromise for some time, 
perhaps until damage is 
done 

Require secure 
communication channels 

Can be easily reused across 
multiple systems and 
applications 

Provide accurate 
implementations 

Are perfect for users 
connecting from 
unpredictable remote 
locations 

Can be shared across users 
and systems 

May require special skill to 
interface with the device 
reader; can be expensive 
to implement 

Need to be carried around 
so the size of the token 
can be a factor 

Duplicated only by the 
manufacturer 

User immediately aware of 
potential for compromise 
when realizing that the 
token is missing 

Generally intended for use 
with a local system or 
device but a resulting 
authentication context 
still requires protection 
from replay attacks by 
imposters 

Require special-purpose 
input devices on all 
systems 

Accurate but device is 
prone to wear and loss 
of information 

Require special-purpose 
input devices and thus 
may be a limitation to 
roaming users 

May be replicated by the 
manufacturer but 
generally are not shared 
across users 

Require special skill to 
interface with the equipment; 
expensive to implement 

Are naturally present with the 
user 

User compromised only when 
victimized; generally very 
hard to compromise 

User immediately aware of 
compromise 

Same as for tokens 

Require special-purpose 
equipment on all systems 

Are prone to confusion and 
error 

Same as for tokens 

Cannot be shared across users 

an authentication compromise can have a lasting and a damaging effect. 
Systems operating under stringent security constraints (due to the high value 
of information they contain) employ multiple-factor authentication schemes. 
The paradigm here follows that of adopting multiple lines of defenses in 
which the defeat or failure of one defense line may be stopped by the next line 
of defense. The common example is found in the financial area, where access 
to automatic teller machines (ATM) requires two factors at the same time, a 
card and a PIN. The first line of defense here is the token, while the second 
one is the secret information in the form of a PIN shared between the card 
holder and the banking institution. The PIN factor protects the user in that 
when the card is lost or stolen, the next hurdle for the illegitimate user of the 
card requires cracking the PIN. Although the use of distinct multiple factors 
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is appealing, any one particular factor may be applied multiple times. For 
instance, a system may require two or more different passwords to authenti­
cate a user. 

Passwords: The Prevalent Authentication Method 

Use of passwords is without a doubt the most prevalent form of authentica­
tion. Because of the simplicity involved, passwords offer a great advantage to 
system and application developers. Typically, systems prompt users with the 
login information that consists of a user identifier (UID) and a password. The 
UID is uniquely mapped into the user registry of the underlying system so 
that a comparison between the password, or a derivative of it, as provided by 
the user and that stored in the user entry of the registry is performed without 
ambiguity. A match is required, generally with case sensitivity enforced. 

Approaches to Reliable Password Management 

Password-based authentication is expected to remain in widespread use for at 
least the foreseeable future. To mitigate some of the weaknesses associated with 
passwords, one should adopt the best practices available. In the following, we 
outline some of the common practices for managing passwords [BISH02]. 

Password Encoding 

Passwords are rarely stored as readable plaintext. Reliable user registries 
maintain passwords in some scrambled form. Furthermore, the scrambled 
form is generally such that it is irreversible. One-way hash functions that are 
easy to compute in one direction but intractable to reverse are the choice for 
storing passwords in encoded forms [SCHN96]. The underlying trust in user 
authentication is based on the fact that a plaintext password is provided when 
requesting system or service access by an identified entity. The password is 
then encoded using a known one-way digest algorithm, and the resulting 
stream is compared with the stored value of that identity credential. The fol­
lowing is a list of common one-way encoding functions: 

a MD4 A one-way hash function that produces a 128-bit digest of its 
input message; 

a MD5 An improved, and more complex, version of MD4 that also pro­
duces a 128-bit hash; 

a Secure hash algorithm (SHA-1) This produces a 160-bit hash, longer 
than MD5, slightly slower than MD5, but the larger message digest 
makes it more secure against brute-force collision and inversion attacks; 

o Unix crypt The well known UNIX hashing algorithm. 

It is worth noting that host security systems such as IBM's Resource-
Access Control Facility (RACF) do not compute the one-way transform of a 
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password; rather, the identity of a user is encoded using a one-way transform 
keyed by the password. 

One-way transformed passwords are sometimes further encoded into a 
readable base64 form. Base64 is a method for encoding arbitrary binary data 
as american standard code for information interchange (ASCII) text. This is 
particularly useful when communicating information via Internet email pro­
tocols, which can handle only 7-bit ASCII text. The resulting base64 encod­
ing is slightly larger than its input. 

Adding Salt to Password Encoding 

Storing and using only one-way cryptographic transforms of passwords is not 
enough to prevent intruders from carrying dictionary attacks against a pass­
word. A dictionary attack, also referred to as precomputation attack, is one in 
which an attacker, knowing the details of the one-way transform, precom-
putes the one-way encoding of a dictionary of likely passwords, obtains a 
password in its encoded form, and looks it up in the dictionary for a possible 
match. Brute-force attacks that do not depend on a prebuilt dictionary can be 
used to crack encoded passwords as well. 

A minute change in the input of a one-way digest algorithm yields a dif­
ferent digest. The salt is a value that is incorporated into the calculation of 
the password transform to thwart dictionary attacks. By digesting the pass­
word with a salt, a dictionary attack becomes harder to achieve. The attacker 
needs to search through the entire dictionary for each value of the salt. 
Pseudo-random generation of salt values makes them harder to guess. When 
salt is added, users who happen to select the same passwords will end up with 
different transforms of those passwords because each is likely to use a differ­
ent salt value. Thus the use of salt helps avoid password collision and poten­
tially limits the number of user accounts that can be simultaneously 
compromised. Another practice that helps deter attacks on passwords is to 
apply a high enough number of iterations of the scrambling algorithm to 
make exhaustive search attacks impossible to achieve. 

Password Syntax Rules 

A key preventive measure in protecting against password attacks is to force 
users into selecting hard-to-guess passwords. Users generally tend to com­
pose passwords out of easy-to-remember words yielding weak passwords that 
are susceptible to dictionary attacks. Enforcing lexicographic as well as syn­
tactic rules on passwords can be a strong defense against password attacks. 
Some or all of the following rules are widely adopted: 

o Require a minimum password length (the longer a password is, the 
harder a brute-force attack becomes); 

a Require mixed case for systems that are case sensitive; 
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a Require the use of digits or special characters; 
a Require a particular syntax for combining alphanumeric as well as spe­

cial characters and avoid obvious combinations; 
o Require a minimum number of inside digits or special characters; 
o Prohibit passwords based on user identifiers or words from a diction­

ary and permutations thereof; 
o Offer the user the possibility of randomly generated passwords. 

Password Aging 

The longer a password remains in use, the more likely is to become subject of 
attack. Password aging refers to the requirement of changing passwords fre­
quently by imposing a period of time after which a password must be changed. 
Implementation of a password-aging scheme requires keeping the history of 
passwords for every user. The following practices are in common use: 

n Require a maximum lifetime for each password after which a password 
automatically expires; 

B Avoid recycling old passwords by maintaining the history of N previ­
ous passwords for each user; 

o Require a time limit that should pass before a password can be reused 
(a good measure against users changing passwords TV times just to reuse 
a recent password and thus defeat the practice of not reusing N previ­
ous passwords); 

a Old and new passwords must differ by at least a certain number of pre­
scribed characters. 

Auditing 

Auditing was first proposed by Anderson [ANDE80] as a tool for monitoring 
threats. Auditing in the traditional sense consists of logging security-related 
events, analyzing them for potential breaches, and notifying concerned parties 
accordingly. This definition applies to past as well as to real-time or nearly 
real-time events. Auditing is starting to take a different shape in recent years, 
that of vulnerability assessment and intrusion detection or prevention. 
Intrusion prevention attempts to predict security incidents and attacks before 
they take place. Auditing is a key security element of systems and networks. It 
maintains evidence of attempts to compromise the security controls put in 
place by an organization. Furthermore, audits that are regularly performed 
can be used to determine system and resource usage and to identify the par­
ties involved. Past protection states of a system can thus be intermittently 
reviewed to provide answers to investigative activities. Active audits can also 
be used to determine abnormal behavior and potentially detect system or net­
work intrusion attacks [GLIG85]. Auditing is founded on three elements: 
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a Logging A precursor to auditing, logging provides the ability to record 
security events. Logging should be flexible enough to be driven by var­
ious parameters, including time and date, use of a particular resource, 
success or failure of access, and so forth. Logging builds audit records 
that make up audit trails, also referred to as audit logs. A key element 
of an audit record is its secure association with the entity causing the 
record to be logged (the subject of the action being logged). This asso­
ciation is the main difference between recording security events and 
logging general system activities. It identifies the responsible entities to 
enable accountability. Audit trails must be tamper proof and should be 
updated only by authorized security components of the system. 

o Analysis Once an audit record is collected, it must be analyzed to deter­
mine any attempt to violate applicable security policies. Key informa­
tion gathered from this analysis is the object and type of access 
attempted and the identity of the entity associated with the attempt. 

a Notification An attempt to violate a security control should be com­
municated to the entities concerned with that particular event, includ­
ing a system administrator and the resource owner. Notification should 
be configurable and may not necessarily be driven by unauthorized 
accesses. 

Although the mechanisms above are logically separated, they cooperate to 
form an integral part of an auditing subsystem. Security-relevant informa­
tion that should be part of an audit record may include the following: 

a Identity of the entity requesting the access, 
O Type or mode of access, 
o Time of attempted access, 
o Identification of the system or subsystem from which the request is 

made, 
o Status as to success or failure, 
a Keyed integrity check sum. 

Integrity of an audit trail is an important safeguard against modification. 
A particularly important aspect of an auditing subsystem is recording actions 
initiated by privileged users, such as system administrators and security offi­
cers. A key motivation for that is due to the power and capability of such user 
in inflicting damage. Auditing privileged users may serve as a deterrent to 
costly violations and misuse of authoritative powers. Separation of duty 
between a system administrator and an auditor is an important aspect of reli­
able auditing subsystems. Violations of security controls caused by an admin­
istrator should always be communicated to the system or the network auditor. 

Auditing can be best implemented by performing it under the covers of 
authentication and access-control mechanisms. This tight integration 
increases the reliability of the auditing subsystem, provides transparency, and 
relieves applications from programming directly to the auditing functions. 
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FIGURE 1.3 Elements of a secure access-control subsystem 

Instead, auditing becomes driven primarily through configuration proce­
dures; such is the case with RACF subsystems of the IBM MVS. 

Auditing functions may also be embedded at the middleware layer and 
within runtime execution containers. Other approaches may choose to imple­
ment an auditing subsystem as a stand-alone service. This approach requires 
each application to enable auditing on its own. Due to its sensitivity, an audit­
ing subsystem requires strict controls that prevent users and programming 
agents from circumventing its activities. To this end, it is desirable to embed 
auditing functions within reference monitors enforcing system wide access 
control. Auditing is the third key foundation of access-control systems, the 
other two being authentication and access policy enforcement. Figure 1.3 is 
an illustration of the three pillars of access control. 

The Security Context 

The establishment of an identity as a result of a successful authentication 
process remains a valid fact that is associated with that identity and generally 
persists throughout a session. The security context is the term that refers to 
the embodiment of an established identity as represented by the memory 
control blocks and constructs of a system runtime. Attaching a security con­
text to the units of work in a system must be performed securely and reliably. 
This context is used to confine actions of an entity in accordance with its 
assigned privileges and entitlements and becomes an anchor for tracing user 
activities for accountability purposes. Due to its sensitivity, a security context 
is always protected from modification by users and system subcomponents. 
While some systems may not put any time limit on the use of a security con­
text, others limit its lifetime to a relatively short period of time after which 
the context is required to be refreshed if it is to remain in use. The security 
context of an entity is sometimes referred to as an authentication credential. 

Security contexts should apply uniformly to all of the processes and address 
spaces that may be active in a system. Trusted-computing-bases components 
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should not be an exception. This consistency facilitates the enforcement of a 
common security model. For instance, in the classical MVS operating system 
and its derivatives, all system and executing user functions (including the mas­
ter scheduler, which is analogous to the Kernel in UNIX systems) are associ­
ated with a control structure representing a security context that is called an 
accessor control environment element (ACEE). This uniformity allows the 
TCB to treat all system and user processes in the same way. Figure 1.4 depicts 
the process of attaching a security context to an address space or an execution 
thread. In A, all of threads of an address space are anchored to a single 
context, while in B, multiple threads of the same address space are associated 
with different security contexts. The first scenario applies to an application 
that serves each request in a separate address space. In the second case, each 
request is served by a separate thread of a single address space in which the 
service executes. 

Content of a Security Context 

A security context carries the user's roles and group membership within the 
set of entities defined to the system. It encapsulates the identity of its prin­
cipal as it is known in the user registry of the system. This identity must be 
uniquely identifiable. The group membership enumerates any user groups in 
which the authenticated entity is a member. The entity as such is automati­
cally assigned the entitlements associated with each group. A security con­
text may also anchor the user's roles and capabilities to access system and 
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Thread 

Thread 
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FIGURE 1.4 Anchoring computing tasks with security contexts 
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network resources. Other non-persistent forms of identification such as an 
internally used unique identifier may also be part of the security context. 

The Flow of a Security Context 

Components of a system's or a network's TCB are responsible for the creation 
and lifecycle management of a security context. Units of computing work per­
formed by the system can be anchored to security contexts in various ways, 
based on the security policy and the controls implemented by the system. As 
computation proceeds, it is desirable that downstream services are seamlessly 
invoked without having the user explicitly reauthenticate. This characteristic is 
provided as a core functionality of modern operating environments. For exam­
ple, the system authorization facility (SAF), a major component of the TCB in 
MVS, provides support for the creation, modification, transfer, or deletion of 
a security context by trusted operating system components such as resource 
managers. This capability supports two important security aspects: 

B A new process that is initiated by an existing process can be forced to 
inherit the authenticated identity of the parent user process. In this 
case, the newly created process remains associated with its parent 
address space. 

o A trusted service can initiate a new process with an associated security 
context of any other identity known to the system. 

It is important to note that the authority of attaching a security context to 
user address spaces is accomplished without having to access the user's secret 
authentication information. Therefore, this can be achieved only in a highly 
reliable and trusted environment, such as one analogous to the classical envi­
ronment of the MVS operating system. 

Delegating Security Contexts 

Identity delegation is the term commonly used when referring to the inheri­
tance of security contexts along a chain of processes or threads of execution 
in response to a service request. Delegating security contexts can be achieved 
with various semantics. The following are a few of these: 

a The adoption of the security context of an originating entity by down­
stream processes and threads without changes This is known as imper­
sonation, where from the security perspective there is no distinction 
observed between the processes or threads directly initiated by a user 
and those that are downstream. Impersonation presents the advantage 
of ease of implementation. An audit trail of an executing chain of del­
egated processes as such will account only for one identity. 

a Use of an inherited security context along with a new security context rep­
resenting the identity in control of the newly created address space or 
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FIGURE 1.5 Some variations of delegating security contexts between an entity A and 
entity B 

spawned thread This can be complex to implement but enables the con­
struction of detailed and more accurate audit trails. It also allows the 
underlying system to switch from one security context to another as 
needed. We call this method a controlled impersonation. Each unit of 
work is associated with either of the security contexts but not with both. 

O Augmenting the inherited security context with that of the identity asso­
ciated with the new address space This allows the extension of the priv­
ileges of the initial user with those associated with downstream 
processes. Managing the chain of all security contexts can be complex. 
Units of work are associated with one single context, that representing 
the originating entity, but with entitlements that are the union of priv­
ileges of original entity and those of the inheriting user. 

a Retracting the delegated security context to a lesser level of entitlement 
This delegation method is intended to downgrade security credentials 
along the chain of processes or execution threads. 

Impersonation is widely used in various programming systems. Figure 1.5 
illustrates these forms of delegation. 

Access Control 

At the core of an access-control system is the secure evaluation of whether 
an established identity has access to a particular computing resource, also 
referred to as an object, A resource can be a service of some kind, an infor­
mation receptacle such as a file or a Web resource such as a uniform resource 
identifier (URI). Access control is decided over an existing security context 
and a controlled resource. Modern access-control mechanisms are based on 
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the reference monitor concept introduced in early 1970s by Lampson 
[LAMP74]. A reference monitor is the TCB component of a computing sys­
tem that mediates every access of a subject to a resource in accordance with 
a security policy that governs such access. The policy may be implemented in 
the form of rules and attributes associated with a registry of subjects and a 
registry of objects. The rules can be static access rights (permissions), roles, 
or dynamically deduced rights. Figure 1.6 illustrates the concept of an access-
control reference monitor. 

In addition to the mediation of access, a reference monitor should not be 
bypassed at all times, should support isolation of the security services from 
un-trusted processes, maintain system integrity, and prevent from tampering 
by users or system processes. The reference-monitor footprint should be kept 
small enough to be susceptible to rigorous verification methods. The gate­
keeper approach of the reference monitor makes it an ideal component for 
the generation of audit trails reflecting access attempts to the resources 
within its confines. 

In the next sections, we describe various topologies of the reference moni­
tor and show the merits of each. Subsequently, we discuss the access-control 
paradigms known to date. 

Reference-Monitor Topology 

The reference-monitor concept can be implemented using various topologies. 
We distinguish two important factors of reference monitors. The first is 
access-control enforcement, and the second is the computation of an access-
control decision. Enforcement of the reference-monitor paradigm is con­
cerned with the responsibility of invoking the interface to the component 
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FIGURE 1,6 The reference monitor concept of access control 
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providing access-control decisions. A division along the enforcement and the 
access decision making in the reference monitor yields three categories: 

a Systemwide enforcement of the reference monitor In this case, a single 
instance of a reference-monitor implementation is running system or 
networkwide providing access-control enforcement to all applications 
and system processes. Each time an entity attempts to access a 
resource, the monitor automatically intercepts the request and either 
allows or denies access based on the policy enforced and the security 
context of the requesting entity. An example of this category is the 
classical SAP component of the MVS system that provides the ability 
to plug into external resource access-control managers such as IBM's 
RACE In MVS it is the combination of system integrity, the SAE 
authorized interfaces, and the external-to-MVS access-control compo­
nent that constitutes the Lampson reference monitor. Advantages of 
this method are exhibited mainly by the security and reliability that it 
offers due to the enforcement being part of the operating system's ker­
nel. Access-control elements that define the system's TCB in this case 
are centralized, can be isolated, and have a single interface to all sys­
tem processes and resource managers. This approach provides the 
advantage of transparency to application developers in controlling 
access. A disadvantage can be the single point of failure that the mon­
itor represents. Add to that a possible performance bottleneck that may 
occur under system-overloading conditions. Eigure 1.7 illustrates the 
concept of a systemwide reference monitor. 

Application 
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FIGURE 1.7 A centralized reference monitor topology 
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Enforcement of the reference monitor at the resource manager level In 
this case, various resource managers that may exist in a system or that 
are accessible over a network are responsible for the invocation of 
underlying access-control components. Access attempts to resources 
are automatically intercepted by the respective resource manger in 
order to decide whether to grant or deny access. Examples include 
database management systems such as IBM's DB2, transaction moni­
tors, Web servers, and more recently Web application servers (WAS) 
such as IBM's Websphere as well as various network file systems. 
Advantages of this method include the ease of portability of such pro­
gramming systems to different operating-system platforms as well as 
the transparency of access-control functionality to application devel­
opers. Redundancy in the implementation of reference monitors by 
various middleware systems when the access decision in itself is per­
formed through the resource manager or the middleware represents a 
disadvantage. This approach may also lead to managing various user 
and resource registries separately by each middleware. Some middleware 
implementations, however, bridge directly into the underlying system's 
single reference monitor, thereby leveraging existing and in many cases 
proven and reliable access-control mechanisms. The TCB of a system in 
this case becomes scattered throughout the middleware subsystems. 
Figure 1.8 depicts the approach to middleware-based reference-monitor 
enforcement. 
Application-based reference monitor Each application is the sole respon­
sible for the invocation of access-control services. Application develop­
ers are required to program to the mechanisms implementing the 
reference monitor. The latter may be provided by an underlying middle­
ware subsystem or can be a system wide reference monitor. Although not 
so widely adopted, in some cases the reference monitor is also part of the 
application. Each reference monitor may be using different interfaces, 
programming models, and policies. Hence switching among multiple 
providers of reference-monitor implementations can be costly. This 
approach can be implemented to leverage existing system or network-
wide access-control mechanisms. But it may result in redundancy, 
inhibits scalability, and increases the cost of deploying applications. 
Figure 1.9 shows the direct interactions of each application with the ref­
erence-monitor enforcement layer. Note how the access-control 
providers used by the application at the bottom use separate interfaces. 

About Access-Control Policies, Models, and Mechanisms 

A security policy from an access-control perspective is the set of rules that an 
organization adopts to govern who can have access to what resource. In 
broader terms, a security policy is a statement of what is allowed to happen 
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and what is not allowed to happen within the realms of an organization. It 
describes acceptable protection states in a computing system. Defining a 
security policy requires a thorough analysis of the information flow required 
in the day-to-day activities of an organization. Although some security poli­
cies can be described using formal specifications, a great deal of real-world 
policies are defined using a variety of controls that are not amenable to a uni­
fied description or can be formally described and specified. At a broad level, 
we note the existence of two main access-control policies: 

B Discretionary policy and 
a Mandatory policy. 

A discretionary access control (DAC) policy is owner-centric in that each 
system resource is assigned ownership by one or more entities. The owner 
of a resource has complete discretion over who else can access the resource 
and in what mode access is accomplished. The DAC policy is so widely 
adopted that virtually most implemented policies are related to it in one 
form or another. The resource-ownership paradigm of access control is 
more prevalent and naturally corresponds to the real world. The advantages 
offered by DAC include simplicity, flexibility, and to a great extent ease of 
implementation. The drawback, however, is that DAC does not provide any 
formal assurance concerning the flow of information. Propagation of 
access rights in discretionary policies is unbounded and hard to predict for 
all systems. 

Contrary to DAC, a mandatory access-control (MAC) policy does not make 
use of the resource-ownership concept. Access to information is predefined 
through administrative procedures and remains invariant thereafter. System 
entities have no control over disseminating access to information. Instead, 
access capabilities are mandated by a trusted information-flow officer who 
sets the rule on who has access to what based on the sensitivity of informa­
tion contained in each resource. To access a resource, one must hold the 
proper security clearance. MAC naturally fits with the military policies. It has 
evolved within the United States Department of Defense (DoD). Access con­
trol here yields a predictable information flow that is unidirectional. 

A security model is a tool that can be used to describe one or more secu­
rity policies. A model has systematic features, is precise, and can be formal. 
The most important aspect of a security model is that it allows one to reason 
about the behavior of the policy being modeled. Access-control models 
define the formalism for specifying and implementing security policies and 
are concerned with studying the implications from dynamic changes affecting 
the protection states of a computing system. Analysis of a security policy is 
made possible by the underlying model with which it is associated. The 
access-matrix model is the most known of all security models. It is generic 
enough that it can represent almost any policy whether discretionary or 
mandatory. Its modeling of DAC, however, is more useful. 
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An access-control mechanism refers to a particular method, tool, or proce­
dure for implementing an access control policy. Mechanisms are not necessar­
ily always automated. They can be provided through offline processes—for 
example, through the manual intervention of an administrator. A policy some­
times is implemented by a well-known mechanism and thus becomes equated 
with that mechanism. An example of that is the access control list (ACL) 
implementing a discretionary-access policy. 

Access-Control Paradigms 

Three main categories of access control paradigms have emerged: 

o Discretionary, 
n Mandatory, and 
o Role based. 

Discretionary-access control centers around the concept of users having 
control over system resources. Users as such can transfer access rights to 
resources under their controls to other system users in a discretionary fashion. 
Control over a resource can be implicit by way of owning the resource or can 
be explicitly granted through a chain of commands, all of which involve dis­
cretion as well as the necessary access permissions that permit the dissemina­
tion of access rights. Users therefore gain access to a resource if they create it, 
if they are an administrator of the system, or if some other entity has con­
ferred access to them. The essence of DAC is the propagation of access rights 
at the discretion of resource owners and authoritative entities. Depending on 
the type of permissions being propagated, the cumulative effect from incre­
mental changes in the protection state of a system can be unbounded. 

In contrast to DAC, a mandatory-access control is used when the protec­
tion decisions are not made by the owner of an object. RBAC is the paradigm 
that closely mimics real-world processes. We devote an entire chapter to 
RBAC, but a brief description of it follows in the next section. 

Role-Based Access Control 

Role-based-access control (RBAC) has emerged as an alternative to discre­
tionary- and mandatory-access policies. RBAC regulates access to resources, 
systems, and business processes based on the role of the acting subject. 
Similar to the real-world definition, a role is an abstraction that encapsulates 
a set of responsibilities along with corresponding allowable operations. 
Unlike discretionary- or mandatory-access paradigms, in RBAC privileges 
are assigned to roles instead. RBAC appears to move access-control abstrac­
tions a level higher that allows it to be policy neutral. Researchers have 
demonstrated this fact by simulating both discretionary and mandatory 
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policies using role-based access. Further details of RBAC are the subject of 
Chapter 8. 

Delegation and Masquerading 

Delegation and masquerading are similar in that both induce the same effect. 
In either case, one entity performs functions on behalf of another entity. 
Recall that acting on behalf of an entity implies the use of that entity's secu­
rity context and hence its identity and entitlements. Masquerading under 
someone's identity, however, is a security violation. The key distinction 
between delegation and masquerading is that delegation implies the presence 
of two entities both of which are aware of one another and one is consenting 
that the other assumes its identity. Masquerading, on the other hand, hap­
pens when an entity assumes the identity of another entity without explicit or 
implicit consent. It represents a case of identity theft. 

The Axiom of Attenuation of Privileges 

Attenuation of privileges forms the basis under which access rights may 
propagate across the entities of a protection system [DENN76b]. It states 
that an entity may not grant rights to objects for which it does not have those 
same rights. Subject Alice, for instance, cannot give subject Elyes read access 
to a file "schedule" that she, in turn, cannot read. Evidently when Alice is the 
owner of the file, she is able to grant the read access to others even when she 
does not explicitly hold read access to the file. The principle of attenuation of 
privileges, therefore, is not applicable to the resource owner. The fundamen­
tal concept of resource ownership comes with the authoritative power of 
users over objects they own, including granting themselves as well as others 
access to any operations supported by an object. Without the principle of 
privilege attenuation, there can be no basic control over the propagation of 
access rights. Each system user will hold the maximal set of rights available 
in a protection system to every object, a situation that is equivalent to having 
no protection at all. 

Trust and Assurance 

Trusting an entity means having prior knowledge of that entity's expected 
behavior. In a trusted computing system, the expected behavior is that users 
and all programming entities remain in line with the security properties and 
policies adopted by the system. This implies that all protection states main­
tain consistency with the underlying security policy with respect to any 
computations taking place. 
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Trust is founded on the notion of confining expected behavior. The level of 
confidence in confining behavior to within a prescribed security policy 
defines the level of assurance. Trust, therefore, is coupled with an assurance 
measurement. Confidence is built on presenting evidence that entities meet 
the security requirements set in a computing environment, whether a single 
host system or a collection of hosts and computing resources joined by a net­
work. Trust must be satisfied along any communications path established 
between the entities of a protection system. Trust paths must guard against 
spoofing, where users are tricked into thinking they are communicating with 
the security-enforcement portion of the underlying system. 

Evidence of assurance includes the use of sound development methodolo­
gies, formalism in the design, and thorough testing of the security mecha­
nisms under various deployment conditions. 

Realizing Assurance 

Establishing some level of assurance in a security system is a desirable goal. 
Naturally, the question arises as to how one arrives at determining a measure 
of that assurance. Three methods can be used: 

a Trust the vendor In this case, an organization purchasing a security 
product relies on its relationship with the entity that is responsible for 
the development of the product. Trust leading to assurance in this case 
is discretionary and hence may not be verifiable through a neutral 
entity. Verification may in the end be the responsibility of the entity 
purchasing the product. Naturally, the list of vendors one might deal 
with is susceptible to growing over time, thus requiring trust in many 
vendors. This approach is not reliable. 

a Perform own testing In this case, the entity using the product deter­
mines the level of assurance in the product based on its own testing 
effort. This method adds up the cost to the purchasing entity and 
comes with a degree of uncertainty as the test is performed after the 
product is purchased. Albeit better than trusting the vendor, this 
method can be costly and is somewhat of an after the fact process. 

a Rely on a third party An experienced and perhaps well-recognized third 
party is responsible for establishing the assurance level of a product. 
This case alleviates the burden of assurance on the purchasing entity 
and lends itself to trust as the third party may have no special interest 
with any party. In the next section, we present an overview of the best-
known assurance program, the common criteria currently adopted in 
North America and in Europe. 

The Common Criteria: A Background 

The common criteria (CC) are the outcome of a series of efforts to develop 
assurance methods for the security of systems and networks broadly 
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encompassed under information technology. Trusted computer-system-
evaluation criteria (TCSEC) were developed by the United States 
Department of Defense in the early 1980s. This effort is mainly known 
through the development of the Orange Book, summarizing the require­
ments for assurance in IT security [USDOD85]. In 1991, the Information 
Technology Security Evaluation Criteria (ITSEC) was published by the 
European Commission, a culmination of the work that had already been 
started by a number of European countries, including France, Germany, 
the Netherlands, and the United Kingdom [BDTI91]. Meanwhile, the 
Canadian government developed the Canadian Trusted Computer Product 
Evaluation Criteria (CTCPEC) which was published in 1993 [CANA93]. 
During that same year the draft Federal Criteria for Information 
Technology Security, known as the Federal Criteria (FC), was also pub­
lished in the United States [NIST92]. EC was an effort to combine 
European and North American requirements and concepts for assurance 
evaluation. 

In the early 1990s the International Organization for Standardization 
(ISO) began developing IT security-evaluation-criteria within the scope of 
the global IT market. In 1996 Version 1.0 of what has come to be known as 
the Common Criteria was published by ISO followed by Versions 2.0 and 2.1 
in 1998 and 1999, respectively [NIST99]. In 1999 the Common Criteria offi­
cially became ISO standard 15408, merging both TCSEC and ITSEC. 
Adopting a global standard marks a milestone in the area oT IT security-
assurance criteria. It removes the need for multiple evaluations of the same 
product and thus presents a cost saving to the vendor as well as to the pur­
chasing entities. Adopting a set of common international criteria is also 
expected to enhance IT security assurance as it is exposed to global scrutiny 
and contributions. A single reference for assurance of information security is 
useful as a guide for the development of computing products encompassing 
security functionality. Similarly, a single assurance authority is expected to 
facilitate the procurement of IT products with security functions. 

Overview of Assurance in the Common Criteria 

The philosophy that underpins assurance in the Common Criteria is based on 
the evaluation of IT security products, referred to as the target of evaluation 
(TOE), against a well-defined set of requirements called protection profiles 
(PPs). The PP describes the required security functionality referred to as the 
security target (ST), which is used as the basis for evaluation. Examples of 
TOEs include operating systems, computer networks, distributed systems, 
and applications implemented in hardware, firmware, or software. The core 
elements of the CC address information protection from security threats, 
such as unauthorized disclosure, modification, or loss of use (unavailability). 
These threats, as we have discussed, are countered through the mechanisms 
of information confidentiality, integrity, and availability. 
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A collection of assurance requirements relating to a specific area (such as 
configuration management, for instance) is referred to as an assurance class. 
Each assurance class contains a set of assurance families, such as installation, 
generation, and startup (ensuring that the TOE has been installed, generated, 
and started up in a secure manner as intended by the developer). An assur­
ance family contains assurance components, which in turn contain assurance 
elements. Classes and families are used to provide a taxonomy for classifying 
assurance requirements, while components are used to specify assurance 
requirement in a protection profile or for a security target. 

The scale for measuring assurance in the Common Criteria is called the 
evaluation-assurance level (EAL). EALs are hierarchically ordered such that 
higher EALs represent increasing assurance. The increase of assurance from 
EAL to EAL is accomplished by using a hierarchically higher-assurance 
component within the same assurance family. Currently, there are seven 
assurance levels defined in increasing order of assurance: EALl, EAL2, 
EAL3, EAL4, EAL5, EAL6, and EAL7: 

a EALl This basic assurance level is applicable in situations where some 
confidence in correct operation of the product is required, but the 
threats to security are not viewed as serious. Nonetheless, this level pro­
vides a meaningful level of assurance over a product that is not evalu­
ated altogether. 

o EAL2 This level is applicable to the situations in which a low to mod­
erate level of assurance is required in the security functions of a prod­
uct that has no readily available development records such as the case 
of a legacy application for instance. The increase in assurance over 
EALl is evidenced by requiring developer testing, a vulnerability 
analysis, and independent testing of the security functions. 

o EAL3 This assurance level requires making decisions on the security 
functionality at product-design time but without making significant 
changes to existing development practices or having to substantially 
reengineer the product. It is applicable to circumstances where a mod­
erate level of assurance is required. 

o EALA This is the highest level at which it is feasible to retrofit a prod­
uct so that it satisfies the security requirements without completely 
reengineering it. It is applicable in situations where a moderate to high 
level of assurance is needed. 

O EAL5 This level mandates rigorous security engineering based on 
sound development practices. The evaluated product is developed with 
the intent of achieving the EAL5 assurance level. EAL5 is applicable 
to situations requiring a high level of assurance and in which security 
is engineered in the product at early design stages and rigorous devel­
opment techniques are used. Nonetheless, the cost attributable to secu­
rity engineering should not be so high that it outweighs the 
development of the product's main functions. 
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o EAL6 This level is applicable in situations associated with high risk and 
where the value of protected resources justifies the potentially high cost 
of security engineering and development. Semiformal methods for 
design verification are used. 

O EAL7 This level is applicable for the development of products guard­
ing against extremely high-risk situations and where the value of the 
protected resources justifies the high cost of security engineering and 
development. Extensive formal analysis is required at this level. 

The Common Criteria encompass seven assurance classes. Each is associated 
with a number of assurance families, as summarized below. 

Configuration Management 

Configuration management represents a critical element of product assurance. 
It requires discipline and control in the processes leading to the development 
and modification of the evaluated product. It mandates the use of rigorous 
methods for tracking the changes applied to the product in its development 
cycle as well as ensuring that those changes are authorized. This assurance 
class requires the following assurance families: 

o Automation Automation of the tools supporting configuration man­
agement prevents errors and maintains execution order. 

o Capabilities This assurance family measures the strength and effective­
ness of a configuration-management system. It ensures the integrity of 
the evaluated product throughout its development life cycle. 

a Scope This ensures that all necessary configuration items related to 
the product to be evaluated are considered by the configuration-
management system. For example it includes tracking the level of soft­
ware tools used in development such, as compiler levels and necessary 
switches. 

Delivery and Operation 

Delivery and operation set the requirement for correct delivery, installation, 
generation, and startup of the evaluated product. It encompasses the follow­
ing assurance families: 

o Delivery Provides assurance that the recipient (e.g., entity purchasing 
the product) receives the TOE without any modifications; 

o Installation, generation, and startup Consists of the procedures ensur­
ing that the TOE has been installed, generated, and startedup in a 
secure fashion and as designated by the developer. This requirement 
mandates a secure transition of the product from development to the 
deployment environment. 
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Development 

Development encompasses all of the assurance requirements relating to the 
functionality of the TOE throughout the development life cycle. It includes 
the following assurance families: 

o Functional specification Describes the user and programmatic interface 
characterizing the functional behavior of the TOE. The security func­
tionality should be clearly addressed by the functional specification. 

o High-level design Describes the product in terms of its major compo­
nents and how they relate to one another in delivering the security 
functionality intended by the product. 

a Implementation representation Describes the implementation of the 
TOE in terms of source code, firmware, or hardware components. It 
captures the internal workings of the security functions of the product. 

o Internals of the TOE security functions Address the internal structure 
of the product's security functions. Requirements are expressed for the 
modularity and minimization of the complexity of various mecha­
nisms enforcing the security functions for the TOE to be simple enough 
for analysis. 

o Low-level design Describes the internals of the security functions in 
terms of subcomponents and modules as well as their interrelation­
ships and dependencies. 

o Representation correspondence Addresses the correct correspondence 
between various abstraction levels of the TOE to the least abstracted 
security functionality. A logical correspondence should be established 
across adjacent abstraction levels and should address complete instan­
tiation of the requirements. 

o Security policy modeling This family provides additional assurance 
that the security functions enforce the security policies as intended. 
This is accomplished by first developing a model of the security pol­
icy enforced and establishing a correspondence between that policy 
and the policy enforced by the security functions as provided by the 
TOE. 

Guidance Documents 

Guidance documents satisfy the requirement for user and administrator guid­
ance through product documentation. All relevant aspects for the security func­
tions of the TOE are described. It encompasses the following assurance families: 

a Administrator guidance Refers to the product documentation intended 
to guide an administrator through various functions such as product 
configuration, maintenance, and administrative controls; 

a User guidance Refers to the product documentation needed by users 
exploiting the product for nonadministrative functions such as 
programmers. 
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Life-Cycle Support 

Life-cycle support is concerned with all aspects of establishing discipline and 
control in the processes of development as well as improvements of the TOE 
during its maintenance. It is supported by the following assurance families: 

o Development security Provides assurance as to the security of the entire 
development environment, including physical, procedural, and person­
nel security measures; 

o Flaw remediation Requires that discovered security flaws be tracked 
and corrected by the developer; 

o Life-cycle definition Mandates the adoption of a systematic model for 
the development and maintenance of the TOE early in the develop­
ment stage and prevents implementation flaws; 

a Tools and techniques Refers to the seleciton of the various tools 
required by the development, analysis, and implementation of the TOE 
(for example, the programming languages used). 

Tests 

The tests specify all the elements that pertain to testing the evaluated prod­
uct. Testing is a key aspect of the assurance provide by the TOE. The fol­
lowing assurance families are used: 

a Coverage Addresses the completeness aspect of testing and measures 
the extent to which the TOE is tested against the functionality claimed 
in the specification of the product; 

o Depth Deals with the level of details used in testing the security func­
tionality of the TOE, and is based on increasing information about the 
internals of implementation derived from concise and thorough analy­
sis of the TOE security functionality; 

o Functional test Provides assurance that the functional security require­
ments of the TOE are satisfied and may also include verifying the 
absence of undesired security behavior; 

a Implementation testing Demonstrates that the security functions of the 
TOE perform as specified (to some extent corresponds to the unit test­
ing of various components of the TOE security functions). 

Vulnerability Assessment 

Vulnerability assessment is concerned with the existence of covert channels, the 
possibility of misuse or incorrect configuration of the TOE security functions, 
as well as any elements that may contribute to the TOE becoming vulnerable to 
security flaws and attacks. It encompasses the following assurance families: 

Ö Covert channel analysis Addresses the potential for illicit information 
flows which can be exploited to breach the security defenses imple­
mented by the TOE; 
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o Misuse Investigates the existence of TOE configurations that may lead 
to insecure operations when users and administrators reasonably 
believe the TOE is operating in a secure manner; 

o Strength of TOE security functions Provides a measurement as to the 
strength of the mechanisms implementing the security functions of the 
TOE; 

Ö Vulnerability analysis An assessment to determine whether any identi­
fied vulnerabilities of the TOE can be exploitable to cause the violation 
of the security policy intended to be enforced by the TOE. 

Table 1.2 is a summary of the requirements needed to satisfy the various 
EALs defined by the Common Criteria [NIST99]. Rows of the table repre­
sent assurance classes along with corresponding assurance families, and the 
columns represent the EALs. 

TABLE 1.2 Summary of the requirements for the Common Criteria. 
Assurance Class 

Configuration 
management 
(ACM) 

Delivery and 
operation 
(ADO) 

Development 
(ADV) 

Guidance 
documents 
(AGD) 

Life-cycle 
support 
(ALC) 

Tests (ATE) 

Vulnerability 
assessment 
(AVA) 

Assurance 
Family 

ACM_AUT 
ACM_CAP 
ACM_SCP 
ADO_DEL 
ADOJGS 

ADV_FSP 
ADV_HLD 
ADVJMP 
ADVJNT 
ADV_LLD 
ADV_RCR 
ADV_SPM 
AGD_ADM 
AGD_USR 

ALC_DVS 
ALC_FLR 
ALC_LCD 
ALC_TAT 
ATE_COV 
ATE_DPT 
ATE_FUN 
ATEJND 
AVA_CCA 
AVA_MSU 
AVA_SOF 
AVA_VLA 

EALl 

X 

X 

X 

X 

X 
X 

X 

Evaluation-Assurance Levels 

EAL2 

X 

X 
X 

X 
X 

X 

X 
X 

X 

X 
X 

X 
X 

EAL3 

X 
X 
X 
X 

X 
X 

X 

X 
X 

X 

X 
X 
X 
X 

X 
X 
X 
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X 
X 
X 
X 
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X 

X 

X 
X 
X 
X 
X 
X 
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X 
X 
X 

EAL6 

X 
X 
X 
X 
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X 
X 
X 
X 
X 
X 
X 
X 
X 

X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

EAL7 

X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 
X 
X 

X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
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About the Confinement Problem 

The confinement problem was first identified in 1973 by Butler Lampson 
[LAMP73]. It can be thought of as the way access control is viewed fi*om the 
perspective of end users rather than the traditional definition of controls asso­
ciated with the resources in the confines of a server. Stated explicitly, confine­
ment is about controlling a service program from leaking confidential or any 
other information supplied to it by the client (the invoker) to other system 
processes or any other entity, such as a human. When enforced, confinement 
must be maintained throughout a chain of program calls. The transitivity of 
the confinement property maintains confinement along all threads and 
processes of an execution chain that takes place locally or remotely. 

Clearly, the problem of confinement is much more difficult to solve than 
that of controlling access to system resources. When a service leaks user con­
fidential information, there is generally no indication of compromise in the 
security of the system. Human-based trust becomes the only assurance one 
can have against a potential violation of confinement. A classical example of 
the need for process confinement is that of a user making a purchase order 
over the Internet. The user in that case will want to ensure that the server can­
not pass his or her billing information, such as a credit-card number, to other 
entities. 

Assurance of confinement provides confidence that a program remains 
unable to leak data throughout its execution. Any attempt to escape such a 
confinement by a misbehaving program is detected, and thus the program is 
trapped, as Lampson describes it. One simple scenario in which a server is 
programmed to leak user data is to have the service write the data to a file so 
that it can be passed to an administrator or to an entity taking part in a secu­
rity breach. Similarly, the service may use any interprocess communication 
mechanisms available to pass data about the caller to other entities. 

The paths by which a program may leak information can be known or 
unknown at program development and deployment time. Not all of the paths 
are obvious or can be determined through traditional means of code reviews 
and inspections. Some leakage paths are subtle and obscure and may include 
other cooperating elements, referred to as channels, which can be external to 
the program's executed instructions. Lampson classifies these channels into 
three categories: 

a Storage The service leaks information by writing it to any available 
storage device, such as runtime execution memory or some volatile sec­
ondary storage. 

o Legitimate The service may use any output that is part of its legitimate 
computation, such as a billing form, to leak the caller's information. 
This is also referred to as the use of overt channels, which in contrast to 
covert channels, uses the system's protected resources (such as data 
objects) to transfer information. 
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n Covert Channels These are any shared resources that are associated 
with hidden channels of transferring information and that are not 
deliberately designed for use as communication means. 

Covert Channels 

While storage and legitimate channels can be guarded against effectively, 
covert channels contribute a tremendous deal to the complexity of the con­
finement problem and can be very hard to uncover and remove. Covert chan­
nels are broadly classified into two categories: 

o Storage channels Information is communicated between two entities 
sharing a storage medium by way of having one entity write a data 
object, so that the other entity reads and interprets the data based on a 
conspiring protocol between the two entities. 

n Timing channels The sending entity modulates the amount of time 
needed for the receiving entity to detect a change in some attribute of 
the system known to both entities. The receiver interprets the temporal 
update of the attribute as a covert transfer of information between the 
two entities. 

It is worth noting that both of these types of covert channels are about 
sharing resources. While storage channels are about sharing space, timing 
channels are about sharing time and modulating temporal events. 

Examples 

Due to the necessity for sharing system resources, covert storage channels 
are the easiest to develop and therefore many such channels are known to 
have been exploited for leaking information. A classical storage channel is 
one in which two entities A and B share a file system and have access to a 
common directory (write permission for A and read for B). A, being the 
entity leaking information, creates a file called either zero or one based on 
the information intended to be transferred. The receiving entity B detects the 
existence of file named 0 or 1, interprets the event in a certain way, and 
deletes the file to signal that it consumed the leaked information. The series 
of files with the names 0 and 1 could represent a stream of bits that are 
intended to be leaked. Entity B reconstructs the stream based on the order 
in which the files are created and realizes the intended leak. 

A second example is the use of resource-access synchronization (e.g., lock­
ing a file before using it). In this case, entity A locks the file to signal that it is 
sending a 1. It releases the lock to signal that it is sending a 0. The receiving 
entity B detects this locking and unlocking events and interprets the leaked 
information accordingly. 
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Security-Design Principles 

Security is pervasive throughout the entire cycle of information processing. 
Indeed, the safety of protection systems remains elusive, particularly in the 
absence of formally proven mechanisms in secure-system implementations. 
One, therefore, can rely only on the best practices of design methodologies 
that can help reduce risks and aid in the detection of security flaws at early 
stages of development without the burden of costly overheads. In the land­
mark paper authored by Saltzer and Schroeder [SALT75] in 1975, nine design 
principles were described. Remarkably, these principles remain valid and com­
plete even after such a relatively long time in the history of secure computing. 
We discuss and shed light on these principles in the sections that follow. 

Economy of Mechanism 

Keep the design of a security mechanism as simple and small as can be pos­
sible. Be to the point in the design of a security function. Limit the design to 
solve a well-defined problem. Do not attempt to generalize the design to solv­
ing derivative or nonrelated problems. Overdesigning is costly, introduces 
complexities, and can be susceptible to errors. Large software systems are 
more error prone than smaller modular components. Code reviews are easier 
and more effective when smaller and simply designed components are used. 
Modular components lead to more efficient testing processes and expose 
a lesser number of information-flow paths to be concerned about. 

Complete Mediation 

No exceptions can be made in mediating access. Every access to every pro­
tected object must be checked for entitlement. This principle should apply to 
every protected or nonprotected system resource. In the case of unprotected 
objects, the mediating component simply allows access without the need for 
checking entitlements. Applying this principle yields a consistent systemwide 
view of controlling access and raises assurance and confidence. This princi­
ple imposes the constraint of identifying every subject attempting to access 
an object (i.e., having to determine the context of access). 

Open Design 

The design for a security mechanism should not rely on secrecy or (as it is 
known) providing security by obscurity. Maintaining secrecy of a mechanism 
shields it from public scrutiny and criticism and simply delays uncovering its 
weaknesses. Hiding the weaknesses of a security mechanism cannot go on for 
an indefinite period of time. With the wide distribution of a product, sooner 
or later someone will arrive at reverse-engineering the processing logic 
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embedded in a software or hardware security module that is part of that 
product. The outcome may indeed signal the end of the product's protection 
mechanisms. It is better to have errors in a particular security mechanism 
uncovered in an open atmosphere of constructive criticism than to be taken 
advantage of by an attacker causing irreparable and costly damage. 

Least-Common Mechanism 

Minimize the amount of mechanism that is common to more than one user 
and depended on by all users [POPE74]. Shared mechanisms (such as sec­
ondary storage areas) or runtime memory blocks and structures (such as 
globally visible programming variables) all lead to potential information-
exposure paths. This principle contributes to establishing the confinement 
property and reduces the risks associated with leaking information. Shared 
program libraries are examples of potential information flow along covert 
channels and should be subject to extensive scrutiny. 

Fail-Safe Defaults 

This principle was first introduced by Glaser in 1965 [GLAS67]. It means 
that the default access permission to any object by any subject is lack of 
access. It is the protection policy being enforced that may explicitly grant 
access. Adopting a conservative design in which arguments on why objects 
should be accessible, rather than why they should not, increases the safety of 
the system. Systems that are deployed with default accesses granted are prone 
to breaches, particularly in environments where security is not the top con­
cern of users. Refusing access by default is safe and easily detectable. In the 
event a legitimate access is denied, an administrator can quickly correct the 
problem. On the contrary, a permitted access that is in violation of the secu­
rity policy can go undetected for a long period of time, perhaps until damage 
has taken place. One prominent example to cite in this regard is the default 
policy of accepting user passwords that have a minimum length requirement 
of zero. This enables the creation of accounts on a system without having to 
set passwords. Ironically, this is the behavior on some of the Windows systems 
from Microsoft. 

Separation of Privilege 

Access to objects including systems and network resources should depend on 
more than one condition being satisfied. This principle is more in line with 
adopting multiple defenses. It stems from the observation that was pointed 
out in 1973 by Roger Needham as noted in [SIM097] and that states that 
where feasible, a protection mechanism that requires two keys to unlock is 
more robust and flexible than one that allows access based on a single key. 
Coupling multiple defenses with the multiplicity of responsible entities yields 
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the separation of duty principle. Examples of uses of this principle include 
separation of duties in role-based access control and the multiple lines of 
defense firewalls protecting network perimeters. 

Least Privileges 

Every system user or program acting on behalf of a user should operate using 
the least set of privileges necessary to complete a designated task. Every priv­
ilege assigned to a subject should be relevant only to the processing being per­
formed. Extra privileges open the door for misuse and exploitation through 
human errors or malicious intents. This principle should be coupled with the 
fail-safe defaults principle denying access by default. 

Privacy Considerations 

Implementations should regard information of all protected entities as pri­
vate. As such, this information should be presented to other entities only 
when necessary. Minimize the amount of an entity's attributes that are 
exposed at all times. For instance, instead of presenting an entire user profile 
to a programming module, one should only expose specific user attributes as 
needed by that application. Other considerations that may not be directly 
related to user privacy (such as exposing system configuration, operating sys­
tem level, or host names) should be done only as necessary. The cumulative 
effect of such simple considerations may contribute a great deal to system 
security. 

Psychological Acceptability 

User interfaces to the security mechanisms used, whether through program­
ming or graphic means, must be easy to comprehend and exhibit the inviting 
characteristics for their use. Otherwise, users, particularly application devel­
opers, will shy away from including security in their designs. Although not 
functionally important, it is essential that human interfaces be designed for 
ease of use, making it routine for users to consider security processes. 



Chapter 2 

Introduction to Identity-Management 
Models 

Introduction 

The elements of security in computing begin with an identity. An identity is 
a computer representation of an active entity that can be physical (such as a 
human, a host system, or a network device) or can be a programming agent. 
Such an agent can be assigned a well-known system function (such as a run­
ning daemon) or a program delivering a business function on behalf of some 
entity. Modern systems adopt a fine level of identification sustainable even at 
the basic computing tasks and execution threads of an address space and 
may cross the boundaries of single computing systems with the advent of net­
work and distributed computing. 

The evolution of computing to automate more and more of the aspects 
of human interactions such as in business transactions led to the need of 
identity representation in computing that reflects that of real-life entities 
such as human beings. An identity therefore evolved from being simply an 
assigned identifier to an identifier that points to various attributes and enti­
tlements, collectively referred to as ?iprofile. Identity management has there­
fore emerged to address the issues surrounding the proliferation of identity 
profiles among various computing platforms within the boundaries of an 
enterprise and cross-enterprises and organizations to even the Internet. 
Foremost of these issues is the cross-referencing among profiles that repre­
sent the same identity as well as the synchronization of attributes among 
these profiles. 

We begin by providing a taxonomy of identity models that is based on the 
scope of an identity, the naming space in which it is uniquely known and used. 
We discuss the local identity scope, followed by the network and then the 
global scope. For each we present the benefits as well as the limitations. The 
global identity model is exemplified by the XNS approach, a novel method 
that holds the promise of an elegant Web identity-management model. Lastly, 
we discuss the emerging model of enterprise-level identity management as 
exemplified by the latest technologies. Without some level of assurance, an 
identity cannot stand by its own. After all, it is merely a representation of 

40 



Local Identity 41 

some active entity. In Chapter 3 we cover the foundations of identity trust and 
discuss various mechanisms that are currently available. 

Identity-management paradigms in computing have taken a natural course 
that is analogous to real-life practices to a great extent. An individual person 
initially has direct knowledge of some people that he or she can identify with. 
That individual further builds knowledge of other persons by directly com­
ing in contact with them or by way of introductions performed by existing 
acquaintances. The scope of individual identities varies from one person to 
another. An individual may be known only to his or her family, immediate 
neighbors, or a workplace; another person can be known throughout his or 
her locality or a much bigger geography; while some are known all over the 
globe. The scope of an identity in computing follows in a similar fashion. An 
identity can be known locally, known over a network of computing devices, 
or perhaps universally known. Knowledge of some entities can be direct, by 
way of a registration, or can be indirect, through some other brokering entity. 

An individual person can be associated with multiple digital identities in the 
same manner he or she can be known to other people through multiple nick­
names. Regardless of the number of identities one might be associated with, 
there is an increasing need in computing that all should unambiguously point 
to the same individual. Each such individual is uniquely identified by a set of 
attributes, commonly referred to as a profile and more recently a wallet. We 
divide the space of identity management along the scope in which an identity 
is known. We distinguish four classes of identity management that we list in 
the order of increasing scope as follows: 

• Local identity, 
• Network identity, 
• Federated identity, and 
• Global Web identity. 

Local Identity 

This paradigm evolved with centralized computing. A host system maintains 
and manages a local registry of identities (users). Computational units are all 
identifiable with identities locally known to the system. An external entity 
that wishes to use the system is required to acquire an identity for use with 
that system. The adopted namespace of identities is flat and is in reference to 
the local system. A newly added identity is expected to be unique with respect 
to the names already in the registry. Addition and revocation or removal of 
identities are discrete operations that do not side-effect other identities. 
Managed entitlements are associated with the privileges one might have over 
the local system resources. This model offers the advantage of simplicity. 
Capacity scaling and ih^flat name space are issues that it faces. Figure 2.1 
represents a high-level view of the local identity model. In A each system 
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emulators 

FIGURE 2.1 The local identity model 

maintains a separate user registry, while in B the registry is shared across mul­
tiple systems. Sharing of user registries is an attempt by the local identity 
model to alleviate the overhead of the host-centric identity management by 
registering users only once and allowing them to have access to multiple 
systems. 

Advantages of the Local-Identity Model 
Simplicity 

The simplicity of this model is mainly the result of the local scope of man­
aged identities and the flat naming space that is generally adopted. 
Establishing an identity is a simple local process that compares the credential 
presented by an entity to that stored in the host registry for the same entity. 



Local Identity 43 

The flat naming model lends itself to the adoption of flat data constructs 
with relatively simple structures. Identities are managed as discrete entities 
except for when they interleave through group memberships. The centralized 
identity attributes are easy to administer but remain meaningful only within 
the scope of the host system. 

Scalability 

Scalability has two dimensions: one is capacity and the other is performance. 
In the local identity model, the issue of capacity becomes apparent as the 
population of users and subsystems using or running on the system grows. 
The system has to store and manage identity information for every such 
entity. The paradigm is that of directly "knowing everyone." This pushes the 
limits and capability of the user registry and may result in a performance 
downgrade. User groups are not considered a remedy to the issue of capacity 
scaling as identities need to be discretely defined and managed irrespective of 
group memberships. 

Flat Name Space 

The flat name space generally adopted in the local identity-management 
model sets a limitation on the scope of an identity and results in name colli­
sions. The scope of an identity is confined to the host system in which it is 
defined. Name collisions will occur sooner or later as users select names that 
already represent other users in the system. The resolution to that usually 
comes in the form of names that are suggested by the system and that may 
not reflect the nature of a friendly name chosen by the user. Because an iden­
tity is known in reference to the system where it is defined, an identity can be 
used on multiple hosts without having to be associated with the same entity. 

Management Issues in the Local-Identity Model 

Each system is associated with its own local identity registry. Users, applica­
tions, and subsystem components need to maintain the credentials required 
for them to establish identity on each of the operating systems used. 
Passwords, the most prevalent method by which identities are established, are 
inherently associated with a number of issues. These issues are more appar­
ent and prevalent in the local-identity model. We discuss some of them below. 

Password and Attribute Synchronization 

The proliferation of passwords on various systems and applications naturally 
makes it difficult to keep track of them. Password synchronization is an alter­
native solution that mitigates this problem by having each user adopt a single 
password for all systems. A synchronization mechanism automatically com­
municates a password change or reset to the participating systems. Unlike 
single-sign-on (SSO) solutions, however, the user still has to explicitly use the 
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password for each system or application that requires it. Password synchro­
nization is a much easier approach than single sign-on and does not require 
drastic changes to an organization's existing infrastructure as might be the 
case with SSO mechanisms. Similarly keeping various user attributes syn­
chronized is a challenge in the local-identity model. Ultimately, synchroniz­
ing user attributes in this case tends to be a manual process which increases 
overhead and can be error prone. A communications means across registries 
of different systems is required to automatically synchronize passwords and 
user attributes across multiple systems in this case. 

One solution to this problem is for multiple systems to share a single user 
registry. This method dispels concerns over synchronizing user passwords 
and attributes. It may, however, lead to a performance problem due to the 
registry becoming a bottleneck. To alleviate this, the single registry can be 
replicated locally across the participating systems. 

Single Sign-On 

SSO further advances the state of art as represented by password synchro­
nization in that it lets a user establish his or her identity once. Thereafter, 
access to other applications and systems networked together becomes seam­
less as it alleviates the use from the burden of reauthenticating. Various SSO 
implementations have been developed. In homogeneous environments where 
a single authentication technology is used such as the case with Kerberos, 
SSO is automatically achieved. In the local-identity model with a stand-alone 
user registry, SSO is meaningful only across subsystems and applications 
deployed on the system such as database and transactional systems. The user 
authenticates once to the system; thereafter a security context is established 
and passed to different systems by the system runtime functions. 

Identity Provisioning 

This relates to the processes and procedures in use for the creation, revoca­
tion, and deletion as well as the maintenance of user accounts. This is an 
aspect common to all identity-management schemes, but it presents more 
overhead in the case of the local-identity model. This is because the effort of 
provisioning identities is proportionate to the number of systems used by an 
organization. Furthermore, related issues such as password reset and update 
tend to increase the cost of identity management. Centralized enterprisewide 
identity-provisioning tools are becoming the solution of choice to these 
issues. We discuss these later in the chapter. 

Example: IBM Resource Access-Control Facility 

The IBM Resource Access-Control Facility (RACF) providing security for 
the IBM MVS operating system family (recently evolved into z/OS) defines a 
user by way of creating a profile in its registry [IBMC02]. Information stored 
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TABLE 2.1 The main elements of the base segment in a RACF user profile. 
Attribute Description 

USERID Identifies the user 
NAME User's name 
OWNER Identity of the owner of this profile 
DFLTGRP User's default group 
AUTHORITY User's authority in the default group 
PASSWORD User's password information (one-way encrypted) 
REVOKE Date on which RACF prevents the user from accessing the system 
RESUME Date on which RACF lets the user regain access to the system 
WHEN Days of the week and hours of the day in which the user is allowed into 

the system 
SECLEVEL Security level of the user (used for mandatory access policy) 
SECLABEL Default security label associated with the user (used with for mandatory 

security policy) 
SPECIAL Gives the user the systemwide SPECIAL attribute 
AUDITOR Gives the user the systemwide AUDITOR attribute 
OPERATIONS Gives the user the systemwide OPERATIONS attribute 
CERTNAME Names of the profiles containing this user's certificates 
CERTLABL The labels for the certificate associated with this user 
CERTPUBKY The encoded public key of this user 
CERTSJDN User's distinguished name 

in each RACF user profile is organized in two blocks. The first is called the 
base segment, present in all such profiles, and contains the key security defi­
nitions for the user such as its identity, its credential (e.g., a password), as well 
as the level of the RACF authority assigned to the user in his or her default 
group. Table 2.1 illustrates the base segment in the RACF user profile. 

The second class of RACF user-profile information is optional and consists 
of a set of segments, each containing fields that define various attributes that 
can be associated with the user. These attributes have mostly evolved with the 
need of other subsystem components to maintain their own attributes about 
the user. This feature has allowed RACF to evolve over the years and adapt to 
the security requirements of newly developed subsystems and applications. 
Table 2.2 shows the segment of a user profile intended for use by the IBM's 
Customer Information Control System (CICS) terminal operators. 

TABLE 2.2 Elements of the RACF CICS segment in a user profile. 

Attribute Description 

OPCLASS Classes assigned to this operator to which basic mapping support (BMS) 
messages are to be routed 

OPIDENT Identification of the operator for use by BMS 
OPPRTY Priority of the operator 
TIMEOUT Time that the operator is allowed to be idle before being signed off 
XRFSOFF Indicates whether the operator is to be signed off by CICS when XRF 

takeover occurs 
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A new user profile is defined by using the ADDUSER command. Thereafter 
attributes are added, removed, or updated using the ALTUSER command. 

Network Identity 

The advent of distributed computing has led to the emergence of the net­
work-identity concept. The idea is simple but has far-reaching implications. 
An identity is authenticated to a network of computing nodes rather than 
to a single hosting system. Once an identity is established in this fashion, it 
navigates through the participating network nodes requesting services and 
accessing resources without having to explicitly engage in further identity 
establishment. The scope of an identity is no longer confined to a single 
system; instead, it is bounded by the network in which it is defined. To 
achieve this extended scope, identity services have evolved into network 
components. 

The extent of the network in which an identity is defined generally remains 
limited to a single enterprise. Advances in network identity, however, have led 
to the ability of establishing cross-enterprise network identities. In some 
cases, this has resulted in tightly coupled interenterprise links (such as with 
cross-domain Kerberos implementations), while in other cases, interdomain 
identities are established via loosely connected enterprises (such as with 
cross-certification provided by public key infrastructures). We discuss these 
topics in further detail later in this chapter. The characterizing factor of net­
work identity remains its confinement in scope regardless of the number of 
participating domains. Figure 2.2 represents a high-level view of a network 
identity. In A the identity is confined to a single domain, while in B an iden­
tity is used throughout two domains. 

Federated Identity 

Foundations of Federated Identity 

The tQrm federation has been used in the literature with varying semantics. 
Indeed, it conveys a generic sense of flexibility and perhaps speaks of the 
activities of a loosely coupled set of cooperating entities. In the Internet 
domain name services (DNS), for instance, the federation reflects the dele­
gation of authorities among a hierarchical tree of name servers. The effect 
of such delegation is the decentralization of name-to-address resolution, the 
core function of DNS. In the electronic business, a federation can represent 
a relationship between two or more organizations where each has its own 
computing infrastructure. The federation manifests itself at the identity level 
by the mechanisms used to allow one participant organization to directly 
provide services to entities registered at another organization member of the 
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FIGURE 2.2 A High level view of network identity 

underlying federation. The result is that each of the participants in a feder­
ation will have achieved an extension of the space of identities operating 
under its premises w îthout having to manage the entirety of this space of 
identities. 

Cross-organizational trust is the foundation of federated identity. The feder­
ation is accomplished by the means through which an organization is capable 
of acquiring the necessary information about a foreign entity that wishes to 
access one of its services. Furthermore, identity information about a foreign 
user is acquired from the home organization in a secure and trusted fashion. 
This process is achieved with full transparency to the users and applications 
crossing organizational boundaries. The end user remains unaware of such 
cross-domain activities taking place. 

An end user does not need to register with foreign organizations, nor does 
he or she need to directly engage in an authentication process with an entity 
other than the home organization. Under the covers of the federation, attrib­
utes of an entity that is established at its home organization are communi­
cated to foreign organizations. User attributes exchanged over a federation 
may ultimately be required to adhere to a common representation syntax and 
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semantics. This requirement represents one of the major hurdles addressed in 
forming federations. Furthermore, the lack of a universal set of attributes 
that can be associated with an identity and be consistently interpreted by 
every organization is a hindrance to accomplishing federated identity. 

While a user profile registered to his or her home organization may be con­
tain all attributes necessary to request services from that organization, other 
attributes may be missing from that profile when services are requested from 
another organization. One approach that can be used to address this problem 
is to confine the definition of various profile attributes to third-party organ­
izations that are the source of those attributes. For instance, the definition for 
credit information can be the responsibility of banking and financial institu­
tions, while the definition for attributes that are universally common to every 
entity (such as identification name, address, and contact information) can be 
agreed on by a much wider forum that is open to participation from every 
organization. The model adopted here is to leave data definitions to the con­
cerned organizations only. The use of XML as a means of defining such data 
elements can ease interoperability and lead to a speedy acceptance of those 
definitions across organizations. 

The security mechanisms by which trust can be established and maintained 
across organizations are at the core of an identity federation. Although these 
mechanisms may differ in the way in which trust is computed and verified, 
standard mechanisms implemented at the higher level are key to joining var­
ious trust models under a unified federated scheme. In that respect, the 
advent XML-based component technologies such as the security-assertion 
markup language (SAML) is expected to raise identity federation to an 
unprecedented level. 

A pure identity federation allows an entity to be profiled and registered 
only once, generally at its home organization. The scope of that identity, 
however, ends up spanning multiple domains participating in the federation. 
A generalized and a more practical federation approach allows a user to reg­
ister at multiple organizations, yet accomplishes a single logical view of all 
such registrations if so desired by that user, the owner of the identity. Such is 
the case with the XNS infrastructure that we discuss below. With XNS iden­
tity, federation is defined as the distributed resolution of names and IDs 
across a decentralized network of identity servers and clients. The novel con­
cept of addressable identities in XNS forms the foundation on which federa­
tion is based. Identity cross-referencing and linking in XNS enables users to 
participate in a logical federated web that is defined and controlled at the 
identity level. Synchronization of attributes in this federation is transparent 
and automatic. Control in XNS federations is brought to the level of an 
entity rather than the traditional confinement of such controls to participat­
ing organizations. 

Figure 2.3 illustrates the high-level concept of identity federation. The dif­
ferent shapes representing organizations illustrate the fact that each partici­
pant organization manages its own model of identity that may or may not be 
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FIGURE 2.3 A high-level illustration of the concept of federated identity 

the same model used in other members of the federation. The links between 
each two organizations represent an established trust that is securely verifiable. 

Federation Topologies 

Federated identity can be accomplished through various ways. Recall that the 
characterizing aspect of a federation is the fact that end entities undergo a 
single registration process. In the event that such registration is performed 
more than once (i.e., at different participating organizations), complete 
redundancy of profile attributes for the underlying entity should be avoided. 
Otherwise, the semantics of the federation become questionable. The differ­
ences among various federation topologies can be related to many factors. 
Most important is the way trust among the federation members is established 
and the model used to store, maintain, and manage profile attributes. One 
other differentiating factor is the level of scalability that the topology affords. 
After all, there is an implicit thinking that any federated identity scheme 
automatically implies the requirement for a reasonable level of scale. 

In the following, we discuss a few possible federation topologies that we 
categorize based on the method of by which entity profiles are registered and 
managed. In all these cases, the concept of the home organization of an 
entity is maintained. 
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Local Profiling 

In this scheme, each end entity is registered within the identity infi-astructure 
of its home organization. Profile attributes of an entity are fully maintained 
and managed by the local organization. Attributes can expand and contract 
based on the privileges, roles, and entitlements of the end entity. All other 
member organizations are unaware of such registration except for when a 
service request crosses organization boundaries, at which time the underlying 
identity attributes are exchanged underneath the trust relationship defined by 
the federation. As we already have mentioned, this model becomes better 
suited for implementation when data elements for profile attributes are well 
defined and understood by the member organizations. Parties that are most 
concerned with the underlying attributes are the best candidates for defining 
standard attributes. 

Distributed Profiling 

In this topology, an end entity begins with a registration within its home 
organization. As the need arises, the entity may further expand and hence 
acquires new profiles at other member organizations. One reason for having 
additional registrations is the need for new attributes that are specific to a 
particular organization. In a sense, the definitions for an entity's profile 
become distributed across multiple organizations. As a consequence, defini­
tions for the same profile attributes may be duplicated, and thus attribute 
synchronization may become an issue. This scheme offers the advantage of 
flexibility and somewhat leads to separation of concerns when it comes to 
managing user attributes among organizations. 

Profiling by a Third Party 

In this scheme, a designated third party within the established federation is 
tasked with brokering the management of end entity profiles. Member 
organizations are thus entirely alleviated from this task. The third party 
may distinguish among profile information that is common to all or to a 
subset of the member organizations as well as those that are pertinent to 
specific ones. This scheme offers the advantage of having to manage trust 
establishment with the third party only. Attribute synchronization problem 
will be limited to the confines of the single third party where specific orga­
nizational information may be duplicated for two or more target organiza­
tions. One disadvantage can be the issue of scalability as more and more 
member organizations may contend over the single third party for the 
retrieval and update of profile information. The replication of the third 
party may be needed to relieve such a problem. When that happens, the 
replicas are required to be kept synchronized. 
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Global Web Identity 

The need for a global identity seems to be driven in large part by the emer­
gence and the viability of the World Wide Web as a computing platform. 
A Web identity is one that is uniquely known throughout the Internet Web. 
Like an Internet resource that is identifiable via its universal resource identi­
fier (URI) [BERN98], a Web identity exists in the global context of the 
Internet. Every Web identity stands alone to represent the entity that owns it 
in the same way a Web URI represents the physical resource behind it. Unlike 
Internet identifiable resources that represent objects that remain locally man­
aged by an enterprise's computing domain, Web identity information is capa­
ble of being uniquely resolved to one entity and being recognized and used 
locally as well as by other Web nodes. 

Identity Mapping and Synchronization 

The ushering of the Web computing era is increasingly accepted due in large 
part to the fact that it builds on existing computing infrastructures. The 
advent of global Web identity mechanisms should not represent an excep­
tion. It needs to exploit the identity-management services that have been in 
deployment and existed for so long. These services are generally based either 
on local or network identity registries. For that to happen, a unified Web 
identity requires a mapping to various identity registries in which it exists. 
The single Web identity would allow navigating the myriad of Web services 
that ultimately may be deployed over the World Wide Web in a seamless 
fashion and a great deal of transparency to end users. A number of identity-
management technologies that provide this seamless navigation experience 
exist today. Among them are metadirectories and affiliate networks. 

MetaDirectories 

The metadirectory approach bridges disparate domains by exposing the user's 
identity to a higher level while retaining its relationship to various participat­
ing enterprise networks in which the identity is known. The relationships of 
the global identity to the corresponding enterprise-level identities are formed 
by the links binding metadirectory information to the directories of the par­
ticipating organizations. Common user attributes are maintained by the 
metadirectory. Updating these attributes is centrally done, and synchroniza­
tion is performed automatically. For example, a large organization that main­
tains information about its users in multiple directories (each is perhaps being 
used by a different application) can join them via a single metadirectory, thus 
enabling seamless sharing and maintenance of identity information. Figure 2.4 
represents the operation of joining multiple directories using a single metadi­
rectory. The metadirectory on the left joins multiple directories of the same 
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FIGURE 2.4 Joining multiple directories via a metadirectory 

organization, while the one on the right joins multiple directories across dif­
ferent organizations. 

The key drawback of this approach is that it cannot scale to the extent to 
which it can accommodate a potentially large number of worldwide identity 
domains. Figure 2.5 illustrates the concept of identity mapping from global 
to local using the metadirectory approach. 

Affiliate Networks (Virtual Directories) 

Affiliate networks, also called virtual directories, participate in a tightly cou­
pled structure by directly mapping an identity defined in one directory onto 

Global metadirectory 

Enterpilse nefeft̂ ork 

FIGURE 2.5 Mapping entities via a metadirectory 
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a corresponding identity in another enterprise directory. The main difference 
between this mapping approach and that enabled by metadirectories is that 
here the mapping is achieved without actually having to create an additional 
"join" in directory. This approach has a better scalability property over 
metadirectories in that the mappings are discretely distributed over the par­
ticipating directories. Mapping users across all directories, however, creates 
management complexities associated with the «-wise mapping problem. 
Updating user-identity information requires updating n directories. Figure 2.6 
depicts the three-way identity-mapping problem presented by the affiliate 
networks architecture. 

Mapping an identity is not simply about associating names from one 
name space to another. Most important, the mapping appHes to the attrib­
utes associated with an identity. Updates to such attributes in one directory 
may require synchronization across multiple directories. Synchronization, if 
not completely automated, increases administrative complexity, requires 
establishing cryptographically secure channels, and can be prone to errors. 
Directory-attribute synchronization is supported through extensions to the 
lightweight directory-access protocol (LDAP) [HOWE03] as well as the 

Sfit^ipHs^ Rework 
directory 

Ent0r|>rise weiwor k 

Efite^prjsemtwork Enterprise network 
dfreclofy 

Attribute A 

Attribute B 
-^ 

— • 
Attribute E 

Attribute F 

FIGURE 2.6 Joining multiple directories via affiliate networks 



54 2. Introduction to Identity-Management Models 

XML-based directory-interchange standards, such as the directory-services 
markup language (DSML). 

Dynamic Scoping of a Security Context 

A global identity that is navigating the Web should be encapsulated behind a 
security context that is reliably established and verified and cannot be forged. 
The security context carries with it attributes of the identity it represents, gen­
erally containing a subset of the user's profile. Exposing a user's attributes 
over the Web requires stringent security measures. A host of issues are relevant 
here, at the top of which are privacy concerns such as the Web transactional 
pattern or the medical attributes of an individual, identity impersonation, and 
theft of sensitive attributes such as a credit-card number or bank accounts. 
The user should be provided with the power to disseminate his or her digital 
profile information on a discretionary basis. This allows the user to maintain 
control over the propagation of his or her attributes to visited Web services. 
The Web security context, therefore, should allow for dynamic changes under 
the controls of the user and should be capable of expanding and contracting. 
Confinement or simply preventing information leakage of the user's attributes 
at the serving Web sites remains a major security concern that is compounded 
by the nature of the Web and the unlimited number of services that can all 
seamlessly cooperate in delivering a single end-user service request. The paths 
involved in such a request can be unbounded. 

The XNS Approach to the Global Web Identity 

Current technologies used to solve the issues surrounding Web identity as we 
noted are not addressing the problem from the basic infrastructure perspec­
tive. They are, instead, component solutions that do not form an integrated 
infrastructure. Existing identity-management components in many ways are 
being retrofitted to solve a new problem—that of the global Web identity. 
Development in Web-identity infrastructure is considered yet at its infancy. 
A promising novel approach is one being undertaken by the XNS Public 
Trust Organization (XNSORG), which is developing an infrastructure speci­
fication referred to as the extensible name service (XNS) protocol for a Web 
identity [XNSO02]. 

XNS is an XML-based protocol for identifying and linking together iden­
tities that participate in a Web transaction. It is intended by its designers to 
provide a flexible and interoperable method for establishing and maintaining 
persistent digital identities and the relationships between them. The protocol 
provides services for registering and resolving identities in a way similar to 
resolving addresses. It defines the elements of managing identity documents, 
conducting and protecting identity transactions, and linking and synchroniz­
ing identity attributes. XNS adopts XML-based technologies such as the 
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XML schema [W3CO01a, W3CO01b, W3C099] and the Web services 
[W3CO02a] in defining its constructs and services. As such, it is designed to 
be platform-independent and extensible. XNS also builds on emerging XML 
security standards such as XML signatures [W3CO02b], XML encryption 
[W3CO02c] and the security assertion markup language (SAML) to protect 
identity documents and assert credentials and entitlements exchanged during 
Web transactions [OASI02]. 

The approach followed in the architecture of XNS is based on abstracting 
the user identity to a new logical level, that of the Web identity with a global 
scope. The architecture of XNS is inspired to a great extent from the Web 
architecture itself and in particular the design of the Internet domain-name 
service (DNS). The novel aspect of the World Wide Web as we know it is its 
elevation of enterprise data to a logical representation layer that can be 
accessed via a universal client tool (the Browser), using a ubiquitous proto­
col (HTTP), and formatted in a standard markup language (HTML). Most 
important, this logical layer forms a global Web that links related content 
with an unprecedented level of location transparency, ease of use, and seam­
less navigation experience. The designers of XNS have developed a parallel to 
that with respect to identity. Figure 2.7 illustrates the analogy between the 
Web architecture and the approach undertaken by XNS. 

Two elements are key contributors to the level reached by the Internet Web 
today: 

• The domain name service (DNS) that weaves interconnected systems 
together and enables the seamless navigation of Internet hosts and 
computing devices, and 

• The mechanisms by which documents are linked through references to 
a universal addressing scheme. 

Indeed, the XNS design appears to be entirely inspired from these two 
aspects of the Internet. We begin by first taking a quick tour of DNS which 
in itself provides an unprecedented global naming scheme that is hierarchical 
in structure. 

Elements of DNS 

DNS, defined in RFC 1034 [MOCK87a] and RFC 1035 [MOCK87b], has 
grown to become one of the most successful distributed systems for naming 
Internet hosts and resources and performing name resolution to correspon­
ding Internet protocol (IP) addresses. DNS components define a hierarchy of 
services structured in an inverted tree. Each node in the tree is concerned with 
a particular naming subspace also referred to as a domain name. The latter 
consists of an ordered set of labels (symbolic names); each is associated with 
a subordinate node. This ordered set begins at a leaf node and follows up 
through a path leading to the root node (one with a null label). Labels are 
delimited using the dot character (.). By convention, the labels that compose 
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a domain name are printed or read left to right, from the most specific (far­
thest from the root) to the least specific (closest to the root). In the example 
shown in Figure 2.8, the root domain has three subdomains—EDU, MIL, 
and ORG. The RPI.EDU domain has one immediate subdomain called 
CS.RPI.EDU. 
DNS makes use of two key components: 

• Name servers Maintain the mapping information about an entire 
domain tree or a particular subtree representing a subset of a domain 
naming space. In the latter case, a name server also maintains pointers 
to other name servers that can lead to resolving domain mapping infor­
mation from any part of the domain tree. A name server is said to be 
the authority over the subspace it maintains. Authoritative information 

http://RPI.EDU
http://CS.RPI.EDU
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FIGURE 2.8 An instance of the DNS naming space 

is organized into units called zones. 
Resolvers These are agents residing at the edges of the network and are 
directly invoked by application programs. They represent the client side 
of DNS. The purpose is to initiate the process of resolving a symbolic 
domain name into its IP address. Resolvers are configured to access at 
least one name server and use that name server's information to answer 
a mapping query directly or further pursue the query using referrals to 
other federated name servers authoritative over the entire name or a 
portion of it until the name is finally resolved. 

Figure 2.9 depicts the layered structure represented by DNS. For an end 
user, a name resolution consists of an interaction with the local resolver, 
while to a resolver the interaction may lead to one or more remote name 
servers. Each name server is an authority over its own particular zone. The 
database of names operated by each server is basically a flat-file data store in 
which the primary key is the domain name and the main values maintained 
are the IP addresses forming the mapping from Internet domain and host 
names to corresponding IP addresses. The power of DNS stems from the fed­
eration formed by the participating name servers worldwide, each operating 
on its own local data store. As we know, the sum of these basic elements gave 
rise to one of the most reliable computing infrastructures known to date. We 
take it for granted every time we navigate the Internet, send an email, or 
browse the Web. 

Three concepts are worth pointing out at this juncture: First, the unique­
ness of an absolute IP address in representing a physical host or a network 
device at some location; second, the presence of a hosted resource, such as a 
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file or a service that can be reference relative to its globally addressable host­
ing system; and third, the user level addressing of hosts and network 
resources with semantic names in the form of domain and host names. XNS 
draws from these elements of DNS and the globally addressable Web 
resources (URIs) to bring identities to an unprecedented level of globally 
addressable entities. 

The invention of the TCP/IP protocol suite as we know it led to the 
abstraction of disparate networks into a logically single global network, the 
Internet. DNS, although not an absolute necessity for the Internet to func­
tion, presents an immense value to the Internet-based protocols such as 
Telnet, SMTP, and HTTP. It enabled programmers to use human-friendly 
names to identify Internet endpoints, rather than the physical addresses as 
represented by the IP numbers. Figure 2.10 shows a higher level of abstract­
ing IP addresses when DNS is present between the TCP/IP layer and appli­
cations. DNS provides the following benefits: 

• Network endpoints are abstracted into location-transparent names. 
Addressing network entities in distributed applications therefore 
remains unaffected by changes in the physical address of an endpoint. 

• Multiple names can be used to identify the same network endpoint if 
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FIGURE 2.10 DNS brokering of 
network endpoints addresses 

Higher level application protocols 
(e.g., Telnet, SMTP, HTTP) 

TCP/IP 

SO desired. Such names ultimately will all resolve to the same target 
endpoint without ambiguity. 

• Semantic names represented as domain or host names appear to be 
locally scoped, yet become global when translated through DNS. 

Elements of XNS 

From a higher-level perspective, the network architecture of XNS appears to 
be similar to DNS. Like DNS, XNS data-store is distributed across globally 
federated identity servers. Unlike DNS, however, the paradigm of interactions 
among XNS entities is peer-to-peer. In DNS the flow of execution is unidi­
rectional in that at the lowest level an application invokes a l*esolver, which 
invokes its authoritative name server. The name servers are, in turn, federated 
in a way that requests are initiated by lower authoritative servers to higher 
ones. The separation between clients and servers is clearly defined in DNS. 
The peer-to-peer nature of XNS draws no distinction in the interaction 
between identity clients referred to as identity agents and identity servers. In 
XNS all requests are answered by identity agents that run on either a client or 
a server machine. The peer-to-peer aspect of XNS is a key defining character­
istic of its Web identity architecture. Figure 2.11 illustrates the peer-to-peer 
relationships among XNS entities. The architecture of XNS is characterized 
by the following elements: 

• Identity is the addressable unit or resource. This may be considered the 
key contribution from the XNS designers. The innovative aspect of 
XNS evolves around the view of an identity as an addressable entity 
like any other network resource. Identities are profiled and represented 
by identity documents, which are XML documents containing instances 
of XNS defined data types describing attributes associated with an 
identity. 

• Peer-to-peer relationships exist across identity agents and servers. The 
liberating nature of peer-to-peer computing is brought to the Web 
identity, thereby increasing the level of flexibility, independence and 
reliability. Identity agents are the entities operating on identity docu-
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ments via a set of Web services defined by the XNS infrastructure. 
Each identity document is associated with an identity agent responsi­
ble for it. 

• The presence of a discovery service allows agents to dynamically dis­
cover and invoke the services available from each other. By way of 
adopting XML as a mechanism for describing its constructs, XNS is 
self-defining. XNS service specifications are published as XNS identity 
documents capable of being discovered, versioned, published, sub­
scribed to, and linked in the same way identity documents are. 

The advent of TCP/IP followed by the high-level common application pro­
tocols such as SMTP and FTP is analogous to the newly emerging layer of the 
Internet infrastructure as represented by the exchange of XML-structured data 
objects via the simple-object access protocol (SOAP) [W3CO00]. This new 
abstraction layer promises to bring the composition of service elements to the 
same level reached by composing functional elements as we came to be famil­
iar with in modern programming languages. The depth of such compositions 
can be unbounded and involving a large number of logical endpoints referred 
to as actors. Concern over the security of seamless combinations and compo­
sitions of actors involved in SOAP interactions has resulted in an ever greater 
need for the secure attachments of identities to various service elements. We 
refer to this as the Web global security context. With a striking resemblance to 
DNS, XNS is presented by its designers as the global identity layer of the 
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emerging Web services computing model. Figure 2.12 illustrates the position­
ing of the XNS layer with respect to Web services. 

XNS Identity Types 

XNS recognizes three types of physical entities that can be associated with 
identities. These entities are referred to as identity controllers in XNS; some­
times they are also called identity owners, 

• Persons Identities assigned to individuals {personal identity). 
• Organizations Also called business identities. 
• The general public This extends the space of entities in XNS beyond 

just persons and organizations. Objects such as planets and various 
Web resources can also be assigned XNS identities. General identities 
are controlled not by persons or organizations, but rather by linguistic, 
cultural, or scientific conventions and remain under the auspices of 
XNSORG. This is somewhat a departure from the traditional meaning 
of an identity in computing. XNS identities extend beyond the realm 
of active entities such as end users and programmable agents. 

Each of these three entities can be represented by one or more XNS iden­
tities. An XNS identity is not one-to-one with its controller or in general 
terms the entity with which it is associated. Nevertheless, XNS is capable of 
maintaining the relationships across multiple identities of the same principal 
in a way that results in a single logical identity. We discuss this in further 
detail below. 

The XNS Identity Document 

Identity information traditionally referred to as a user account is encapsu­
lated by an identity document that maintains various elements profiling an 
entity including a set of associated attributes. These attributes or, in generic 
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TABLE 2.3 Abstraction of an identity in XNS. 

Data Element Description 

Identity Type Determines the classification of an identity which can be a person, 
organization, or general. 

Memberships A list of XNS groups to which this identity belongs. 
PublicKey The certified public key bound to this identity. 
Types A Hst of various XNS-typed objects containing attributes associated with 

this identity, links to other identities, contracts and so forth. 

terms, XNS objects are expressed using data types that are defined in XML. 
XNS as such operates on a distributed database of identity documents. Each 
document is a highly structured object that contains the abstracted XNS data 
types described in Table 2.3, a generic instance of which is illustrated in 
Figure 2.13. 

IDs and Names in XNS 

An XNS identity (ID) is a logical abstraction of a semantic identity referred 
to as an XNS name and also called a named URI. An ID is invariant as 
opposed to the attributes of XNS names with which it may be associated. 
Once an ID is generated, it remains unchanged, persists, and is globally 
unique, while a name generally has a fixed lifetime, a fixed scope, and 
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context. XNS names are mutable semantic identifiers that are unique only 
within a particular name space. IDs are assigned once and never reissued. 
When a named entity is terminated, its ID is retired. The requirement for 
an XNS ID to persist is satisfied by the ID service generating and handling 
a globally addressable construct in the form of a uniform resource name 
(URN) [MOAT97]. 

Links across identities are based on XNS IDs and not named URIs. XNS 
supports moving identities to new hosting environments without breaking 
the links. Figure 2.14 illustrates the concept of identity abstraction in XNS. 
Names are handled by the name server, while IDs are handled by the ID 
server of XNS. A name is linked to an existing ID when it is first registered 
with the name server. Releasing a name results in removing the link to the 
corresponding ID. 

XNS Resolvers 

As we have noted the association between XNS IDs and names is one-to-
many. The ID service and the name service of XNS are capable of resolv­
ing an ID to a name and a name to its identity address, respectively. An ID 
is resolved to the named URIs with which it is associated. These URIs are 
used to channel communication to the identity hosted at a network end-
point. It is worth noting that the addressability of an XNS identity is what 
brings identity management in XNS to a logical layer analogous to content 
in the World Wide Web. A hosting endpoint provides XNS hosting service 
to other identities defined at the same network endpoint. A hosting end-
point is associated with a host identity document that specifies among 
other things a list of transport protocols over which the host accepts XNS 
communications. The host forms the backbone of the community that it 
serves. Identity URIs are scoped by the identity of the system in which they 
are hosted. Figure 2.15 depicts the layering of XNS components involved 
in resolving identities. 

XNS ID 

FIGURE 2.14 Abstracting semantic identities in XNS 
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FIGURE 2.15 Resolving identities in XNS 

Cross-Referencing XNS Identities 

An entity such as a person may be associated with multiple XNS identities; 
each identifies the person to a particular domain of operations such as an 
organization, a community or a particular business. The proliferation of mul­
tiple identities per physical entity such as an individual person, although 
comes vŝ ith all the complexities of identity management, it has become a 
common practice in computing. XNS builds on such existing identity para­
digms and practices only to further enhance them. Multiple-identity docu­
ments ov^ned by the same entity logically represent a single entity and thus 
generally contain common profiling information such as a person's name, 
home address, telephone number, and physical attributes. XNS allov ŝ iden­
tity documents controlled by an individual entity to be cross-referenced so 
that a logical equivalence is established across such documents. Any XNS 
object in an identity document can be cross-referenced with another 
XNS object in a different identity document anywhere in the XNS network, 
including an entire identity document. Shared attributes can thus be recog­
nized across multiple hosting communities and can be seamlessly synchro­
nized. This behavior is provided subject to the discretion of the identity 
controller. A person, for instance, may prefer to maintain separation across 
multiple profiles he or she owns, thereby remaining anonymous or pseudon­
ymous. XNS cross-referencing is expected to dramatically simplify user pro­
file management, and authentication and leads to a reliable capability of SSO 
in particular. Figure 2.16 illustrates identity cross-referencing in XNS. 
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FIGURE 2.16 Cross-referencing XNS identities 

Forming Trust Relationships in XNS 
Access to identity attributes can be exposed to the public in general or can be 
constrained based on a policy adopted by the holder of the identity. The flow 
of identity attributes is a key enabling aspect of electronic commerce and 
transactions over the Web. Concern over privacy is a major issue that arises 
with the dissemination of user profile information. XNS takes a novel step in 
exposing identities over the Web. Support for privacy and protection of iden­
tity attributes transacted over the Web is fundamental to XNS. Transacting 
over such attributes is performed under the mutual consent and agreement of 
the parties involved using a negotiation service that is currently being speci­
fied in the XNS protocol. 

XNS defines the trust relationships among its managed identities via con­
tract links that can be embedded within identity documents. A contract is a 
uniquely identified construct that governs the exchange of attributes with 
some other addressable identity on the XNS Web. It specifies what data is to 
be exchanged, the protection mechanisms to be used for the exchange, and 
any policies that govern the automatic propagation of those attributes for 
synchronization purposes. 

Although confinement of data to the trusted entities remains an issue that 
in the end simply falls in real-world trust among entities. Trust relationships 
that can be defined in an XNS Web are unbounded. The ability for expand­
ing such relationships and their peer-to-peer aspect is a powerful concept 
underlying XNS. Figure 2.17 is a representation of the discrete dissemination 
of identity attributes in XNS. 



66 2. Introduction to Identity-Management Models 

Identity A 

Attribute 1 

Attribute 2 

Attribute 3 

Attribute 4 

Contract: Address of an XNS 
object that governs this link. 

ID: Persistent identifier of this 
linl<. 

Identity: Address of the identity 
containing an XNS object to 
which this object is linl<ed. 

LastUpdate: Date this linl< was 
last updated. 

Name: Name of this link. l\/lust be 
unique within the namespace 
within which this link object is 
contained. 

7 
FIGURE 2.17 Identity linking and attribute dissemination in XNS networks 

XNS Services 
The XNS 1.0 infrastructure specifies a set of component services designed 
according to the paradigm of self-describing Web services. These services are 
organized along four major functions: 

• JJKN services The URN services are at the core of XNS. They represent 
the novel concept of addressable identities and weave the identity web 
comprised of network actors in the same way DNS weaves network end-
points together. The major aspect here is the separation of semantic 
identifiers, (names) from persistent abstract constructs (IDs) [MOAT97]. 

• Attribute-management services This service manages entity profiles as 
represented by collections of attributes expressed in terms of various 
XNS basic data types. 
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Exchange and linking services These services allow the secure dissemi­
nation of attributes across identity controllers. Currently a negotiation 
service is specified for XNS entities to establish identity transaction 
contracts. An introduction service is expected to be developed also. This 
service permits an identity linked to two other identities to introduce 
those two entities to one another and thus result in a new direct link­
ing relationship. 
Credential management services These services allow identity establish­
ment, secure communication of credentials, and the management of 
secure associations (sessions). 

Centralized Enterprise-Level Identity Management 

Administration of identity-management processes is an important factor in 
controlling the cost of computing in large enterprises. Typically, the comput­
ing infrastructure of such an enterprise is composed of various resources dis­
tributed over a local or a wide-area network. These resources may include 
nodes of different operating-system platforms, a large number of application 
subsystems such as data-base systems and human resources repositories, Web 
application servers, directories, and possibly business applications that require 
managing user subscriptions. Such might be the case in a utility computing 
infrastructure providing services on demand. Each of these subsystems typi­
cally has its own identity registry. Managing each such registry separately 
inhibits scalability as it can easily introduce errors, and inconsistencies and 
may become very costly. Over a period of time, the growth of the computing 
resources will undoubtedly increase the complexity of managing the enter­
prise identity systems and may lead to loss of control when a large user pop­
ulation and a myriad of systems are in use. 

Centralized identity management is an appealing solution to large enter­
prises. It is likely to reduce management costs and most important will enforce 
an element of control within the enterprise. It enables a single view of the mul­
titude of systems in the enterprise, provides a consistent interface to all these 
systems, and unifies identity-management processes. The emerging model of 
centralized identity management defines a centralized layer that sits on top of 
existing systems, thereby enabling a common perspective to all managed sys­
tems. Figure 2.18 shows a high-level illustration of the centralized identity-
management model. The different shapes showing managed systems represent 
the heterogeneity of systems that can be managed. The organizational struc­
ture of an enterprise is defined in the identity manager and managed objects 
such as suborganizations and end users are all defined at this layer. User access 
to a target managed service is represented by an account for that service. An 
end entity such as a person is in a one-to-many relationship with the set of 
available accounts. Attribute synchronization across various accounts of a sin­
gle entity may be performed automatically if so desired. 
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FIGURE 2.18 A high-level view of centralized identity management in the enterprise 

Based on the data model adopted, v̂ e distinguish among tŵ o schemes of 
centralized identity management systems. We refer to the first one as the uni­
fied representation of identity and the second one as the decoupled identity 
representation scheme. But first we elaborate on tvv̂ o major benefits of a cen­
tralized identity-management system. 

Synchronizing Identity Attributes 

The side effect from updating attributes of a given entity at the level of the 
central identity manager may result in propagating the change to all or a 
subset of accounts associated with that identity on the managed systems. 
An example would be the synchronization of a security credential such as a 
password or a public key certificate on all systems and services in which the 
entity possesses an account. Attribute synchronization can be subject to 
various policies that may govern the underlying attribute. A password pol­
icy, for instance, may have different variations on each of the managed sys­
tems. In the event an attribute obeys different rules, it is treated differently 
on each of the managed systems, even when semantically it represents the 
same construct. 

While a centralized identity manager may be mostly concerned with 
attributes being updated centrally and then pushed down to the managed 
services, updates that are initiated at the target services need to be accom­
modated as well. For instance, an individual that performs a password 
change while directly interacting with a managed UNIX system may result 
in the update propagated to other managed systems, including the central 
identity manager. 
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Policy-Based Identity Provisioning 

Automation of account provisioning on the managed services and systems is 
an important element of reducing cost in enterprisew^ide identity manage­
ment. Once an entity such as a user is defined to the central identity manager, 
it is likely that the same entity will require creation of accounts on one or 
more of the managed services and systems. Policy-based account provision­
ing refers to setting up provisioning policies to perform this automation 
process. Such policies can be based on various conditions such as role, posi­
tion within the organization, or possession of a particular attribute. They 
should be easy to develop, be flexible enough, and allow for coarse and fine 
granularity. For example, a coarse policy may state that all users in a partic­
ular organization will automatically have accounts on a designated managed 
service. A finer policy may state that such accounts be created only to indi­
viduals with a particular job function. 

Unified Identity-Representation Scheme 

In this scheme, the centralized identity manager defines and maintains a 
superset of attributes that can be assigned to a managed entity such as an end 
user (Figure 2.19). Managed target services contribute to this overall super­
set of attributes by introducing attributes of their own. A managed service 
therefore may be aware of only a subset of the overall attributes. A record 
with the full set of attributes is maintained for each managed entity by the 
central identity manager. Some attributes in this record may not necessarily 
have values assigned to them. For example, a user that does not have an 
account on a particular service will not require values for any of the attributes 
that are specific to that service. A mapping may be needed to relate an attrib­
ute defined by the central identity manager to the corresponding attribute on 
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FIGURE 2.19 Attribute relationships between the central identity manager and the 
managed services in the case of the unified identity-representation scheme 
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a managed service. This definition would take place during the process of 
defining the managed service to the identity manager. Multivalued attributes 
are used to maintain the fact that the same attribute is assigned different 
values depending on the target service in which the entity has an account. 
For example, due to conflicting identity policies, a user identifier (uid) may 
be required to have different values on each target service where an entity 
maintains an account. 

This scheme offers the benefit of maintaining all identity data in one cen­
tral repository in addition to the fact that data is replicated piecewise across 
the managed services. Attribute retrieval operations therefore can be 
processed at the identity manger layer and do not require involving the man­
aged services. 

The drawback of the unified-identity-representation scheme is that it does 
not easily allow for dynamic changes to the schema representing the unified 
identity. Such changes can be easily introduced when a managed service 
defines attributes of its own and they are not already known to the identity 
manager layer. The change in the identity schema as such may require recon­
figuring the identity-management system. Furthermore, one cannot expect to 
indefinitely keep defining new attributes that are sparsely common to the 
managed services. 

Dynamic Definition of Identity Attributes 

If we think of a representation of an identity as being a set of attributes and 
associated values, the first of the issues addressed in such a unified identity-
representation model is the size of attributes that can possibly be assigned to 
an identity. Each of the target-managed services may contribute its own set 
of attributes that may or may not be common with other services. The uni­
fied identity that is visible at the centralized identity-manager level may 
require dynamic redefinition and potentially will be associated with more and 
more attributes. These dynamic changes may require periodic redefinitions in 
the data model used by the central-identity manager. Implementation exam­
ples include a change in the schema used by an underlying LDAP repository 
or that of a relational database system. Due to the impact of redefining the 
set of unified attributes that an entity may possibly have at any of the man­
aged systems, careful thought needs to be given to the set of attributes to use 
early in the deployment stage of a centralized enterprise-identity manager. 

Decoupled Identity-Representation Scheme 

In this scheme, the central-identity manager maintains the values of a fixed 
set of attributes for every managed entity. Data relating to service specific 
attributes is kept at the target service. The identity manager remains aware 
of the schema for the attributes of the managed service, however. The key 
benefit here is the flexibility by which a service can be added to the identity-
manager pool of managed services without impacting the overall data 
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schema of the identity manager. Any operations that apply to attributes that 
are service specific will require the interaction with the underlying managed 
services. Availability of these services, therefore, is necessary, whereas in the 
unified-identity-representation scheme such operations can take place in 
the identity manager and be scheduled to side-effect the managed service later 
when the services are available. Figure 2.20 illustrates the attributes relationship 
for this scheme. Attributes Z?. are specific to the managed services. 

Example: IBM Identity Manager 

The IBM-Tivoli identity-manager (TIM) product adopts the unified identity-
representation scheme that we previously defined and represents the latest in 
enterprise identity-management technologies. TIM maintains identity infor­
mation about the entities that it manages in a central LDAP repository where 
an organization is modeled as a hierarchical structure that is horizontally scal­
able. A large number of related or independent organizations can coexist 
below a single root organization. TIM is a Web-based application that exe­
cutes within a Web application-server (WAS) environment. Its design is highly 
modular and is composed of various independently developed components, 
each of which addresses a separate concern. Examples include workflow man­
agement, policy management, identity and password policy management, as 
well as reporting. But most important perhaps is the remote-services compo­
nent that enables distributed systems and application subsystems that may 
exist in an enterprise to become TIM-managed resources. As a demonstration 
of its modularity, a special such managed resource is the TIM service in itself 
Managed services and systems can be incrementally added as needed. The 
interaction of TIM with a managed service is accomplished through the 
deployment of a service agent, also referred to as an adaptor or a connector. 
A service agent acts as the intermediary to the managed service, and thus from 
one side it adheres to the protocol interactions with TIM that are common to 
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FIGURE 2.21 A high level view of the IBM-Tivoli identity manager structure 

all agents, while on the other side it interacts v^ith the target service using the 
service's native protocol interface. 

The modeling of an enterprise in TIM begins with the definition of the 
hierarchical organizational structure. Each user of the enterprise is repre­
sented as a person entity. Such entity becomes an active user of any of the 
managed services, including TIM, by way of acquiring an account for that 
service. In which case, the user is said to be provisioned on the target service. 
Each service may contribute its own subset of identity attributes. Various 
policy-based rules can be used to automate identity provisioning within an 
organization structure. Synchronization of identity attributes across multiple 
managed services can also be achieved. Furthermore, reconciliation of exist­
ing identity registries with the TIM central repository can be performed. 

TIM access-control mechanism enables flexible controls over the managed 
entities and objects residing in its repository, which is further enhanced 
through delegated administration support. Controls can apply at a coarse 
level (such as an organization) or at a much finer level (such as an identity 
attribute). TIM adopts a role-based model in its provisioning policies as well 
as in the controls it asserts over the managed constructs. Figure 2.21 repre­
sents a high-level view of the logical structure of TIM. 



Chapter 3 

Elements of Trust Paradigms in 
Computing 

Introduction 

Assurance in an identity is established by way of authenticating it. The entity 
claiming to hold a particular identity asserts its claim by providing verifiable 
information to the authenticating entity. Trust in identity authentication is 
founded on computing the following assertion: The entity performing authen­
tication is presented with information that only the entity being authenticated is 
able to provide. This information is referred to diS proof of possession (POP) of 
identity. The authenticating entity establishes trust in this process through a 
secure verification of the presented proof 

While in Chapter 1 we discussed various authentication factors, the POP of 
an identity has traditionally been based on shared secrets or derivatives 
thereof, something the holder and the verifier of the identity know. The advent 
of public key cryptography has led to establishing identities without having to 
disseminate shared secrets, provided assurance in the binding between a pub­
lic key and the identity being authenticated can be reliably established. 
Advances in network-distributed computing have pushed the scope of an 
established identity beyond the boundaries of hosting systems and local net­
works to larger networks as wide as the Internet. An established identity yields 
a verifiable security context, the strength of which depends on the processes 
involved in providing an identity POP. We refer to the components that estab­
lish and maintain the flow of secure contexts as identity trust mechanisms. 

We survey the major paradigms and mechanisms of identity trust in com­
puting. The objective is to highlight and classify the core techniques known 
to date. Although some specific ones are broadly discussed, we do not intend 
to enumerate all known techniques. Even when the elegance, strength, and 
soundness of one method or another can be apparent, we do not recommend 
a specific one. The intent is to expose the elements of trust that characterize 
each method. 

Although other aspects such as policy management and enforcement as 
well as access-control subsystems are all relevant to trust [ABAD93, 
BLAZ96, BLAZ99, GRANOO, LAMSOl, GRAN02], it is evident that trust 
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in identity is the gate to all other factors of trust-management systems. As 
such, our definition of trust here is specific to the confidence and assurance 
in an identity. Trust in real-life practices is relative and can be rated along a 
continuum scale varying from weak to strong [SHAN02]. Trust forms an 
inverse relationship with the level of risk that can be associated with 
processes, programming agents, and individuals [KONR99]. Trust as it relates 
to identity is a reflexive relationship but not always transitive, symmetric, or 
associative. However, transitive trust, also referred to as delegation, can be a 
key requirement along a particular chain of computing tasks in the same way 
it can be relied on by individuals accomplishing manual processes. 

Brokered trust or trust through a third party has emerged as one of the key 
trust paradigms. We classify third-party authentication schemes in two cate­
gories. We refer to the first one as the explicit model, while we call the other 
one implicit. We give examples of each, with detailed descriptions of the trust 
elements of Kerberos being the most elegant of third-party authentication 
protocols. The details of trust in the public key model including the Internet 
public key infrastructure are presented. We conclude by reviewing three 
mechanisms for expressing and conveying trust over the web. These are the 
emerging Web services security, the security assertion markup language, and 
Web cookies. 

A Third-Party Approach to Identity Trust 

The local paradigm of identity management, as we discussed in the previous 
chapter, implies that user-identity information be maintained in the user reg­
istry of every system used. Furthermore, a user's shared secret under which 
the element of trust is built (e.g., a password) is expected to be different for 
each system accessible by that user in order to minimize the scope of a poten­
tial compromise. The complexity of managing multiple passwords and 
secrets, therefore, increasingly becomes an inconvenience to end users as well 
as to programming agents that rely on them. 

Local identity management recognizes each identity as a local construct 
that is defined within the scope of the system in which it is known. Identity-
and trust-management relations in this case can be modeled as a bipartite 
graph in which n users and m computing systems are tied through the shared 
secret relationship. As Figure 3.1 illustrates, this requires managing n x m 
relations. 

The complexity and lack of scalability inherent to the local identity- and 
trust-management model has led to the emergence of the third-party authen­
tication scheme. Here a single host in a networked environment is designated 
as the sole entity trusted by all of the participants in the network, such as 
users, computing systems, and applications. The user registry maintained by 
this third-party service contains identity information for all network partici­
pants. Trust is founded on the secret shared between each entity and the 
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FIGURE 3.1 Managing secret sharing relationships 
in the local identity model 
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third-party authentication service. No entity in the network has any direct 
trust relationship with any of the other entities. Two authentication para­
digms that are based on third-party have emerged: 

• Implicit authentication by secure introductions of entities to one 
another via a known and trusted third party-entity and 

• Explicit authentication of an entity by invoking a third-party authen­
tication service. 

In the first scheme, authentication is cryptographically deduced from the 
secret shared by an entity and the third party, while in the second case, 
authentication is explicitly requested from a third party by the authenticating 
entity. Figure 3.2 illustrates the secret sharing relationships that are in place 
when an implicit third-party authentication scheme is in use. Providing 
authentication across n users and m computing services requires managing 
n^-m secrets, a considerable decrease from « x m required for direct identity 
relationships between users and destination systems and services. 

FIGURE 3.2 Reducing the complexity 
of managing cross-entity authentica­
tion relationships using a third party Users Systems 
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Essentially, a third-party authentication scheme recognizes two broad 
entities: 

• A third-party authentication service and 
• The rest of all other entities. 

All of the entities participating in a third-party authentication realm form 
peer relationships to one another with respect to authentication. As shown in 
Figure 3.3, the differences between entities of a third-party authentication 
realm are inexistent. The third party has a consistent view across all entities 
regardless of whether an entity acts as a client or a server. Each of such enti­
ties is now abstracted under the term of a principal 

Below we discuss the Kerberos authentication protocol as being the most 
reliable and well-known third-party authentication system to date. Kerberos 
follows the implicit authentication paradigm, as we outlined above. We also 
discuss the mechanisms suited for the third-party authentication that fall 
along the explicit paradigm. 

Kerberos: The Implicit Third-Party Authentication 
Paradigm 

Kerberos is the name that became famously associated with the third-party 
authentication protocol developed at the Massachusetts Institute of 
Technology (MIT) in the 1980s. The ideas preceding Kerberos go back to the 
work published by Roger Needham and Michael Schroeder, in which the 
third-party authentication concept was introduced [NEED87]. Here a third-
party key distribution center (KDC) is trusted by every entity participating in 
a distributed computing environment to maintain its secret key (i.e., every 
entity shares its secret key with the KDC). As a result, the trusted KDC 

^ FIGURE 3.3 Peer-to-peer authentication 
relationships enabled by a third-party 

Principals scheme 



Kerbers: The Implicit Third-Party Authentication Paradigm 77 

becomes responsible for the secure introduction of the participating network 
entities to one another. Trust is founded on the simple fact that two entities 
A and B that wish to communicate with one another are introduced to each 
other by the trusted KDC. Trust is not assumed. It is rather computed based 
on the following: 

Entity A whose secret key is known to the key distribution center authen­
ticates itself to the KDC by presenting its proof of possession. The KDC, 
also knowing the secret key of entity B (peer of A), communicates its 
authentication of entity A to entity B (indirectly via entity A). Trust in this 
communication is based on a channel encrypted with a key derived from the 
secret key shared between the KDC and entity B. 

A High-Level View of the Kerb er os Protocol 

Three entities are engaged in the Kerberos protocol sequence: 

• An initiating client, 
• The third-party Kerberos server acting as the KDC, and 
• The target entity, such as an application server. 

A successful execution of the protocol steps results in the authentication of 
the client to the application server, via the third party, and establishes a mes­
sage protection channel that is governed by a secret session key between the 
two entities. Kerberos v5 has evolved into an Internet standard that is widely 
implemented [KOHL93]. 

The underlying data construct used in Kerberos is called a ticket. A client c 
establishes its identity with a target server s by presenting a ticket denoted by 
r̂ ^ issued by the Kerberos server and an authenticator denoted by A^. The 
authenticator protects from replay attacks and indicates the freshness level of 
its accompanying ticket by carrying a timestamp. 

In the first message of this protocol sequence, the client contacts the 
KDC, identifies itself and, presents a nonce such as a timestamp or some 
nonrepeating value identifying the request. On receipt of the message, the 
KDC generates a random encryption key K^ ̂ ^̂ , called a session key, and con­
structs a special ticket, the ticket-granting ticket (TGT), intended for use 
with the ticket-granting service (TGS), a component of the Kerberos server. 
The TGT identifies the client, contains a session key, and indicates the life­
time of the ticket (start and expiration times). The ticket is then encrypted 
using the secret key K of the TGS that it shares with the KDC and is sent 
in the response to the client. In addition to the ticket for the TGS, the 
response includes the session key and a nonce, both of which are encrypted 
in the client's secret key K^ (a derivative from the client's password). The 
client receives the response, decrypts the portion that is encrypted using its 
secret key, and thus unravels the session key K^^^^, used to establish an 
encrypted channel with the TGS. 



78 3. Elements of Trust Paradigms in Computing 

The acquisition of the ticket first for the TGS instead of a target appUca-
tion server is introduced to reduce the risk of exposure of the client's secret 
key K^, Once a TGT for the TGS is acquired, the client has no need to keep a 
copy of its secret key in the runtime environment. With respect to clients, the 
TGS represents no distinction from any server, such as one representing a 
business application. The TGS represents a logical distinction from the KDC 
but is physically colocated on the same host and has access to the same reg­
istry of keys, as does the KDC. Furthermore, both the KDC and the TGS can 
be implemented as separate components that run in the same address space. 

A cUent that has successfully acquired a TGT for the TGS becomes ready 
to request tickets for participating target-application servers. On each such 
request, the client presents its TGT to the TGS and identifies the target appli­
cation. The TGS verifies the ticket, along with the authenticator and the 
associated request information. It then replies with a ticket for the target 
application. The reply is protected using the session key with the TGS (as 
determined from the TGT). The client uses its session key with the TGS to 
extract its new session key with the target service. It forms a fresh authenti­
cator, encrypts it with the session key, and sends it along with the ticket to the 
target application. If the client requests mutual authentication from the 
server, the server responds with a fresh message encrypted using the session 
key. This establishes the fact that the server used its own secret key to decrypt 
the ticket and determine the session key. Figure 3.4 illustrates the steps of the 
Kerberos V5 protocol. 

(1) 
(2) 

(3) 
(4) 

(5) 

Client —> KDC: c, tgs, nonce 
KDC -^ CUent: {K^ ,^, nonce } K^, {T^ ,^^} K,^^ 
Client ^ TGS: {AJ K^ ,̂ „ {T̂  ,^,} K,^^, s, nonce 
TGS ^ Client: { K^,, nonce } K^ ,̂ ,, {T^^} K^ 

Client ^ Server: {A^} K^^AT^) K^ 

FIGURE 3.4 Kerberos V5 protocol steps 
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Federated Kerberos 

Each Kerberos server is responsible for providing secure identity and trust 
management to a single realm. A realm has well-defined network boundaries 
and is made of a finite number of participating entities, such as hosts and 
applications. A large network may suffer from the bottleneck exhibited by a 
single Kerberos server managing identity trust for the entire network. 
Scalability of Kerberos can be an issue for large networks. Kerberos 
addresses this problem by dividing a large network into separate domains; 
each is supported by its own Kerberos server. Cross-domain relationships are 
provided by the inter-realm trust feature of Kerberos. This feature enables a 
client from one realm to obtain a ticket for a service that resides in another 
realm, referred to as 2i foreign realm. The aggregation of all realms in this 
fashion makes it seem like a single large domain of trust. 

Interrealm trust in Kerberos is based on sharing secret keys between ticket-
granting services of cooperating Kerberos domains. Recall that each TGS is 
like any other entity with respect to its local KDC. A client obtains a ticket 
for a server in a foreign realm by first obtaining a TGT to the remote TGS 
from its own local KDC. Figure 3.5 illustrates the protocol steps used by 
Kerberos V5 in support of the cross-domain trust relationship. It is assumed 
that the client is already in possession of a TGT to its local TGS. 

f Local ^ 

tgs^ ^ ^ c tgs 

(2) TGS,„,„,^ Client: {K,,^,} K^,^„ {r^,,,. 
remote 

\ K 
^remote' ^•'•S'»' - ^>'-^^remote ^S^remote 

(3) Client -^ TGŜ ^̂ ^̂ :̂ {A^ K^ ^^^ ̂ ^^^^^, {T̂  ^^^ ^^^^^^} K^^^ ̂ ^^^^^, s^^^^^ 

(4) TGS^^^ ,̂̂  ̂  Client: { K^ ̂ , remote } K^^^^ , { r ^ } K^ ^ 
rtrnuit c, ^ (^ t^^^ remote ^ ^ remote '^ remote 

(5) Client ^ Server̂ ^ ,̂̂  -{AJ^.s , ' {?-„ } K^ , 
rt:mun: c t, o remote ^ ^ remote •* remote 

FIGURE 3.5 Kerberos protocol steps for cross-realm establishment of trust 
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A Topology of Kerberos Federations 

Bidirectional interrealm trust in Kerberos requires a pairwise of key 
exchanges. Applying this arbitrarily to a set of n realms yields 0(n^) key 
exchanges. This topology can be modeled by a directed-complete graph in 
which the nodes represent the realms and the edges represent key exchanges, 
as shown in Figure 3.6 for five realms. 

To alleviate the problem of having to deal with a large number of key 
exchanges, a Kerberos Version 5 specification recommends organizing the 
realms in a hierarchical structure. Key exchanges across ticket-granting servers 
from various realms are performed only along this hierarchy structure. 
Specifically, key exchanges take place across realms that are directly descend­
ing or ascending from one another. Exceptions to this rule are referred to as 
shortcuts where two realms unrelated by the hierarchy relationship are directly 
joined via a key exchange to optimize heavily used paths. A hierarchy defined 
along domain names of the participating realms is a natural fit. The number 
of key exchanges required by this topology is 0(log(«)). Figure 3.7 illustrates 
the hierarchical interrealm trust in Kerberos. The dotted edge represents a 
shortcut. 

When an application needs to send requests to a server in a foreign realm, 
it traverses the tree upward, downward, or through shortcuts until the desti­
nation realm is reached. In each step of this traversal, a TGT is acquired for 
the next foreign TGS. 

Ticket Forwarding 

Kerberos supports authentication forwarding, also referred to as delegation in 
the form of impersonation. Here an entity that has authenticated to the KDC 

REALM 1 

REALM2 REALMS 

REALM4 REALMS 

FIGURE 3.6 A pairwise key exchange across five realms modeled using a complete 
graph 
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REALM1 
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REALMS REALM4 

^ ^ 

REALMS k-

FiGURE 3.7 Cross-realm hierarchical key exchange 

(i.e., holds a valid TGT) delegates its authenticated context to another entity 
on a local or remote host. Thereafter, the delegated entity impersonates the 
original entity and may acquire tickets to downstream servers on its behalf. 
An example where delegating credentials is useful is the case of a server that 
needs to access a file stored on a network file system that is accessible by the 
client only. Such may be the case of a print server, for instance. 

Delegation in Kerberos is enabled by way of the client forwarding its TGT 
to a server. During the initial TGT acquisition, the client requests that the 
ticket be marked forwardable. The session key established between the client 
and the TGS is also forwarded to the target server so that it can form a fresh 
authenticator as it attempts to acquire a service ticket from the TGS. 

Entitlement Attributes in Kerberos 

In addition to serving the purpose of authenticating clients to target services, 
a Kerberos ticket may contain a set of authorization privileges that are asso­
ciated with the holder of the ticket. The following definition expressed in 
Abstract Syntax Notation 1 (ASN.l) illustrates the structure of authorization 
information contained in a Kerberos ticket. 

Ticket 

} 

= [APPLICATION 1] SEQUENCE { 
tkt-vno[0] 
realm[1] 
sname[2] 
enc-part[3] 

INTEGER, 
Realm, 
PrincipalName, 
EncryptedData 

EncTicketPart :: = [APPLICATION 3] SEQUENCE { 
flags[0] TicketFlags, 
key[1] EncryptionKey, 
crealm[2] Realm, 
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cname[3] PrincipalName, 
transited[4] TransitedEncoding, 
authtime[5] KerberosTime, 
Starttime[6] KerberosTime OPTIONAL, 
endtime[7] KerberosTime, 
renew-till[8] KerberosTime OPTIONAL, 
caddr[9] HostAddresses OPTIONAL, 
authorization-data[10] 

AuthorizationData OPTIONAL 

} 
AuthorizationData ::= SEQUENCE OF SEQUENCE { 

ad-type[0] INTEGER, 

ad-data[l] OCTET STRING 

} 

Authorization information is marshaled in a Kerberos ticket as a sequence 
of {ad-type, ad-data) value pairs with ad-type representing the parameteriza­
tion factor. This parameter is an integer that classifies the value of the 
authorization attribute with which it is associated. Negative values are 
reserved for local use. Nonnegative values are reserved for registered use (i.e., 
one that is known to the Kerberos community at large). The fact that the data 
type of an authorization attribute is a stream of octets allows it to be exten­
sible and dynamic. 

Cross-realm support in Kerberos enables the federated management of 
user entitlements over widely distributed computing resources. Principal enti­
tlements are maintained by the Kerberos service associated with the realm in 
which the target service resides. This is expressed by the fact that a principal 
obtains a service ticket directly from the TGS of the target service's realm. 
Authorization privileges and user-profile attributes fit well with the local 
management paradigm in which access control is performed by the local 
resource managers. In this approach, the semantics of entitlement attributes 
are locally scoped, and thus ambiguity and collision among attribute names 
are prevented. The security model enabled by Kerberos therefore follows the 
paradigm of global authentication and local management of authorization. 
The latter encompasses the semantics of access privileges and provides 
resource-access control. Adherence to this paradigm is an important aspect 
of identity and trust management in highly distributed computing models. 

A Kerberos service ticket carries information about the home realm of its 
holder in the crealm field. This field indicates the name of the realm in which 
the client is registered (i.e., with which the client explicitly authenticates). 
Resource managers that receive service tickets from principals in foreign 
realms can further qualify the semantics of the access privileges and entitle­
ments by the foreign realm. This adds another parameterization factor that 
can be used to scope or distinguish among entitlements for local versus for­
eign principals. For instance, attribute A from a foreign user's profile may 
require more stringent trust-verification procedures than when that same 
attribute is associated with a principal that is local to the realm of a service. 
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A Kerberos identity is always qualified with the name of the realm in which 
it is defined. Even when two principal names from different realms are identi­
cal, they differ when qualified by the respective realms. Principal name colli­
sions across realms are therefore eliminated. The partitioning of Kerberos 
naming space along realms plays an important role in the federated trust of 
Kerberos. This information is reliably and securely carried in the encrypted 
portion of a Kerberos ticket. 

Explicit Third-Party Authentication Paradigm 

The third-party authentication method via entity introductions is a novel 
approach that advanced the state of art in the field of authentication, partic­
ularly with the development of Kerberos. A number of aspects, however, 
characterize this model with some level of rigidity. For one thing, it requires 
all participating entities to adhere to a predefined authentication protocol. 
Programmers need to abide by a relatively advanced programming model, 
and the protocol has a degree of infrastructure complexity built into it. The 
predominant alternate approach is a much simpler one, easy to use but of 
lesser strength and eloquence. This approach uses an explicit authentication 
scheme in which the authenticating entity does not manage its own user reg­
istry; instead, it calls out to a third-party service or subsystem. 

The explicit paradigm of third-party authentication is based on the principle 
of outsourcing the authentication process within a distributed environment to 
a third party that manages an identity repository, performs authentication, and 
dispenses entity entitlements. Typically, an application server directly receives 
an authentication credential such as an identity and a password from a request­
ing client. The credentials are then forwarded to the third party for authentica­
tion as well as the retrieval of entitlements. Various forms of third-party entities 
have been used for this purpose. An example is a database system against which 
a user credential is validated (e.g., by attempting to connect to a database using 
the user's credential). A widely used third-party registry is the hierarchical 
X.500 directory service exposed through the LDAP protocol [HOWE03, 
WAHL97, HOWE95]. Here an identity is established by way of a successful 
bind operation to the directory using the credential supplied by the client. 

This trust model is characterized by being loosely coupled in that the inter­
acting entities are not required to participate in a well-defined protocol 
sequence. The client communicates with the target service using application-
level interfaces. Similarly, the server engages the third-party entity using 
interfaces specific to that third party. The target-application service, in par­
ticular, needs to secure the communication channel used for the transmission 
of credentials between the client and the application, on one hand, and the 
application and the third party, on the other hand. Typically, a secure socket-
layer (SSL) [FREI96] channel is used for that purpose. This model offers the 
advantages of simplicity and extensibility. Connectors to various third-party 
identity services can be incrementally built and used. 
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Plugging an application server with a third-party identity and trust man­
ager in this fashion is exploited by a number of evolving Web application 
servers (WAS) such as IBM's Websphere [IBMC03]. Websphere further gen­
eralizes this approach by abstracting the third-party authentication services 
and repositories in what is referred to as a pluggable authentication mecha­
nism. This can be represented by an LDAP service or some native operating 
system repository such as IBM's RACF or one that is customized. Figure 3.8 
illustrates the third-party explicit authentication paradigm. 

The Public-Key Infrastructure Approach to Trust 
Estabhshment 

Public-key cryptography was developed with a revolutionary concept— t̂hat of 
establishing trust without having to share secrets. The premise of freely dis­
seminating a public key, however, remains a proposition that nevertheless 
comes with cost, as well, perhaps only less than that of distributing secret keys. 
Security services, particularly origin authenticity, rely on the single foundation 
that a particular public-key material is indeed bound to its legitimate user. The 
public-key establishment problem relates to trust in the binding that exists 
between a subject and a public key. The novel paradigm brought about by 
public-key encryption relies on the fact that public keys are intended to be uni­
versally accessible. As long as the binding of a public key can be securely 
established, the key material can be distributed over secure and nonsecure 
channels and stored in public repositories. An established public key is one 
that exhibits the property of being securely and unambiguously associated 

Directory 

Database 
system 

Nativeoperating 
system 

FIGURE 3.8 Layout of an explicit third-party authentication scheme 
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with its legitimate owner. This association should remain invariable no matter 
the transport over which the key is being communicated or the storage 
medium in which it resides or an execution runtime where it is processed. 

In the Internet world, public-key establishment is defined through the 
X.509 digital certification performed by a trusted third party known as the 
certificate authority (CA) [BENA02]. The result of this certification process 
is a data construct in the form of an X.509 certificate representing a crypto­
graphic binding between the public key material and its holding entity 
referred to as a subject. The foundation of such certification rests on the dig­
ital signature of the authoritative CA vouching for the trustworthiness of 
the certified public key and hence the associated private key. We begin by 
taking a brief overview of public-key cryptography, pointing out its under­
lying strength in representing trust. An instance of that is expressed by 
the capability of public-key cryptography in realizing digital signatures. We 
subsequently elaborate on the trust elements that form the foundation for 
the Internet public-key trust. 

Foundations of Public Key-Cryptography 

Public-key cryptography emerged in the mid-1970s with the work published by 
Whitfield Diffie and Martin Hellman [DIFF76a, DIFF76b] as well as by Ralph 
Merkle [MERK78]. The concept is simple and eloquent yet it has had far-
reaching impacts on the science of cryptography and its applications as a whole. 
Public-key cryptography is based on the notion that encryption keys come in 
related pairs—^private and public. The private key remains concealed by the key 
owner, while the public key is freely disseminated. Data encrypted using the pub­
lic key can be decrypted only using the associated private key and vice versa. 

In the following, we consider a simple example that illustrates the dual key 
concept of public-key cryptographic systems. We restrict our plaintext to 27 
characters drawn from the 26-letter English alphabet plus the blank charac­
ter. We then assign numerical equivalents to our plaintext alphabet sequen­
tially from the integral domain of [0...26] with the blank assigned the 
numerical 26. We consider our encryption function E to be the affine trans­
formation that takes in a plaintext character P and maps it into a ciphertext 
C as follows: 

E{P) = {a*P + b)mod21 = C, 

with a and b being fixed integers. Solving for P in terms of C in the prior 
equation yields the inverse transformation, decryption D: 

D(C) = (a'* C+ b')mod21 = C, where 

a'=a~^mod21, and 

b' = -a-'*b. 

For a to be invertible while computing in Z/27Z, it is necessary and suffi­
cient to have a and 27 relatively prime. That is to say, there is no number that 
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divides both a and 27 but for the trivial divisor of 1. Note that this condition 
guarantees a one-to-one mapping between P and C Z/27Z is the set of equiv­
alence classes (residue classes) with respect to the relationship of congruence 
modulo 27. 

The parameterized affine transformation in the example, and its inverse 
can be used for a basic public-key cryptosystem with the private and public 
keys being (a, b) and {a\ b% respectively. An example would be to have a = 2 
and b = I, resulting in (a\ b') - (14, - 14). The premise here is for an entity 
to maintain secrecy of the private key while freely distributing the public key. 
An encryption performed using the public key can be decrypted only using 
the corresponding private key. Since the owner of a public-key pair is pre­
sumed to be the sole entity with knowledge of the private key, encrypting 
information using the private key leads to establishing data-origin authentic­
ity. Furthermore, with tamper-proof storage and manipulation of private 
keys, nonrepudiation can be established as well. Besides the provision for 
data integrity and confidentiality, public-key encryption is about establishing 
authenticity without having to disseminate or manage secrets. 

In practice, however, the public-key cryptographic system in our example 
is easily defeated, even with its generalization to longer blocks instead of sin­
gle characters. A block of size s yields a ciphering transformation that maps 
each block to a value in the range [O...Â ^ - 1], where TV is the size of the alpha­
bet. The weakness of this algorithm rests in the ease by which a decryption 
key can be deduced from an encryption key in a deterministic fashion, using 
very simple operations (multiplication and additions modulo {N^ - 1)). But 
first and foremost is the fact that the encryption function admits a determin­
istic inverse function. 

The premise behind public-key cryptography is that it should be computa­
tionally infeasible to compute the private key by simply knowing the public 
key. Along this key premise, we discuss some of the mathematical founda­
tions of the processes by which modern public-key cryptosystems derive their 
strength and reliability when it comes to the generation of public and private 
key pairs. Figure 3.9 is an illustration of the duality between corresponding 
public and private keys. 

Modern public-key cryptography derives from eloquent mathematical 
foundations that are based on the one-way trapdoor functions existing in the 
abstractions of number theory. Encryption is the easy one-way trapdoor. 
Decryption is the hard direction. Only with knowledge of the trapdoor (the 
private key) can decryption be as easy as encryption. Three of these currently 
known trapdoor one-way functions form the basis of modern public-key 
cryptography, and we discuss them in the next sections. 

The Problem of Factoring Large Numbers 

The first of the well-known trapdoor one-way functions is based on the ease 
of multiplying two large prime numbers, while the reverse, factoring a very 
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FIGURE 3.9 The duality between public and private keys in public key cryptosystems 

large number is a far more complex task. Factoring an integer n is the process 
of finding a series of prime factors, such that their products together yields n. 
A prime number, by definition, is one that has no divisors other than 1 and 
itself; otherwise, a number is called composite. Factoring large numbers (over 
1,024 bits) is known to be computationally infeasible with today's computers 
and technology. Modular arithmetic renders the multiplication of such num­
bers a far easier task. Consequently, the one-way trapdoor problem here is to 
make a very large number a public knowledge and secretly maintain its prime 
factors. Note that the trapdoor function discussed here in essence requires 
deciding on whether a randomly picked very large number is prime. Primality 
testing is a much easier task than the actual factorization [GORD85]. 

A number of methods have been devised to determine the primality of an 
odd number N. The most trivial of which is to run through the odd num­
bers starting with 3 and determine if any of such numbers divides N. The 
process should terminate when we reach /N , Due to the time complexity 
that this method requires, in practice it is stopped much earlier before 
reaching //V and is used as a first step in a series of more complicated pri­
mality test methods. 

The best example of this class of public-key cryptosystems is the Rivest-
Shamir-Adleman public-key algorithm, known by its acronyms of RSA 
[RIVE78]. 

Computing Discrete Logarithms in a Large Finite Field 

The second well-known trapdoor one-way function that exists in number the­
ory is the ease of computing a function/that consists of raising a number to 
a power in a large finite field, while the inverse function/^ ^ of computing dis­
crete logarithms in such a field is known to be a much harder problem. A finite 
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field, also known as a Galois field, denoted by GF(p), is the field of integers 
modulo a prime number;?, and thus each element a of GF{p) is guaranteed to 
have a multiplicative inverse or ̂  that is also in G¥{p\ such that 

The time complexity required for the computation off(x) =a^ = yin ZlpZ 
is polynomial in log x. Computing x =f~^ (y) = log^ (y) given j^ is a much 
harder task known as the discrete logarithm problem. Here both x and ;; are 
constrained to be elements of the discrete set ZlpZ as opposed to the much 
easier continuous problem in the set of real numbers, for instance (hence the 
use of the term discrete in qualifying this problem). 

The one-way trapdoor function as defined by the discrete logarithm prob­
lem can be stated as follows: 

Knowing a and x, it is an easy operation to compute a^ in Z/pZ (using the 
repeated-squaring method). On the other hand, if we keep x secret and hand 
someone the value ;; that we know is of the form a^ and ask to determine the 
power of a that gives y, they can use up all the computing resources that they 
have available but will indefinitely fail to hand back a response. 

A number of modern public-key cryptographic algorithms are based on 
the discrete logarithm one-way trapdoor function. Most notable is the Diffie-
Hellman key exchange algorithm [DIFF76b] and the El Gamal crypto­
graphic system [ELGA95]. 

Elliptic Curves over Finite Fields 

Elliptic curves over finite fields have been proposed for use with existing public-
key cryptographic systems [KOBL87, MILL86]. Given a point P from an ellip­
tic curve E, defined over a finite field, and an integer a, the one-way function 
here consists of the ease of computing the product a*P, while the inverse of 
finding a such that a*P results in a point over E is intractable. Elliptic curves as 
such form a reliable and secure source for computing public keys. The elliptic-
curve analogs of existing algorithms that are based on the discrete log problem, 
such as Diffie-Hellman and ElGamal, can be deduced in a straightforward 
manner. The discrete log problem on elliptic curves is likely to be harder to tract 
than its counterpart on finite fields. This property has led to the adoption of 
elliptic cryptosystems in many situations requiring stringent security measures. 

Digital Signatures 

The advent of public-key cryptography combined with the strength and reli­
ability of intractable one-way hash functions gave rise to the digital signing 
of a document. This process inherently enables data-origin authenticity and 
can be strengthened to further withstand repudiation. Using the private key 
of a public-key pair to encrypt a data stream automatically binds the subject 
with whom the key is associated to the data. The cost of encrypting an entire 
document to simply establish this binding can be prohibitive, particularly in 
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light of the compute-intensive public-key cryptosystems. Fortunately, the 
alternative is eloquent and is computationally affordable as it does not 
require encrypting an entire document. Two of the well-known digital signa­
ture algorithms are the RSA and the DSA [NIST94]. We briefly outline the 
RSA algorithm below. 

RSA Signature 

The RSA digital signature algorithm proceeds along two main steps: 

• Using one of the common hashing algorithms such as MD5 or SHA-1 
[RIVE92, [NIST95], a document is first digested into a much smaller 
representation, a hash value. 

• Encryption is applied to the hash instead of an entire document 

Provided there is no need for a confidentiality service, the signed document 
is then transmitted in its cleartext form, and the signature is provided to the 
recipient for verification. Figure 3.10 illustrates the RSA signature computa­
tion and verification procedures. 

Trusting a Public Key 

From the outset, public-key cryptography seems to eloquently solve the key 
distribution and management problem introduced by secret key cryptography. 
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FIGURE 3.10 A Generating a RSA signature and B verifying the signature 
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Anyone can use the public key to encrypt data, but only the owner of the pri­
vate key can decrypt it. A community of users that wishes to communicate in 
confidentiality can adopt a public-key cryptosystems, publish the public keys 
of its community members in a directory, and completely dispel any concerns 
that may otherwise arise when distributing secret keys. Unfortunately, the 
secure binding of a public key to its legitimate holder remains a critical prob­
lem on which trust is completely dependent. In a sense, the authenticity of a 
public key with respect to its holder is at issue. 

One promising answer to the question of assurance in a public key lies in 
the certification process that di public key infrastructure (PKI) can provide. At 
the heart of a PKI is the digital signature technology that we outlined earlier. 
Parties relying on public keys confine their trust in a single entity, known as 
the certifying authority (CA). Before a user's public key is disseminated, the 
underlying high-assurance CA uses its own private key to digitally sign the 
user's key, which is then distributed to a public repository. The concept of a 
verifiable public-key certification can be traced back to the work published in 
[KOHN78]. 

A relying party securely installs the public key of the trusted CA and uses 
it to verify the signature of each user's public key that might thereafter be 
used. Only on a successful verification does the reliant party initiate a com­
munications channel. This simple method of certification thwarts against an 
attacker who does not have a public key signed by the same CA as that of the 
two communicating parties but fails when the attacker is in possession of a 
key signed by the same CA. 

To yield a reliable assurance, a comprehensive public-key certification 
process necessitates more security elements than simply signing an encryp­
tion key. These elements are embodied in the data construct that is to be cer­
tified. For the Internet realm this construct is called an X.509 Version 2 
certificate, and the secure infrastructure that makes it is the public-key infra­
structure for X.509 (PKIX) [HOUS99a, HOUS99b]. We discuss the main 
PKI trust elements in the next section. 

Foundations of Trust in PKI 

An Internet public-key certificate (PKC) provides a high degree of assurance 
in the public key that it certifies. At the core of this assurance is a trusted issu­
ing authority that is either the signer of the PKC or one situated along a 
chain of certificates leading to that PKC. Such a chain is called a trust path; 
its meaning will become clear in the next sections. The trust provided by PKI 
is demonstrated by a provable binding between the public-key material and 
its associated subject and hence the private key. Recall that the public and pri­
vate keys are mathematically related values that are associated with one 
another. In addition to the public-private key pair, the certified binding impli­
cates a set of attributes that a subject may possess. Such attribute may include 
an X.500 distinguished name (DN), an electronic mail address, or further yet 
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FIGURE 3.11 Data elements of the X.509 v3 certificate 

a customized personal attribute profiling the certificate holder. Figure 3.11 
illustrates the major elements that are implicated in a certified public key 
using X.509 V3 certificates. 

The trust model in PKI is anchored through the degree of assurance in the 
public-key certificate of the issuing CA. The public key of the issuing CA as 
determined from its own PKC is, in turn, used to verify the digital signature 
of that CA in the user's PKC. That signature is computed over the data ele­
ments of the certificate as illustrated in the bottom part of Figure 3.11 
including, of course, the public key material. Given the assurance in the PKC 
of the issuing CA, a successful verification of this signature establishes trust 
in the binding of the public key being verified and hence the corresponding 
private key to the end entity that holds the PKC. 

The need for the secure verification of an end entity's public key is likely 
due to the involvement of that entity in a public-key-based security protocol 
or simply in data signing or encryption. Besides the signature verification 
step, establishing trust in a PKC is foremost based on the certificate itself 
being valid. Two key factors are decisive in determining the validity of a cer­
tificate: 

• Revocation of the certificate First the certificate is checked for mem­
bership in a certificate revocation list (CRL). A revoked certificate is 
invalid regardless of its signature being valid. A PKC may be revoked 
before at any time before expiry arrives. Various revocation policies 
may be instituted based on circumstances. A CRL is the second major 
data construct that is available for PKI consuming entities. It attests 
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that the PKCs to which it refers are no longer vaUd for use. Like for 
PKCs, CRLs are constructs that are digitally signed by certificate 
authorities. Below we shed more light on the links between a PKC and 
its entry in a CRL. 

• Time of use The certificate use has to be valid with respect to its desig­
nated lifetime as indicated in the PKC itself. 

The elements that contribute to the validity or invalidity of a PKC are all 
included in data over which the PKC digital signature is computed. A num­
ber of aspects can affect the level of trust in a PKI. Below we discuss two 
such aspects. The first is the serial number embedded in a PKC and its rela­
tion to a CRL. Subsequently, we shed Ught on the element that is without a 
doubt the cornerstone of trust in PKI—^that of protecting the private key of 
a certificate signing authority. 

Identification Links Between a Certificate and a CRL 

As it is shown in Figure 3.12, the certificate serial number is about the only 
field that identifies a certificate membership in the list of revoked certificates 
contained by a particular CRL. A collision in certificate serial numbers there­
fore may lead to erroneous decisions by validating entities. Since it is only 
within the confines of a particular certificate authority that the serial-
number-generation process can be controlled, it becomes an implicit require­
ment that a certificate be revoked by the same authority that had issued it. 
Furthermore, assuming that the serial numbers are generated in some incre­
mental fashion, the serial-number-generation functions need to maintain a 
persistent representation of the current number over the lifespan of the 
authority. Due to the importance of using a unique number for each certifi­
cate, the persistent form of the current serial number may need to be 
encrypted while it is saved in auxiliary storage. 

Certificate membership in a CRL needs to be decided by the identification 
parameters as represented by both the serial number as well as the issuer name. 

X.509 certificate X.509 

Serlai ftifmlief xxxxxxxx ORt Issuer xxxxxxxxxx 
- ^ — • • 

PKCIsöu^ xxxxxxxxx Serial nymNir xxxxxxx 

FIGURE 3.12 Identification links between a certificate and a CRL 
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Protecting the CA Signing Key 

The CA private key deserves being the object in need of most protection pos­
sible within a public-key infrastructure. After all, the verification of assur­
ance in the certification process is entirely dependent on the security of this 
key. Indeed, once a CA signing key is compromised, the whole infrastructure 
and any relying entities and applications are breached. A compromised CA 
key can lead to all sorts of attacks. Issued and published certificates can be 
modified. Others can be illegitimately revoked. Most dangerous is that cer­
tificates can be issued under the auspices of the compromised CA to subjects 
that are not entitled to certificates. It is prudent measure to treat the CA sign­
ing key with particular care. Software solutions can provide an increasing 
degree of security to the signing key through encryption. However, because 
the key must be exposed to generate signatures, it may become vulnerable to 
interception and capture. 

One approach that affords the CA key a high level of security is the use of 
tamper-resistant hardware in the form of PCI-based cards to store crypto­
graphic keys and perform encryption and signing operation without expos­
ing the key. One reliable product in this category is the IBM 4758 coprocessor 
card that is delivered with a high level of assurance and manufacturing certi­
fication. This cryptographic coprocessor provides a simple access interface 
using the IBM Common Cryptographic Architecture (CCA) APIs as well as 
the RS A Laboratories PKCS #11 interfaces (cryptoki) [RSA99]. It relies on 
a key-encrypting key, the master key, stored in a tamper-resistant circuitry 
that withstands physical attacks. 

The IBM 4758 provides a whole set of cryptographic operations such as 
random number and key generation, hashing, encryption, generating mes­
sage-authentication codes (MACs) as well as signing and verifying signa­
tures. These operations are based on common cryptographic algorithms 
such as SHA-1, MD5, DES, Triple-DES (DES3), RS A, and DSA. In addi­
tion to the cryptographic hardware engine, the card includes a small 
general-purpose processor. The access-control module serves as an authen­
tication mechanism used to log on users to the coprocessor as well as per­
forming access-authorization checks based on the different roles a user 
might assume. Enforcing access policies as such is achieved by the hardware 
and protected software. The coprocessor manages DES and public-key algo­
rithm (PKA) keys separately. 

PKI Trust Topologies 

Trust verification in PKI may involve more than one CA certificate. 
Depending on the trust topology in use, the validation process can become a 
recursive process involving a chain of CA certificates. We outline the trust 
topologies commonly found in PKI in the sections below. 
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Hierarchical Trust 

A hierarchical topology is one that maps the trust layout of an organization 
top down into a tree structure [HOUS99a]. At the top of the tree is the root 
certificate authority. Extending branches may lead to leaf nodes that repre­
sent end entities in the organization or may lead to other subauthorities. The 
rational for the partitioning may stem from the need to manage a large organ­
ization as a set of smaller entities, each with its own authoritative CA. Figure 
3.13 shows an example of a hierarchy structure. Generally, there is no 
requirement that one CA certify end entities only or other CAs only. A par­
ticular CA may issue certificates to end entities as well as to other certificate 
authorities. But for all practical purposes, however, the role of each CA may 
be best managed by requiring that it certify subordinate CAs only or end enti­
ties only. Such a separation enforces the authoritative hierarchy structure of 
an enterprise and points out the controlling elements of trust. 

The hierarchical trust topology enables the delegation of trust down to 
subordinate authorities. The root, high-trust authority becomes concerned 
with the trust-delegation task down to a smaller number of subordinate 
authorities. The fact that the top CA is concerned with the dissemination of 
trust to a small number of entities allows for managing the strict controls and 
policies that need to apply at this highest level. One such policy may require 
the offline distribution of the root CA certificate in a highly secured fashion 
to the immediate subordinate CAs that it manages. There is a fundamental 
reason behind the secure distribution of the top certificate; the process of 
building a trust chain begins at the root CA. 

Building a trust chain consists of backtracking the path from an end entity 
certificate all the way to the root-trusted CA. This backtracking process 

Root CA 

Subordinate CAs 

End entities 

FIGURE 3.13 A hierarchical trust topology with one root governing a two- and a 
three-level hierarchy 
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entails a number of validation steps, two of which are fundamental. The first 
is the determination of the chain by starting at the leaf end-entity certificate, 
associating an issuer name at this level with a subject name in a certificate of 
an authority at the immediate upper level until the root is reached. Figure 
3.14 depicts this process of computing a trust path. For each subject name 
determined as such, the corresponding CA certificate is retrieved, perhaps 
from a repository such as a directory service or one referred to through 
some URL 

The second step consists of validating the series of cryptographic signa­
tures in the previously computed trust chain. This process begins with the 
certificate of the root trusted CA and proceeds until it reaches the leaf end-
entity certificate. 

As illustrated in Figure 3.14, the determination of the path via the back­
tracking of issuer and subject names is computed in a bottom-up fashion 
starting with the end-entity certificate. By contrast, the signature-validation 
process is performed in a top-down fashion beginning with the certificate of 
the trusted authority. 

Signature validation is the process during which the fundamental trust of 
a certificate is built. It is all based on the basic assumption that the public key 
of the root CA is trusted. Recall that assurance in this assumption is based 
on the secure distribution of the root CA certificate. This distribution process 
defines what can be termed as the "boot-strap" of trust. 

The high-assurance public key of the root is used to validate the signature 
value in the CA certificate immediately below it in the hierarchy as deter­
mined by the path. Once this is validated, the immediate subordinate CA 

Sublet rmme 
Signature 

^ 

FIGURE 3.14 Computing a trust path in a hierarchical trust model 
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implicitly inherits the highly assured trust property and becomes the trust 
root. This procedure continues recursively until the signatures in the leaf end-
entity certificate is validated. A special case of this path-validation scheme is 
one in which there is only one level of hierarchy, and thus the self-signed root 
CA certificate is used to directly validate the signature in the end-entity PKC. 

The fundamental element of trust in a certificate chain rests in the secure 
distribution of the root CA certificate to all of the entities below it in the 
hierarchy. The dissemination of the root CA certificate may involve an offline 
distribution method to increase security. For instance, the certificate can be 
mailed to the respective human entities in a nonvolatile medium such as a 
diskette or a compact disk. On receipt, each entity computes a digest of the 
certificate using, for example, SHA-1 or MD5 and then calls the human 
trusted with the administration of the CA to confirm the digest value and 
hence this distribution process. 

The notion of a single point of trust does not necessarily concern the 
root CA only. Rather, it can be applied down the tree hierarchy in a dele­
gated fashion. The property that makes this delegation stand is that the 
recursive signature-validation scheme, as described, can also be started at 
some highly trusted intermediate CA. Any compromise in the signing keys 
above this intermediate CA will ultimately be detected once validation 
reaches the trusted intermediate CA. The trust path therefore requires the 
existence of at least one high-assurance authority along the path irrespec­
tive of its position in the tree hierarchy. A delegation scheme of this kind 
lends itself well to situations in which end users of some global enterprise 
need only to be aware of "regional" certificate authorities that directly 
manage their part of the business but need to be concerned with the cor­
porate CA. 

The advantage of setting up a multilevel trust hierarchy is to bridge multi­
ple organizations (public-key infrastructures within, say, a large organization) 
without having to reissue the public-key credentials already deployed within 
each of the individual organizations. Let us assume that an enterprise that 
has grown due to a merger decides to join its existing and distinct public-key 
infrastructures into a single hierarchy so that services in one organization can 
be accessible to the members of the other organization and vice versa. 

The hierarchical scheme of trust can provide a solution in this case by hav­
ing each of the disjointed CAs become subordinate to the root CA, one that 
is perhaps designated and managed at the corporate level. Figure 3.15 illus­
trates a hierarchy consisting of two intermediate CAs and joining two differ­
ent organizations. 

The procedural steps required to effect this merge may consist of the fol­
lowing: 

• Have each subordinate CA revoke its existing self-signed certificate and 
publish it in a certificate revocation list, actually an authority-revocation 
list (ARL). This will ensure that a trust path should always lead to the 
new root CA. 
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New root CA 

Previously root CAs now 
becoming intermediate 
CAs 

FIGURE 3.15 Joining two organizations using the hierarchical trust model 

• Have each subordinate CA acquire a new certificate from the new root 
CA. To avoid a CA key-update process, each CA may use its current 
public key when requesting the new certificate. 

• Distribute the new root CA certificate in a secure fashion to all of the 
end entities in the merged organizations including the two subordinate 
Cas, and have each entity replace this certificate for the old trusted root. 

The net effect of this join operation is the dissemination of trust across the 
two previously disparate organizations via the new root CA that represents 
the trust anchor for the larger organization. Note that if so desired one can 
split the two organizations by reversing each of the steps in the join opera­
tion as described. To accompUsh this, first, each CA requests revocation of its 
own certificate from the root CA. Each subordinate CA then uses its current 
public key to issue a self-signed certificate for itself and push it down to each 
of the entities it certifies through a highly assured channel. 

Joining existing public-key infrastructures by building a single multilevel 
hierarchy results in a unified trust model. In this model, a single authority 
represents trust in the entire organization. Similarly, the affected trust join 
operation enables the organization to continue delegating to each subordi­
nate CA the PKI management tasks for its own domain of operation. 

The use of multilevel hierarchies, however, extends a certificate trust path 
and thus may affect performance of the certificate validation process. To mit­
igate the extent of this problem, a PKI deployment as such may resort to 
computing and then pushing the trust paths to each end entity's local envi­
ronment ahead of any validation processing. 

Cross-Certification 

The proliferation of PKIs, particularly in the Internet space, ultimately 
leads to the need for extending the benefits provided by public-key certifi­
cation across the boundaries of certification domains. Such domains may 
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span disparate organizations and departments within a single enterprise. In 
many cases, the requirement for automated interaction across multiple 
organizations is what drives the need to maintain the benefits of PKI-based 
security in applications that bring about those interactions. The basic issue 
here is that of joining independently deployed PKIs with a minimum dis­
ruption and a maximum transparency to end users. Most important, in join­
ing disparate PKIs it is sometimes desirable to maintain the independence 
characteristic that each domain enjoys whereby each certification authority 
remains the sole authority for its own domain of operations. 

Functionally, the hierarchical scheme that we previously discussed can be 
sufficient for bridging two certification domains, the result of which is tightly 
linked organizations, virtually becoming a single domain. The drawback of 
the hierarchical merge is that end entities will not be completely shielded from 
the join operation. Cross-domain certification, on the other hand, achieves 
similar trust semantics in joining disparate PKIs, yet it maintains a complete 
transparency of the process with respect to end entities. 

Cross-certification is a method of joining two disparate PKIs without 
incurring any effect on the end entities and without subordination of either 
infrastructure to a new authority. It is a peer-to-peer contract between two 
CAs to honor certificates exchanged, through security protocols, on service 
requests crossing each other's domain. Each end-entity member in the com­
munities joined via a cross-certification process remains in possession of the 
certificate of its respective trusted root CA prior to the merge taking place. 
This is contrary to the hierarchical scheme in which end entities are to 
acquire the certificate for the new root CA. The trust model remains invari­
able in the cross-certification case while it takes a different form in the hier­
archical scheme. 

A CA A that issues a cross-certificate to authority B underscores the fact 
that end entity certificates issued by B to its own community members are 
now trusted for use within the domain certified by authority A. Similarly, 
authority B may issue a cross-certificate for authority A, and thus domains 
A and B are said to be mutually cross-certified, also referred to as a two-way 
cross-certification. In essence, a two-way cross-certification is equivalent to 
joining two domains under a single trusted root CA but without a direct 
impact on end users. 

It is worth noting that structurally a cross-certificate is simply an X.509 v3 
certificate with a base constraint extension indicating that it is a CA certifi­
cate and in which the subject and issuer names represent two different CAs. 
It certifies the public key of an already operating subject CA as a signing key 
used for issuing certificates. 

Cross-Certification Grid 

Given a network of CAs, the cross-certification process can be modeled as a 
direct graph whose nodes represent the participating CAs while the edges rep­
resent the direction of the certification. A directed edge from A to B indicates 
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a one-way cross-certification of authority B by authority A, Figure 3.16 illus­
trates a cross-certification grid comprised of five CAs. 

Note that because the cross-certification in one direction is a transitive 
relationship, CA2 becomes implicitly engaged in a two-way cross-certification 
with CA5. This is because CA2 is explicitly cross-certified by CA5. 
Meanwhile, CA2 cross-certifies CAl, which in turn cross-certifies CA3, and 
hence CA2 indirectly cross-certifies CA3. In turn, CA3 cross-certifies CA5 
and thus CA2 implicitly cross-certifies CA5. In that sense, the respective com­
munities of CA2, CAl, CA3, and CA5 are now entitled to interact across the 
domains represented by these CAs. For a purist, such communities are 
defined by the strongly connected component in the directed graph repre­
senting the cross-certification network of trust [DIESOO]. 

Hub-Based Cross-Certification 

Because of the transitivity property exhibited by the cross-certification 
operation in each direction, a common hublike CA can be used to bridge 
a network of CAs, thereby establishing a complete cross-certification grid 
(one in which each CA is cross-certified with each other CA in the net­
work). In this trust topology, every CA is mutually cross-certified with the 
hub CA only. Trust is then disseminated by way of the transitivity prop­
erty. Figure 3.17 depicts this topology. Note that the advantage here is that 
the number of cross-certifications performed in this case is linear in the 
order n of the number of CAs involved, while in the previous case it is in 
the order of n^. 

Hybrid Model 

The hybrid model is a trust scheme that combines the hierarchical and the 
cross-certification methods. A multilevel hierarchy can be the result of merg­
ing of two organizations, while the cross-certification process might be driven 

FIGURE 3.16 An example of a cross-
certification network 
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Hub CA 

FIGURE 3.17 A network of CAs mutually cross-certified through a hub CA 

by the need to extend the trust to a third-party business partner in one 
direction or another. The complexity of a federation formed by a hybrid 
configuration may directly affect the performance of constructing a trust 
path. Implementations may need to optimize path construction by caching 
constructed paths for subsequent uses. Figure 3.18 shows a trust path 
between two communicating entities. The path spans two domains in a hybrid 
scheme of trust. 

Web-of-Trust Model 

The web model evolved with the advent of the SSL as a security protocol 
between two HTTP endpoints, mainly the client browser and a target Web 
server. It uses a more relaxed trust model in which a user can pick and choose 

Cross-certification 

, t . 
•Hierarchical 

FIGURE 3.18 An example of a hybrid trust scheme bridging two entities 
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among the trust anchors that he or she deems worthy of being root CAs. 
An end entity in the web-trust model maintains one or more root CA certifi­
cates in its local environment (the browser's key store, for example). Validating 
a certificate as such consists of finding a trust path to one of the trusted CAs. 
Generally, these trust paths are shallow and in the most part consist of two 
certificates, the end entity's and that of the root CA from the local key store. 
The reason for this is to achieve high performance of the web-based applica­
tions. Figure 3.19 illustrates a web-trust model of completely disjointed CAs. 

A variant of this trust model is defined by the pretty good privacy (PGP) 
web of trust. PGP, which evolved into a family of software, was initially 
developed by Philip Zimmermann as an email encryption program 
[CALL98]. It uses public key encryption for the distribution of strong secret 
encryption keys. The trust scheme in PGP known as the PGP web of trust is 
a simpUstic model founded on the discretionary trust of individuals. There is 
no concept of an authoritative entity that certifies public keys in PGP. An 
individual user generates a public-private key pair that he or she binds to a 
unique identifier usually in the form of (name, emailaddress) and is respon­
sible for its distribution to other individual entities or key distribution serv­
ices. The simplistic information model of PGP certificates is intended for the 
main purpose of securing email exchanges. Each user maintains a set of pub­
lic keys of other individuals deemed trustworthy. Furthermore, a key can be 
signed by a trusting entity and distributed to other individuals. The signing 
entity is referred as an introducer. Trust in the PGP model like in the Internet 
PKI is not transitive. The fact that A trusts B as an introducer and in turn 
B trusts C does not necessarily estabUsh that A trusts C. This basic trust 
scheme has evolved from real-life behaviors. Because PGP has gained popu­
larity mostly as an email encryption tool, its web-of-trust model has naturally 

Local key store 

A A 
A 

FIGURE 3.19 The web-trust model: Discretional trust of certificate authorities 
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evolved along a paradigm that mimics trust in human relationships. For this, 
it is sometimes referred to as a model of the grassroots in which authority is 
equally distributed across all participating entities. 

The PGP web of trust can be modeled by a directed graph G = (N, E) 
where the set of nodes Â  represents the collection of entities participating in 
a PGP web of trust, and edge e GE from entity A to entity B represents the 
fact that A trusts the public key of B. 

Proxy Certificates: Delegated Impersonation in PKI 

Impersonation, the simplest form of delegation, allows an entity A to grant 
to another entity B the right to establish itself as if it were A. In that process 
entity B generally inherits a subset of privileges of A. In computational terms 
entity A may represent an end user, while entity B can be a programming 
agent running on the user's behalf. Similarly, the initiating entity A can be an 
identifiable programming agent as well. The use of inherited privileges can be 
subject to various constraints that may result in what is referred to as 
restricted impersonation, a benefit of which may be to limit damage from a 
potential compromise. Impersonation can be recursively applied along a 
chain of requests, where, for example, a sequence of computing tasks are 
composed then executed in the course of servicing an end-user request. 

Proxy certificates have recently been advanced by the IETF as the mecha­
nism by which chained impersonation can be accomplished in a PKI using 
X.509 certificates. They were originally introduced by the Globus Project 
(www.globus.org) as a means for providing single sign-on and delegation in 
what has come to be known as the grid security infrastructure (GSI), a key ele­
ment of grid computing. 

The main motivation behind proxy certificates appears to be the strong 
requirement imposed in the public-key arena for safeguarding the private key 
associated with a public-key certificate. Excessive use of the private key 
increases the probability of exposure and hence compromise. The proxy cer­
tificate (PC) concept remedies this problem by allowing an entity that initi­
ates a distributed multitasked request to access its private key only once 
during initiation. Processes and tasks involved thereafter all impersonate the 
same initiator yet without having to access its private key. 

The Proxy-Certificate Approach 

A PC is a public-key certificate that conforms to the X.509 profile 
[HOUS99a] and has the following properties: 

• The signer (issuer) of a PC is either a holder of an end-entity certificate 
(EEC) or another PC. A PC-holding entity that issues another PC is a 
participant in an impersonation chain. 

• It contains its own public- and private-key pair, distinct from any other 
certified key pair. 

http://www.globus.org
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• It can be used to sign another PC but not an entity certificate (i.e., an 
EEC). 

• A PC certificate chain must have a signing end-entity root certificate, 
which is a PKC. This underscores the fact that impersonation is con­
trolled by a single delegating entity at the root of the chain. 

• An EEC acting as a proxy issuer must have a nonempty subject name. 
• A PC does not stand on its own in binding an identity to the certificate. 
• A PC inherits its identity from the subject field of a signing end-entity 

certificate. This may possibly be inherited from the subject alternate 
name extension of the EEC. 

• The subject field of a PC is used as a unique identifier in tracing back 
the chain of certificates leading up to the original signer. It does not 
define a new identity by its own. 

Typically, a proxy certificate is generated along a delegation chain. An 
entity B that is authorized to impersonate A generates a public-private key 
pair, forms a PC and signs it using the private key corresponding to its own 
PKC. Similarly, a PC that is received by another entity C, during the authen­
tication of a cascaded request, can be used by C to issue another PC, thus 
further extending the impersonation chain. The entity issuing a PC is called 
a proxy issuer (PI). A PI represents either an end entity or another PC. One 
key difference between a CA signing a certificate and a PI signing a PC is the 
fact that the CA performs a unique key to name binding, while the PI does 
not. Recall that the identity associated with a PC has to be traced back to an 
EEC. Figure 3.20 illustrates an example of an impersonation chain using 
proxy certificates. 

FIGURE 3.20 Proxy certificate chain 
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Elements of the X.509 Proxy Certificate 

A proxy certificate conforms to the X.509 profile. Two elements make this 
profile dynamic and flexible. The first is the specification of optional fields 
that may or not be present in a certificate. The second and the most impor­
tant one is the extensions field intended to be exploited by various PKI-based 
applications. Besides being simply an X.509 PKC, the characterizing elements 
of a PC are described below. 

• The PC extension The PC profile describes a new X.509 certificate 
extension designated to identify a PC and to place constraints on its 
use. This extension, called the ProxyCertlnfo, must be present and 
marked critical in every PC. Its pC field of a Boolean data type must 
be set to TRUE. 

• Naming requirements Because a PC does not represent a name binding 
of its own, it must not contain the issuerAltName extension. The sub­
ject field of a PC must be a sequence of one or more proxy identifiers 
concatenated together. A proxy identifier is a common name (CN) 
attribute and should be unique among all PCs issued by one proxy 
issuer. This characteristic is an important element in tracing back a 
path of a PC chain when evaluating trust. For example, if the proxy 
issuer of a PC is an EEC, the subject field must be one single proxy 
identifier—say, idy When that same PC becomes a proxy issuer, the 
subject field is the concatenation of id^ and id^, where id^ is the unique 
identifier of the PC (the entity that became a proxy issuer). The proxy 
identifier value can be the same as the PC serial number. Finally, the 
subject of PC should be used for path validation only and not for name 
binding or for use in authorization decision for instance. 

• Extended key usage Because a PC inherits the attributes of its issuer, if 
the issuer certificate includes the extKeyUsage extension, then the PC 
must include that same extension. The key contained in the PC cannot 
be used for any purpose for which the issuer certificate is not designated 
for. Key usage in the PC must be a subset of the issuer's key usage. If the 
issuer certificate does not contain the extKeyUsage extension, then 
the PC may or may not include such extension. The criticality of this 
extension must be preserved top down along a chain of PCs. 

• Basic constraints The basic constraints extension that is used to desig­
nate a CA certificate must not have the cA field set to TRUE. 

Computing Trust in Proxy Certificates 

A PC is a representative of some end-user entity with an actual EEC. 
Ultimately, the binding of a PC to an identity has to involve the root 
EEC. Validation of a chain of PCs needs to trace back a PC to an EEC. To 
make the appropriate PCs and the EEC available for path validation, an 
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authentication protocol using a PC may pass the entire PC and EEC chain as 
part of that protocol. 

Computing a PC trust path consists of tracing an issuer name in the PC 
being validated to a subject name in the issuer's certificate until an EEC is 
reached. The EEC, in turn, is subjected to the standard trust-path validation 
that we outlined before to arrive at a trusted root authority CA^, After the 
EEC is validated, its subject name can then be used for authorization pur­
poses. Figure 3.21 illustrates the construction of a PC trust path. 

In computing a PC trust path, the issuerCertSignature part of the 
ProxyCertlnfo extension found in a PC can be used to add accuracy to the 
computed path. The optional issuerCertSignature field, when present, can be 
used during path validation to ensure that each PC path starting with an EEC 
and ending at the PC is unique. If certificate N+l in a certificate path is a PC, 
then issuerCertSignature is used to verify that certificate N is actually the PI 
that issued it and not some other certificate with the same name and public 
key. Without this field, if a PI were to issue two different proxy certificates 
(Pj and P2) with the same subject and public key but different proxy restric­
tions or validity time constraints, then the path-validation algorithm would 
accept a path in which P^ appears as the issuer of a certificate that in reality 
was issued by P^ 

PC 
Proxy-issuer 

FIGURE 3.21 Constructing a PC trust path 
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Attribute Certificates: Entitlement Management in PKI 

An X.509 PKC is signed and issued by a CA. It binds an identity with a pub­
lic-private key pair. An attribute certificate (AC) is a data construct that is 
similar to a PKC; it is signed and issued by an attribute authority (AA). The 
main difference between a PKC and an AC is that an AC contains no public 
key. Instead, an AC carries with it a set of attributes associated with its 
holder. These attributes may specify privileges in the form of group member­
ship, roles, a security clearance, or any information profiling its holding user. 
In essence, an AC binds a user with a set of authorization attributes, capa­
bilities, or in general terms a profile. 

Authorization attributes of an entity can be placed in the extensions field 
of its PKC. The key arguments against this proposition stem first from the 
fact that certificate extensions are intended for describing certificates and 
thus expressing user attributes in certificate extensions overloads the seman­
tics of X.509 extensions. The second argument is due to the difference in life­
time between a PKC and an AC. Given that a PKC binds its holder with a 
public key, its validity period is likely to outlast the lifetime of an AC. User 
entitlements are much more of a dynamic nature and are constantly subject 
to change. In contrast, a PKC is likely to remain unchanged and valid for a 
long period of time. Extending a PKC to include user privileges therefore 
may increase the cost and complexity of managing the underlying PKI. 

Elements of Attribute Certificates 

Among pieces of key information contained in an AC is a set of user attrib­
utes, a validity period, and a signature certifying the integrity of the AC and 
establishing the authenticity of its issuing authority. Except for the signature 
information, all attributes are encapsulated in the AttributeCertificatelnfo 
data type as expressed by the ASN.l notation of Figure 3.22. 

Binding Information 

To enable an AC verifier to assert trust, AC binding information defines the 
association between an AC, its issuer, and its holder. The following data fields 
represent this binding: 

• Issuer The issuer of an AC is represented by its X.500 distinguished 
name. All AC issuers must have nonempty distinguished names. It is up 
to the AC verifier to appropriately map the issuer name to a PKC for 
the issuer before asserting trust. 

• Holder In an environment where the AC is passed in an authenticated 
message or a protocol session in which authentication is based on the 
use of X.509 PKCs, such as is the case with TLS/SSL, the holder field 
should contain the holder's PKC serial number and issuer (it asserts the 
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{-- the signed portion 

AttributeCertificatelnfo 

Version 
Holder 
Issuer 

Signature 

SerialNumber 

AttrCertValidityPeriod 
Attributes 

IssuerUniquelD 
Extensions 

} 

Signature algorithm 

Signature value 

::= SEQUENCE { 

v2, 
Holder, 
AttCertlssuer, 

Algorithmldentifier, 

Certificate Serial Number, 

AttCertValidityPeriod, 

SEQUENCE OF Attribute, 
Uniqueldentifier OPTIONAL, 
Extensions OPTIONAL 

xxxxxxxxxxx 

xxxxxxxxxxxxxx 

FIGURE 3.22 Elements of the X.509 v2 attribute certificate 

holder in way analogous to establishing its security context). The 
holder can also be expressed as the subject name or the subject alter­
nate name from its corresponding PKC. This binding leads to estab­
lishing an authenticated security context in which the AC can be used 
to perform authorization checks. 

• Serial number The serial number assigned to the AC. For any con­
forming AC, the (issuer, serial number) pair must be unique. 

Attribute Information 

This field contains a sequence of uniquely identifiable attributes. Each con­
tains a set of key-value pairs. Privilege attributes that are designated for use 
in access control form the basis of an AC. At least one attribute must be pres­
ent in an AC. Evidently the absence of attributes altogether defeats the basic 
purpose of an AC. To foster interoperability across various security domains, 
a number of AC attributes have been standardized. The following is a brief 
description of some of them: 

• Service authentication information This attribute identifies the AC 
holder to a target service by name. It may also include optional service-
specific authentication information. Typical application of this attribute 
is to communicate the holder's identity and password to a legacy appli­
cation service. An encryption scheme is likely to be used to provide 
for the security of the password. The use of the target service's public 
key to encrypt such information lends itself well for the protection of 
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• 

authentication information. As shown in Figure 3.23, the verifier of an 
AC, a target service, first establishes the trust path to the holder's PKC. 
It then uses its private key to decrypt any authentication information. 
The latter can be passed to a legacy application that is based on such 
authentication information to establish the identity represented by this 
attribute. 
Charging identity This attribute identifies an identity that can be used 
by the AC holder for charging purposes. Such attribute can be 
exploited by a billing service for example. 
Role Used to specify a role that the AC holder is capable of assuming. 
Additionally, it may specify the name of the authority issuer of the role 
specification as a reference. 
Clearance It carries clearance information associated with the AC 
holder. This attribute can be exploited by systems enforcing multilevel 
security. The clearance is scoped within an associated policy identifier 
field in which the semantics of the clearance are defined. 

A Note About AC Attributes 

The data types used to describe an attribute are designed to provide a high 
degree of flexibility and extensibility through a parameterization that 
describes an attribute as a (type, value) pair expressed by the following ASN. 1 
syntax [BENA02]: 

PKC of AC issuer 

Public key 

PKC of AC holder 

Public key 

AC holder 

Service authentication information: 
(target service, identity, encrypted 

^(password)) 

Service PKC 

Public key 

Legacy 
application 

FIGURE 3.23 View of trust verification elements for an AC and its service attributes 
protected using the PKC of the service 
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Attribute :: = SEQUENCE { 
type AttributeType, 
values SET OF AttributeValue 
— at least one value is required 

} 
A t t r i b u t e T y p e : : = OBJECT IDENTIFIER 
AttributeValue :: = ANY DEFINED BY AttributeType 

The extensibility of AC attributes is due to the opacity of an attribute's value 
with respect to the structure of the AC itself Entities can exploit an attribute 
embedded in an AC only when they are capable of interpreting both its type 
and value—of course, provided they are also able to verify any trust elements 
associated with that attribute. The syntactic and the semantics scope of AC 
attributes is unbounded and thus can be exploited by various applications. 

Extensions 

Although most PKC extensions provide information about the certificate 
itself instead of its holder, some extensions defined for ACs provide a way for 
associating additional information with holders. Below we enumerate some 
of the AC extensions relating to identity management and trust: 

• AC targeting An AC may be designated for use by a specific target 
entity. The AC targeting extension is intended for that purpose. Target 
information may specify multiple services. Relying parties not explicitly 
named in this extension must reject the AC. This targeting information 
can be useful in the transactional web. The absence of this extension is 
an indication that the AC can be used by any relying party. 

• Audit identity To satisfy cases where data privacy laws, for example, 
require that audit trails not reveal or even contain records that identify 
individuals, an audit identity extension can be added to an AC. This 
extension allows the logger of an audit trail to use an identity designated 
by the value of this extension. This value along with the AC issuer name 
or the AC serial number should be used for audit or logging purposes 

• Trust-related extensions By this we mean not one specific extension but 
a set of AC extensions relating to the evaluation of trust in an AC. 
These are all defined by the X.509 v3 certificate profile [HOUS99a]. 
The first is the authority-key identifier, which can be used to assist the 
AC verifier in validating the signature of the AC. The second is the 
Authority-information access, and the third is the CRL distribution 
points. Both of these can be used by a relying party to verify the revo­
cation status of the AC. 

Generalized Web-of-Trust Model 

The web-of-trust scheme that we discussed under the public-key models can 
be generalized as a mechanism by which heterogeneous cross-enterprise 
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identity models are joined in a federated web. The building block of this fed­
eration is the trust relationship that can be established across heterogeneous 
identity and trust-management systems using secure network-authentication 
protocols, some of which we have previously discussed. The trust protocols 
used can be negotiable between each of two domains entering into a rela­
tionship as such. Trust can be one-way or mutual. The potential advantage 
of this comes from the incremental weaving of trust across domains that 
builds on existing heterogeneous trust and identity management schemes 
that may exist in each participating domain. The basic element of trust here 
relies on the principal of trust by introductions in which entity A that trusts 
entity B may also trust entities presented to it by B, provided A establishes a 
trust relationship with B in a secure and verifiable manner. 

Federated domains that are based on the generalized web-of-trust model 
that we propose are characterized by the following: 

• Cross-domain identity-management systems are joined through a nego­
tiated trust mechanism in which an agreed on authentication and trust 
protocol is used. Authentication is performed between agents of two 
domains entering in a trust relationship. The direction of trust (one-way 
or mutual) is based on the policies of the participating domains. 

• Subjects are registered to their, respective, generally local domains. 
Subject authentication and profile management is performed with its 
domain of registration only. 

• Subjects authenticate to their respective domain of registration but can 
seamlessly access services and resources managed by other domains via 
the trust relationships established across these domains. 

• Identity profile information can be used across domains that have 
established trust relationships, provided its syntax and semantics are 
similarly interpreted. Translation of profile information in any direc­
tion can be performed by gateways local to each domain. 

• Identity information of a subject remains attached to its original 
domain of registration as it is passed across domains. The identity of 
the home domain is attached to this information as it is passed across 
domains with established trust relationships. 

• Secure transports such as those based on strong cryptographic chan­
nels are required for exchanging profile and identity information. 
These channels depend on the trust scheme adopted between each two 
domains. 

Figure 3.24 illustrates this concept of the generalized web of trust, which 
can be modeled by a directed graph where the edge directionality represents 
trust (i.e., edge (x, y) represents trust of y by x). The transfer of profile infor­
mation for subject s is shown across three domains. 

Transitive trust may be used at the discretion of the security policies 
implemented by each domain. Domain A that enters into a trust relationship 
with domains B and C may apply the transitive trust policy with domain B 
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2. Profile 
attributes 
for subject s 

3. Profile 
attributes 
for subject s 

1. Profile 
attributes 
for subject s in 
home domain 

FIGURE 3.24 An example of the generalized web of trust model federating five 
domains 

but not ŵ ith domain C. Once a trust relationship betw êen domains A and B 
is designated as transitive, all domains reachable through B for example can 
be trusted by A. Similarly, the depth of such transitive trust can be limited if 
so desired. Figure 3.25 illustrates an example of a generalized web-of-trust 
model in ŵ hich trust relations are all transitive. Trust paths in this case cor­
respond to the transitive closure of the graph representation. 

Examples of Trust-Exchange Mechanisms over the Web 

Web services are at the leading edge of deploying highly distributed softv^are 
components that can be published, discovered, and invoked seamlessly. They 
build on two of existing technologies, HTTP and XML, which are widely 
accepted and expected to dominate computing at least in the foreseeable future. 
Due to the higher level of abstracting the programming components of 
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FIGURE 3.25 Graph representation 
of a web of trust across six heteroge­
neous domains adopting the transi­
tive trust policy. The resulting 
transitive closure matrix is shown 

netv^ork computing, web services appear to lay the foundation for composing 
service elements together to provide complex services. This composition capa­
bility may potentially revolutionize computing. It has all the aspects of achiev­
ing seamless web navigation in a way analogous to what users have experienced 
with the advent of manual navigation of the Web through browsers. Such com­
posite computations over the seemingly unbounded frontiers of the Web fur­
ther highlight the need for strong and reliable computational trust. 

We look at three emerging mechanisms for the exchange of security con­
structs to enable trusted and secure Web computing, all of which are com­
plementing each other. The first is a method for exchanging trust enabling 
constructs on Web service calls, web services security (WS-Security). The sec­
ond one is a standard method for how to express trust and identity constructs 
in the computing web, the security assertion markup language (SAML). The 
third one represents a way to establish security sessions between a client and 
a remote service, Web cookies. A programming model in which these three 
techniques are used together expresses trust elements using SAML; trans­
ports the SAML statements using WS-Security and then maintains a session 
using Web cookies that contain SAML constructs. 

Web'Services Security 

Recently IBM, Microsoft, and VeriSign, Inc. have cooperated on the devel­
opment of a Web-services security (WS-Security) specification submitted to 



Examples of Trust-Exchange Mechanisms over the Web 113 

the Organization for the Advancement of Structured Information Standards 
(OASIS) [OASI03]. Web services are at the leading edge of deploying inte­
grated Web softv^are components that can be published, discovered, and 
invoked seamlessly. Furthermore and due to their higher level of abstraction, 
Web services appear to lay the foundation for composing service elements 
together to provide complex services. This composition capability may poten­
tially revolutionize computing. It has all the elements of achieving seamless 
Web navigation in a way analogous to ŵ hat users have experienced since the 
advent of manual Web navigation driven through the end-user brov^ser. Such 
composite computations over the seemingly unbounded frontiers of the Web 
further highlight the need for computational trust that can be established 
with reliability. 

WS-Security is an attempt to retrofit security in the design of the Web-
services protocol referred to as the simple-object access protocol (SOAP). It 
builds on existing mechanisms to generate security tokens for use across 
SOAP interlocutors referred to as actors. Data transfer in SOAP is based on 
exchanging XML documents. From a high perspective, such documents all 
adhere to a well-defined XML schema [W3CO02a] that governs the structure 
of SOAP messages. This structure consists of an enclosing envelope within 
which are nested zero or more control headers, followed by one body con­
taining the application-level message payload. 

Because WS-Security is an attempt to fit security into an already specified 
Web-service document format, the header portion of the document seems 
like a natural fit. The header element <Security> provides a means for attach­
ing security-related information that can be targeted for a specific receiving 
entity. The latter can be an intermediate node traversed by the Web service or 
some other endpoint target. 

A SOAP message can have multiple < Security> elements embedded in its 
header. Each of such elements may be designated to target a particular 
receiver specified through the Sractor attribute. Security information targeted 
to different receivers is required to appear within different <Security> ele­
ments. The omission of a Siactor attribute from a security element indicates 
that it is intended for consumption by all intermediate hopes of the message 
including the endpoint. Only one <Security> header block can omit the 
Siactor attribute, and no two elements can have the same Siactor attribute. 
This enforces a consistent rule in which security information that is targeted 
to all recipients or that is intended for a specific target is all structured respec­
tively in a single <Security> element. 

Security elements can be dynamically added to a Web-service message as 
it navigates the Web. Figure 3.26 depicts two examples of embedding secu­
rity information within the <Security> elements of a SOAP message. In A 
we illustrate an acceptable syntax in which two <Security> elements are 
inserted, one targeted to a specific SOAP actor, while the second one is 
intended for all recipients. In B we show an invalid insertion syntax caused 
by having two <Security> elements targeted for consumption by all 
recipients. 
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<S:Envelope> 
<S:Header> 

<SecurityS:actor="weburi" 
S:mu s tUnde r s tand="TRUE"> 

</Security> 
<Security S:mustUndertsand="TRUE"> 

</SecuritY> 
</S:Header> 

</S:Envelope> 

B 
<S:Envelope> 

<S:Header> 

<Security S:mustUndertsand="TRUE"> 

</Security> 
<Security S:mustUndertsand="TRUE"> 
</Security> 
</S:Header> 

</S:Envelope> 

FIGURE 3.26 Inserting security elements in a SOAP message 

As subelements are incrementally added to the <Security> header block, 
they are prepended to existing ones. The header therefore is an ordered 
sequence of elements combining security tokens, XML signatures, as well as 
encryptions. The processing of the security elements by a recipient is likely to 
be performed in accordance to this sequencing rule where no forward 
dependency across security subelements is permitted. When a subelement 
refers to a key placed in another subelement, the security token containing 
the key should be prepended following the subelement using that key. An 
example of that is a key-bearing subelement that contains an X509 certificate 
used for a signature. The X509 token in this case should be prepended fol­
lowing the signature subelement. 

The security mechanisms that can be used in WS-Security may span tech­
nologies ranging from simple user identifier and password to more sophisti­
cated constructs such as X.509 certificates and Kerberos tickets. Security 
elements may also contain signatures and encryptions computed over partic­
ular elements of the exchanged SOAP document. They also provide a natu­
ral transport for SAML assertions that can be attached to Web-services 
requests. We discuss the details of SAML shortly. 
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Identity and Trust Tokens 

WS-Security provides an extensibility mechanism that can be exploited to 
embed any type of identity token. Three specific types of tokens are currently 
defined. You may attach a simple user-identifier token that consists of a user 
name and password, an X.509 v3 certificate, or a Kerberos v5 ticket. The 
types of tokens that can be used are classified in two categories: simple user-
name tokens and binary tokens. 

Simple User Name Token A user name token has the following XML structure: 
<wsse:Security> 

<UsernameToken Id =". . ."> 
<Usernaine> 

</Usernaine> 
<Password Type =". . ."> 

</Password> 
</UsernameToken> 

</wsse:Security> 

The ID attribute can be optionally used to label the token. Username is a 
required element that specifies the identity of the token holder. The optional 
password element is intended to establish Username. Password information 
includes a type and a value. Protecting the password may require at least 
some level of transport security. Two formats for the password are currently 
defined by the optional Type attribute: a plaintext form and a bse64 encod­
ing of the SHA-1 digest of the UTF8-encoded password. 

Binary Tokens Binary tokens provide a way to embed cryptographic iden­
tity and privilege tokens in the security header block of a soap message. The 
parameterization of these tokens is based on two factors. The first one 
defines the type of encoding used. This allows the token to be handled appro­
priately. Two encoding types are currently specified: 

• Base 64 encoding (wsse:Base64Binary) and 
• Hex encoding (wsse:HexBinary). 

The second parameter defines the type of the token's value. Three such types 
have been defined: 

• X509 v3 certificate (wsse:X509v3), 
• Kerberos v5 TGT (wsse::Kerberosv5TGT), and 
• Kerberos v5 service ticket (ST) (wsse:Kerberos5ST). 

wsse is the name space defined specifically for WS-Security. An X.509 cer­
tificate and its data components such as the public key can also be embedded 
in a <ds:KeyInfo> element defined by the XML name space of the digital 
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signature standard [W3CO02b]. Below is an example illustrating the inclu­
sion of an X509 v3 certificate as a binary security token within a <Security> 
element. 

<wsse:Security> 

<wsse:BinarySecurityToken 
xmlns2wsse="http://Schemas.xmlsoap.org/ws/2002/04/secext" 

Id="myX509Token" 
ValueType="wsse:X509v3" 
EncodingType="wsse:Base64Binary"> 
MITEZzIQEmt9CgCCAJZ0cqr5ihk... 

</wsse:BinarySecurityToken> 

</wsse:Security> 

Referencing Security Tokens A token may be embedded in a security ele­
ment by reference instead of value. Referencing a security token consists of 
specifying a URI for its location. The token can then be pulled by a relying 
party. This approach affords the advantage of having to marshal less data on 
a Web-services request. The following XML snippet illustrates the syntax of 
specifying tokens by reference: 

<SecurityTokenReference 
Id="..."> 

<Reference ÜRI="..."> 
</Reference> 

</SecurityTokenReference> 

SAML Approach: Unifying Trust and Identity Constructs 

The security markup language (SAML) is an evolving standard that defines 
the syntax and semantics for XML-encoded statements that represent secu­
rity assertions about a user or some programming entity [OASI02]. 
Assertions can be constructed by an initiating entity or can be acquired from 
a third party and presented to another entity where they are validated based 
on a predefined trust model. The unifying approach undertaken in SAML 
stems first from its generality and second from the fact that it represents a 
higher level of abstraction above any underlying security mechanisms, trust 
paradigms, transport, or the security protocols being used. Furthermore, 
SAML can be applicable irrespective of the trust model adopted whether 
it is a two-party or a third-party scheme. It lends itself to forming trust 
federations as assertions may span a large web of network endpoints and 
intermediaries. 

With SAML, security decisions are not computed based on the traditional 
security context established by a controlling process in which an application 

http://Schemas.xmlsoap.org/ws/2002/04/secext
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executes. With SAML, an application acts as a container and provides a 
conduit for the security context associated with the underlying entity. This 
context therefore becomes exposed to the transaction level as opposed to the 
traditional paradigm in w^hich contexts are managed and kept by control pro­
grams. Being part of the transaction's constructs, a SAML context follov^s 
the netv^ork routes taken by a Web application. As such, the flow of SAML 
constructs over a network may follow an arbitrary topology dictated only by 
the chain of requests with which they are associated. The depth of such 
request chains can be unbounded. 

The vision of the network as a computer has indeed arrived with the fed­
erated Web-based applications that can be limited only by the scope of the 
Internet. The seamlessly unbounded journey of a network service request 
requires single sign-on of the initiating endpoint and transparent forwarding 
of user trust elements, such as authentication and authorization credentials. 
Furthermore, an adaptive dissemination of the user's profile elements that 
can be enforced by a dynamic and adaptive security policy is a key require­
ment for privacy control. 

The SAML approach defines three types of identity management and trust 
assertions: 

• Authentication The subject specified by the assertion was authenticated 
by a particular mechanism at a particular time. Authentication asser­
tions merely state acts of authentication that happened in the past. 

• Authorization The specified subject is either allowed or denied access to 
a particular resource. 

• Attribute The specified subject is associated with the list of attributes 
provided in the assertion. Attribute elements define what is commonly 
known as a user profile. 

An assertion may optionally be accompanied by one or more conditions 
constraining its validity. Assertions have a nested structure in which an outer 
generic element provides information common to all assertions. A series of 
inner elements representing authentication statements, authorization deci­
sion statements, and attribute statements all describe the specifics of the 
assertion. Instead of duplicating the statements issued via other assertions, 
one assertion may simply refer to those assertions via their unique identifiers 
(e.g., by a URI). Entities consuming assertions with external references to 
other assertions are responsible for resolving and validating those references 
as well as the assertions that they contain. 

To broaden the scope of SAML and make it independent of any particular 
trust model, the concept of a SAML authority is introduced. SAML asser­
tions are issued by SAML authorities that are distinguished based on the type 
of assertions they can issue. A SAML authority can be an authentication 
authority, an authorization authority, or an attribute authority. This distinc­
tion is conceptual and logical but is not necessarily physical as all types of 
assertions can be issued by a single authoritative entity. SAML distinguishes 
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among three actors—a requester, a relying party, and an authority. The rely­
ing party is the entity that consumes and validates SAML assertions. The 
requester is the entity responsible for initiating the acquisition of assertions. 
A requester may also be considered a relying party, and thus one might 
broadly distinguish two main entities: an asserting party (an authority) and a 
relying party (consumer of SAML assertions). Figure 3.27 provides a concep­
tual view of the relationships across SAML entities. A dotted arrow linking an 
assertion type with a SAML authority indicates that the authority makes use 
of the assertion to issue new assertions. For instance, an authorization author­
ity requires one or more authentication assertions to issue one or more 
authorization-decision assertions. 

SAML authorities rely on various information sources to issue assertions. 
Most important, an external registry containing policy information may be 
consulted by an authority before an assertion is formulated. Additionally, 
SAML authorities may rely on previously issued and verified assertions to 
compute new ones. Requesting entities send existing assertions to SAML 
authorities when acquiring new assertions. Similarly, a SAML authority may 
pull referenced assertions from specified network URIs. In that respect, 
SAML authorities consume and produce assertions at the same time. On the 
other hand, clients, requestors, or relying parties can only be consumers of 
SAML assertions. 
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FIGURE 3.27 A conceptual view of the relationships across SAML entities 
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In addition to the syntactic and semantic definition of assertions, SAML 
defines a basic request and response protocol for the acquisitions of assertions. 

SAML Constructs 

Computations in SAML are performed over assertions. Each assertion is 
composed of a nonempty set of XML statements characterizing a particular 
subject with a temporal fact, such as an act of past authentication, an attrib­
ute, or a decision on whether access is allowed to a specific resource. The fol­
lowing is a discussion of major data elements of SAML. 

Assertion An assertion is described by AssertionType, which is an XML 
complex type. This type specifies the basic information that is common to 
every assertion including the following attributes: 

• MajorVersion A required attribute designating the major version of 
this assertion, 

• Minor Version A required attribute indicating the minor version of this 
assertion, 

• AssertionID A required attribute uniquely identifying this assertion (a 
URI, for instance, can be used for such identification) 

• Issuer A required attribute that unambiguously identifies the SAML 
authority that issued this assertion (an issuer might be identified by a 
URI), and 

• Issuerlnstant A required attribute specifying the time of issue in UTC. 

Conditions This is an optional element that adds constraints to an asser­
tion. The use of the assertion is subject to the constraints specified in this ele­
ment. For example, a time constraint may set the validity of an assertion to 
some future time. Similarly, the validity of an assertion may be set to expire 
after a specified time. 

Advice An optional element containing additional information that aids in 
processing an assertion. 

Signature An optional element for marshalling XML signatures. 

Statement This defines an extension point allowing the derivation of other 
statement constructs by an assertion-based application. 

Subject Statement Defines an extension point from which other subject-
related statements can be derived by various assertion-based applications. It 
contains a <Subject> element that defines a single entity associated with the 
statement. <Subject> encompasses two other elements: <NameIdentifier>, 
which identifies the subject by name and security domain, and an optional 
<SubjectConfirmation> element, which contains authentication information 
establishing <NameIdentifier>. 
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Authentication Statement This element is used by an issuing authority to 
indicate that the subject of the statement was authenticated by a particular 
authentication method and at a particular time in the past. An example of 
such assertion is shown below: 

<sainl:assertion MajorVersion="1" MinorVersion="0" 
AssertionID="128.9.164.32.132547698" 
Is suer="Company.com" 
IssuerInstant="2003-04-26Tll:03:OOZ" 
<saml:Condition 

NotBefore="2003-04-26Tll:03:00Z" 
NotAfter=""2003-04-26Tll:10:00Z" 

<saml:AuthenticationStatement 
AuthenticationMethod="pas sword" 
AuthenticationInstant= 
''2003-04-26Tll:03:00Z" 
<saml:Subject> 

SecurityDomain="Company.com" 
Name="JohnDoe" 

</saml:Subject> 
< /s ami:AuthenticationStatement> 

</sami:As sert ion> 

Authorization Decision Statement This element provides a statement by the 
issuer to the fact that the named subject is granted or denied access to a 
resource which is unambiguously specified by means of a URL An example 
of an authorization decision assertion is shown below: 

<saml:assert ion MajorVersion="l" MinorVersion="0" 
AssertionID="129.9.164.32.132547690" 
Is suer="Company.com" 
IssuerInstant="2003-04-26Tll:03:OOZ" 
<saml:Condition NotBefore="2003-04-26Tll:03:OOZ" 

NotAfter="2003-04-26T12:10:OOZ" 
<saml:AuthorizationDecisionStatement 

Dec i s ion="Permit" 
Resource="http: / /Travel .com/Servlet /reserve" 

<sami:Action 
Namespace="http://WellknownURI"> 

Execute 
</saml: Act ion> 
<saml:Subject> 

<saml: Nameldentif i e r 
SecurityDomain="Coitpany. com" 
Name="JohnDoe" 

</saml :NameIdentif ier> 
</saml:Subject> 

< / s ami:AuthorizationDecisionStatement> 
</saml:Assertion> 

http://Travel.com/Servlet/reserve
http://WellknownURI
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Attribute Statement This element underscores a statement by the issuer that 
the specified subject is associated with the attributes indicated. The following 
is an example of an attribute assertion: 

<s ami:as s e r t i o n Maj orVers ion="1" MinorVers ion="0" 
AssertionID="130.9.164.32.132547691" 
Issuer="Company.com" 
IssuerInstant="2003-04-26Tll:03:OOZ" 
<saml:Condition NotBefore="2003-04-26T13:03:OOZ" 

NotAfter=""2003-04-26T13:10:OOZ" 
<saml: AttributeStatement 

<saml:Subj ect> 
SecurityDomain="Company.com" 
Name="JohnDoe" 

</saml:Subject> 
<saml:Attribute> 

<saml:AttributeDesignator> 
AttributeName="Department" 
AttributeNamespace="http://Company.com" 
</saml:AttributeDesignator> 
<saml: AttributeValue> 

Sales 
</saml:AttributeValue> 

</saml:Attribute> 
</saml: AttributeStatement> 

</sami: As sert ion> 

Note how attributes are parameterized by names. This parameterization 
exemplifies the degree of flexibility in SAML. Furthermore, the name of an 
attribute is accompanied with a URI for the namespace in which the attrib­
ute is defined. Thus the semantics of an attribute is resolved to its defining 
source, which prevents ambiguity and collisions. 

Trust Elements of SAML 

SAML assertions are consumed by relying entities to establish subject identi­
ties and confine the use of resources to predefined policies. Affirming such 
assertions manifests itself through trust relationships that can be established 
between a relying party and the authority issuing the assertion. Trust estab­
lishment and verification in SAML is based on various constructs expressed 
through SAML assertions. In the following, we enumerate the major such ele­
ments that contribute to trust. 

Digital Signatures The XML element <ds:Signature> may optionally be 
part of an assertion. When present, it represents an XML digital signature 
computed over the statements carried by the assertion. An assertion signed 
by an asserting party (AP) such as a SAML authority provides support for 

http://Company.com
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the integrity of the assertion, its authenticity, and possibly allows for nonre-
pudiation when a tamper-proof public-key mechanism is used. An assertion 
can also be part of a request message made to a SAML authority. Likewise, 
the signature over the assertion in this case supports data integrity, origin 
authenticity, and possibly nonrepudiation between the message originator 
and the destination authority. 

User Confirmation A <SubjectStatement> contains a <Subject> element 
used to describe an active entity. In turn, the <Subject> element consists of 
two nested elements: <NameIdentifier>, which specifies a subject by name in 
accordance with a particular naming scheme such as in X.509 [HOUS99a], or 
an email address based on IETF RFC2822 [RESNOl]. The second element is 
<SubjectConfirmation>, used to provide data allowing the subject to be 
authenticated. This element may encapsulate any authentication token or cre­
dential that can lead to establishing the named identity. 

Authority Binding Information The <AuthorityBinding> element may 
optionally be part of an authentication statement. It can be used to indicate 
to a relying party that a SAML authority may be available to provide addi­
tional information about the subject of an assertion. This authority is speci­
fied by location and through its supported protocol binding. 

Authorization Evidence An authorization statement may optionally contain 
an <Evidence> element that carries an assertion used by the issuer in mak­
ing the authorization decision. This assertion can be specified either by value 
or by reference. Authorization evidence may also be supplied by an entity 
requesting an authorization decision from a SAML authority. 

Other Trust Elements of SAML 

Other elements of trust in the SAML definition for an assertion include the 
name of the issuer <Issuer>. A name in the form of a URI allows a relying 
party to inquire further information about the subject of the attribute to ver­
ify a particular trust relationship. The time of issuance of the assertion 
<lssuelnstant> as well as a validity interval as defined by the <Condition> 
element allow for the timely usage of an assertion. Additionally an <Advice> 
element may encompass further trust-related information about the assertion. 

A Note on Federated Trust in SAML 

Federated SAML authorities are expected to play a key role in the prolifer­
ation and success of the SAML constructs over the Internet. Forwarding 
SAML authentication and authorization assertions across security domains 
without re-authentication requires the existence of a well-defined trust 
across participating SAML authorities. SAML in itself has not introduced a 
new federated trust paradigm; rather, it relies on existing models of trust 
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such as those based on PKI or Kerberos for instance. Trust verification in 
this case will ultimately involve the low -̂level mechanisms producing the 
SAML constructs. 

Web Cookies 

The HTTP protocol that made the World Wide Web a household name is 
stateless and simple. The statelessness of HTTP precludes the need for man­
aging persistent sessions and all the complexities that may arise thereof. Users 
connect anew and identify themselves whenever needed, each time they nav­
igate a Web link even with the same server. Although they face a number of 
reliability and security issues, cookies were invented as an ad-hoc mechanism 
to establish continuity and sate on the Web. Cookies are data constructs that 
are initially sent from a Web server to the client's browser environment, 
referred to as a user agent and subsequently exchanged between the browser 
and Web servers visited by the user. They can serve many purposes from the 
basic functions of keeping track of the display mode that a user selects (e.g., 
graphic frames or text only) to representing the current state of a shopping 
cart for a Web store buyer. The concept of cookies is an interesting one in 
that it simplifies managing HTTP states by involving the client yet in a seam­
less manner. An end user is generally unaware of cookies placed in his or her 
machine. The server maintains no state constructs in its runtime except for 
when they arrive through client cookies. The server is said to forget about the 
client until the latter reminds it of who he or she is. 

Structure of Cookies 

Cookies have a flat data structure that is simple and easy to manipulate. 
A cookie is a sequence of attribute name and value pairs as defined in the 
IETF RFC 2965 [KRISOO]. A few control attributes are introduced by the 
standard. The most important aspect, however, is the generality of attribute-
value pairs that can be marshaled into a cookie. Application-level attributes 
can be arbitrarily defined as indicated by the following syntax: 

av-pairs = av-pa i r (" ; " av-pair)* 
av-pair = attr ["=" value];optional value 
attr = token 
value = token | quoted-string 

Attribute names, instances of attr, are case-insensitive. WTiile the above 
syntax shows value as optional, evidently most attributes will have values 
associated with them. Figure 3.28 illustrates the structure of a generic cookie. 

Server Role 

A server application that needs to establish a cookie-based session with a par­
ticular client returns cookie information in the HTTP response header pre­
ceded with the label of "Set-Cookie2" as shown by the syntax below. 
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Attr1 = valuel Attr1 = value2 • • • AttrN = value N 

FIGURE 3.28 Generic structure of a Web cookie 

s e t - c o o k i e 
cookies 
cookie 
NAME 

VALUE 

s e t - c o o k i e - a v 

p o r t l i s t 
portnum 

"Se t -Cookie2 :" cookies 
l#cookie 
NAME "=" VALUE(";" s e t - c o o k i e - a v ) * 
a t t r 
va lue 
"Comment" "=" va lue 
'TommentURL" ' '=" <"> http_URL <"> 
"Discard" 
"Domain" "=" va lue 
"Max-Age" "=" va lue 
"Path" "=" va lue 
"Po r t " [ "=" <"> p o r t l i s t <"> ] 
"Secure" 
"Version" "=" 1*DIGIT 
l#portnum 
1*DIGIT 

The Set-Cookie2 response header comprises the token Set-Cookie2: fol­
lowed by a Hst of one or more comma-separated cookies. In turn, each cookie 
begins with a required NAME=VALUE pair representing the cookie name, 
followed by zero or more semicolon-separated attribute-value pairs. Among 
the standard control attributes we point out the following list, which is to 
some degree relevant to the security and reliability of the cookie mechanism: 

• The optional Path attribute specifies the server URLs for which the 
cookie is applicable. 

• The optional Port attribute restricts the ports to which a cookie may be 
returned by a client in an HTTP request header. 

• The optional Secure attribute (with no value) indicates that the cookie 
is secure. The security level or mechanism by which the cookie is pro­
tected is unspecified and remains application-specific. When the client 
sends a "secure" cookie back to the server, the level of security as indi­
cated by the server should not be downgraded. 

• The presence of the optional Domain attribute specifies the domain 
name for which the cookie is valid. Generally, the domain of the server 
is the one specified, although cookies can also be generated by one 
server and consumed by another server located in a separate domain. 
This attribute is a bit of information that can be used to further extend 
the generation and consumption of cookies across federated domains. 
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• The optional attribute Max-Age represents the lifetime of the cookie 
in seconds. A value of zero means the cookie should be discarded 
immediately. The absence of this attribute can be interpreted as repre­
senting an indefinitely valid cookie. 

• The optional attribute of Discard is used to instruct the client program 
(the browser, for example) to discard the cookie unconditionally when 
it terminates. 

• The optional attribute of CommentURL is used by the server to 
inform the client of any privacy-related information as well as the 
intended use of the cookie. The client agent should give opportunity to 
the user to inspect this information before he or she initiates a request. 

Client Role 

When a client wishes to continue interacting with a server, it returns cookie 
information in the HTTP request header based on the Set-Cookie2 data that 
it had received. The cookie header sent from the client to the server adheres 
to the following syntax. 

cookie = "Cookie:" cookie-vers ion 1 

{ ( " } " I ", ")* cookie-value) 
cookie-value = NAME ''=" VALUE [";" path] ["}" domain] 

["}" port] 
cookie-vers ion = ''$Version" "=" value 
NAME = attr 
VALUE = value 
path = "$Path" "=" value 
domain = "$Domain" "=" value 
port = "$Port" [ "=" <"> value <"> ] 

Attributes values returned by the client reflect those sent by the server 
through Set-Cookie2. 

Cookies already stored at the client side can be sent to the server based on 
the following: 

• The host and port designated by the request, 
• The URI of the request, and 
• The age of the cookie. 

Example: Cookies Exchanged Between a Client and a Web Server 

The following steps illustrate cookies exchanged between a client and a web 
server presented through a fictitious URL of http://www.webstore.com. It is 
assumed that the client has no stored cookies for the server and he just vis­
ited the home of webstore.com that displays a login form. The client fills and 

http://www.webstore.com
http://webstore.com
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then submits the form. The server receives client log on information and 
processes it. Subsequent interactions between the client and that same server 
result in the following exchange of cookies. 

Server —> User 

Set-Cookie2:Customer="JohnDoe";Version="1"} Path="/webstore" 
Cookie identifies the client. 

User -> Server User selects an item to order. 

Cookie: $Version="l"; Customer="JohnDoe"; $Path="/webstore" 
[form data] 

Server —> User Shopping basket contains an item. 
Set-Cookie2: Part_Number="Diesel_Engine_l01"; 
Vers ion="1";Path="/webstore" 

User —> Server User selects shipping method from form. 
Cookie: $Version="1";Customer="John Doe"; $Path="/webstore"; 
Part_Number="Diesel_Engine_l01"; $Path="/webstore" 
[form data] 

Server —> User New cookie contains shipping method. 
Set-Cookie2: Shipping="UPS"; Version="l"; Path="/webstore" 

User—> Server User chooses to process order. 
Cookie:$Version="1"; Customer="JohnDoe; 

Part_Number="Diesel_Engine_l01"; 
$Path="/webstore";Shipping="UPS"; 
[form data] 

Server —> User 
Transaction i s coitplete. 

Issues with Use of Cookies 

The concept of cookies is controversial in a number of aspects. Foremost is 
the ability of a Web server to push data constructs into a user's machine. This 
process may in fact be taking place without the user's full awareness of poten­
tial consequences. Nonsavvy users in many cases are not cognizant of what a 
cookie is. Indeed, this paints an element of intrusion under the auspices of 
normalcy and thus users will tend to accept cookies. The user's Web naviga­
tion behavior can be easily tracked thereby raising concerns over privacy. 
Malicious servers may attempt to flood a user's machine with cookie files. 
The transparency of uploading cookies to Web servers, the fact that cookies 
issued for one host may be consumed by another one, and cookies stored in 
one machine can be copied and used on another machine all are factors that 
increase the risks associated with cookies. 
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The risk factor is further exacerbated with the misuse of nonsecure cook­
ies for identity management, such as authentication, single sign-on, and for 
carrying entitlements. Although the IETF standard for the use and manage­
ment of cookies emphasizes the adoption of informed consent where the end 
user is made aware of cookies, the potential for misuse can be abound, par­
ticularly when in fact the user is subsumed by his or her agent, the browser. 
The fact that a cookie generally tends to have a lifetime that is sufficient 
enough for an intruder or a malicious user to modify it or completely regen­
erate it with new information poses a considerable risk. Park and Sandhu 
[PARKOO] classify threats of using cookies into three types: network threats, 
end-system threats, and cookie-harvesting threats. Network threats can be 
carried by intercepting HTTP requests and responses, extracting cookies, and 
implanting them for a malicious use. The use of secure connections such as 
SSL protects cookies during transport but leaves them in cleartext once they 
reach an endpoint. End-user threats stem from the fact that cookies can be 
easily altered and copied from one machine to another. Attackers can there­
fore forge cookies and perhaps impersonate other users in a scheme of iden­
tity theft. An attack for harvesting cookies can be mounted by a Trojan Web 
site that impersonates a site that accepts cookies from users. The harvested 
cookies can later be used to compromise all other sites accepting them. 

Secure Cookies 

The level of security required by cookies depends on the sensitivity of infor­
mation carried in a cookie, the type of potential threats and risks, as well as 
the cost incurred in the event of a compromise. Usage of cookies may require 
data integrity, origin authenticity, and confidentiality. Despite the contro­
versy surrounding it, the cookie paradigm can be securely and reliably 
exploited to the benefit of Web computing. Sometimes an encrypted trans­
port channel such as one using SSL/TLS is established between a client and 
a server to encrypt the entirety of a data payload exchanged just because a 
few bytes of the payload require confidentiality. Instead, one might use cook­
ies with only the sensitive information encrypted. 

Any reasonable level of secure cookies will, in all likelihood, require 
encryption. We distinguish three scenarios in which encryption of cookies 
may take place. 

Use of a Public Key on the Client Side Cookie information can be signed, 
encrypted, or both signed and encrypted using the private key of the client. 
Decryption as well as signature verification is performed by the destination 
server. The public key of the client is established by the server according to a 
predefined PKI trust scheme. This approach is applicable in situations where 
the client is sending information that has no risk of exposure but requires 
integrity and origin authenticity. An example would be the signing of a 
shopping-cart cookie so that some level of nonrepudiation can be achieved. 
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Cookies secured in this fashion can be used across multiple servers provided 
the certified public key of the client is available. 

Use of a Public Key on the Server Side In this model, the server uses its pri­
vate key to sign or encrypt cookies before they are pushed into a client 
machine. The client may elect to verify signed cookies to establish server 
authenticity. The server may choose to encrypt sensitive information from the 
user's profile or other session-related information using its public key. When 
such a cookie bounces back on the server side, the server uses its own private 
key to decrypt it and thus the cookie is guaranteed confidentiality, data 
integrity, and authenticity of the origin server. In this scenario, encrypting a 
cookie with the server's public key is relevant to sensitive data. Server signing 
of the cookie enables data integrity, and enforces authenticity of the origin 
server. Simply encrypting cookies using the server's public key, however, is 
not adequate since the server's public key can be available to other entities 
and thus eavesdropping and impersonation may take place. Such encryption 
should be performed over data that is signed by the server to ensure both con­
fidentiality of cookie information and origin authenticity of the server. 

Use of a Shared Secret Key A symmetric encryption key shared between a 
client and a server may also be used to encrypt cookie information or apply 
a keyed MAC to cookies requiring data origin authenticity and integrity. 
When the client origin authenticity is required, however, a shared secret key 
needs to be distinct for each client-server pair. This does not lend itself to 
scalability and faces the key distribution issue. A session key established 
through key exchange protocols such as the encrypted key exchange (EKE) 
or Diffie-Hellman can also be used [DIFF76a, BELL92]. 



Chapter 4 

Mandatory-Access-Control Model 

Introduction 

Mandatory-access control (MAC) stands as a well-established model in com­
puting security. Despite the fact that it lends itself well to military environ­
ments, it represents clearly distinguishing aspects in controlling information 
flow. Such information flow is foremost characterized as being deterministic. 
We begin with an introductory to the foundations of information flow. We 
describe the mathematical elements underpinning MAC as a lattice-
based information-flow model. Subsequently, we discuss the details of the Bell-
LaPadula and the Biba models. The first one is based on the need to preserve 
confidentiality of information flow, while the second is concerned with main­
taining integrity. We compare the two models and describe scenarios in which 
they can be combined. Finally, we introduce the Chinese-wall policy as an 
instance of the lattice-based information-flow policy applicable in commer­
cial environments. 

Mandatory-Access-Control Theory 

In a system governed by the mandatory-access-control model, user privileges 
are not resource-owner centric. In fact, no concept of ownership does exist in 
MAC, which is rather based on a policy that is driven by the sensitivity of the 
protected information. To access a MAC-protected object, one must hold the 
proper security clearance required by that object. The security label of a 
resource is matched up against the clearance of an attempting accessor. MAC 
policies fall under what is known as lattice-based access-control system. 
Information flow in these systems is formally determined by the mathemati­
cal structure of the underlying lattice that reflects it. We begin by reviewing 
the foundations behind the MAC model. 

Partial Orders 

A set S is said to be partially ordered along a binary relationship R between 
S and itself if and only if the following conditions are satisfied: 
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• i? is reflexive: a Ra for every element a in S. 
• i^ is transitive: if a Rb and b Re, then a Ra 
• 7̂  is antisymmetric: if a Rb and b Ra, then a = Z?. 

A partially ordered set is sometimes referred to in the literature as a poset 
for short. Note that it is not required that every pair of elements in a partially 
ordered set to be related, and hence the use of the tQvm partial ordering. When 
every pair of elements x and ;; of a partially ordered set S can be compared 
with each other (i.e., x R y or y R x) the set S becomes a totally ordered 
set also referred to as a linearly ordered set or simply an ordered set. 

Example: Partial Orders 

Consider the elements of set S to be the subsets of {a,b,c} and R to be the 
containment relationship denoted by c . The set: 

S= {0,{a},{b},{c}, {a,b},{a,c},{b, c},{a,b,c}} forms a partial order along 
the relationship e because 

• c is reflexive: for every element xin S, xa,x. 
• c is transitive for every x, y, and zin S, xa,y and j ; c z => x c z. 
• e is antisymmetric: for every pair of elements x and yinS,xa,y and 

y c,x=> X = y. 

Similarly, (Z, <) is a total order, where Z is the set of negative and non-
negative integers. 

Lattices 

A lattice is a partially ordered set in which all nonempty finite subsets have a 
least upper bound and a greatest lower bound. If < denotes a partial order over 
S, then the least upper bound and the greatest lower bound of a subset F of 5 
are, respectively, defined as follows: 

• A least upper bound of V, denoted by lub, is an element w in 5 such that 
X < w for all X in F, and 
For any yinS such that x<yfox all x in F, it holds that u<y 

• A greatest lower bound of F, denoted by gub, is an element linS such 
that 
/ < X for all X in F, and 
for any yinS such that j ; < x for all x in F, it holds that y<l. 

In particular, every two elements of a lattice have a least upper bound and 
a greatest lower bound. It can be easily shown that the least upper bound and 
greatest lower bound of any set are always unique: if x and ;; are both a least 
upper bound of V, then it follows that x<y and y < x, and since < is anti­
symmetric, it follows that x = y. 
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Example: Lattices 

The poset {P(S), e ) , where P(S) is the power set (all possible subsets of a 
three-element set 5), forms a lattice. Every pair of elements x and ;; in P(S) 
has a unique least upper bound given hy xvj y and a unique greatest lower 
bound given by x n j . Both of these bounds are computed based on the e 
relationship. By definition, for every x and y in P(S), if w = gub(x, y) = xuy, 
then X and y are necessarily contained in w, and for every other subset of S 
(say, s) containing both x and y, it implies that u is contained in s. Similarly, 
\i l-lub(x,y) = X n ; ; => / e X and l<^y and for every s in P(S) if 5- e x and 
^ c j ; = > ^ e / = x n j ; . Figure 4.1 depicts a poset constructed from S = {a,b,c}. 

Lattice-Based Access-Control Models 

Predicting the paths of information flow is central to maintaining confiden­
tiality and integrity of data. When information access in a protected system 
is modeled along a lattice structure, any policies dealing with control of infor­
mation flow are directly reflected by the lattice. Lattice-based access control 
is an essential aspect of computing security in environments requiring strin­
gent information-flow controls. 

In lattice-based protection systems, information-flow policies bind system 
objects and subjects to security classes. Flow of information from one object 
to another is thereafter governed by this binding. Denning [DENN76b] for­
mally defines an information-flow model denoted by FM as 

F M = < 7 V , P , 5 C , e , ^ > , 

{a, b, c) 

{a,b} {b,c} 

FIGURE 4.1 A depiction of the lattice 
corresponding to the poset {P({aJ),c}), 

{} 
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where N = {a,b,...} is a finite set of system resources (objects) that includes 
users that are, in effect, active objects of the system. P = {p,q,...} is the set of 
system processes running on behalf of users. SC = {A,B,..,} is a finite set of 
security classes corresponding to disjoint classes of information containers. 
An example of SC corresponds to the classification: 

SC = {TOPSECRET,SECRET,CONFIDENTIAh UNCLASSIFIED). 

Each object o ^ N\s statically or dynamically bound to a security class O G 
SC. As a result, each process/? G P is also bound to a security class from SC. 
We adopt the notation of using upper-case characters to indicate a security 
class while a corresponding lower-case character represents an object bound 
to that security class. 

The class combining binary operator defined within SC x SC to SC, 0 is 
associative—that is, 

A®B® C= A®iB@ C) = {A®B)@ Cfov?i\\A,BX^ SC 

and is commutative—that is, 

A®B = B® AioxdiWA^B^ SC. 

Applying the ® operator to any pair of security classes A and B yields the 
security class to which information derived from security classes A and/or B 
belongs. The security class corresponding to any function that operates on 
objects from classes A and B is thus ^ © ^ . By an intuitive extension, the 
class of a transformation by an «-ary function/(^«p ..., a^ is A^®A2® ...A„. 

The flow relationship of -^ is defined over the elements of SC x »SC and 
is essentially what defines an information-flow policy. The notation A^B 
is used to indicate the fact that information contained in an object whose 
security class is A may flow to an object that has security class of B. 
Simply stated A ^ B if and only if information from class A is permitted 
to flow into class B through some kind of transfer. The information-flow 
model as such is said to be secure if and only if any execution of a 
sequence of operations in the system yields a state of information flow 
that is consistent with a predefined flow policy expressed in terms of the 
—> relationship. If a data value resulting from a series of operations 
denoted by function/fap ..., a^) flows to an object b that is statically 
bound to security class B, then A^®A2®...A„^B must hold as part of the 
stated flow policy. 

The Lattice Structure of the Information Flow Model 

Denning's observation in her landmark paper [DENN76b] established a set 
of axioms for which <SC,^»^, ®> forms a universally bounded lattice. Such 
a lattice consists of a finite partially ordered set that has a least-upper 
bound operator and a lower upper-bound operator with respect to the flow 
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relationship -^. These axioms or rather assumptions are implied by the 
intuitive semantics of information flow and are stated as follows: 

1. < SC, ^ > is a partially ordered set. 
2. SC is a finite set. 
3. SC has a lower bound L with respect to the -^ relationship. 
4. The join operator 0 is a least upper bound that is totally defined over SC. 

The rationale behind these intuitive assumptions is discussed in the fol­
lowing: 

• First axiom of Denning's information flow SC along with the binary 
relationship -^ yields a partially ordered set. This result is evidenced by 
the nature of information flow. 

1. The relationship -^ is reflexive (i.e., ^ ^ 4̂ for every A e SC), The source 
containing information and the receptacle destination of information are 
the same object. It is evident that information flow is permitted from 
object a to itself Otherwise, an inconsistency in the definition of the -^ 
relationship arises. 

2. The relationship -> is transitive (i.e., A ^ B and B^C^=^A^C).A^ 
B implies that information contained in object a of class A is permitted to 
flow to object b of class B. Similarly, B ^ C implies that information con­
tained in object b is permitted to flow to object c in class C. This basically 
means that one can transfer information from object a to object c through 
a two-step process and thus information might as well be permitted to 
directly flow from objects of class A to the objects in class C. Otherwise, 
an inconsistency arises in the semantics of -^. 

3. The relationship -^ is antisymmetric (i.e., A^ B and B-^ A=^ A = B).li 
information is allowed to flow from all objects of class A to objects in class 
B and similarly information is allowed to flow from all objects in class B to 
objects in class A then we are simply dealing with two redundant security 
classes. Thus, classes A and B are the same. 

• Second axiom of Denning s information flow Assuming that SC is a 
finite set reflects a property of every practical system. One can always 
adopt finitely as many security classes as needed. Note that the num­
ber of objects associated with each security class can be unbounded. 

• Third axiom of Denning's information flow This assumes the existence 
of a lower bound class L G SC which means L -> ^ for all A e SC 
First, this property can be assumed without loss of generality. Second, 
it allows the modeling of publicly available information, which is a use­
ful property in many information systems. Theoretically, this class can 
be represented by an empty set as the availability of public information 
in a system does not necessarily hold all the time. 

• Fourth axiom of Denning's information flow To show that the class-join­
ing operator 0 combines two security classes into their least upper 
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bound, Denning shows that the following two properties hold for all 
A,B,Ce SC: 

1. ^ - ^ ^ e ^ a n d ^ e ^ . 
2. A-^ CmdB-^ C=>A@B-^ C, 

Property 1 is intuitively arrived at. If ^ 0 ^ is the security class resulting 
from information obtained collectively from objects in classes A and B, then 
information from objects in class A as well as from objects in class B is per­
mitted to directly flow into objects from class C = A®B, 

Property 2 states that if information can flow individually from classes A 
and B to class C, then information combined from A and B should also be 
permitted to flow to C. For clarity, we refer to the example given by Denning 
[DENN76b]. Consider five objects containing numeric values a, b, c, c^, and 
^2, and corresponding to security classes A, B, C, Cp and C2, respectively. 
Assume that we have A -^ C, B ^>^ Q and C = C^ = Cr^, Now consider the 
following transformation affecting values a, h, c, Cp and c^. 

c^: = a; 
c^: = b; 

Execution of this sequence of instructions assigns to c information derived 
from a and b, and thus A®B^>' C. Generalizing this fact for all types of 
transformations combining values from objects in classes A, B, and C, it fol­
lows that A@B yields the least upper bound of A and B. 

The four axioms of Denning's information flow imply the existence of a 
greatest lower-bound operator over SQ denoted by ®. This, in turn, implies 
the existence of a unique upper bound for SC, denoted by H, therefore lead­
ing to the structure < SC, ->, ©, ® > being a lattice. The greatest lower-bound 
operator, (8), is shown by Denning to be defined as 

A®B=@L{A,B),wherQL(A,B)={C\C-^A3indC^B}, 

Applying the 0 operator to L(A,B) yields the greatest lower bound of A and 
B. As with the least upper-bound operator 0 , the greatest lower-bound opera­
tor (8) is also operable on subsets of SC It follows that for a subset S = {S^,..., 
SJ e SC, ®S= Si® .,.® Sn, Information contained in object a with a secu­
rity class A can flow into an object whose security class is a member of the 
subset 5 i f and only if A -^ Si® ... (8)5„. 

The totality of the operator 0 means that it should be defined for every 
pair of security classes (i.e., A®BG SC for every A, B e SQ, An informa­
tion-flow policy in which the class-combining operator is not initially totally 
defined can incrementally add security classes as dictated by the 0 operator 
until it is totally defined. In fulfilling this theoretical aspect one might end up 
defining security classes that are not bound to any system resources. 
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Implications of the Lattice-Based Flow Model 
on Access Control 

Access-control systems that are based on policies drawn from a lattice struc­
ture as in Denning's flow model are automatically safe. The safety property 
of such systems is due to the fact that an information flow taking place from, 
say, object a to object b cannot occur without the policy stating that A ^*^ B 
directly or indirectly through the transitivity of the -^ relationship. 
Considering that a lattice structure maps directly to a directed graph, the 
safety property of lattice-based access-control models reduces to deciding 
whether a directed path exists between any two nodes in the graph. Although 
both end nodes of this path would generally represent two passive objects, it 
can also be illustrated using active entities. In this case the origin node of the 
path represents the security class associated with an active entity such as an 
end user, a host system, or some programming agent. The end node repre­
sents the security class of an object in the system. This determination is 
a straightforward process. Furthermore, the transitive closure of the graph 
can be computed, and hence all access decisions become known a-priori. 
A process/7 is capable of transferring information from object a to object b if 
and only if A ^>^ P ^»^ B. 

This flow property is further generalized io A\® ..,® An^^ P ^^ B\® ...® 
Bmto indicate that process;? can transfer information from objects a^,...,a^ to 
any of the objects b^,.,.,b^. 

Examples of Lattice-Based Information-Flow Models 

A basic lattice information-flow policy is one in which there are only two 
security classes one is system low denoted by L and the other is system high 
denoted by H, For instance, all resources with nonconfidential information 
are bound to L, while those containing confidential information are assigned 
to class H. In this case, SC = {L, H}. Besides reflexivity, the policy mainly 
consists of a single rule L^> H 2L% shown in Figure 4.2A, where the lattice is 
derived from a linear ordering of the security classes L and H. A generaliza­
tion of this policy to a set of n linearly ordered classes is depicted in Figure 
4.2B. A richer policy based on partial ordering is illustrated in Figure 4.2C. 
Figure 4.3 shows a policy derived from a poset of {A, B}, 

Since the Cartesian product x of two lattices is a lattice, a richer lattice 
structure of an information-flow policy can be generated from the product of 
two lattices. An example of such structures is to combine one lattice from a 
linearly ordered set and one from a partially ordered set. In practice, the 
linear ordering is drawn from a set of authority levels referred to as security 
levels. An instance of such a linear ordering consists of 

SC = {unclassified, confidential, secret, TopSecret). The partial order­
ing is derived from the poset of a set of properties known as categories. 
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FIGURE 4.2 Basic examples of lattice-based information flow policies 
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FIGURE 4.3 A simple lattice-based policy derived from poset of {A,B} 
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An example of categories is the set of departments of an organization in 
which a resource can be accessible. Security labels assigned to active system 
entities such as users and processes are said to be bound to security clear­
ances and system resources are assigned security labels. 

The derivation of a lattice structure for an information-flow model can be 
extended to a Cartesian product of n lattices. The resulting flow relationship -^ 
is determined by -^=A^*'iJ= 1,...«. 

This means the flow relationship is computed as a logical AND over the 
flows in all of the participating lattices. The flow relationship therefore must 
hold in each of the lattices for it to hold in the lattice represented by their 
Cartesian product. For instance, when combining a linear ordering of secu­
rity levels with a partial ordering as represented by the poset, the flow rela­
tionship is expressed as 

A>B^B^A,(B-^A)^ A^^^^i > B,^^^^ and A^^^^^^^.^^ 3 B^^^^^^^.^, 

The Bell-LaPadula Flow Model 

Bell and Lapadula [BELL75, MCLE88] developed and formalized the con­
cept of mandatory-access models, which falls in line with the information-
flow model of Denning. It is worth noting that the model of Bell-Lapadula 
(BLP) preceded Denning's work on the information-flow model. The manda­
tory access-control policy as defined in BLP consists of assigning security 
labels {classes) to system subjects and objects. Labels assigned to objects are 
dubbed as security classifications, while those assigned to subjects are referred 
to as security clearances. BLP is stated in terms of two rules: the simple secu­
rity policy and the "^-property (read as star property), both of which are 
mainly concerned with the flow of confidential information: 

• Simple security rule This is also known as the read-down property. It 
states that information can be read only downward in the lattice struc­
ture representing the MAC policy. Subject s can read object o only if 
S> O where S is the security label (class in Denning's formalism) of 
subject s, while O is the security label of object o. The security clear­
ance of a subject has to dominate the security classification of an 
object so it can be read. 

• *-property This rule is also known as the write-up poHcy. It states that 
subject s can write object o only if O > *S. This prevents leaking confi­
dential information in that a subject can write only objects whose secu­
rity classifications dominate the security clearance of the subject. 
Writing objects takes place in an upward fashion within the lattice 
structure of the BLP policy, while reading is performed downward, as 
illustrated in Figure 4.4. 

As has been indicated the flow model in BLP is motivated by the confi­
dentiality of information. Consequently, the ability to read objects upward in 



138 4. Mandatory-Access-Control Model 

Read-down Write-up 

FIGURE 4.4 Information-flow 
direction in the BLP model as 
abstracted by a lattice structure 

the lattice structure is not permitted. Similarly, the ability to write objects 
downward in the lattice structure is prohibited as both of these operations 
lead to transferring confidential information from higher-level entities to 
those having access to only lower-level objects. 

The write-up property of BLP alone is not sufficient for preventing a 
subject from corrupting information at levels dominating those of the sub­
ject. Confidential information can be corrupted by subjects having lower 
security labels even when the read-down property prevents reading the 
information. To address this integrity problem, MAC policies have adopted 
a modified *-property that allows subject s to write object o only if the sub­
ject and the object are both bound to the same security class (i.e., S = O), 

The integrity issue associated with the write-up property can in fact be 
addressed by the second component of the BLP model, which enforces a dis­
cretionary policy of resource-access control. In BLP the dominance relation­
ship as stated by the MAC policy is augmented with a discretionary-access 
policy. An access decision therefore depends on both policies, MAC and DAC, 
being enforced at the same time. With this approach, corruption of confidential 
information by processes at lower security classes is prevented by specifically 
exposing resources that are intended to be receptacles of information from 
lower processes and disallowing access to the ones that contain confidential 
information through proper DAC policies. Similarly, the read-down property 
may also be controlled in this manner, although generally enforcing DAC con­
trols around the write-up property is the main concern of many MAC policies. 

The Biba Model 
As has been noted, the goal of the BLP model is to prevent downgrading 
confidential information. The Biba model, on the other hand, is concerned 
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with the integrity of information [BIBA77]. This model follows along the 
same ideas of the BLP model and as such does not present a fundamental 
departure from the concepts introduced by BLP. The underlying concept in 
Biba is that security classes are organized along a lattice structure in which 
each class corresponds to some integrity level with the highest integrity at the 
top of the structure and the lowest at the bottom. Information is allowed to 
flow from high-integrity objects to low-integrity objects only. In a similar way 
to BLP, Biba states its information flow policy using two rules: the simple-
integrity property and the integrity "^-property: 

• Simple-integrity property This property states that subject s can read 
object o only if the security class of o dominates that of s (i.e., 0>S). 

• Integrity "^-property This property states that subject s can write object 
o only if the security class of s dominates that of o (i.e., S > O). 

Recall that a security class in Biba corresponds to an integrity label. A curi­
ous aspect of the Biba properties is that they are duals of their counterpart 
in BLP. For instance, while the policy in BLP is about read-down of infor­
mation, the simple-integrity property of Biba states a read-up of informa­
tion. Similarly, the integrity ^-property of Biba states a write-down type of 
information flow as opposed to the write-up of the *-property in BLP. 

Comparing Information Flow in BLP and Biba Models 

The direction in which information flows in the BLP and the Biba models is 
driven by the nature of protections sought in each model. The BLP is moti­
vated by confidentiality of information, and hence information in objects at 
higher levels is not allowed for read access by lower-level processes. Similarly, 
information at lower levels is allowed to flow to objects from higher security 
classes in the lattice structure. The write-up property of BLP represents an 
interesting aspect of information flow. It can be used to upgrade the classifica­
tion of information from the bottom of the lattice all the way to its top as illus­
trated in Figure 4.5A. Once this information is copied to higher-level objects, 
there is no rule that enforces its deletion from lower-level objects where the 
information originates so that it can no longer be read by processes at those lev­
els. Recall that the BLP as well as the Biba properties allow a process to simul­
taneously read and write objects at the same level in the lattice. 

A process;7j as depicted in Figure 4.5A reads object o^ situated at its imme­
diate lower level, writes it to object o^ at the same level as/?p then writes it to 
object 6>3 located immediately above the level of Py Similarly,/?j may also read 
6>j and write it directly to Oy Thus the flow of information between a lower 
level and any higher level may be achieved through a sequence of operations 
or simply in by a single sequence of read and write operations. 

The direction of information flow in the Biba model is the opposite of that 
in the BLP model. As illustrated in Figure 4.5B information is allowed to 
flow from the top of the lattice all the way to its bottom in accordance with 
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FIGURE 4.5 Scenarios of information flow 
in the BLP and the Biba models 

the Biba properties. Although this flow does not imply modifying the secu­
rity classes of objects involved, it somehow represents a downgrade of infor­
mation as it yields a transfer of information from higher to lower security 
classes. 

A curious reader may ask the question of why we need to enforce the 
read-up property in the Biba model as it does not seem to interfere with the 
integrity goal of Biba. Let us assume that in addition to the read-up capa­
bility, processes are also able to read-down objects in the lattice structure of 
a Biba integrity policy. As shown in Figure 4.6, process p^ reads down an 
object o and writes it to object o^ located at the same security label as p^ 
(read and write at the same level are permissible due to the equality in the 
dominance relationship >). Now an upper level process p^ reads down o^ 
and writes it to object o^ at the same level as that of ;?2- Performing these 
steps in a bottom-up fashion along the lattice structure results in the flow 
of information upward, therefore conflicting with the intent of the Biba 
model. 

Write at same level 

Write at same level 

02 

Oi 

P2 

•Pi 

FIGURE 4.6 The need for read-up 
only in the Biba integrity model 
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Implementation Considerations for the BLP 
and the Biba Models 

One implementation aspect that is worthy of mention for the BLP and the 
Biba models is the need to provide safety of concurrency. At any level in the 
BLP or the Biba policy lattice, objects have to be protected from concurrent 
writes by processes of that level. In the BLP model, objects situated at level / 
need to be further protected against concurrent writes by processes at levels </ 
(Figure 4.7A). 

It is also desirable to prevent against a simultaneous read and write of the 
same object. In the Biba model, objects situated at level / should be protected 
against concurrent writes by processes at levels >/ as illustrated in Figure 4.7B. 
Like in the BLP case, it is also desirable to prevent against simultaneous read 
and write of the same object. 

Combining the BLP and the Biba Models 

Protected entities of a computing system (resources, subjects, and program­
ming agents or processes) can be subjected simultaneously to the BLP and 
Biba policies. We distinguish two ways in which such coexistence may take 
shape. In the first scenario we draw the security classes for the combined con­
fidentiality and integrity lattices from a single set SC in which every security 

P2 

Write-up 

FIGURE 4.7 Synchronization requirement for concurrent reads and writes in the BLP 
and Biba models 
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class applies as a confidentiality and an integrity label simultaneously. The 
write-up in BLP requires the security class of the writing subject to be dom­
inated by that of the receptacle object, while the write-up property of Biba 
requires the opposite. Hence writing an object in this scenario is confined to 
processes that are all at the same level as that of the object to be written. This 
amounts to the trivial isolationist policy where no information flows across 
security levels of a lattice. From the standpoint of information flow analysis, 
this model is equivalent to using a single security class. The isolated classes 
scenario is depicted in Figure 4.8. 

The second and a more useful scenario of combining the BLP and the Biba 
models results from adopting independent confidentiality and integrity 
classes as shown by Sandhu [SAND93]. A composite model as such is the 
product of two lattices, which is in turn a lattice. Let C = {c^,...,cj be a lat­
tice of confidentiality corresponding to the BLP model, and let / = {i^ v?^^} 
be a lattice of integrity representing a policy based on the Biba model. Let a 
be a function that maps a system entity (subject or object) onto its confiden­
tiality class (label), and let ß be the function that maps an entity onto its 
integrity class. The composite BLP and Biba lattice is defined by the follow­
ing constraints: 

• Subject s can read object o only if a{s) > a{o) and ß{s) < ß(o). 
• Subject s can write object o only if a(s) < a(o) and ß(s) < ß(o). 

As has been noted, the composite model is the product of two lattices 
which reduces to one lattice. Figure 4.9 illustrates an instance of this lattice 
for C = {a^, a^} with a^ > a^ and / = {j8̂ , )Ŝ } with ß^ > ß^, where L and H 
denote system Low and High, respectively. Note that while information in the 
BLP and Biba models flows in opposite directions, in the combined lattice 
(Figure 4.9) information flows upward. 

'^n-^ 
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Ai-^Ai,i='\ n 

Ai®Aj=Aj,i=1, 

Ai®Aj,iJ=1,..., 

L = undefined, H 

...,n 

n,i ̂  j(undefined) 

= undefined 

: 

FIGURE 4.8 Combining BLP and the Biba models: The case of security classes that 
are used for both confidentiality and integrity 
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FIGURE 4.9 An example of combining BLP and the Biba models in the case of inde­
pendent confidentiahty and integrity classes 

Figure 4.10 illustrates an access-control matrix representing the access pol­
icy of the product lattice of Figure 4.9. Rows of this matrix represent sub­
jects, and the columns correspond to resources. Each row of the table 
specifies exactly the type of access a subject with a given label can have to a 
resource on the column. For example, a subject with label a^ j8^ can read (r) 
information contained in resources with label a^ j8^, and write (w) objects 
with labels a^ ß^ but cannot (0) read or write resources with labels a^ ß^. The 
diagonal of this matrix represents access modes that subjects can have to the 
resources that are associated with the same levels as those of the subjects. 
Read and write accesses are thus shown along the diagonal. 

One characterizing aspect of the composite BLP and Biba model is the fact 
that if information in the confidentiality-based model flows from one class 
(say, C.) to another class Ĉ ., then information in the composite model flows 
from classes C. I^ to classes Cj /^ for all A: = l,...,m (m being the cardinality of 
set 7). Similarly, if information separately in the integrity model flows from 
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FIGURE 4.10 An access-control table corresponding to the subjects and objects of the 
example of Figure 4.9 
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one class (say, I^ to another class 4, it follows that information in the result­
ing composite model flows from classes /. C. to classes 4 C. for all / = !,...,« 
{n being the cardinality of set Q. These properties are an immediate result of 
the fact that in either of the models information is always allowed to flow 
from and to the same security class. 

On the Mandatory-Access-Control Paradigm 

As has been noted, the development of the mandatory-access-control model 
was motivated mainly by the control policies found in military environments, 
specifically, in the United States Department of Defense (DoD). Within the 
DoD an information security policy assigns each system entity a linearly 
ordered classification level L and a set of categories C. The categories gener­
ally form a partial ordering along the poset relationship. The hierarchy of 
entities and resources as imposed by military policies is certainly amenable to 
the adoption of mandatory-access controls. In the commercial world, how­
ever, this is not generally the case, even when the categories are designed to 
reflect the organizational structure of an enterprise. 

The authoritative policies of mandatory controls are inflexible and not 
amenable to sharing resources as warranted by the needs for information shar­
ing. MAC policies are static in nature. They cannot be changed dynamically and 
without the intervention of an administrative authority whose immediate avail­
ability can be an issue. Resources of the same security class are undistinguish-
able with respect to the access controls applied at their level. For instance, all of 
the resources assigned the same confidentiality label in the BLP model can be 
read by every subject with a security label that dominates those resources. MAC 
policies do not support the concept of resource ownership and hence the 
inability to discern access rights to the resource in a discretionary fashion. 
Identification of resource ownership is a fundamental aspect of building access-
control systems in modern commercial operating environments. With all these 
issues, Lipner [LIPN82] addressed optimum ways in which mandatory controls 
can be applied in the commercial nonmilitary world. He gave a detailed exam­
ple in which confidentiality and integrity labels are simultaneously used as in the 
composite BLP and Biba models to achieve commercial uses. 

Finally, it is worth noting that despite of the fact that BLP and Biba mod­
els are based on the confidentiality and integrity of information, respectively, 
they can be applied to any other types of information access. The semantics 
of access rights in the lattice-based models therefore can take various forms. 

The Chinese-Wall Policy 

The Chinese-wall policy (CWP) was developed by Brewer and Nash 
[BREW89] as an instance of lattice-based security models with applications 
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in the commercial world. The intent of CWP is to enforce a conflict of inter­
est policy in which a single user is prevented from having to simultaneously 
access information that represents a conflict of interest. Specifically, CWP 
was formulated to address a situation in which a financial institution provides 
market analysis as part of its consulting services to other businesses. Each 
analyst must not be able to advise a particular institution when he or she has 
knowledge of business information about a competitor of that institution. 
The analyst, however, is capable of advising any companies that are not in 
competition with each other. Thus, every subject that is affiliated with this 
consulting service must be confined to accessing information on businesses 
that are not competing with one another. For example, information about 
bank B should not be accessible to a subject that already has access to infor­
mation about bank A. Unlike in BLP, where access to information is based 
on a static relationships between subjects and objects, in CWP access is con­
strained by what information the subject already has access to. 

The elements of CWP are illustrated in Figure 4.11. A company maintains 
information about other businesses that is hierarchically divided along a set 
of conflict of interest classes. Within each class the company groups all 
information about a particular business in a dataset. In turn, each dataset 
consists of a number of individual objects containing data related to that 
business. 

In a way similar to the BLP model, CWP is stated in terms of its own for­
mulation of the simple security and the *-Property rules. It is also worth not­
ing that Sandhu developed a scheme in which he shows how CWP is mapped 
to a lattice-based access-control model [SAND92a, SAND93]. 

Conflict- of-
interest classes 

Company 
datasets 

Data 
objects 

FIGURE 4.11 Dividing information along a Chinese-wall policy 
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Simple Security 

This represents the basis of the CWP enforcing the fact that a user is allowed 
only access to information that is not in conflict with any information already 
accessible to that user. Access by a subject to an object is therefore granted 
only if 

• The object is in the same company dataset that is already accessed by 
that subject (i.e., the object is within the wall), or 

• The object belongs to an entirely different conflict of interest class. 

As a result. Brewer and Nash establish the following theorems: 

Theorem 1: Once a subject has accessed an object the only other objects 
accessible by that subject reside within the same company dataset or within a 
different conflict of interest class. 

Theorem 2: A subject can at most have access to one company dataset in each 
conflict of interest. 

Theorem 3: If for some conflict-of-interest class X there are Xy company 
datasets, then the minimum number of subjects that will allow every object 
to be accessed by at least one subject is Xy. 
*-Property 
This rule states that write access is permitted only if 

• Access is permitted by the simple security rule, and 
• Any object that is in a different company dataset with respect to the 

one for which write access is requested cannot be read. 

The *-Property is used to prevent the writing of information that results in 
violating the simple security rule. An example of such scenario is the case of 
two subjects s^ and 2̂ that have access to three companies as follows: s^ has 
access to bank 1 and computer company 1, while ̂ 2 has access to bank 1 and 
computer company 2. If s^ reads information about computer company 1 
and writes it to objects containing information about bank-1, then ̂ 2 can read 
computer company 1 information and thus yield a conflict of interest. 



Chapter 5 

Discretionary-Access Control and the 
Access-Matrix Model 

Introduction 

Contrary to the relatively static state implied by a lattice-based security model, 
discretionary-access-control (DAC) systems are characterized by unbounded 
protection states. It is for this reason that in many ways modeling access-control 
systems has historically been understood to implicitly relate to DAC. Although 
the access-matrix model, the subject of this chapter, applies to all security poli­
cies including those that are mandatory, it lends itself well to discretionary poli­
cies. The matrix model is concerned with the study of access control directly 
over the entities involved in an access policy—^namely, subjects and objects. It 
reflects the access relationships that exist between these two at any point in time. 
Access relationships that are based on resource ownership and enable individual 
control over propagating access permissions are at the core of DAC systems. 

We review the concepts defining the access-matrix model followed by a dis­
cussion of the corresponding implementation considerations. We reflect on 
the history of this access model by delving into the work of Harrison, Ruzzo, 
and Ullman. Subsequently, we introduce the reader to the foundation of 
safety in protection systems and describe relating results in detail. 

Defining the Access-Matrix Model 

The pioneering work of Lampson [LAMP71] followed by that of Harrison, 
Ruzzo, and Ullman (HRU) [HARR76, HARR78] has led to a generalized 
form of access-control modeling known as the access-matrix model. Three 
basic abstractions on which this model is built are 

• Subjects, 
• Objects (resources), and 
• Access rights. 

The two-dimensional matrix modeling a protection state has a row for every 
subject, an active entity, and a column for every object. Subjects form a 
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subset of the objects. This leads to modeling access relationships that may 
exist among subjects as well as between subjects and objects. Furthermore, 
subjects may represent programming agents. Thus not all objects are pas­
sive resources. An example of such active resources is a stored procedure 
that in itself is a controlled shareable resource. When the procedure exe­
cutes, it may assume an identity of its own or one corresponding to the sub­
ject that initiated it. Passive resources are those that are merely information 
containers, sometimes referred to as data receptacles. 

Denoting A for an access matrix, S for the set of subjects, O for the set of 
objects available to a computing system {S a O), and R for the set of access 
rights defined by a particular policy, the value of a cell A[s, ö\ represents the 
set of permissions R^^ e R, confining the type of access subject s has to object 
o. An entire row s in the matrix is referred to as the capability of subject s. 
Similarly, a column corresponding to object o is called an access-control list 
(ACL) for that object. A snapshot of the access matrix at any point in time 
represents a protection state. The lifecycle of an access matrix follows that of 
a finite state machine model. Each snapshot of the matrix corresponds to a 
state variable, and the transition functions of the state machine correspond 
to the processes (also referred to as commands) of creating new subjects or 
objects, destroying them, as well as granting and revoking access rights. These 
processes or commands transform the matrix from one protection state to 
another. The transformations are driven by what is known as an authoriza­
tion scheme or an authorization policy. Figure 5.1 shows an example of an 
access matrix that models a population of three subjects and four objects, all 
of which are files (a total of seven objects including the three subjects). 

Implementation Considerations for the Access Matrix 

The large number of resources that may potentially be available within a 
computing system may yield sparse access matrices. As a result, most 

Subject 1 
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File 2 
Execute 

Files 
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Execute 

Execute 

File 4 
Read 

Read, 

Write 

Subject 1 Subject 2 Subject 3 

FIGURE 5.1 Example of an access-matrix modeling access of three subjects to seven 
objects 
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implementations of the access matrix represent only the entries of the matrix 
that are relevant. For example, an entry corresponding to subject s that has 
no access to object o is omitted. The access matrix can be viewed in two dif­
ferent ways—from the resources and from the subjects perspectives. 

Resource View of the Access Matrix: Access-Control Lists 

Access-control lists (ACLs) are commonly used in implementing an access 
matrix. An ACL is a data structure that associates a resource identifier such 
as a file name with the list of subjects that have access to it. Each subject in 
the list is qualified by the access rights available to it. An ACL corresponds 
to a column of the access matrix with the empty entries removed. ACLs are 
generally maintained by the respective resource managers, although they can 
also be managed by a dedicated access-control service independently from 
the context of the resource. One of the advantages of using ACLs is the ease 
by which all the subjects having access to a particular resource can be deter­
mined. Revoking or updating access for a user is also an easy operation. 
Deleting an account or enumerating the list of resources accessible by a par­
ticular subject, however, require visiting all of the managed ACLs. ACLs pro­
vide one other advantage, and that is confining the scope of the semantics 
associated with the access permissions within the limits of the underlying 
resource manager or the access-control service that is acting as the reference 
monitor that mediates access to the resource. Such a local semantics scope 
prevents ambiguity and collision with similar permissions that have different 
semantics. However, the ability of the ACLs mechanism for scaling to a fine-
grain level of resources may be challenging. Gladney [GLAD97] addresses 
this issue by aggregating subjects and objects into equivalence sets that can 
reduce the size of each ACL. These equivalence sets are known in access con­
trol as user groups and resource classes. Figure 5.2 illustrates the ACLs cor­
responding to the access matrix of Figure 5.L 

Subject View of the Access Matrix: Capabilities 

Capabilities correspond to the rows of an access matrix. They represent a 
dual technique for ACLs. A subject's capability enumerates the list of 
resources accessible to the subject. Each entry identifies an object along with 
the set of access rights conferred on the subject. The main advantage of this 
mechanism is the ease by which one can determine all the resources accessi­
ble to a particular user (a simple traversal of the capability list). To determine 
all subjects that have access to a particular resource, or remove a resource, 
however, requires traversing all the capabilities. Capability lists combined 
with secure establishment of a networkwide security context are ideal for dis­
tributed computing. The semantics of permissions carried in a capability, 
however, will have to be uniquely defined over the distributed environment 
where they are used so that ambiguity can be prevented. Figure 5.3 depicts 
the capabilities associated with the access matrix in Figure 5.1. 
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FIGURE 5.2 ACLs of the access matrix in Figure 5.1 

Definitions fi:'om the HRU Access-Matrix Model 

HRU [HARR76] characterizes the protection state of an access matrix model 
by the triple (S, O, A), where 

• »S is the set of subjects representing all active entities in a computing 
system (e.g., a user, a host system, or an application program). 

• O is the set of objects (resources available to active entities of the sys­
tem) (e.g., a file, a print server). »S is a subset of O {S cz O). A system's 
monitoring program, for instance, can be a resource that is both an 
object and a subject. An application as such is a controlled resource in 
that its configuration and its execution may be granted to a particular 
system administrator only. While that same program is executing, it 
becomes an active entity of its own and thus may assume the identity 
and the privileges of an authorized system agent. 

• ^ is an access matrix representing the protection state. Rows of the 
matrix correspond to subjects, while the columns correspond to objects. 
A[s, o] contains the access rights that subject s is entitled to have for 
object o. Examples of access rights are read (r), write (w), execute {e), 
and own. 

It is worth noting that in many cases the existing literature does not explic­
itly characterize a protection state with the applicable set of rights. Because 
the semantics of access rights have a direct impact on the propagation of 
rights in an access-matrix model, it is useful to add another dimension to the 
state of an access-matrix model—that of access rights. As such, we consider 
an access state to be defined as {S, O, R, A), where R is the set of permissions 
that are applicable to the elements of ^4. In what follows, however, we stick to 
the shorter notation of (S, O, A) instead. 
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FIGURE 5.3 Capability lists of the access matrix in Figure 5.1 

State Transitions in the HRU Access-Matrix Model 

State transitions of the access-matrix model are the side effect of control 
commands that transform the matrix. Primitive operations affecting the 
states of an access matrix in the HRU model are defined as follows: 

• Enter r into Afs, o] 
• Delete r from A[s, o] 
• Create subject s 
• Create object o 
• Delete subject s 
• Destroy subject s 
• Destroy object o 

The side effects of these operations on an access matrix are summarized in 
Table 5.1. 

Evidently the use of the primitive operations described in Table 5.1 needs 
to be controlled so that transforming the access matrix from one state to 
another is accomplished according to an authorization scheme. Entities can 
transform the matrix only if authorized by the policy. In practice, higher-
level commands that encapsulate one or more primitive commands are pro­
vided for users to transform the access matrix. These complex commands 
are generally made of a precondition and a body. The precondition tests for 
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TABLE 5.1 Effects of the commands in the HRU model 

Operation 

Enter r into Als,o] 

Delete r from A[s,o] 

Create subject s 

Create object o 

Destroy subject s 

Destroy object o 

Precondition 

rGR 

r G A[s,ö\ 

s^ O 

0^ 0 

se 0 

OG 0 

Postcondition 

cr = o,s' = s 
A' = [s, o] = A [s, o] U {r} 

a = o,s' = s 
A' = [5, o] = A [s, o] - {r} 

(y = ou {s} 
S' = SU {s} 
\/o e 0\ A'[s,o] = 0 
V^e S\A[s,s] = (l) 
0'=0U {o} 
S' = S 
\/s e 5", A\s,o] = (j) 
(y=0-{s} 
S' = S-{o} 
(y = o-{o} 
S' = S 

the presence of a valid context in which the command body can execute. 
This context is policy based and can be, for instance, defined by the pres­
ence of certain rights in certain entries of the access matrix. One might 
therefore abstract the general form of a transformation command a as 
follows: 

coinmand aiX^fX^,..., X^) { 
i f (condition) 
then 

oPi; 
0P2? 

} 
OPn 

where X, / = 1,...,/: represent the formal parameters of the command that are 
drawn from the set of rights R and the set of objects O. The command syn­
tax above is not limited to a single conditional flow of execution. Generally, 
it may contain a sequence of such conditional flows. 

Example: create, confer and remove commands 

Consider a protection system with a set of access rights 
R = {read,write,append,execute} 
and a set of commands C = {createj^^^^, confer^,remove^} where confer^ allows 
subject s^ to transfer right r G i^ to subject s^, s^,s^^ S, while remove^ allows 
a subject to undue the action of the confer^ command. 
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command create^^^^ (subject, f i l e ) { 
create object f i l e ; 
enter own into A [subject, f i l e ] ;0 
enter read into A[subject, f i l e ] ; 
enter write into A[subject, f i l e ] ; 
enter execute into A [subject, f i l e ] ; 

} 
command confer^(subject^, subject^, r, f i l e ) { 

i f own in A[subject^, f i l e ] 
then enter r into Alsubject^, f i l e ] ; 

} 
command remove^ {subject^, subject^, r, f i l e ) { 

i f own in A[ subject^, f i l e ] and 
r in A[sujbject2, f i l e ] 

then delete r from Alsubject^, f i l e ] ; 
} 

Modern access-control systems automatically retrieve the identity of the 
subject performing any of the above commands from the operating environ­
ment where an established security context is maintained. From the perspec­
tive of the subject that is performing the commands in this example, the 
formal parameters are 

• creatCßj^ (file) 
• confer^ (subject, r, file) 
• remove^ (subject, r, file) 

Example: command effects 

We now observe the effect of the following sequence of commands on an ini­
tial configuration of a protection system {S, O, Ä), where S = O = {̂ 1,̂ 2}-

creatCß^^ (s^, data); 

^^^f^^read (̂ 1' ^2' ̂ ata); 

We assume that the initial access matrix is empty. Figure 5.4 illustrates the 
states of the access matrix as the commands are being executed. 

The Safety Problem of the Access-Matrix Model 

The cumulative effects from transforming an access matrix are unbounded. 
Consider the confer^^^^^ command, an instance of confer^ which discerns the 
permission to transfer access rights to other subjects via the transfer^ com­
mand, which looks like 
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FIGURE 5.4 Snapshots of the access matrix transformed by the commands of the 
second example above 

command t r a n s f e r ^ ( sub jec t^ , sub jec t2 , r, f i l e ) { 
i f g r an t i n A[subjec t^ , f i l e ] 
then e n t e r r i n t o A[subjec t2 , f i l e ] ; 

} 

Applying random sequences of the confer and the transfer^ commands 
along with others as permitted by the protection system may lead over a 
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period of time to unwarranted effects. As a result, access to resources may 
take place without the concurrence of the owners. We now review a set of def­
initions as a prelude to discussing the safety problem that is characteristic of 
the access-matrix model and the DAC paradigm in general. 

Definition 5.1: Given a protection system, we say command a leaks access 
right r from configuration Q - {S,0,Ä) if the execution of a on ß results in 
a configuration g ' in which right r is entered into a cell of the access matrix 
A, which did not previously contain r. In this case, configuration Q is said to 
be reachable from configuration Q through command a. We denote this by 

This definition is captured in Table 5.2. 

Definition 5.2: A protection system is said to be unsafe or leaks right r with 
respect to an initial configuration Q^ if 

• There is a configuration Q that results from applying a series of trans­
formations beginning with the initial configuration Q^ (i.e., Q is reach­
able from ÖQ), and 

• A command a such that a leaks r from Q, 

Definition 5.3: An initial configuration Q^ of a protection system is said to be 
safe for a generic right r if Q^ is not unsafe for r (i.e., Q^ does not leak right r). 

Definition 5.4: A security policy is the set of rules that govern the authorized 
states of a protection system. These rules should not translate into undesired 
leaks of rights. For instance, r access by subject s to object o in the Bell-
LaPadula model is subject to the policy: r e A[s,o] <^ level{s) > level(o). 

Definition 5.5: Let S be the set of all protection states, let P be the set of all 
authorized protection states, and let R be the set of all states reachable from 
some initial state: 

• A system is said to be secure if jR e P. 
• A system is precise if i^ = P. 
• A system is insecure if —i(PeP). 

Figure 5.5 illustrates these definitions. 

TABLE 5.2 Leaking an access right from a configuration of a protection system 
Command Precondition Postcondition 

«(Zi,...,X^) Q = (S,0,A) and for some re Rmdse O, ß ' = {S\ a,A') 
and o e 0,r^ A[s,o] r e A\s,ö\ 
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A. secure B. Secure and precise 

FIGURE 5.5 Illustration of secure, precise, and insecure systems, P being the set of 
authorized states and R the set of reachable states 

Definition 5.6: A protection system is said to be mono-operational if the body 
of each command that it supports consists of a single primitive operation. 
For example a system containing commands confer^, remove^, and transfer^ 
only is mono-operational. Command creatCj.^^ does not yield a mono-opera­
tional protection system. Note that in a mono-operational system the pre­
condition part of each command can be arbitrarily complex. 

Definition 5.7: A protection system is mono-conditional if the precondition 
part of each supported command has only one term. This implies that the 
test portion of the command involves the presence of a single right in a par­
ticular entry of the access matrix. Commands confer^ and transfer^ yield a 
mono-conditional protection system, while command remove^ does not. 

We are now ready to state the first theoretical result of Harrison, Ruzzo, 
and UUman on the safety of protection systems: 

Theorem 5.1: There is an algorithm that decides whether a given mono-
operational protection system as represented by an initial configuration is 
safe for a given generic right r. 

Sketch of proof: We summarize the proof of this theorem based on HRU 
[HARR76]. The goal is to establish that the length of the shortest leaky path 
of transformations for a given initial protection state is bounded. The 
assumption is that the protection system is mono-operational and hence that 
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each supported command identifies in a one-to-one mapping with its corre­
sponding primitive operation. 

Let Q. = (S., O., A), and suppose that 

Qo^''Ql^'\..Qm-l^""Qm (5.1) 

is a minimal length of a transformation path in which the reachable configu­
ration Q^ leaks right r. The authors of the theorem use the technique of 
proof by contradiction in which the absurdity arrived at contradicts with the 
assumption that (5.1) is minimal. Now it is claimed that C., 2 < / < m is an 
enter command, and Ĉ  is either an enter or a create subject command. In 
other words the claim is that the sequence (5.1) contains at most one create 
subject command which can only be the first command. Suppose that this is 
not the case, and let C^ be the last nonenter command in (5.1). The proof pro­
ceeds by distinguishing three cases, each of which forms a leaky sequence that 
is shorter than (5.1): 

• if Ĉ  is a delete or a destroy command (either a right or an object is 
removed from the underlying protection state), then we can form a 
shorter leaky sequence (5.V) by simply removing command Ĉ  from 
(5.1) as follows: 

ß o ^ ^ ' ß i ^ " . . . ß « - i ^ < - Ö « - i ^ . - - ß '^ - i^^"ß '^ (5.10 

where C. = C. and Q\ = Q. augmented with the right, the subject or the 
object that C^ deletes or destroys. In other words, deleting a right or 
destroying a subject or an object from a configuration along the 
sequence (5.1) does not affect reaching configuration Q^ in which 
generic right r is leaked. One thing to note here is the fact that com­
mands C., n + I < i < m have no distinction between configurations ß. 
and ß'.. Therefore, Ĉ  cannot be a delete or a destroy command since 
that contradicts the basic assumption that sequence (5.1) is the short­
est leaky path for right r (length of (5. T) = length of (5.1) - 1 =m-\). 

• Now suppose that C^ is a create subject or object command. Because 
command a leaks r from configuration ß^, therefore it must be an enter 
command. Since C., / = « + l,...,m are all enter commands by assump­
tion, it follows that when C^ is a create object command that I S^_^ I 
> 1, where I S^_^ I is the total number of subjects in configuration ß^j . 
Otherwise, command a that leaks right r in the sequence (5.1) will have 
no subject on which to operate. Let s e S^_^, and let o be the name of 
the object created by C .̂ Sequence (5.1') now can be formed by remov­
ing command C^ from sequence (5.1) and using C . = C., / = AZ + l,...,m, 
with s replacing all occurrences of o in C., and ß' . = ß.. This construc­
tion leads to the fact that any precondition of command C. that is sat­
isfied by o, the corresponding condition in C. is satisfied by s as well 
(due to the substitution for Ö by ^). In particular, the preconditions in 
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command a are satisfied by the actual parameters in which s replaces 
all occurrences of 0. As a result, a leaks right r from configuration Q. -
Q., Thus a contradiction of the fact that (5.1) is a minimal sequence. Ĉ , 
therefore, cannot be a create object command. If C^ is a create subject 
command then if I S^_^ I ̂  0 we generate a shorter leaky sequence from 
(5.1) by simply removing C^ and then substituting for the subject that C^ 
creates with an existing subject. 

• The scenario considered in this case is the same as in the previous one but 
with I 5^ J I = 0. No subjects are created prior to configuration ß^, and 
therefore C^ must be a create subject command resulting in S^ = {s} and 
n>2 due to the assumption. The sequence (5.1') can now be constructed 
by skipping commands preceding Ĉ . In doing so, we substitute s for any 
object o. created by the skipped commands. All preconditions of com­
mands C '. satisfied by o. will thus remain satisfied by s and in particular 
those contained in command a. Hence generic right r can be leaked in 
configuration Q'^, The following is an instance of such a sequence. 

Qo^'"Q'n^'''"^'Qn^l^ . . . ^Q'm-l^'''"Q'm ( 5 . 2 ) 

In (5.2) we have C '. = C. with subject s substituting for all objects in 
the initial configuration Q^. Length of sequence (5.2) is (length of 
sequence (5.1)) - (« - 1) = m - w + 1. 

The creation of a shorter leaky path in each of the above cases contra­
dicts the fact that the leaky sequence (5.1) is of minimal length. By remov­
ing duplicate commands from a leaky sequence (i.e., those with the same 
side-effect), we get an upper bound on the length of a leaky sequence as 
follows: 

m < ^ * ( | 5 j + l ) * ( | 0 j + l ) + l . 

where g is the total number of generic rights, IŜ  \ and I O^ \ are the total 
number of subjects and objects in the initial configuration of (S^, O^, A^), 
respectively. Note that the final state in which right r is leaked via command 
a contains 15̂  I + 1 subjects and I Ô  I + 1 objects at most. This is because a 
leaky path contains at most one create subject command and one create 
object command. 

The rational for the upper bound above reflects the total number of cells 
in the access matrix as well as the number of access rights that can be entered 
in each cell as a side-effect from applying a chain of mono-operational com­
mands (no multiple enter commands that apply to the same parameters). 
Recall that each command has the effect of entering at most a single right in 
a particular position of the access matrix. 

On the Safety of the Mono-Operational Protection System 

The length of a shortest leaky path for the mono-operational case of a pro­
tection system is bounded. This leads to the feasibility of a brute-force 
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algorithm for deciding the safety of such system where all possible 
sequences of enter commands are tried. This algorithm, however, is consid­
ered NP-complete in that it has an exponential complexity in the size of the 
access matrix. Furthermore, as noted by Sandhu [SAND92b], the mono-
operation create object command is essentially useless in that there is no 
opportunity for the reference monitor to attach the identity of the owner to 
an object that is being created. Doing so requires the execution of two 
primitive operations in the body of a command, which by definition falls 
out of the scope of the mono-operational model. This aspect results in 
orphaned entries in the access matrix that will have no access rights associ­
ated with them. The mere absence of the owner privilege in an access matrix 
renders the protection system useless and makes it simply a theoretical 
model that does not map to systems of any practical benefits. 

One other restriction that was applied to the HRU model is that of monoto-
nicity. A monotonic protection system is one in which deletion of access priv­
ileges is not allowed once access rights are entered in a configuration. Safety in 
the HRU access matrix model is known to be decidable only in the case of 
monotonic commands, which are mono-conditional. Mono-conditional com­
mands have only one term in the precondition part and thus can test only one 
cell of the access matrix. Monotonicity in the HRU model, however, does not 
help when the commands are allowed to have multiple terms for the precondi­
tion. It is established that safety is undecidable even for biconditional monoto­
nic systems (with commands having exactly two terms for the precondition 
part). 

Even when safety in the HRU model is decidable in the mono-conditional 
case of a monotonic system, it has little practical use. The ability to revoke 
access rights from users is a key element of secure systems. Indeed, there is a 
fundamental conflict between the expressive capability of a protection system 
and the decidability of the safety problem. The general safety problem deal­
ing with unrestricted protection systems is undecidable. Nevertheless, a num­
ber of protection systems in which safety is proven to be decidable have been 
developed. Although these models are restricted in terms of expressive power, 
they lend themselves to practical implementations. We discuss two of these 
systems in the following two chapters. 

The General Safety Problem of the Access-Matrix Model 

We now turn our attention to the general case of the safety problem. The 
generalization is stated as follows: 

Given a state of a protection system as represented by a corresponding con­
figuration, decide whether or not the configuration leaks a given generic right. 

Theorem 5.2: It is undecidable whether a given configuration of a given protec­
tion system is safe for a given generic right. 
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The proof of this theorem as given by HRU consists of reducing the gen­
eral safety problem to the famous Halting problem described in the theory of 
computability and stated as follows: 

Given a program and an input to the program, determine if the program will 
eventually terminate when it runs with the input data substituted for the actual 
parameters of the program. 

The following steps are generally adopted when reducing a particular prob­
lem P to the Halting problem: 

• Assume that you have an effective procedure to solve problem P (an 
algorithm for computing the answer to P). 

• Show how to use the procedure solving P for the solution of the 
Halting Problem. 

• Because the Halting problem is known to be unsolvable, one therefore 
concludes that problem P is in turn unsolvable. 

The halting problem here corresponds to the Turing machine halting in a pre­
scribed state during the computation of a solution to an arbitrary problem. 
Before we sketch the HRU proof for the undecidability of the general safety 
problem, we discuss the basic concepts behind the Turing machine. 

The Turing Machine 

Long before the advent of modern digital computing machines, several math­
ematicians (notably Alonzo Church and Alan Turing) began to think about 
what it means to state that a particular function is computable. In the 1930s 
Church and Turing independently arrived at equivalent conclusions. The 
common result of their work can be stated as follows: 

A function is computable if it can be computed by a Turing machine. 

This result stipulates that a Turing machine is capable of computing every 
function there is. Turing machines have become one of the key abstractions 
in modern theory of computation, the study of what computers can and 
cannot do. 

A Turing machine abstracts a very simple computer. Its operations are lim­
ited to reading and writing symbols on a one-dimensional, linear tape virtu­
ally of unbounded size in both directions (i.e., it has no left end and no right 
end). The active part of the machine, a reading and writing head, can remain 
at the same position or move left or right by one position during any compu­
tation step. Each position on the tape can be conceived as a square that is 
either blank or contains a symbol from the finite alphabet of the particular 
Turing machine. At any point during a computation, the machine is capable 
of assuming any of a finite number of states. Depending on the content of the 
square over which the head is positioned as well as the state that the machine 
is in, the machine either halts or acts. It halts when there is no action defined 
for the state and the symbol being read. By the same token, the machine acts 
when the combination of the current state and symbol read is defined for the 
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computation at hand. Any action performed by the Turing machine consists 
of at most four primitive operations defined by the following: 

1. It may or may not erase the symbol that it reads at the square over which 
the head is positioned. 

2. A symbol erased at the current or a blank found at the current position of 
the head may or may not be overridden. 

3. The head of the machine may move by one position to the left, may move by 
one position to the right, or may remain at the current position. 

4. The machine may change to a new state. 

The interval of time in which a Turing machine completes an action is 
referred to as a time cycle. At most four and at least one primitive operation 
as described in the above are performed during a time cycle. The machine 
continuously performs action after action or comes to a halt when it reaches 
a state for which no action is defined. Such a state is also called di final state. 
The actions of a Turing machine are specified by a set of commands of the 
following form: 

(current s t a t e , current symbol) i-^ 
(new s t a t e , new symbol, l e f t / r igh t / same) , 

where left/right/same indicates the fact that the machine either moves left (L), 
right (R), or maintains the same position. Omitting the direction of the move 
implicitly means the head maintains its current position. The state transitions 
of a Turing machine can be specified in a table as illustrated in the following 
example. The symbol B is used to indicate a blank square and, for simplicity, 
can be thought as being part of the machine alphabet. 

Example: Actions of a Turing Machine 

We define and illustrate the actions of a Turing machine that computes the 
sum of two integers. In the initial configuration of the machine, the tape con­
tains the input to the computation. This consists of the two operands for the 
addition operator delimited with the symbol *. Each integer is represented by 
a sequence of "/" characters on the tape. 

Actions of the Turing machine as illustrated in Table 5.3 are expressed by 
the following commands: 

TABLE 5.3 Example of a Turing machine for adding two integers 
\ Symbol 

StateN B / * 

^5 ^ /^ / 

/̂ 
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Figure 5.6 depicts the computation of 1 + 3 = 4 by this Turing machine. 
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FIGURE 5.6 Illustration of the sum 1+3 processed by a Turing machine 
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Sketch of Proof for the Undecidability of the General 
Safety Problem 

Harrison, Ruzzo, and Ullman [HARR76, HARR78] reduce the general 
safety question to the Halting problem as it applies to the Turing machine. 
The protection system as defined by HRU is shown to simulate the behavior 
of an arbitrary Turing machine. In this setting, leaking a particular generic 
right in the protection system becomes equivalent to the Turing machine halt­
ing at a designated final state. 

Mapping an Arbitrary Turing Machine onto the Protection System 

The input to this mapping is an arbitrary Turing machine computing the 
solution of a particular problem. The set of generic rights of the equivalent 
protection system include 

• States of the machine and 
• Tape symbols of the machine. 

At any time during its computation, the machine will have scanned and 
processed some finite prefix of tape cells located to the left of its head, we 
number these cells 1,2,...,/:. as depicted in Figure 5.7. 

Each such snapshot of the machine will be represented by a sequence of k 
subjects, ^p ̂ 2v? ̂ /t such that 

5". corresponds to cell /. 
s^ is said to own ̂ .̂ j for / = 1,2,...,/: - 1. 
Symbol X written on cell / corresponds to subject s^ having generic 
right X to itself in the protection system. 
The cell currently being scanned by the tape head at, say, position 7, 
corresponds to subject s. having generic right q to itself, where q is the 
current state of the machine (the state symbols are assumed to be dis­
tinct from the tape symbols so to avoid confusion). 
Subject Sj^ corresponding to the last position of the prefix string has a 
special generic right to itself called end. This indicates the fact that we 
have not yet defined subject ^^^ p which is to be owned by subject Sj^. 

• 
• 
• 

FIGURE 5.7 A snapshot of a Turing machine equivalent of deciding the general safety 
problem 
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Figure 5.8 shows the access matrix of a protection system corresponding to 
a snapshot of a Turing machine with a prefix string of "ABCD" at its current 
state q. 

Mapping the Actions of the Turing Machine onto Protection Commands 

Generic states and symbols are now used to map the actions of the Turing 
machine onto commands of the equivalent protection system. This generic 
notation underscores the generality of the mapping. Based on the direction in 
which the head of the machine moves after completing an action, we distin­
guish three scenarios as described below. But first we note that the tape head 
is assumed to move in either direction between two consecutive positions as 
shown in Figure 5.9 for the positions corresponding to subjects s and / . 

Moving to the Left 

Assume that the machine is in state q and that its head is positioned over a 
cell corresponding to subject s' with symbol X written on it. Overriding the 
cell with symbol Fand moving the head by one position to the left, changing 
into state/?, means that subject / no longer has rights q and Xhut instead has 
right Y to itself Meanwhile, subject s, corresponding to the new position of 
the head, acquires right p to itself This case is equivalent to the following: 

A 

1 

B 

2 

C 

3 

D 

i 

4 
i 

{D} {own} 

{B,qf} {own} 

{C} {own} 

{D, end} 

FIGURE 5.8 Correspondence between a Turing machine and an access matrix 
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Moving left 

s s' 

Moving right 

s s' 

FIGURE 5.9 Moving the tape head in the Turing machine equivalent of a protection 
state 

command C {s, s' ) { 
if 

own in (s,s') and 
q in (s\ s') and 
X in (s'f s') 

then 
delete q from (s\ s') 
delete x from (s\ s') 
enter p into {s,s) ; 
enter y into (s\ s') j 

} 

Moving to the Right 

First we consider the case in v^hich the machine moves into a cell that has 
been visited before and contains a symbol from the machine's alphabet (i.e., 
not a blank). 

Assume that the machine is in state q, reads symbol Xat the current posi­
tion of the head corresponding to subject s, overrides Xv^ith 7, moves by one 
position to the left, and enters into state/?. This means subject s no longer has 
rights q and Xbut instead has right F t o itself. Meanwhile, subject / , corre­
sponding to the new position of the head, acquires right p to itself. 
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coiranand C^ ( s , s ' ) { 
i f 

own in (s,s^) and 
q in {s,s) and 
X i n (SfS) 

then 
d e l e t e q from (s,s) ; 
d e l e t e X from (s,s) ; 
enter p i n t o (s\ s') ; 
enter Y i n t o (s,s) ; 

} 

Now we consider the case in which the head of the machine moves right into 
a blank cell (i.e., one with special symbol B). Here the new cell needs to be 
mapped onto a new subject / in the corresponding protection system. Subject 
s is granted a special right own to subject / . In turn, s' is assigned the special 
right of end to itself as it becomes located at the end of the tape prefix: 

command D̂ĵ  (SfS') { 
i f 

end in (s,s) and 
q in (s,s) and 
X in (s,s) 

then 
d e l e t e q from (s,s) ; 
d e l e t e X from (SfS) ; 
create subject s' ; 
enter B i n t o (s\ s') ; 
enter p i n t o (s\ s') ; 
enter Y i n t o (s,s) ; 
d e l e t e end from (s,s) ; 
enter end i n t o (s\ s') ; 
enter own i n t o {s,s') ; 

} 

Maintaining the Same Position In this case, the action performed by the 
machine results in the head maintaining the same position on the tape but 
perhaps changing state. 

If (q, X) »-̂  (/7, Y) then we have the following corresponding command in 
the protection system: 

command D (s) { 
i f 

q in (s,s) and 
X in (s,s) 

then 
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delete q from (s,s) ; 
delete X from (s,s) ; 
enter Y in (s,s) ; 
enter p in (s,s) ; 

} 

We note that this last scenario is not explicitly pointed out in the HRU 
proof. For this to become a special case of the command C^̂  {s,s') when 
invoked with the actual arguments of C^̂  (s,s), one has to assume that the 
special right of own e (s,s) for every subject s in order to satisfy the condi­
tion if own in (^,/). 

Conclusion 

The HRU proof shows that the mapping of an arbitrary Turing machine to 
the protection system as described is well defined and results in the protec­
tion system exactly simulating the actions of the Turing machine. Deciding 
whether the protection system, as represented by the commands above, leaks 
a generic right r is equivalent to the following: 

• Map right r onto a final state (say, qj) in the corresponding Turing 
machine. 

• Deciding whether the Turing machine enters final state qj. becomes 
equivalent to deciding that the protection system leaks right r. 

Due to the fact that generic right r is arbitrary and hence yielding state q. is 
also arbitrary and given that answering the question of whether a Turmg 
machine enters an arbitrary final state is undecidable, the general safety prob­
lem of HRU protection systems is therefore undecidable. Because each state 
of the machine corresponds to a generic right in the protection system, enter­
ing a final state corresponds to the protection system leaking the right. 



Chapter 6 

The Take-Grant Protection Model 

Introduction 

The take-grant (TG) protection model was introduced by Lipton and Snyder 
[LIPT77] in 1977 and subsequently analyzed in considerable detail by a num­
ber of authors [BISH79, BISH88, BISK84, SNYD81]. The name of this 
model is derived from the fact that it is based on two key-access rights—take 
and grant. These two rights control the propagation of other primitive per­
missions (such as read and write) and hence drive the flow of information 
among the protected entities of a system. Information flow in the take-grant 
model is elegantly modeled using directed graphs and can be viewed as a gen­
eralization of the transitive closure problems. 

Unlike the Harrison, Ruzzo, and Ullman model that is discussed in the pre­
vious chapter, the take-grant model is simple and has linear time algorithms 
for deciding safety. But the take-grant scheme lacks the expressive capability 
exhibited in the HRU model. Nevertheless, it lends itself to various practical 
systems. In that respect, this model represents an interesting departure from 
the demarcation of decidable and undecidable protection systems set by the 
HRU model as noted by Sandhu [SAND92b]. Early analysis of the TG model 
dealt with the transfer of access rights under the assumption that active enti­
ties of the system cooperate in achieving the transfers. Such transfers are 
known as sharing or conspiring. Later analysis dealt with the conditions under 
which rights can be propagated without necessarily involving the cooperation 
of system subjects. The term theft is used to describe such transfers. 

We begin by reviewing the basic definitions of the take-grant protection 
model. The governing rules of transforming protection states are described in 
detail with examples highlighting the underlying effects. We distinguish 
between two kinds of information flows—sharing and stealing of rights and— 
state the major results relating to the safety question of the take-grant model. 

Definition of the Take-Grant Model 

In the take-grant protection model, a system is represented by a finite, labeled 
directed graph whose nodes correspond to the entities of the protection 
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s e 
FIGURE 6.1 Directed graph modeling of access in the take-grant model 

system. Active entities or subjects are represented by nodes of the form • , 
passive entities, or objects are represented by nodes O; while entities that 
may correspond to either subjects or objects are represented by (8). A dir­
ected edge from subject s to an entity e (either an object or subject) repre­
sents the fact that s has access to e. The set of access rights that s has to e 
are in turn represented by the weight a associated with the edge as depicted 
in Figure 6.1. 

Two special rights t for take and g for grant characterize the take-grant 
model. The semantics of these rights are summarized as follows: 

• Take Subject s that has take right to entity e underscores the fact that 
s can assume any right that e has to other entities such as protected 
objects. 

• Grant Subject s that has grant right to entity e can transfer any right it 
has for other entities to e. 

Recall that the term entity is used to refer to either a subject or an object. 
We qualify an entity as a subject or an object whenever the context specifi­
cally applies to either one but not to both. Figure 6.2 illustrates the effects 
from exercising the take- and grant-access rights. Note the propagation of 
rights in opposing directions. The take right results in propagating rights for­
ward, while the grant right disseminates rights backward with respect to the 
initiating subject. 

The dynamic aspect of evolving the system from one protection state to 
another is driyen by the application of a fixed set of graph-rewriting rules R. 
These rules transform the protection state of a system along a sequence of 
graphs, GQ,Gp..., G^, such that G. follows from G._.^, i- 1,...,« by some rule 
in R. Analysis of the model focuses on answering the question of whether G^ 
has some property X. In the realm of protection systems, property Zmay, for 
instance, relate to an undesirable propagation of an access right, potentially 
leading to determine a protection violation. Property X is exhibited by an 
edge in graph G^ between two nodes p and q with the label a and is stated as 
p can aq, meaning that entity/? has access right a to entity q in the final pro­
tection state as represented by graph G^. Note that generally a represents a 
set of rights. 

The rewriting rules governing the transfer of rights in the take-grant model 
are known as the dejure rules. The take-grant model consists of four such 
rules defined as follows: 

• Take Let x, ;; and z be three distinct nodes in a take-grant protection 
graph in which x is a subject. Let there be an edge from xto y labeled 
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<S> 

FIGURE 6.2 Propagation of rights in 
the take-grant model 

/wi th t G /(i.e., X has take right to y in addition to perhaps other 
access rights). Let there be an edge from j to z labeled ß. The take rule 
enables subject x to assume any subset of rights a e /? to entity z. 
Figure 6.3 illustrates the effect of transforming a graph G^ to graph Gj 
using the take rule. 

The take rule is written as x takes (a to z) from ;;. 

• Grant Let x, y, and z be three distinct nodes in a take-grant protection 
graph GQ in which x is a subject. Let there be an edge from x to y 
labeled /with g e /(i.e., x has grant right to y in addition to perhaps 
other access rights). Let there be an edge from x to z labeled ß. 
Applying the grant rule to graph G^ results in a protection graph G^ by 
adding a new edge from 3; to z labeled a such that a e j8. Figure 6.4 
depicts the effect from applying the grant rule. 

t 
(8>-

ß 

X y z 

FIGURE 6.3 Effect of the take rule 
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y X z 

FIGURE 6.4 Effect of the grant rule 

FIGURE 6.5 Effect of the create rule 

Go 
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The grant rule is written as x grants {a to z) to ;;. 

• Create Let x be a subject in a take-grant protection graph G^, and let a 
e R, where R is the set of access rights defined in the systems. The cre­
ate rule results in graph G^ that contains a new node y and an edge 
from X to j ; labeled a as shown in Figure 6.5. 

The create rule is written as x creates {a to new node) y. 

• Remove Let x and ;; be two distinct nodes of a take-grant protection 
graph GQ such that x is a subject. Let there be an edge from x to ;; 
labeled ß (i.e., x possesses rights ß^ Rio entity y). The remove rule 
results in graph G^ in which subject x has a lesser number of rights to 
y with the edge adjacency in G^ maintained the same as in G^. The 
remove operation is illustrated in Figure 6.6 in which a subset of rights 
a is removed from ß. When all the rights that x has to y are removed, 
edge (x, y) becomes useless and thus is removed. 

The remove rule is written as x removes a to ;;. 

ß-a 

FIGURE 6.6 Effect of the remove rule 
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Example: A Take-Grant Model 

The take-grant model lends itself well to security policies in which the set of 
subjects are organized along a hierarchy reflecting the control structure of an 
enterprise. Consider the application of this model to a five-member organi­
zation with a treelike structure as shown in Figure 6.7. 

Note how subject s^ acquires access to the resources directly under the con­
trol of subject s^ as illustrated in the bottom portion of Figure 5.6. This fol­
lows from the transformations: 

• 2̂ grants t to s^ to s^, and 
• s^ takes right rwx to all the resources accessible to s^. 

On the other hand, subject s^ cannot acquire access to the resources 
directly owned by Sy 

SA 

.^^J^ 

S3 

O O 

S4 

^^^^<r / N 
0 0 0 

FIGURE 6.7 An example of trans­
ferring privileges using the take-
and grant-control rights 
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Safety in the Take-Grant Model 

The safety problem as it relates to the take-grant protection model asks the 
question of whether it is possible for any given subject to ultimately gain 
rights to a particular entity. Although the rules that define the take-grant 
scheme are simple and small in number, the ramifications from applying them 
can be quite surprising. The propagation of rights may not be obvious at 
first. Consider the scenario in which the initial protection state is represented 
by a simple graph G ,̂ as shown in Figure 6.8. 

Despite the fact that there is no edge between nodes y and z in G^, we ask 
the question is it possible for y to have t access to z as a result of transform­
ing GQ using the take-grant rules? The answer to this question is a surprising 
yes as depicted in the transformations of Figure 6.9. 

The initial protection state as represented by graph G^ of Figure 6.8 is 
transformed using the following rules: 

• ;; creates (tg to new node) s (G^ ^ G^) 
• X takes (tg to s) from y (G^ ^ G^ 
• X grants {t to z) to s {G^ ^ G^ 
• y takes {t to z) from s (G^ ̂ -̂  G^) 

The intent of this example is to demonstrate the abundance of transfor­
mations that can be applied to an initial configuration and that can result in 
unexpected flow of access rights among entities of the take-grant protection 
model. Although it may seem that these transformations can yield 
unbounded protection states, the work performed by Lipton and Snyder 
[LIPT77] as well as others [BISH88, SYND81] led to the formal determina­
tion of information flow in the take-grant model. We state those theoretical 
results here but first we begin with the definitions that characterize the 
results: 

Definition 6.1: A tg-path is a nonempty sequence of distinct nodes x^, ...,x^ 
such that for all / = 0,..., n-l,x.is connected to x.̂ j by an edge in either direc­
tion—i.e., (x., X .̂ j) or (x .̂ p x.)—and with a label containing either t, g, or 
both. 

Definition 6.2: A nonempty set of nodes is said to be ^g-connected if there 
is a ^g-path that spans all of the nodes in the set. Nodes x and y are directly 

FIGURE 6.8 Example of an initial take-grant protection 
configuration with potentially a wider effect 
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X Z 

^ t ^ 
X Z 

^ t ^ 

1 - ^ t 

FIGURE 6.9 Effects of transforming the take-grant protection state of Figure 6.8 

^g-connected if there is an edge between the two nodes with a label that 
includes either t or g. 

Each tg-paih can be associated with one or more words over the alphabet 
•}. The notations t*, and g* are used to 

indicate one or more occurrences of the letters t and g, respectively. For 
example, instances of t* g can be the sequences g, tg, ttg. A ^g-path of length 
0 is referred to by the symbol v. 
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DeHnition 6.3: An island is a maximal ^g-connected subject only subgraph. 

DeHnition 6.4: A node x^ is said to initially span to node x^ if x^ is a subject 
and there is a ^g-path between x^ and x^ represented by a word in 
{—r-^*-^ -^*}u{v} . 

Definition 6.5: A node XQ terminally spans to node x^ if x^ is a subject and 
there is a ^g-path between XQ and x^ represented by a word in {—p^*} • 

Definition 6.6: A bridge is a ^g-path with endpoints that are both subjects and 
is represented by a word from the set 

Definition 6.7: Given a set of rights a, and two nodes x and j^ of a take-grant 
protection graph GQ, the predicate can.share{a, x, y, G^) is true if and only if 
there exist protection graphs Gp ..., Ĝ  such that GQ »-̂  Ĝ  «-̂  ... «-̂  Ĝ _j ^ G^ 
using only the rewriting rules of the take-grant model, and in Ĝ  there is an 
edge from xio y with label a. 

Determinism of Sharing in the Take-Grant Model 

The can. share predicate defines the potential for information flow in the take-
grant model. This flow may take place with or without the direct cooperation 
of resource owners. The following theorem states the necessary and sufficient 
conditions for such a flow to happen: 

Theorem 6.1: The predicate can.share{a, x, y, GQ) is true if and only if there 
is an edge from x to ;; in Ĝ  labeled a (i.e., the sharing is expressed in the ini­
tial state of the of the take-grant system) or if the following conditions are 
simultaneously satisfied: 

• There is a node s in GQ with an edge from sto y labeled a. 
• There exists a subject x' such that x' = x or x' initially spans to x. 
• There exists a subject / such that ^' = ^ or s' terminally spans to s. 
• There exist islands I^,..,I^ such that x' is in 7̂ , / is in 7̂ , and there is a 

bridge from 7̂  to 7̂ ^ ^ for /: = 1,..., n-\. 

Proof of this theorem is described in [LIPT77]. In what follows, we illus­
trate it for the special case where x' = x, / = s, with s and x directly ^g-con-
nected. This scenario can be expressed as follows 

The predicate can.share{a, x, ;;, GQ) is true if x is a subject and the follow­
ing two conditions are satisfied: 

• There is a subject node s in Ĝ  with an edge from ^ to j ; labeled a, 
• s and X are directly /g-connected. 
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Given any take-grant protection graph, it can be verified in linear time 
whether the conditions of Theorem 6.1 are simultaneously satisfied as stated 
by the following corollary: 

Corollary 6.1: There is a linear-time algorithm in the size of a take-grant pro­
tection graph for testing the can. share predicate. 

DeHnition 6.8: The predicate can.steal(a, x, y, G^) is true if and only if there 
is no edge from x to ;; in G^ that has label a, and there exist protection graphs 
Gp ..., Ĝ  such that G^aG^a .,.a G^_^ a G^ using only the rewriting rules of 
the take-grant model, and in G^ there is an edge from xtoy with label a, and 
if any two entities in graph Ĝ , say s and q, are connected with an edge from 
stoq that has label a, then no intermediate rule has the form s grants (a to 
q) to z for any node z in G. for all / = 1, ..., n- \. 

The last condition of Definition 6.8 characterizes the stealing of rights in 
the take-grant model. It states that for right a over entity y to be stolen it 
should not be explicitly disseminated by any entity that possesses it. 
Furthermore, as it is stated in Theorem 6.2 below, there has to be some entity 
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in the initial protection graph that has right a to y. The act of stealing access 
rights corresponds to an information flow occurring without the cooperation 
of resource owners or in general terms the entities having control over the 
protected resources. 

Theorem 6.2: The predicate can.steal(a, x, y, G^) is true if and only if the fol­
lowing conditions are satisfied simultaneously: 

• In GQ there is an edge from x to y labeled a. 
• There exists a node x' representing a subject such that x'= x or x' ini­

tially spans to X, 
• In GQ there is a node s with en edge from s to y that includes a in its 

label. 
• The predicate can.share{t, x\ s, G^) is true. 

Similarly, given a take-grant protection graph the conditions of Theorem 
6.2 can be checked for validity with linear-time complexity. 

Corollary 6.2: There is a linear-time algorithm in the size of a take-grant pro­
tection graph for testing the can. steal predicate. 
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The Schematic-Protection Model 

Introduction 

The access-matrix model of Harrison, Ruzzo, and Ullman (HRU) that we dis­
cussed in Chapter 5 is characterized by a rich expressive capabiHty. HRU can 
be appHed virtually to any access policies in existence. This generality, however, 
has led to the undecidability of the safety question in HRU due to the 
unbounded states of the protection system. Even when limiting the expres­
siveness of HRU to only mono-conditional and monotonic transformations of 
protection states, safety becomes decidable albeit nontractable. The take-grant 
model introduced in the previous chapter is unique in that it defines an infor­
mation-flow model that is completely based on two control rights, take and 
grant. It has a limited expressive power but a solvable safety. Furthermore, 
safety in the take-grant model is efficiently computable with linear time com­
plexity. One can think of the HRU and the take-grant models as being at 
opposing extremes of complexity in modeling protection systems. 

The schematic-protection model (SPM) introduced by Sandhu [SAND88a, 
SAND90, SAND91] is intended by its inventor to fill the gap between the 
richness in expressive power of the HRU model and its intractability with 
respect to the safety question as compared with the limited applicability of 
the take-grant model but efficient decidability of safety. The key concept 
introduced in SPM is that of typed security entities. Each entity, subject or 
object, is statically associated with an invariable security type. All instances 
of a given security type are viewed and treated uniformly by the authoriza­
tion scheme. This chapter introduces the novel concepts of SPM based on the 
work of Sandhu. We highlight some examples of access-control policies 
expressed in SPM constructs and summarize its safety results. 

Overview of the Schematic-Protection Model (SPM) 

Every SPM subject or object is designated to be an instance of a particular 
type that remains invariable throughout its lifetime. As such, the type of an 
entity needs to be determined by a thorough process during the initial setup of 
an authorization policy. A subject type may underscore some kind of position 
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assumed by that subject, such as membership in a department or in a partic­
ular group. Similarly, an object type may represent its security classification as 
an information container—for example, a document that is company internal 
only or one that can be shared with entities external to the company. The set 
of types Tin SPM is the union of types of subjects TS, and the types of sys­
tem objects TO (i.e., T = TS KJ TO). It is assumed that the type of a SPM 
entity is given by the function type. 

SPM characterizes all active entities of a protection system (i.e., subjects) 
using tw ô parameters. The first, a static one, is the type associated with the 
subject. The second represents the dynamic aspect of that entity in that it 
enumerates the capabilities that can be exercised by that subject on other sys­
tem entities, also called tickets or simply privileges. A ticket in SPM is 
denoted by Y/x indicating that the holder of the ticket has access right x to 
entity Y. The access right x may represent any abstraction of a set of opera­
tions that apply to entity Y. Its semantics are irrelevant to the analysis of 
SPM. But a distinction is made between access rights as they relate to the 
controls of the SPM in itself or simply inert rights such as the typical read, 
write, or execute. The set of access rights R is therefore divided into a subset 
of rights that are inert RI and a subset of control rights denoted by RC. 
Furthermore, right x is statically defined as either copyable (xc) or not copy-
able (simply x). The type of ticket Y/x:c is given by the value of the type func­
tion type(Ylx:c), which is the ordered pair type {Y)lx:c meaning that the type 
of a ticket is determined by the type of the entity to which it applies and the 
right that it carries {x:c denotes either x or xc). 

More generally a ticket of the form Yluvw indicates a capability to access 
entity 7 via access rights w, v, and w and simultaneously denotes tickets Ylu, 
Ylv, and Ylw. Yluvc is the union of Y/uc and Ylvc. The domain of a subject 
in SPM denotes the set of tickets granted to that subject. As stated above, 
every right x comes in two forms—x and xc where c is the copy flag. The dif­
ference between Ylx and Ylxc is that the former cannot be copied from the 
domain of one subject to the domain of another subject, while Y/xc allows 
the distribution of the ticket Y/x across subject domains provided other con­
trol elements are met in SPM. We describe the details of those elements in the 
next section. 

The space of SPM entities is expandable through the can-create binary 
relationship denoted by cc e TSxT that relates a subject type to an object 
type. A subject of type u can create an object of type v if and only the can-
create relationship {u, v) is prescribed by the SPM policy (i.e., (w, v) G CC). The 
can-create relationship is modeled by a directed graph, called the cc-graph, in 
which the nodes represent SPM protection types and an edge from u to v 
symbolizes the can-create relationship (w, v). SPM has decidable safety pro­
vided the can-create graph is acyclic (i.e., not containing cycles). When allow­
ing arbitrary cycles in the can-create graph, however, SPM has undecidable 
safety. In summary, the schematic-protection model is based on the following 
elements: 
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• A finite set of entity types T that is the union of subject types TS and 
object types TO; 

• A finite set of rights R partitioned into inert rights RI and control 
rights RC; 

• The dissemination of access privileges through the generation and distri­
bution of tickets, Ylx, based on a set of SPM rules to be discussed below; 

• The can-create relationships cc e TSxT'i^ the means by which the sys­
tem expands its space of entities. 

SPM Rules and Operations 

The protection state of a SPM can be transformed using three operations: 

• Copy, 
• Demand, and 
• Create. 

The copy and demand operations are concerned with the dissemination of 
tickets across SPM subjects, while the create operation introduces new sub­
jects and objects into the system. Ticket distributions combined with gradu­
ally evolving the protection system with newly created entities result in a 
dynamic and perhaps unstructured aspect of the protection system. This 
makes the safety analysis a challenging task. The details of the SPM opera­
tions and rules are outlined in the next subsections. 

The Copy Operation 

The copy operation moves a copy of a ticket from the domain of one subject 
to the domain of another subject. The original ticket remains intact. The 
side-effect of the operation is that an additional subject in the system now 
becomes in possession of the ticket, which is the object of the copy operation. 
This operation is authorized by two rules: 

• The copy flag attached to the ticket and 
• The link predicate link^ and its associated filter function yj. 

These rules are used by the policy setting officers and system administra­
tors to enforce the conditions under which a ticket can be copied from one 
subject to another: 

• The copy flag The presence of the copy symbol c in the ticket is a 
requirement for its copying to other user domains. Without this flag a 
ticket does not require any further policy checking to verify whether it 
can be transferred. 

• Link predicates A link predicate takes two arguments, subjects X and 
Y, and evaluates to true or false. If true, it establishes a policy link 
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between subjects X and Y that can be used to copy tickets from the 
domain of X to that of Y. The presence of certain control tickets (those 
associated with control rights) in the local domains of X and Y, respec­
tively, governs the evaluation of the link predicate. Because of this, it is 
termed the local link predicate. Link predicates are directional and thus 
are not commutative. The formal definition of the link predicate is 
stated by the following: Let dom(X) be the set of tickets in possession 
by subject X. A local link predicate link. (X, Y) is a function defined as 
an arbitrary Boolean expression using the conjunction or disjunction 
of the following basic terms for any control right z G RC\ 

XIz e dom(X) 

X/ze dom(Y) 

Ylz e dom(X) 

Y/zG dom(Y) 
true 

A link is established from subject X to subject Y if it is statically stated by 
the authorization policy in which case the link predicate for subjects X, and 
Y always evaluates to true. A link is also established dynamically from X to 
Y when there is a control ticket present in the domains of either subject. The 
control ticket is the mechanism by which a particular policy may state the 
rules for establishing the local links among its entities. 

For generality, SPM makes use of a finite collection of local link predicates 
{link., for / = Iv,^^} that can be defined in a protection system. Dropping 
the subscript from the link predicate function means only one type of link 
function is defined in the entire system. 

• Filter functions Each link function link, is associated with a filter func-
iionf:. TSxTS ^ 2^^. Filtering here takes two subject types as input 
arguments and assigns them a subset in the space of ticket types. It is 
intended to put more restrictions on the types of tickets that can be 
copied when the link predicate is satisfied. 

Finally, ticket Y/x:c can be copied from the domain of subject A to that of 
subject B if and only if the following conditions are satisfied for some link 
function (link.) and its associated filteryj: 

Y/xc e dom(A) 

link. = true 

y/x:c G f. (a,b) 

Thus, the combination of the copy flag, the link predicates, and the filter 
function is what governs a copy operation. The filter function is a means to 
strengthen policy rules and allows for finer control levels. Besides the discre­
tionary information flows that can be enabled via the copy flag and the link 
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predicates, the filter functions may be used to set mandatory controls beyond 
the powers of individual system subjects. 

Examples: 

The control rights t and g in these examples come from the take-grant pro­
tection model that is discussed in the previous chapter: 

• Link(X, Y) <=> Y/g G dom(X) OR X/t G dom(Y): That means a link may 
be established between X and Y when either subject X has the grant right 
to subject Y or subject Y possesses the take right to subject X. 

• Link(X, Y) <=> X/t G dom(Y): A copyable ticket can be copied from the 
domain of subject X to that of subject Y if and only if Y has right t 
for X. Note the definition here is not commutative, in that Link(X, Y) 
does not necessarily imply Link(Y, X). 

Figure 7.1 depicts the link rules that are used in the two examples above. 

The Demand Operation 

The demand operation allows subjects to acquire tickets ondemand. An SPM 
authorization scheme allows this ticket acquisition using the demand function 

Ĵ  

Y/ge 

X/tG 

VygfG 

X/te 

X/te 

dom(X) 

dom(Y) 

dom(X) 

A 

dom(V) 

dom(y) 

FIGURE 7.1 Two examples of SPM Link rules in the take-grant model 
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that maps a subject type to a set of ticket types that can possibly be empty. 
A ticket of type a/x:c that is a member of dQ)) for some type b implies that 
every subject of type b can demand ticket A/x:c for every entity A of type a. 
This implies that every existing or newly created entity of type a is accessible 
immediately to any existing or new subjects of type b. Instead of having to 
explicitly distribute tickets, the demand operation allows for an implicit flow 
of tickets across system subjects. 

The Create Operation 

The create operation introduces new entities, subjects and objects, into the 
system. There are two aspects associated with this operation: 

• Which entities are authorized to instantiate other entities and 
• Which tickets are immediately introduced as a side-effect of the create 

operation. 

Authorization 

SPM entities are authorized to create new entities by way of the noncommu-
tative binary relationship, can-create (cc). As was previously mentioned, this 
relationship is defined between an ordered pair of SPM entity types. The first 
is a subject type, while the second is an entity type that can represent either a 
subject or an object. The cc relationship can be thought of as a one-to-many 
mapping from the set TS to the set of all types T: 

or a one to one mapping 

cc : TS 

cc'.TS 

in which a subject type is related to a subset of T (the superset of types) 
The cc relationship can be modeled using a directed graph G(N, E) in 

which each SPM entity type is represented by a node (i.e., N-T). An edge e 
from node s to node v represents the fact that subject type s can instantiate 
entities of type v. By definition, there are no edges between object types. 
Only active subjects may instantiate SPM types into concrete entities. Thus 
a subject of type s may be able to instantiate subjects as well as objects of 
other types. 

SPM restricts the cc graphs to those that are acyclic only (i.e., without 
cycles except for loops) (cycles of length 1). This restriction is very practical 
in that subjects should not be created directly or indirectly by other entities 
that they can create. The cc relationship naturally dictates some type of sub­
ject hierarchy. Figure 7.2 illustrates an example in which a top-down hierar­
chy represents the ability of higher authorities to instantiate profiles or 
accounts for new entities as they join an SPM authorization scheme. 
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FIGURE 7.2 Example of a hierarchical cc 
relationship in SPM 

Create Rules 

For every pair of entities involved in the cc relationship, a SPM scheme spec­
ifies the tickets that can be generated when the underlying cc operation is 
applied. Every rule for ticket generation is expected to have a local effect 
meaning that tickets are generated for the entities involved in the cc relation­
ship only. The target of a cc relationship is the second argument of the rela­
tion (i.e., target of cc(a, b) is b). Depending on the type of the target, SPM 
distinguishes two scenarios governing ticket generation. 

• The target is of object type. The creation of an object results in a set of 
inert tickets attached to the subject initiating the create operation. 
Formally, the create rule in this case is specified as cr(a,b) c {b/x:c I x:c 
e RT}. This means when subject A of type a creates an object B of type 
b, A acquires tickets B/x:c if and only if b/x:c e cr{a,b). 

• The target is of subject type. Recall that the initiator in the cc relationship 
is always a subject. In this case, both the initiator and the target are sub­
jects, and the policy governing the create rule is specified in two parts. 
The first one is related to the subject initiating the create operation, 
denoted by LEFT, while the second is associated with the target subject, 
denoted by RIGHT, The operation is defined by cr{a,b) = LEFT I 
RIGHT. The LEFTpaxt of the create operation relates to the tickets that 
are placed in the domain of subject A. The RIGHT part specifies the 
tickets to be placed in the domain of subject B, target of the operation. 
Formally, tickets contained in LEFT and RIGHT are subsets of 
{a/x:c,b/x:c I x:c e R}. When both the initiator and the target are of the 
same type (case of a = b), this notation uses self to refer to the initiator. 
LEFT and RIGHT become subsets of {alx:c,selflx:c I x:c e R}. Here 
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selflx:c denotes tickets placed in the domain of the initiator, while alx:c 
denotes tickets placed in the domain of the target subject. 

Attenuating Create-Rule of SPM 

In addition to the requirement that the graph modeling the can-create rela­
tionships in a SPM scheme be acyclic, the create rule is required to be atten­
uating for loops (i.e., rules of the form cr(a, a)). The attenuation restriction 
aids in the analysis of SPM and leads to a tractable decidability of its safety. 

Consider subject A of type a such that cc(a, a). Subject A can create sub­
ject A' of type a\ recursively A' creates A" and so forth. The potential for 
long sequences of create rules that take place within the same type compli­
cates the security analysis of SPM. To alleviate the effect of this complexity, 
the cr(a, a) is constrained by the tickets it may introduce. The new restriction 
on cr(a, a) is that after the create operation in which A instantiates A' is com­
plete, the following condition must hold: 

dom (A ' ) e dom(A). 

This means the set of tickets introduced by the cr(a, a) operation is not 
extendable. A newly created subject is not allowed to acquire any more tick­
ets than what is already in possession of the subject performing the create 
operation. Although this limitation may naturally exhibit itself in many prac­
tical policies, its introduction is mainly intended to ease the analysis of SPM. 
In that respect, all subjects of type a for which cr(a, a) is allowed become 
equivalent from the standpoint of safety analysis. Furthermore, cr(a, a) 
requires that if a ticket for A' is placed in the domain of subject A, the cor­
responding ticket for A is automatically placed in the domain of A. Formally, 
a cr(a, a) rule is attenuating if 

LEFT BRIGHT 
alxx e LEFT^ selflxx e LEFT. 

The second restriction underlines the fact that an entity that creates a sub­
ject of its type should possess all the privileges to itself as those it confers on 
the instantiated subject. 

Application of SPM 

In the following, we illustrate two SPM examples drawn from practical access 
policies as originally presented by Sandhu [SAND88a, SAND88b]. 

Sharing Across Resource Owners 

In this scenario, SPM rules model a simple policy where a resource owner 
automatically grants access rights to all other users (complete sharing). 
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TS = {user} 
TO = { f i l e } 
RI = {x:c I X i s e i t h e r r, w, o r x (read, w r i t e , execute) } 
RC = {} 
l ink^ (X, Y) = t r u e 
f^ ( u s e r , u s e r ) = { f i l e / x c } 
d (use r ) = {} 
cc (user) = { f i l e } 
cr{ u s e r , f i l e ) = { f i l e / r c , f i l e / w c , f i l e / x c } 

This scheme uses a single universal link function denoted by link^ and its 
corresponding filter function f^. Note that since the link function in this 
example evaluates to true for any given pair of users (X, Y), and because all 
tickets created are associated with a copy flag, this scheme defines a policy in 
which access to any created file is shared across the population of users in the 
system. 

The Basic Take-Grant Model 

In this basic take-grant model, there is only one subject type and one object 
type denoted by sub Sind file, respectively. We assume that inert right x allows 
appropriately meaningful access to file type of resource. To allow for the copy 
operation a universal link is established across subjects as follows: 

link(X, Y) o Y/g e dom{X) v X/t G dom{Y) 

A link from Xto Fin SPM requires Xto possess g right to For Fpossess 
right ^ to Xin the corresponding take-grant formulation. The can-create rela­
tionship is defined among subjects as well as between subjects and objects. 
Figure 7.3 represents the graph modeling this simple cc relationship. The cre­
ation of file Fhy subject A augments dom(^) by a new ticket Fixe. While the 
creation of subject A' by subject A results in A acquiring tickets of type 
subltge that apply to the instantiated subject and ticket selfitgc for subject A 
itself The latter is introduced so that the scheme maintains the attenuating 
create property. This basic take-grant model is specified by the following rules 
as defined in Sandhu [SAND88a, SAND88b]. 

file 
O FIGURE 7.3 Modeling the can-create rule in the take-grant example 
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TS = {sub} 
TO = { f i l e } 
RI = {x:c} 
RC = { t : c , g : c } 
l i n k (X, Y) <=> Y/g 6 dom(X) v X/ t <=> dom(Y) 
f (sub, sub) = TxR 
d(sub) = {} 
cc(sub) = { f i l e , s u b } 
c r ( s u b , f i l e ) = { f i l e / x c } 
cr(Slab, sub) = { sub / tgc , s e l f / t g c } I {} 



Chapter 8 

Role-Based Access Control 

Introduction 

The access-matrix model directly manipulates access rights in that granting 
or revoking access to a resource explicitly refers to a particular permission. 
This approach yields a fine-grain level of control where each access type and 
its required permissions are related by a mapping that can be one-to-one at 
the finest level. For example, the reo J permission clearly means one can view 
the information contained in a resource but not modify it or add to it. To 
allow for updates, a new access right such as write or append is needed. 
Although this approach offers the advantage of fine-tuning an access con­
trol policy to accommodate any level of access needed, it can be costly to 
manage. The inherent cost factor becomes apparent with the increase in the 
number of managed users and resources. Furthermore, the effects from 
resources removed or added to the system as well as users leaving and join­
ing an organization or simply changing job functions adds up to the com­
plexity and overhead of maintaining such policy. For example, assigning an 
employee to a new function may require revoking his or her access rights to 
a large number of resources that are no longer needed for the tasks required 
by the new position. Similarly, functions of the new job may require access 
to various new resources. In this scenario, explicit revocation of access rights 
as well as the granting of new ones needs to span every old and new resource 
that is or used to be accessible to the user. 

The notion of user groups was introduced to alleviate some of these issues. 
Users sharing similar access to the same resources become members of a sin­
gle group. The group as a single entity is then granted or denied access to the 
managed resources. Access decisions take into account the fact that a user is 
a member of one group or another. Grouping users is certainly one impor­
tant aspect in addressing the scale of manageability in access-control systems 
but alone is not sufficient. 

In addition to user groups, another important dimension in the manage­
ability of access controls is the grouping of access rights. Following on the 
concept of managing users that share similar access capabilities as a unit, 
role-based access control evolves around the idea of grouping access rights 
pertinent to a particular functionality into a role abstraction. Access 
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management as such is performed at a coarse-grain level than that of indi­
vidual privileges. In our previous example of a person moving to a new 
function, he or she is simply assigned to the new role and removed from the 
old one when a role-based access control (RBAC) mechanism is in place. 
RBAC policies provide a natural and powerful way for an administrator to 
specify the privileges required by various job functions and efficiently man­
age user to role associations. 

The appeal of RBAC is its inherent representation of real-world access-
control processes. In many situations, people perform day-to-day functions 
based on the role in the organizations to which they belong, within a com­
munity of people, or in society at large. A role is a higher-level concept that 
can be better understood as opposed to individual access rights or opera­
tions. Roles are compatible with the hierarchical organizations found in real 
Hfe, such as those in an enterprise. Roles can be easily mapped onto an 
already hierarchical structure of an organization. Higher-level roles are auto­
matically granted the roles associated with lower level organizational entities. 
It is for these reasons RBAC is being touted as the generalized form of 
access-control models. 
The underlying RBAC foundations are 

• Permissions are assigned to roles, 
• Users are assigned to roles, and 
• Access decisions are based on users being members of applicable roles. 

The premise of ease in managing an RBAC policy is based on the fact that 
user assignments to roles tend to change over time, while permission assign­
ments to roles are relatively stable. The privileges associated with a particular 
role may remain unchanged over a long period of time due to the fixed 
semantics of the functions assigned to that role. Users can be easily reas­
signed to new roles as the need arises. Basing security administration on roles 
rather than on permissions provides simplicity, is easier to understand, and 
enables better scalability. Roles support the data-abstraction principle in sys­
tems design and can be viewed as higher-level encapsulations of lower-level 
privileges and permissions. 

Roles have been adopted in many environments and contexts, at times with 
varying semantics. An early reference to roles can be found in [LOCH88], 
where they are defined in a generalized hierarchy and agents representing 
users are assigned to roles. Ting [TING88] describes the use of roles for appli­
cation-level security controls. Baldwin [BALD90] named protection domains 
are similar to the roles as defined by Nyanchama and Osborn [NYAN94, 
NYAN99]. The embodiment of modern RBAC is described by Ferraiolo and 
Kuhn [FERR92], by Sandhu [SAND96], and in the proposed standard for 
RBAC [FERRO 1], to mention a few. In this chapter we present the RBAC 
model in its three major forms—basic RBAC, hierarchical RBAC, and con­
strained RBAC. We discuss all major aspects surrounding RBAC, including 
flow analysis and the simulation of DAC and MAC policies. 
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Basic RBAC 

In its basic form, RBAC consists of managing a set of users, a flat set of 
roles, a set of resources, and a universe of access permissions. The idea is to 
encapsulate subsets of access rights within named roles. Assigning a user to 
a particular role implies that he or she is granted access to the resources that 
are in the confines of that role. A role can represent a competency in a par­
ticular area and does not necessarily have to have any users assigned to it. 
A role without any directly assigned users is referred to in the literature as a 
virtual role and sometimes is also called 2i position [MOFF99, SAND96]. For 
instance, the role of a health care provider can be used as a high-level abstrac­
tion for a physician or a nurse. Roles that are assignable to users embody a 
concrete scope of responsibility. One might have the competency necessary to 
be a supervisor for several work groups but have the responsibility for only 
the work group he or she actually manages. 

At a lower level, each resource manager exposes a functional interface pro­
viding access to its resources. Each such interface is known as an operation. 
Based on the semantics of the operation performed on the resource, one or 
more permissions might be required for that operation to take place. 
Permissions can be discretely disjoint of one another or can be related 
through some hierarchical semantics or other relationships. For example, in 
the operations exposed via a file system, while the read and the append per­
missions are disjoint, they are both implied by the write permission. Similarly, 
the control permission, where applicable, implies all of the permissions read, 
append, and write. Depending on the access decision policy used, the list of 
permissions required by an operation may be further evaluated by the under­
lying access-control systeni using a predefined expression or rule before an 
access decision is made. For instance, the set of permissions required to 
access a particular resource can be evaluated using a disjunctive form (a sin­
gle permission is needed) or using a conjunction in which all of the listed per­
missions are required for the operation to proceed. Figure 8.1 illustrates the 
basic relationships among roles, permissions, and operations. 

Permissions Role User Role Permissions Operation 

FIGURE 8.1 Basic relationships among roles, users, permissions, and operations 
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RBAC as a generalized access-control model supports two well-known 
security principles: 

• Separation of duty Tasks requiring separation of duty are assigned to 
multiple users rather than to a single individual or one programming 
agent. This principle is used to formulate what is also known as a mul-
tiperson access-control policy. 

• Least privilege A user is confined to a subset of roles based on the task 
being performed. In turn, each of these roles can be such that it encom­
passes only the privileges necessary for achieving the activities man­
dated by the role, not more and not less. 

User, Role, and Permission Associations 

Central to RBAC is the role concept around which access policies are formu­
lated. Defining a set of roles is the first ingredient of RBAC. Users are assigned 
to roles in a many to many relationships. A single role can be assumed by mul­
tiple users, while each user can be assigned to multiple roles. Multiple roles that 
are assigned to a single user may be subject to further constraints such as the 
separation of duties where users are prevented from simultaneously being 
members of separated roles such as those with conflict of interest. 

Roles can be discrete abstractions that are disjoint from one another or 
may adhere to a particular relationship such as a hierarchical containment in 
which one role may oversee several other roles and hence is automatically 
granted their permissions. Other forms of role relationship such as aggrega­
tions may also exist. 

Permissions are assigned to roles in a many-to-many relationship. A single 
permission can be assigned to multiple roles. In turn, a single role can be des­
ignated to contain multiple permissions. Permission-to-role assignment can 
be constrained depending on restrictions imposed on the roles themselves. In 
the special case when role-to-permissions relationship is a one-to-one, the 
RBAC model does not offer the advantage of ease of management. In this 
worst-case scenario, RBAC becomes equivalent to the access-matrix model in 
its overhead and complexity. Assigning permissions to roles can be best 
implemented in line with the least-privilege principle, thereby avoiding the 
danger that a user may be granted more access to resources than is needed. 

Conceptually, these assignments can be encapsulated by two Boolean 
matrices—UR {USERS x ROLES) and PR (PERMISSIONS x ROLES) 
defined as follows: 

\UR[u,r] = true<^u^ r 

I PR \p, r] = true <=> p -^r, 

where -^ symbolizes an assignment operator mapping its left and right 
operands onto each other. USERS, ROLES, and PERMISSIONS are the 
sets of managed users, roles, and permissions, respectively. 
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In RBAC the concept of a session refers to the mapping between a user 
and an activated subset of roles that are assigned to the user. Each user can 
be associated with one or more sessions at a time. A role session is defined by 
the established security context of the user, and thus a session is associated 
with a single user. The number of user sessions and roles that can be simul­
taneously active varies based on the underlying security policies. In some 
instances, each user is serially confined to a single session that in turn remains 
associated with a single role. In other cases, a user-security context may 
acquire multiple concurrent sessions, and each is associated with multiple 
roles at a time. Associating multiple roles to a session allows selective activa­
tion and deactivation of roles. Widely acceptable RBAC implementations 
and policies limit a user's established security context to a single session but 
with multiple roles at a time. 

The illustration of Figure 8.2 shows roles as defining the rows of two 
matrices. One matrix represents user to role assignments A, and another one 
representing permission to role assignments B. While the grouping of users 
has eased access-control management, a role is viewed not only as a collec­
tion of permissions but rather as a collection of both users and permissions. 
The view of a role as intermediary between privileges and users represents the 
major difference between roles and groups. 

RBAC Relationship Reviews 

Role reviews are an essential element in the administration of an RBAC pol­
icy. A reliable RBAC implementation supports bidirectional reviews of user-
role relationships whereby the roles assigned to a particular user and the users 
assigned to a specific role can be determined. A comprehensive review capa­
bility also allows for permission-role reviews in which permissions assigned to 
a particular role as well as roles containing a specific permission can be deter­
mined. The rows and columns of the matrices in Figure 8.2A and B illustrate 

R 
O 

USERS PERMISSIONS 
r ^ 

V J 

R 
0 
L 
E 
S 

r 

l i i i i iWÄWÄi 

L LI 

^ 

J 

FIGURE 8.2 User-to-role and permission-to-role assignments as viewed in matrix 
forms 
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user-role and permission-role reviews, respectively. Formally, user-role reviews 
can be represented by a mapping ur and its inverse wr"̂ , defined as 

ur : USERS -^ 2^^^^\ 
ur' : ROLES -^ 2^^^^^. 

The set of roles assigned to a given user is defined as 
user_ assigned_ roles{u) = {r e ROLES I UR[u,r] = true}. 

The inverse mapping ur~' yields role-user reviews that determine the set of 
users assigned to a particular role as 
role _ assigned_ users(r) = {u e USERS I UR[u,r] = true}. 

Permission-role reviews can be represented by a mapping pr and its inverse 
pr~' defined as follows: 
pr : PERMISSIONS -^ 2,^^^^^ 
pr-' : ROLES -^ 2^^^^^^^^^^^^ 

The set of roles to which a particular permission is assigned is given by 
permission_assigned_roles(p) = {r G ROLES I PR[p,r] = true}. 

The set of permissions assigned to a particular role is given by role_assigned_ 
permissions(r) = {p e PERMISSIONS I PR[p,r] = true}. 

Hierarchical RBAC 

Role hierarchies are a natural means of structuring an organization's line of 
authorities. Support for hierarchical roles therefore is a key aspect of any 
role-based access-control implementation. Mathematically, a role hierarchy 
defines a partial ordering relationship among roles {ROLES x ROLES) 
denoted by the symbol >. Each pair of related roles (i.e., r ,̂ r^ e ROLES) 
such that Tj > r^ is characterized by the following properties: 

• Tj is referred to as a senior role with respect to r^. 
• r^ is referred to as a. junior role with respect to r^ 
• Tj acquires the permissions of r^ in addition to its own permissions. 

This implies that the permission set assigned to r2 is a subset of that 
assigned to r^. 

• r2 acquires user membership of r^ in addition to its own base of users. 
This means users with the senior role r^ are automatically a subset of 
users in the junior role r^. 

Figure 8.3 illustrates the containment relationships corresponding to two 
hierarchical roles r^ and its junior role r2. Note the containment property with 
respect to users and permissions results in the senior user membership being 
part of the junior user membership, while the junior permissions are part of 
the senior permissions. 
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r̂ : Senior role 

rg: Junior role 

FIGURE 8.3 User and permission memberships in senior and junior role relationships 

The partial ordering relationship > defined among a set of hierarchical 
roles is also described as an inheritance relation. Role inheritance, in its most 
widely adopted definition, is expressed in terms of permissions whereby a 
senior role is said to inherit permissions of a junior role. A role r^ inherits role 
r^ if all permissions of r^ are also permissions of r^ and users of r̂  are auto­
matically users of r^. Role-inheritance modeling is functionally similar to 
class inheritance in object oriented systems. 

Two forms of role inheritance are recognized, general, and limited role 
hierarchies. 

General-Role Hierarchies 

General-role hierarchies support the inheritance of privileges from one or 
more junior roles. Role inheritance here is analogous to the concept of inher­
itance in object-oriented programming languages where functions and data 
defined by a base class are inherited by a subclass, which, in turn, may fur­
ther extend itself by defining additional data and functions. In the same man­
ner by which instances of a subclass can be cast to the type of its parent class, 
a senior role can be cast to a junior role in that it automatically assumes the 
junior permissions. This analogy, however, does not apply when it comes to 
overriding functionality by a subclass that would correspond to overriding 
the semantics of an inherited permission. 

The aspect of casting a specialized class of objects into a more general­
ized one is referred to in the literature by the isa relationship. Sandhu 
[SAND96] adopts the isa terminology in modeling role inheritance as illus­
trated in the example of Figure 8.4A. Roles with extended powers (i.e., those 
inheriting other roles) are better illustrated as higher than their juniors in the 
graphic representation of a role hierarchy. This visualization reflects the 
positions of lower level roles with respect to their senior roles. Figure 8.4B 
depicts the same inheritance relations as in Figure 8.4A but using the isju-
nior relation, thus graphically showing senior roles above their juniors. We 
adopt the isjunior relation in all of our illustrations of role hierarchies in the 
remainder of our discussion. 
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FIGURE 8.4 Representing role hierarchy using the isa relationship A and the isjunior 
relationship B 

The isa and the isjunior relations are equivalent in the sense that 

^ isa rj <=» rj isjunior f;. 

Role-inheritance relationship is defined by the partial-order relationship 

denoted by > such that r̂  > r2 <=> all permissions of r^ are also permissions of 

Tj and all users of r^ are also users of r^. This is expressed formally as 

role_assigned_permissions(r2) c role_assigned_permissions(rj) A 
role_assigned_users(rj) e role_assigned_users(r2). 
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We illustrate role inheritance with directed edges linking roles and repre­
senting inheritance expressed using the isjunior relationship. Figure 8.5 shows 
an example of a role hierarchy with multiple-role inheritance. 

Limited'Role Hierarchies 

This type of role hierarchy is restrictive over the general case in that it sup­
ports only single inheritance of roles. The semantics of inheritance, however, 
remain the same as in the general case. Formally, the limited-role hierarchy 
can be expressed as 
r^> r^^> role_assigned_permissions(r2) e role_assigned_permissions(rj) A 
role_assigned_users(rj) c role_assigned_users(r2) A 
Vr, Tj, r^ G ROLESj >r^Ar>r^^>r^-r^ (single inheritance characterizing 
limited role hierarchies). Note that the > relation here means direct inheri­
tance only. 

Figure 8.6 shows a role hierarchy based on that of Figure 8.5 but with sin­
gle inheritance (i.e., a limited hierarchy). 

Representation of the limited-role hierarchy corresponds to an inverted-
tree structure or generally stated an acyclic graph. Once a limited-role hier­
archy branches out (i.e., there are at least three distinct roles r^, r^, r^ such that 
Yj^ > r^ and r^ > r^) (in a direct inheritance relationship), there cannot be a 

Project director 
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Development 
engineer 2 

Development 
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FIGURE 8.5 Example of a general-role hierarchy expressed by the isjunior relationship 
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System test 
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test engineer 

Development 
engineer 2 

Development 
engineer 1 

Developer 

FIGURE 8.6 Example of a limited-role hierarchy (single-role inheritance) 

single authoritative role r that encapsulates all privileges in the hierarchy. The 
absence of a root authoritative role is due to the single inheritance require­
ment imposed in the limited hierarchy. One exception to that is the linear 
hierarchy in which only a single role is defined at every level of authority as 
illustrated in the example of Figure 8.7. 

FIGURE 8.7 A linear-role hierarchy with three roles 
and a single root role (CEO) 
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Role Reviews in Hierarchical RBAC 

In the presence of a hierarchy, user-role reviews need to take into considera­
tion the effects of role inheritance. In addition to the direct assignment of 
privileges and users to roles, one needs to factor the effects from indirect user 
and privilege membership in roles. The following are the semantics of the 
review functions in hierarchical RBAC: 
role_authorized_users : ROLES -^ 2^^^^^ 
returns the set of users that are authorized for a given role directly or indi­
rectly. 
role_authorized_users{r) = {w G USERS\ UR* [u,r] = true}, 
where UR* represents the transitive closure of UR. The inverse of this map­
ping is 
user_authorized_roles'. USERS -^ 2,̂ ^^^*^ 
which returns the roles authorized for a given user, directly or indirectly: 
user_authorized_roles{u) = {r G ROLES \ UR* [u,r] = true}. 

role_authorized_permissions:ROLES ^ 2^^^^^^^^^^^ 
returns the set of permissions that are authorized for a given role either 
directly by way of assignment or indirectly through inheritance: 
role_authorized_permissions{r) = effective_permissions{r). 

Modeling Hierarchical RBAC Using Role Graphs 

As has been mentioned, role inheritance can be modeled using directed 
graphs whereby a graph node represents a role and an edge from node r^ to 
node r^ represents the fact that r^ inherits role r^ Nyanchma and Osborn 
[NYAN99, OSBO02] have extensively studied the modeling of role hierar­
chies using directed acyclic graphs in what they refer to as role graphs. Roles 
in a role graph are bounded by MaxRole and MinRole. MaxRole represents 
the union of all privileges in the role set, and MinRole corresponds to the 
minimum set of privileges available to any role in the system (i.e., a common 
subset of privileges assigned to every role). In the absence of such a minimal 
privilege set, MinRole reduces to an empty set as stated below: 

role _ assigned _ permissions {MinRole) = 

minimum required privilege set if defined 

O otherwise 

MaxRole is merely used for the formalism of role graphs and may or may 
not have any users assigned to it. As outlined by Nyanchama and Osborn 
[NYAN99], role graphs have the following properties: 

• There is a single MaxRole whose set of privileges is given by the fol­
lowing formula: 

role_assigned_ permissions (MaxRole) = 
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U role_assigned_permissions (r^,i = 1, ...,«, 
where n is the cardinality of the ROLES set. 

• There is a single MinRole containing the following set of privileges: 
role_assigned_permissions {MinRole) = 
I role_assigned_permissions (r.),i = l,...,n, 
which could result in an empty set. 

• There is a path from MinRole leading to every role r.,/ = 1,...,«. This fol­
lows directly from the definition of the MinRole being at the bottom of 
an inverted tree of the role graph. This also follows from the fact that 
by definition MinRole is inherited by every role (i.e., r. > MinRoleJ = 
1,...,«). The relationship > here can be either direct or indirect by way 
of transitivity. 

• The graph is acyclic. Assuming a role graph is allowed to contain 
cycles, by definition of the inheritance relation, it follows that each 
cycle of the graph can be reduced to a single node (role). The presence 
of a cycle in a role graph therefore is useless. Role graphs should not 
contain any cycles other than loops, which do exist by definition of > 
since r. > r., / = 1,...,«. 

• The set of junior roles of a given role r, denoted hy juniors (r), consists 
of all roles represented by nodes r. such that there is a path of length 1 
or more from r. to r. Immediate juniors of r are roles r. such that (r., r) 
is an edge in the role graph. 

• The set of senior roles of a given role r, denoted by seniors(r), consists 
of all roles represented by nodes r. such that there is a path of length 1 
or more from r to r . Immediate seniors of r are roles r. such that (r, r ) 
is an edge in the graph. Note that by definition of role inheritance, a 
role can be either a senior or a junior to another role but cannot be 
both at the same time. Also note the fact that seniority relationship is 
the inverse of the junior relationship and vice-versa. 

• For any two roles r. and r., if role_assigned_permissions (r.) cz role_ 
assigned_permissions (r.) then there exists a path from r. to r . This 
property enforces the hierarchical structure of role graphs. By defini­
tion a role encompasses a set of privileges accumulated along the path 
starting at MinRole and leading up to that role. Therefore any role r. 
whose set of privileges is part of the privileges of another role r. is con­
sidered a junior role to r . A path exists between a senior role and all of 
its juniors. 

Effective and Direct Privileges 

Nyanchama and Osborn [NYAN99] introduced the notion of effective and 
direct privileges of a role. The direct privileges of role r are those privileges 
associated with r but are not assigned to any of its junior roles. On the other 
hand, the effective privileges of r are the union of all privileges accumulated 
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from the junior roles of r augmented with the direct privileges of r itself The 
set of effective privileges of any role r is expressed by the following recursive 
form: 

\effective_ privileges (r) = direct_ privileges(r) U 

effective_ privileges (ri):i=l,...,m 

effective_ privileges (MinRole) = 

direct _ privilg es (MinRole), 

where m is the total number of immediate junior roles of r. Recall that a role 
r. is an immediate junior to r if and only if in the role graph there is an edge 
from r. to r. 

Direct privileges of a role can be an empty set. An example of that is a sce­
nario in which a particular role is used to join multiple other roles. The priv­
ileges associated with a role created as a result of this role-join operation are 
the union of the effective privileges of its junior roles. Formally, 

effective_ privileges (r) = U, = i ^ effective_ privileges (̂  ), 

where r., i = 1,..., m is the set of immediate junior roles of r. Similarly, some 
roles in a hierarchy may have no users assigned to them. These virtual roles 
are defined only to capture competencies of some kind and are not assigna­
ble. For instance, an educator role is simply used to encapsulate the generic 
tasks that are common to every educator. A physical educator role that inher­
its from educator can be an elementary teacher, for instance. 

Role-Graph Modeling of Generalized Role Inheritance 

Direct role inheritance is a role-to-role relationship that can be viewed as hap­
pening in three different ways: 

• One-to-one A role is inherited by a single role only. Therefore, propa­
gating the privileges of the inherited role in one direction along the 
upper hierarchy. This case yields a linear role hierarchy. 

• One-to-many A single role is inherited by multiple other roles and 
hence propagating the privileges of the inherited role in multiple direc­
tions. This scenario can be viewed as a split in the hierarchy in that dif­
ferent inheriting roles will have to exist at the level immediately above 
the level of the inherited role. 

• Many-to-one Here multiple roles are inherited by a single role. This 
case can be viewed as a join operation in which multiple lower-level 
roles are inherited by a single upper role. 

Figure 8.8 depicts the generalized role-to-role relationships and their impli­
cation on privilege sharing. For simplicity we refer to roles R^, R^ and R^ to 
describe each of the scenarios illustrated. Case A is meaningful only when 
effective_privileges {R^ cz effective_privileges {R^. This implies that 

file:///effective_
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f?2 R3 

FIGURE 8.8 Scenarios of role-to-role relationship cardinality in the generahzed RBAC 
model 

direct_privieleges{R^ ^ O. Role R^ therefore has to be assigned permissions 
that are not in the effective permission set of R^ The same applies to case B. 
In case C role R^, however, does not need to introduce new privileges. This 
case assumes that effective_privileges {R^ and effective_prmleges (R^) are 
disjoint sets; otherwise, there is no use from joining two identical roles. Role 
i?3 is used to join the authoritative powers of R^ and R^ into a single role and 
may in turn acquire new direct privileges. 

Role-Graph Operations 

The modeling of role hierarchies using acyclic directed graphs leads to the 
application of various graph-theoritic algorithms for manipulating and ana­
lyzing them. Given a role graph, one can deduce a corresponding graph that 
has no redundant edges by computing the transitive closure of the graph 
[AH072, CHAR96]. For a particular role r, we compute the set of its junior 
roles by simply executing a breadth or a depth first search beginning at node 
r. Similarly, the set of seniors(r) can be computed by reversing the direction 
of edges in the role graph then computing a breadth or a depth first search 
starting at node r. Reversing the direction of edges is easily accomplished by 
making a copy of the original adjacency matrix then transposing it. 
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Nyanchama and Osborn [NYAN94] have studied and proposed a number 
of role-graph management algorithms. We particularly describe the algo­
rithms they suggest for role addition and deletion. Subsequently, we discuss 
the effect from updating a role with a new privilege. 

Role Addition Introducing new privileges in an RBAC scheme may necessi­
tate the addition of new roles instead of extending the controls of an existing 
one. This is particularly useful in supporting the least-privilege principle 
enabled through RBAC. The addition of a new role may be required to reflect 
the evolving authoritative structure of a particular organization. A new role 
may also be needed to join multiple existing roles into a single supervising role 
without any direct privileges assigned to it and in which case only the junior 
roles of the new role need to be specified to perform the join operation. 

Role addition is an operation that transforms a role graph into a new state 
encompassing the new role and its relationship to other roles. The new role 
can be defined by name and a set of privileges. The name must be unique so 
that it does not conflict with existing roles. It is desirable that the privileges 
be given in terms of eflFective privileges as this eases the placement of the role 
within the entire graph and prevents privilege distribution redundancies. On 
the other hand, direct privileges can be used as well, but alone they are not 
sufficient to determine the position of the new role in the graph and hence the 
underlying organization as a whole. To determine the position of the new 
role, say r, we compute the sets of its senior as well as junior roles. The jun­
ior roles are those with an eflFective privilege set that is contained in the eflFec­
tive privileges of r; while the senior roles are those with eflFective privileges 
containing those of r. The result of this computation determines the edges 
incident to r (i.e., (r., r)) and those that are outgoing from r (i.e., (r,rp, i i^j), 
thus shaping the state of the new graph. 

Finally, we need to perform privilege resolution to update direct and hence 
eflFective privileges of the nodes leading from r to all of its seniors. The direct 
set of privileges of the new role is decreased by any privileges that may be 
inherited along the paths leading up to the specified set of juniors of r. 
Similarly, any redundant direct privileges along the paths leading from r to all 
of its seniors are removed. In a well-formed role graph, the privilege resolu­
tion step should not result in removing an existing role; otherwise, the newly 
added role introduces an inconsistency in the graph, or it may indicate the 
fact that the addition of the new role is useless. 

Another approach for adding roles as outlined by Nyanchama and Osborn 
[NYAN99] is to specify the new role with its direct privileges, the set of its 
junior roles, and the set of its senior roles. These parameters are sufficient for 
the placement of the new role in the graph. The following are the processing 
steps needed to transform the graph: 

• Update edges of the role graph. We identify a subset of edges to be 
removed from the role graph based on the new role relations as 
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derived from the set of senior and junior roles of the new role, r. This 
step concerns the removal of all edges (r., r) such that r. e jumors(r), 
r. G seniors{r) and the addition of edges (r., r) and (r, r). 

• Perform privilege resolution as outlined before. 

Figure 8.9 illustrates the effect of adding a role to a role graph. 

Role Deletion This operation involves the elimination of a role from the role 
graph and is determined simply by the name of the role r to be deleted. Once 
the corresponding node in the graph is deleted, role relations are updated 
such that all immediate juniors of r are now joined with the immediate sen­
iors of r prior to the deletion taking place. Formally, we build all edges (r, r^ 
into the new graph where r. is a member of the immediate set of juniors of r; 
while rj is a member of immediate seniors of r. This process is termed as 
short-circuiting role r. 

1̂  ^ h ^ 

R, w R, W 

im> 

^2 A-\ ^3 ^ 

FIGURE 8.9 Inserting a role in a role graph 
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The privileges associated with the deleted role can either be eliminated or 
distributed across senior or junior roles of r. Eliminating the privileges of r 
affects only the effective privileges of its superior roles. Each may now 
account for a decrease in privileges. Retaining the privileges, however, is pol­
icy dependent in that they may be distributed across the senior roles of r in 
accordance to organizational needs and requirements. To make role deletion 
as much a transparent operation as possible, the privileges of the deleted role 
can simply be reassigned to each of its immediate senior roles or can all be 
reassigned to its junior roles. Other policies may elect to reassign the privi­
leges of the deleted role to a combination of immediate senior or junior roles. 
A more complex policy may redistribute the deleted privileges arbitrarily 
across junior and senior roles that are not necessarily immediate to the 
deleted role. Figure 8.10 depicts the role-deletion operation. 

«6 b ' Ö "^ 

^ / ¥ \ 
Ri n R: FI3 R-i 

A ! \ A 

A 

FIGURE 8.10 Removing a role from a role graph 
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Role-Privilege Update Role-privilege update is concerned with the changes 
made to the direct privileges of a given role r. These privileges may increase 
or decrease depending on the update operation performed. Removal of priv­
ileges may alter the structure of the underlying role graph in two ways. 

• In the first scenario, the privilege deletion operation leaves the affected 
role (say, r) with no direct privileges of its own. We distinguish two cases: 
The affected role has no senior roles. If r has the same set of effective 
privileges as any of its immediate juniors, then it is considered redun­
dant and thus can be deleted. As a result of the role deletion, the 
appropriate updates of the graph are applied as previously discussed. 
Otherwise r is left connected to the smallest set of incident nodes 
whose union of effective privileges yields the set of effective privileges 
of r. This step is used to optimize the structure of the graph and is evi­
dently applicable only when r has one or more junior roles. 
The affected role has one or more senior roles. Since this role no longer 
contributes any direct privileges to its seniors, it can be short-circuited 
by deleting it. 

• In the second scenario, the delete operation leaves the affected role with 
a nonempty set of direct privileges. The newly updated role can be 
examined against other roles to determine any potential for overlaps. 
Overlapping roles are those with identical effective roles. An optimiza­
tion process can be applied to the role graph to remove any redundan­
cies in edge connectivity as a result of the new effective privileges of all 
seniors of r. 

In addition to the automatic updates of a role graph as a result of a privi­
lege deletion, one certainly should consider the effect on the entire role hier­
archy, particularly as it relates to the senior roles of the affected role. This has 
to be taken in light of the fact that the deleted privilege may no longer be 
available to any superior roles of the affected role. 

Increasing the direct privileges of a role implies an increase in its effective 
privileges. This operation, therefore, is useful only when the new set of effec­
tive privileges for the affected role is not identical to that of any other role; 
otherwise the affected role is considered redundant. In addition to the 
updates of the effective privileges of all seniors of the affected role, the graph 
structure may require changes to any eliminate potential redundancies. 

Role graph updates may also be the result of modification to the sets of 
junior or senior roles of a particular role. The effects from such changes have 
to be accounted for throughout all nodes in the graph that are reachable from 
the affected node. 

Optimizing Role Graphs The transformation of role graphs using role- and 
privilege-level operations may result in arbitrary graphs with redundant 
paths. A path/7, MinRole -> r̂  ... ^^ r leading to node r is said to be redun­
dant if there is one or more other paths starting at MinRole and terminating 
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at r such that the union of their effective privileges contains the set of effec­
tive privileges accumulated along path/?. Figure 8.11A shows a role subgraph 
in which path r^ ^»^ r^-^ ris by definition redundant with the combination 
of two other paths r^^*^ r^^>^ r and r^-^ r^^>' r. This is due to the fact that 
the set of privileges inherited by role r along the first path {p^,P2,Pi} is a sub­
set of that inherited along the union of the two other paths, which is {/7p p^, 
PVPA^PS^' Edges of the graph are labeled with the direct privileges associated 
with the source node. The subgraph of Figure 8.1 IB shows edge (r^, r) elim­
inated as a result of this redundancy. 

RBAC: A Comparative Discussion 

RBAC has been touted as a policy-neutral access-control model. This implies 
that it can be used to model various access schemes such as discretionary and 
mandatory policies. Although the neutrality aspect of RBAC with respect to 
various security policies is not evident, researchers have shown its viability as 
a generalized access-control model encompassing both commercial as well as 
military access policies [SAND98, OSBOOO]. 
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FIGURE 8.11 Removing edge redundancies from a role graph 
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Performing access decisions based on user groups pales in comparison to 
the benefits of RBAC for the main reason that user grouping is one-
dimensional. RBAC, on the other hand, is viewed as a two-dimensional 
grouping of users and privileges. A role, by definition, is an encapsulation of 
a set of users and at the same time a set of privileges. Because members of 
the same role have common privileges, simulating user groups using roles is a 
straightforward exercise. Each designated group is mapped to a separate role 
with user to role assignments that are identical to the membership in the 
group. Assigning privileges to roles is not needed here because user groups 
are not directly concerned with privilege grouping. This construction is very 
simple and unnecessary since it does not exploit the benefits brought forth by 
RBAC—namely, encapsulation of privileges, arbitrary role hierarchies, and 
role constraints. 

Discretionary access policies are founded on the notion of user ownership 
of resources and hence the unconditional access to the resource by its owner. 
The owner may further grant other users access to his or her resources on a 
discretionary basis. RBAC can be configured to emulate a DAC policy by 
simulating the owner-centric view of resources as well as the power of grant­
ing access to others on a discretionary basis. We discuss this simulation 
shortly. To impart the benefits of RBAC on a DAC policy, however, it might 
be better to redesign an existing DAC policy so that it is effectively modeled 
by an entirely new RBAC scheme. 

Mandatory access-control (MAC) policies evolve around the concept of a 
one-directional flow of information in a lattice of security classes. In its basic 
confidentiality scheme, a MAC policy is concerned with preventing the flow 
of information from higher levels of the lattice to the entities that are lower. 
Hierarchical and constrained RBAC has been formally shown to simulate 
various MAC policies, the details of which are discussed in the next section. 

Mapping of a Mandatory Policy to RBAC 

The work done by Osborn, Sandhu, and Munawer (OSM) [OSBOOO] is an 
excellent proof that RBAC deserves to be described as a generalized frame­
work for articulating various access-control policies rather than its limitation 
to one scheme or another. In particular, mandatory-access control referred to 
as a lattice-based-access control (LBAC) can be formally expressed using 
RBAC. The essential element of mapping an LBAC policy onto a correspon­
ding RBAC model as noted by Osborn et al. lies in the similarity between an 
activated session role in RBAC and the security classification associated with 
a login session of LBAC. Another aspect that contributes to the similarity 
between these two models is the hierarchical nature of roles and security clas­
sifications. Nonetheless, the similarities alone are not sufficient to establish an 
evident mapping between LBAC and RBAC or to demonstrate that LBAC is 
indeed an instance of RBAC. The development of this mapping eliminates 
the barriers that have for long separated mandatory policies, in use mainly by 
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the military, and the commercial access-control policies as described by many 
implementations of RBAC and DAC. In that respect, this mapping along with 
others can be considered a major step in unifying access control models. 

At the core of a mandatory security policy is a set of security labels, also 
referred to as security classes, assigned to system users and resources in a 
static fashion by authorized system administrators. These assignments 
remain invariant, an aspect known in LBAC systems as tranquility. A confi­
dentiality LBAC is defined as a finite lattice of security classes SC with a par­
tially ordered relationship denoted by > satisfying the simple security 
property, also known as the read-down rule, and the liberal *-property, known 
as the write-up rule. Both of these rules are formally defined by 

• Simple security property Subject s can read object o only if X{s)>X (o). 
• Liberal *-property Subject s can write object o only if X{s)<X {o). 

X represents the procedure by which an association is made between a partic­
ular security class and a system entity, a subject or an object. This LBAC con­
fidentiality policy as we have known imparts a dual property on the governed 
entities in that a higher entity can read a lower entity but cannot write it and 
vice versa. 

The OSM construction is based on the following two observations: 

• A higher-level subject in an LBAC lattice has complete power with 
respect to the read operation over objects that it dominates but has no 
authority with respect to the write operation over the same objects. 

• A subject that is higher in an RBAC hierarchy always has more control 
over entities lower in the hierarchy. Specifically, when the privilege set 
of an RBAC system is reduced to the read operation only, a higher sub­
ject can read all of the objects that are lower in the hierarchy. Similarly, 
when the privilege set of an RBAC model is reduced to the write oper­
ation only, subjects higher in the hierarchy can write all objects gov­
erned by roles that are lower in that hierarchy. 

The dual aspect of an LBAC lattice with respect to the read and write 
operations led to the use of two role hierarchies in the equivalent OSM con­
struction that maps LBAC onto RBAC. The first hierarchy simulates the read 
operation, while the second one simulates the write authority. Consider the 
basic confidentiality LBAC of Figure 8.12A in which SC-{L, M^, M^, H), 
with ^ a n d L being the highest and the lowest security labels, respectively. Mj 
and M^ are two disjoint labels that both dominate L but dominated by H. 
The equivalent RBAC of this lattice is represented by two role hierarchies as 
shown in the role graphs of Figure 8.12B. 

The duality of the two role hierarchies of Figure 8.12B is apparent. The 
highest read role Hj^ is able to read all objects, while the lowest write role can 
write them all. Meanwhile, intermediary read roles Mj^ and M^j^ are each 
able to read objects at their respective levels and those readable by role L^ 
corresponding to the lowest security label in LBAC. On the other hand. 
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FIGURE 8.12 A basic LB AC model A and its RBAC equivalent B 

intermediary roles M^^ and M^^ are able to write objects at their respective 
levels, and those that are writable by H^ (the highest security label in the 
LB AC model). The OSM construction results in each security label x being 
modeled as two roles x^ and x^ for read and write at level x, respectively. 

OSM Mapping of a Confidentiality-Mandatory Policy 

Given a confidentiality LBAC system defined by a finite set of security labels 
SC = {Lp...,L^} and a partial ordering relationship among the labels denoted 
by >, an equivalent RBAC system is formulated by the following OSM con­
struction, referred to as Construction 1: 

• Two disjoint role hierarchies RH and WH for read and write, respec­
tively, are defined as RH = {L^R,...,L^R} and WH = {L^W„„,LJV}. 
Each security label L., / = 1,...,« is mapped onto two roles LR with the 
same partial order as ^^^^^ and L.PF with a partial order that is the 
inverse of '^i^ß^c The notation ĵr̂ ^̂ ^ is used herein to explicitly refer to 
the dominance relationship in the LBAC model as opposed to role 
inheritance. 

• Because an LBAC object o has a single security label (say, x) associated 
with it, in RBAC o is accessible through read and write permission-
to-role assignments on object o such that (o, r) is assigned to role xR 
<^ (o, w) is assigned to role xW. This enforces the policy that at secu­
rity label X the objects that can be simultaneously read and written are 
those at level x only. It represents the duality of a security label with 
respect to read and write operations. Coupled with this constraint is 
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the requirement that permission (o, r) be assigned to exactly one role 
xR. This constraint is equivalent to the use of a single security label 
for o. 

• Each subject is assigned to exactly two roles xR and LW, where x is the 
security label of the subject and L ^ i s the write role that corresponds to 
the lowermost security label in accordance with the relationship '^j^ß^c 

• Each active session has exactly two roles yR and yW. 

The last two constraints allow for user sessions that are bounded by the xR 
role for the read privilege and the LWXOXQ for the write privilege, x being the 
security label associated with the user activating the session. Since each ses­
sion must have a matching pair of roles yR and yW, these roles must be jun­
ior roles of xR and LW, respectively. A special case arises when the user 
session consists of the pair of roles LR and LW, thereby allowing the user to 
write all other objects but to read none of them, except those that are 
assigned to role LR. This case corresponds to the bottom of the lattice in the 
LBAC model. 

Note that the constructed-role hierarchy is a special role graph in which the 
effective privilege set and the direct privilege set of each role are equal. The 
difference among roles, however, lies in the scope of objects accessible to 
each. Higher roles evidently have access to more objects than lower roles. For 
the RH hierarchy, the constant effective privilege set contains the read per­
mission, while that of the PF^ hierarchy consists of the write permission. The 
effect of role inheritance in this construction is the widening scope of objects 
that can be read or written by a particular senior role. This construction leads 
to the formal proof of the following theorem: 

Theorem 8.1: An RBAC system defined by Construction 1 satisfies the simple 
security property and the liberal *-property of an LBAC system. 

Given an object o whose security label is A {o) - x, and a subject s simu­
lated by an active session corresponding to user u whose security label is 
X (u) = z, for user u to read object o, permission (o, r) must be assigned to 
role zR or one of its juniors (i.e., one corresponding to a security label;; such 
that z ^Lßy^cy^ which in turn corresponds to the user's active session role yR). 
Hence, X (w) ^^^^^ X {s) and X {s) ^^^^^ ^ (^)' which is the simple security 
property. 

Similarly, for user u to write object o, (o, w) must be among the permis­
sions assigned to u directly or indirectly through role inheritance. Since u is 
assigned to role LW with L corresponding to the lowest security label, and 
LW being at the top of the write role hierarchy, (o, w) is therefore within 
reach of role LW. However, user u can only have a session activated with the 
pair of roles zR and zW or one such as yR and yW, where yR and yW SLTQ 

junior roles of zR and zW, respectively. Since the write role hierarchy is the 
inverse of the LBAC lattice, it follows that X (o) '^j^^^c ^ ^^)' 



RBAC Correspondence to a Mandatory Policy 213 

OSM Mapping of an Integrity-Mandatory Policy 

The integrity of a security lattice, also referred to as the strict ^-property, 
mandates that subject s is able to write object o only if s and o are both at the 
same level in the lattice—i.e., X{s) = X(0). The OSM mapping of the integrity 
LBAC policy onto an equivalent RBAC model, herein called Construction 2, 
follows exactly the same construction as we saw with the confidentiality-
based LBAC but with the following two exceptions: 

• The write roles L^ W,...,L^ WavQ all disjoint—i.e., there is no hierarchy 
relation between any two roles L., Lj, ij = 1,...,«,/ 9̂ 7. 

• Each user is assigned exactly two roles xR and xW, where x is the secu­
rity label of that user in the LBAC system. 

The result of the mapping above is expressed by the following theorem: 

Theorem 8.2: An RBAC system defined by Construction 2 satisfies the simple 
security property and the strict *-property of an integrity-based LBAC system. 

The simple security property follows immediately from the construction of 
theorem 8.L The strict *-property is evident in that each object is writable by 
a single role only. For user u to write object 0, u must activate session s with 
the pair of roles (yR, yW), where ;; corresponds to a security label that is 
dominated by /I (w) = z and (o, w) is assigned to xo\QyW. Since u is assigned 
to a single role zW a,nd because the roles are disjoint, the session will always 
consist of the pair of roles (zR, zW); therefore, X(s) = X (o). 

Figure 8.13 represents the read and write role hierarchies resulting from the 
OSM mapping onto RBAC of the basic integrity LBAC model with four 
security labels SC = {L, M^, M^, H) layered as shown in Figure 8.12A. 

RBAC Correspondence to a Mandatory Policy 

The OSM constructions are concerned with a mapping that formulates an 
existing mandatory policy into a corresponding new role-based policy. Given 

0 0 0 

FIGURE 8.13 The OSM mapping of a basic integrity LBAC onto corresponding 
RBAC 
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a RBAC system, however, one might be interested in knowing whether the 
role-based policy in fact satisfies a mandatory policy over the same set of 
subjects and objects if they were to be assigned security labels. Such an analy­
sis was first undertaken by Osborn [OSB097] in which it was shown that the 
structure of an RBAC hierarchy that at the same time corresponds to an 
LBAC scheme is constrained in many ways. We discuss some of these sce­
narios here. 

For example, a role with permissions to write a low-level object and read a 
high-level object is not assignable to any subject for the obvious reason that 
it yields a conflict with the mandatory policy. Similarly, a role with permis­
sions to simultaneously read and write a mixture of high-level and low-level 
objects cannot be assigned to a user with a high security label. Doing so vio­
lates the write-up-mandatory policy. In the meantime, that same role cannot 
be assigned to users at lower labels as it results in the violation of the read-
down-only policy. On the other hand, if a particular role is assigned read per­
missions for objects that are at intermediary security levels only and write 
permission is assigned only to higher-level objects, a user with the corre­
sponding security label can be assigned to that role. 

The analysis of Osborn reduces the set of privileges assignable to each role 
in an existing RBAC scheme to read (r) and write (w) operations only, calling 
it the modified privilege set. Given a role R, any object o such that (o, r) is in 
the modified privilege set of R is considered to be in the r-scope of R. 
Likewise, an object o that is writable by R (i.e., (o, w) is in the modified priv­
ilege set of K) is said to be in the w-scope of R. 

Consider a write-only role R (i.e., one with an empty r-scope). For subject 
s to be assigned this role, the security label of s has to be dominated by the 
security labels of all objects that are members of the w-scope of R so that s 
adheres to the write-up mandatory rule as illustrated in Figure 8.14A. Thus, 
the constraint 

^^^Jevel^^{R)>X{s\ 

where ^Jevel^^^ (R) is the lowest security label assigned to objects in the w-
scope of R, This constraint enforces the write-up policy. Similarly, when R is 
a read-only role (i.e., the w-scope of R is empty), for subject s to be assigned 
to this role, the security label of s has to dominate the security labels of all 
objects in the r-scope for R as illustrated in Figure 8.14B. Thus, the constraint 

X{s)>rJevel^^^(RX 

where rjevel^^^ (R) is the highest security label assigned to objects in the 
r-scope of R. This constraint is needed to enforce the read-down policy. 

For roles with nonempty r-scope and nonempty w-scope, the analysis can 
be complicated depending on the layout of objects in the r-scope and w-scope 
sets with respect to the intended security lattice. This case may range from 
simple scenarios to situations where it cannot be possible for a given role R 
to be assigned to any subject. The simplest of such cases arises when all 
objects in the r-scope and the w-scope of a role R have the same security 
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FIGURE 8.14 Scenarios of mapping a role hierarchy onto a mandatory policy 

label. This role can therefore be assigned to any subject whose security label 
is equal to that of objects in the r-scope or the vî -scope of R. 

In the case of the r-scope and the w-scope of R being assigned security labels 
that arbitrarily span multiple levels in a security lattice, the combinations can 
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be unbounded. A special scenario is one in which the security labels of the r-
scope and those of the w-scope are drawn from disjoint levels in the lattice and 
are ordered such that either 

w_level_min (R) > r_level_msix (R), or 
r_level_rmn (R) > w_level_max (R). 

In the first case above, role R can be assigned to any subject with a security 
label between ^Jevel^^^ (R) and ^Jevel^^ (R) as shown in Figure 8.14C. In 
the second case above as illustrated in Figure 8.14D, however, no user can be 
assigned to R due to the violation separately of the read-down rule and write-
up rules or both at the same time. 

These examples point to the fact that the structure of role hierarchies that 
may possibly map to valid lattice-based configurations can indeed be greatly 
restricted. In the next section, we discuss the formal constraints that when sat­
isfied by a role hierarchy, lead to the existence of a mapping to an LBAC con­
figuration. It is evident, however, that for a role hierarchy to map onto an 
LBAC system there cannot be an object member of the w-scope for any role R 
with a label that dominates that of another member of its r-scope. Otherwise, 
the read-down and write-up policies are not satisfied for that particular object. 

The OSM Constraints for Mapping RBAC to a Mandatory Policy 

Osborn, Sandhu, and Munawer (OSM) have formally described the con­
straints that an existing role hierarchy needs to satisfy for it to map onto a 
mandatory policy [OSBOOO]. The assumption is that users and objects of a 
system already governed by an RBAC access model are now assigned secu­
rity labels in accordance with the need-to-know policy of LBAC. The ques­
tion is to determine whether the existing role hierarchy serves the new 
mandatory policy. We refer to these restrictions by the OSM constraints for 
mapping RBAC onto LBAC. These are in essence reflecting the read-down 
and the write-up properties of LBAC and are based on the following two def­
initions: 

Definition 8.1: The r-level of a role R, denoted by r-level(R), is the least upper 
bound of the security labels of all objects o for which (o, r) is in the r-scope 
of R. Because the least upper bound exists in a security lattice, the r-level is 
always defined. 

Definition 8.2: The w-level of a role R, denoted by w-level(R), is the greatest 
lower bound of the security labels of all objects o for which (o, w) is in the 
w-scope of R, When such a bound does not exist, the w-level is undefined. 
The following theorem by OSM follows directly from these definitions. 

Theorem 8.3: An authorization scheme that is governed by a role hierarchy sat­
isfies the read-down and the write-up mandatory properties if the following con­
straints on the user-to-role assignments (UA) hold: 
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FIGURE 8.15 OSM constraints mapping an existing RBAC policy onto a mandatory 
policy 

\/R GUA,W- level(R) is defined 
y(u,R)G UA,X(u)>r-level(R) 

V (w, R) G UA, X(u)<w- level{R\ 

where for all user u and object o, /l(w) and X {o) represent the security labels 
of u and o, respectively. The last two constraints define the range of security 
labels to which role R can be mapped. User sessions are as always confined 
within the bounds of the security label assigned to the user—i.e., 

V̂  G sessions, X{s)< X (u). 

Figure 8.15 illustrates the constraints outlined of theorem 8.3. 

Mapping Discretionary-Access Control to RBAC 

RBAC has been shown by Osborn, Sandhu, and Munawer to be capable of 
simulating discretionary policies [OSBOOO]. Recall that the central theme of 
DAC is that of resource ownership. The owner of an object has the author­
ity over who else can access that object. Information flow in DAC is therefore 
driven by owner-based administration of access rights. Overlooking the role 
of a super administrative user, generally all variations of the DAC policies 
share the following characteristics: 

• The creator of an object, such as a file in a file system, automatically 
becomes the owner of that object. 

• An object can be destroyed only by its owner. 
• While an object is automatically owned by its creator, ownership may 

optionally be shared with other subjects as well. 
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We discuss the formal mapping of discretionary access models into corre­
sponding role-based models. As for the mapping of LBAC onto RBAC, we 
refer to this mapping as the OSM construction after its developers Osborn, 
Sandhu, and Munawer. But first we begin by recalling the major variations of 
the DAC models. 

• Strict DAC The owner of an object is the sole entity that may grant 
other subjects access to that object. Similarly, revoking access to the 
object is confined to the authority of the owner. Information flow from 
or to that object is under complete control of the owner. 

• Liberal DAC Allows the owner of an object to further delegate the 
authority of granting/revoking access to the object by other subjects. 
The OSM construction specifically treats the following variations of 
the liberal DAC: 

One-level grant: Delegation of the grant/revoke authority is limited 
to one level only. The owner may delegate grant/revoke authority to 
other users but they cannot further delegate this power. 

Two-level grant: The chain of delegating the grant/revoke authority is 
limited to a maximum of two levels. Besides the owner delegating his or 
her authority to another user, the latter can further delegate that author­
ity to other users. For instance, Elyes can delegate the grant/revoke 
authority over his files to Aicha. In turn, Aicha can delegate the same 
authority to Alice. But Alice has no control over further delegating this 
authority to other users. 

Multilevel grant: The power to delegate the grant/revoke authority can 
be propagated down to multiple levels. Elyes can authorize Aicha, who 
can authorize Alice, who can further authorize Fatima, and so forth. 

• DAC with change of ownership This variation allows a user to transfer 
ownership of an object to other users. 

• DAC with grant-independent revocation In this variation revoking 
access can be performed by any subject with the appropriate authority, 
not necessarily the one who granted access in the first place. 

• DAC with Grant-Dependent Revocation Revocation can be performed 
only by the granter of access. The entity performing the grant access is 
required to be the same as that revoking it. 

The Elements of the OSM DAC to RBAC Mapping 

The central aspect of the OSM DAC to RBAC mapping is the simulation of 
the owner-centric and delegated information flow exhibited in the DAC 
model. For simplicity, the OSM construction is described for a DAC policy 
with a single read operation. Construction for DAC with multiple operations 
follows in the same way. 

The creation of an object O in a DAC system corresponds to the creation 
of a role hierarchy consisting of three administrative roles and one regular role 
in the corresponding RBAC model. This hierarchy consists of the following 
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roles in which READ_0 is the regular role (i.e., one with no privileges affect­
ing properties of other roles): 

• READ_0 This role encapsulates the privilege to read object O. It is 
assigned the canRead_0 permission. An entity assigned to this role has 
the authority to read object O. 

• PARENT_0 This role represents the authority to assign and remove 
users from role READ_0. It is assigned permissions addReadUser_0 
and deleteReadUser_0. PARENT_0 captures the authority of grant­
ing access in the DAC model. 

• PARENTwithGRANT_0 This role is used to express the delegated 
powers of grant and revoke down in a DAC chain. It is used to admin­
ister the PARENT_0 role via two permissions (addParent_0 and 
deleteParent_0) and represents the recursive grant and revoke in DAC. 

• OWN_0 This role is used to simulate the concept of resource owner­
ship in DAC. It is assigned two permissions for administering the 
PARENTwithGRANT role via addParentWithGrant_0 and 
deleteParentWithGrant_0 which add and remove users from the 
PARENTwithGRANT_0 role, respectively. Additionally, 0 W N _ 0 is 
assigned the privilege destroyObject_0, making it the only role with 
the power to destroy object O. Destruction of O automatically results 
in the deletion of all the roles above. 

These roles are structured in a linear inheritance hierarchy, at the bottom of 
which is the READ_0 role inherited by PARENT_0, which in turn is inherited 
by PARENTwithGRANT_0. The latter is further inherited by the 0WN_0 
role positioned at the top of the hierarchy. Privileges are therefore inherited 
along this hierarchy in such a way that OWN_0 has the authority of assuming 
all of the permissions defined in the above. Figure 8.16 depicts this hierarchy. 

Note that that role OWN_0 has the power to add and remove users from 
role PARENTwithGRANT_0, which in turn is capable of adding and 
removing users from role PARENT_0. This construction embeds the recur­
sive property of delegating authorities and is needed to allow for multiple lev­
els of grant and revoke down the stream of discretionary controls governing 
a particular object. 

Simulating Strict DAC This policy can be enforced by the corresponding role 
hierarchy of Figure 8.16 by simply imposing the following cardinality con­
straints on the administrative roles: 

• Cardinality of 1 for OWN_0, 
• Cardinality of 0 for PARENTwithGRANT_0, and 
• Cardinality of 0 for PARENT_0. 

Strict DAC is thus simulated using only two roles OWN_0 and READ_0 as 
shown in Figure 8.17 with OWN_0 assigned the privileges addReadUser_0, 
deleteReadUser_0, and destroyObject. 
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OWN_0 

"O" 

PARENTwithGRANT_0 

O 

PARENT_0 

TJ 

READ_0 

"O" 
FIGURE 8.16. The OSM hierarchy of roles corre­
sponding to resource ownership in the DAC model 

Imposing cardinality of 1 restriction over role OWN_0 prevents multiple 
ownership of object O, The owner in this case is the sole entity that grants 
access to the protected object. 

Simulating Liberal DAC In this case, the OSM construction distinguishes 
three scenarios based on the level of the grant authority as follows: 

One-level grant This policy can be simulated by imposing the following 
cardinality constraint: Cardinality of 0 for PARENTwithGRANT_0. 

OWN_0 

i 

READ_0 

O" 

{addReadUser_0 

deleteRead_User_0 

destroyObject_0 

^ canRead_0 

FIGURE 8.17. Simulating strict DAC by an RBAC policy 
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Here the construction requires only three roles: OWN_0, PARENT_0, 
and READ_0 as illustrated in Figure 8.18. The one-level grant can be 
achieved by way of the owner adding a user to the PARENT_0 role. The lat­
ter becomes capable of adding other users to the READ_0. A user that is 
added to the READ_0 role only cannot further delegate the grant authority 
to other users. 

Two-level grant No cardinality constraints are set on any of the three 
administrative roles to achieve the semantics of this policy. The owner can 
assign users to role PARENTwithGRANT_0, which is in turn used to assign 
users to PARENT_0 thereby realizing a two-level grant. Note that a «-level 
grant can be similarly achieved using n roles: 

PARENT_0, 
PARENTwithGrant_0^, 
PARENTwithGRANT_0, 
PARENTwithGrant_0^ 
PARENTwithGrant 6 

2 ' * " ' 

K-2' 

n-\ 

Deeper «-level constructions performed in this way, however, are not 
amenable to a larger degree of scalability. 

Multilevel grant Recursive nesting of the grant authority is achieved by 
removing all cardinality constraints on the three administrative roles and fur­
thermore assigning the addParentWithGrant privilege to the role 
PARENTwithGRANT_0. To couple the grant and the revoke authorities the 
deleteParentWithGrant_0 privilege is also assigned to the role 
PARENTwithGRANT_0. The permissions addParentWithGrant_0 and 
deleteParentWithGrant_0 therefore become direct privileges of role 

OWN_0 

"O" 

PARENT_0 

IT 

READ_0 

"O" 

raddParent_0 
< deleteParent_0 

[destroyObject_0 

J addReadUser_0 

I deleteRead_User_0 

canRead_0 

FIGURE 8.18 Simulating a one-level grant DAC policy by RBAC 
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PARENTwithGRANT_0 and are simply inherited by role 0WN_0 as part of 
its effective set of privileges. This recursive pattern is depicted in Figure 8.19. 

An example of a three-level grant follows. Aicha, being the owner of object 
O, assigns user Elyes to role PARENTwithGRANT_0. Hence Elyes is auto­
matically granted read access to object O through privilege inheritance from 
role READ_0. In his role, Elyes invokes the privilege addParentWithGrant_0 
to assign user Alice to the PARENTwithGRANT_0 role and thereby gives 
Alice read access to object O. In turn, Alice invokes the privilege 
addParentWithGrant_0 to assign user Bob to role PARENTwithGRANT_0. 
At this point. Bob decides not to disseminate any further grant privilege and 
thus maintains a three-level grant. 

Simulating DAC with Changes to Ownership Resource ownership can be 
transferred by redefining the administrative authority of role OWN_0. This 
can be accomplished by assigning a new privilege—say, changeOwner_0 to 
role OWN_0. The owner of an object O may invoke this privilege to change 
ownership to another user. Due to the cardinality constraint over role 
OWN_0 being 1, ownership of the object transfers solely to the new user. 
Multiple owners can be accommodated by simply increasing the cardinality 
of role OWN_0. 

Simulating Grant-Dependent Revoke In all previous constructions, revoca­
tion of access is independent of the granter. The roles considered allow for 
user A to grant access to user B, while a third user, C with the appropriate 
authority, may revoke access to B. Grant-dependent revoke enforces a policy 
whereby only the user who granted access in the first place is capable of 
revoking it. In essence, grant-dependent revoke draws distinct administrative 
domains across the entities governed by a DAC policy as such. 

OSM RBAC construction for the grant-dependent revoke enforces a strict 
separation of roles for each user Ui, owner of a particular object O, and is 
described in the context of a one-level grant authority. Here the one-level grant 

OWN_0 

O" 
defet0P^enWitjQrant_O 

ii 
PARENTwithGRANT O k O a<:kiPar̂ ntWlth(3ranL.O 

FIGURE 8.19 Simulating a multi-level grant DAC policy by RBAC 
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policy is simulated by creating a different administrative role Ui_PARENT_0 
and a different regular role Ui_READ_0 for each user authorized by the 
owner to perform a one-level grant. Each role Ui_PARENT_0 is assigned two 
permissions used to manage user assignments to role Ui_READ_0 as follows: 

• addU_ReadUser_0 is used to add a user to role Ui_READ_0. 
• deleteU_ReadUser_0 is used to remove a user from role Ui_READ_0. 
• The key to the separation of these administrative tasks however is the 

constraints: Each role Ui_PARENT_0 has cardinality of 1. 
• Membership in role Ui_PARENT_0 remains unchanged once it is 

assigned. 

A single user Ui, therefore, will be the only one granting read access to users 
and the only one capable of revoking it by invoking addU_ReadUser_0 and 
deleteU_ReadUser_0, respectively, on role Ui_READ_0. 

In this one-level grant construction, each role Ui_PARENT_0 is auto­
matically created by the owner invoking the administrative privilege 
addParent_0 for user Ui. Figure 8.20 depicts the association between each 
Ui_READ_0 and its corresponding Ui_PARENT_0 role. Note that all of 
these roles are juniors to role OWN_0. 

A Note About the OSM DAC to RBAC Mapping 

It is quite apparent that OSM constructions for mapping DAC onto a corre­
sponding RBAC policy do not scale to any average size of resource inventory 

OWN_0 

U1_PARENT_0 

Ö 
U2_PARENT_0 

Ö 
Un_PARENT_0 

Ö 

U1_READ_0 

XJ 
U2_READ_0 

U 
Un_READ_0 

TJ 
FIGURE 8.20 RBAC Simulation of a grant-dependent revoke in one-level grant DAC 
policy 
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in a computing system. The lack of scalability is due to managing separate 
role hierarchies for each object owned by entities of a system such as users, 
programming agents, processes, and hosts. The overhead incurred from set­
ting these role hierarchies becomes prohibitive particularly when contrasted 
with the cost and scalability of a simple DAC mechanism such as access-con­
trol lists that can be readily used to protect resources. The OSM construction 
for mapping DAC onto RBAC therefore may be regarded as only theoretical 
proof of concept. Indeed, such mapping is yet another demonstration that 
role-based access control deserves to be viewed as a unified access-control 
model now that mandatory policies can also be modeled using RBAC. 

RBAC Flow Analysis 

The modeling of role hierarchies using role graphs provides a formal way of 
studying and analyzing RBAC. The fact that directional edges of role graphs 
correspond to privilege hierarchies translates immediately into the paths of 
an RBAC information flow. Osborn used the role-graph modeling process as 
a tool to analyze the flow of information across objects of an RBAC system 
[OSBO02]. 

Given a role graph, the Osborn analysis constructs a flow graph represent­
ing all potential information flows across objects. This analysis is based on 
the ability of copying the content of one object into another object. The copy 
operation usually takes place using a combination of read r and write w priv­
ileges. As such, the Osborn RBAC flow analysis is based on the following ele­
ments: 

• If the privileges (Oj,r) and (Ö2,W) are in the same role R, then a user 
assigned to R has the ability to cause the flow of information from 
object o^ to object O2 by way of a copy operation. 

• Regardless of the roles to which the privileges {o,r) and {o,w) are 
assigned information will always be considered to flow from any object 
o to itself 

The first element corresponds to a directed edge from node (o^,r,R) to node 
(o2,w,R) in the flow graph, while the second one is represented by potentially 
multiple bidirectional edges from (o,r,R) to {o,w,Rj) and {p,r,R^, where R^,RJ 
are any two roles to which either of the privileges (ö,r) and/or {o,w) is assigned. 
These edges essentially represent the flow of information from an object to 
itself irrespective of the permissions and roles controlling that object. 

The Osborn Flow-Analysis Algorithm 

Given a role graph RG = {Nj^^, Ej^^ with the set nodes 7V̂ ^ representing 
modeled roles and the set of directed edges E^^^ corresponding to the role 
hierarchy relationships, the Osborn flow-analysis algorithm outputs a flow 
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graph FG = {Np^^Ep^ in which a node in Np^ represents an object that is con­
trolled by some role R. through privilege r or w, or both. Edges Ep^ represent 
the flow of information across the protected objects. Figure 8.21 describes 
the details of this algorithm. 

In the following, we discuss two examples of the Osborn flow analysis. 

Example 1: Flow Analysis of a Simple LBAC Scheme We map an LB AC 
with strict *-property to an RBAC model and then apply the Osborn algo­
rithm to determine the paths of information flow in the resulting RBAC sys­
tem. We consider a simple LBAC scheme with four security labels 
{L,M^,M^,H} as we illustrate in Figure 8.12A. The strict *-property states 
that subject s can write object o only if o is at the same security label as s— 
i.e., M^s) - X{o). Recall also that two role hierarchies are created by the OSM 
mapping construction in which the read hierarchy has a partial order identi­
cal to that of LBAC, while the write roles are completely disjoint. We select 
an object as a representative of every security level as follows: 

o^ for level L 

o^^ for level Ml 

Ojj for level H 

The RBAC construction results in eight roles—four for the read hierarchy 
RH - {L^, Mj^, M^j^, Hj^ and four for the write hierarchy WH = {L^, ^iw^ 
M2^, H^}. Because users assigned the privilege of writing an object at level 
L for instance are also able to read the same object, role L^ automatically 

for each role i?^ G N^^^ do 

for each privilege p - (o. 

construct node n eN^r^ 

rlw)e. Effective{Rj^) do 

and label it with role R^^ 

for every pair of privileges in Effective{R^) that is 

{Oj,W) 

construct a directed edg 

(i?^,o^,r); 

for each object o do 
for each pair of nodes 

objecto 
construct edges n^ —> 

e eeEpQ from node (R^ 

and privilege/7, 

of the form (op 

, o^, r) to node 

n^,n.eNpg whose labels refer to the 

Hj, fij - > n^ e EpQ; 

r) 

common 

FIGURE 8.21 The Osborn algorithm for the information-flow analysis in role graphs 
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inherits privilege (O^, r). Similarly, role H^ inherits privilege (O^, r), while 
roles Mjp^and M2ĵ  inherit privileges (O^p r) and (0^2' 0? respectively. Due 
to this inheritance structure we rename the write hierarchy as follows: 
WH - {Lj^^, ^\Rw^ ̂ 2Rw^ ^Rw^' "^^^ resulting read and write hierarchies are 
now combined into a single hierarchy as represented by Figure 8.22. The 
effective privileges associated with each role are shown. 

To simplify the Osborn algorithm and add to the clarity of the resulting 
flow graph, we omit the evident information-flow paths from an object to 
itself. This relevant omission yields a simplified version of the algorithm as 
described in Figure 8.23. 

The application of the simplified Osborn algorithm directly to the graph of 
Figure 8.22 yields the simplified flow graph shown in Figure 8.24. Note how 
the labels in the final graph are reduced to the names of objects, thereby 
expressing the flow of information among the set of objects irrespective of 
the roles responsible for that flow. 

Example 2: Reduction of a Role Hierarchy Governing Read and Write 
Access We now consider a role hierarchy governing read and write access to 
three objects op o^, o^ via roles R^, R^, R^, R^ as shown in Figure 8.25A. The 
resulting flow graph is illustrated in Figure 8.25B. In turn, the final reduction 
of this graph yields a flow graph that is equivalent to a single node as 
depicted in Figure 8.25C. This indicates that all of the objects modeled by the 

HF RW 

{(OH,MOM^MOM2MOLMOH,W)} 

{(OH,^)XOM^A{OM2MOu')} 

{(OM^A(OI^ 

{{OM^MOL,')} 

,wUOuÖ] 

M2R 

{(OM2MOL,f)} 

FIGURE 8.22 Application of the Osborn flow analysis to a role graph corresponding 
to an integrity LBAC model 
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for each role R^^ e jV^̂  do 

for each privilege p = (o,r/w)e Effective(R^ ) do 

construct a node ne N^r^ and label it with role R, and 

the privilege/?; 
for every pair of privileges in Effective(R,^) that is of the form 

construct a directed edge e e Ej,^ from node (i?^ ,o,, r) to node 

(R^,Oj,r); 

remove all nodes n e N^g that are not connected to any other nodes; 

FIGURE 8.23 A simplified version of the Osborn flow-analysis algorithm 

initial role graph are equivalent with respect to information flow (i.e., infor­
mation received by each of these objects is visible to the rest of objects). 

Flow graphs are not acyclic. The graph of Figure 8.25B is a complete 
directed graph and thus is cycHc. Nodes comprising a cycle are identical with 
respect to information flow. As such, each cycle in the flow graph is logically 
equivalent to a single node. In other terms, each strongly connected compo­
nent of a flow graph reduces to a single node as shown in Figure 8.25C. 

Separation of Duty in RBAC 

RBAC lends itself to enforcing the separation-of-duty (SoD) principle. Recall 
that the goal of SoD is to guard against internal fraud and errors by limiting 
the powers of individuals. As a result, accountability becomes automatically 
built in the governing policy of an enterprise. We refer to this fact as 
autonomous accountability. The classical example expressing assurance in 

FIGURE 8.24 Application of the simplified 
Osborn algorithm to the role graph of Figure 
8.22 
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A /?4 

{(o^JUo2,r),(o^,wUo2,w),(03,r),(03,w)} 

^1 

{(Oi,r),(02,M^)} 
^ 2 

{(0i,r),(02,r)} 

FIGURE 8.25 A: Example of a role hierarchy governing access to objects o^, o^, Oy 
B: its information flow graph. C: and the final reduced flow graph. 

accountability based on SoD is the rule that prohibits auditors for auditing 
themselves. An auditor must be designated to perform audits on actions of 
other individuals. Auditing oneself yields a conflict of interest in v^hich the 
individual is confronted v^ith two semantically exclusive interests. The first is 
the requirement for impartiality, while the second is the natural bias that one 
may exhibit toward oneself. 

Contrary to the potential for singlehandedly perpetrating fraud when 
sufficient powers are assigned to individuals, SoD is achieved by dissemi­
nating computing tasks along with associated permissions among multiple 
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individuals. This is usually accomplished by first breaking a business process 
that presents a conflict of interest when viewed as a single set of transactions 
into its basic tasks that are free of conflict of interest. Once independent sub-
tasks are identified, separate individuals are then authorized to perform each 
subtask. For instance, a role that evaluates a procurement process in an 
organization and one that authorizes payment represent a conflict of inter­
est. An SoD policy that may remedy the potential for fraud in this case would 
assign different individuals to each of these two roles. Early work on SoD was 
described by Clark and Wilson [CLAR87], Sandhu [SAND88b], and Brewer 
and Nash [BREW89], to mention a few. 

SoD, however, cannot protect against a deliberate collusion in which indi­
viduals trusted with the enforcement of a policy collaborate in performing 
the tasks required but in a fraudulent manner. To alleviate this concern, SoD 
policies can be best implemented when the separated roles are assigned to 
individuals with divergent interests, with no relationships to one another and 
perhaps even with no knowledge that the other role exists. Separated roles as 
such become discrete entities that are disconnected with respect to the indi­
viduals assigned to them. 

SoD is achieved in RBAC by first recognizing roles that are associated with 
conflicts of interests. A set of constraints are then established over user-to-
role assignments in a way that no individual can assume the powers of any 
two or more conflicting roles at the same time. Two broadly defined cate­
gories of separation of duty are in common use, static and dynamic. The 
static separation of duty encapsulates an invariant role-assignment policy 
that is maintained under any execution context. The dynamic separation of 
duty, however, can be represented by an unlimited number of variants. Each 
is characterized by the constraints it imposes on role activation. We discuss 
the details of each type in the following sections. 

Elements of Role Conflicts in RBAC 

Conflict of interest is the key element in any separation of duty policy. Even 
though the goal is always to prevent a conflict of interest from taking place 
through fraud, the origins of the conflict can be attributed to a number of 
factors. 

Conflicting Permissions 

One or more permissions that when exercised together (i.e., are members of 
the effective privileges of any single role) have the potential to cause fraud are 
said to be conflicting permissions (CP). In the simplest case, such permissions 
can be organized as unordered pairs that conflict with one another. Formally, 
CP c PERMISSIONS x PERMISSIONS with 

{p., p) e CP^ (pj, p) e CP, i ̂ j and (p., p) ^ CP. 
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Conflicting permissions may also arise when a combination of certain per­
missions becomes a subset of the effective privileges associated with any one 
single role. A permission set may yield a conflict of interest whenever a com­
bination of n or more permissions from the set results in a conflict situation. 
Formally, the set of conflicting permissions in this case can be described as 
CP e 2^^^^^^^^^^^ X N, which is a collection of pairs (ps, n), where each;?^ is 
a permission set and n din integer > 2 with the property that any combination 
of n or more permissions from ps yields a conflict. The special case of mutu­
ally conflicting permissions results from n-1. 

The basic safety condition associated with conflicting permissions is that 
they must not be a subset of the effective privileges of any single role in the 
role set. On the other hand, nonconflicting permissions (those that do not 
represent a conflict of interest of some sort) are allowed to be part of the 
privilege set of any role. 

Conflicting Users 

A set of users that are likely to conspire for one or more social or any other 
reason is said to be a conflicting user set. When separation of duty policies are 
being formulated, any such set of users is reduced to a single user from 
the perspective of safety analysis and thus cannot be assigned to conflict­
ing roles. Formally, a pair of conflicting users {CU) is defined as 
CU e USERS x USERS with 

(t/., u^ G CU <=> {Uj, u) e CU, i ^j and (w., w.) ^ CU. 

The extension to a set of conflicting users may formally be described as: 
C t / e 2^^^^^ X N, which is a collection of pairs (us, n), where each us is a user 
set and n din integer > 2 with the property that any combination of n or more 
users from us yields conflicting users. The special case of mutually conflict­
ing users results from n-2. 

Conflicting Tasks 

A collection of tasks representing a particular business process as a unit 
and that require conflicting permissions to complete are considered conflict­
ing tasks. Pairs of conflicting tasks {CT) are formally described by 
CT c TASKS X TASKS with 

(?., t) e CT^ (tj, t) e CT, i ^j and {t., t) ^ CT. 

The extension to a set of conflicting tasks can be formally described as 
CT c 2^ '̂̂ '̂̂  X N, which is a collection of pairs {ts, n), where each ts is a task 
set and n din integer > 2 with the property that any combination of n or more 
tasks from ts yields a conflict. The special case of mutually conflicting tasks 
arise when « = 2. 
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Because conflicting tasks require conflicting privileges, they are assigned to 
different roles. Nonconflicting tasks, however, can be assigned to conflicting 
or nonconflicting roles. 

Safety Condition from the Perspective of Conflicting Tasks A safety condi­
tion can be formulated as an indicator of correctness in processing conflict­
ing tasks governed by a separation-of-duty policy. First, we map the tasks 
required by the business processes at hand onto their respective sets of privi­
leges, which in turn translates into roles required by the tasks. Formally, 
S(t): TASKS -^ 2^^^^^^^^^^ .̂ 

We then determine the set of mutually conflicting tasks CT based on a pre­
defined policy. The safety condition for processing the set of mutually con­
flicting tasks is to ensure that no single person can be assigned all of the 
privileges required to perform each pair of conflicting tasks p̂ 2̂ ^ ^^• 
Formally, 

Vw G USERS, V î, t2 G CT, -1 {S(ti) U 5fe) ^ effective_ rmleges(u)). 

The safety condition above extends in the same way to any conflicting set of 
tasks ^p..., t.. The union in this case is performed over the sets S{t^),...,S(t). 
Note that this safety property is a sufficient condition but not a necessary 
one. 

Static Separation of Duty 

Static separation of duty (SsoD) is also known in the Hterature as authoriza­
tion-time separation of duty and sometimes is referred to as strong exclusion, 
SSoD places constraints on the assignment of users to roles in the context of 
an overall security policy independently of time or any other constraints. The 
effect of SSoD is limiting user-to-role in that membership in a particular role 
may prevent a user from becoming a member of one or more other roles. 
A wide variety of rules may govern SSoD policy. Most basic and common of 
these rules is the identification of mutually disjoint roles by the permissions 
assigned to each of them. Two roles require static separation when assigned 
permissions that result in a conflict of interest at all times. As such, a user is 
prohibited from being simultaneously a member of both roles. For instance, 
an individual assigned to the role of billing should not be assigned to the role 
of account receivable at any time. 

Various implementations of the SSoD policy have adopted constraints on 
user-to-role assignments by simply identifying mutually exclusive role pairs. 
Each user is then assigned to at most one role in every such conflicting pairs 
of roles. A generalized model as proposed by Ferraiolo et al. [FERRO 1] 
defines SSoD relations as constraints over arbitrary sets of role sets instead of 
simply role pairs. Each such relation consists of a set of two or more roles 
along with a cardinality number for the lack of a better term. This cardinality 
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integer, which must be greater than one, indicates the smallest number of roles 
from the constrained set that requires separation of duty (i.e., not assignable 
to a single user). For instance, an organization with five defined roles may 
require that no single user be assigned three or more roles. This constraint is 
denoted by the pair: (rs, 3), where rs is the role set over which the constraint is 
defined, rs = {R^, R^, R^, R^, R^} in our example. The assignment of roles R^, 
R^, and R^ to any particular user would constitute a violation of the separa­
tion of duty relation expressed by the policy {rs, 3). 

The formal definition of SSoD relations in this generalized model is 
expressed as follows: 

• The SSoD relations are SSoD e 2^^^^^ x Â  consisting of pairs (rs, n) 
where each rs is a set of roles involved in the separation of duty, and n 
is an integer > 2. 

• No user is assigned to a combination of n or more roles from each set 
rs such that (rs, n) G SSOD. This is formally expressed as 

V(rs,n)E SSoD,Mec rs\\e\>n^ 

n role_assigned_users (r) = O 

The constraint (rs, 3) in our example above limits the simultaneous assign­
ment of a user to each of the following role sets only: {R^, R^, {R^, R^}, 
{R„ R,}, {R„ R,}, {R^, R,}, {R^, R,}, {R^, R,}, {R,, R,}, {R^, R,}, and {R,, 
R^}. Note that a mutually exclusive role set rs results from (rs,2). The assign­
ment of any two roles from rs to a user violates the SSoD policy. The mutual 
exclusion of roles underscores the fact that the user sets denoting member­
ships in mutually excluded roles are completely disjoint as formally expressed 
by the following property: 

Vw G USERS, VRi,R2G ROLESii^i/ î 2 

({Rp R2}, 2) G SSoD ^^ ue role_authorized_users(R^ => 

u ^ role_authorized_users(R^. 

Static separation of duty has the advantage of simplicity but exhibits a 
degree of rigidity that may present itself in some situations as a handicap 
rather than a control feature. Many real-life controls require the assignment 
of restricted roles to the same individual. Controls over which role can be 
assumed by the user at one time are dynamically applied based on context. 

The Effect of Role Hierarchy 

Mutually exclusive roles are established due to the conflict in one or more per­
missions that are assigned to those roles. The extension to an arbitrary con­
straint (rs, n) follows for the same reason that two or more mutually exclusive 
permissions end up being assigned to any combination of n or more roles. The 
effective permission set of each role is therefore a determinant factor of 
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whether a pair of roles represents a conflict of interest in the case of mutual 
exclusion and similarly whether a particular set of roles exhibits a conflict in 
the general case. It is evident that if role R^ is in conflict with role R2 and role 
R^ inherits from R^ then R^ is also in conflict of interest with jR̂  due to the fact 
that Effective{R^ c Effective{R^. Furthermore, R^ and R^ as well as any role 
that inherits either of them will remain in conflict of interest with any roles 
that inherit Ry The separation-of-duty relations are thus inherited along a role 
hierarchy. The following two properties characterize the static separation-
of-duty relationships in the presence of role hierarchies: 

• The inheritance hierarchy implies that the static separation of duty is 
defined in terms of users authorized for a role instead of users directly 
assigned to that role. Recall that the set of users authorized for a role 
includes all users inheriting that role directly or indirectly. As such, 
SSoD can be formally expressed as 

V (rs, n) G SSoD, Me Q rs: \e\>n=> 

n role_assigned_users(r) = (^ 
r G e 

• Any two roles that are assigned to the same user directly or indirectly, 
through inheritance, are not members of any static separation-of-duty 
relation. Formally, 

Vw G USERS,yRuR2^ ROLES,Ry,R2^ 

user_authorized_roles{u) => {R^R^ ^ SSoD 

This can be further generalized as 

VwG USERS,VRuR2,...,RiG ROLES,RuR2,...,RiG 
user_authorized_roles{u) =^ 

{R^R^,..,, R) ^ (rs,i) 
for any integer / and role set rs for which (rs,i) e SSoD. 

Dynamic Separation of Duty 

Dynamic separation of duty (DsoD), also known as runtime separation of duty 
and sometimes referred to as weak exclusion, is intended for the same reasons 
SSoD is. The distinction between these two policies, however, is related to the 
runtime context. While an SSoD policy remains invariant throughout all exe­
cution environments, DSoD policies place constraints on the roles that can be 
activated within a user's session during system operation. Furthermore, the 
restrictions are enforced across multiple, simultaneous sessions initiated by 
the same subject. Two roles that are designated to be mutually exclusive in a 
user session cannot be simultaneously activated by the user logging to multi­
ple sessions. 

The main goal of DSoD is to provide a dynamic and variable method of 
setting the scope of authorized session roles based on the execution context. 
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This flexibility is used to remove the rigid constraints of SSoD. For instance, 
while a static policy separating a procurement role that initiates a payment 
from one that authorizes payment, prohibits an individual initiating payment 
ever from authorizing any payment. A dynamic separation-of-duty policy 
may allow the same subject to act in a payment initiation and a payment 
authorization roles provided no individual is able to authorize payments that 
he or she had initiated. 

The flexibility of DSoD is intended to decrease the overhead incurred by 
the adoption of a static security policy. A user can be assigned to two roles 
that have a DSoD relationship, but a user cannot be assigned to two roles that 
have an SSoD relationship. While time of activation is usually what restricts 
roles in a DSoD policy from being activated simultaneously, it is not always 
the sole criterion. In the example of payment initiation and authorization 
roles, the rule governing role activation in DSoD is related to the identity of 
the user performing payment initiation and that authorizing it. The applica­
ble execution context here is related to the parameters of the transaction per­
formed, the subject performing the action, and the object of the transaction. 
This scenario illustrates the potential for various rules and application-ori­
ented policies that may govern DSoD relations. DSoD can be viewed as a 
finer means of enforcing the principle of least privilege, where it is referred to 
by the terms of timely grant and revocation of trust. The formal definition of 
DSoD can be expressed as follows: 

• DSoD relations are DSoD e 2^^^^^ x N consisting of pairs (rs, n), 
where each rs is a set of roles involved in the dynamic separation of 
duty, and n is an integer > 2. 

• No subject may activate n or more roles from the set rs in each relation 
dsod = {rs,n) e DSoD, This is stated formally as 

yrs G 2^^^^*^,n G N,(rs,n) G DSoD => «> 2 A| r^ |> «, and 

V^ G SESSIONS, Vrs G 2^^^^^, Vröfe_ subset G 2^^^^^, 

VnGN,(rs,n)GDSoD, 

role_subset e rs,role_subset c session_roles(s) => 

I role_subset I < n. 

As a special case, the DSoD mutual role exclusion for a given session s 
has the following property: 

Vw G USERS,ys G SESSIONS, Vi?i,i?2^ ROLES\ R^^ R2, 

session _ user{s) - u 

{{R^,R^,2)} G DSoD => w G role _ authorized _ users(R^) AU e 

role _ authorized _ usersiR^ => 

R^ G session _ active _ roles(s) ^^ R^^ session _ active _ roles{s). 
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The semantics of dynamic separation of duty are much broader than those 
of static classification of separated roles. DSoD is amenable to encompass­
ing a richer set of policies that exist in real organizations and manifest in 
many day-to-day tasks. Simon and Zurko [SIM097] describe a number of 
variants of DSoD policies, which are outlined below. The term restricted role 
was rightly used by Simon and Zurko to mean any role that participates in a 
dynamic separation of duty. This indicates that DSoD virtually does not 
concern itself as much with user assignment to roles as it does with the con­
straints imposed on those assignments in the form of one or another dynamic 
policy. We use the terms restricted roles and separated roles interchangeably. 
DSoD is tightly related to application semantics and thus is not amenable to 
formal classifications at a broader level. Nevertheless, a number of well-
defined policies have emerged. Below is a discussion of some broadly catego­
rized dynamic separation of duty policies. 

Simple Dynamic Separation of Duty 

The simplest case of a DSoD policy calls for the separation of roles during 
run-time using a basic rule: no user can activate two restricted roles in two or 
more sessions at the same time. Recall, however, that separated roles as such 
may still have common members assigned to them. The dynamic aspect is the 
execution context, which in this case is defined by a user session. The major­
ity of existing literature equates this variation to the dynamic separation of 
duty itself. The reason for this might simply be chronological since this is the 
first and simplest variation of DSoD devised. 

Object-Based Separation of Duty 

In this variation, separated roles may share user members but with the con­
straint that a user assigned to two separated roles may assume both roles at 
the same time but cannot act on an object that he or she has already acted 
on. An example is the commonly adopted policy in which one cannot 
approve a purchase order that he or she had initiated but can approve one 
that someone else did. In this case, a user may perform two functions: 
approve an order that another entity had initiated or initiate one that some 
other individual will have to approve. If we abstract the set of available priv­
ileges in this example to order and approve, an object encapsulating a pur­
chase transaction may be ordered or approved only by any one individual but 
not ordered and approved by the same individual. This variant was first iden­
tified by Nash and Poland [NASH90]. Note the dynamic aspect of this pol­
icy is due to the user being capable of performing all operations exposed by 
an object instead without limitation but restricted in terms of objects on 
which to act. 

Another criterion for object-based restriction of roles is the situation in which 
a user is capable of acting on all objects of some type (e.g., one representing 
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a banking transaction), except for those that apply to the user performing the 
action. For instance, a teller is not allowed to act on his or her bank account. 
The constraint in this case may be driven by any policy-based rule governing the 
relationship between the user and a business object. 

The semantics of yet another object-based separation of duty variant can 
be stated as follows: restricted roles are allowed to have common users, and 
those users are authorized to assume the authorities of the restricted roles in 
a single session, but no user may act on an object that another user author­
ized for the restricted roles had acted on. In essence, this partitions roles 
across the set of controlled objects but in a dynamic fashion, meaning roles 
restricted as such may interchangeably be used to act on the controlled 
objects but only once. Further actions on an object controlled as such have to 
be performed by users that are not common members of the restricted roles. 
Figure 8.26 illustrates this case. The intersection of roles R^ and R2 represents 
users assigned simultaneously to two restricted roles. An arrow from a user to 
the controlled object represents an action performed by that user. Once a user 

FIGURE 8.26 A variant of DSoD based on role partitioning across controlled objects 
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concerned with this policy has acted on an object as in case A, no further 
actions are allowed by any users that are participants in this policy as illus­
trated in cases B and C. 

Operational Separation of Duty 

Ferraiolo, Cugini, and Kuhn first introduced the paradigm of operational sepa­
ration of duty [FERR95]. Here business processes or more generically comput­
ing tasks are broken into subtasks each is associated with its own required 
operations. The operational controls in this case are such that no single role may 
have sufficient privileges to perform all the tasks of a particular business process. 
Instead, subsets of the total privileges that are needed by a business process 
are disseminated across multiple roles, not all of which can be assigned to a 
single individual. The intent is to prevent any one person from performing all 
of the tasks of a business process controlled as such. Note the fact that an 
operational separation of duty applies to every object governed by such pol­
icy and hence the difference with the object-based DSoD policy. 

This policy at first seems to equate the static separation of duty. The sub­
tle difference between the two lies in the fact that users under the operational 
separation of duty can be shuffled across the role set in a dynamic fashion as 
long as the principle of this policy is not violated. In the static case, user to 
role assignment is quite rigid and remains strictly attached to the user. 
Operational separation of duty is well suited for the security of workflow 
processes in which at least two distinct roles are required for the completion 
of a business function. Long-running processes in workflow environments 
move from one state to another and may require various roles to be assumed 
at different stages. The classical example is that of the purchasing process, 
which can be separated into five tasks: 

• Initiating a purchase order, 
• Authorizing a purchase order, 
• Processing an invoice, 
• Processing the arrival of an item, and 
• Authorizing payment. 

Assigning each of these tasks to a distinct role and ensuring that no user is 
assigned to more than one of these roles diminish the likelihood of fraud. In 
this example, any possibility for fraud requires the conspiracy of all five par­
ties. This raises the risk of disclosure and thus capture. The overhead 
incurred by this policy is dependent on the granularity of subdividing larger 
business processes. 

History-Based Separation of Duty 

This policy is essentially a combination of object-based and operational poli­
cies. Object-based separation of duty alone limits a user to performing only 
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a single action on any one particular object. Some real-life policies may 
require the flexibility of performing further actions by the same individual. 
Similarly, an operational separation-of-duty policy alone does not allow a 
single person to perform all actions required by a particular business process 
to different objects. The combination of both policies makes the object-based 
policy borrow the ability to perform multiple actions on the same object from 
the operational policy (e.g., a complex transaction), while the operational 
policy borrows the aspect of distinguishing among various objects based on 
the actions required by each. The combination allows a single individual to 
perform all actions required by a particular business object but not on any 
single object in what is known as history-based separation of duty. This vari­
ant of DSoD requires tracking the individual histories of users in two ways: 

• The list of objects acted on by any one user is maintained, and 
• The actions performed by a user on any particular object are also kept. 

The tracking process is used to determine if a user is in violation of the his­
tory-based separation-of-duty policy. An attempt to violate such policy 
occurs when a user tries to single handedly perform all tasks required by a 
particular business object. On the other hand, a user performing all tasks but 
on different business processes is considered in line with the policy. Overhead 
due to maintaining histories may be incurred in this policy, although history 
information may serve another security purpose—that of maintaining audit 
trails. Depending on the context in which a history-based separation of duty 
policy is implemented, history trails associated with each object may require 
strong integrity checks. Figure 8.27 illustrates this policy. 

Example: Dynamic Separation of Duty in a Workflow Activity 
We consider a business process dealing with the reimbursement of travel 
expenses in an organization that we abstract as consisting of three roles—a 
manager, a regular employee, and a secretary. The hierarchy corresponding to 
these roles is depicted in the graph of Figure 8.28. It reflects the fact that a 
manager role is empowered with all privileges assigned to the roles of a reg­
ular employee and that of a secretary. The controlled business process con­
sists of four steps driven by the activities of an expense reimbursement 
workflow process as follows: 

• An employee fills out a form to apply for the reimbursement of his or 
her expenses incurred by a business travel. 

• The form is sent to two managers for approval. 
• Both managers signal their approval. 
• The secretary transfers money to the employee's bank account. 

Despite the fact that from a static policy perspective, a manager is author­
ized to perform all these workflow steps, a meaningful dynamic separation of 
duty can be instituted, subject to the following constraints: 
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FIGURE 8.27 Illustration of his­
tory-based dynamic separation-
of-duty policy 

Taski 

Task2 

Tasks 

• A manager is not allowed to approve his or her own travel-reimbursement 
claim. 

• A single manager is not allowed to perform both approval tasks on any 
one claim. 

• A manager cannot refund a claim that he or she approved. 
• A secretary is not allowed to transfer reimbursement funds for his or 

her own travel expenses. 

The most apparent type of dynamic separation-of-duty principle in this 
example is the operational one. An object representing a particular reim­
bursement claim cannot be acted on entirely by one individual. A single man­
ager can at most perform the actions {approve, refund} out of {initiate, 
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FIGURE 8.28 Example of a dynamic separation-of-duty policy involving a workflow 
process 

approve, refund}. The application of the object-based separation-of-duty 
principle is also clear from the fact that an individual may act only once on 
any given claim processing. Once a regular employee initiates a claim, he/she 
cannot further act on it. The claim cannot be reinitiated, approved, or 
refunded by that user. Similarly, a manager that initiates his or her own claim 
cannot approve it nor refund it. A secretary can refund a claim only once. 

Finally, the history-based separation-of-duty principle should be enforced 
to satisfy the constraints above for the manager role. This history is used first 
to make sure a single manager cannot perform two approval tasks required 
by any claim. Second, and given that a manager is empowered with all privi­
leges {initiate, approve, refund}, an activity history for every claim is main­
tained so that a manager cannot perform all three actions on any one 
particular claim in light of the fact that a manager cannot approve or refund 
a claim of his or her own. 

Role Cardinality Constraints 

The cardinality constraint limits the number of users that can be members of 
a particular role. This constraint naturally fits with certain roles that may 
exist within an organization. For instance, only one person can fill the role of 
a department chair in an educational institution. Conversely, the number of 
roles that an individual user can be assigned to could be limited. The cardi­
nality constraints can thus be applicable to the user as well as to the role sets. 

In some cases this constraint may be applicable to lower or upper bounds 
for user memberships. For example, a role may be required to be assigned to 
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a defined minimum number of individuals. To increase the assurance of a 
separation-of-duty policy, an organization may decide to require that the 
auditor role have a minimum of three members. The maximum and the min­
imum cardinality constraints are formally defined by 

cardinality^^^^^^ : ROLES ^ TV U {00} 

cardinality^^^^^ : ROLES ^ TV U {00}. 

The set {00} denotes an unbounded condition, which basically underscores 
the fact that the cardinality constraint is not applicable. 

RBAC Consistency Properties 

In this section we look at 13 properties that should hold throughout the life­
time of an RBAC system. This is mostly based on the work of Serban et al. 
[SERB98]. 

Property 8.1 Imposing a maximum cardinality constraint on a given role 
means the number of authorized users for that role at any time should not 
exceed its cardinality. Formally, 

yR G ROLES, I role_ authorized_ users(R)\ < cardinality^^^{R). 

Property 8.2 Imposing a minimum role cardinality constraint means the 
number of users authorized for that role should not be lower than the cardi­
nality requirement for that role. Formally, 

Vi^ G ROLES,\ role_authorized_users{K)\ > cardinality^^^ (^)-

Note the use of authorized users here due to the effect of a hierarchical 
RBAC. In the case of a flat RBAC, authorized users are identical to the 
assigned users. 

Property 8.3 To maintain consistency and avoid useless cyclic scenarios, no 
role should inherit itself directly or indirectly. Formally, 

VR G ROLES, -I (R ^^R). 

-^'^ denotes an inheritance path of length one or more. 

Property 8.4 Any two roles authorized for the same user are not in any 
static separation-of-duty relationship. Formally, 

Vw G USERS,VRi,R2G ROLES,RuR2^ 

user_authorized _roles{u)=^ Ri,R2^ SSoD. 

Property 8.5 Any two roles explicitly assigned to a user should not inherit 
directly or indirectly from each other. Formally, 
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Vw G USERS, Vi^i,7^2^ ROLES, Ri,R2^ user _ assigned_ roles( u ) => 

^{R^^R2)A^(R2-^Ri). 

Property 8.6 No role can be in a static or dynamic mutual exclusion rela­
tionship with itself. Formally, 

Vi^ G ROLES^ ({R,R),2}) ^ SSoDA ({R,R},2) ^ DSoD. 

Property 8,7 The static and the dynamic separation-of-duty relations are 
symmetric. Formally, 

yRi,R2^ R0LES,(Ri,R2) G SSoD^(R2,Ri) G SSoD,Sind 

yRi,R2^ R0LES,{RuR2) ^ DSoD^{R2,Ri) G DSoD 

Property 8.8 Any two roles in a static or dynamic separation of duty do not 
inherit one another either directly or indirectly. Stated in terms of the role 
graph, this property means there is no path between any pair of nodes (roles) 
that are in separation of duty relation. Formally, 

yRi,R2^ ROLES,(Ri^'^R2)V(R2^^Ri) => (RuR2) ^ SSoD. 

The same holds for DSoD: 

V7^i,i^2e R0LES,{R^-^^R2) V (i^2-^'^^i) =^ i^u^i) ^ DSoD. 

This means two roles can be in a mutual separation-of-duty relation only 
when they are incomparable with respect to the partial ordering relationship 
representing role inheritance. 

Property 8.9 Two roles that are in separation-of-duty relationship cannot be 
both inherited directly or indirectly by another role. Formally, 

\/R,RuR2^ ROLES,(Ri^^R) A (i^2^^^) => (^b^2) ^ SSoD, and 

yR,R^,R2^ ROLES,(R^^^R)A(R2^^R) => (A,i^2) ^ ^SoD. 

The implication of the above property is that a role graph can have a 
"root" role (i.e., a role that inherits from every other role) only when no pair 
of roles in the entire role hierarchy is in any separation of duty relation. 
Formally, a role hierarchy can have a root super user only if 

'^Ri,R2^ R0LES,(Ri,R2) ^ SSoDA(Ri,R2) ^ DSoD. 

Property 8.10: The static and dynamic separation-of-duty relations are 
inherited along a role hierarchy chain. Formally, 

WR,RuR2^ ROLES,(Ri--'^R) A (Ri,R2) G SSoD =» (R,R2) G SSoD. 

Similarly, 
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yR,i^i,R2G ROLES,{Ri^^R) A (Ri,R2) G DSoD => (R,R2) G DSoD, 

Property 8.11 In a dynamic separation-of-duty context, the active role set of 
any user is bounded by his or her set of authorized roles. Note that in the case 
of an SSoD policy the active role set is identical to the set of roles for which 
the user is authorized. Formally, 

Vw G USERS,user_active_roles(u) G user_authorized_roles(u). 

Property 8.12 Any two roles that are in a dynamic mutual-exclusion relation 
cannot be both in the active set of roles for a user. Formally, 

Vw G USERS,VRi,R2G ROLES,Ri,R2^ user_active_roles(u) => 

{Ri,R2)^DSoR 

Property 8.13 The dynamic separation of duty and the static separation-
of-duty relations form disjoint sets. Formally, 

VRi,R2^ R0LES,(Ri,R2) G SSoD^(R^,R2) ^ DSoD, 

and 

Vi^i,jR2^ ROLES,(Ri,R2) G DSoD=^ (R^,R2) ^ SSoD, 

The proof of this property is by absurdity. Assume that R^ and R2 are two 
roles that are in a static separation of duty relation. By definition, this means 
no user can be authorized for both roles R^ and î 2- Hence there is no further 
need to dynamically constrain the two roles—i.e., {R^, R2) € DSoD. Now 
assume that R^ and R2 are in a dynamic separation-of-duty relation. By def­
inition, this means a user can be authorized for both roles but cannot have 
both roles active at the same time. This implies that these two roles do not 
represent a static separation-of-duty relation. 

The Privileges Perspective of Separation of Duties 

Separation of duty yields separation of roles, which in turn inevitably implies 
separation of privileges. While the premise of separation-of-duty policies is 
to not assign two or more separated roles to the same individual, care also 
must be taken to ensure that the same individual is not empowered with the 
separated privileges through a combination of multiple roles that may not be 
participating directly in any separation of duty relations. 

Suppose there are two roles R^ and R2 that are mutually exclusive and 7̂ ^ 
has access to a total of two privileges a and b—i.e, Effective_privileges(R^ -
{a,b}. Assume that role R^ has privilege a and another role R^ has privilege b. 
Although access to privilege aovb alone by role R does not yield a separation 
of duty with R^, a user assigned to R, which when simultaneously inherits 
directly or indirectly from R^ and R^, results in a conflict of interest with R^, 
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Any separation-of-duty policy therefore must take into account the incremen­
tal effects from the propagation of individual privileges across roles. 

Kuhn [KUHN97] outlines four scenarios for sharing privileges in a mutual 
separation-of-duty policy. He presents his view along two dimensions. The 
first is the privilege sharing among separated roles only, while the second one 
is the sharing of privileges with roles that are not part of any separation-
of-duty relations. 

• {Disjoint, Disjoint) Denoted by (D,D), this indicates the fact that if two 
roles are designated to be mutually exclusive, then each privilege is 
assigned to at most one of the roles. Furthermore, these two roles share 
no privileges with any other role with which they have no separation-
of-duty relations. Each pair of mutually exclusive roles has unique 
individual privileges that are not assigned to any other role. Formally, 

yRuRi.R^^ ROLES, Vp G PERMISSIONS, (RuRi) ^ SoD => 

p G Effective _privileges(R^) =^ 

p € Effective _priveleges{R^ A 

p€ Effective _privelges{R^). 

In this scenario, each two roles in a mutual exclusion relationship is 
completely disjoint and does not inherit from any other role in the role 
set. The effective set of privileges of each such role is therefore identi­
cal to its direct set of privileges. Alternatively, the property above can 
be stated as 

WRu R2,R3^ ROLES, \fp E PERMISSIONS, {R^Ri) G SoD => 

p G Direct _privileges{R^ =^ p ^ Effective _privileges{R^. 

• {Disjoint, Shared) Denoted by (D,S), this indicates the fact that the 
privilege sets of each pair of roles that are mutually exclusive are com­
pletely disjoint but can be shared with other roles outside of the mutual 
exclusion relationship. Formally, 

^/RuRi^ ROLES,\/p G PERMISSIONS, {Ri,R2) G SoD =» 

pe Effective _ privileges{R^) =^ p ^ Effective _ priveleges{R^ 

• {Shared, Disjoint) Denoted by (S,D), this means privileges may be 
shared between two roles that are in a mutual exclusion relationship 
but are not shared with any other role outside of this relation. Note 
that for the separation-of-duty relation to hold in this case, each role 
must have at least one privilege that is not available to the other role. 
Formally, 

yRi,R2,R2^ ROLES, 3p G PEMRISSIONSI Vq G 

PERMISSIONS, {R,R) e SoD ^ 
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p G Effective _ privelges{R^ => 

p ^ Effective _priveleges{R^ A 

{q G Effective _ priveleges{R^ v 

q G Effective _privileges{R^ =» 

q G Effective _ privileges{R^ ) 

• {Shared, Shared) Denoted by (S,S), this represents a situation in which 
each tv^o mutually exclusive roles are allowed to share privileges, pro­
vided that each role must have at least one privilege that is not available 
to the other role. Additionally, a privilege assigned to a role that is 
mutually exclusive with another role may be assigned to other roles 
outside of the mutual exclusion relationship. 

Figure 8.29 is an illustration of the four scenarios outlined above. It is easier 
to manage and maintain the safety of a separation-of-duty policy in the com­
pletely disjoint case (D,D). One only needs to ensure that each privilege is 
uniquely assigned to any role in the mutual exclusion relationship and never 
assign the same privilege to any other role. We also need to maintain the isola­
tion of any roles participating in mutual exclusion relationships such that they 

(D,D) (D,S) 

(S,D) (D,D) 

FIGURE 8.29 Illustration of the privileges view of separation-of-duty relationships 
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remain discrete and not participate in role inheritance. The manageability of 
the (S,D) scenario is more or less similar to that of the (D,D) case, although its 
safety might be slightly more complex to maintain. In the (D,S) and the (S,S) 
cases, one has to be concerned about the possibility that mutually exclusive 
privileges may be acquired through the combination of other roles. One way of 
avoiding this situation is to carefully handle assignment of mutually exclusive 
privileges to roles outside any mutual exclusion relationship. 

Functional Specification for RBAC 

In their proposed RBAC standard, Ferraiolo et al. [FERRO 1] have described 
a set of functional interfaces for the implementation of RBAC. These inter­
faces not only are expressed syntactically but have defined semantics, albeit 
at a higher level. The key benefit of adopting a standard interface across var­
ious RBAC implementations is the decoupling of applications using RBAC 
security controls from the components providing and managing those con­
trols. One should not, however, expect a perfect portability of applications 
across RBAC implementations. For one thing, the policies may differ in the 
semantics of roles and their authoritative scope. Standard interfaces are also 
useful in implementing RBAC administrative tools such as graphical inter­
faces. This enables portability of such tools across RBAC policies and can be 
easily reusable as independent components. 

The proposed specification addresses RBAC functionality from three per­
spectives: 

• Administrative functions These concern the instantiation of various ele­
ment sets of USERS, ROLES, OPS (operations), and OBS (objects) 
and the management of relationships across these elements (e.g., 
assignment of users to roles). 

• Supporting system functions These concern the processing entailed by 
an RBAC implementation in supporting various constructs such as 
sessions and in enforcing the underlying RBAC policy via access deci­
sion making. 

• Review functions These functions facilitate the review of an RBAC pol­
icy state as it evolves through the administrative functions. An example 
would be reviewing which entities have been assigned to a particular role. 

We review the proposed functions for core RBAC, hierarchical RBAC, and 
constrained RBAC (separation of duty). 

Core RBAC Functions 
Functions in this category represent basic functionality aspects and as such 
are applicable to all RBAC implementations. 
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Administrative Functions 

Tthese are concerned with the management of various RBAC element sets 
including USERS, ROLES, OPERATIONS, and OBJECTS. Users and roles 
evolve dynamically during the lifetime of an RBAC system. Operations may 
evolve but with a lesser frequency. Likewise, objects are usually predefined by 
the underlying computing system and evolve slowly over the lifetime of a pol­
icy. The following functions are needed: 

• AddUser Creates a new user in the RBAC repository, 
• Delete User Deletes an existing user from the RBAC repository, 
• AddRole Creates a new role in the repository, 
• DeleteRole Deletes an existing role from the repository, 
• AssignUser Assigns a user to a role, 
• DeAssignUser Removes a user from a role, 
• Grant Permission Grants a role the permission to perform an opera­

tion on an object, and 
• Revoke Permission Removes a permission from the set of permissions 

assigned to a role. 

Supporting System Functions 

These are functions necessary for managing user sessions and enforcing 
underlying RBAC policies. They provide the runtime required for tracking 
active roles of each user session and RBAC policy management functional­
ity. In broad terms, these functions are responsible for the runtime manage­
ment of RBAC-based user-security contexts. The following is a set of 
functions supporting basic system RBAC functionality: 

• CreateSession Creates a new session with a given user as session 
owner and an associated set of active roles, 

• DeleteSession Removes an existing session associated with a given user, 
• AddActiveRole Adds a role to an active user session, 
• DropActiveRole Deletes a role from the active role set of a session, and 
• CheckAccess Performs an access decision related to a subject associ­

ated with a given session and attempting to perform an operation on a 
particular object. 

Review Functions 

These functions provide the sense of control over the various relationships 
that may exist among users, roles, permissions, operations, and objects. The 
proposed standard makes a distinction here between the review functions 
that are mandatory in any basic RBAC implementation and those that are 
optional. The following is the Hst of mandatory review functions: 

• AssignedUsers Returns the set of users assigned to a given role, and 
• AssignedRoles Returns the set of roles assigned to a user. 
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These are the optional review functions: 

• RolePermissions Returns the set of permissions granted to a given role, 
• UserPermissions Returns the set of permissions a user is granted 

through his or her assigned roles (this is essentially the set of effective 
privileges), 

• SessionRoles Returns the active roles associated with a user session, 
• SessionPermissions: returns the permissions assigned to the active roles 

of a given session, and 
• RoleOperationsOnObjects Returns the set of operations a given role 

is allowed to perform on an object. 
• UserOperationsOnObjects Returns the set of operation a given user is 

allowed to perform on an object. 

Hierarchical RBAC Functions 

Hierarchical RBAC includes the functionality of core RBAC and further 
adds functions necessary to establish and manage role hierarchies. The 
semantics of some core RBAC functions are modified to account for role 
hierarchy. 

Administrative Functions 

The semantics of DeAssignUser poses an issue in the presence of a role hier­
archy and gives rise to two possibilities: 

• Apply the DeAssignUser function to a role that is directly assigned to 
the user, or 

• Apply the DeAssignUser function to any role that a user may inherit. 

In the first case, the implementation is simplified and reduces to that of the 
core RBAC. The second case, however, is more complex as the impact could 
affect the entire role hierarchy. While the first case is more restrictive, the sec­
ond one responds to the practical needs of an organization in a more accom­
modating fashion. Additional administrative functions needed by 
hierarchical RBAC are as follows: 

• Addlnheritance Establishes a new immediate inheritance relationship 
between two existing roles, 

• Deletelnheritance Deletes an existing immediate inheritance relation­
ship between two roles, 

• AddAscendant Creates a new role and places it in an existing role 
hierarchy as an immediate ascendant of a particular role, and 

• AddDescendant Creates a new role and places it in an existing role 
hierarchy as an immediate descendant of a particular role. 
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Supporting System Functions 

These are the same as the supporting functions for core RBAC. The presence 
of role hierarchies, however, impacts the semantics of functions CreateSession 
and AddActiveRole. Two implementation scenarios can be possible: 

• An active session role automatically activates the roles it inherits, or 
• A role has to be explicitly activated within a session or else is not con­

sidered active. 

Although implementations may choose to implement either of these sce­
narios, explicit activation of an inherited role can be considered a drastic 
change to the semantics of role inheritance. Access decisions can be compli­
cated by supporting the inheritance of certain permissions only as opposed 
to the effect from inheriting the entire permissions assigned to inherited roles. 

Review Functions 

In addition to the functions supported by core RBAC, the following is a list 
of review functions needed to support role hierarchies: 

• AuthorizedUsers Returns the set of users authorized for a given role, 
• AuthorizedRoles Returns the set of roles authorized for a given user, 
• RolePermissions Returns the set of all permissions in the form of 

(operation, object) that are granted to a given role rather directly or 
through inheritance, 

• User Permissions Returns the set of permissions granted to a given 
user through his/her authorized role set, 

• RoleOperationsOnObjects Returns the set of operations a given role 
is allowed to perform on an object, and 

• UserOperationsOnObjects Returns the set of operations a given user 
is allowed to perform on a particular object. 

Functional Specification for Static Separation-of-Duty 
Relations 

All of core RBAC as well as hierarchical RBAC functions remain in effect 
where applicable. 

Administrative Functions 

The first thing to note is a change in semantics for the AssignUser and 
GrantPermission functions. Assignment of a user or granting a permission to 
a particular role must take into consideration any conflict of interest con­
straints. A user must not be simultaneously assigned to conflicting roles, and 
similarly conflicting permissions must not be assigned to nonconflicting 
roles. Aside from this, administrative functions for managing static separa-
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tion of duty relations are all related to the definition and maintenance of sets 
of conflicting roles. The following is a list of such functions: 

• CreateSsdSet Creates a named set of roles participating in a SSoD 
relationship with a given cardinality number, 

• DeleteSsdSet Deletes an existing SSoD role set, 
• AddSsdRoleMember Adds a role to a named SSoD role set (no 

change is effected in cardinality of the SSoD relationship), 
• DeleteSsdRoleMember Removes a given role from an SSoD role set 

(the cardinality of the SSoD relationship remains unchanged; however, 
the relationship will not have any semantics when the total number of 
roles remaining in the role set drops below the designated cardinality of 
the relationship), and 

• SetSsdCardinality Sets the cardinality associated with a given SSoD 
relationship. 

Supporting System Functions 

These functions are the same as those of core RBAC. 

Review Functions 

The following is the list of review function needed for tracking existing static 
separation-of-duty relations of an RBAC system: 

• SSDRoleSets Returns the list of all existing SSoD role sets, 
• SSDRoleSetRoles Returns the set of roles associated with a given 

SSoD relationship, and 
• SSDRoleSetCardinality Returns the cardinality associated with a 

given SSoD role set. 

Functional Specification for Dynamic Separation-of-Duty 
Relations 

All of core RBAC as well as hierarchical RBAC functions remain in effect 
where applicable. 

Administrative Functions 

The semantics of administrative functions for DSoD are similar to those of 
SSoD. The difference as we know relates to the enforcement of DSoD con­
straints being done at time of activation for session roles, while for SSoD it is 
performed during the process of user assignment to roles. Below are the 
administrative functions for DSoD following their counterparts in SSoD: 

• CreateDsdSet Creates a named DSoD set of roles with a given car-
dinaltity. 
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• DeleteDsdSet Deletes an existing DSoD role set, 
• AddDsdRoleMember Adds a role to a named DSoD role set (the car­

dinality associated with the DSoD relationship remains unchanged), 
• DeleteDsdRoleMember Deletes a role from a named DSoD role set 

(the cardinality of the DSoD relationship remains unchanged but may 
not be meaningful when the total number of remaining roles drops 
below the cardinality), and 

• SetDsdCardinality Sets the cardinality associated with a given DSoD 
role set. 

These functions are based on the definition of separation-of-duty relations 
as described in the proposed RBAC standard. Based on this definition, sep­
aration-of-duty relations are expressed in terms of conflicting role sets qual­
ified with a cardinality number beyond which a conflict of interest arises. As 
we have discussed dynamic separation of duty relations can be expressed in 
various other means including rule and time-based constraints. 

Supporting System Functions 

These functions are the same as those of core and hierarchical RBAC but 
with a slight change in semantics, as follows: 

• CreateSession Creates a new session owned by a given user and asso­
ciated with a given role set, 

• Add Active Roles Adds a role as an active role of a given session asso­
ciated with a particular user, and 

• DropActiveRole Drops a role from the active role set of a session. 

Review Functions 

Additional functions needed specifically for supporting DSoD relations are 
similar to their counterparts for SSoD as summarized below: 

• DsdRoleSets Returns the list of all existing DSoD role sets, 
• DsdRoleSetRoles Returns the set of roles of a given DSoD role set, and 
• DsdRoleSetCardinality Returns the cardinality of a given DSoD 

relationship. 
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