

Access Control Systems

Security, Identity
Management and

Trust Models

Access Control Systems

Security, Identity
Management and

Trust Models

by

Messaoud Benantar
IBM Corp, Austin, TX, USA

<^Spri ringer

Dr. Messaoud Benantar
IBM Corp.
Austin, TX, USA

Library of Congress Cataloging-in-Publication Data

A CLP. Catalogue record for this book is available
from the Library of Congress.

Access Control Systems:
Security, Identity Management and Trust Models
by Messaoud Benantar

ISBN-10: 0-387-00445-9 e-ISBN-10: 0-387-27716-1
ISBN-13: 978-0-387-00445-7 e-ISBN-13: 978-0-387-27716-5

Printed on acid-free paper.

©2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street,
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic adap­
tation, computer software, or by similar or dissimilar methodology now know or hereafter devel­
oped is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if
the are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 10911600, 11525653

springeronline.com

http://springeronline.com

''To my little world - Elyes, Aicha and Houda. To my elementary school
teachers - Abdelmadjid Bouanane and Messaoud Berrou."

Preface

Secure identification of users, programming agents, hosts, and networking
devices is considered the core element of computing security. Rarely is
anonymity a desired goal of systems, networks, and applications. This aspect
is dictated largely by the extent in which computing has evolved to automate
many facets of critical human activities, such as in businesses and even in
processes that can have direct effects on human lives. To that end every unit
of computing in modern systems with a relative level of security is attached
to an authenticated identity associated with it. This enables deterministic
accountability and lays the foundation for responsible and secure computing,
as we present in chapter 1. We emphasize the major aspects relating to iden­
tification and access control and define the basic concepts that collectively
form the foundation for computing security.

An identity in computing reflects real-life entities in that its level of gran­
ularity can be coarse (such as representing an organization; a group of peo­
ple) or can represent a specific individual or a particular computing device.
The premise of achieving deterministic accountability is centered on the
processes that support coherent and consistent identity management where
a one-to-one correspondence of an identity to a real entity, its owner, can
be achieved. Assurance in identity, referred to as identity trust, is estab­
lished through authentication. In computing security trust is computable.
The authentication process is based on providing what is called ÜIQ proof of
identity possession, while uniqueness of an identity is generally parameter­
ized by referencing a well defined naming space. The latter can be as simple
as a local registry of a centralized system or as wide and global as the
Internet. The level of trust in an identity varies depending on the proof pre­
sented to establish it. Although trust in computing spans all elements that
contribute to enforcing system and networking controls including the
integrity of identity repositories and that of governing policies, evidently it
is all predicated on the trust that a system or a network establishes in an
identity.

The Evolution of computing—from centralized to distributed systems
and now well into the global era of the Internet—has tremendously
increased the complexity associated with identity management and trust.
Chapter 2 introduces the reader to the elements of identity management.

viii Preface

We provide a taxonomy of various existing schemes based on the defining
scope of an identity and discuss the benefits and Umitations of each. We
present the elements of federated identity and show how identity has moved
from being simply a concept and a manipulated data construct that has lit­
tle effect on processing to becoming, by its own right, the object of systems
management in what is known as identity provisioning.

The simplistic view in the centralized computing era is characterized by the
scope of identity being limited to a locally managed user registry The nam­
ing space from which an identity is drawn is generally flat and implicitly qual­
ified by the computer system in which it is defined. It ceases to exist uniquely
outside this limited boundary. Since the proof of identity possession
remained in the confines of an organization's computing infrastructure, it
largely relied on the use of passwords.

The network-computing era raised the scope of an identity to the network
level, thereby becoming visible to all computing systems attached to a net­
work. It pushed the limits into network wide identity registries and authenti­
cation protocols that are based on various encryption schemes, most notably
secret key. When multiple registries are used, consistency and synchroniza­
tion of identity attributes became a necessity. This era also highlighted the
need for network wide single sign-on and presented eloquent solutions to
it. The network wide scope increased the functional requirements needed
for securely establishing and maintaining trust in an identity. The network-
security context came into existence to represent this trust.

The era of Internet computing is seeing an unprecedented need for reliable
identity-management and trust mechanisms. Conducting business transac­
tions over public networks requires secure processes for establishing a secu­
rity context before it is attached to a particular transaction, verifying it,
propagating it from end point to end point, and managing its life cycle. The
multitude of Web services that can potentially collaborate behind the scene
of a single-end-user transaction requires secure propagation of identity trust
and interoperable models of profiling attributes. Several models of trust
propagation have emerged.

The Web model of computing necessitates a Web model of identity man­
agement. Identity attributes, known as profiles, need to be consistently
interpreted and exchanged across organization boundaries in arbitrary ways.
Profiles that are associated with the same entity may need to maintain a
mapping to each other and be kept synchronized. Privacy concerns have
emerged to an extent never seen before. Remedies to these issues need to
apply to every level of profile attributes from coarse to finer components and
should be based on individual concerns, organizational policies, and emerg­
ing standards. To facilitate and ease collaboration, organizations may find the
need to be federated together to form entities whose boundaries are seamless
to users. The transparency provided by these federations allows entities to
undergo a single registration process and experience the benefits of single
sign-on throughout a virtually larger organization.

Preface ix

Chapter 3 is concerned with the elements of identity trust. We survey exist­
ing models as they relate to assurance in an identity. We begin with the sim­
plistic method of sharing secrets and subsequently delve into the public-key
aspect of trust. Various public-key-based trust models are presented.
Identity-management processes alone are not sufficient if they are not cou­
pled with a strong foundation of trust, particularly across organizations. The
ultimate need for the secure establishment of an identity is to impose controls
over the entitlements, which can be granted or denied to the associated entity.
The goal is to base access-control decisions on secure foundations.

Trust in an identity and its associated profile attributes is generally intended
as a prerequisite for a secure determination of entitlements. Access control
is founded on the establishment of secure identity contexts. Assurance in
that foundation is a key element in secure access-control implementations.
Other important aspects include the processes enabling access decision mak­
ing and the adoption of access policies that are based on well-defined mod­
els. Management of access-control supporting constructs (such as policy
maintenance) and of the provisioning of entitlements to various entities is
also an important element. Subsequent to the initial introduction of existing
paradigms of information access control in Chapter 1, we discuss the details
of the mandatory-access-control (MAC) model in Chapter 4. We demon­
strate the ease of information-flow analysis in this model and present a few
of its variants. In Chapter 5 we delve into the access-matrix model and focus
on all aspects of discretionary access control (DAC). We introduce the reader
to the elements of safety and show the complexity of analyzing access-con­
trol systems in a generalized form. Chapters 6 and 7 present the take-grant
and the schematic models, respectively. These schemes are of lesser general­
ity than the access-matrix model but have computable safety properties.
Chapter 8 presents the details of role-based access control (RBAC) beginning
with the basic concepts to the complex aspects of mapping DAC and MAC
onto RBAC. Information-flow analysis of RBAC is discussed and the RBAC
standard is highlighted.

Models help elevate access-control management to a level that is concise
and in some cases even formal. Modeling is an important tool for attempting
to define the bounds of information flow in any given computing environ­
ment. Access-control models follow along existing paradigms of information
flow. Two major such paradigms are known to date, discretionary and
mandatory. Discretionary access control empowers resource owners in
divulging access to others. The flexibility of this paradigm, however, removes
any possibility for defining the limits that can be reached by a given protec­
tion state. Such states are unbounded, and the flow of information is gener­
ally unpredictable. Nevertheless, DAC is the most widely adopted
access-control paradigm. It naturally fits many of real-life processes that
govern access to resources based on ownership.

Mandatory access control leaves no powers to end entities in deciding the
flow of information. Instead, select administrators of an organization grant

X Preface

or deny access by assigning security classifications to resources and active
entities (such as computing devices and programming subsystems and users,
referred to as labels and clearances, respectively). Access decisions are then
made in accordance with a partially ordered relationship between labels and
clearances in what is known as dominance or the lack thereof. Contrary to
DAC, dissemination of information in MAC is predictable as it follows a lat­
tice structure that accurately determines the bounds of information flow.
MAC lends itself well to military environments, while it is generally regarded
as a handicapping measure in commercial environments.

Role-based access control has emerged in recent years as a generalized
access model that although it encapsulates more of discretionary flavor than
mandatory, it theoretically applies to DAC as well as MAC policies. RBAC
seems to fit naturally into modeling access control. Its main advantage is in
the simplification of management and administrative tasks of governing
security policies. Additionally, it lends itself well to the separation-of-duty
(SoD) principle. SoD can be viewed in many respects as a bridge between
DAC and MAC policies. Like in MAC, the administrative tasks play an
important role in how information is disseminated in RBAC. Like DAC,
RBAC is capable of maintaining the concept of resource ownership.

Although the elements surrounding RBAC are interpreted with relative
uniformity across the computing industry, interoperabiUty of implementa­
tions remains elusive. The absence of common-role semantics and unified
policy representations makes it difficult to switch from one environment to
another. Nevertheless, a recent attempt by the National Institute of
Standards and Technology (NIST) at standardizing some of the RBAC
aspects can be an important step forward. We devote chapter 8 to this impor­
tant topic.

This book is a modest attempt at discussing these elements of computing
security. I hope you find it enjoyable to read and that it clarifies these con­
cepts for you.

Messaoud Benantar
Austin, Texas, USA

Contents

CHAPTER 1 FOUNDATIONS OF SECURITY
AND ACCESS CONTROL IN COMPUTING 1

INTRODUCTION 1

ELEMENTS OF SYSTEMS SECURITY 3

IDENTITY ESTABLISHMENT 3

RESOURCE ACCESS CONTROL 4

DATA AND MESSAGE SECURITY 4

NONREPUDIATION 5

AVAILABILITY 5

COST OF SECURITY 6

SYSTEM INTEGRITY: A PRELUDE TO SECURITY 6

TRUSTED COMPUTING BASE 7

USERS, PRINCIPALS, SUBJECTS, AND OBJECTS 9

IDENTIFICATION AND AUTHENTICATION 10

AUTHENTICATION FACTORS: A COMPARISON 11

MULTIPLE-FACTOR AUTHENTICATION 11

PASSWORDS: THE PREVALENT AUTHENTICATION METHOD 13

APPROACHES TO RELIABLE PASSWORD MANAGEMENT 13

PASSWORD ENCODING 13

ADDING SALT To PASSWORD ENCODING 14

PASSWORD SYNTAX RULES 14

PASSWORD AGING 15

xii Contents

AUDITING 15

THE SECURITY CONTEXT 17

CONTENT OF A SECURITY CONTEXT 18

THE FLOW OF A SECURITY CONTEXT 19

DELEGATING SECURITY CONTEXTS 19

ACCESS CONTROL 20

REFERENCE-MONITOR TOPOLOGY 21

ABOUT ACCESS-CONTROL POLICIES, MODELS

AND MECHANISMS 23

ACCESS CONTROL PARADIGMS 26

ROLE-BASED ACCESS CONTROL 26

DELEGATION AND MASQUERADING 27

THE AXIOM OF ATTENUATION OF PRIVILEGES 27

TRUST AND ASSURANCE 27

REALIZING ASSURANCE 28

THE COMMON CRITERIA: A BACKGROUND 28

OVERVIEW OF ASSURANCE IN THE COMMON CRITERIA 29

CONFIGURATION MANAGEMENT 31

DELIVERY AND OPERATION 31

DEVELOPMENT 32

GUIDANCE DOCUMENTS 32

LIFE-CYCLE SUPPORT 33

TESTS 33

VULNERABILITY ASSESSMENT 33

ABOUT THE CONFINEMENT PROBLEM 35

Covert Channels 36
EXAMPLES 36

SECURITY-DESIGN PRINCIPLES 37

ECONOMY OF MECHANISM 37

COMPLETE MEDIATION 37

OPEN DESIGN 37

LEAST-COMMON MECHANISM 38

FAIL-SAFE DEFAULTS 38

Contents xiii

SEPARATION OF PRIVILEGE 38

LEAST PRIVILEGES 39

PRIVACY CONSIDERATIONS 39

PSYCHOLOGICAL ACCEPTABILITY 39

CHAPTER! INTRODUCTION TO
IDENTITY-MANAGEMENT MODELS 40

INTRODUCTION 40

LOCAL IDENTITY 41

ADVANTAGES OF THE LOCAL-IDENTITY MODEL 42

Simplicity 42
Scalability 43
Flat Name Space 43

MANAGEMENT ISSUES IN THE LOCAL-IDENTITY MODEL 43

Password and Attribute Synchronization 43
Single Sign-On 44
Identity Provisioning 44

EXAMPLE: IBM RESOURCE ACCESS-CONTROL FACILITY 44

NETWORK IDENTITY 46

FEDERATED IDENTITY 46

FOUNDATIONS OF FEDERATED IDENTITY 46

FEDERATION TOPOLOGIES 49

Local Profiling 50
Distributed Profiling 50
Profiling by a Third Party 50

GLOBAL WEB IDENTITY 51

IDENTITY MAPPING AND SYNCHRONIZATION 51

METADIRECTORIES 51

AFFILIATE NETWORKS (VIRTUAL DIRECTORIES) 52

DYNAMIC SCOPING OF A SECURITY CONTEXT 54

THE XNS APPROACH TO THE GLOBAL WEB IDENTITY 54

ELEMENTS OF DNS 55

ELEMENTS OF XNS 59

XNS IDENTITY TYPES 61

xiv Contents

THE X N S IDENTITY DOCUMENT 61

IDs AND NAMES IN XNS 62

XNS RESOLVERS 63

CROSS-REFERENCING XNS IDENTITIES 64

Forming Trust Relationships in XNS 65
XNS Services 66

CENTRALIZED ENTERPRISE-LEVEL IDENTITY
MANAGEMENT 67

SYNCHRONIZING IDENTITY ATTRIBUTES 68

POLICY-BASED IDENTITY PROVISIONING 69

UNIFIED IDENTITY-REPRESENTATION SCHEME 69

Dynamic Definition of Identity Attributes 70
Decoupled Identity-Representation Scheme 70

EXAMPLE: IBM IDENTITY MANAGER 71

CHAPTER 3 ELEMENTS OF TRUST PARADIGMS
IN COMPUTING 73

INTRODUCTION 73

A THIRD-PARTY APPROACH TO IDENTITY TRUST 74

KERBEROS: THE IMPLICIT THIRD-PARTY
AUTHENTICATION PARADIGM 76

A HIGH-LEVEL VIEW OF THE KERBEROS PROTOCOL 77

FEDERATED KERBEROS 79

A TOPOLOGY OF KERBEROS FEDERATIONS 80

TICKET FORWARDING 80

ENTITLEMENT ATTRIBUTES IN KERBEROS 81

EXPLICIT THIRD-PARTY AUTHENTICATION PARADIGM 83

THE PUBLIC-KEY INFRASTRUCTURE APPROACH TO TRUST
ESTABLISHMENT 84

FOUNDATIONS OF PUBLIC-KEY CRYPTOGRAPHY 85

The Problem of Factoring Large Numbers 86
Computing Discrete Logarithms in a Large Finite Field 87
Elliptic Curves over Finite Fields 88

DIGITAL SIGNATURES 88

RSA Signature 89

Contents xv

TRUSTING A PUBLIC KEY 89

FOUNDATIONS OF TRUST IN P K I 90

Identification Links Between a Certificate and a CRL 92
Protecting the CA Signing Key 93

PKI TRUST TOPOLOGIES 93

Hierarchical Trust 94
Cross-Certification 97
Cross-Certification Grid 98
Hub-Based Cross-Certification 99
Hybrid Model 99
Web-of-Trust Model 100

PROXY CERTIFICATES: DELEGATED IMPERSONATION IN PKI 102

The Proxy-Certificate Approach 102
Elements of the X.509 Proxy Certificate 104
Computing Trust in Proxy Certificates 104

ATTRIBUTE CERTIFICATES: ENTITLEMENT
MANAGEMENT IN PKI 106

ELEMENTS OF ATTRIBUTE CERTIFICATES 106

Binding Information 106
Attribute Information 107
A Note About AC Attributes 108
Extensions 109

GENERALIZED WEB-OF-TRUST MODEL 109

EXAMPLES OF TRUST-EXCHANGE MECHANISMS
OVER THE WEB 111

WEB-SERVICES SECURITY 112

Identity and Trust Tokens 115
Simple User Name Token 115
Binary Tokens 115
Referencing Security Tokens 116

SAML APPROACH: UNIFYING TRUST AND IDENTITY CONSTRUCTS 116
SAML Constructs 119

Assertion 119
Conditions 119
Advice 119
Signature 119
Statement 119
Subject Statement 119
Authentication Statement 120
Authorization Decision Statement 120

xvi Contents

Attribute Statement 121
Trust Elements of SAML 121

Digital Signatures 121
User Confirmation 122
Authority Binding Information 122
Authorization Evidence 122

Other Trust Elements of SAME 122
A Note on Federated Trust in SAME 122

WEB COOKIES 123

Structure of Cookies 123
Server Role 123
Client Role 125
Example: Cookies Exchanged Between a Client and a Web Server 125
Issues with Use of Cookies 126
Secure Cookies 127
Use of a Public Key on the Client Side 127
Use of a Public Key on the Server Side 128
Use of a Shared Secret Key 128

CHAPTER 4 MANDATORY-ACCESS-CONTROL MODEL 129

INTRODUCTION 129

MANDATORY-ACCESS-CONTROL THEORY 129

PARTIAL ORDERS 129

Example: Partial Orders 130
LATTICES 130

Example: Lattices 131
LATTICE-BASED ACCESS-CONTROL MODELS 131

THE LATTICE STRUCTURE OF THE INFORMATION FLOW MODEL 132

IMPLICATIONS OF THE LATTICE-BASED FLOW MODEL

ON ACCESS CONTROL 13 5

EXAMPLES OF LATTICE-BASED INFORMATION-FLOW MODELS 135

THE BELL-LAPADULA FLOW MODEL 137

THE BiBA MODEL 138

COMPARING INFORMATION FLOW IN BLP
AND BIBA MODELS 139

IMPLEMENTATION CONSIDERATIONS FOR THE
BLP AND THE BIBA MODELS 141

COMBINING THE BLP AND THE BIBA MODELS 141

Contents xvii

ON THE MANDATORY-ACCESS-CONTROL PARADIGM 144

THE CHINESE-WALL POLICY 144

SIMPLE SECURITY 146

*-PROPERTY 146

CHAPTER 5 DISCRETIONARY-ACCESS CONTROL AND THE
ACCESS-MATRIX MODEL 147

INTRODUCTION 147

DEFINING THE ACCESS-MATRIX MODEL 147

IMPLEMENTATION CONSIDERATIONS FOR THE ACCESS
MATRIX 148

RESOURCE VIEW OF THE ACCESS MATRIX: ACCESS-CONTROL LISTS 149

SUBJECT VIEW OF THE ACCESS MATRIX: CAPABILITIES 149

DEFINITIONS FROM THE HRU ACCESS-MATRIX MODEL 150

STATE TRANSITIONS IN THE HRU ACCESS-MATRIX MODEL 151

Example: create, confer and remove commands 152
Example: command effects 153

THE SAFETY PROBLEM OF THE ACCESS-MATRIX MODEL 153

O N THE SAFETY OF THE MONO-OPERATIONAL PROTECTION SYSTEM 158

THE GENERAL SAFETY PROBLEM OF
THE ACCESS-MATRIX MODEL 159

THE TURING MACHINE 160

Example: Actions of a Turing Machine 161
SKETCH OF PROOF FOR THE UNDECIDABILITY OF

THE GENERAL SAFETY PROBLEM 163

Mapping an Arbitrary Turing Machine onto
the Protection System 163

Mapping the Actions of the Turing Machine onto
Protection Commands 164
Moving to the Left 164
Moving to the Right 165

xviü Contents

Maintaining the Same Position 166

Conclusion 167

CHAPTER 6 THE TAKE-GRANT PROTECTION MODEL 168

INTRODUCTION 168

DEFINITION OF THE TAKE-GRANT MODEL 168

EXAMPLE: A TAKE-GRANT MODEL 172

SAFETY IN THE TAKE-GRANT MODEL 173

DETERMINISM OF SHARING IN THE TAKE-GRANT MODEL 175

Case 6.1a: {—j-^^ — ^ ^ } 176
Case 6.1b: {-*— ^^} 176
Case 6.1c: { „ > „>} 176
Case6.1d: {-*̂ -p ^^} 111

CHAPTER? THE SCHEMATIC-PROTECTION MODEL 180

INTRODUCTION 180

OVERVIEW OF THE SCHEMATIC-PROTECTION

MODEL (SPM) 180

SPM RULES AND OPERATIONS 182

THE COPY OPERATION 182

Examples 184
THE DEMAND OPERATION 184

THE CREATE OPERATION 185

Authorization 185
Create Rules 186

ATTENUATING CREATE-RULE OF SPM 187

APPLICATION OF SPM 187

SHARING ACROSS RESOURCE OWNERS 187

THE BASIC TAKE-GRANT MODEL 188

Contents xix

CHAPTER 8 ROLE-BASED ACCESS CONTROL 190

INTRODUCTION 190

BASIC RBAC 192

USER, ROLE, AND PERMISSION ASSOCIATIONS 193

RBAC RELATIONSHIP REVIEWS 194

HIERARCHICAL RBAC 195

GENERAL-ROLE HIERARCHIES 196

LIMITED-ROLE HIERARCHIES 198

ROLE REVIEWS IN HIERARCHICAL RBAC 200
MODELING HIERARCHICAL RBAC USING ROLE GRAPHS 200

Effective and Direct Privileges 201
Role-Graph Modeling of Generalized Role Inheritance 202
Role-Graph Operations 203
Role Addition 204
Role Deletion 205
Role-Privilege Update 207
Optimizing Role Graphs 207

RBAC: A COMPARATIVE DISCUSSION 208

MAPPING OF A MANDATORY POLICY TO RBAC 209
OSM Mapping of a Confidentiality-Mandatory Policy 211

Theorem 8.1 212
OSM Mapping of an Integrity-Mandatory Policy 213

Theorem 8.2 213
RBAC CORRESPONDENCE TO A MANDATORY POLICY 213

The OSM Constraints for Mapping RBAC to a Mandatory Policy 216
Definition 8.1 216
Definition 8.2 216
Theorem 8.3 216

MAPPING DISCRETIONARY-ACCESS CONTROL TO RBAC 217
The Elements of the OSM DAC to RBAC Mapping 218

Simulating Strict DAC 219
Simulating Liberal DAC 220
Simulating DAC with Changes to Ownership 222
Simulating Grant-Dependent Revoke 222

A Note About the OSM DAC to RBAC Mapping 223

XX Contents

RBAC FLOW ANALYSIS 224

THE OSBORN FLOW-ANALYSIS ALGORITHM 224

Example 1: Flow Analysis of a Simple LBAC Scheme 225
Example 2: Reduction of a Role Hierarchy Governing

Read and Write Access 226

SEPARATION OF DUTY IN RBAC 227

ELEMENTS OF ROLE CONFLICTS IN RBAC 229
Conflicting Permissions 229
Conflicting Users 230
Conflicting Tasks 230

Safety Condition from the Perspective of Conflicting Tasks 231
STATIC SEPARATION OF DUTY 231

The Effect of Role Hierarchy 232
DYNAMIC SEPARATION OF DUTY 233

Simple Dynamic Separation of Duty 235
Object-Based Separation of Duty 235
Operational Separation of Duty 237
History-Based Separation of Duty 237

Example: Dynamic Separation of Duty in a Workflow Ativity 238
ROLE CARDINALITY CONSTRAINTS 240

RBAC CONSISTENCY PROPERTIES 241

Property 8.1 241
Property 8.2 241
Property 8.3 241
Property 8.4 241
Property 8.5 241
Property 8.6 242
Property 8.7 242
Property 8.8 242
Property 8.9 242
Property 8.10 242
Property 8.11 243
Property 8.12 243
Property 8.13 243

Contents xxi

THE PRIVILEGES PERSPECTIVE OF

SEPARATION OF DUTIES 243

FUNCTIONAL SPECIFICATION FOR RBAC 246

CORE RBAC FUNCTIONS 246
Administrative Functions 247
Supporting System Functions 247
Review Functions 247

HIERARCHICAL RBAC FUNCTIONS 248
Administrative Functions 248
Supporting System Functions 249
Review Functions 249

FUNCTIONAL SPECIFICATION FOR STATIC

SER\RATION-OF-DUTY RELATIONS 249

Administrative Functions 249
Supporting System Functions 250
Review Functions 250

FUNCTIONAL SPECIFICATION FOR DYNAMIC

SEPARATION-OF-DUTY RELATIONS 250

Administrative Functions 250
Supporting System Functions 251
Review Functions 251

REFERENCES 252

INDEX 258

Chapter 1

Foundations of Security and Access
Control in Computing

Introduction

Access control in computing is motivated by the need to divulge access to
information and available computing resources and services to authorized
entities only. An entity is a generic term that refers to an active agent capable
of initiating or performing a computation of some sort (for example, an end
user invoking a command or a program, a programming agent acting on
behalf of a user, a running daemon process, a thread of execution, a hosting
system, or a networking device). Access modes can be broadly categorized
into the ability to read or write information whether in the address space of
an executing process, on a secondary storage, or on a network or a peripheral
device. This ability can be explicitly expressed by a direct privilege possessed
by the acting entity or indirectly through services and computing tasks that
the entity is allowed to execute. A purist may pose the question of whether
temporarily modifying computer information without having to read it and
in a way that leaves its final state unchanged is consistent with the definition
of access control. The likely answer is that such activity constitutes a breach
to access control and thus it should be guarded against. Otherwise, one of the
fundamental security tenets of resource availability becomes at risk of being
compromised. Availability of computing resources has indeed stood as a sys­
tem and network security concern of its own. Furthermore, concurrent
access to information that is being modified even temporarily by authorized
or unauthorized entities is clearly unacceptable.

Evolution of computing systems from single-user to multiuser machines
led to the necessity of shielding users and running processes from one
another. Early protection mechanisms consisted of hardware and operating
systems components. Subsequently, policy-based authorization subsystems
have emerged. Controlling access to computing systems is the first defense
against disclosing information to unauthorized entities. Systems and
network access is based on trusted methods for identifying users and pro­
gramming agents. Secure identification is the cornerstone of modern com­
puting security. The advent of networking and distributed computing has

1

2 1. Foundations of Security and Access Control in Computing

led to the proliferation of computing identities. Consequently, identity
management has evolved as a discipline of its own. The goal is to mitigate
the cost of maintaining identity repositories that may exist in the poten­
tially a myriad of systems used by a single enterprise, enforcing consistency
and achieving unambiguous mapping of identities representing the same
entity or multiple entities collaborating together. Automation of interenter-
prise exchanges has further necessitated the drive for federated identity
systems. As a result, the scope of an identity is extending well beyond the
confines of an organization. With all the associated complexities, a purist
perspective seeks a unified model of secure identification. Although this is
far from being achieved in the real world, any such attempts can only ben­
efit computing security.

Real-world examples of access control are abundant and vary according to
the needs and policies dictated by the circumstances. At a basic level, users of
the same organization are granted access to shared computing resources
based on the roles each user is entitled to within the organization. An enter­
prise may be concerned over losing its competitive edge should its trade
secrets become known to its competitors. A financial institution has every
need to confine updates in its records to legitimate transactions only and to
protect them from exposure to unauthorized individuals and institutions.
While a patient's medical records may not be of any immediate financial gain,
one cannot put a price to their privacy.

Access control is evolving from its traditional host-centric paradigm to
resources and entities that transact over large networks as wide as the
Internet. The low-level access-control privileges of the basic read and write
of information are now moving up a level higher to include attributes that
make up a profile for an entity. These are the elements that mimic real-life
user entitlements such as the privilege of having a banking account, having
a credit-card number, or being assigned a well-defined role. The processes
needed to maintain entity profiling gave rise to what is referred to as
identity management, which is indeed a prelude to any access-control
mechanism. It is concerned with the trusted methods of managing and
exchanging entity entitlements on various computing systems and resource
managers. Identity management forms the foundation on which access con­
trol is based.

In this chapter we introduce the main concepts behind computing security.
We begin with a brief overview of security threats. We then elaborate on the
major elements of systems security, in particular the aspects surrounding
identification and authentication. We highlight the importance of system
integrity as a prelude to secure computing. We define what is meant by a
security context and discuss its propagation along the units of computing
work. Subsequently, we delve into the paradigms of access control and out­
line the elements surrounding trust and assurance, including an introduction
to the confinement problem. We conclude with an overview of the major
security-design principles.

Elements of Systems Security 3

Elements of Systems Security

A threat by definition is a situation in which any protection mechanisms that
govern access to a computing system may become subject to harm. Such pro­
tection mechanisms are driven by what is called a security policy. We discuss the
concept of a security policy in further detail later in the chapter. Security
threats are analogous to harmful activities that are bound to happen and thus
convey the meaning of a pending attack. The latter makes the threat a reality.
Threats are made possible due to vulnerabilities, also referred to as weaknesses,
either in the mechanisms enforcing a particular security policy or in the opera­
tional controls of that policy (such as those having to do with configuration
parameters). Mechanism-related vulnerabilities can be due to design or imple­
mentation flaws. Dormant vulnerabilities represent a risk. A risk is a measure
of potential harm that can be realized when a threat is executed. Some of the
known categories of security threats include identity theft through masquerad­
ing or spoofing, unauthorized access to resources, unauthorized disclosure or
modification of data, and denial of service attacks.

Security in computing can be viewed as having the following elements:

o Secure entity identification, known as authentication and which we
refer to as identity establishment;

o Confining actions of an established identity to its designated entitle­
ments for services and computing resources, known as resource access
control;

a Data integrity, confidentiality, and origin authenticity, broadly referred
to as data and message security;

a Prevention from denial of taking part in a transaction, whether as an
initiating or a receiving party, known as nonrepudiation;

n Resource availability to thwart against the denial of service attacks.

The fundamental prerequisite for the integrity and soundness of any access-
control or other security mechanisms is the secure establishment of identi­
ties. For example, the lack of enforcement for secure establishment of identities,
makes all attempts to enforce an access policy virtually useless.

Identity Establishment
Identity establishment is concerned with the methods by which a user, a run­
ning process, or a thread of execution is securely associated with a legitimate
entity. Recall that an entity may represent a single user, a group of users, an
entire organization, a host system, or some networking device. Establishing
an identity is the means of concluding that indeed the identity in use corre­
sponds to the entity that it claims to be and thus is said to be authentic.
Authentication is the secure identification of entities in which a proof of pos­
sessing an identity is verified. An entity's access to a system is encapsulated in
what has become known as an account. Engaging in an act of authentication

4 1. Foundations of Security and Access Control in Computing

can take place on every attempt to access a controlled computing system,
known as a login, when a service from an application is requested, or each
time a network access is performed. Varying system and network security
policies as well as application requirements can dictate the frequency of entity
authentication.

The evidence resulting from an established identity is maintained by the
computing device in what is referred to as a security context. The latter
remains securely attached to every unit of work requested by the correspon­
ding entity. A security context can be exchanged locally across address spaces
and may be transmitted over a network embodied in the request with which
it is associated.

Resource Access Control

Access control, one of the central themes of this book, is also referred to as
access authorization or simply authorization. It is about enforcing a prede­
fined access policy. The goal is to confine the actions of an entity only to the
services and to the computing resources that it is entitled to. To prevent an
access policy from subversion, the controls that enforce it should be foremost
capable of binding computing activities to authenticated identities at any fine
level of computation, the scope of which may be an entire address space or
at the task and thread level. These bindings are known as secure associations.
A safe access-control policy prevents leakage of access to unauthorized users
directly or indirectly in any state of the underlying computing system. As we
have already mentioned, identity establishment is the cornerstone of enforc­
ing any resource access-control policy.

Data and Message Security

Although the term data security is generic, its use is mainly concerned with
modification detection, origin authenticity, and confidentiality of data that is
being processed in-memory, or while residing on a storage medium or during
transmission over a computer network (i.e., a message). Modification detec­
tion or simply data integrity alone is not of value to data security unless it is
combined with origin authenticity. An eavesdropping entity may apply the
same data-integrity procedures after having intercepted and modified data
items, leading the receiving entity to successfully verify the integrity of the
breached data but without realizing it was modified. Thus, data integrity is
usually combined with some form of origin authenticity, ensuring that an
integrity-check sum is indeed generated by a legitimate entity, the original
source of the data. Secure data integrity, one combined with origin authen­
ticity, protects against an unauthorized update of data.

Confidentiality is the process of sealing data using a keyed data-scrambling
algorithm so that only a designated entity, one with knowledge of the key, is
able to apply the reverse transformation and retrieve the data in its original
form. The goal is to prevent disclosure of information to unauthorized

Elements of Systems Security 5

entities. In a sense, data confidentiality can be used as a mechanism for
enforcing access to information. The underlying cost, however, can be pro­
hibitive so that access-control mechanisms are generally not based on data
confidentiality. Data confidentiality remains a discipline of its own in secu­
rity. It is selectively applied to sensitive information that when disclosed
results in measurable or un-measurable loss of some kind.

Nonrepudiation

Nonrepudiation of action is the process by which an entity is prevented from
denying participation in a transaction either as an initiating/sending or a
receiving end. The definition is ultimately applicable to preventing any process
or a thread of execution running on behalf of an end user to circumvent
the binding of the acting identity with the legitimate entity. Although one
might argue that nonrepudiation can be accomplished simply by producing
audit and transaction trails in a secure and a controllable fashion, a purist
would assert that a legally binding nonrepudiation can be very hard to realize.
Denial may always take one form or another. Nevertheless, digital signatures
based on public key cryptography and a combination of tamper-proof hard­
ware and software modules have come a long way toward establishing verifi­
able nonrepudiation services, particularly for initiating entities (i.e., those
generating information).

Availability

Availability addresses the issue of disrupting access to computing resources
and services. The type of disruption may range from compromising the func­
tions of a particular service or a system to completely denying access to it.
Under all circumstances, it is natural for users of any computing service to
expect reasonable response times that are comparable to or much better than
human-to-human interactions (over a telephone line, for instance) to attain
the same service.

Protecting computing resources from extreme degradation of performance
or from deliberate denial of service takes priority over the enforcement of any
access-control policy. A denial-of-service (DOS) attack is one in which a
deliberate high volume of bogus requests are sent to a service provider. The
intent is to keep legitimate users of the service from using it. An attack as
such may bring the service to its threshold capacity, leaving it dedicated to
handling malicious requests instead of legitimate ones. The manifestation
may result in extremely slow response times and potentially may lead to a
complete inhibition of service and ultimately a shutdown due to the exhaus­
tion of runtime resources, such as real or secondary storage or network sock­
ets. Powerful attacks as such may further bring down an entire network as
wide as the Internet to a crawl.

When authorized users are not able to send requests or reach a service, it
becomes a secondary concern to have that service enforce an access-control

6 1. Foundations of Security and Access Control in Computing

policy. Furthermore, the mere existence of the service is entirely threatened.
Security mechanisms that protect the availability of computing resources
guard against various threats of interruption and deliberate actions of slow­
ing down a service or rendering it completely inaccessible. Detection and pre­
vention of DOS attacks have emerged as among the leading security issues in
this era of computing over public networks.

It should be noted that disruptions leading to denial of service may occur
at different locations along the path between a client and a server, including
the following:

a In the environment of the service Here the service is prevented from
obtaining resources needed for its proper execution. The attacker
focuses on exhausting computing resources of the system in which the
service is hosted.

O In the environment of the client The target service is diverted from
responding to legitimate requesters and dealing with useful communi­
cations by way of attempting to respond to a massive bombardment of
random client messages instead.

O Along the path between clients and the server The attacker intercepts
and then discards useful requests to the service.

Cost of Security

Security in computing, as in anything else, comes with cost and overhead.
That cost should be put in perspective with the value of the protected
resources. The cost of security has to be proportionate to the losses incurred
from any security breaches. Insignificant losses do not require significantly
higher security costs. Measuring potential loss is not a deterministic process;
worst-case scenarios therefore are to be assumed. In quantifiable terms, the
cost of security should be less than that of entirely replacing a protected com­
puting asset including its data and functionality. Being able to quantify vari­
ous elements of risk enables the development of informed policies that
balance the cost of security with the benefits of increased safety. Threats have
to be considered even in highly secure environments. The probability of ruin
in a computing infrastructure, even when relatively low, should be the driving
factor behind the provision of security. However, one cannot always put cost
to security. Invasion of privacy (such as publicly exposing a person's medical
records) can be detrimental to the person, even when seemingly no quantifi­
able physical harm is inflicted on the person and the health-care provider.

System Integrity: A Prelude to Security

Integrity of information processing was the focus of attention in early stages
of the developments in information technology (IT). First, the need for a
strict separation between a running control program and user or application

Trusted Computing Base 7

programs was addressed even in basic single-user systems. Operating systems
and hardware advancements such as those pioneered by the IBM System/360
and System/370 family have led to multiuser systems that accommodate a
large number of users. The execution of multiple processes addressing a com­
mon memory meant that one process must be prevented from overwriting
memory locations that are assigned to another process. Address-space sepa­
ration, therefore, had to be maintained in both the virtual storage assigned to
a process and the real memory blocks used at runtime. In early IBM systems
this problem was addressed with storage-protection keys where a particular
process and the storage assigned to it are associated with a unique storage key
that must match if the process is allowed to access the storage. Any attempt
by a process to store data outside of its assigned blocks of memory is recog­
nized by the hardware due to mismatched storage-protection keys.

In IBM's System/360 through System/390 and beyond, the control program
defining the operating system is isolated from user programs by means of a two-
state instruction execution environment. These two states are called supervisor
state and problem-program state. A special set of machine instructions, includ­
ing input/output (I/O) commands to the I/O channels and memory as well as
address-space-management instructions are operable only when the system is
running in supervisor state. The control program typically executes in supervi­
sor state while user programs always execute in the problem-program state.
When an application requests the services of the control program (such as per­
forming I/O), a request is issued to the control program. The control program,
executing in the supervisor state, first examines the request to make sure that it
will not exceed the logical boundaries of the problem program before the
request is executed.

The assurance provided by modern operating systems in isolating concur­
rently running user applications and control programs is the key to enforcing
the security controls that a computer system provides. Such isolation is further
extended to finer levels of computing units— t̂hat of execution threads. The
needs for isolation equally apply to the threads executing in a single address
space. Figure 1.1 illustrates the concept of isolation across operating system
and user processes as well as threads. A classical example of the benefits from
well-designed isolation mechanisms are found in the features that are embed­
ded in the control program of the System/390 and its derivative platforms.
These mechanisms are extended to cover new software components that are
tightly related to the control program. One of these components is the secu­
rity service layer, which is invoked by various resource managers and also by
system components to mediate access to system resources.

Trusted Computing Base

A trusted computing base (TCB) is defined as the totality of protection mech­
anisms within a computer system, including hardware, firmware, and soft­
ware, the combination of which is responsible for enforcing a security policy

8 1. Foundations of Security and Access Control in Computing

Control program (operating system)

^^^^B

^^^^B

^^B

FIGURE 1.1 Isolation of program execution in modem operating systems

[ABRA95]. The ability of a trusted computing base to enforce a security pol­
icy correctly depends foremost on the integrity, correctness, and protection of
the mechanisms implementing the elements of the TCB itself. Similarly, a net­
work trusted computing base (NTCB) is defined as the totality of protection
mechanisms within a network including hardware, firmware, and software,
the combination of which is responsible for enforcing a networkwide security
policy. A mechanism is the term used to refer to a specific paradigm, model,
or a construct that is used in the implementation of a particular service.
A security service enforcing a policy is therefore a combination of security
mechanisms. Trust in a TCB means the components and mechanisms imple­
menting the enforcement of controls dictated by a security policy behave in
an expected manner. The expectation here is that the TCB should not subvert
the policy that it is designed to enforce. Basic to the element of trust in the
TCB is its correctness and overall system integrity.

The general method of defining the boundaries of a TCB is that any soft­
ware, firmware, or a hardware component that has the ability to subvert a
security policy is considered to be part of an applicable TCB or NTCB.
Breaching a TCB is usually accomplished by carrying an attack that the
designer of the TCB had not anticipated. Building an ideal TCB, therefore,
requires exhausting all possible attacks. While it may seem that the elements
of network TCB are scattered and disjoint, in practice trust is a continuous
concept throughout that follows the information flow. Applicable trust prop­
erties should remain invariant when information is residing on a storage sys­
tem, within a thread of execution, during an exchange of data across address
spaces, or while in transmission over a network.

Users, Principals, Subjects, and Objects 9

Users, Principals, Subjects, and Objects

The term user in computing has been traditionally equated with a human
being. Its use conveys a unique association between a computing system and
an entity that can be a human being or some programmable agent. User
information is generally encapsulated in an account, sometimes referred to as
a profile. A user account contains information about authentication as well
as authorization credentials and may contain a set of attributes describing
the user (such as a name, a serial number, an organization name, and so
forth). Each user account is associated with an identifier that must be unique
in the naming space of the underlying computing system.

While a user represents an entity external to a computing system, di princi­
pal generally refers to an entity's internal representation to a computing sys­
tem. Each user may have several principals associated with it. Each principal,
on the other hand, is associated with one user only. The principal construct
defines the runtime association between a computing task and a particular
user and generally encapsulates a subset of the entitlements of that user. The
scope of entitlement is dependent on the application to which the user signs
in. For instance, besides being an employee of Zeta, Inc., user Aicha is par­
ticipating in two projects within her company codenamed Green and Blue.
Each of these projects requires special privileges. In the absence of a dynamic
policy that constraints the entitlements of an entity based on its role, Aicha
may be assigned three principal identities, all of which point to the same user.
The first is Aicha, being the basic identity in the system; AichaB and AichaG
correspond to projects Blue and Green, respectively. The relationship of the
secondary identities AichaB and AichaG to the main identity Aicha should
be well maintained in the system to establish an accurate binding between a
physical entity, such as a user and all of its principal identities. A profile rep­
resenting the primary identity of a user should point to all principal identi­
ties associated with that user.

A subject is the term used to identify a running process, a program in exe­
cution. Each subject assumes the identity and the privileges of a single prin­
cipal. A principal may launch several processes within a single login session
and thus will be associated with multiple subjects, each of which inherits the
identity of the login session. Figure 1.2 illustrates the relationships between a
user, a principal, and a subject.

An object generally refers to a passive entity (i.e., one that is an informa­
tion receptacle such as a file, or a record in a database). An object, however,
may indicate an active device from the system's resource pool (such as a net­
work printer, or further can be a programmable service that is managed as a
resource).

It is worth noting that in many cases we simply encounter the basic sce­
nario in the relationships among a user, principal and subject where the user,
the principal, and the subject are all the same. In the security literature the
term principal is generally used to mean an active entity that is capable of

10 1. Foundations of Security and Access Control in Computing

User (primary Principal)

Session Session

Principal ^ - - ^

Subject ()
V ^ ^ Subject

Subject

Principal
Subject X " ^ ^ " X

^J
Subject

FIGURE 1.2 Relationships between a user, a principal, and subject

causing information to be retrieved, changed or flown between controlled
objects of a computing environment. These three terms are in many cases
interchangeably used to underscore the abstraction for "who".

Identification and Authentication

The process of establishing a user identity is known as identification and
authentication (I&A). The goal is to have only authorized users access a com­
puter system, a network or a particular service. Users are assigned identities
from the naming space of the underlying authentication system. Each identity
is associated with an authentication credential that is known only to the user
and that can be verified by the system. The premise that an entity maintains
secrecy of its credential except sharing it with a designated computing system
yields authenticity of the identity associated with that entity. Three methods
of producing and presenting a secret to a computing system are in use:

O Presenting something the user knows A password, a personal identifica­
tion number (PIN), and a pass-phrase are the common schemes in this
category. Secret codes in the form of passwords are extensively used on
various computing devices. Widespread use of passwords is, to a great
extent, due to their simplicity and perhaps to their being inherently the
natural approach. Passwords are generally chosen by users but can be
system generated as well. Policies can put various constraints on pass­
words for instance, restricting the alphabet of the password, its syntax,
its length, or its lifetime. As much as they are simple to use and present
to a computing system, passwords present users with a number of
management challenges. Foremost is the need to memorize a password.
The proliferation of systems and applications that use passwords gen­
erally leave a single user handling multiple passwords. Unfortunately,
to mitigate such challenges users resort to adopting weak passwords
that are easy to recall. The result is an increased exposure risk.

Identification and Authentication 11

O Presenting something that the user has This authentication scheme con­
sists of storing credential information in a device that generally is
portable and as small as a credit card. This device, commonly known
as a token, is presented as an input to a reader attached to the under­
lying computing system. The credential stored in the token is used to
authenticate the user to the system based on a predefined protocol.
Smart cards are a common example of such authentication technique.

O Presenting something that the user is This scheme relies on biometrical
traits that reliably distinguish users. Examples include fingerprints,
hand geometry, eye shape, voice, and face recognition as well as hand
signature. Fingerprints are steadily gaining acceptance. This method
has remained limited in use partly due to the extra cost it incurs
and perhaps to the inaccuracies of the related technologies.

Authentication Factors: A Comparison

The three authentication factors that are described in the previous section are
fundamentally different from one another. Certainly, the biometrics
approach has nothing in common with secret codes or physical tokens. The
trust elements in each of these schemes are completely different. The compu­
tational aspects of asserting each of these authentication factors have no
commonality. Passwords rely on secretive information, while physical tokens
are based on the premise that the token is safely kept and guarded by its
owner. Biometrics, on the other hand, depends on the uniqueness of biologi­
cal properties among humans. Although a functional comparison between
these schemes may seem useless, we set them side by side as shown in Table 1.1
and contrast them in terms of benefits and disadvantages.

Regardless of which authentication factor is used, remote authentication
requires a secure channel for the transmission of secrets or the distinguishing
biometric attributes or some derivative thereof Such a secure channel generally
requires end-to-end encryption of exchanged information. To prevent intercep­
tion at any level, the interacting end points may be required to be the direct par­
ticipants in the encrypted channel. For instance, a channel that connects a client
with a brokering service such as a proxy or a Web server may leave the path from
the Web server or the proxy to the target application exposed to interception.

In the absence of an end-to-end secure transmission channel, the password
technique becomes the most vulnerable and the easiest to breach. An attacker
will need only to spoof the communication to learn about the passwords
exchanged in clear text. Similarly, token and biometric methods become sub­
ject to replay attacks that at least can be limited in time. Damage from pass­
word interception, however, can go undetected for a long period of time.

Multiple-Factor Authentication

The majority of programmable systems adopt a single authentication factor
in supporting identity establishment. In some situations, however, the risk of

12 1. Foundations of Security and Access Control in Computing

TABLE 1.1. Authentication factors: Advantages and disadvantages.
Passwords Tokens Biometrics

Are easy to implement and
low cost

Need to be memorized

Are susceptible to guessing
and compromise by others

User unaware of an active
compromise for some time,
perhaps until damage is
done

Require secure
communication channels

Can be easily reused across
multiple systems and
applications

Provide accurate
implementations

Are perfect for users
connecting from
unpredictable remote
locations

Can be shared across users
and systems

May require special skill to
interface with the device
reader; can be expensive
to implement

Need to be carried around
so the size of the token
can be a factor

Duplicated only by the
manufacturer

User immediately aware of
potential for compromise
when realizing that the
token is missing

Generally intended for use
with a local system or
device but a resulting
authentication context
still requires protection
from replay attacks by
imposters

Require special-purpose
input devices on all
systems

Accurate but device is
prone to wear and loss
of information

Require special-purpose
input devices and thus
may be a limitation to
roaming users

May be replicated by the
manufacturer but
generally are not shared
across users

Require special skill to
interface with the equipment;
expensive to implement

Are naturally present with the
user

User compromised only when
victimized; generally very
hard to compromise

User immediately aware of
compromise

Same as for tokens

Require special-purpose
equipment on all systems

Are prone to confusion and
error

Same as for tokens

Cannot be shared across users

an authentication compromise can have a lasting and a damaging effect.
Systems operating under stringent security constraints (due to the high value
of information they contain) employ multiple-factor authentication schemes.
The paradigm here follows that of adopting multiple lines of defenses in
which the defeat or failure of one defense line may be stopped by the next line
of defense. The common example is found in the financial area, where access
to automatic teller machines (ATM) requires two factors at the same time, a
card and a PIN. The first line of defense here is the token, while the second
one is the secret information in the form of a PIN shared between the card
holder and the banking institution. The PIN factor protects the user in that
when the card is lost or stolen, the next hurdle for the illegitimate user of the
card requires cracking the PIN. Although the use of distinct multiple factors

Approaches to Reliable Password Management 13

is appealing, any one particular factor may be applied multiple times. For
instance, a system may require two or more different passwords to authenti­
cate a user.

Passwords: The Prevalent Authentication Method

Use of passwords is without a doubt the most prevalent form of authentica­
tion. Because of the simplicity involved, passwords offer a great advantage to
system and application developers. Typically, systems prompt users with the
login information that consists of a user identifier (UID) and a password. The
UID is uniquely mapped into the user registry of the underlying system so
that a comparison between the password, or a derivative of it, as provided by
the user and that stored in the user entry of the registry is performed without
ambiguity. A match is required, generally with case sensitivity enforced.

Approaches to Reliable Password Management

Password-based authentication is expected to remain in widespread use for at
least the foreseeable future. To mitigate some of the weaknesses associated with
passwords, one should adopt the best practices available. In the following, we
outline some of the common practices for managing passwords [BISH02].

Password Encoding

Passwords are rarely stored as readable plaintext. Reliable user registries
maintain passwords in some scrambled form. Furthermore, the scrambled
form is generally such that it is irreversible. One-way hash functions that are
easy to compute in one direction but intractable to reverse are the choice for
storing passwords in encoded forms [SCHN96]. The underlying trust in user
authentication is based on the fact that a plaintext password is provided when
requesting system or service access by an identified entity. The password is
then encoded using a known one-way digest algorithm, and the resulting
stream is compared with the stored value of that identity credential. The fol­
lowing is a list of common one-way encoding functions:

a MD4 A one-way hash function that produces a 128-bit digest of its
input message;

a MD5 An improved, and more complex, version of MD4 that also pro­
duces a 128-bit hash;

a Secure hash algorithm (SHA-1) This produces a 160-bit hash, longer
than MD5, slightly slower than MD5, but the larger message digest
makes it more secure against brute-force collision and inversion attacks;

o Unix crypt The well known UNIX hashing algorithm.

It is worth noting that host security systems such as IBM's Resource-
Access Control Facility (RACF) do not compute the one-way transform of a

14 1. Foundations of Security and Access Control in Computing

password; rather, the identity of a user is encoded using a one-way transform
keyed by the password.

One-way transformed passwords are sometimes further encoded into a
readable base64 form. Base64 is a method for encoding arbitrary binary data
as american standard code for information interchange (ASCII) text. This is
particularly useful when communicating information via Internet email pro­
tocols, which can handle only 7-bit ASCII text. The resulting base64 encod­
ing is slightly larger than its input.

Adding Salt to Password Encoding

Storing and using only one-way cryptographic transforms of passwords is not
enough to prevent intruders from carrying dictionary attacks against a pass­
word. A dictionary attack, also referred to as precomputation attack, is one in
which an attacker, knowing the details of the one-way transform, precom-
putes the one-way encoding of a dictionary of likely passwords, obtains a
password in its encoded form, and looks it up in the dictionary for a possible
match. Brute-force attacks that do not depend on a prebuilt dictionary can be
used to crack encoded passwords as well.

A minute change in the input of a one-way digest algorithm yields a dif­
ferent digest. The salt is a value that is incorporated into the calculation of
the password transform to thwart dictionary attacks. By digesting the pass­
word with a salt, a dictionary attack becomes harder to achieve. The attacker
needs to search through the entire dictionary for each value of the salt.
Pseudo-random generation of salt values makes them harder to guess. When
salt is added, users who happen to select the same passwords will end up with
different transforms of those passwords because each is likely to use a differ­
ent salt value. Thus the use of salt helps avoid password collision and poten­
tially limits the number of user accounts that can be simultaneously
compromised. Another practice that helps deter attacks on passwords is to
apply a high enough number of iterations of the scrambling algorithm to
make exhaustive search attacks impossible to achieve.

Password Syntax Rules

A key preventive measure in protecting against password attacks is to force
users into selecting hard-to-guess passwords. Users generally tend to com­
pose passwords out of easy-to-remember words yielding weak passwords that
are susceptible to dictionary attacks. Enforcing lexicographic as well as syn­
tactic rules on passwords can be a strong defense against password attacks.
Some or all of the following rules are widely adopted:

o Require a minimum password length (the longer a password is, the
harder a brute-force attack becomes);

a Require mixed case for systems that are case sensitive;

Auditing 15

a Require the use of digits or special characters;
a Require a particular syntax for combining alphanumeric as well as spe­

cial characters and avoid obvious combinations;
o Require a minimum number of inside digits or special characters;
o Prohibit passwords based on user identifiers or words from a diction­

ary and permutations thereof;
o Offer the user the possibility of randomly generated passwords.

Password Aging

The longer a password remains in use, the more likely is to become subject of
attack. Password aging refers to the requirement of changing passwords fre­
quently by imposing a period of time after which a password must be changed.
Implementation of a password-aging scheme requires keeping the history of
passwords for every user. The following practices are in common use:

n Require a maximum lifetime for each password after which a password
automatically expires;

B Avoid recycling old passwords by maintaining the history of N previ­
ous passwords for each user;

o Require a time limit that should pass before a password can be reused
(a good measure against users changing passwords TV times just to reuse
a recent password and thus defeat the practice of not reusing N previ­
ous passwords);

a Old and new passwords must differ by at least a certain number of pre­
scribed characters.

Auditing

Auditing was first proposed by Anderson [ANDE80] as a tool for monitoring
threats. Auditing in the traditional sense consists of logging security-related
events, analyzing them for potential breaches, and notifying concerned parties
accordingly. This definition applies to past as well as to real-time or nearly
real-time events. Auditing is starting to take a different shape in recent years,
that of vulnerability assessment and intrusion detection or prevention.
Intrusion prevention attempts to predict security incidents and attacks before
they take place. Auditing is a key security element of systems and networks. It
maintains evidence of attempts to compromise the security controls put in
place by an organization. Furthermore, audits that are regularly performed
can be used to determine system and resource usage and to identify the par­
ties involved. Past protection states of a system can thus be intermittently
reviewed to provide answers to investigative activities. Active audits can also
be used to determine abnormal behavior and potentially detect system or net­
work intrusion attacks [GLIG85]. Auditing is founded on three elements:

16 1. Foundations of Security and Access Control in Computing

a Logging A precursor to auditing, logging provides the ability to record
security events. Logging should be flexible enough to be driven by var­
ious parameters, including time and date, use of a particular resource,
success or failure of access, and so forth. Logging builds audit records
that make up audit trails, also referred to as audit logs. A key element
of an audit record is its secure association with the entity causing the
record to be logged (the subject of the action being logged). This asso­
ciation is the main difference between recording security events and
logging general system activities. It identifies the responsible entities to
enable accountability. Audit trails must be tamper proof and should be
updated only by authorized security components of the system.

o Analysis Once an audit record is collected, it must be analyzed to deter­
mine any attempt to violate applicable security policies. Key informa­
tion gathered from this analysis is the object and type of access
attempted and the identity of the entity associated with the attempt.

a Notification An attempt to violate a security control should be com­
municated to the entities concerned with that particular event, includ­
ing a system administrator and the resource owner. Notification should
be configurable and may not necessarily be driven by unauthorized
accesses.

Although the mechanisms above are logically separated, they cooperate to
form an integral part of an auditing subsystem. Security-relevant informa­
tion that should be part of an audit record may include the following:

a Identity of the entity requesting the access,
O Type or mode of access,
o Time of attempted access,
o Identification of the system or subsystem from which the request is

made,
o Status as to success or failure,
a Keyed integrity check sum.

Integrity of an audit trail is an important safeguard against modification.
A particularly important aspect of an auditing subsystem is recording actions
initiated by privileged users, such as system administrators and security offi­
cers. A key motivation for that is due to the power and capability of such user
in inflicting damage. Auditing privileged users may serve as a deterrent to
costly violations and misuse of authoritative powers. Separation of duty
between a system administrator and an auditor is an important aspect of reli­
able auditing subsystems. Violations of security controls caused by an admin­
istrator should always be communicated to the system or the network auditor.

Auditing can be best implemented by performing it under the covers of
authentication and access-control mechanisms. This tight integration
increases the reliability of the auditing subsystem, provides transparency, and
relieves applications from programming directly to the auditing functions.

The Security Context 17

Authentication

'^m^

Access control

Auditing
(Logging)

FIGURE 1.3 Elements of a secure access-control subsystem

Instead, auditing becomes driven primarily through configuration proce­
dures; such is the case with RACF subsystems of the IBM MVS.

Auditing functions may also be embedded at the middleware layer and
within runtime execution containers. Other approaches may choose to imple­
ment an auditing subsystem as a stand-alone service. This approach requires
each application to enable auditing on its own. Due to its sensitivity, an audit­
ing subsystem requires strict controls that prevent users and programming
agents from circumventing its activities. To this end, it is desirable to embed
auditing functions within reference monitors enforcing system wide access
control. Auditing is the third key foundation of access-control systems, the
other two being authentication and access policy enforcement. Figure 1.3 is
an illustration of the three pillars of access control.

The Security Context

The establishment of an identity as a result of a successful authentication
process remains a valid fact that is associated with that identity and generally
persists throughout a session. The security context is the term that refers to
the embodiment of an established identity as represented by the memory
control blocks and constructs of a system runtime. Attaching a security con­
text to the units of work in a system must be performed securely and reliably.
This context is used to confine actions of an entity in accordance with its
assigned privileges and entitlements and becomes an anchor for tracing user
activities for accountability purposes. Due to its sensitivity, a security context
is always protected from modification by users and system subcomponents.
While some systems may not put any time limit on the use of a security con­
text, others limit its lifetime to a relatively short period of time after which
the context is required to be refreshed if it is to remain in use. The security
context of an entity is sometimes referred to as an authentication credential.

Security contexts should apply uniformly to all of the processes and address
spaces that may be active in a system. Trusted-computing-bases components

18 1. Foundations of Security and Access Control in Computing

should not be an exception. This consistency facilitates the enforcement of a
common security model. For instance, in the classical MVS operating system
and its derivatives, all system and executing user functions (including the mas­
ter scheduler, which is analogous to the Kernel in UNIX systems) are associ­
ated with a control structure representing a security context that is called an
accessor control environment element (ACEE). This uniformity allows the
TCB to treat all system and user processes in the same way. Figure 1.4 depicts
the process of attaching a security context to an address space or an execution
thread. In A, all of threads of an address space are anchored to a single
context, while in B, multiple threads of the same address space are associated
with different security contexts. The first scenario applies to an application
that serves each request in a separate address space. In the second case, each
request is served by a separate thread of a single address space in which the
service executes.

Content of a Security Context

A security context carries the user's roles and group membership within the
set of entities defined to the system. It encapsulates the identity of its prin­
cipal as it is known in the user registry of the system. This identity must be
uniquely identifiable. The group membership enumerates any user groups in
which the authenticated entity is a member. The entity as such is automati­
cally assigned the entitlements associated with each group. A security con­
text may also anchor the user's roles and capabilities to access system and

Thread

Thread

Thread

A. Address space B. Address space

FIGURE 1.4 Anchoring computing tasks with security contexts

The Security Context 19

network resources. Other non-persistent forms of identification such as an
internally used unique identifier may also be part of the security context.

The Flow of a Security Context

Components of a system's or a network's TCB are responsible for the creation
and lifecycle management of a security context. Units of computing work per­
formed by the system can be anchored to security contexts in various ways,
based on the security policy and the controls implemented by the system. As
computation proceeds, it is desirable that downstream services are seamlessly
invoked without having the user explicitly reauthenticate. This characteristic is
provided as a core functionality of modern operating environments. For exam­
ple, the system authorization facility (SAF), a major component of the TCB in
MVS, provides support for the creation, modification, transfer, or deletion of
a security context by trusted operating system components such as resource
managers. This capability supports two important security aspects:

B A new process that is initiated by an existing process can be forced to
inherit the authenticated identity of the parent user process. In this
case, the newly created process remains associated with its parent
address space.

o A trusted service can initiate a new process with an associated security
context of any other identity known to the system.

It is important to note that the authority of attaching a security context to
user address spaces is accomplished without having to access the user's secret
authentication information. Therefore, this can be achieved only in a highly
reliable and trusted environment, such as one analogous to the classical envi­
ronment of the MVS operating system.

Delegating Security Contexts

Identity delegation is the term commonly used when referring to the inheri­
tance of security contexts along a chain of processes or threads of execution
in response to a service request. Delegating security contexts can be achieved
with various semantics. The following are a few of these:

a The adoption of the security context of an originating entity by down­
stream processes and threads without changes This is known as imper­
sonation, where from the security perspective there is no distinction
observed between the processes or threads directly initiated by a user
and those that are downstream. Impersonation presents the advantage
of ease of implementation. An audit trail of an executing chain of del­
egated processes as such will account only for one identity.

a Use of an inherited security context along with a new security context rep­
resenting the identity in control of the newly created address space or

20 1. Foundations of Security and Access Control in Computing

1 2

3k

(A.B) L\
FIGURE 1.5 Some variations of delegating security contexts between an entity A and
entity B

spawned thread This can be complex to implement but enables the con­
struction of detailed and more accurate audit trails. It also allows the
underlying system to switch from one security context to another as
needed. We call this method a controlled impersonation. Each unit of
work is associated with either of the security contexts but not with both.

O Augmenting the inherited security context with that of the identity asso­
ciated with the new address space This allows the extension of the priv­
ileges of the initial user with those associated with downstream
processes. Managing the chain of all security contexts can be complex.
Units of work are associated with one single context, that representing
the originating entity, but with entitlements that are the union of priv­
ileges of original entity and those of the inheriting user.

a Retracting the delegated security context to a lesser level of entitlement
This delegation method is intended to downgrade security credentials
along the chain of processes or execution threads.

Impersonation is widely used in various programming systems. Figure 1.5
illustrates these forms of delegation.

Access Control

At the core of an access-control system is the secure evaluation of whether
an established identity has access to a particular computing resource, also
referred to as an object, A resource can be a service of some kind, an infor­
mation receptacle such as a file or a Web resource such as a uniform resource
identifier (URI). Access control is decided over an existing security context
and a controlled resource. Modern access-control mechanisms are based on

Access Control 21

the reference monitor concept introduced in early 1970s by Lampson
[LAMP74]. A reference monitor is the TCB component of a computing sys­
tem that mediates every access of a subject to a resource in accordance with
a security policy that governs such access. The policy may be implemented in
the form of rules and attributes associated with a registry of subjects and a
registry of objects. The rules can be static access rights (permissions), roles,
or dynamically deduced rights. Figure 1.6 illustrates the concept of an access-
control reference monitor.

In addition to the mediation of access, a reference monitor should not be
bypassed at all times, should support isolation of the security services from
un-trusted processes, maintain system integrity, and prevent from tampering
by users or system processes. The reference-monitor footprint should be kept
small enough to be susceptible to rigorous verification methods. The gate­
keeper approach of the reference monitor makes it an ideal component for
the generation of audit trails reflecting access attempts to the resources
within its confines.

In the next sections, we describe various topologies of the reference moni­
tor and show the merits of each. Subsequently, we discuss the access-control
paradigms known to date.

Reference-Monitor Topology

The reference-monitor concept can be implemented using various topologies.
We distinguish two important factors of reference monitors. The first is
access-control enforcement, and the second is the computation of an access-
control decision. Enforcement of the reference-monitor paradigm is con­
cerned with the responsibility of invoking the interface to the component

Operation Reference
monitor

Resource

TCB confinement

FIGURE 1,6 The reference monitor concept of access control

22 1. Foundations of Security and Access Control in Computing

providing access-control decisions. A division along the enforcement and the
access decision making in the reference monitor yields three categories:

a Systemwide enforcement of the reference monitor In this case, a single
instance of a reference-monitor implementation is running system or
networkwide providing access-control enforcement to all applications
and system processes. Each time an entity attempts to access a
resource, the monitor automatically intercepts the request and either
allows or denies access based on the policy enforced and the security
context of the requesting entity. An example of this category is the
classical SAP component of the MVS system that provides the ability
to plug into external resource access-control managers such as IBM's
RACE In MVS it is the combination of system integrity, the SAE
authorized interfaces, and the external-to-MVS access-control compo­
nent that constitutes the Lampson reference monitor. Advantages of
this method are exhibited mainly by the security and reliability that it
offers due to the enforcement being part of the operating system's ker­
nel. Access-control elements that define the system's TCB in this case
are centralized, can be isolated, and have a single interface to all sys­
tem processes and resource managers. This approach provides the
advantage of transparency to application developers in controlling
access. A disadvantage can be the single point of failure that the mon­
itor represents. Add to that a possible performance bottleneck that may
occur under system-overloading conditions. Eigure 1.7 illustrates the
concept of a systemwide reference monitor.

Application

Application

Application

Resource

mcwiltor

- H ; Resource

Policy

Resource

system or networkwide interceptor

FIGURE 1.7 A centralized reference monitor topology

About Access-Control Policies, Models, and Mechanisms 23

Enforcement of the reference monitor at the resource manager level In
this case, various resource managers that may exist in a system or that
are accessible over a network are responsible for the invocation of
underlying access-control components. Access attempts to resources
are automatically intercepted by the respective resource manger in
order to decide whether to grant or deny access. Examples include
database management systems such as IBM's DB2, transaction moni­
tors, Web servers, and more recently Web application servers (WAS)
such as IBM's Websphere as well as various network file systems.
Advantages of this method include the ease of portability of such pro­
gramming systems to different operating-system platforms as well as
the transparency of access-control functionality to application devel­
opers. Redundancy in the implementation of reference monitors by
various middleware systems when the access decision in itself is per­
formed through the resource manager or the middleware represents a
disadvantage. This approach may also lead to managing various user
and resource registries separately by each middleware. Some middleware
implementations, however, bridge directly into the underlying system's
single reference monitor, thereby leveraging existing and in many cases
proven and reliable access-control mechanisms. The TCB of a system in
this case becomes scattered throughout the middleware subsystems.
Figure 1.8 depicts the approach to middleware-based reference-monitor
enforcement.
Application-based reference monitor Each application is the sole respon­
sible for the invocation of access-control services. Application develop­
ers are required to program to the mechanisms implementing the
reference monitor. The latter may be provided by an underlying middle­
ware subsystem or can be a system wide reference monitor. Although not
so widely adopted, in some cases the reference monitor is also part of the
application. Each reference monitor may be using different interfaces,
programming models, and policies. Hence switching among multiple
providers of reference-monitor implementations can be costly. This
approach can be implemented to leverage existing system or network-
wide access-control mechanisms. But it may result in redundancy,
inhibits scalability, and increases the cost of deploying applications.
Figure 1.9 shows the direct interactions of each application with the ref­
erence-monitor enforcement layer. Note how the access-control
providers used by the application at the bottom use separate interfaces.

About Access-Control Policies, Models, and Mechanisms

A security policy from an access-control perspective is the set of rules that an
organization adopts to govern who can have access to what resource. In
broader terms, a security policy is a statement of what is allowed to happen

24 1. Foundations of Security and Access Control in Computing

Application

Application

Application

i

•

•

•

M 1
1 1
D 1
D 1
L i

E 1
w l
A 1
R T
E

Application

Application

— •

— •

M 1

o\
m

w 1

R T
E

monitor

moftltor

monitor

monitor

Resource

Resource

FIGURE 1.8 Middleware-based reference monitors

Application 1

Application 1

Application 1

1 •

Application I

moftHor

moitilor

monHor

FIGURE 1.9 Application-based reference monitors

About Access-Control Policies, Models, and Mechanisms 25

and what is not allowed to happen within the realms of an organization. It
describes acceptable protection states in a computing system. Defining a
security policy requires a thorough analysis of the information flow required
in the day-to-day activities of an organization. Although some security poli­
cies can be described using formal specifications, a great deal of real-world
policies are defined using a variety of controls that are not amenable to a uni­
fied description or can be formally described and specified. At a broad level,
we note the existence of two main access-control policies:

B Discretionary policy and
a Mandatory policy.

A discretionary access control (DAC) policy is owner-centric in that each
system resource is assigned ownership by one or more entities. The owner
of a resource has complete discretion over who else can access the resource
and in what mode access is accomplished. The DAC policy is so widely
adopted that virtually most implemented policies are related to it in one
form or another. The resource-ownership paradigm of access control is
more prevalent and naturally corresponds to the real world. The advantages
offered by DAC include simplicity, flexibility, and to a great extent ease of
implementation. The drawback, however, is that DAC does not provide any
formal assurance concerning the flow of information. Propagation of
access rights in discretionary policies is unbounded and hard to predict for
all systems.

Contrary to DAC, a mandatory access-control (MAC) policy does not make
use of the resource-ownership concept. Access to information is predefined
through administrative procedures and remains invariant thereafter. System
entities have no control over disseminating access to information. Instead,
access capabilities are mandated by a trusted information-flow officer who
sets the rule on who has access to what based on the sensitivity of informa­
tion contained in each resource. To access a resource, one must hold the
proper security clearance. MAC naturally fits with the military policies. It has
evolved within the United States Department of Defense (DoD). Access con­
trol here yields a predictable information flow that is unidirectional.

A security model is a tool that can be used to describe one or more secu­
rity policies. A model has systematic features, is precise, and can be formal.
The most important aspect of a security model is that it allows one to reason
about the behavior of the policy being modeled. Access-control models
define the formalism for specifying and implementing security policies and
are concerned with studying the implications from dynamic changes affecting
the protection states of a computing system. Analysis of a security policy is
made possible by the underlying model with which it is associated. The
access-matrix model is the most known of all security models. It is generic
enough that it can represent almost any policy whether discretionary or
mandatory. Its modeling of DAC, however, is more useful.

26 1. Foundations of Security and Access Control in Computing

An access-control mechanism refers to a particular method, tool, or proce­
dure for implementing an access control policy. Mechanisms are not necessar­
ily always automated. They can be provided through offline processes—for
example, through the manual intervention of an administrator. A policy some­
times is implemented by a well-known mechanism and thus becomes equated
with that mechanism. An example of that is the access control list (ACL)
implementing a discretionary-access policy.

Access-Control Paradigms

Three main categories of access control paradigms have emerged:

o Discretionary,
n Mandatory, and
o Role based.

Discretionary-access control centers around the concept of users having
control over system resources. Users as such can transfer access rights to
resources under their controls to other system users in a discretionary fashion.
Control over a resource can be implicit by way of owning the resource or can
be explicitly granted through a chain of commands, all of which involve dis­
cretion as well as the necessary access permissions that permit the dissemina­
tion of access rights. Users therefore gain access to a resource if they create it,
if they are an administrator of the system, or if some other entity has con­
ferred access to them. The essence of DAC is the propagation of access rights
at the discretion of resource owners and authoritative entities. Depending on
the type of permissions being propagated, the cumulative effect from incre­
mental changes in the protection state of a system can be unbounded.

In contrast to DAC, a mandatory-access control is used when the protec­
tion decisions are not made by the owner of an object. RBAC is the paradigm
that closely mimics real-world processes. We devote an entire chapter to
RBAC, but a brief description of it follows in the next section.

Role-Based Access Control

Role-based-access control (RBAC) has emerged as an alternative to discre­
tionary- and mandatory-access policies. RBAC regulates access to resources,
systems, and business processes based on the role of the acting subject.
Similar to the real-world definition, a role is an abstraction that encapsulates
a set of responsibilities along with corresponding allowable operations.
Unlike discretionary- or mandatory-access paradigms, in RBAC privileges
are assigned to roles instead. RBAC appears to move access-control abstrac­
tions a level higher that allows it to be policy neutral. Researchers have
demonstrated this fact by simulating both discretionary and mandatory

Trust and Assurance 27

policies using role-based access. Further details of RBAC are the subject of
Chapter 8.

Delegation and Masquerading

Delegation and masquerading are similar in that both induce the same effect.
In either case, one entity performs functions on behalf of another entity.
Recall that acting on behalf of an entity implies the use of that entity's secu­
rity context and hence its identity and entitlements. Masquerading under
someone's identity, however, is a security violation. The key distinction
between delegation and masquerading is that delegation implies the presence
of two entities both of which are aware of one another and one is consenting
that the other assumes its identity. Masquerading, on the other hand, hap­
pens when an entity assumes the identity of another entity without explicit or
implicit consent. It represents a case of identity theft.

The Axiom of Attenuation of Privileges

Attenuation of privileges forms the basis under which access rights may
propagate across the entities of a protection system [DENN76b]. It states
that an entity may not grant rights to objects for which it does not have those
same rights. Subject Alice, for instance, cannot give subject Elyes read access
to a file "schedule" that she, in turn, cannot read. Evidently when Alice is the
owner of the file, she is able to grant the read access to others even when she
does not explicitly hold read access to the file. The principle of attenuation of
privileges, therefore, is not applicable to the resource owner. The fundamen­
tal concept of resource ownership comes with the authoritative power of
users over objects they own, including granting themselves as well as others
access to any operations supported by an object. Without the principle of
privilege attenuation, there can be no basic control over the propagation of
access rights. Each system user will hold the maximal set of rights available
in a protection system to every object, a situation that is equivalent to having
no protection at all.

Trust and Assurance

Trusting an entity means having prior knowledge of that entity's expected
behavior. In a trusted computing system, the expected behavior is that users
and all programming entities remain in line with the security properties and
policies adopted by the system. This implies that all protection states main­
tain consistency with the underlying security policy with respect to any
computations taking place.

28 1. Foundations of Security and Access Control in Computing

Trust is founded on the notion of confining expected behavior. The level of
confidence in confining behavior to within a prescribed security policy
defines the level of assurance. Trust, therefore, is coupled with an assurance
measurement. Confidence is built on presenting evidence that entities meet
the security requirements set in a computing environment, whether a single
host system or a collection of hosts and computing resources joined by a net­
work. Trust must be satisfied along any communications path established
between the entities of a protection system. Trust paths must guard against
spoofing, where users are tricked into thinking they are communicating with
the security-enforcement portion of the underlying system.

Evidence of assurance includes the use of sound development methodolo­
gies, formalism in the design, and thorough testing of the security mecha­
nisms under various deployment conditions.

Realizing Assurance

Establishing some level of assurance in a security system is a desirable goal.
Naturally, the question arises as to how one arrives at determining a measure
of that assurance. Three methods can be used:

a Trust the vendor In this case, an organization purchasing a security
product relies on its relationship with the entity that is responsible for
the development of the product. Trust leading to assurance in this case
is discretionary and hence may not be verifiable through a neutral
entity. Verification may in the end be the responsibility of the entity
purchasing the product. Naturally, the list of vendors one might deal
with is susceptible to growing over time, thus requiring trust in many
vendors. This approach is not reliable.

a Perform own testing In this case, the entity using the product deter­
mines the level of assurance in the product based on its own testing
effort. This method adds up the cost to the purchasing entity and
comes with a degree of uncertainty as the test is performed after the
product is purchased. Albeit better than trusting the vendor, this
method can be costly and is somewhat of an after the fact process.

a Rely on a third party An experienced and perhaps well-recognized third
party is responsible for establishing the assurance level of a product.
This case alleviates the burden of assurance on the purchasing entity
and lends itself to trust as the third party may have no special interest
with any party. In the next section, we present an overview of the best-
known assurance program, the common criteria currently adopted in
North America and in Europe.

The Common Criteria: A Background

The common criteria (CC) are the outcome of a series of efforts to develop
assurance methods for the security of systems and networks broadly

Trust and Assurance 29

encompassed under information technology. Trusted computer-system-
evaluation criteria (TCSEC) were developed by the United States
Department of Defense in the early 1980s. This effort is mainly known
through the development of the Orange Book, summarizing the require­
ments for assurance in IT security [USDOD85]. In 1991, the Information
Technology Security Evaluation Criteria (ITSEC) was published by the
European Commission, a culmination of the work that had already been
started by a number of European countries, including France, Germany,
the Netherlands, and the United Kingdom [BDTI91]. Meanwhile, the
Canadian government developed the Canadian Trusted Computer Product
Evaluation Criteria (CTCPEC) which was published in 1993 [CANA93].
During that same year the draft Federal Criteria for Information
Technology Security, known as the Federal Criteria (FC), was also pub­
lished in the United States [NIST92]. EC was an effort to combine
European and North American requirements and concepts for assurance
evaluation.

In the early 1990s the International Organization for Standardization
(ISO) began developing IT security-evaluation-criteria within the scope of
the global IT market. In 1996 Version 1.0 of what has come to be known as
the Common Criteria was published by ISO followed by Versions 2.0 and 2.1
in 1998 and 1999, respectively [NIST99]. In 1999 the Common Criteria offi­
cially became ISO standard 15408, merging both TCSEC and ITSEC.
Adopting a global standard marks a milestone in the area oT IT security-
assurance criteria. It removes the need for multiple evaluations of the same
product and thus presents a cost saving to the vendor as well as to the pur­
chasing entities. Adopting a set of common international criteria is also
expected to enhance IT security assurance as it is exposed to global scrutiny
and contributions. A single reference for assurance of information security is
useful as a guide for the development of computing products encompassing
security functionality. Similarly, a single assurance authority is expected to
facilitate the procurement of IT products with security functions.

Overview of Assurance in the Common Criteria

The philosophy that underpins assurance in the Common Criteria is based on
the evaluation of IT security products, referred to as the target of evaluation
(TOE), against a well-defined set of requirements called protection profiles
(PPs). The PP describes the required security functionality referred to as the
security target (ST), which is used as the basis for evaluation. Examples of
TOEs include operating systems, computer networks, distributed systems,
and applications implemented in hardware, firmware, or software. The core
elements of the CC address information protection from security threats,
such as unauthorized disclosure, modification, or loss of use (unavailability).
These threats, as we have discussed, are countered through the mechanisms
of information confidentiality, integrity, and availability.

30 1. Foundations of Security and Access Control in Computing

A collection of assurance requirements relating to a specific area (such as
configuration management, for instance) is referred to as an assurance class.
Each assurance class contains a set of assurance families, such as installation,
generation, and startup (ensuring that the TOE has been installed, generated,
and started up in a secure manner as intended by the developer). An assur­
ance family contains assurance components, which in turn contain assurance
elements. Classes and families are used to provide a taxonomy for classifying
assurance requirements, while components are used to specify assurance
requirement in a protection profile or for a security target.

The scale for measuring assurance in the Common Criteria is called the
evaluation-assurance level (EAL). EALs are hierarchically ordered such that
higher EALs represent increasing assurance. The increase of assurance from
EAL to EAL is accomplished by using a hierarchically higher-assurance
component within the same assurance family. Currently, there are seven
assurance levels defined in increasing order of assurance: EALl, EAL2,
EAL3, EAL4, EAL5, EAL6, and EAL7:

a EALl This basic assurance level is applicable in situations where some
confidence in correct operation of the product is required, but the
threats to security are not viewed as serious. Nonetheless, this level pro­
vides a meaningful level of assurance over a product that is not evalu­
ated altogether.

o EAL2 This level is applicable to the situations in which a low to mod­
erate level of assurance is required in the security functions of a prod­
uct that has no readily available development records such as the case
of a legacy application for instance. The increase in assurance over
EALl is evidenced by requiring developer testing, a vulnerability
analysis, and independent testing of the security functions.

o EAL3 This assurance level requires making decisions on the security
functionality at product-design time but without making significant
changes to existing development practices or having to substantially
reengineer the product. It is applicable to circumstances where a mod­
erate level of assurance is required.

o EALA This is the highest level at which it is feasible to retrofit a prod­
uct so that it satisfies the security requirements without completely
reengineering it. It is applicable in situations where a moderate to high
level of assurance is needed.

O EAL5 This level mandates rigorous security engineering based on
sound development practices. The evaluated product is developed with
the intent of achieving the EAL5 assurance level. EAL5 is applicable
to situations requiring a high level of assurance and in which security
is engineered in the product at early design stages and rigorous devel­
opment techniques are used. Nonetheless, the cost attributable to secu­
rity engineering should not be so high that it outweighs the
development of the product's main functions.

Trust and Assurance 31

o EAL6 This level is applicable in situations associated with high risk and
where the value of protected resources justifies the potentially high cost
of security engineering and development. Semiformal methods for
design verification are used.

O EAL7 This level is applicable for the development of products guard­
ing against extremely high-risk situations and where the value of the
protected resources justifies the high cost of security engineering and
development. Extensive formal analysis is required at this level.

The Common Criteria encompass seven assurance classes. Each is associated
with a number of assurance families, as summarized below.

Configuration Management

Configuration management represents a critical element of product assurance.
It requires discipline and control in the processes leading to the development
and modification of the evaluated product. It mandates the use of rigorous
methods for tracking the changes applied to the product in its development
cycle as well as ensuring that those changes are authorized. This assurance
class requires the following assurance families:

o Automation Automation of the tools supporting configuration man­
agement prevents errors and maintains execution order.

o Capabilities This assurance family measures the strength and effective­
ness of a configuration-management system. It ensures the integrity of
the evaluated product throughout its development life cycle.

a Scope This ensures that all necessary configuration items related to
the product to be evaluated are considered by the configuration-
management system. For example it includes tracking the level of soft­
ware tools used in development such, as compiler levels and necessary
switches.

Delivery and Operation

Delivery and operation set the requirement for correct delivery, installation,
generation, and startup of the evaluated product. It encompasses the follow­
ing assurance families:

o Delivery Provides assurance that the recipient (e.g., entity purchasing
the product) receives the TOE without any modifications;

o Installation, generation, and startup Consists of the procedures ensur­
ing that the TOE has been installed, generated, and startedup in a
secure fashion and as designated by the developer. This requirement
mandates a secure transition of the product from development to the
deployment environment.

32 1. Foundations of Security and Access Control in Computing

Development

Development encompasses all of the assurance requirements relating to the
functionality of the TOE throughout the development life cycle. It includes
the following assurance families:

o Functional specification Describes the user and programmatic interface
characterizing the functional behavior of the TOE. The security func­
tionality should be clearly addressed by the functional specification.

o High-level design Describes the product in terms of its major compo­
nents and how they relate to one another in delivering the security
functionality intended by the product.

a Implementation representation Describes the implementation of the
TOE in terms of source code, firmware, or hardware components. It
captures the internal workings of the security functions of the product.

o Internals of the TOE security functions Address the internal structure
of the product's security functions. Requirements are expressed for the
modularity and minimization of the complexity of various mecha­
nisms enforcing the security functions for the TOE to be simple enough
for analysis.

o Low-level design Describes the internals of the security functions in
terms of subcomponents and modules as well as their interrelation­
ships and dependencies.

o Representation correspondence Addresses the correct correspondence
between various abstraction levels of the TOE to the least abstracted
security functionality. A logical correspondence should be established
across adjacent abstraction levels and should address complete instan­
tiation of the requirements.

o Security policy modeling This family provides additional assurance
that the security functions enforce the security policies as intended.
This is accomplished by first developing a model of the security pol­
icy enforced and establishing a correspondence between that policy
and the policy enforced by the security functions as provided by the
TOE.

Guidance Documents

Guidance documents satisfy the requirement for user and administrator guid­
ance through product documentation. All relevant aspects for the security func­
tions of the TOE are described. It encompasses the following assurance families:

a Administrator guidance Refers to the product documentation intended
to guide an administrator through various functions such as product
configuration, maintenance, and administrative controls;

a User guidance Refers to the product documentation needed by users
exploiting the product for nonadministrative functions such as
programmers.

Trust and Assurance 33

Life-Cycle Support

Life-cycle support is concerned with all aspects of establishing discipline and
control in the processes of development as well as improvements of the TOE
during its maintenance. It is supported by the following assurance families:

o Development security Provides assurance as to the security of the entire
development environment, including physical, procedural, and person­
nel security measures;

o Flaw remediation Requires that discovered security flaws be tracked
and corrected by the developer;

o Life-cycle definition Mandates the adoption of a systematic model for
the development and maintenance of the TOE early in the develop­
ment stage and prevents implementation flaws;

a Tools and techniques Refers to the seleciton of the various tools
required by the development, analysis, and implementation of the TOE
(for example, the programming languages used).

Tests

The tests specify all the elements that pertain to testing the evaluated prod­
uct. Testing is a key aspect of the assurance provide by the TOE. The fol­
lowing assurance families are used:

a Coverage Addresses the completeness aspect of testing and measures
the extent to which the TOE is tested against the functionality claimed
in the specification of the product;

o Depth Deals with the level of details used in testing the security func­
tionality of the TOE, and is based on increasing information about the
internals of implementation derived from concise and thorough analy­
sis of the TOE security functionality;

o Functional test Provides assurance that the functional security require­
ments of the TOE are satisfied and may also include verifying the
absence of undesired security behavior;

a Implementation testing Demonstrates that the security functions of the
TOE perform as specified (to some extent corresponds to the unit test­
ing of various components of the TOE security functions).

Vulnerability Assessment

Vulnerability assessment is concerned with the existence of covert channels, the
possibility of misuse or incorrect configuration of the TOE security functions,
as well as any elements that may contribute to the TOE becoming vulnerable to
security flaws and attacks. It encompasses the following assurance families:

Ö Covert channel analysis Addresses the potential for illicit information
flows which can be exploited to breach the security defenses imple­
mented by the TOE;

34 1. Foundations of Security and Access Control in Computing

o Misuse Investigates the existence of TOE configurations that may lead
to insecure operations when users and administrators reasonably
believe the TOE is operating in a secure manner;

o Strength of TOE security functions Provides a measurement as to the
strength of the mechanisms implementing the security functions of the
TOE;

Ö Vulnerability analysis An assessment to determine whether any identi­
fied vulnerabilities of the TOE can be exploitable to cause the violation
of the security policy intended to be enforced by the TOE.

Table 1.2 is a summary of the requirements needed to satisfy the various
EALs defined by the Common Criteria [NIST99]. Rows of the table repre­
sent assurance classes along with corresponding assurance families, and the
columns represent the EALs.

TABLE 1.2 Summary of the requirements for the Common Criteria.
Assurance Class

Configuration
management
(ACM)

Delivery and
operation
(ADO)

Development
(ADV)

Guidance
documents
(AGD)

Life-cycle
support
(ALC)

Tests (ATE)

Vulnerability
assessment
(AVA)

Assurance
Family

ACM_AUT
ACM_CAP
ACM_SCP
ADO_DEL
ADOJGS

ADV_FSP
ADV_HLD
ADVJMP
ADVJNT
ADV_LLD
ADV_RCR
ADV_SPM
AGD_ADM
AGD_USR

ALC_DVS
ALC_FLR
ALC_LCD
ALC_TAT
ATE_COV
ATE_DPT
ATE_FUN
ATEJND
AVA_CCA
AVA_MSU
AVA_SOF
AVA_VLA

EALl

X

X

X

X

X
X

X

Evaluation-Assurance Levels

EAL2

X

X
X

X
X

X

X
X

X

X
X

X
X

EAL3

X
X
X
X

X
X

X

X
X

X

X
X
X
X

X
X
X

EAL4

X
X
X
X
X

X
X
X

X
X
X
X
X

X

X
X
X
X
X
X

X
X
X

EAL5

X
X-
X
X
X

X
X
X
X
X
X
X
X
X

X

X
X
X
X
X
X
X
X
X
X

EAL6

X
X
X
X
X

X
X
X
X
X
X
X
X
X

X

X
X
X
X
X
X
X
X
X
X

EAL7

X
X
X
X
X

X
X
X
X
X
X
X
X
X

X

X
X
X
X
X
X
X
X
X
X

About the Confinement Problem 35

About the Confinement Problem

The confinement problem was first identified in 1973 by Butler Lampson
[LAMP73]. It can be thought of as the way access control is viewed fi*om the
perspective of end users rather than the traditional definition of controls asso­
ciated with the resources in the confines of a server. Stated explicitly, confine­
ment is about controlling a service program from leaking confidential or any
other information supplied to it by the client (the invoker) to other system
processes or any other entity, such as a human. When enforced, confinement
must be maintained throughout a chain of program calls. The transitivity of
the confinement property maintains confinement along all threads and
processes of an execution chain that takes place locally or remotely.

Clearly, the problem of confinement is much more difficult to solve than
that of controlling access to system resources. When a service leaks user con­
fidential information, there is generally no indication of compromise in the
security of the system. Human-based trust becomes the only assurance one
can have against a potential violation of confinement. A classical example of
the need for process confinement is that of a user making a purchase order
over the Internet. The user in that case will want to ensure that the server can­
not pass his or her billing information, such as a credit-card number, to other
entities.

Assurance of confinement provides confidence that a program remains
unable to leak data throughout its execution. Any attempt to escape such a
confinement by a misbehaving program is detected, and thus the program is
trapped, as Lampson describes it. One simple scenario in which a server is
programmed to leak user data is to have the service write the data to a file so
that it can be passed to an administrator or to an entity taking part in a secu­
rity breach. Similarly, the service may use any interprocess communication
mechanisms available to pass data about the caller to other entities.

The paths by which a program may leak information can be known or
unknown at program development and deployment time. Not all of the paths
are obvious or can be determined through traditional means of code reviews
and inspections. Some leakage paths are subtle and obscure and may include
other cooperating elements, referred to as channels, which can be external to
the program's executed instructions. Lampson classifies these channels into
three categories:

a Storage The service leaks information by writing it to any available
storage device, such as runtime execution memory or some volatile sec­
ondary storage.

o Legitimate The service may use any output that is part of its legitimate
computation, such as a billing form, to leak the caller's information.
This is also referred to as the use of overt channels, which in contrast to
covert channels, uses the system's protected resources (such as data
objects) to transfer information.

36 1. Foundations of Security and Access Control in Computing

n Covert Channels These are any shared resources that are associated
with hidden channels of transferring information and that are not
deliberately designed for use as communication means.

Covert Channels

While storage and legitimate channels can be guarded against effectively,
covert channels contribute a tremendous deal to the complexity of the con­
finement problem and can be very hard to uncover and remove. Covert chan­
nels are broadly classified into two categories:

o Storage channels Information is communicated between two entities
sharing a storage medium by way of having one entity write a data
object, so that the other entity reads and interprets the data based on a
conspiring protocol between the two entities.

n Timing channels The sending entity modulates the amount of time
needed for the receiving entity to detect a change in some attribute of
the system known to both entities. The receiver interprets the temporal
update of the attribute as a covert transfer of information between the
two entities.

It is worth noting that both of these types of covert channels are about
sharing resources. While storage channels are about sharing space, timing
channels are about sharing time and modulating temporal events.

Examples

Due to the necessity for sharing system resources, covert storage channels
are the easiest to develop and therefore many such channels are known to
have been exploited for leaking information. A classical storage channel is
one in which two entities A and B share a file system and have access to a
common directory (write permission for A and read for B). A, being the
entity leaking information, creates a file called either zero or one based on
the information intended to be transferred. The receiving entity B detects the
existence of file named 0 or 1, interprets the event in a certain way, and
deletes the file to signal that it consumed the leaked information. The series
of files with the names 0 and 1 could represent a stream of bits that are
intended to be leaked. Entity B reconstructs the stream based on the order
in which the files are created and realizes the intended leak.

A second example is the use of resource-access synchronization (e.g., lock­
ing a file before using it). In this case, entity A locks the file to signal that it is
sending a 1. It releases the lock to signal that it is sending a 0. The receiving
entity B detects this locking and unlocking events and interprets the leaked
information accordingly.

Security-Design Principles 37

Security-Design Principles

Security is pervasive throughout the entire cycle of information processing.
Indeed, the safety of protection systems remains elusive, particularly in the
absence of formally proven mechanisms in secure-system implementations.
One, therefore, can rely only on the best practices of design methodologies
that can help reduce risks and aid in the detection of security flaws at early
stages of development without the burden of costly overheads. In the land­
mark paper authored by Saltzer and Schroeder [SALT75] in 1975, nine design
principles were described. Remarkably, these principles remain valid and com­
plete even after such a relatively long time in the history of secure computing.
We discuss and shed light on these principles in the sections that follow.

Economy of Mechanism

Keep the design of a security mechanism as simple and small as can be pos­
sible. Be to the point in the design of a security function. Limit the design to
solve a well-defined problem. Do not attempt to generalize the design to solv­
ing derivative or nonrelated problems. Overdesigning is costly, introduces
complexities, and can be susceptible to errors. Large software systems are
more error prone than smaller modular components. Code reviews are easier
and more effective when smaller and simply designed components are used.
Modular components lead to more efficient testing processes and expose
a lesser number of information-flow paths to be concerned about.

Complete Mediation

No exceptions can be made in mediating access. Every access to every pro­
tected object must be checked for entitlement. This principle should apply to
every protected or nonprotected system resource. In the case of unprotected
objects, the mediating component simply allows access without the need for
checking entitlements. Applying this principle yields a consistent systemwide
view of controlling access and raises assurance and confidence. This princi­
ple imposes the constraint of identifying every subject attempting to access
an object (i.e., having to determine the context of access).

Open Design

The design for a security mechanism should not rely on secrecy or (as it is
known) providing security by obscurity. Maintaining secrecy of a mechanism
shields it from public scrutiny and criticism and simply delays uncovering its
weaknesses. Hiding the weaknesses of a security mechanism cannot go on for
an indefinite period of time. With the wide distribution of a product, sooner
or later someone will arrive at reverse-engineering the processing logic

38 1. Foundations of Security and Access Control in Computing

embedded in a software or hardware security module that is part of that
product. The outcome may indeed signal the end of the product's protection
mechanisms. It is better to have errors in a particular security mechanism
uncovered in an open atmosphere of constructive criticism than to be taken
advantage of by an attacker causing irreparable and costly damage.

Least-Common Mechanism

Minimize the amount of mechanism that is common to more than one user
and depended on by all users [POPE74]. Shared mechanisms (such as sec­
ondary storage areas) or runtime memory blocks and structures (such as
globally visible programming variables) all lead to potential information-
exposure paths. This principle contributes to establishing the confinement
property and reduces the risks associated with leaking information. Shared
program libraries are examples of potential information flow along covert
channels and should be subject to extensive scrutiny.

Fail-Safe Defaults

This principle was first introduced by Glaser in 1965 [GLAS67]. It means
that the default access permission to any object by any subject is lack of
access. It is the protection policy being enforced that may explicitly grant
access. Adopting a conservative design in which arguments on why objects
should be accessible, rather than why they should not, increases the safety of
the system. Systems that are deployed with default accesses granted are prone
to breaches, particularly in environments where security is not the top con­
cern of users. Refusing access by default is safe and easily detectable. In the
event a legitimate access is denied, an administrator can quickly correct the
problem. On the contrary, a permitted access that is in violation of the secu­
rity policy can go undetected for a long period of time, perhaps until damage
has taken place. One prominent example to cite in this regard is the default
policy of accepting user passwords that have a minimum length requirement
of zero. This enables the creation of accounts on a system without having to
set passwords. Ironically, this is the behavior on some of the Windows systems
from Microsoft.

Separation of Privilege

Access to objects including systems and network resources should depend on
more than one condition being satisfied. This principle is more in line with
adopting multiple defenses. It stems from the observation that was pointed
out in 1973 by Roger Needham as noted in [SIM097] and that states that
where feasible, a protection mechanism that requires two keys to unlock is
more robust and flexible than one that allows access based on a single key.
Coupling multiple defenses with the multiplicity of responsible entities yields

Security-Design Principles 39

the separation of duty principle. Examples of uses of this principle include
separation of duties in role-based access control and the multiple lines of
defense firewalls protecting network perimeters.

Least Privileges

Every system user or program acting on behalf of a user should operate using
the least set of privileges necessary to complete a designated task. Every priv­
ilege assigned to a subject should be relevant only to the processing being per­
formed. Extra privileges open the door for misuse and exploitation through
human errors or malicious intents. This principle should be coupled with the
fail-safe defaults principle denying access by default.

Privacy Considerations

Implementations should regard information of all protected entities as pri­
vate. As such, this information should be presented to other entities only
when necessary. Minimize the amount of an entity's attributes that are
exposed at all times. For instance, instead of presenting an entire user profile
to a programming module, one should only expose specific user attributes as
needed by that application. Other considerations that may not be directly
related to user privacy (such as exposing system configuration, operating sys­
tem level, or host names) should be done only as necessary. The cumulative
effect of such simple considerations may contribute a great deal to system
security.

Psychological Acceptability

User interfaces to the security mechanisms used, whether through program­
ming or graphic means, must be easy to comprehend and exhibit the inviting
characteristics for their use. Otherwise, users, particularly application devel­
opers, will shy away from including security in their designs. Although not
functionally important, it is essential that human interfaces be designed for
ease of use, making it routine for users to consider security processes.

Chapter 2

Introduction to Identity-Management
Models

Introduction

The elements of security in computing begin with an identity. An identity is
a computer representation of an active entity that can be physical (such as a
human, a host system, or a network device) or can be a programming agent.
Such an agent can be assigned a well-known system function (such as a run­
ning daemon) or a program delivering a business function on behalf of some
entity. Modern systems adopt a fine level of identification sustainable even at
the basic computing tasks and execution threads of an address space and
may cross the boundaries of single computing systems with the advent of net­
work and distributed computing.

The evolution of computing to automate more and more of the aspects
of human interactions such as in business transactions led to the need of
identity representation in computing that reflects that of real-life entities
such as human beings. An identity therefore evolved from being simply an
assigned identifier to an identifier that points to various attributes and enti­
tlements, collectively referred to as ?iprofile. Identity management has there­
fore emerged to address the issues surrounding the proliferation of identity
profiles among various computing platforms within the boundaries of an
enterprise and cross-enterprises and organizations to even the Internet.
Foremost of these issues is the cross-referencing among profiles that repre­
sent the same identity as well as the synchronization of attributes among
these profiles.

We begin by providing a taxonomy of identity models that is based on the
scope of an identity, the naming space in which it is uniquely known and used.
We discuss the local identity scope, followed by the network and then the
global scope. For each we present the benefits as well as the limitations. The
global identity model is exemplified by the XNS approach, a novel method
that holds the promise of an elegant Web identity-management model. Lastly,
we discuss the emerging model of enterprise-level identity management as
exemplified by the latest technologies. Without some level of assurance, an
identity cannot stand by its own. After all, it is merely a representation of

40

Local Identity 41

some active entity. In Chapter 3 we cover the foundations of identity trust and
discuss various mechanisms that are currently available.

Identity-management paradigms in computing have taken a natural course
that is analogous to real-life practices to a great extent. An individual person
initially has direct knowledge of some people that he or she can identify with.
That individual further builds knowledge of other persons by directly com­
ing in contact with them or by way of introductions performed by existing
acquaintances. The scope of individual identities varies from one person to
another. An individual may be known only to his or her family, immediate
neighbors, or a workplace; another person can be known throughout his or
her locality or a much bigger geography; while some are known all over the
globe. The scope of an identity in computing follows in a similar fashion. An
identity can be known locally, known over a network of computing devices,
or perhaps universally known. Knowledge of some entities can be direct, by
way of a registration, or can be indirect, through some other brokering entity.

An individual person can be associated with multiple digital identities in the
same manner he or she can be known to other people through multiple nick­
names. Regardless of the number of identities one might be associated with,
there is an increasing need in computing that all should unambiguously point
to the same individual. Each such individual is uniquely identified by a set of
attributes, commonly referred to as a profile and more recently a wallet. We
divide the space of identity management along the scope in which an identity
is known. We distinguish four classes of identity management that we list in
the order of increasing scope as follows:

• Local identity,
• Network identity,
• Federated identity, and
• Global Web identity.

Local Identity

This paradigm evolved with centralized computing. A host system maintains
and manages a local registry of identities (users). Computational units are all
identifiable with identities locally known to the system. An external entity
that wishes to use the system is required to acquire an identity for use with
that system. The adopted namespace of identities is flat and is in reference to
the local system. A newly added identity is expected to be unique with respect
to the names already in the registry. Addition and revocation or removal of
identities are discrete operations that do not side-effect other identities.
Managed entitlements are associated with the privileges one might have over
the local system resources. This model offers the advantage of simplicity.
Capacity scaling and ih^flat name space are issues that it faces. Figure 2.1
represents a high-level view of the local identity model. In A each system

42 2. Introduction to Identity-Management Models

Terminals/emulators <

Host system

Terminals/
emulators

Terminals/
emulators

FIGURE 2.1 The local identity model

maintains a separate user registry, while in B the registry is shared across mul­
tiple systems. Sharing of user registries is an attempt by the local identity
model to alleviate the overhead of the host-centric identity management by
registering users only once and allowing them to have access to multiple
systems.

Advantages of the Local-Identity Model
Simplicity

The simplicity of this model is mainly the result of the local scope of man­
aged identities and the flat naming space that is generally adopted.
Establishing an identity is a simple local process that compares the credential
presented by an entity to that stored in the host registry for the same entity.

Local Identity 43

The flat naming model lends itself to the adoption of flat data constructs
with relatively simple structures. Identities are managed as discrete entities
except for when they interleave through group memberships. The centralized
identity attributes are easy to administer but remain meaningful only within
the scope of the host system.

Scalability

Scalability has two dimensions: one is capacity and the other is performance.
In the local identity model, the issue of capacity becomes apparent as the
population of users and subsystems using or running on the system grows.
The system has to store and manage identity information for every such
entity. The paradigm is that of directly "knowing everyone." This pushes the
limits and capability of the user registry and may result in a performance
downgrade. User groups are not considered a remedy to the issue of capacity
scaling as identities need to be discretely defined and managed irrespective of
group memberships.

Flat Name Space

The flat name space generally adopted in the local identity-management
model sets a limitation on the scope of an identity and results in name colli­
sions. The scope of an identity is confined to the host system in which it is
defined. Name collisions will occur sooner or later as users select names that
already represent other users in the system. The resolution to that usually
comes in the form of names that are suggested by the system and that may
not reflect the nature of a friendly name chosen by the user. Because an iden­
tity is known in reference to the system where it is defined, an identity can be
used on multiple hosts without having to be associated with the same entity.

Management Issues in the Local-Identity Model

Each system is associated with its own local identity registry. Users, applica­
tions, and subsystem components need to maintain the credentials required
for them to establish identity on each of the operating systems used.
Passwords, the most prevalent method by which identities are established, are
inherently associated with a number of issues. These issues are more appar­
ent and prevalent in the local-identity model. We discuss some of them below.

Password and Attribute Synchronization

The proliferation of passwords on various systems and applications naturally
makes it difficult to keep track of them. Password synchronization is an alter­
native solution that mitigates this problem by having each user adopt a single
password for all systems. A synchronization mechanism automatically com­
municates a password change or reset to the participating systems. Unlike
single-sign-on (SSO) solutions, however, the user still has to explicitly use the

44 2. Introduction to Identity-Management Models

password for each system or application that requires it. Password synchro­
nization is a much easier approach than single sign-on and does not require
drastic changes to an organization's existing infrastructure as might be the
case with SSO mechanisms. Similarly keeping various user attributes syn­
chronized is a challenge in the local-identity model. Ultimately, synchroniz­
ing user attributes in this case tends to be a manual process which increases
overhead and can be error prone. A communications means across registries
of different systems is required to automatically synchronize passwords and
user attributes across multiple systems in this case.

One solution to this problem is for multiple systems to share a single user
registry. This method dispels concerns over synchronizing user passwords
and attributes. It may, however, lead to a performance problem due to the
registry becoming a bottleneck. To alleviate this, the single registry can be
replicated locally across the participating systems.

Single Sign-On

SSO further advances the state of art as represented by password synchro­
nization in that it lets a user establish his or her identity once. Thereafter,
access to other applications and systems networked together becomes seam­
less as it alleviates the use from the burden of reauthenticating. Various SSO
implementations have been developed. In homogeneous environments where
a single authentication technology is used such as the case with Kerberos,
SSO is automatically achieved. In the local-identity model with a stand-alone
user registry, SSO is meaningful only across subsystems and applications
deployed on the system such as database and transactional systems. The user
authenticates once to the system; thereafter a security context is established
and passed to different systems by the system runtime functions.

Identity Provisioning

This relates to the processes and procedures in use for the creation, revoca­
tion, and deletion as well as the maintenance of user accounts. This is an
aspect common to all identity-management schemes, but it presents more
overhead in the case of the local-identity model. This is because the effort of
provisioning identities is proportionate to the number of systems used by an
organization. Furthermore, related issues such as password reset and update
tend to increase the cost of identity management. Centralized enterprisewide
identity-provisioning tools are becoming the solution of choice to these
issues. We discuss these later in the chapter.

Example: IBM Resource Access-Control Facility

The IBM Resource Access-Control Facility (RACF) providing security for
the IBM MVS operating system family (recently evolved into z/OS) defines a
user by way of creating a profile in its registry [IBMC02]. Information stored

Local Identity 45

TABLE 2.1 The main elements of the base segment in a RACF user profile.
Attribute Description

USERID Identifies the user
NAME User's name
OWNER Identity of the owner of this profile
DFLTGRP User's default group
AUTHORITY User's authority in the default group
PASSWORD User's password information (one-way encrypted)
REVOKE Date on which RACF prevents the user from accessing the system
RESUME Date on which RACF lets the user regain access to the system
WHEN Days of the week and hours of the day in which the user is allowed into

the system
SECLEVEL Security level of the user (used for mandatory access policy)
SECLABEL Default security label associated with the user (used with for mandatory

security policy)
SPECIAL Gives the user the systemwide SPECIAL attribute
AUDITOR Gives the user the systemwide AUDITOR attribute
OPERATIONS Gives the user the systemwide OPERATIONS attribute
CERTNAME Names of the profiles containing this user's certificates
CERTLABL The labels for the certificate associated with this user
CERTPUBKY The encoded public key of this user
CERTSJDN User's distinguished name

in each RACF user profile is organized in two blocks. The first is called the
base segment, present in all such profiles, and contains the key security defi­
nitions for the user such as its identity, its credential (e.g., a password), as well
as the level of the RACF authority assigned to the user in his or her default
group. Table 2.1 illustrates the base segment in the RACF user profile.

The second class of RACF user-profile information is optional and consists
of a set of segments, each containing fields that define various attributes that
can be associated with the user. These attributes have mostly evolved with the
need of other subsystem components to maintain their own attributes about
the user. This feature has allowed RACF to evolve over the years and adapt to
the security requirements of newly developed subsystems and applications.
Table 2.2 shows the segment of a user profile intended for use by the IBM's
Customer Information Control System (CICS) terminal operators.

TABLE 2.2 Elements of the RACF CICS segment in a user profile.

Attribute Description

OPCLASS Classes assigned to this operator to which basic mapping support (BMS)
messages are to be routed

OPIDENT Identification of the operator for use by BMS
OPPRTY Priority of the operator
TIMEOUT Time that the operator is allowed to be idle before being signed off
XRFSOFF Indicates whether the operator is to be signed off by CICS when XRF

takeover occurs

46 2. Introduction to Identity-Management Models

A new user profile is defined by using the ADDUSER command. Thereafter
attributes are added, removed, or updated using the ALTUSER command.

Network Identity

The advent of distributed computing has led to the emergence of the net­
work-identity concept. The idea is simple but has far-reaching implications.
An identity is authenticated to a network of computing nodes rather than
to a single hosting system. Once an identity is established in this fashion, it
navigates through the participating network nodes requesting services and
accessing resources without having to explicitly engage in further identity
establishment. The scope of an identity is no longer confined to a single
system; instead, it is bounded by the network in which it is defined. To
achieve this extended scope, identity services have evolved into network
components.

The extent of the network in which an identity is defined generally remains
limited to a single enterprise. Advances in network identity, however, have led
to the ability of establishing cross-enterprise network identities. In some
cases, this has resulted in tightly coupled interenterprise links (such as with
cross-domain Kerberos implementations), while in other cases, interdomain
identities are established via loosely connected enterprises (such as with
cross-certification provided by public key infrastructures). We discuss these
topics in further detail later in this chapter. The characterizing factor of net­
work identity remains its confinement in scope regardless of the number of
participating domains. Figure 2.2 represents a high-level view of a network
identity. In A the identity is confined to a single domain, while in B an iden­
tity is used throughout two domains.

Federated Identity

Foundations of Federated Identity

The tQrm federation has been used in the literature with varying semantics.
Indeed, it conveys a generic sense of flexibility and perhaps speaks of the
activities of a loosely coupled set of cooperating entities. In the Internet
domain name services (DNS), for instance, the federation reflects the dele­
gation of authorities among a hierarchical tree of name servers. The effect
of such delegation is the decentralization of name-to-address resolution, the
core function of DNS. In the electronic business, a federation can represent
a relationship between two or more organizations where each has its own
computing infrastructure. The federation manifests itself at the identity level
by the mechanisms used to allow one participant organization to directly
provide services to entities registered at another organization member of the

Federated Identity 47

Unwprki^nmffKirk

Network-
identity
component

Eimrptl$0 network

Network-
identity
component , ^

Bntm^h0 n^m>tk

\<^

Network-
identity
component , ^

System
1

System
n

FIGURE 2.2 A High level view of network identity

underlying federation. The result is that each of the participants in a feder­
ation will have achieved an extension of the space of identities operating
under its premises w îthout having to manage the entirety of this space of
identities.

Cross-organizational trust is the foundation of federated identity. The feder­
ation is accomplished by the means through which an organization is capable
of acquiring the necessary information about a foreign entity that wishes to
access one of its services. Furthermore, identity information about a foreign
user is acquired from the home organization in a secure and trusted fashion.
This process is achieved with full transparency to the users and applications
crossing organizational boundaries. The end user remains unaware of such
cross-domain activities taking place.

An end user does not need to register with foreign organizations, nor does
he or she need to directly engage in an authentication process with an entity
other than the home organization. Under the covers of the federation, attrib­
utes of an entity that is established at its home organization are communi­
cated to foreign organizations. User attributes exchanged over a federation
may ultimately be required to adhere to a common representation syntax and

48 2. Introduction to Identity-Management Models

semantics. This requirement represents one of the major hurdles addressed in
forming federations. Furthermore, the lack of a universal set of attributes
that can be associated with an identity and be consistently interpreted by
every organization is a hindrance to accomplishing federated identity.

While a user profile registered to his or her home organization may be con­
tain all attributes necessary to request services from that organization, other
attributes may be missing from that profile when services are requested from
another organization. One approach that can be used to address this problem
is to confine the definition of various profile attributes to third-party organ­
izations that are the source of those attributes. For instance, the definition for
credit information can be the responsibility of banking and financial institu­
tions, while the definition for attributes that are universally common to every
entity (such as identification name, address, and contact information) can be
agreed on by a much wider forum that is open to participation from every
organization. The model adopted here is to leave data definitions to the con­
cerned organizations only. The use of XML as a means of defining such data
elements can ease interoperability and lead to a speedy acceptance of those
definitions across organizations.

The security mechanisms by which trust can be established and maintained
across organizations are at the core of an identity federation. Although these
mechanisms may differ in the way in which trust is computed and verified,
standard mechanisms implemented at the higher level are key to joining var­
ious trust models under a unified federated scheme. In that respect, the
advent XML-based component technologies such as the security-assertion
markup language (SAML) is expected to raise identity federation to an
unprecedented level.

A pure identity federation allows an entity to be profiled and registered
only once, generally at its home organization. The scope of that identity,
however, ends up spanning multiple domains participating in the federation.
A generalized and a more practical federation approach allows a user to reg­
ister at multiple organizations, yet accomplishes a single logical view of all
such registrations if so desired by that user, the owner of the identity. Such is
the case with the XNS infrastructure that we discuss below. With XNS iden­
tity, federation is defined as the distributed resolution of names and IDs
across a decentralized network of identity servers and clients. The novel con­
cept of addressable identities in XNS forms the foundation on which federa­
tion is based. Identity cross-referencing and linking in XNS enables users to
participate in a logical federated web that is defined and controlled at the
identity level. Synchronization of attributes in this federation is transparent
and automatic. Control in XNS federations is brought to the level of an
entity rather than the traditional confinement of such controls to participat­
ing organizations.

Figure 2.3 illustrates the high-level concept of identity federation. The dif­
ferent shapes representing organizations illustrate the fact that each partici­
pant organization manages its own model of identity that may or may not be

Federated Identity 49

FIGURE 2.3 A high-level illustration of the concept of federated identity

the same model used in other members of the federation. The links between
each two organizations represent an established trust that is securely verifiable.

Federation Topologies

Federated identity can be accomplished through various ways. Recall that the
characterizing aspect of a federation is the fact that end entities undergo a
single registration process. In the event that such registration is performed
more than once (i.e., at different participating organizations), complete
redundancy of profile attributes for the underlying entity should be avoided.
Otherwise, the semantics of the federation become questionable. The differ­
ences among various federation topologies can be related to many factors.
Most important is the way trust among the federation members is established
and the model used to store, maintain, and manage profile attributes. One
other differentiating factor is the level of scalability that the topology affords.
After all, there is an implicit thinking that any federated identity scheme
automatically implies the requirement for a reasonable level of scale.

In the following, we discuss a few possible federation topologies that we
categorize based on the method of by which entity profiles are registered and
managed. In all these cases, the concept of the home organization of an
entity is maintained.

50 2. Introduction to Identity-Management Models

Local Profiling

In this scheme, each end entity is registered within the identity infi-astructure
of its home organization. Profile attributes of an entity are fully maintained
and managed by the local organization. Attributes can expand and contract
based on the privileges, roles, and entitlements of the end entity. All other
member organizations are unaware of such registration except for when a
service request crosses organization boundaries, at which time the underlying
identity attributes are exchanged underneath the trust relationship defined by
the federation. As we already have mentioned, this model becomes better
suited for implementation when data elements for profile attributes are well
defined and understood by the member organizations. Parties that are most
concerned with the underlying attributes are the best candidates for defining
standard attributes.

Distributed Profiling

In this topology, an end entity begins with a registration within its home
organization. As the need arises, the entity may further expand and hence
acquires new profiles at other member organizations. One reason for having
additional registrations is the need for new attributes that are specific to a
particular organization. In a sense, the definitions for an entity's profile
become distributed across multiple organizations. As a consequence, defini­
tions for the same profile attributes may be duplicated, and thus attribute
synchronization may become an issue. This scheme offers the advantage of
flexibility and somewhat leads to separation of concerns when it comes to
managing user attributes among organizations.

Profiling by a Third Party

In this scheme, a designated third party within the established federation is
tasked with brokering the management of end entity profiles. Member
organizations are thus entirely alleviated from this task. The third party
may distinguish among profile information that is common to all or to a
subset of the member organizations as well as those that are pertinent to
specific ones. This scheme offers the advantage of having to manage trust
establishment with the third party only. Attribute synchronization problem
will be limited to the confines of the single third party where specific orga­
nizational information may be duplicated for two or more target organiza­
tions. One disadvantage can be the issue of scalability as more and more
member organizations may contend over the single third party for the
retrieval and update of profile information. The replication of the third
party may be needed to relieve such a problem. When that happens, the
replicas are required to be kept synchronized.

Global Web Identity 51

Global Web Identity

The need for a global identity seems to be driven in large part by the emer­
gence and the viability of the World Wide Web as a computing platform.
A Web identity is one that is uniquely known throughout the Internet Web.
Like an Internet resource that is identifiable via its universal resource identi­
fier (URI) [BERN98], a Web identity exists in the global context of the
Internet. Every Web identity stands alone to represent the entity that owns it
in the same way a Web URI represents the physical resource behind it. Unlike
Internet identifiable resources that represent objects that remain locally man­
aged by an enterprise's computing domain, Web identity information is capa­
ble of being uniquely resolved to one entity and being recognized and used
locally as well as by other Web nodes.

Identity Mapping and Synchronization

The ushering of the Web computing era is increasingly accepted due in large
part to the fact that it builds on existing computing infrastructures. The
advent of global Web identity mechanisms should not represent an excep­
tion. It needs to exploit the identity-management services that have been in
deployment and existed for so long. These services are generally based either
on local or network identity registries. For that to happen, a unified Web
identity requires a mapping to various identity registries in which it exists.
The single Web identity would allow navigating the myriad of Web services
that ultimately may be deployed over the World Wide Web in a seamless
fashion and a great deal of transparency to end users. A number of identity-
management technologies that provide this seamless navigation experience
exist today. Among them are metadirectories and affiliate networks.

MetaDirectories

The metadirectory approach bridges disparate domains by exposing the user's
identity to a higher level while retaining its relationship to various participat­
ing enterprise networks in which the identity is known. The relationships of
the global identity to the corresponding enterprise-level identities are formed
by the links binding metadirectory information to the directories of the par­
ticipating organizations. Common user attributes are maintained by the
metadirectory. Updating these attributes is centrally done, and synchroniza­
tion is performed automatically. For example, a large organization that main­
tains information about its users in multiple directories (each is perhaps being
used by a different application) can join them via a single metadirectory, thus
enabling seamless sharing and maintenance of identity information. Figure 2.4
represents the operation of joining multiple directories using a single metadi­
rectory. The metadirectory on the left joins multiple directories of the same

52 2. Introduction to Identity-Management Models

EMAIL
Company

A
Company

B
Company

C

FIGURE 2.4 Joining multiple directories via a metadirectory

organization, while the one on the right joins multiple directories across dif­
ferent organizations.

The key drawback of this approach is that it cannot scale to the extent to
which it can accommodate a potentially large number of worldwide identity
domains. Figure 2.5 illustrates the concept of identity mapping from global
to local using the metadirectory approach.

Affiliate Networks (Virtual Directories)

Affiliate networks, also called virtual directories, participate in a tightly cou­
pled structure by directly mapping an identity defined in one directory onto

Global metadirectory

Enterpilse nefeft̂ ork

FIGURE 2.5 Mapping entities via a metadirectory

Global Web Identity 53

a corresponding identity in another enterprise directory. The main difference
between this mapping approach and that enabled by metadirectories is that
here the mapping is achieved without actually having to create an additional
"join" in directory. This approach has a better scalability property over
metadirectories in that the mappings are discretely distributed over the par­
ticipating directories. Mapping users across all directories, however, creates
management complexities associated with the «-wise mapping problem.
Updating user-identity information requires updating n directories. Figure 2.6
depicts the three-way identity-mapping problem presented by the affiliate
networks architecture.

Mapping an identity is not simply about associating names from one
name space to another. Most important, the mapping appHes to the attrib­
utes associated with an identity. Updates to such attributes in one directory
may require synchronization across multiple directories. Synchronization, if
not completely automated, increases administrative complexity, requires
establishing cryptographically secure channels, and can be prone to errors.
Directory-attribute synchronization is supported through extensions to the
lightweight directory-access protocol (LDAP) [HOWE03] as well as the

Sfit^ipHs^ Rework
directory

Ent0r|>rise weiwor k

Efite^prjsemtwork Enterprise network
dfreclofy

Attribute A

Attribute B
-^

— •
Attribute E

Attribute F

FIGURE 2.6 Joining multiple directories via affiliate networks

54 2. Introduction to Identity-Management Models

XML-based directory-interchange standards, such as the directory-services
markup language (DSML).

Dynamic Scoping of a Security Context

A global identity that is navigating the Web should be encapsulated behind a
security context that is reliably established and verified and cannot be forged.
The security context carries with it attributes of the identity it represents, gen­
erally containing a subset of the user's profile. Exposing a user's attributes
over the Web requires stringent security measures. A host of issues are relevant
here, at the top of which are privacy concerns such as the Web transactional
pattern or the medical attributes of an individual, identity impersonation, and
theft of sensitive attributes such as a credit-card number or bank accounts.
The user should be provided with the power to disseminate his or her digital
profile information on a discretionary basis. This allows the user to maintain
control over the propagation of his or her attributes to visited Web services.
The Web security context, therefore, should allow for dynamic changes under
the controls of the user and should be capable of expanding and contracting.
Confinement or simply preventing information leakage of the user's attributes
at the serving Web sites remains a major security concern that is compounded
by the nature of the Web and the unlimited number of services that can all
seamlessly cooperate in delivering a single end-user service request. The paths
involved in such a request can be unbounded.

The XNS Approach to the Global Web Identity

Current technologies used to solve the issues surrounding Web identity as we
noted are not addressing the problem from the basic infrastructure perspec­
tive. They are, instead, component solutions that do not form an integrated
infrastructure. Existing identity-management components in many ways are
being retrofitted to solve a new problem—that of the global Web identity.
Development in Web-identity infrastructure is considered yet at its infancy.
A promising novel approach is one being undertaken by the XNS Public
Trust Organization (XNSORG), which is developing an infrastructure speci­
fication referred to as the extensible name service (XNS) protocol for a Web
identity [XNSO02].

XNS is an XML-based protocol for identifying and linking together iden­
tities that participate in a Web transaction. It is intended by its designers to
provide a flexible and interoperable method for establishing and maintaining
persistent digital identities and the relationships between them. The protocol
provides services for registering and resolving identities in a way similar to
resolving addresses. It defines the elements of managing identity documents,
conducting and protecting identity transactions, and linking and synchroniz­
ing identity attributes. XNS adopts XML-based technologies such as the

The XNS Approach to the Global Web Identity 55

XML schema [W3CO01a, W3CO01b, W3C099] and the Web services
[W3CO02a] in defining its constructs and services. As such, it is designed to
be platform-independent and extensible. XNS also builds on emerging XML
security standards such as XML signatures [W3CO02b], XML encryption
[W3CO02c] and the security assertion markup language (SAML) to protect
identity documents and assert credentials and entitlements exchanged during
Web transactions [OASI02].

The approach followed in the architecture of XNS is based on abstracting
the user identity to a new logical level, that of the Web identity with a global
scope. The architecture of XNS is inspired to a great extent from the Web
architecture itself and in particular the design of the Internet domain-name
service (DNS). The novel aspect of the World Wide Web as we know it is its
elevation of enterprise data to a logical representation layer that can be
accessed via a universal client tool (the Browser), using a ubiquitous proto­
col (HTTP), and formatted in a standard markup language (HTML). Most
important, this logical layer forms a global Web that links related content
with an unprecedented level of location transparency, ease of use, and seam­
less navigation experience. The designers of XNS have developed a parallel to
that with respect to identity. Figure 2.7 illustrates the analogy between the
Web architecture and the approach undertaken by XNS.

Two elements are key contributors to the level reached by the Internet Web
today:

• The domain name service (DNS) that weaves interconnected systems
together and enables the seamless navigation of Internet hosts and
computing devices, and

• The mechanisms by which documents are linked through references to
a universal addressing scheme.

Indeed, the XNS design appears to be entirely inspired from these two
aspects of the Internet. We begin by first taking a quick tour of DNS which
in itself provides an unprecedented global naming scheme that is hierarchical
in structure.

Elements of DNS

DNS, defined in RFC 1034 [MOCK87a] and RFC 1035 [MOCK87b], has
grown to become one of the most successful distributed systems for naming
Internet hosts and resources and performing name resolution to correspon­
ding Internet protocol (IP) addresses. DNS components define a hierarchy of
services structured in an inverted tree. Each node in the tree is concerned with
a particular naming subspace also referred to as a domain name. The latter
consists of an ordered set of labels (symbolic names); each is associated with
a subordinate node. This ordered set begins at a leaf node and follows up
through a path leading to the root node (one with a null label). Labels are
delimited using the dot character (.). By convention, the labels that compose

56 2. Introduction to Identity-Management Models

CONTENT
Web server

Web pages

Logical
organization/
Uniting

t
f i

Fite fi^teäm

Files

Physical
organization/
Storage layer

IDENTITY

f

Web
identity

^^-"1^^^^
^̂ .'̂ ^ ^"''^

Ef

1

m2
«w-., f ^

dlrî tory

y/^ Idn \ .

Logical

= ^

1
Physical

FIGURE 2.7 The XNS approach to Web identity (analogy to the World Wide Web
infrastructure)

a domain name are printed or read left to right, from the most specific (far­
thest from the root) to the least specific (closest to the root). In the example
shown in Figure 2.8, the root domain has three subdomains—EDU, MIL,
and ORG. The RPI.EDU domain has one immediate subdomain called
CS.RPI.EDU.
DNS makes use of two key components:

• Name servers Maintain the mapping information about an entire
domain tree or a particular subtree representing a subset of a domain
naming space. In the latter case, a name server also maintains pointers
to other name servers that can lead to resolving domain mapping infor­
mation from any part of the domain tree. A name server is said to be
the authority over the subspace it maintains. Authoritative information

http://RPI.EDU
http://CS.RPI.EDU

The XNS Approach to the Global Web Identity 57

FIGURE 2.8 An instance of the DNS naming space

is organized into units called zones.
Resolvers These are agents residing at the edges of the network and are
directly invoked by application programs. They represent the client side
of DNS. The purpose is to initiate the process of resolving a symbolic
domain name into its IP address. Resolvers are configured to access at
least one name server and use that name server's information to answer
a mapping query directly or further pursue the query using referrals to
other federated name servers authoritative over the entire name or a
portion of it until the name is finally resolved.

Figure 2.9 depicts the layered structure represented by DNS. For an end
user, a name resolution consists of an interaction with the local resolver,
while to a resolver the interaction may lead to one or more remote name
servers. Each name server is an authority over its own particular zone. The
database of names operated by each server is basically a flat-file data store in
which the primary key is the domain name and the main values maintained
are the IP addresses forming the mapping from Internet domain and host
names to corresponding IP addresses. The power of DNS stems from the fed­
eration formed by the participating name servers worldwide, each operating
on its own local data store. As we know, the sum of these basic elements gave
rise to one of the most reliable computing infrastructures known to date. We
take it for granted every time we navigate the Internet, send an email, or
browse the Web.

Three concepts are worth pointing out at this juncture: First, the unique­
ness of an absolute IP address in representing a physical host or a network
device at some location; second, the presence of a hosted resource, such as a

58 2. Introduction to Identity-Management Models

Root server

iJam

/

solv

e server

Of

Name

/

Resolver

server

\

t

Name server

\

Rescuer

Name server

\

iResofver

End-user application

FIGURE 2.9 A view of the DNS federation

file or a service that can be reference relative to its globally addressable host­
ing system; and third, the user level addressing of hosts and network
resources with semantic names in the form of domain and host names. XNS
draws from these elements of DNS and the globally addressable Web
resources (URIs) to bring identities to an unprecedented level of globally
addressable entities.

The invention of the TCP/IP protocol suite as we know it led to the
abstraction of disparate networks into a logically single global network, the
Internet. DNS, although not an absolute necessity for the Internet to func­
tion, presents an immense value to the Internet-based protocols such as
Telnet, SMTP, and HTTP. It enabled programmers to use human-friendly
names to identify Internet endpoints, rather than the physical addresses as
represented by the IP numbers. Figure 2.10 shows a higher level of abstract­
ing IP addresses when DNS is present between the TCP/IP layer and appli­
cations. DNS provides the following benefits:

• Network endpoints are abstracted into location-transparent names.
Addressing network entities in distributed applications therefore
remains unaffected by changes in the physical address of an endpoint.

• Multiple names can be used to identify the same network endpoint if

The XNS Approach to the Global Web Identity 59

FIGURE 2.10 DNS brokering of
network endpoints addresses

Higher level application protocols
(e.g., Telnet, SMTP, HTTP)

TCP/IP

SO desired. Such names ultimately will all resolve to the same target
endpoint without ambiguity.

• Semantic names represented as domain or host names appear to be
locally scoped, yet become global when translated through DNS.

Elements of XNS

From a higher-level perspective, the network architecture of XNS appears to
be similar to DNS. Like DNS, XNS data-store is distributed across globally
federated identity servers. Unlike DNS, however, the paradigm of interactions
among XNS entities is peer-to-peer. In DNS the flow of execution is unidi­
rectional in that at the lowest level an application invokes a l*esolver, which
invokes its authoritative name server. The name servers are, in turn, federated
in a way that requests are initiated by lower authoritative servers to higher
ones. The separation between clients and servers is clearly defined in DNS.
The peer-to-peer nature of XNS draws no distinction in the interaction
between identity clients referred to as identity agents and identity servers. In
XNS all requests are answered by identity agents that run on either a client or
a server machine. The peer-to-peer aspect of XNS is a key defining character­
istic of its Web identity architecture. Figure 2.11 illustrates the peer-to-peer
relationships among XNS entities. The architecture of XNS is characterized
by the following elements:

• Identity is the addressable unit or resource. This may be considered the
key contribution from the XNS designers. The innovative aspect of
XNS evolves around the view of an identity as an addressable entity
like any other network resource. Identities are profiled and represented
by identity documents, which are XML documents containing instances
of XNS defined data types describing attributes associated with an
identity.

• Peer-to-peer relationships exist across identity agents and servers. The
liberating nature of peer-to-peer computing is brought to the Web
identity, thereby increasing the level of flexibility, independence and
reliability. Identity agents are the entities operating on identity docu-

60 2. Introduction to Identity-Management Models

Identity
server

/ Identity \
\[agent J

Identity
server

FIGURE 2.11 The peer-to-peer aspect of XNS

ments via a set of Web services defined by the XNS infrastructure.
Each identity document is associated with an identity agent responsi­
ble for it.

• The presence of a discovery service allows agents to dynamically dis­
cover and invoke the services available from each other. By way of
adopting XML as a mechanism for describing its constructs, XNS is
self-defining. XNS service specifications are published as XNS identity
documents capable of being discovered, versioned, published, sub­
scribed to, and linked in the same way identity documents are.

The advent of TCP/IP followed by the high-level common application pro­
tocols such as SMTP and FTP is analogous to the newly emerging layer of the
Internet infrastructure as represented by the exchange of XML-structured data
objects via the simple-object access protocol (SOAP) [W3CO00]. This new
abstraction layer promises to bring the composition of service elements to the
same level reached by composing functional elements as we came to be famil­
iar with in modern programming languages. The depth of such compositions
can be unbounded and involving a large number of logical endpoints referred
to as actors. Concern over the security of seamless combinations and compo­
sitions of actors involved in SOAP interactions has resulted in an ever greater
need for the secure attachments of identities to various service elements. We
refer to this as the Web global security context. With a striking resemblance to
DNS, XNS is presented by its designers as the global identity layer of the

The XNS Approach to the Global Web Identity 61

FIGURE 2.12 The XNS layer for
the enablement of the XML/
SOAP computing model

Web services applications

XNS

SOAP

TCP/IP-based application protocols (e.g.,
HTTP, SMTP, FTP)

emerging Web services computing model. Figure 2.12 illustrates the position­
ing of the XNS layer with respect to Web services.

XNS Identity Types

XNS recognizes three types of physical entities that can be associated with
identities. These entities are referred to as identity controllers in XNS; some­
times they are also called identity owners,

• Persons Identities assigned to individuals {personal identity).
• Organizations Also called business identities.
• The general public This extends the space of entities in XNS beyond

just persons and organizations. Objects such as planets and various
Web resources can also be assigned XNS identities. General identities
are controlled not by persons or organizations, but rather by linguistic,
cultural, or scientific conventions and remain under the auspices of
XNSORG. This is somewhat a departure from the traditional meaning
of an identity in computing. XNS identities extend beyond the realm
of active entities such as end users and programmable agents.

Each of these three entities can be represented by one or more XNS iden­
tities. An XNS identity is not one-to-one with its controller or in general
terms the entity with which it is associated. Nevertheless, XNS is capable of
maintaining the relationships across multiple identities of the same principal
in a way that results in a single logical identity. We discuss this in further
detail below.

The XNS Identity Document

Identity information traditionally referred to as a user account is encapsu­
lated by an identity document that maintains various elements profiling an
entity including a set of associated attributes. These attributes or, in generic

62 2. Introduction to Identity-Management Models

TABLE 2.3 Abstraction of an identity in XNS.

Data Element Description

Identity Type Determines the classification of an identity which can be a person,
organization, or general.

Memberships A list of XNS groups to which this identity belongs.
PublicKey The certified public key bound to this identity.
Types A Hst of various XNS-typed objects containing attributes associated with

this identity, links to other identities, contracts and so forth.

terms, XNS objects are expressed using data types that are defined in XML.
XNS as such operates on a distributed database of identity documents. Each
document is a highly structured object that contains the abstracted XNS data
types described in Table 2.3, a generic instance of which is illustrated in
Figure 2.13.

IDs and Names in XNS

An XNS identity (ID) is a logical abstraction of a semantic identity referred
to as an XNS name and also called a named URI. An ID is invariant as
opposed to the attributes of XNS names with which it may be associated.
Once an ID is generated, it remains unchanged, persists, and is globally
unique, while a name generally has a fixed lifetime, a fixed scope, and

Identity document

Type

Memberships

PublicKey

Attributel

Attribute2

Link

I
t7
V FIGURE 2.13 Abstract view of an

identity document

The XNS Approach to the Global Web Identity 63

context. XNS names are mutable semantic identifiers that are unique only
within a particular name space. IDs are assigned once and never reissued.
When a named entity is terminated, its ID is retired. The requirement for
an XNS ID to persist is satisfied by the ID service generating and handling
a globally addressable construct in the form of a uniform resource name
(URN) [MOAT97].

Links across identities are based on XNS IDs and not named URIs. XNS
supports moving identities to new hosting environments without breaking
the links. Figure 2.14 illustrates the concept of identity abstraction in XNS.
Names are handled by the name server, while IDs are handled by the ID
server of XNS. A name is linked to an existing ID when it is first registered
with the name server. Releasing a name results in removing the link to the
corresponding ID.

XNS Resolvers

As we have noted the association between XNS IDs and names is one-to-
many. The ID service and the name service of XNS are capable of resolv­
ing an ID to a name and a name to its identity address, respectively. An ID
is resolved to the named URIs with which it is associated. These URIs are
used to channel communication to the identity hosted at a network end-
point. It is worth noting that the addressability of an XNS identity is what
brings identity management in XNS to a logical layer analogous to content
in the World Wide Web. A hosting endpoint provides XNS hosting service
to other identities defined at the same network endpoint. A hosting end-
point is associated with a host identity document that specifies among
other things a list of transport protocols over which the host accepts XNS
communications. The host forms the backbone of the community that it
serves. Identity URIs are scoped by the identity of the system in which they
are hosted. Figure 2.15 depicts the layering of XNS components involved
in resolving identities.

XNS ID

FIGURE 2.14 Abstracting semantic identities in XNS

64 2. Introduction to Identity-Management Models

Name

ID (URN)

JI
Address

Computing Node

FIGURE 2.15 Resolving identities in XNS

Cross-Referencing XNS Identities

An entity such as a person may be associated with multiple XNS identities;
each identifies the person to a particular domain of operations such as an
organization, a community or a particular business. The proliferation of mul­
tiple identities per physical entity such as an individual person, although
comes vŝ ith all the complexities of identity management, it has become a
common practice in computing. XNS builds on such existing identity para­
digms and practices only to further enhance them. Multiple-identity docu­
ments ov^ned by the same entity logically represent a single entity and thus
generally contain common profiling information such as a person's name,
home address, telephone number, and physical attributes. XNS allov ŝ iden­
tity documents controlled by an individual entity to be cross-referenced so
that a logical equivalence is established across such documents. Any XNS
object in an identity document can be cross-referenced with another
XNS object in a different identity document anywhere in the XNS network,
including an entire identity document. Shared attributes can thus be recog­
nized across multiple hosting communities and can be seamlessly synchro­
nized. This behavior is provided subject to the discretion of the identity
controller. A person, for instance, may prefer to maintain separation across
multiple profiles he or she owns, thereby remaining anonymous or pseudon­
ymous. XNS cross-referencing is expected to dramatically simplify user pro­
file management, and authentication and leads to a reliable capability of SSO
in particular. Figure 2.16 illustrates identity cross-referencing in XNS.

The XNS Approach to the Global Web Identity 65

Equivalent
identity documents

Source
identity document

FIGURE 2.16 Cross-referencing XNS identities

Forming Trust Relationships in XNS
Access to identity attributes can be exposed to the public in general or can be
constrained based on a policy adopted by the holder of the identity. The flow
of identity attributes is a key enabling aspect of electronic commerce and
transactions over the Web. Concern over privacy is a major issue that arises
with the dissemination of user profile information. XNS takes a novel step in
exposing identities over the Web. Support for privacy and protection of iden­
tity attributes transacted over the Web is fundamental to XNS. Transacting
over such attributes is performed under the mutual consent and agreement of
the parties involved using a negotiation service that is currently being speci­
fied in the XNS protocol.

XNS defines the trust relationships among its managed identities via con­
tract links that can be embedded within identity documents. A contract is a
uniquely identified construct that governs the exchange of attributes with
some other addressable identity on the XNS Web. It specifies what data is to
be exchanged, the protection mechanisms to be used for the exchange, and
any policies that govern the automatic propagation of those attributes for
synchronization purposes.

Although confinement of data to the trusted entities remains an issue that
in the end simply falls in real-world trust among entities. Trust relationships
that can be defined in an XNS Web are unbounded. The ability for expand­
ing such relationships and their peer-to-peer aspect is a powerful concept
underlying XNS. Figure 2.17 is a representation of the discrete dissemination
of identity attributes in XNS.

66 2. Introduction to Identity-Management Models

Identity A

Attribute 1

Attribute 2

Attribute 3

Attribute 4

Contract: Address of an XNS
object that governs this link.

ID: Persistent identifier of this
linl<.

Identity: Address of the identity
containing an XNS object to
which this object is linl<ed.

LastUpdate: Date this linl< was
last updated.

Name: Name of this link. l\/lust be
unique within the namespace
within which this link object is
contained.

7
FIGURE 2.17 Identity linking and attribute dissemination in XNS networks

XNS Services
The XNS 1.0 infrastructure specifies a set of component services designed
according to the paradigm of self-describing Web services. These services are
organized along four major functions:

• JJKN services The URN services are at the core of XNS. They represent
the novel concept of addressable identities and weave the identity web
comprised of network actors in the same way DNS weaves network end-
points together. The major aspect here is the separation of semantic
identifiers, (names) from persistent abstract constructs (IDs) [MOAT97].

• Attribute-management services This service manages entity profiles as
represented by collections of attributes expressed in terms of various
XNS basic data types.

Centralized Enterprise-Level Identity Management 67

Exchange and linking services These services allow the secure dissemi­
nation of attributes across identity controllers. Currently a negotiation
service is specified for XNS entities to establish identity transaction
contracts. An introduction service is expected to be developed also. This
service permits an identity linked to two other identities to introduce
those two entities to one another and thus result in a new direct link­
ing relationship.
Credential management services These services allow identity establish­
ment, secure communication of credentials, and the management of
secure associations (sessions).

Centralized Enterprise-Level Identity Management

Administration of identity-management processes is an important factor in
controlling the cost of computing in large enterprises. Typically, the comput­
ing infrastructure of such an enterprise is composed of various resources dis­
tributed over a local or a wide-area network. These resources may include
nodes of different operating-system platforms, a large number of application
subsystems such as data-base systems and human resources repositories, Web
application servers, directories, and possibly business applications that require
managing user subscriptions. Such might be the case in a utility computing
infrastructure providing services on demand. Each of these subsystems typi­
cally has its own identity registry. Managing each such registry separately
inhibits scalability as it can easily introduce errors, and inconsistencies and
may become very costly. Over a period of time, the growth of the computing
resources will undoubtedly increase the complexity of managing the enter­
prise identity systems and may lead to loss of control when a large user pop­
ulation and a myriad of systems are in use.

Centralized identity management is an appealing solution to large enter­
prises. It is likely to reduce management costs and most important will enforce
an element of control within the enterprise. It enables a single view of the mul­
titude of systems in the enterprise, provides a consistent interface to all these
systems, and unifies identity-management processes. The emerging model of
centralized identity management defines a centralized layer that sits on top of
existing systems, thereby enabling a common perspective to all managed sys­
tems. Figure 2.18 shows a high-level illustration of the centralized identity-
management model. The different shapes showing managed systems represent
the heterogeneity of systems that can be managed. The organizational struc­
ture of an enterprise is defined in the identity manager and managed objects
such as suborganizations and end users are all defined at this layer. User access
to a target managed service is represented by an account for that service. An
end entity such as a person is in a one-to-many relationship with the set of
available accounts. Attribute synchronization across various accounts of a sin­
gle entity may be performed automatically if so desired.

68 2. Introduction to Identity-Management Models

FIGURE 2.18 A high-level view of centralized identity management in the enterprise

Based on the data model adopted, v̂ e distinguish among tŵ o schemes of
centralized identity management systems. We refer to the first one as the uni­
fied representation of identity and the second one as the decoupled identity
representation scheme. But first we elaborate on tvv̂ o major benefits of a cen­
tralized identity-management system.

Synchronizing Identity Attributes

The side effect from updating attributes of a given entity at the level of the
central identity manager may result in propagating the change to all or a
subset of accounts associated with that identity on the managed systems.
An example would be the synchronization of a security credential such as a
password or a public key certificate on all systems and services in which the
entity possesses an account. Attribute synchronization can be subject to
various policies that may govern the underlying attribute. A password pol­
icy, for instance, may have different variations on each of the managed sys­
tems. In the event an attribute obeys different rules, it is treated differently
on each of the managed systems, even when semantically it represents the
same construct.

While a centralized identity manager may be mostly concerned with
attributes being updated centrally and then pushed down to the managed
services, updates that are initiated at the target services need to be accom­
modated as well. For instance, an individual that performs a password
change while directly interacting with a managed UNIX system may result
in the update propagated to other managed systems, including the central
identity manager.

Centralized Enterprise-Level Identity Management 69

Policy-Based Identity Provisioning

Automation of account provisioning on the managed services and systems is
an important element of reducing cost in enterprisew^ide identity manage­
ment. Once an entity such as a user is defined to the central identity manager,
it is likely that the same entity will require creation of accounts on one or
more of the managed services and systems. Policy-based account provision­
ing refers to setting up provisioning policies to perform this automation
process. Such policies can be based on various conditions such as role, posi­
tion within the organization, or possession of a particular attribute. They
should be easy to develop, be flexible enough, and allow for coarse and fine
granularity. For example, a coarse policy may state that all users in a partic­
ular organization will automatically have accounts on a designated managed
service. A finer policy may state that such accounts be created only to indi­
viduals with a particular job function.

Unified Identity-Representation Scheme

In this scheme, the centralized identity manager defines and maintains a
superset of attributes that can be assigned to a managed entity such as an end
user (Figure 2.19). Managed target services contribute to this overall super­
set of attributes by introducing attributes of their own. A managed service
therefore may be aware of only a subset of the overall attributes. A record
with the full set of attributes is maintained for each managed entity by the
central identity manager. Some attributes in this record may not necessarily
have values assigned to them. For example, a user that does not have an
account on a particular service will not require values for any of the attributes
that are specific to that service. A mapping may be needed to relate an attrib­
ute defined by the central identity manager to the corresponding attribute on

Attributes defined by the central-identity manager

ai %

r
ai 32

^3 34

^3

^1

34

32

%

\

^3

% 1
r

% ai

^

an

32 ^3 % ^7

'̂ _ ^ _̂ _>' -^ N ^

Attributes defined by each managed service

FIGURE 2.19 Attribute relationships between the central identity manager and the
managed services in the case of the unified identity-representation scheme

70 2. Introduction to Identity-Management Models

a managed service. This definition would take place during the process of
defining the managed service to the identity manager. Multivalued attributes
are used to maintain the fact that the same attribute is assigned different
values depending on the target service in which the entity has an account.
For example, due to conflicting identity policies, a user identifier (uid) may
be required to have different values on each target service where an entity
maintains an account.

This scheme offers the benefit of maintaining all identity data in one cen­
tral repository in addition to the fact that data is replicated piecewise across
the managed services. Attribute retrieval operations therefore can be
processed at the identity manger layer and do not require involving the man­
aged services.

The drawback of the unified-identity-representation scheme is that it does
not easily allow for dynamic changes to the schema representing the unified
identity. Such changes can be easily introduced when a managed service
defines attributes of its own and they are not already known to the identity
manager layer. The change in the identity schema as such may require recon­
figuring the identity-management system. Furthermore, one cannot expect to
indefinitely keep defining new attributes that are sparsely common to the
managed services.

Dynamic Definition of Identity Attributes

If we think of a representation of an identity as being a set of attributes and
associated values, the first of the issues addressed in such a unified identity-
representation model is the size of attributes that can possibly be assigned to
an identity. Each of the target-managed services may contribute its own set
of attributes that may or may not be common with other services. The uni­
fied identity that is visible at the centralized identity-manager level may
require dynamic redefinition and potentially will be associated with more and
more attributes. These dynamic changes may require periodic redefinitions in
the data model used by the central-identity manager. Implementation exam­
ples include a change in the schema used by an underlying LDAP repository
or that of a relational database system. Due to the impact of redefining the
set of unified attributes that an entity may possibly have at any of the man­
aged systems, careful thought needs to be given to the set of attributes to use
early in the deployment stage of a centralized enterprise-identity manager.

Decoupled Identity-Representation Scheme

In this scheme, the central-identity manager maintains the values of a fixed
set of attributes for every managed entity. Data relating to service specific
attributes is kept at the target service. The identity manager remains aware
of the schema for the attributes of the managed service, however. The key
benefit here is the flexibility by which a service can be added to the identity-
manager pool of managed services without impacting the overall data

Example: IBM Identity Manager 71

schema of the identity manager. Any operations that apply to attributes that
are service specific will require the interaction with the underlying managed
services. Availability of these services, therefore, is necessary, whereas in the
unified-identity-representation scheme such operations can take place in
the identity manager and be scheduled to side-effect the managed service later
when the services are available. Figure 2.20 illustrates the attributes relationship
for this scheme. Attributes Z?. are specific to the managed services.

Example: IBM Identity Manager

The IBM-Tivoli identity-manager (TIM) product adopts the unified identity-
representation scheme that we previously defined and represents the latest in
enterprise identity-management technologies. TIM maintains identity infor­
mation about the entities that it manages in a central LDAP repository where
an organization is modeled as a hierarchical structure that is horizontally scal­
able. A large number of related or independent organizations can coexist
below a single root organization. TIM is a Web-based application that exe­
cutes within a Web application-server (WAS) environment. Its design is highly
modular and is composed of various independently developed components,
each of which addresses a separate concern. Examples include workflow man­
agement, policy management, identity and password policy management, as
well as reporting. But most important perhaps is the remote-services compo­
nent that enables distributed systems and application subsystems that may
exist in an enterprise to become TIM-managed resources. As a demonstration
of its modularity, a special such managed resource is the TIM service in itself
Managed services and systems can be incrementally added as needed. The
interaction of TIM with a managed service is accomplished through the
deployment of a service agent, also referred to as an adaptor or a connector.
A service agent acts as the intermediary to the managed service, and thus from
one side it adheres to the protocol interactions with TIM that are common to

Attributes defined by tlie central-identity manager

ai ag ^3 ^1

r
ai % %

\

ai 1 ̂ 2 %

^

r

w

^fixed

^1 32 ^3 ^6 bnj
^ ^ —-V V

Attributes defined by eacli managed service
FIGURE 2.20 Attribute relationships between the central-identity manager and the
managed services in the case of the decoupled attributes representation scheme

72 2. Introduction to Identity-Management Models

Repository

Tivoli identity manger
Web application

Agent

Operating
system platform

Agent

Application

FIGURE 2.21 A high level view of the IBM-Tivoli identity manager structure

all agents, while on the other side it interacts v^ith the target service using the
service's native protocol interface.

The modeling of an enterprise in TIM begins with the definition of the
hierarchical organizational structure. Each user of the enterprise is repre­
sented as a person entity. Such entity becomes an active user of any of the
managed services, including TIM, by way of acquiring an account for that
service. In which case, the user is said to be provisioned on the target service.
Each service may contribute its own subset of identity attributes. Various
policy-based rules can be used to automate identity provisioning within an
organization structure. Synchronization of identity attributes across multiple
managed services can also be achieved. Furthermore, reconciliation of exist­
ing identity registries with the TIM central repository can be performed.

TIM access-control mechanism enables flexible controls over the managed
entities and objects residing in its repository, which is further enhanced
through delegated administration support. Controls can apply at a coarse
level (such as an organization) or at a much finer level (such as an identity
attribute). TIM adopts a role-based model in its provisioning policies as well
as in the controls it asserts over the managed constructs. Figure 2.21 repre­
sents a high-level view of the logical structure of TIM.

Chapter 3

Elements of Trust Paradigms in
Computing

Introduction

Assurance in an identity is established by way of authenticating it. The entity
claiming to hold a particular identity asserts its claim by providing verifiable
information to the authenticating entity. Trust in identity authentication is
founded on computing the following assertion: The entity performing authen­
tication is presented with information that only the entity being authenticated is
able to provide. This information is referred to diS proof of possession (POP) of
identity. The authenticating entity establishes trust in this process through a
secure verification of the presented proof

While in Chapter 1 we discussed various authentication factors, the POP of
an identity has traditionally been based on shared secrets or derivatives
thereof, something the holder and the verifier of the identity know. The advent
of public key cryptography has led to establishing identities without having to
disseminate shared secrets, provided assurance in the binding between a pub­
lic key and the identity being authenticated can be reliably established.
Advances in network-distributed computing have pushed the scope of an
established identity beyond the boundaries of hosting systems and local net­
works to larger networks as wide as the Internet. An established identity yields
a verifiable security context, the strength of which depends on the processes
involved in providing an identity POP. We refer to the components that estab­
lish and maintain the flow of secure contexts as identity trust mechanisms.

We survey the major paradigms and mechanisms of identity trust in com­
puting. The objective is to highlight and classify the core techniques known
to date. Although some specific ones are broadly discussed, we do not intend
to enumerate all known techniques. Even when the elegance, strength, and
soundness of one method or another can be apparent, we do not recommend
a specific one. The intent is to expose the elements of trust that characterize
each method.

Although other aspects such as policy management and enforcement as
well as access-control subsystems are all relevant to trust [ABAD93,
BLAZ96, BLAZ99, GRANOO, LAMSOl, GRAN02], it is evident that trust

73

74 3. Elements of Trust Paradigms in Computing

in identity is the gate to all other factors of trust-management systems. As
such, our definition of trust here is specific to the confidence and assurance
in an identity. Trust in real-life practices is relative and can be rated along a
continuum scale varying from weak to strong [SHAN02]. Trust forms an
inverse relationship with the level of risk that can be associated with
processes, programming agents, and individuals [KONR99]. Trust as it relates
to identity is a reflexive relationship but not always transitive, symmetric, or
associative. However, transitive trust, also referred to as delegation, can be a
key requirement along a particular chain of computing tasks in the same way
it can be relied on by individuals accomplishing manual processes.

Brokered trust or trust through a third party has emerged as one of the key
trust paradigms. We classify third-party authentication schemes in two cate­
gories. We refer to the first one as the explicit model, while we call the other
one implicit. We give examples of each, with detailed descriptions of the trust
elements of Kerberos being the most elegant of third-party authentication
protocols. The details of trust in the public key model including the Internet
public key infrastructure are presented. We conclude by reviewing three
mechanisms for expressing and conveying trust over the web. These are the
emerging Web services security, the security assertion markup language, and
Web cookies.

A Third-Party Approach to Identity Trust

The local paradigm of identity management, as we discussed in the previous
chapter, implies that user-identity information be maintained in the user reg­
istry of every system used. Furthermore, a user's shared secret under which
the element of trust is built (e.g., a password) is expected to be different for
each system accessible by that user in order to minimize the scope of a poten­
tial compromise. The complexity of managing multiple passwords and
secrets, therefore, increasingly becomes an inconvenience to end users as well
as to programming agents that rely on them.

Local identity management recognizes each identity as a local construct
that is defined within the scope of the system in which it is known. Identity-
and trust-management relations in this case can be modeled as a bipartite
graph in which n users and m computing systems are tied through the shared
secret relationship. As Figure 3.1 illustrates, this requires managing n x m
relations.

The complexity and lack of scalability inherent to the local identity- and
trust-management model has led to the emergence of the third-party authen­
tication scheme. Here a single host in a networked environment is designated
as the sole entity trusted by all of the participants in the network, such as
users, computing systems, and applications. The user registry maintained by
this third-party service contains identity information for all network partici­
pants. Trust is founded on the secret shared between each entity and the

A Third-Party Approach to Identity Trust 75

FIGURE 3.1 Managing secret sharing relationships
in the local identity model

Ô

ü'̂

ü"̂
o^

^ ^ ^

^ ^ - ^ ' ^ ' \ ^

=:5i-r^
^ W

Users Systems

third-party authentication service. No entity in the network has any direct
trust relationship with any of the other entities. Two authentication para­
digms that are based on third-party have emerged:

• Implicit authentication by secure introductions of entities to one
another via a known and trusted third party-entity and

• Explicit authentication of an entity by invoking a third-party authen­
tication service.

In the first scheme, authentication is cryptographically deduced from the
secret shared by an entity and the third party, while in the second case,
authentication is explicitly requested from a third party by the authenticating
entity. Figure 3.2 illustrates the secret sharing relationships that are in place
when an implicit third-party authentication scheme is in use. Providing
authentication across n users and m computing services requires managing
n^-m secrets, a considerable decrease from « x m required for direct identity
relationships between users and destination systems and services.

FIGURE 3.2 Reducing the complexity
of managing cross-entity authentica­
tion relationships using a third party Users Systems

76 3. Elements of Trust Paradigms in Computing

Essentially, a third-party authentication scheme recognizes two broad
entities:

• A third-party authentication service and
• The rest of all other entities.

All of the entities participating in a third-party authentication realm form
peer relationships to one another with respect to authentication. As shown in
Figure 3.3, the differences between entities of a third-party authentication
realm are inexistent. The third party has a consistent view across all entities
regardless of whether an entity acts as a client or a server. Each of such enti­
ties is now abstracted under the term of a principal

Below we discuss the Kerberos authentication protocol as being the most
reliable and well-known third-party authentication system to date. Kerberos
follows the implicit authentication paradigm, as we outlined above. We also
discuss the mechanisms suited for the third-party authentication that fall
along the explicit paradigm.

Kerberos: The Implicit Third-Party Authentication
Paradigm

Kerberos is the name that became famously associated with the third-party
authentication protocol developed at the Massachusetts Institute of
Technology (MIT) in the 1980s. The ideas preceding Kerberos go back to the
work published by Roger Needham and Michael Schroeder, in which the
third-party authentication concept was introduced [NEED87]. Here a third-
party key distribution center (KDC) is trusted by every entity participating in
a distributed computing environment to maintain its secret key (i.e., every
entity shares its secret key with the KDC). As a result, the trusted KDC

^ FIGURE 3.3 Peer-to-peer authentication
relationships enabled by a third-party

Principals scheme

Kerbers: The Implicit Third-Party Authentication Paradigm 77

becomes responsible for the secure introduction of the participating network
entities to one another. Trust is founded on the simple fact that two entities
A and B that wish to communicate with one another are introduced to each
other by the trusted KDC. Trust is not assumed. It is rather computed based
on the following:

Entity A whose secret key is known to the key distribution center authen­
ticates itself to the KDC by presenting its proof of possession. The KDC,
also knowing the secret key of entity B (peer of A), communicates its
authentication of entity A to entity B (indirectly via entity A). Trust in this
communication is based on a channel encrypted with a key derived from the
secret key shared between the KDC and entity B.

A High-Level View of the Kerb er os Protocol

Three entities are engaged in the Kerberos protocol sequence:

• An initiating client,
• The third-party Kerberos server acting as the KDC, and
• The target entity, such as an application server.

A successful execution of the protocol steps results in the authentication of
the client to the application server, via the third party, and establishes a mes­
sage protection channel that is governed by a secret session key between the
two entities. Kerberos v5 has evolved into an Internet standard that is widely
implemented [KOHL93].

The underlying data construct used in Kerberos is called a ticket. A client c
establishes its identity with a target server s by presenting a ticket denoted by
r̂ ^ issued by the Kerberos server and an authenticator denoted by A^. The
authenticator protects from replay attacks and indicates the freshness level of
its accompanying ticket by carrying a timestamp.

In the first message of this protocol sequence, the client contacts the
KDC, identifies itself and, presents a nonce such as a timestamp or some
nonrepeating value identifying the request. On receipt of the message, the
KDC generates a random encryption key K^ ̂ ^̂ , called a session key, and con­
structs a special ticket, the ticket-granting ticket (TGT), intended for use
with the ticket-granting service (TGS), a component of the Kerberos server.
The TGT identifies the client, contains a session key, and indicates the life­
time of the ticket (start and expiration times). The ticket is then encrypted
using the secret key K of the TGS that it shares with the KDC and is sent
in the response to the client. In addition to the ticket for the TGS, the
response includes the session key and a nonce, both of which are encrypted
in the client's secret key K^ (a derivative from the client's password). The
client receives the response, decrypts the portion that is encrypted using its
secret key, and thus unravels the session key K^^^^, used to establish an
encrypted channel with the TGS.

78 3. Elements of Trust Paradigms in Computing

The acquisition of the ticket first for the TGS instead of a target appUca-
tion server is introduced to reduce the risk of exposure of the client's secret
key K^, Once a TGT for the TGS is acquired, the client has no need to keep a
copy of its secret key in the runtime environment. With respect to clients, the
TGS represents no distinction from any server, such as one representing a
business application. The TGS represents a logical distinction from the KDC
but is physically colocated on the same host and has access to the same reg­
istry of keys, as does the KDC. Furthermore, both the KDC and the TGS can
be implemented as separate components that run in the same address space.

A cUent that has successfully acquired a TGT for the TGS becomes ready
to request tickets for participating target-application servers. On each such
request, the client presents its TGT to the TGS and identifies the target appli­
cation. The TGS verifies the ticket, along with the authenticator and the
associated request information. It then replies with a ticket for the target
application. The reply is protected using the session key with the TGS (as
determined from the TGT). The client uses its session key with the TGS to
extract its new session key with the target service. It forms a fresh authenti­
cator, encrypts it with the session key, and sends it along with the ticket to the
target application. If the client requests mutual authentication from the
server, the server responds with a fresh message encrypted using the session
key. This establishes the fact that the server used its own secret key to decrypt
the ticket and determine the session key. Figure 3.4 illustrates the steps of the
Kerberos V5 protocol.

(1)
(2)

(3)
(4)

(5)

Client —> KDC: c, tgs, nonce
KDC -^ CUent: {K^ ,^, nonce } K^, {T^ ,^^} K,^^
Client ^ TGS: {AJ K^ ,̂ „ {T̂ ,^,} K,^^, s, nonce
TGS ^ Client: { K^,, nonce } K^ ,̂ ,, {T^^} K^

Client ^ Server: {A^} K^^AT^) K^

FIGURE 3.4 Kerberos V5 protocol steps

Kerbers: The Implicit Third-Party Authentication Paradigm 79

Federated Kerberos

Each Kerberos server is responsible for providing secure identity and trust
management to a single realm. A realm has well-defined network boundaries
and is made of a finite number of participating entities, such as hosts and
applications. A large network may suffer from the bottleneck exhibited by a
single Kerberos server managing identity trust for the entire network.
Scalability of Kerberos can be an issue for large networks. Kerberos
addresses this problem by dividing a large network into separate domains;
each is supported by its own Kerberos server. Cross-domain relationships are
provided by the inter-realm trust feature of Kerberos. This feature enables a
client from one realm to obtain a ticket for a service that resides in another
realm, referred to as 2i foreign realm. The aggregation of all realms in this
fashion makes it seem like a single large domain of trust.

Interrealm trust in Kerberos is based on sharing secret keys between ticket-
granting services of cooperating Kerberos domains. Recall that each TGS is
like any other entity with respect to its local KDC. A client obtains a ticket
for a server in a foreign realm by first obtaining a TGT to the remote TGS
from its own local KDC. Figure 3.5 illustrates the protocol steps used by
Kerberos V5 in support of the cross-domain trust relationship. It is assumed
that the client is already in possession of a TGT to its local TGS.

f Local ^

tgs^ ^ ^ c tgs

(2) TGS,„,„,^ Client: {K,,^,} K^,^„ {r^,,,.
remote

\ K
^remote' ^•'•S'»' - ^>'-^^remote ^S^remote

(3) Client -^ TGŜ ^̂ ^̂ :̂ {A^ K^ ^^^ ̂ ^^^^^, {T̂ ^^^ ^^^^^^} K^^^ ̂ ^^^^^, s^^^^^

(4) TGS^^^ ,̂̂ ̂ Client: { K^ ̂ , remote } K^^^^ , { r ^ } K^ ^
rtrnuit c, ^ (^ t^^^ remote ^ ^ remote '^ remote

(5) Client ^ Server̂ ^ ,̂̂ -{AJ^.s , ' {?-„ } K^ ,
rt:mun: c t, o remote ^ ^ remote •* remote

FIGURE 3.5 Kerberos protocol steps for cross-realm establishment of trust

80 3. Elements of Trust Paradigms in Computing

A Topology of Kerberos Federations

Bidirectional interrealm trust in Kerberos requires a pairwise of key
exchanges. Applying this arbitrarily to a set of n realms yields 0(n^) key
exchanges. This topology can be modeled by a directed-complete graph in
which the nodes represent the realms and the edges represent key exchanges,
as shown in Figure 3.6 for five realms.

To alleviate the problem of having to deal with a large number of key
exchanges, a Kerberos Version 5 specification recommends organizing the
realms in a hierarchical structure. Key exchanges across ticket-granting servers
from various realms are performed only along this hierarchy structure.
Specifically, key exchanges take place across realms that are directly descend­
ing or ascending from one another. Exceptions to this rule are referred to as
shortcuts where two realms unrelated by the hierarchy relationship are directly
joined via a key exchange to optimize heavily used paths. A hierarchy defined
along domain names of the participating realms is a natural fit. The number
of key exchanges required by this topology is 0(log(«)). Figure 3.7 illustrates
the hierarchical interrealm trust in Kerberos. The dotted edge represents a
shortcut.

When an application needs to send requests to a server in a foreign realm,
it traverses the tree upward, downward, or through shortcuts until the desti­
nation realm is reached. In each step of this traversal, a TGT is acquired for
the next foreign TGS.

Ticket Forwarding

Kerberos supports authentication forwarding, also referred to as delegation in
the form of impersonation. Here an entity that has authenticated to the KDC

REALM 1

REALM2 REALMS

REALM4 REALMS

FIGURE 3.6 A pairwise key exchange across five realms modeled using a complete
graph

Kerbers: The Implicit Third-Party Authentication Paradigm 81

REALM1

REALM2

\l/

REALMS REALM4

^ ^

REALMS k-

FiGURE 3.7 Cross-realm hierarchical key exchange

(i.e., holds a valid TGT) delegates its authenticated context to another entity
on a local or remote host. Thereafter, the delegated entity impersonates the
original entity and may acquire tickets to downstream servers on its behalf.
An example where delegating credentials is useful is the case of a server that
needs to access a file stored on a network file system that is accessible by the
client only. Such may be the case of a print server, for instance.

Delegation in Kerberos is enabled by way of the client forwarding its TGT
to a server. During the initial TGT acquisition, the client requests that the
ticket be marked forwardable. The session key established between the client
and the TGS is also forwarded to the target server so that it can form a fresh
authenticator as it attempts to acquire a service ticket from the TGS.

Entitlement Attributes in Kerberos

In addition to serving the purpose of authenticating clients to target services,
a Kerberos ticket may contain a set of authorization privileges that are asso­
ciated with the holder of the ticket. The following definition expressed in
Abstract Syntax Notation 1 (ASN.l) illustrates the structure of authorization
information contained in a Kerberos ticket.

Ticket

}

= [APPLICATION 1] SEQUENCE {
tkt-vno[0]
realm[1]
sname[2]
enc-part[3]

INTEGER,
Realm,
PrincipalName,
EncryptedData

EncTicketPart :: = [APPLICATION 3] SEQUENCE {
flags[0] TicketFlags,
key[1] EncryptionKey,
crealm[2] Realm,

82 3. Elements of Trust Paradigms in Computing

cname[3] PrincipalName,
transited[4] TransitedEncoding,
authtime[5] KerberosTime,
Starttime[6] KerberosTime OPTIONAL,
endtime[7] KerberosTime,
renew-till[8] KerberosTime OPTIONAL,
caddr[9] HostAddresses OPTIONAL,
authorization-data[10]

AuthorizationData OPTIONAL

}
AuthorizationData ::= SEQUENCE OF SEQUENCE {

ad-type[0] INTEGER,

ad-data[l] OCTET STRING

}

Authorization information is marshaled in a Kerberos ticket as a sequence
of {ad-type, ad-data) value pairs with ad-type representing the parameteriza­
tion factor. This parameter is an integer that classifies the value of the
authorization attribute with which it is associated. Negative values are
reserved for local use. Nonnegative values are reserved for registered use (i.e.,
one that is known to the Kerberos community at large). The fact that the data
type of an authorization attribute is a stream of octets allows it to be exten­
sible and dynamic.

Cross-realm support in Kerberos enables the federated management of
user entitlements over widely distributed computing resources. Principal enti­
tlements are maintained by the Kerberos service associated with the realm in
which the target service resides. This is expressed by the fact that a principal
obtains a service ticket directly from the TGS of the target service's realm.
Authorization privileges and user-profile attributes fit well with the local
management paradigm in which access control is performed by the local
resource managers. In this approach, the semantics of entitlement attributes
are locally scoped, and thus ambiguity and collision among attribute names
are prevented. The security model enabled by Kerberos therefore follows the
paradigm of global authentication and local management of authorization.
The latter encompasses the semantics of access privileges and provides
resource-access control. Adherence to this paradigm is an important aspect
of identity and trust management in highly distributed computing models.

A Kerberos service ticket carries information about the home realm of its
holder in the crealm field. This field indicates the name of the realm in which
the client is registered (i.e., with which the client explicitly authenticates).
Resource managers that receive service tickets from principals in foreign
realms can further qualify the semantics of the access privileges and entitle­
ments by the foreign realm. This adds another parameterization factor that
can be used to scope or distinguish among entitlements for local versus for­
eign principals. For instance, attribute A from a foreign user's profile may
require more stringent trust-verification procedures than when that same
attribute is associated with a principal that is local to the realm of a service.

Explicit Third-Party Authentication Paradigm 83

A Kerberos identity is always qualified with the name of the realm in which
it is defined. Even when two principal names from different realms are identi­
cal, they differ when qualified by the respective realms. Principal name colli­
sions across realms are therefore eliminated. The partitioning of Kerberos
naming space along realms plays an important role in the federated trust of
Kerberos. This information is reliably and securely carried in the encrypted
portion of a Kerberos ticket.

Explicit Third-Party Authentication Paradigm

The third-party authentication method via entity introductions is a novel
approach that advanced the state of art in the field of authentication, partic­
ularly with the development of Kerberos. A number of aspects, however,
characterize this model with some level of rigidity. For one thing, it requires
all participating entities to adhere to a predefined authentication protocol.
Programmers need to abide by a relatively advanced programming model,
and the protocol has a degree of infrastructure complexity built into it. The
predominant alternate approach is a much simpler one, easy to use but of
lesser strength and eloquence. This approach uses an explicit authentication
scheme in which the authenticating entity does not manage its own user reg­
istry; instead, it calls out to a third-party service or subsystem.

The explicit paradigm of third-party authentication is based on the principle
of outsourcing the authentication process within a distributed environment to
a third party that manages an identity repository, performs authentication, and
dispenses entity entitlements. Typically, an application server directly receives
an authentication credential such as an identity and a password from a request­
ing client. The credentials are then forwarded to the third party for authentica­
tion as well as the retrieval of entitlements. Various forms of third-party entities
have been used for this purpose. An example is a database system against which
a user credential is validated (e.g., by attempting to connect to a database using
the user's credential). A widely used third-party registry is the hierarchical
X.500 directory service exposed through the LDAP protocol [HOWE03,
WAHL97, HOWE95]. Here an identity is established by way of a successful
bind operation to the directory using the credential supplied by the client.

This trust model is characterized by being loosely coupled in that the inter­
acting entities are not required to participate in a well-defined protocol
sequence. The client communicates with the target service using application-
level interfaces. Similarly, the server engages the third-party entity using
interfaces specific to that third party. The target-application service, in par­
ticular, needs to secure the communication channel used for the transmission
of credentials between the client and the application, on one hand, and the
application and the third party, on the other hand. Typically, a secure socket-
layer (SSL) [FREI96] channel is used for that purpose. This model offers the
advantages of simplicity and extensibility. Connectors to various third-party
identity services can be incrementally built and used.

84 3. Elements of Trust Paradigms in Computing

Plugging an application server with a third-party identity and trust man­
ager in this fashion is exploited by a number of evolving Web application
servers (WAS) such as IBM's Websphere [IBMC03]. Websphere further gen­
eralizes this approach by abstracting the third-party authentication services
and repositories in what is referred to as a pluggable authentication mecha­
nism. This can be represented by an LDAP service or some native operating
system repository such as IBM's RACF or one that is customized. Figure 3.8
illustrates the third-party explicit authentication paradigm.

The Public-Key Infrastructure Approach to Trust
Estabhshment

Public-key cryptography was developed with a revolutionary concept— t̂hat of
establishing trust without having to share secrets. The premise of freely dis­
seminating a public key, however, remains a proposition that nevertheless
comes with cost, as well, perhaps only less than that of distributing secret keys.
Security services, particularly origin authenticity, rely on the single foundation
that a particular public-key material is indeed bound to its legitimate user. The
public-key establishment problem relates to trust in the binding that exists
between a subject and a public key. The novel paradigm brought about by
public-key encryption relies on the fact that public keys are intended to be uni­
versally accessible. As long as the binding of a public key can be securely
established, the key material can be distributed over secure and nonsecure
channels and stored in public repositories. An established public key is one
that exhibits the property of being securely and unambiguously associated

Directory

Database
system

Nativeoperating
system

FIGURE 3.8 Layout of an explicit third-party authentication scheme

The Public-Key Infrastructure Approach to Trust Establishment 85

with its legitimate owner. This association should remain invariable no matter
the transport over which the key is being communicated or the storage
medium in which it resides or an execution runtime where it is processed.

In the Internet world, public-key establishment is defined through the
X.509 digital certification performed by a trusted third party known as the
certificate authority (CA) [BENA02]. The result of this certification process
is a data construct in the form of an X.509 certificate representing a crypto­
graphic binding between the public key material and its holding entity
referred to as a subject. The foundation of such certification rests on the dig­
ital signature of the authoritative CA vouching for the trustworthiness of
the certified public key and hence the associated private key. We begin by
taking a brief overview of public-key cryptography, pointing out its under­
lying strength in representing trust. An instance of that is expressed by
the capability of public-key cryptography in realizing digital signatures. We
subsequently elaborate on the trust elements that form the foundation for
the Internet public-key trust.

Foundations of Public Key-Cryptography

Public-key cryptography emerged in the mid-1970s with the work published by
Whitfield Diffie and Martin Hellman [DIFF76a, DIFF76b] as well as by Ralph
Merkle [MERK78]. The concept is simple and eloquent yet it has had far-
reaching impacts on the science of cryptography and its applications as a whole.
Public-key cryptography is based on the notion that encryption keys come in
related pairs—^private and public. The private key remains concealed by the key
owner, while the public key is freely disseminated. Data encrypted using the pub­
lic key can be decrypted only using the associated private key and vice versa.

In the following, we consider a simple example that illustrates the dual key
concept of public-key cryptographic systems. We restrict our plaintext to 27
characters drawn from the 26-letter English alphabet plus the blank charac­
ter. We then assign numerical equivalents to our plaintext alphabet sequen­
tially from the integral domain of [0...26] with the blank assigned the
numerical 26. We consider our encryption function E to be the affine trans­
formation that takes in a plaintext character P and maps it into a ciphertext
C as follows:

E{P) = {a*P + b)mod21 = C,

with a and b being fixed integers. Solving for P in terms of C in the prior
equation yields the inverse transformation, decryption D:

D(C) = (a'* C+ b')mod21 = C, where

a'=a~^mod21, and

b' = -a-'*b.

For a to be invertible while computing in Z/27Z, it is necessary and suffi­
cient to have a and 27 relatively prime. That is to say, there is no number that

86 3. Elements of Trust Paradigms in Computing

divides both a and 27 but for the trivial divisor of 1. Note that this condition
guarantees a one-to-one mapping between P and C Z/27Z is the set of equiv­
alence classes (residue classes) with respect to the relationship of congruence
modulo 27.

The parameterized affine transformation in the example, and its inverse
can be used for a basic public-key cryptosystem with the private and public
keys being (a, b) and {a\ b% respectively. An example would be to have a = 2
and b = I, resulting in (a\ b') - (14, - 14). The premise here is for an entity
to maintain secrecy of the private key while freely distributing the public key.
An encryption performed using the public key can be decrypted only using
the corresponding private key. Since the owner of a public-key pair is pre­
sumed to be the sole entity with knowledge of the private key, encrypting
information using the private key leads to establishing data-origin authentic­
ity. Furthermore, with tamper-proof storage and manipulation of private
keys, nonrepudiation can be established as well. Besides the provision for
data integrity and confidentiality, public-key encryption is about establishing
authenticity without having to disseminate or manage secrets.

In practice, however, the public-key cryptographic system in our example
is easily defeated, even with its generalization to longer blocks instead of sin­
gle characters. A block of size s yields a ciphering transformation that maps
each block to a value in the range [O...Â ^ - 1], where TV is the size of the alpha­
bet. The weakness of this algorithm rests in the ease by which a decryption
key can be deduced from an encryption key in a deterministic fashion, using
very simple operations (multiplication and additions modulo {N^ - 1)). But
first and foremost is the fact that the encryption function admits a determin­
istic inverse function.

The premise behind public-key cryptography is that it should be computa­
tionally infeasible to compute the private key by simply knowing the public
key. Along this key premise, we discuss some of the mathematical founda­
tions of the processes by which modern public-key cryptosystems derive their
strength and reliability when it comes to the generation of public and private
key pairs. Figure 3.9 is an illustration of the duality between corresponding
public and private keys.

Modern public-key cryptography derives from eloquent mathematical
foundations that are based on the one-way trapdoor functions existing in the
abstractions of number theory. Encryption is the easy one-way trapdoor.
Decryption is the hard direction. Only with knowledge of the trapdoor (the
private key) can decryption be as easy as encryption. Three of these currently
known trapdoor one-way functions form the basis of modern public-key
cryptography, and we discuss them in the next sections.

The Problem of Factoring Large Numbers

The first of the well-known trapdoor one-way functions is based on the ease
of multiplying two large prime numbers, while the reverse, factoring a very

The Public-Key Infrastructure Approach to Trust EstabHshment 87

Encryption
Decryption

Private key Public key

Public key Private key

Decryption Encryption

Key generatte

FIGURE 3.9 The duality between public and private keys in public key cryptosystems

large number is a far more complex task. Factoring an integer n is the process
of finding a series of prime factors, such that their products together yields n.
A prime number, by definition, is one that has no divisors other than 1 and
itself; otherwise, a number is called composite. Factoring large numbers (over
1,024 bits) is known to be computationally infeasible with today's computers
and technology. Modular arithmetic renders the multiplication of such num­
bers a far easier task. Consequently, the one-way trapdoor problem here is to
make a very large number a public knowledge and secretly maintain its prime
factors. Note that the trapdoor function discussed here in essence requires
deciding on whether a randomly picked very large number is prime. Primality
testing is a much easier task than the actual factorization [GORD85].

A number of methods have been devised to determine the primality of an
odd number N. The most trivial of which is to run through the odd num­
bers starting with 3 and determine if any of such numbers divides N. The
process should terminate when we reach /N , Due to the time complexity
that this method requires, in practice it is stopped much earlier before
reaching //V and is used as a first step in a series of more complicated pri­
mality test methods.

The best example of this class of public-key cryptosystems is the Rivest-
Shamir-Adleman public-key algorithm, known by its acronyms of RSA
[RIVE78].

Computing Discrete Logarithms in a Large Finite Field

The second well-known trapdoor one-way function that exists in number the­
ory is the ease of computing a function/that consists of raising a number to
a power in a large finite field, while the inverse function/^ ^ of computing dis­
crete logarithms in such a field is known to be a much harder problem. A finite

88 3. Elements of Trust Paradigms in Computing

field, also known as a Galois field, denoted by GF(p), is the field of integers
modulo a prime number;?, and thus each element a of GF{p) is guaranteed to
have a multiplicative inverse or ̂ that is also in G¥{p\ such that

The time complexity required for the computation off(x) =a^ = yin ZlpZ
is polynomial in log x. Computing x =f~^ (y) = log^ (y) given j^ is a much
harder task known as the discrete logarithm problem. Here both x and ;; are
constrained to be elements of the discrete set ZlpZ as opposed to the much
easier continuous problem in the set of real numbers, for instance (hence the
use of the term discrete in qualifying this problem).

The one-way trapdoor function as defined by the discrete logarithm prob­
lem can be stated as follows:

Knowing a and x, it is an easy operation to compute a^ in Z/pZ (using the
repeated-squaring method). On the other hand, if we keep x secret and hand
someone the value ;; that we know is of the form a^ and ask to determine the
power of a that gives y, they can use up all the computing resources that they
have available but will indefinitely fail to hand back a response.

A number of modern public-key cryptographic algorithms are based on
the discrete logarithm one-way trapdoor function. Most notable is the Diffie-
Hellman key exchange algorithm [DIFF76b] and the El Gamal crypto­
graphic system [ELGA95].

Elliptic Curves over Finite Fields

Elliptic curves over finite fields have been proposed for use with existing public-
key cryptographic systems [KOBL87, MILL86]. Given a point P from an ellip­
tic curve E, defined over a finite field, and an integer a, the one-way function
here consists of the ease of computing the product a*P, while the inverse of
finding a such that a*P results in a point over E is intractable. Elliptic curves as
such form a reliable and secure source for computing public keys. The elliptic-
curve analogs of existing algorithms that are based on the discrete log problem,
such as Diffie-Hellman and ElGamal, can be deduced in a straightforward
manner. The discrete log problem on elliptic curves is likely to be harder to tract
than its counterpart on finite fields. This property has led to the adoption of
elliptic cryptosystems in many situations requiring stringent security measures.

Digital Signatures

The advent of public-key cryptography combined with the strength and reli­
ability of intractable one-way hash functions gave rise to the digital signing
of a document. This process inherently enables data-origin authenticity and
can be strengthened to further withstand repudiation. Using the private key
of a public-key pair to encrypt a data stream automatically binds the subject
with whom the key is associated to the data. The cost of encrypting an entire
document to simply establish this binding can be prohibitive, particularly in

The Public-Key Infrastructure Approach to Trust EstabUshment 89

light of the compute-intensive public-key cryptosystems. Fortunately, the
alternative is eloquent and is computationally affordable as it does not
require encrypting an entire document. Two of the well-known digital signa­
ture algorithms are the RSA and the DSA [NIST94]. We briefly outline the
RSA algorithm below.

RSA Signature

The RSA digital signature algorithm proceeds along two main steps:

• Using one of the common hashing algorithms such as MD5 or SHA-1
[RIVE92, [NIST95], a document is first digested into a much smaller
representation, a hash value.

• Encryption is applied to the hash instead of an entire document

Provided there is no need for a confidentiality service, the signed document
is then transmitted in its cleartext form, and the signature is provided to the
recipient for verification. Figure 3.10 illustrates the RSA signature computa­
tion and verification procedures.

Trusting a Public Key

From the outset, public-key cryptography seems to eloquently solve the key
distribution and management problem introduced by secret key cryptography.

Private key

Document
to sign Hash

function

' r

Digest
Encrypt

Signature

pubiic Vey

\ '

Signature Decrypt
Digest

Document
to verify Hash

function

Digest

FIGURE 3.10 A Generating a RSA signature and B verifying the signature

90 3. Elements of Trust Paradigms in Computing

Anyone can use the public key to encrypt data, but only the owner of the pri­
vate key can decrypt it. A community of users that wishes to communicate in
confidentiality can adopt a public-key cryptosystems, publish the public keys
of its community members in a directory, and completely dispel any concerns
that may otherwise arise when distributing secret keys. Unfortunately, the
secure binding of a public key to its legitimate holder remains a critical prob­
lem on which trust is completely dependent. In a sense, the authenticity of a
public key with respect to its holder is at issue.

One promising answer to the question of assurance in a public key lies in
the certification process that di public key infrastructure (PKI) can provide. At
the heart of a PKI is the digital signature technology that we outlined earlier.
Parties relying on public keys confine their trust in a single entity, known as
the certifying authority (CA). Before a user's public key is disseminated, the
underlying high-assurance CA uses its own private key to digitally sign the
user's key, which is then distributed to a public repository. The concept of a
verifiable public-key certification can be traced back to the work published in
[KOHN78].

A relying party securely installs the public key of the trusted CA and uses
it to verify the signature of each user's public key that might thereafter be
used. Only on a successful verification does the reliant party initiate a com­
munications channel. This simple method of certification thwarts against an
attacker who does not have a public key signed by the same CA as that of the
two communicating parties but fails when the attacker is in possession of a
key signed by the same CA.

To yield a reliable assurance, a comprehensive public-key certification
process necessitates more security elements than simply signing an encryp­
tion key. These elements are embodied in the data construct that is to be cer­
tified. For the Internet realm this construct is called an X.509 Version 2
certificate, and the secure infrastructure that makes it is the public-key infra­
structure for X.509 (PKIX) [HOUS99a, HOUS99b]. We discuss the main
PKI trust elements in the next section.

Foundations of Trust in PKI

An Internet public-key certificate (PKC) provides a high degree of assurance
in the public key that it certifies. At the core of this assurance is a trusted issu­
ing authority that is either the signer of the PKC or one situated along a
chain of certificates leading to that PKC. Such a chain is called a trust path;
its meaning will become clear in the next sections. The trust provided by PKI
is demonstrated by a provable binding between the public-key material and
its associated subject and hence the private key. Recall that the public and pri­
vate keys are mathematically related values that are associated with one
another. In addition to the public-private key pair, the certified binding impli­
cates a set of attributes that a subject may possess. Such attribute may include
an X.500 distinguished name (DN), an electronic mail address, or further yet

The Public-Key Infrastructure Approach to Trust Establishment 91

{-- the signed portion

Version number
Serial number
Signature algorithm
Issuer name
Validity period
Subject name
Subject public key
Issuer unique identiHer
Subject unique identifier
Extensions
}

v3
xxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxxxx
xxxxxxxxxx

xxxxxxxxxxxxxx
xxxxxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxxxx
xxxxxxxxxxxxx

Signature algorithm
Signature value

xxxxxxxxxxxx

xxxxxxxxxxxxxxx

FIGURE 3.11 Data elements of the X.509 v3 certificate

a customized personal attribute profiling the certificate holder. Figure 3.11
illustrates the major elements that are implicated in a certified public key
using X.509 V3 certificates.

The trust model in PKI is anchored through the degree of assurance in the
public-key certificate of the issuing CA. The public key of the issuing CA as
determined from its own PKC is, in turn, used to verify the digital signature
of that CA in the user's PKC. That signature is computed over the data ele­
ments of the certificate as illustrated in the bottom part of Figure 3.11
including, of course, the public key material. Given the assurance in the PKC
of the issuing CA, a successful verification of this signature establishes trust
in the binding of the public key being verified and hence the corresponding
private key to the end entity that holds the PKC.

The need for the secure verification of an end entity's public key is likely
due to the involvement of that entity in a public-key-based security protocol
or simply in data signing or encryption. Besides the signature verification
step, establishing trust in a PKC is foremost based on the certificate itself
being valid. Two key factors are decisive in determining the validity of a cer­
tificate:

• Revocation of the certificate First the certificate is checked for mem­
bership in a certificate revocation list (CRL). A revoked certificate is
invalid regardless of its signature being valid. A PKC may be revoked
before at any time before expiry arrives. Various revocation policies
may be instituted based on circumstances. A CRL is the second major
data construct that is available for PKI consuming entities. It attests

92 3. Elements of Trust Paradigms in Computing

that the PKCs to which it refers are no longer vaUd for use. Like for
PKCs, CRLs are constructs that are digitally signed by certificate
authorities. Below we shed more light on the links between a PKC and
its entry in a CRL.

• Time of use The certificate use has to be valid with respect to its desig­
nated lifetime as indicated in the PKC itself.

The elements that contribute to the validity or invalidity of a PKC are all
included in data over which the PKC digital signature is computed. A num­
ber of aspects can affect the level of trust in a PKI. Below we discuss two
such aspects. The first is the serial number embedded in a PKC and its rela­
tion to a CRL. Subsequently, we shed Ught on the element that is without a
doubt the cornerstone of trust in PKI—^that of protecting the private key of
a certificate signing authority.

Identification Links Between a Certificate and a CRL

As it is shown in Figure 3.12, the certificate serial number is about the only
field that identifies a certificate membership in the list of revoked certificates
contained by a particular CRL. A collision in certificate serial numbers there­
fore may lead to erroneous decisions by validating entities. Since it is only
within the confines of a particular certificate authority that the serial-
number-generation process can be controlled, it becomes an implicit require­
ment that a certificate be revoked by the same authority that had issued it.
Furthermore, assuming that the serial numbers are generated in some incre­
mental fashion, the serial-number-generation functions need to maintain a
persistent representation of the current number over the lifespan of the
authority. Due to the importance of using a unique number for each certifi­
cate, the persistent form of the current serial number may need to be
encrypted while it is saved in auxiliary storage.

Certificate membership in a CRL needs to be decided by the identification
parameters as represented by both the serial number as well as the issuer name.

X.509 certificate X.509

Serlai ftifmlief xxxxxxxx ORt Issuer xxxxxxxxxx
- ^ — • •

PKCIsöu^ xxxxxxxxx Serial nymNir xxxxxxx

FIGURE 3.12 Identification links between a certificate and a CRL

The Public-Key Infrastructure Approach to Trust Establishment 93

Protecting the CA Signing Key

The CA private key deserves being the object in need of most protection pos­
sible within a public-key infrastructure. After all, the verification of assur­
ance in the certification process is entirely dependent on the security of this
key. Indeed, once a CA signing key is compromised, the whole infrastructure
and any relying entities and applications are breached. A compromised CA
key can lead to all sorts of attacks. Issued and published certificates can be
modified. Others can be illegitimately revoked. Most dangerous is that cer­
tificates can be issued under the auspices of the compromised CA to subjects
that are not entitled to certificates. It is prudent measure to treat the CA sign­
ing key with particular care. Software solutions can provide an increasing
degree of security to the signing key through encryption. However, because
the key must be exposed to generate signatures, it may become vulnerable to
interception and capture.

One approach that affords the CA key a high level of security is the use of
tamper-resistant hardware in the form of PCI-based cards to store crypto­
graphic keys and perform encryption and signing operation without expos­
ing the key. One reliable product in this category is the IBM 4758 coprocessor
card that is delivered with a high level of assurance and manufacturing certi­
fication. This cryptographic coprocessor provides a simple access interface
using the IBM Common Cryptographic Architecture (CCA) APIs as well as
the RS A Laboratories PKCS #11 interfaces (cryptoki) [RSA99]. It relies on
a key-encrypting key, the master key, stored in a tamper-resistant circuitry
that withstands physical attacks.

The IBM 4758 provides a whole set of cryptographic operations such as
random number and key generation, hashing, encryption, generating mes­
sage-authentication codes (MACs) as well as signing and verifying signa­
tures. These operations are based on common cryptographic algorithms
such as SHA-1, MD5, DES, Triple-DES (DES3), RS A, and DSA. In addi­
tion to the cryptographic hardware engine, the card includes a small
general-purpose processor. The access-control module serves as an authen­
tication mechanism used to log on users to the coprocessor as well as per­
forming access-authorization checks based on the different roles a user
might assume. Enforcing access policies as such is achieved by the hardware
and protected software. The coprocessor manages DES and public-key algo­
rithm (PKA) keys separately.

PKI Trust Topologies

Trust verification in PKI may involve more than one CA certificate.
Depending on the trust topology in use, the validation process can become a
recursive process involving a chain of CA certificates. We outline the trust
topologies commonly found in PKI in the sections below.

94 3. Elements of Trust Paradigms in Computing

Hierarchical Trust

A hierarchical topology is one that maps the trust layout of an organization
top down into a tree structure [HOUS99a]. At the top of the tree is the root
certificate authority. Extending branches may lead to leaf nodes that repre­
sent end entities in the organization or may lead to other subauthorities. The
rational for the partitioning may stem from the need to manage a large organ­
ization as a set of smaller entities, each with its own authoritative CA. Figure
3.13 shows an example of a hierarchy structure. Generally, there is no
requirement that one CA certify end entities only or other CAs only. A par­
ticular CA may issue certificates to end entities as well as to other certificate
authorities. But for all practical purposes, however, the role of each CA may
be best managed by requiring that it certify subordinate CAs only or end enti­
ties only. Such a separation enforces the authoritative hierarchy structure of
an enterprise and points out the controlling elements of trust.

The hierarchical trust topology enables the delegation of trust down to
subordinate authorities. The root, high-trust authority becomes concerned
with the trust-delegation task down to a smaller number of subordinate
authorities. The fact that the top CA is concerned with the dissemination of
trust to a small number of entities allows for managing the strict controls and
policies that need to apply at this highest level. One such policy may require
the offline distribution of the root CA certificate in a highly secured fashion
to the immediate subordinate CAs that it manages. There is a fundamental
reason behind the secure distribution of the top certificate; the process of
building a trust chain begins at the root CA.

Building a trust chain consists of backtracking the path from an end entity
certificate all the way to the root-trusted CA. This backtracking process

Root CA

Subordinate CAs

End entities

FIGURE 3.13 A hierarchical trust topology with one root governing a two- and a
three-level hierarchy

The Public-Key Infrastructure Approach to Trust Establishment 95

entails a number of validation steps, two of which are fundamental. The first
is the determination of the chain by starting at the leaf end-entity certificate,
associating an issuer name at this level with a subject name in a certificate of
an authority at the immediate upper level until the root is reached. Figure
3.14 depicts this process of computing a trust path. For each subject name
determined as such, the corresponding CA certificate is retrieved, perhaps
from a repository such as a directory service or one referred to through
some URL

The second step consists of validating the series of cryptographic signa­
tures in the previously computed trust chain. This process begins with the
certificate of the root trusted CA and proceeds until it reaches the leaf end-
entity certificate.

As illustrated in Figure 3.14, the determination of the path via the back­
tracking of issuer and subject names is computed in a bottom-up fashion
starting with the end-entity certificate. By contrast, the signature-validation
process is performed in a top-down fashion beginning with the certificate of
the trusted authority.

Signature validation is the process during which the fundamental trust of
a certificate is built. It is all based on the basic assumption that the public key
of the root CA is trusted. Recall that assurance in this assumption is based
on the secure distribution of the root CA certificate. This distribution process
defines what can be termed as the "boot-strap" of trust.

The high-assurance public key of the root is used to validate the signature
value in the CA certificate immediately below it in the hierarchy as deter­
mined by the path. Once this is validated, the immediate subordinate CA

Sublet rmme
Signature

^

FIGURE 3.14 Computing a trust path in a hierarchical trust model

96 3. Elements of Trust Paradigms in Computing

implicitly inherits the highly assured trust property and becomes the trust
root. This procedure continues recursively until the signatures in the leaf end-
entity certificate is validated. A special case of this path-validation scheme is
one in which there is only one level of hierarchy, and thus the self-signed root
CA certificate is used to directly validate the signature in the end-entity PKC.

The fundamental element of trust in a certificate chain rests in the secure
distribution of the root CA certificate to all of the entities below it in the
hierarchy. The dissemination of the root CA certificate may involve an offline
distribution method to increase security. For instance, the certificate can be
mailed to the respective human entities in a nonvolatile medium such as a
diskette or a compact disk. On receipt, each entity computes a digest of the
certificate using, for example, SHA-1 or MD5 and then calls the human
trusted with the administration of the CA to confirm the digest value and
hence this distribution process.

The notion of a single point of trust does not necessarily concern the
root CA only. Rather, it can be applied down the tree hierarchy in a dele­
gated fashion. The property that makes this delegation stand is that the
recursive signature-validation scheme, as described, can also be started at
some highly trusted intermediate CA. Any compromise in the signing keys
above this intermediate CA will ultimately be detected once validation
reaches the trusted intermediate CA. The trust path therefore requires the
existence of at least one high-assurance authority along the path irrespec­
tive of its position in the tree hierarchy. A delegation scheme of this kind
lends itself well to situations in which end users of some global enterprise
need only to be aware of "regional" certificate authorities that directly
manage their part of the business but need to be concerned with the cor­
porate CA.

The advantage of setting up a multilevel trust hierarchy is to bridge multi­
ple organizations (public-key infrastructures within, say, a large organization)
without having to reissue the public-key credentials already deployed within
each of the individual organizations. Let us assume that an enterprise that
has grown due to a merger decides to join its existing and distinct public-key
infrastructures into a single hierarchy so that services in one organization can
be accessible to the members of the other organization and vice versa.

The hierarchical scheme of trust can provide a solution in this case by hav­
ing each of the disjointed CAs become subordinate to the root CA, one that
is perhaps designated and managed at the corporate level. Figure 3.15 illus­
trates a hierarchy consisting of two intermediate CAs and joining two differ­
ent organizations.

The procedural steps required to effect this merge may consist of the fol­
lowing:

• Have each subordinate CA revoke its existing self-signed certificate and
publish it in a certificate revocation list, actually an authority-revocation
list (ARL). This will ensure that a trust path should always lead to the
new root CA.

The Public-Key Infrastructure Approach to Trust Establishment 97

New root CA

Previously root CAs now
becoming intermediate
CAs

FIGURE 3.15 Joining two organizations using the hierarchical trust model

• Have each subordinate CA acquire a new certificate from the new root
CA. To avoid a CA key-update process, each CA may use its current
public key when requesting the new certificate.

• Distribute the new root CA certificate in a secure fashion to all of the
end entities in the merged organizations including the two subordinate
Cas, and have each entity replace this certificate for the old trusted root.

The net effect of this join operation is the dissemination of trust across the
two previously disparate organizations via the new root CA that represents
the trust anchor for the larger organization. Note that if so desired one can
split the two organizations by reversing each of the steps in the join opera­
tion as described. To accompUsh this, first, each CA requests revocation of its
own certificate from the root CA. Each subordinate CA then uses its current
public key to issue a self-signed certificate for itself and push it down to each
of the entities it certifies through a highly assured channel.

Joining existing public-key infrastructures by building a single multilevel
hierarchy results in a unified trust model. In this model, a single authority
represents trust in the entire organization. Similarly, the affected trust join
operation enables the organization to continue delegating to each subordi­
nate CA the PKI management tasks for its own domain of operation.

The use of multilevel hierarchies, however, extends a certificate trust path
and thus may affect performance of the certificate validation process. To mit­
igate the extent of this problem, a PKI deployment as such may resort to
computing and then pushing the trust paths to each end entity's local envi­
ronment ahead of any validation processing.

Cross-Certification

The proliferation of PKIs, particularly in the Internet space, ultimately
leads to the need for extending the benefits provided by public-key certifi­
cation across the boundaries of certification domains. Such domains may

98 3. Elements of Trust Paradigms in Computing

span disparate organizations and departments within a single enterprise. In
many cases, the requirement for automated interaction across multiple
organizations is what drives the need to maintain the benefits of PKI-based
security in applications that bring about those interactions. The basic issue
here is that of joining independently deployed PKIs with a minimum dis­
ruption and a maximum transparency to end users. Most important, in join­
ing disparate PKIs it is sometimes desirable to maintain the independence
characteristic that each domain enjoys whereby each certification authority
remains the sole authority for its own domain of operations.

Functionally, the hierarchical scheme that we previously discussed can be
sufficient for bridging two certification domains, the result of which is tightly
linked organizations, virtually becoming a single domain. The drawback of
the hierarchical merge is that end entities will not be completely shielded from
the join operation. Cross-domain certification, on the other hand, achieves
similar trust semantics in joining disparate PKIs, yet it maintains a complete
transparency of the process with respect to end entities.

Cross-certification is a method of joining two disparate PKIs without
incurring any effect on the end entities and without subordination of either
infrastructure to a new authority. It is a peer-to-peer contract between two
CAs to honor certificates exchanged, through security protocols, on service
requests crossing each other's domain. Each end-entity member in the com­
munities joined via a cross-certification process remains in possession of the
certificate of its respective trusted root CA prior to the merge taking place.
This is contrary to the hierarchical scheme in which end entities are to
acquire the certificate for the new root CA. The trust model remains invari­
able in the cross-certification case while it takes a different form in the hier­
archical scheme.

A CA A that issues a cross-certificate to authority B underscores the fact
that end entity certificates issued by B to its own community members are
now trusted for use within the domain certified by authority A. Similarly,
authority B may issue a cross-certificate for authority A, and thus domains
A and B are said to be mutually cross-certified, also referred to as a two-way
cross-certification. In essence, a two-way cross-certification is equivalent to
joining two domains under a single trusted root CA but without a direct
impact on end users.

It is worth noting that structurally a cross-certificate is simply an X.509 v3
certificate with a base constraint extension indicating that it is a CA certifi­
cate and in which the subject and issuer names represent two different CAs.
It certifies the public key of an already operating subject CA as a signing key
used for issuing certificates.

Cross-Certification Grid

Given a network of CAs, the cross-certification process can be modeled as a
direct graph whose nodes represent the participating CAs while the edges rep­
resent the direction of the certification. A directed edge from A to B indicates

The Public-Key Infrastructure Approach to Trust EstabHshment 99

a one-way cross-certification of authority B by authority A, Figure 3.16 illus­
trates a cross-certification grid comprised of five CAs.

Note that because the cross-certification in one direction is a transitive
relationship, CA2 becomes implicitly engaged in a two-way cross-certification
with CA5. This is because CA2 is explicitly cross-certified by CA5.
Meanwhile, CA2 cross-certifies CAl, which in turn cross-certifies CA3, and
hence CA2 indirectly cross-certifies CA3. In turn, CA3 cross-certifies CA5
and thus CA2 implicitly cross-certifies CA5. In that sense, the respective com­
munities of CA2, CAl, CA3, and CA5 are now entitled to interact across the
domains represented by these CAs. For a purist, such communities are
defined by the strongly connected component in the directed graph repre­
senting the cross-certification network of trust [DIESOO].

Hub-Based Cross-Certification

Because of the transitivity property exhibited by the cross-certification
operation in each direction, a common hublike CA can be used to bridge
a network of CAs, thereby establishing a complete cross-certification grid
(one in which each CA is cross-certified with each other CA in the net­
work). In this trust topology, every CA is mutually cross-certified with the
hub CA only. Trust is then disseminated by way of the transitivity prop­
erty. Figure 3.17 depicts this topology. Note that the advantage here is that
the number of cross-certifications performed in this case is linear in the
order n of the number of CAs involved, while in the previous case it is in
the order of n^.

Hybrid Model

The hybrid model is a trust scheme that combines the hierarchical and the
cross-certification methods. A multilevel hierarchy can be the result of merg­
ing of two organizations, while the cross-certification process might be driven

FIGURE 3.16 An example of a cross-
certification network

100 3. Elements of Trust Paradigms in Computing

Hub CA

FIGURE 3.17 A network of CAs mutually cross-certified through a hub CA

by the need to extend the trust to a third-party business partner in one
direction or another. The complexity of a federation formed by a hybrid
configuration may directly affect the performance of constructing a trust
path. Implementations may need to optimize path construction by caching
constructed paths for subsequent uses. Figure 3.18 shows a trust path
between two communicating entities. The path spans two domains in a hybrid
scheme of trust.

Web-of-Trust Model

The web model evolved with the advent of the SSL as a security protocol
between two HTTP endpoints, mainly the client browser and a target Web
server. It uses a more relaxed trust model in which a user can pick and choose

Cross-certification

, t .
•Hierarchical

FIGURE 3.18 An example of a hybrid trust scheme bridging two entities

The Public-Key Infrastructure Approach to Trust EstabHshment 101

among the trust anchors that he or she deems worthy of being root CAs.
An end entity in the web-trust model maintains one or more root CA certifi­
cates in its local environment (the browser's key store, for example). Validating
a certificate as such consists of finding a trust path to one of the trusted CAs.
Generally, these trust paths are shallow and in the most part consist of two
certificates, the end entity's and that of the root CA from the local key store.
The reason for this is to achieve high performance of the web-based applica­
tions. Figure 3.19 illustrates a web-trust model of completely disjointed CAs.

A variant of this trust model is defined by the pretty good privacy (PGP)
web of trust. PGP, which evolved into a family of software, was initially
developed by Philip Zimmermann as an email encryption program
[CALL98]. It uses public key encryption for the distribution of strong secret
encryption keys. The trust scheme in PGP known as the PGP web of trust is
a simpUstic model founded on the discretionary trust of individuals. There is
no concept of an authoritative entity that certifies public keys in PGP. An
individual user generates a public-private key pair that he or she binds to a
unique identifier usually in the form of (name, emailaddress) and is respon­
sible for its distribution to other individual entities or key distribution serv­
ices. The simplistic information model of PGP certificates is intended for the
main purpose of securing email exchanges. Each user maintains a set of pub­
lic keys of other individuals deemed trustworthy. Furthermore, a key can be
signed by a trusting entity and distributed to other individuals. The signing
entity is referred as an introducer. Trust in the PGP model like in the Internet
PKI is not transitive. The fact that A trusts B as an introducer and in turn
B trusts C does not necessarily estabUsh that A trusts C. This basic trust
scheme has evolved from real-life behaviors. Because PGP has gained popu­
larity mostly as an email encryption tool, its web-of-trust model has naturally

Local key store

A A
A

FIGURE 3.19 The web-trust model: Discretional trust of certificate authorities

102 3. Elements of Trust Paradigms in Computing

evolved along a paradigm that mimics trust in human relationships. For this,
it is sometimes referred to as a model of the grassroots in which authority is
equally distributed across all participating entities.

The PGP web of trust can be modeled by a directed graph G = (N, E)
where the set of nodes Â represents the collection of entities participating in
a PGP web of trust, and edge e GE from entity A to entity B represents the
fact that A trusts the public key of B.

Proxy Certificates: Delegated Impersonation in PKI

Impersonation, the simplest form of delegation, allows an entity A to grant
to another entity B the right to establish itself as if it were A. In that process
entity B generally inherits a subset of privileges of A. In computational terms
entity A may represent an end user, while entity B can be a programming
agent running on the user's behalf. Similarly, the initiating entity A can be an
identifiable programming agent as well. The use of inherited privileges can be
subject to various constraints that may result in what is referred to as
restricted impersonation, a benefit of which may be to limit damage from a
potential compromise. Impersonation can be recursively applied along a
chain of requests, where, for example, a sequence of computing tasks are
composed then executed in the course of servicing an end-user request.

Proxy certificates have recently been advanced by the IETF as the mecha­
nism by which chained impersonation can be accomplished in a PKI using
X.509 certificates. They were originally introduced by the Globus Project
(www.globus.org) as a means for providing single sign-on and delegation in
what has come to be known as the grid security infrastructure (GSI), a key ele­
ment of grid computing.

The main motivation behind proxy certificates appears to be the strong
requirement imposed in the public-key arena for safeguarding the private key
associated with a public-key certificate. Excessive use of the private key
increases the probability of exposure and hence compromise. The proxy cer­
tificate (PC) concept remedies this problem by allowing an entity that initi­
ates a distributed multitasked request to access its private key only once
during initiation. Processes and tasks involved thereafter all impersonate the
same initiator yet without having to access its private key.

The Proxy-Certificate Approach

A PC is a public-key certificate that conforms to the X.509 profile
[HOUS99a] and has the following properties:

• The signer (issuer) of a PC is either a holder of an end-entity certificate
(EEC) or another PC. A PC-holding entity that issues another PC is a
participant in an impersonation chain.

• It contains its own public- and private-key pair, distinct from any other
certified key pair.

http://www.globus.org

The Public-Key Infrastructure Approach to Trust Establishment 103

• It can be used to sign another PC but not an entity certificate (i.e., an
EEC).

• A PC certificate chain must have a signing end-entity root certificate,
which is a PKC. This underscores the fact that impersonation is con­
trolled by a single delegating entity at the root of the chain.

• An EEC acting as a proxy issuer must have a nonempty subject name.
• A PC does not stand on its own in binding an identity to the certificate.
• A PC inherits its identity from the subject field of a signing end-entity

certificate. This may possibly be inherited from the subject alternate
name extension of the EEC.

• The subject field of a PC is used as a unique identifier in tracing back
the chain of certificates leading up to the original signer. It does not
define a new identity by its own.

Typically, a proxy certificate is generated along a delegation chain. An
entity B that is authorized to impersonate A generates a public-private key
pair, forms a PC and signs it using the private key corresponding to its own
PKC. Similarly, a PC that is received by another entity C, during the authen­
tication of a cascaded request, can be used by C to issue another PC, thus
further extending the impersonation chain. The entity issuing a PC is called
a proxy issuer (PI). A PI represents either an end entity or another PC. One
key difference between a CA signing a certificate and a PI signing a PC is the
fact that the CA performs a unique key to name binding, while the PI does
not. Recall that the identity associated with a PC has to be traced back to an
EEC. Figure 3.20 illustrates an example of an impersonation chain using
proxy certificates.

FIGURE 3.20 Proxy certificate chain

End-entity
proxy issuer

PC
proxy issuer

PC
proxy issuer

104 3. Elements of Trust Paradigms in Computing

Elements of the X.509 Proxy Certificate

A proxy certificate conforms to the X.509 profile. Two elements make this
profile dynamic and flexible. The first is the specification of optional fields
that may or not be present in a certificate. The second and the most impor­
tant one is the extensions field intended to be exploited by various PKI-based
applications. Besides being simply an X.509 PKC, the characterizing elements
of a PC are described below.

• The PC extension The PC profile describes a new X.509 certificate
extension designated to identify a PC and to place constraints on its
use. This extension, called the ProxyCertlnfo, must be present and
marked critical in every PC. Its pC field of a Boolean data type must
be set to TRUE.

• Naming requirements Because a PC does not represent a name binding
of its own, it must not contain the issuerAltName extension. The sub­
ject field of a PC must be a sequence of one or more proxy identifiers
concatenated together. A proxy identifier is a common name (CN)
attribute and should be unique among all PCs issued by one proxy
issuer. This characteristic is an important element in tracing back a
path of a PC chain when evaluating trust. For example, if the proxy
issuer of a PC is an EEC, the subject field must be one single proxy
identifier—say, idy When that same PC becomes a proxy issuer, the
subject field is the concatenation of id^ and id^, where id^ is the unique
identifier of the PC (the entity that became a proxy issuer). The proxy
identifier value can be the same as the PC serial number. Finally, the
subject of PC should be used for path validation only and not for name
binding or for use in authorization decision for instance.

• Extended key usage Because a PC inherits the attributes of its issuer, if
the issuer certificate includes the extKeyUsage extension, then the PC
must include that same extension. The key contained in the PC cannot
be used for any purpose for which the issuer certificate is not designated
for. Key usage in the PC must be a subset of the issuer's key usage. If the
issuer certificate does not contain the extKeyUsage extension, then
the PC may or may not include such extension. The criticality of this
extension must be preserved top down along a chain of PCs.

• Basic constraints The basic constraints extension that is used to desig­
nate a CA certificate must not have the cA field set to TRUE.

Computing Trust in Proxy Certificates

A PC is a representative of some end-user entity with an actual EEC.
Ultimately, the binding of a PC to an identity has to involve the root
EEC. Validation of a chain of PCs needs to trace back a PC to an EEC. To
make the appropriate PCs and the EEC available for path validation, an

The Public-Key Infrastructure Approach to Trust Establishment 105

authentication protocol using a PC may pass the entire PC and EEC chain as
part of that protocol.

Computing a PC trust path consists of tracing an issuer name in the PC
being validated to a subject name in the issuer's certificate until an EEC is
reached. The EEC, in turn, is subjected to the standard trust-path validation
that we outlined before to arrive at a trusted root authority CA^, After the
EEC is validated, its subject name can then be used for authorization pur­
poses. Figure 3.21 illustrates the construction of a PC trust path.

In computing a PC trust path, the issuerCertSignature part of the
ProxyCertlnfo extension found in a PC can be used to add accuracy to the
computed path. The optional issuerCertSignature field, when present, can be
used during path validation to ensure that each PC path starting with an EEC
and ending at the PC is unique. If certificate N+l in a certificate path is a PC,
then issuerCertSignature is used to verify that certificate N is actually the PI
that issued it and not some other certificate with the same name and public
key. Without this field, if a PI were to issue two different proxy certificates
(Pj and P2) with the same subject and public key but different proxy restric­
tions or validity time constraints, then the path-validation algorithm would
accept a path in which P^ appears as the issuer of a certificate that in reality
was issued by P^

PC
Proxy-issuer

FIGURE 3.21 Constructing a PC trust path

106 3. Elements of Trust Paradigms in Computing

Attribute Certificates: Entitlement Management in PKI

An X.509 PKC is signed and issued by a CA. It binds an identity with a pub­
lic-private key pair. An attribute certificate (AC) is a data construct that is
similar to a PKC; it is signed and issued by an attribute authority (AA). The
main difference between a PKC and an AC is that an AC contains no public
key. Instead, an AC carries with it a set of attributes associated with its
holder. These attributes may specify privileges in the form of group member­
ship, roles, a security clearance, or any information profiling its holding user.
In essence, an AC binds a user with a set of authorization attributes, capa­
bilities, or in general terms a profile.

Authorization attributes of an entity can be placed in the extensions field
of its PKC. The key arguments against this proposition stem first from the
fact that certificate extensions are intended for describing certificates and
thus expressing user attributes in certificate extensions overloads the seman­
tics of X.509 extensions. The second argument is due to the difference in life­
time between a PKC and an AC. Given that a PKC binds its holder with a
public key, its validity period is likely to outlast the lifetime of an AC. User
entitlements are much more of a dynamic nature and are constantly subject
to change. In contrast, a PKC is likely to remain unchanged and valid for a
long period of time. Extending a PKC to include user privileges therefore
may increase the cost and complexity of managing the underlying PKI.

Elements of Attribute Certificates

Among pieces of key information contained in an AC is a set of user attrib­
utes, a validity period, and a signature certifying the integrity of the AC and
establishing the authenticity of its issuing authority. Except for the signature
information, all attributes are encapsulated in the AttributeCertificatelnfo
data type as expressed by the ASN.l notation of Figure 3.22.

Binding Information

To enable an AC verifier to assert trust, AC binding information defines the
association between an AC, its issuer, and its holder. The following data fields
represent this binding:

• Issuer The issuer of an AC is represented by its X.500 distinguished
name. All AC issuers must have nonempty distinguished names. It is up
to the AC verifier to appropriately map the issuer name to a PKC for
the issuer before asserting trust.

• Holder In an environment where the AC is passed in an authenticated
message or a protocol session in which authentication is based on the
use of X.509 PKCs, such as is the case with TLS/SSL, the holder field
should contain the holder's PKC serial number and issuer (it asserts the

Attribute Certificates: Entitlement Management in PKI 107

{-- the signed portion

AttributeCertificatelnfo

Version
Holder
Issuer

Signature

SerialNumber

AttrCertValidityPeriod
Attributes

IssuerUniquelD
Extensions

}

Signature algorithm

Signature value

::= SEQUENCE {

v2,
Holder,
AttCertlssuer,

Algorithmldentifier,

Certificate Serial Number,

AttCertValidityPeriod,

SEQUENCE OF Attribute,
Uniqueldentifier OPTIONAL,
Extensions OPTIONAL

xxxxxxxxxxx

xxxxxxxxxxxxxx

FIGURE 3.22 Elements of the X.509 v2 attribute certificate

holder in way analogous to establishing its security context). The
holder can also be expressed as the subject name or the subject alter­
nate name from its corresponding PKC. This binding leads to estab­
lishing an authenticated security context in which the AC can be used
to perform authorization checks.

• Serial number The serial number assigned to the AC. For any con­
forming AC, the (issuer, serial number) pair must be unique.

Attribute Information

This field contains a sequence of uniquely identifiable attributes. Each con­
tains a set of key-value pairs. Privilege attributes that are designated for use
in access control form the basis of an AC. At least one attribute must be pres­
ent in an AC. Evidently the absence of attributes altogether defeats the basic
purpose of an AC. To foster interoperability across various security domains,
a number of AC attributes have been standardized. The following is a brief
description of some of them:

• Service authentication information This attribute identifies the AC
holder to a target service by name. It may also include optional service-
specific authentication information. Typical application of this attribute
is to communicate the holder's identity and password to a legacy appli­
cation service. An encryption scheme is likely to be used to provide
for the security of the password. The use of the target service's public
key to encrypt such information lends itself well for the protection of

108 3. Elements of Trust Paradigms in Computing

•

authentication information. As shown in Figure 3.23, the verifier of an
AC, a target service, first establishes the trust path to the holder's PKC.
It then uses its private key to decrypt any authentication information.
The latter can be passed to a legacy application that is based on such
authentication information to establish the identity represented by this
attribute.
Charging identity This attribute identifies an identity that can be used
by the AC holder for charging purposes. Such attribute can be
exploited by a billing service for example.
Role Used to specify a role that the AC holder is capable of assuming.
Additionally, it may specify the name of the authority issuer of the role
specification as a reference.
Clearance It carries clearance information associated with the AC
holder. This attribute can be exploited by systems enforcing multilevel
security. The clearance is scoped within an associated policy identifier
field in which the semantics of the clearance are defined.

A Note About AC Attributes

The data types used to describe an attribute are designed to provide a high
degree of flexibility and extensibility through a parameterization that
describes an attribute as a (type, value) pair expressed by the following ASN. 1
syntax [BENA02]:

PKC of AC issuer

Public key

PKC of AC holder

Public key

AC holder

Service authentication information:
(target service, identity, encrypted

^(password))

Service PKC

Public key

Legacy
application

FIGURE 3.23 View of trust verification elements for an AC and its service attributes
protected using the PKC of the service

Generalized Web-of-Trust Model 109

Attribute :: = SEQUENCE {
type AttributeType,
values SET OF AttributeValue
— at least one value is required

}
A t t r i b u t e T y p e : : = OBJECT IDENTIFIER
AttributeValue :: = ANY DEFINED BY AttributeType

The extensibility of AC attributes is due to the opacity of an attribute's value
with respect to the structure of the AC itself Entities can exploit an attribute
embedded in an AC only when they are capable of interpreting both its type
and value—of course, provided they are also able to verify any trust elements
associated with that attribute. The syntactic and the semantics scope of AC
attributes is unbounded and thus can be exploited by various applications.

Extensions

Although most PKC extensions provide information about the certificate
itself instead of its holder, some extensions defined for ACs provide a way for
associating additional information with holders. Below we enumerate some
of the AC extensions relating to identity management and trust:

• AC targeting An AC may be designated for use by a specific target
entity. The AC targeting extension is intended for that purpose. Target
information may specify multiple services. Relying parties not explicitly
named in this extension must reject the AC. This targeting information
can be useful in the transactional web. The absence of this extension is
an indication that the AC can be used by any relying party.

• Audit identity To satisfy cases where data privacy laws, for example,
require that audit trails not reveal or even contain records that identify
individuals, an audit identity extension can be added to an AC. This
extension allows the logger of an audit trail to use an identity designated
by the value of this extension. This value along with the AC issuer name
or the AC serial number should be used for audit or logging purposes

• Trust-related extensions By this we mean not one specific extension but
a set of AC extensions relating to the evaluation of trust in an AC.
These are all defined by the X.509 v3 certificate profile [HOUS99a].
The first is the authority-key identifier, which can be used to assist the
AC verifier in validating the signature of the AC. The second is the
Authority-information access, and the third is the CRL distribution
points. Both of these can be used by a relying party to verify the revo­
cation status of the AC.

Generalized Web-of-Trust Model

The web-of-trust scheme that we discussed under the public-key models can
be generalized as a mechanism by which heterogeneous cross-enterprise

110 3. Elements of Trust Paradigms in Computing

identity models are joined in a federated web. The building block of this fed­
eration is the trust relationship that can be established across heterogeneous
identity and trust-management systems using secure network-authentication
protocols, some of which we have previously discussed. The trust protocols
used can be negotiable between each of two domains entering into a rela­
tionship as such. Trust can be one-way or mutual. The potential advantage
of this comes from the incremental weaving of trust across domains that
builds on existing heterogeneous trust and identity management schemes
that may exist in each participating domain. The basic element of trust here
relies on the principal of trust by introductions in which entity A that trusts
entity B may also trust entities presented to it by B, provided A establishes a
trust relationship with B in a secure and verifiable manner.

Federated domains that are based on the generalized web-of-trust model
that we propose are characterized by the following:

• Cross-domain identity-management systems are joined through a nego­
tiated trust mechanism in which an agreed on authentication and trust
protocol is used. Authentication is performed between agents of two
domains entering in a trust relationship. The direction of trust (one-way
or mutual) is based on the policies of the participating domains.

• Subjects are registered to their, respective, generally local domains.
Subject authentication and profile management is performed with its
domain of registration only.

• Subjects authenticate to their respective domain of registration but can
seamlessly access services and resources managed by other domains via
the trust relationships established across these domains.

• Identity profile information can be used across domains that have
established trust relationships, provided its syntax and semantics are
similarly interpreted. Translation of profile information in any direc­
tion can be performed by gateways local to each domain.

• Identity information of a subject remains attached to its original
domain of registration as it is passed across domains. The identity of
the home domain is attached to this information as it is passed across
domains with established trust relationships.

• Secure transports such as those based on strong cryptographic chan­
nels are required for exchanging profile and identity information.
These channels depend on the trust scheme adopted between each two
domains.

Figure 3.24 illustrates this concept of the generalized web of trust, which
can be modeled by a directed graph where the edge directionality represents
trust (i.e., edge (x, y) represents trust of y by x). The transfer of profile infor­
mation for subject s is shown across three domains.

Transitive trust may be used at the discretion of the security policies
implemented by each domain. Domain A that enters into a trust relationship
with domains B and C may apply the transitive trust policy with domain B

Examples of Trust-Exchange Mechanisms over the Web 111

2. Profile
attributes
for subject s

3. Profile
attributes
for subject s

1. Profile
attributes
for subject s in
home domain

FIGURE 3.24 An example of the generalized web of trust model federating five
domains

but not ŵ ith domain C. Once a trust relationship betw êen domains A and B
is designated as transitive, all domains reachable through B for example can
be trusted by A. Similarly, the depth of such transitive trust can be limited if
so desired. Figure 3.25 illustrates an example of a generalized web-of-trust
model in ŵ hich trust relations are all transitive. Trust paths in this case cor­
respond to the transitive closure of the graph representation.

Examples of Trust-Exchange Mechanisms over the Web

Web services are at the leading edge of deploying highly distributed softv^are
components that can be published, discovered, and invoked seamlessly. They
build on two of existing technologies, HTTP and XML, which are widely
accepted and expected to dominate computing at least in the foreseeable future.
Due to the higher level of abstracting the programming components of

112 3. Elements of Trust Paradigms in Computing

A

B

C

D

E

F

A

1

0

0

0

0

0

B

1

1

0

0

0

0

c
1

1

1

1

0

0

D

1

1

0

1

0

0

E

1

0

0

0

1

0

F

1

0

0

0

1

1

FIGURE 3.25 Graph representation
of a web of trust across six heteroge­
neous domains adopting the transi­
tive trust policy. The resulting
transitive closure matrix is shown

netv^ork computing, web services appear to lay the foundation for composing
service elements together to provide complex services. This composition capa­
bility may potentially revolutionize computing. It has all the aspects of achiev­
ing seamless web navigation in a way analogous to what users have experienced
with the advent of manual navigation of the Web through browsers. Such com­
posite computations over the seemingly unbounded frontiers of the Web fur­
ther highlight the need for strong and reliable computational trust.

We look at three emerging mechanisms for the exchange of security con­
structs to enable trusted and secure Web computing, all of which are com­
plementing each other. The first is a method for exchanging trust enabling
constructs on Web service calls, web services security (WS-Security). The sec­
ond one is a standard method for how to express trust and identity constructs
in the computing web, the security assertion markup language (SAML). The
third one represents a way to establish security sessions between a client and
a remote service, Web cookies. A programming model in which these three
techniques are used together expresses trust elements using SAML; trans­
ports the SAML statements using WS-Security and then maintains a session
using Web cookies that contain SAML constructs.

Web'Services Security

Recently IBM, Microsoft, and VeriSign, Inc. have cooperated on the devel­
opment of a Web-services security (WS-Security) specification submitted to

Examples of Trust-Exchange Mechanisms over the Web 113

the Organization for the Advancement of Structured Information Standards
(OASIS) [OASI03]. Web services are at the leading edge of deploying inte­
grated Web softv^are components that can be published, discovered, and
invoked seamlessly. Furthermore and due to their higher level of abstraction,
Web services appear to lay the foundation for composing service elements
together to provide complex services. This composition capability may poten­
tially revolutionize computing. It has all the elements of achieving seamless
Web navigation in a way analogous to ŵ hat users have experienced since the
advent of manual Web navigation driven through the end-user brov^ser. Such
composite computations over the seemingly unbounded frontiers of the Web
further highlight the need for computational trust that can be established
with reliability.

WS-Security is an attempt to retrofit security in the design of the Web-
services protocol referred to as the simple-object access protocol (SOAP). It
builds on existing mechanisms to generate security tokens for use across
SOAP interlocutors referred to as actors. Data transfer in SOAP is based on
exchanging XML documents. From a high perspective, such documents all
adhere to a well-defined XML schema [W3CO02a] that governs the structure
of SOAP messages. This structure consists of an enclosing envelope within
which are nested zero or more control headers, followed by one body con­
taining the application-level message payload.

Because WS-Security is an attempt to fit security into an already specified
Web-service document format, the header portion of the document seems
like a natural fit. The header element <Security> provides a means for attach­
ing security-related information that can be targeted for a specific receiving
entity. The latter can be an intermediate node traversed by the Web service or
some other endpoint target.

A SOAP message can have multiple < Security> elements embedded in its
header. Each of such elements may be designated to target a particular
receiver specified through the Sractor attribute. Security information targeted
to different receivers is required to appear within different <Security> ele­
ments. The omission of a Siactor attribute from a security element indicates
that it is intended for consumption by all intermediate hopes of the message
including the endpoint. Only one <Security> header block can omit the
Siactor attribute, and no two elements can have the same Siactor attribute.
This enforces a consistent rule in which security information that is targeted
to all recipients or that is intended for a specific target is all structured respec­
tively in a single <Security> element.

Security elements can be dynamically added to a Web-service message as
it navigates the Web. Figure 3.26 depicts two examples of embedding secu­
rity information within the <Security> elements of a SOAP message. In A
we illustrate an acceptable syntax in which two <Security> elements are
inserted, one targeted to a specific SOAP actor, while the second one is
intended for all recipients. In B we show an invalid insertion syntax caused
by having two <Security> elements targeted for consumption by all
recipients.

114 3. Elements of Trust Paradigms in Computing

<S:Envelope>
<S:Header>

<SecurityS:actor="weburi"
S:mu s tUnde r s tand="TRUE">

</Security>
<Security S:mustUndertsand="TRUE">

</SecuritY>
</S:Header>

</S:Envelope>

B
<S:Envelope>

<S:Header>

<Security S:mustUndertsand="TRUE">

</Security>
<Security S:mustUndertsand="TRUE">
</Security>
</S:Header>

</S:Envelope>

FIGURE 3.26 Inserting security elements in a SOAP message

As subelements are incrementally added to the <Security> header block,
they are prepended to existing ones. The header therefore is an ordered
sequence of elements combining security tokens, XML signatures, as well as
encryptions. The processing of the security elements by a recipient is likely to
be performed in accordance to this sequencing rule where no forward
dependency across security subelements is permitted. When a subelement
refers to a key placed in another subelement, the security token containing
the key should be prepended following the subelement using that key. An
example of that is a key-bearing subelement that contains an X509 certificate
used for a signature. The X509 token in this case should be prepended fol­
lowing the signature subelement.

The security mechanisms that can be used in WS-Security may span tech­
nologies ranging from simple user identifier and password to more sophisti­
cated constructs such as X.509 certificates and Kerberos tickets. Security
elements may also contain signatures and encryptions computed over partic­
ular elements of the exchanged SOAP document. They also provide a natu­
ral transport for SAML assertions that can be attached to Web-services
requests. We discuss the details of SAML shortly.

Examples of Trust-Exchange Mechanisms over the Web 115

Identity and Trust Tokens

WS-Security provides an extensibility mechanism that can be exploited to
embed any type of identity token. Three specific types of tokens are currently
defined. You may attach a simple user-identifier token that consists of a user
name and password, an X.509 v3 certificate, or a Kerberos v5 ticket. The
types of tokens that can be used are classified in two categories: simple user-
name tokens and binary tokens.

Simple User Name Token A user name token has the following XML structure:
<wsse:Security>

<UsernameToken Id =". . .">
<Usernaine>

</Usernaine>
<Password Type =". . .">

</Password>
</UsernameToken>

</wsse:Security>

The ID attribute can be optionally used to label the token. Username is a
required element that specifies the identity of the token holder. The optional
password element is intended to establish Username. Password information
includes a type and a value. Protecting the password may require at least
some level of transport security. Two formats for the password are currently
defined by the optional Type attribute: a plaintext form and a bse64 encod­
ing of the SHA-1 digest of the UTF8-encoded password.

Binary Tokens Binary tokens provide a way to embed cryptographic iden­
tity and privilege tokens in the security header block of a soap message. The
parameterization of these tokens is based on two factors. The first one
defines the type of encoding used. This allows the token to be handled appro­
priately. Two encoding types are currently specified:

• Base 64 encoding (wsse:Base64Binary) and
• Hex encoding (wsse:HexBinary).

The second parameter defines the type of the token's value. Three such types
have been defined:

• X509 v3 certificate (wsse:X509v3),
• Kerberos v5 TGT (wsse::Kerberosv5TGT), and
• Kerberos v5 service ticket (ST) (wsse:Kerberos5ST).

wsse is the name space defined specifically for WS-Security. An X.509 cer­
tificate and its data components such as the public key can also be embedded
in a <ds:KeyInfo> element defined by the XML name space of the digital

116 3. Elements of Trust Paradigms in Computing

signature standard [W3CO02b]. Below is an example illustrating the inclu­
sion of an X509 v3 certificate as a binary security token within a <Security>
element.

<wsse:Security>

<wsse:BinarySecurityToken
xmlns2wsse="http://Schemas.xmlsoap.org/ws/2002/04/secext"

Id="myX509Token"
ValueType="wsse:X509v3"
EncodingType="wsse:Base64Binary">
MITEZzIQEmt9CgCCAJZ0cqr5ihk...

</wsse:BinarySecurityToken>

</wsse:Security>

Referencing Security Tokens A token may be embedded in a security ele­
ment by reference instead of value. Referencing a security token consists of
specifying a URI for its location. The token can then be pulled by a relying
party. This approach affords the advantage of having to marshal less data on
a Web-services request. The following XML snippet illustrates the syntax of
specifying tokens by reference:

<SecurityTokenReference
Id="...">

<Reference ÜRI="...">
</Reference>

</SecurityTokenReference>

SAML Approach: Unifying Trust and Identity Constructs

The security markup language (SAML) is an evolving standard that defines
the syntax and semantics for XML-encoded statements that represent secu­
rity assertions about a user or some programming entity [OASI02].
Assertions can be constructed by an initiating entity or can be acquired from
a third party and presented to another entity where they are validated based
on a predefined trust model. The unifying approach undertaken in SAML
stems first from its generality and second from the fact that it represents a
higher level of abstraction above any underlying security mechanisms, trust
paradigms, transport, or the security protocols being used. Furthermore,
SAML can be applicable irrespective of the trust model adopted whether
it is a two-party or a third-party scheme. It lends itself to forming trust
federations as assertions may span a large web of network endpoints and
intermediaries.

With SAML, security decisions are not computed based on the traditional
security context established by a controlling process in which an application

http://Schemas.xmlsoap.org/ws/2002/04/secext

Examples of Trust-Exchange Mechanisms over the Web 117

executes. With SAML, an application acts as a container and provides a
conduit for the security context associated with the underlying entity. This
context therefore becomes exposed to the transaction level as opposed to the
traditional paradigm in w^hich contexts are managed and kept by control pro­
grams. Being part of the transaction's constructs, a SAML context follov^s
the netv^ork routes taken by a Web application. As such, the flow of SAML
constructs over a network may follow an arbitrary topology dictated only by
the chain of requests with which they are associated. The depth of such
request chains can be unbounded.

The vision of the network as a computer has indeed arrived with the fed­
erated Web-based applications that can be limited only by the scope of the
Internet. The seamlessly unbounded journey of a network service request
requires single sign-on of the initiating endpoint and transparent forwarding
of user trust elements, such as authentication and authorization credentials.
Furthermore, an adaptive dissemination of the user's profile elements that
can be enforced by a dynamic and adaptive security policy is a key require­
ment for privacy control.

The SAML approach defines three types of identity management and trust
assertions:

• Authentication The subject specified by the assertion was authenticated
by a particular mechanism at a particular time. Authentication asser­
tions merely state acts of authentication that happened in the past.

• Authorization The specified subject is either allowed or denied access to
a particular resource.

• Attribute The specified subject is associated with the list of attributes
provided in the assertion. Attribute elements define what is commonly
known as a user profile.

An assertion may optionally be accompanied by one or more conditions
constraining its validity. Assertions have a nested structure in which an outer
generic element provides information common to all assertions. A series of
inner elements representing authentication statements, authorization deci­
sion statements, and attribute statements all describe the specifics of the
assertion. Instead of duplicating the statements issued via other assertions,
one assertion may simply refer to those assertions via their unique identifiers
(e.g., by a URI). Entities consuming assertions with external references to
other assertions are responsible for resolving and validating those references
as well as the assertions that they contain.

To broaden the scope of SAML and make it independent of any particular
trust model, the concept of a SAML authority is introduced. SAML asser­
tions are issued by SAML authorities that are distinguished based on the type
of assertions they can issue. A SAML authority can be an authentication
authority, an authorization authority, or an attribute authority. This distinc­
tion is conceptual and logical but is not necessarily physical as all types of
assertions can be issued by a single authoritative entity. SAML distinguishes

118 3. Elements of Trust Paradigms in Computing

among three actors—a requester, a relying party, and an authority. The rely­
ing party is the entity that consumes and validates SAML assertions. The
requester is the entity responsible for initiating the acquisition of assertions.
A requester may also be considered a relying party, and thus one might
broadly distinguish two main entities: an asserting party (an authority) and a
relying party (consumer of SAML assertions). Figure 3.27 provides a concep­
tual view of the relationships across SAML entities. A dotted arrow linking an
assertion type with a SAML authority indicates that the authority makes use
of the assertion to issue new assertions. For instance, an authorization author­
ity requires one or more authentication assertions to issue one or more
authorization-decision assertions.

SAML authorities rely on various information sources to issue assertions.
Most important, an external registry containing policy information may be
consulted by an authority before an assertion is formulated. Additionally,
SAML authorities may rely on previously issued and verified assertions to
compute new ones. Requesting entities send existing assertions to SAML
authorities when acquiring new assertions. Similarly, a SAML authority may
pull referenced assertions from specified network URIs. In that respect,
SAML authorities consume and produce assertions at the same time. On the
other hand, clients, requestors, or relying parties can only be consumers of
SAML assertions.

7r

\L

"TT

JL

TT

±.

TT

J^

Request/
validate
assertion

Consumer
entity

Authentication
autliority I

Registry

Wi-

Authentication
assertion

Jp^

Authorization
assertion

Registry

W. ^

Attribute
assertion

Attribute authority

I
Registry

Y

^

Authorization
assertion

SAIWL construeis

FIGURE 3.27 A conceptual view of the relationships across SAML entities

Examples of Trust-Exchange Mechanisms over the Web 119

In addition to the syntactic and semantic definition of assertions, SAML
defines a basic request and response protocol for the acquisitions of assertions.

SAML Constructs

Computations in SAML are performed over assertions. Each assertion is
composed of a nonempty set of XML statements characterizing a particular
subject with a temporal fact, such as an act of past authentication, an attrib­
ute, or a decision on whether access is allowed to a specific resource. The fol­
lowing is a discussion of major data elements of SAML.

Assertion An assertion is described by AssertionType, which is an XML
complex type. This type specifies the basic information that is common to
every assertion including the following attributes:

• MajorVersion A required attribute designating the major version of
this assertion,

• Minor Version A required attribute indicating the minor version of this
assertion,

• AssertionID A required attribute uniquely identifying this assertion (a
URI, for instance, can be used for such identification)

• Issuer A required attribute that unambiguously identifies the SAML
authority that issued this assertion (an issuer might be identified by a
URI), and

• Issuerlnstant A required attribute specifying the time of issue in UTC.

Conditions This is an optional element that adds constraints to an asser­
tion. The use of the assertion is subject to the constraints specified in this ele­
ment. For example, a time constraint may set the validity of an assertion to
some future time. Similarly, the validity of an assertion may be set to expire
after a specified time.

Advice An optional element containing additional information that aids in
processing an assertion.

Signature An optional element for marshalling XML signatures.

Statement This defines an extension point allowing the derivation of other
statement constructs by an assertion-based application.

Subject Statement Defines an extension point from which other subject-
related statements can be derived by various assertion-based applications. It
contains a <Subject> element that defines a single entity associated with the
statement. <Subject> encompasses two other elements: <NameIdentifier>,
which identifies the subject by name and security domain, and an optional
<SubjectConfirmation> element, which contains authentication information
establishing <NameIdentifier>.

120 3. Elements of Trust Paradigms in Computing

Authentication Statement This element is used by an issuing authority to
indicate that the subject of the statement was authenticated by a particular
authentication method and at a particular time in the past. An example of
such assertion is shown below:

<sainl:assertion MajorVersion="1" MinorVersion="0"
AssertionID="128.9.164.32.132547698"
Is suer="Company.com"
IssuerInstant="2003-04-26Tll:03:OOZ"
<saml:Condition

NotBefore="2003-04-26Tll:03:00Z"
NotAfter=""2003-04-26Tll:10:00Z"

<saml:AuthenticationStatement
AuthenticationMethod="pas sword"
AuthenticationInstant=
''2003-04-26Tll:03:00Z"
<saml:Subject>

SecurityDomain="Company.com"
Name="JohnDoe"

</saml:Subject>
< /s ami:AuthenticationStatement>

</sami:As sert ion>

Authorization Decision Statement This element provides a statement by the
issuer to the fact that the named subject is granted or denied access to a
resource which is unambiguously specified by means of a URL An example
of an authorization decision assertion is shown below:

<saml:assert ion MajorVersion="l" MinorVersion="0"
AssertionID="129.9.164.32.132547690"
Is suer="Company.com"
IssuerInstant="2003-04-26Tll:03:OOZ"
<saml:Condition NotBefore="2003-04-26Tll:03:OOZ"

NotAfter="2003-04-26T12:10:OOZ"
<saml:AuthorizationDecisionStatement

Dec i s ion="Permit"
Resource="http: / /Travel .com/Servlet /reserve"

<sami:Action
Namespace="http://WellknownURI">

Execute
</saml: Act ion>
<saml:Subject>

<saml: Nameldentif i e r
SecurityDomain="Coitpany. com"
Name="JohnDoe"

</saml :NameIdentif ier>
</saml:Subject>

< / s ami:AuthorizationDecisionStatement>
</saml:Assertion>

http://Travel.com/Servlet/reserve
http://WellknownURI

Examples of Trust-Exchange Mechanisms over the Web 121

Attribute Statement This element underscores a statement by the issuer that
the specified subject is associated with the attributes indicated. The following
is an example of an attribute assertion:

<s ami:as s e r t i o n Maj orVers ion="1" MinorVers ion="0"
AssertionID="130.9.164.32.132547691"
Issuer="Company.com"
IssuerInstant="2003-04-26Tll:03:OOZ"
<saml:Condition NotBefore="2003-04-26T13:03:OOZ"

NotAfter=""2003-04-26T13:10:OOZ"
<saml: AttributeStatement

<saml:Subj ect>
SecurityDomain="Company.com"
Name="JohnDoe"

</saml:Subject>
<saml:Attribute>

<saml:AttributeDesignator>
AttributeName="Department"
AttributeNamespace="http://Company.com"
</saml:AttributeDesignator>
<saml: AttributeValue>

Sales
</saml:AttributeValue>

</saml:Attribute>
</saml: AttributeStatement>

</sami: As sert ion>

Note how attributes are parameterized by names. This parameterization
exemplifies the degree of flexibility in SAML. Furthermore, the name of an
attribute is accompanied with a URI for the namespace in which the attrib­
ute is defined. Thus the semantics of an attribute is resolved to its defining
source, which prevents ambiguity and collisions.

Trust Elements of SAML

SAML assertions are consumed by relying entities to establish subject identi­
ties and confine the use of resources to predefined policies. Affirming such
assertions manifests itself through trust relationships that can be established
between a relying party and the authority issuing the assertion. Trust estab­
lishment and verification in SAML is based on various constructs expressed
through SAML assertions. In the following, we enumerate the major such ele­
ments that contribute to trust.

Digital Signatures The XML element <ds:Signature> may optionally be
part of an assertion. When present, it represents an XML digital signature
computed over the statements carried by the assertion. An assertion signed
by an asserting party (AP) such as a SAML authority provides support for

http://Company.com

122 3. Elements of Trust Paradigms in Computing

the integrity of the assertion, its authenticity, and possibly allows for nonre-
pudiation when a tamper-proof public-key mechanism is used. An assertion
can also be part of a request message made to a SAML authority. Likewise,
the signature over the assertion in this case supports data integrity, origin
authenticity, and possibly nonrepudiation between the message originator
and the destination authority.

User Confirmation A <SubjectStatement> contains a <Subject> element
used to describe an active entity. In turn, the <Subject> element consists of
two nested elements: <NameIdentifier>, which specifies a subject by name in
accordance with a particular naming scheme such as in X.509 [HOUS99a], or
an email address based on IETF RFC2822 [RESNOl]. The second element is
<SubjectConfirmation>, used to provide data allowing the subject to be
authenticated. This element may encapsulate any authentication token or cre­
dential that can lead to establishing the named identity.

Authority Binding Information The <AuthorityBinding> element may
optionally be part of an authentication statement. It can be used to indicate
to a relying party that a SAML authority may be available to provide addi­
tional information about the subject of an assertion. This authority is speci­
fied by location and through its supported protocol binding.

Authorization Evidence An authorization statement may optionally contain
an <Evidence> element that carries an assertion used by the issuer in mak­
ing the authorization decision. This assertion can be specified either by value
or by reference. Authorization evidence may also be supplied by an entity
requesting an authorization decision from a SAML authority.

Other Trust Elements of SAML

Other elements of trust in the SAML definition for an assertion include the
name of the issuer <Issuer>. A name in the form of a URI allows a relying
party to inquire further information about the subject of the attribute to ver­
ify a particular trust relationship. The time of issuance of the assertion
<lssuelnstant> as well as a validity interval as defined by the <Condition>
element allow for the timely usage of an assertion. Additionally an <Advice>
element may encompass further trust-related information about the assertion.

A Note on Federated Trust in SAML

Federated SAML authorities are expected to play a key role in the prolifer­
ation and success of the SAML constructs over the Internet. Forwarding
SAML authentication and authorization assertions across security domains
without re-authentication requires the existence of a well-defined trust
across participating SAML authorities. SAML in itself has not introduced a
new federated trust paradigm; rather, it relies on existing models of trust

Examples of Trust-Exchange Mechanisms over the Web 123

such as those based on PKI or Kerberos for instance. Trust verification in
this case will ultimately involve the low -̂level mechanisms producing the
SAML constructs.

Web Cookies

The HTTP protocol that made the World Wide Web a household name is
stateless and simple. The statelessness of HTTP precludes the need for man­
aging persistent sessions and all the complexities that may arise thereof. Users
connect anew and identify themselves whenever needed, each time they nav­
igate a Web link even with the same server. Although they face a number of
reliability and security issues, cookies were invented as an ad-hoc mechanism
to establish continuity and sate on the Web. Cookies are data constructs that
are initially sent from a Web server to the client's browser environment,
referred to as a user agent and subsequently exchanged between the browser
and Web servers visited by the user. They can serve many purposes from the
basic functions of keeping track of the display mode that a user selects (e.g.,
graphic frames or text only) to representing the current state of a shopping
cart for a Web store buyer. The concept of cookies is an interesting one in
that it simplifies managing HTTP states by involving the client yet in a seam­
less manner. An end user is generally unaware of cookies placed in his or her
machine. The server maintains no state constructs in its runtime except for
when they arrive through client cookies. The server is said to forget about the
client until the latter reminds it of who he or she is.

Structure of Cookies

Cookies have a flat data structure that is simple and easy to manipulate.
A cookie is a sequence of attribute name and value pairs as defined in the
IETF RFC 2965 [KRISOO]. A few control attributes are introduced by the
standard. The most important aspect, however, is the generality of attribute-
value pairs that can be marshaled into a cookie. Application-level attributes
can be arbitrarily defined as indicated by the following syntax:

av-pairs = av-pa i r (" ; " av-pair)*
av-pair = attr ["=" value];optional value
attr = token
value = token | quoted-string

Attribute names, instances of attr, are case-insensitive. WTiile the above
syntax shows value as optional, evidently most attributes will have values
associated with them. Figure 3.28 illustrates the structure of a generic cookie.

Server Role

A server application that needs to establish a cookie-based session with a par­
ticular client returns cookie information in the HTTP response header pre­
ceded with the label of "Set-Cookie2" as shown by the syntax below.

124 3. Elements of Trust Paradigms in Computing

Attr1 = valuel Attr1 = value2 • • • AttrN = value N

FIGURE 3.28 Generic structure of a Web cookie

s e t - c o o k i e
cookies
cookie
NAME

VALUE

s e t - c o o k i e - a v

p o r t l i s t
portnum

"Se t -Cookie2 :" cookies
l#cookie
NAME "=" VALUE(";" s e t - c o o k i e - a v) *
a t t r
va lue
"Comment" "=" va lue
'TommentURL" ' '=" <"> http_URL <">
"Discard"
"Domain" "=" va lue
"Max-Age" "=" va lue
"Path" "=" va lue
"Po r t " ["=" <"> p o r t l i s t <">]
"Secure"
"Version" "=" 1*DIGIT
l#portnum
1*DIGIT

The Set-Cookie2 response header comprises the token Set-Cookie2: fol­
lowed by a Hst of one or more comma-separated cookies. In turn, each cookie
begins with a required NAME=VALUE pair representing the cookie name,
followed by zero or more semicolon-separated attribute-value pairs. Among
the standard control attributes we point out the following list, which is to
some degree relevant to the security and reliability of the cookie mechanism:

• The optional Path attribute specifies the server URLs for which the
cookie is applicable.

• The optional Port attribute restricts the ports to which a cookie may be
returned by a client in an HTTP request header.

• The optional Secure attribute (with no value) indicates that the cookie
is secure. The security level or mechanism by which the cookie is pro­
tected is unspecified and remains application-specific. When the client
sends a "secure" cookie back to the server, the level of security as indi­
cated by the server should not be downgraded.

• The presence of the optional Domain attribute specifies the domain
name for which the cookie is valid. Generally, the domain of the server
is the one specified, although cookies can also be generated by one
server and consumed by another server located in a separate domain.
This attribute is a bit of information that can be used to further extend
the generation and consumption of cookies across federated domains.

Examples of Trust-Exchange Mechanisms over the Web 125

• The optional attribute Max-Age represents the lifetime of the cookie
in seconds. A value of zero means the cookie should be discarded
immediately. The absence of this attribute can be interpreted as repre­
senting an indefinitely valid cookie.

• The optional attribute of Discard is used to instruct the client program
(the browser, for example) to discard the cookie unconditionally when
it terminates.

• The optional attribute of CommentURL is used by the server to
inform the client of any privacy-related information as well as the
intended use of the cookie. The client agent should give opportunity to
the user to inspect this information before he or she initiates a request.

Client Role

When a client wishes to continue interacting with a server, it returns cookie
information in the HTTP request header based on the Set-Cookie2 data that
it had received. The cookie header sent from the client to the server adheres
to the following syntax.

cookie = "Cookie:" cookie-vers ion 1

{ (" } " I ", ")* cookie-value)
cookie-value = NAME ''=" VALUE [";" path] ["}" domain]

["}" port]
cookie-vers ion = ''$Version" "=" value
NAME = attr
VALUE = value
path = "$Path" "=" value
domain = "$Domain" "=" value
port = "$Port" ["=" <"> value <">]

Attributes values returned by the client reflect those sent by the server
through Set-Cookie2.

Cookies already stored at the client side can be sent to the server based on
the following:

• The host and port designated by the request,
• The URI of the request, and
• The age of the cookie.

Example: Cookies Exchanged Between a Client and a Web Server

The following steps illustrate cookies exchanged between a client and a web
server presented through a fictitious URL of http://www.webstore.com. It is
assumed that the client has no stored cookies for the server and he just vis­
ited the home of webstore.com that displays a login form. The client fills and

http://www.webstore.com
http://webstore.com

126 3. Elements of Trust Paradigms in Computing

then submits the form. The server receives client log on information and
processes it. Subsequent interactions between the client and that same server
result in the following exchange of cookies.

Server —> User

Set-Cookie2:Customer="JohnDoe";Version="1"} Path="/webstore"
Cookie identifies the client.

User -> Server User selects an item to order.

Cookie: $Version="l"; Customer="JohnDoe"; $Path="/webstore"
[form data]

Server —> User Shopping basket contains an item.
Set-Cookie2: Part_Number="Diesel_Engine_l01";
Vers ion="1";Path="/webstore"

User —> Server User selects shipping method from form.
Cookie: $Version="1";Customer="John Doe"; $Path="/webstore";
Part_Number="Diesel_Engine_l01"; $Path="/webstore"
[form data]

Server —> User New cookie contains shipping method.
Set-Cookie2: Shipping="UPS"; Version="l"; Path="/webstore"

User—> Server User chooses to process order.
Cookie:$Version="1"; Customer="JohnDoe;

Part_Number="Diesel_Engine_l01";
$Path="/webstore";Shipping="UPS";
[form data]

Server —> User
Transaction i s coitplete.

Issues with Use of Cookies

The concept of cookies is controversial in a number of aspects. Foremost is
the ability of a Web server to push data constructs into a user's machine. This
process may in fact be taking place without the user's full awareness of poten­
tial consequences. Nonsavvy users in many cases are not cognizant of what a
cookie is. Indeed, this paints an element of intrusion under the auspices of
normalcy and thus users will tend to accept cookies. The user's Web naviga­
tion behavior can be easily tracked thereby raising concerns over privacy.
Malicious servers may attempt to flood a user's machine with cookie files.
The transparency of uploading cookies to Web servers, the fact that cookies
issued for one host may be consumed by another one, and cookies stored in
one machine can be copied and used on another machine all are factors that
increase the risks associated with cookies.

Examples of Trust-Exchange Mechanisms over the Web 127

The risk factor is further exacerbated with the misuse of nonsecure cook­
ies for identity management, such as authentication, single sign-on, and for
carrying entitlements. Although the IETF standard for the use and manage­
ment of cookies emphasizes the adoption of informed consent where the end
user is made aware of cookies, the potential for misuse can be abound, par­
ticularly when in fact the user is subsumed by his or her agent, the browser.
The fact that a cookie generally tends to have a lifetime that is sufficient
enough for an intruder or a malicious user to modify it or completely regen­
erate it with new information poses a considerable risk. Park and Sandhu
[PARKOO] classify threats of using cookies into three types: network threats,
end-system threats, and cookie-harvesting threats. Network threats can be
carried by intercepting HTTP requests and responses, extracting cookies, and
implanting them for a malicious use. The use of secure connections such as
SSL protects cookies during transport but leaves them in cleartext once they
reach an endpoint. End-user threats stem from the fact that cookies can be
easily altered and copied from one machine to another. Attackers can there­
fore forge cookies and perhaps impersonate other users in a scheme of iden­
tity theft. An attack for harvesting cookies can be mounted by a Trojan Web
site that impersonates a site that accepts cookies from users. The harvested
cookies can later be used to compromise all other sites accepting them.

Secure Cookies

The level of security required by cookies depends on the sensitivity of infor­
mation carried in a cookie, the type of potential threats and risks, as well as
the cost incurred in the event of a compromise. Usage of cookies may require
data integrity, origin authenticity, and confidentiality. Despite the contro­
versy surrounding it, the cookie paradigm can be securely and reliably
exploited to the benefit of Web computing. Sometimes an encrypted trans­
port channel such as one using SSL/TLS is established between a client and
a server to encrypt the entirety of a data payload exchanged just because a
few bytes of the payload require confidentiality. Instead, one might use cook­
ies with only the sensitive information encrypted.

Any reasonable level of secure cookies will, in all likelihood, require
encryption. We distinguish three scenarios in which encryption of cookies
may take place.

Use of a Public Key on the Client Side Cookie information can be signed,
encrypted, or both signed and encrypted using the private key of the client.
Decryption as well as signature verification is performed by the destination
server. The public key of the client is established by the server according to a
predefined PKI trust scheme. This approach is applicable in situations where
the client is sending information that has no risk of exposure but requires
integrity and origin authenticity. An example would be the signing of a
shopping-cart cookie so that some level of nonrepudiation can be achieved.

128 3. Elements of Trust Paradigms in Computing

Cookies secured in this fashion can be used across multiple servers provided
the certified public key of the client is available.

Use of a Public Key on the Server Side In this model, the server uses its pri­
vate key to sign or encrypt cookies before they are pushed into a client
machine. The client may elect to verify signed cookies to establish server
authenticity. The server may choose to encrypt sensitive information from the
user's profile or other session-related information using its public key. When
such a cookie bounces back on the server side, the server uses its own private
key to decrypt it and thus the cookie is guaranteed confidentiality, data
integrity, and authenticity of the origin server. In this scenario, encrypting a
cookie with the server's public key is relevant to sensitive data. Server signing
of the cookie enables data integrity, and enforces authenticity of the origin
server. Simply encrypting cookies using the server's public key, however, is
not adequate since the server's public key can be available to other entities
and thus eavesdropping and impersonation may take place. Such encryption
should be performed over data that is signed by the server to ensure both con­
fidentiality of cookie information and origin authenticity of the server.

Use of a Shared Secret Key A symmetric encryption key shared between a
client and a server may also be used to encrypt cookie information or apply
a keyed MAC to cookies requiring data origin authenticity and integrity.
When the client origin authenticity is required, however, a shared secret key
needs to be distinct for each client-server pair. This does not lend itself to
scalability and faces the key distribution issue. A session key established
through key exchange protocols such as the encrypted key exchange (EKE)
or Diffie-Hellman can also be used [DIFF76a, BELL92].

Chapter 4

Mandatory-Access-Control Model

Introduction

Mandatory-access control (MAC) stands as a well-established model in com­
puting security. Despite the fact that it lends itself well to military environ­
ments, it represents clearly distinguishing aspects in controlling information
flow. Such information flow is foremost characterized as being deterministic.
We begin with an introductory to the foundations of information flow. We
describe the mathematical elements underpinning MAC as a lattice-
based information-flow model. Subsequently, we discuss the details of the Bell-
LaPadula and the Biba models. The first one is based on the need to preserve
confidentiality of information flow, while the second is concerned with main­
taining integrity. We compare the two models and describe scenarios in which
they can be combined. Finally, we introduce the Chinese-wall policy as an
instance of the lattice-based information-flow policy applicable in commer­
cial environments.

Mandatory-Access-Control Theory

In a system governed by the mandatory-access-control model, user privileges
are not resource-owner centric. In fact, no concept of ownership does exist in
MAC, which is rather based on a policy that is driven by the sensitivity of the
protected information. To access a MAC-protected object, one must hold the
proper security clearance required by that object. The security label of a
resource is matched up against the clearance of an attempting accessor. MAC
policies fall under what is known as lattice-based access-control system.
Information flow in these systems is formally determined by the mathemati­
cal structure of the underlying lattice that reflects it. We begin by reviewing
the foundations behind the MAC model.

Partial Orders

A set S is said to be partially ordered along a binary relationship R between
S and itself if and only if the following conditions are satisfied:

129

130 4. Mandatory-Access-Control Model

• i? is reflexive: a Ra for every element a in S.
• i^ is transitive: if a Rb and b Re, then a Ra
• 7̂ is antisymmetric: if a Rb and b Ra, then a = Z?.

A partially ordered set is sometimes referred to in the literature as a poset
for short. Note that it is not required that every pair of elements in a partially
ordered set to be related, and hence the use of the tQvm partial ordering. When
every pair of elements x and ;; of a partially ordered set S can be compared
with each other (i.e., x R y or y R x) the set S becomes a totally ordered
set also referred to as a linearly ordered set or simply an ordered set.

Example: Partial Orders

Consider the elements of set S to be the subsets of {a,b,c} and R to be the
containment relationship denoted by c . The set:

S= {0,{a},{b},{c}, {a,b},{a,c},{b, c},{a,b,c}} forms a partial order along
the relationship e because

• c is reflexive: for every element xin S, xa,x.
• c is transitive for every x, y, and zin S, xa,y and j ; c z => x c z.
• e is antisymmetric: for every pair of elements x and yinS,xa,y and

y c,x=> X = y.

Similarly, (Z, <) is a total order, where Z is the set of negative and non-
negative integers.

Lattices

A lattice is a partially ordered set in which all nonempty finite subsets have a
least upper bound and a greatest lower bound. If < denotes a partial order over
S, then the least upper bound and the greatest lower bound of a subset F of 5
are, respectively, defined as follows:

• A least upper bound of V, denoted by lub, is an element w in 5 such that
X < w for all X in F, and
For any yinS such that x<yfox all x in F, it holds that u<y

• A greatest lower bound of F, denoted by gub, is an element linS such
that
/ < X for all X in F, and
for any yinS such that j ; < x for all x in F, it holds that y<l.

In particular, every two elements of a lattice have a least upper bound and
a greatest lower bound. It can be easily shown that the least upper bound and
greatest lower bound of any set are always unique: if x and ;; are both a least
upper bound of V, then it follows that x<y and y < x, and since < is anti­
symmetric, it follows that x = y.

Mandatory-Access-Control Theory 131

Example: Lattices

The poset {P(S), e) , where P(S) is the power set (all possible subsets of a
three-element set 5), forms a lattice. Every pair of elements x and ;; in P(S)
has a unique least upper bound given hy xvj y and a unique greatest lower
bound given by x n j . Both of these bounds are computed based on the e
relationship. By definition, for every x and y in P(S), if w = gub(x, y) = xuy,
then X and y are necessarily contained in w, and for every other subset of S
(say, s) containing both x and y, it implies that u is contained in s. Similarly,
\i l-lub(x,y) = X n ; ; => / e X and l<^y and for every s in P(S) if 5- e x and
^ c j ; = > ^ e / = x n j ; . Figure 4.1 depicts a poset constructed from S = {a,b,c}.

Lattice-Based Access-Control Models

Predicting the paths of information flow is central to maintaining confiden­
tiality and integrity of data. When information access in a protected system
is modeled along a lattice structure, any policies dealing with control of infor­
mation flow are directly reflected by the lattice. Lattice-based access control
is an essential aspect of computing security in environments requiring strin­
gent information-flow controls.

In lattice-based protection systems, information-flow policies bind system
objects and subjects to security classes. Flow of information from one object
to another is thereafter governed by this binding. Denning [DENN76b] for­
mally defines an information-flow model denoted by FM as

F M = < 7 V , P , 5 C , e , ^ > ,

{a, b, c)

{a,b} {b,c}

FIGURE 4.1 A depiction of the lattice
corresponding to the poset {P({aJ),c}),

{}

132 4. Mandatory-Access-Control Model

where N = {a,b,...} is a finite set of system resources (objects) that includes
users that are, in effect, active objects of the system. P = {p,q,...} is the set of
system processes running on behalf of users. SC = {A,B,..,} is a finite set of
security classes corresponding to disjoint classes of information containers.
An example of SC corresponds to the classification:

SC = {TOPSECRET,SECRET,CONFIDENTIAh UNCLASSIFIED).

Each object o ^ N\s statically or dynamically bound to a security class O G
SC. As a result, each process/? G P is also bound to a security class from SC.
We adopt the notation of using upper-case characters to indicate a security
class while a corresponding lower-case character represents an object bound
to that security class.

The class combining binary operator defined within SC x SC to SC, 0 is
associative—that is,

A®B® C= A®iB@ C) = {A®B)@ Cfov?i\\A,BX^ SC

and is commutative—that is,

A®B = B® AioxdiWA^B^ SC.

Applying the ® operator to any pair of security classes A and B yields the
security class to which information derived from security classes A and/or B
belongs. The security class corresponding to any function that operates on
objects from classes A and B is thus ^ © ^ . By an intuitive extension, the
class of a transformation by an «-ary function/(^«p ..., a^ is A^®A2® ...A„.

The flow relationship of -^ is defined over the elements of SC x »SC and
is essentially what defines an information-flow policy. The notation A^B
is used to indicate the fact that information contained in an object whose
security class is A may flow to an object that has security class of B.
Simply stated A ^ B if and only if information from class A is permitted
to flow into class B through some kind of transfer. The information-flow
model as such is said to be secure if and only if any execution of a
sequence of operations in the system yields a state of information flow
that is consistent with a predefined flow policy expressed in terms of the
—> relationship. If a data value resulting from a series of operations
denoted by function/fap ..., a^) flows to an object b that is statically
bound to security class B, then A^®A2®...A„^B must hold as part of the
stated flow policy.

The Lattice Structure of the Information Flow Model

Denning's observation in her landmark paper [DENN76b] established a set
of axioms for which <SC,^»^, ®> forms a universally bounded lattice. Such
a lattice consists of a finite partially ordered set that has a least-upper
bound operator and a lower upper-bound operator with respect to the flow

Mandatory-Access-Control Theory 133

relationship -^. These axioms or rather assumptions are implied by the
intuitive semantics of information flow and are stated as follows:

1. < SC, ^ > is a partially ordered set.
2. SC is a finite set.
3. SC has a lower bound L with respect to the -^ relationship.
4. The join operator 0 is a least upper bound that is totally defined over SC.

The rationale behind these intuitive assumptions is discussed in the fol­
lowing:

• First axiom of Denning's information flow SC along with the binary
relationship -^ yields a partially ordered set. This result is evidenced by
the nature of information flow.

1. The relationship -^ is reflexive (i.e., ^ ^ 4̂ for every A e SC), The source
containing information and the receptacle destination of information are
the same object. It is evident that information flow is permitted from
object a to itself Otherwise, an inconsistency in the definition of the -^
relationship arises.

2. The relationship -> is transitive (i.e., A ^ B and B^C^=^A^C).A^
B implies that information contained in object a of class A is permitted to
flow to object b of class B. Similarly, B ^ C implies that information con­
tained in object b is permitted to flow to object c in class C. This basically
means that one can transfer information from object a to object c through
a two-step process and thus information might as well be permitted to
directly flow from objects of class A to the objects in class C. Otherwise,
an inconsistency arises in the semantics of -^.

3. The relationship -^ is antisymmetric (i.e., A^ B and B-^ A=^ A = B).li
information is allowed to flow from all objects of class A to objects in class
B and similarly information is allowed to flow from all objects in class B to
objects in class A then we are simply dealing with two redundant security
classes. Thus, classes A and B are the same.

• Second axiom of Denning s information flow Assuming that SC is a
finite set reflects a property of every practical system. One can always
adopt finitely as many security classes as needed. Note that the num­
ber of objects associated with each security class can be unbounded.

• Third axiom of Denning's information flow This assumes the existence
of a lower bound class L G SC which means L -> ^ for all A e SC
First, this property can be assumed without loss of generality. Second,
it allows the modeling of publicly available information, which is a use­
ful property in many information systems. Theoretically, this class can
be represented by an empty set as the availability of public information
in a system does not necessarily hold all the time.

• Fourth axiom of Denning's information flow To show that the class-join­
ing operator 0 combines two security classes into their least upper

134 4. Mandatory-Access-Control Model

bound, Denning shows that the following two properties hold for all
A,B,Ce SC:

1. ^ - ^ ^ e ^ a n d ^ e ^ .
2. A-^ CmdB-^ C=>A@B-^ C,

Property 1 is intuitively arrived at. If ^ 0 ^ is the security class resulting
from information obtained collectively from objects in classes A and B, then
information from objects in class A as well as from objects in class B is per­
mitted to directly flow into objects from class C = A®B,

Property 2 states that if information can flow individually from classes A
and B to class C, then information combined from A and B should also be
permitted to flow to C. For clarity, we refer to the example given by Denning
[DENN76b]. Consider five objects containing numeric values a, b, c, c^, and
^2, and corresponding to security classes A, B, C, Cp and C2, respectively.
Assume that we have A -^ C, B ^>^ Q and C = C^ = Cr^, Now consider the
following transformation affecting values a, h, c, Cp and c^.

c^: = a;
c^: = b;

Execution of this sequence of instructions assigns to c information derived
from a and b, and thus A®B^>' C. Generalizing this fact for all types of
transformations combining values from objects in classes A, B, and C, it fol­
lows that A@B yields the least upper bound of A and B.

The four axioms of Denning's information flow imply the existence of a
greatest lower-bound operator over SQ denoted by ®. This, in turn, implies
the existence of a unique upper bound for SC, denoted by H, therefore lead­
ing to the structure < SC, ->, ©, ® > being a lattice. The greatest lower-bound
operator, (8), is shown by Denning to be defined as

A®B=@L{A,B),wherQL(A,B)={C\C-^A3indC^B},

Applying the 0 operator to L(A,B) yields the greatest lower bound of A and
B. As with the least upper-bound operator 0 , the greatest lower-bound opera­
tor (8) is also operable on subsets of SC It follows that for a subset S = {S^,...,
SJ e SC, ®S= Si® .,.® Sn, Information contained in object a with a secu­
rity class A can flow into an object whose security class is a member of the
subset 5 i f and only if A -^ Si® ... (8)5„.

The totality of the operator 0 means that it should be defined for every
pair of security classes (i.e., A®BG SC for every A, B e SQ, An informa­
tion-flow policy in which the class-combining operator is not initially totally
defined can incrementally add security classes as dictated by the 0 operator
until it is totally defined. In fulfilling this theoretical aspect one might end up
defining security classes that are not bound to any system resources.

Mandatory-Access-Control Theory 135

Implications of the Lattice-Based Flow Model
on Access Control

Access-control systems that are based on policies drawn from a lattice struc­
ture as in Denning's flow model are automatically safe. The safety property
of such systems is due to the fact that an information flow taking place from,
say, object a to object b cannot occur without the policy stating that A ^*^ B
directly or indirectly through the transitivity of the -^ relationship.
Considering that a lattice structure maps directly to a directed graph, the
safety property of lattice-based access-control models reduces to deciding
whether a directed path exists between any two nodes in the graph. Although
both end nodes of this path would generally represent two passive objects, it
can also be illustrated using active entities. In this case the origin node of the
path represents the security class associated with an active entity such as an
end user, a host system, or some programming agent. The end node repre­
sents the security class of an object in the system. This determination is
a straightforward process. Furthermore, the transitive closure of the graph
can be computed, and hence all access decisions become known a-priori.
A process/7 is capable of transferring information from object a to object b if
and only if A ^>^ P ^»^ B.

This flow property is further generalized io A\® ..,® An^^ P ^^ B\® ...®
Bmto indicate that process;? can transfer information from objects a^,...,a^ to
any of the objects b^,.,.,b^.

Examples of Lattice-Based Information-Flow Models

A basic lattice information-flow policy is one in which there are only two
security classes one is system low denoted by L and the other is system high
denoted by H, For instance, all resources with nonconfidential information
are bound to L, while those containing confidential information are assigned
to class H. In this case, SC = {L, H}. Besides reflexivity, the policy mainly
consists of a single rule L^> H 2L% shown in Figure 4.2A, where the lattice is
derived from a linear ordering of the security classes L and H. A generaliza­
tion of this policy to a set of n linearly ordered classes is depicted in Figure
4.2B. A richer policy based on partial ordering is illustrated in Figure 4.2C.
Figure 4.3 shows a policy derived from a poset of {A, B},

Since the Cartesian product x of two lattices is a lattice, a richer lattice
structure of an information-flow policy can be generated from the product of
two lattices. An example of such structures is to combine one lattice from a
linearly ordered set and one from a partially ordered set. In practice, the
linear ordering is drawn from a set of authority levels referred to as security
levels. An instance of such a linear ordering consists of

SC = {unclassified, confidential, secret, TopSecret). The partial order­
ing is derived from the poset of a set of properties known as categories.

136 4. Mandatory-Access-Control Model

H

I
t

SC={L,H}
L^H
L^L
H^H
L®H =
L®H =

max(/. ,H):
min(Z.,H) =

= {H}
L

B

SC={A^ ,...A}
Aj^ Aj<^ i<j
Aj ® Aj =

Aj<S>Aj =
L = A;H

max(>A/,y4y)
min(>4/,

= An
A,)

SC={A^
L^L
L^H
H^H
L -> AjJ
Aj^AjJ
Ai^H,
Aj®L =
Aj®H =
Ai®Aj=

,...,A

= 1,..
= 1,.
(=1 , .
AjJ =
HJ =
HJJ

n>L,H)

,n
.n
..n
^,...n

= 1 , . . . , A 7

= 1,...,n,h^j

FIGURE 4.2 Basic examples of lattice-based information flow policies

H={A, B}

SC={{]AA}AB],{AB]}
X^ / o X e Y
X@Y=X^Y
X(S>Y=XnY
/- = {}
H=[AB}

FIGURE 4.3 A simple lattice-based policy derived from poset of {A,B}

Mandatory-Access-Control Theory 137

An example of categories is the set of departments of an organization in
which a resource can be accessible. Security labels assigned to active system
entities such as users and processes are said to be bound to security clear­
ances and system resources are assigned security labels.

The derivation of a lattice structure for an information-flow model can be
extended to a Cartesian product of n lattices. The resulting flow relationship -^
is determined by -^=A^*'iJ= 1,...«.

This means the flow relationship is computed as a logical AND over the
flows in all of the participating lattices. The flow relationship therefore must
hold in each of the lattices for it to hold in the lattice represented by their
Cartesian product. For instance, when combining a linear ordering of secu­
rity levels with a partial ordering as represented by the poset, the flow rela­
tionship is expressed as

A>B^B^A,(B-^A)^ A^^^^i > B,^^^^ and A^^^^^^^.^^ 3 B^^^^^^^.^,

The Bell-LaPadula Flow Model

Bell and Lapadula [BELL75, MCLE88] developed and formalized the con­
cept of mandatory-access models, which falls in line with the information-
flow model of Denning. It is worth noting that the model of Bell-Lapadula
(BLP) preceded Denning's work on the information-flow model. The manda­
tory access-control policy as defined in BLP consists of assigning security
labels {classes) to system subjects and objects. Labels assigned to objects are
dubbed as security classifications, while those assigned to subjects are referred
to as security clearances. BLP is stated in terms of two rules: the simple secu­
rity policy and the "^-property (read as star property), both of which are
mainly concerned with the flow of confidential information:

• Simple security rule This is also known as the read-down property. It
states that information can be read only downward in the lattice struc­
ture representing the MAC policy. Subject s can read object o only if
S> O where S is the security label (class in Denning's formalism) of
subject s, while O is the security label of object o. The security clear­
ance of a subject has to dominate the security classification of an
object so it can be read.

• *-property This rule is also known as the write-up poHcy. It states that
subject s can write object o only if O > *S. This prevents leaking confi­
dential information in that a subject can write only objects whose secu­
rity classifications dominate the security clearance of the subject.
Writing objects takes place in an upward fashion within the lattice
structure of the BLP policy, while reading is performed downward, as
illustrated in Figure 4.4.

As has been indicated the flow model in BLP is motivated by the confi­
dentiality of information. Consequently, the ability to read objects upward in

138 4. Mandatory-Access-Control Model

Read-down Write-up

FIGURE 4.4 Information-flow
direction in the BLP model as
abstracted by a lattice structure

the lattice structure is not permitted. Similarly, the ability to write objects
downward in the lattice structure is prohibited as both of these operations
lead to transferring confidential information from higher-level entities to
those having access to only lower-level objects.

The write-up property of BLP alone is not sufficient for preventing a
subject from corrupting information at levels dominating those of the sub­
ject. Confidential information can be corrupted by subjects having lower
security labels even when the read-down property prevents reading the
information. To address this integrity problem, MAC policies have adopted
a modified *-property that allows subject s to write object o only if the sub­
ject and the object are both bound to the same security class (i.e., S = O),

The integrity issue associated with the write-up property can in fact be
addressed by the second component of the BLP model, which enforces a dis­
cretionary policy of resource-access control. In BLP the dominance relation­
ship as stated by the MAC policy is augmented with a discretionary-access
policy. An access decision therefore depends on both policies, MAC and DAC,
being enforced at the same time. With this approach, corruption of confidential
information by processes at lower security classes is prevented by specifically
exposing resources that are intended to be receptacles of information from
lower processes and disallowing access to the ones that contain confidential
information through proper DAC policies. Similarly, the read-down property
may also be controlled in this manner, although generally enforcing DAC con­
trols around the write-up property is the main concern of many MAC policies.

The Biba Model
As has been noted, the goal of the BLP model is to prevent downgrading
confidential information. The Biba model, on the other hand, is concerned

Comparing Information Flow in BLP and Biba Models 139

with the integrity of information [BIBA77]. This model follows along the
same ideas of the BLP model and as such does not present a fundamental
departure from the concepts introduced by BLP. The underlying concept in
Biba is that security classes are organized along a lattice structure in which
each class corresponds to some integrity level with the highest integrity at the
top of the structure and the lowest at the bottom. Information is allowed to
flow from high-integrity objects to low-integrity objects only. In a similar way
to BLP, Biba states its information flow policy using two rules: the simple-
integrity property and the integrity "^-property:

• Simple-integrity property This property states that subject s can read
object o only if the security class of o dominates that of s (i.e., 0>S).

• Integrity "^-property This property states that subject s can write object
o only if the security class of s dominates that of o (i.e., S > O).

Recall that a security class in Biba corresponds to an integrity label. A curi­
ous aspect of the Biba properties is that they are duals of their counterpart
in BLP. For instance, while the policy in BLP is about read-down of infor­
mation, the simple-integrity property of Biba states a read-up of informa­
tion. Similarly, the integrity ^-property of Biba states a write-down type of
information flow as opposed to the write-up of the *-property in BLP.

Comparing Information Flow in BLP and Biba Models

The direction in which information flows in the BLP and the Biba models is
driven by the nature of protections sought in each model. The BLP is moti­
vated by confidentiality of information, and hence information in objects at
higher levels is not allowed for read access by lower-level processes. Similarly,
information at lower levels is allowed to flow to objects from higher security
classes in the lattice structure. The write-up property of BLP represents an
interesting aspect of information flow. It can be used to upgrade the classifica­
tion of information from the bottom of the lattice all the way to its top as illus­
trated in Figure 4.5A. Once this information is copied to higher-level objects,
there is no rule that enforces its deletion from lower-level objects where the
information originates so that it can no longer be read by processes at those lev­
els. Recall that the BLP as well as the Biba properties allow a process to simul­
taneously read and write objects at the same level in the lattice.

A process;7j as depicted in Figure 4.5A reads object o^ situated at its imme­
diate lower level, writes it to object o^ at the same level as/?p then writes it to
object 6>3 located immediately above the level of Py Similarly,/?j may also read
6>j and write it directly to Oy Thus the flow of information between a lower
level and any higher level may be achieved through a sequence of operations
or simply in by a single sequence of read and write operations.

The direction of information flow in the Biba model is the opposite of that
in the BLP model. As illustrated in Figure 4.5B information is allowed to
flow from the top of the lattice all the way to its bottom in accordance with

140 4. Mandatory-Access-Control Model

FIGURE 4.5 Scenarios of information flow
in the BLP and the Biba models

the Biba properties. Although this flow does not imply modifying the secu­
rity classes of objects involved, it somehow represents a downgrade of infor­
mation as it yields a transfer of information from higher to lower security
classes.

A curious reader may ask the question of why we need to enforce the
read-up property in the Biba model as it does not seem to interfere with the
integrity goal of Biba. Let us assume that in addition to the read-up capa­
bility, processes are also able to read-down objects in the lattice structure of
a Biba integrity policy. As shown in Figure 4.6, process p^ reads down an
object o and writes it to object o^ located at the same security label as p^
(read and write at the same level are permissible due to the equality in the
dominance relationship >). Now an upper level process p^ reads down o^
and writes it to object o^ at the same level as that of ;?2- Performing these
steps in a bottom-up fashion along the lattice structure results in the flow
of information upward, therefore conflicting with the intent of the Biba
model.

Write at same level

Write at same level

02

Oi

P2

•Pi

FIGURE 4.6 The need for read-up
only in the Biba integrity model

Combining the BLP and the Biba Models 141

Implementation Considerations for the BLP
and the Biba Models

One implementation aspect that is worthy of mention for the BLP and the
Biba models is the need to provide safety of concurrency. At any level in the
BLP or the Biba policy lattice, objects have to be protected from concurrent
writes by processes of that level. In the BLP model, objects situated at level /
need to be further protected against concurrent writes by processes at levels </
(Figure 4.7A).

It is also desirable to prevent against a simultaneous read and write of the
same object. In the Biba model, objects situated at level / should be protected
against concurrent writes by processes at levels >/ as illustrated in Figure 4.7B.
Like in the BLP case, it is also desirable to prevent against simultaneous read
and write of the same object.

Combining the BLP and the Biba Models

Protected entities of a computing system (resources, subjects, and program­
ming agents or processes) can be subjected simultaneously to the BLP and
Biba policies. We distinguish two ways in which such coexistence may take
shape. In the first scenario we draw the security classes for the combined con­
fidentiality and integrity lattices from a single set SC in which every security

P2

Write-up

FIGURE 4.7 Synchronization requirement for concurrent reads and writes in the BLP
and Biba models

142 4. Mandatory-Access-Control Model

class applies as a confidentiality and an integrity label simultaneously. The
write-up in BLP requires the security class of the writing subject to be dom­
inated by that of the receptacle object, while the write-up property of Biba
requires the opposite. Hence writing an object in this scenario is confined to
processes that are all at the same level as that of the object to be written. This
amounts to the trivial isolationist policy where no information flows across
security levels of a lattice. From the standpoint of information flow analysis,
this model is equivalent to using a single security class. The isolated classes
scenario is depicted in Figure 4.8.

The second and a more useful scenario of combining the BLP and the Biba
models results from adopting independent confidentiality and integrity
classes as shown by Sandhu [SAND93]. A composite model as such is the
product of two lattices, which is in turn a lattice. Let C = {c^,...,cj be a lat­
tice of confidentiality corresponding to the BLP model, and let / = {i^ v?^^}
be a lattice of integrity representing a policy based on the Biba model. Let a
be a function that maps a system entity (subject or object) onto its confiden­
tiality class (label), and let ß be the function that maps an entity onto its
integrity class. The composite BLP and Biba lattice is defined by the follow­
ing constraints:

• Subject s can read object o only if a{s) > a{o) and ß{s) < ß(o).
• Subject s can write object o only if a(s) < a(o) and ß(s) < ß(o).

As has been noted, the composite model is the product of two lattices
which reduces to one lattice. Figure 4.9 illustrates an instance of this lattice
for C = {a^, a^} with a^ > a^ and / = {j8̂ ,)Ŝ } with ß^ > ß^, where L and H
denote system Low and High, respectively. Note that while information in the
BLP and Biba models flows in opposite directions, in the combined lattice
(Figure 4.9) information flows upward.

'^n-^

SC={A, A,}

Ai-^Ai,i='\ n

Ai®Aj=Aj,i=1,

Ai®Aj,iJ=1,...,

L = undefined, H

...,n

n,i ̂ j(undefined)

= undefined

:

FIGURE 4.8 Combining BLP and the Biba models: The case of security classes that
are used for both confidentiality and integrity

Comparing the BLP and the Biba Models 143

«H

«/.

ßi

ßH

FIGURE 4.9 An example of combining BLP and the Biba models in the case of inde­
pendent confidentiahty and integrity classes

Figure 4.10 illustrates an access-control matrix representing the access pol­
icy of the product lattice of Figure 4.9. Rows of this matrix represent sub­
jects, and the columns correspond to resources. Each row of the table
specifies exactly the type of access a subject with a given label can have to a
resource on the column. For example, a subject with label a^ j8^ can read (r)
information contained in resources with label a^ j8^, and write (w) objects
with labels a^ ß^ but cannot (0) read or write resources with labels a^ ß^. The
diagonal of this matrix represents access modes that subjects can have to the
resources that are associated with the same levels as those of the subjects.
Read and write accesses are thus shown along the diagonal.

One characterizing aspect of the composite BLP and Biba model is the fact
that if information in the confidentiality-based model flows from one class
(say, C.) to another class Ĉ ., then information in the composite model flows
from classes C. I^ to classes Cj /^ for all A: = l,...,m (m being the cardinality of
set 7). Similarly, if information separately in the integrity model flows from

aißi

ocißh

(^nßi

(^nßh

aißi

rw

w

r

</>

(^ißH

r

rw

r

r

(^Hßi

w

w

rw

w

ocnßH

0

w

r

rw

FIGURE 4.10 An access-control table corresponding to the subjects and objects of the
example of Figure 4.9

144 4. Mandatory-Access-Control Model

one class (say, I^ to another class 4, it follows that information in the result­
ing composite model flows from classes /. C. to classes 4 C. for all / = !,...,«
{n being the cardinality of set Q. These properties are an immediate result of
the fact that in either of the models information is always allowed to flow
from and to the same security class.

On the Mandatory-Access-Control Paradigm

As has been noted, the development of the mandatory-access-control model
was motivated mainly by the control policies found in military environments,
specifically, in the United States Department of Defense (DoD). Within the
DoD an information security policy assigns each system entity a linearly
ordered classification level L and a set of categories C. The categories gener­
ally form a partial ordering along the poset relationship. The hierarchy of
entities and resources as imposed by military policies is certainly amenable to
the adoption of mandatory-access controls. In the commercial world, how­
ever, this is not generally the case, even when the categories are designed to
reflect the organizational structure of an enterprise.

The authoritative policies of mandatory controls are inflexible and not
amenable to sharing resources as warranted by the needs for information shar­
ing. MAC policies are static in nature. They cannot be changed dynamically and
without the intervention of an administrative authority whose immediate avail­
ability can be an issue. Resources of the same security class are undistinguish-
able with respect to the access controls applied at their level. For instance, all of
the resources assigned the same confidentiality label in the BLP model can be
read by every subject with a security label that dominates those resources. MAC
policies do not support the concept of resource ownership and hence the
inability to discern access rights to the resource in a discretionary fashion.
Identification of resource ownership is a fundamental aspect of building access-
control systems in modern commercial operating environments. With all these
issues, Lipner [LIPN82] addressed optimum ways in which mandatory controls
can be applied in the commercial nonmilitary world. He gave a detailed exam­
ple in which confidentiality and integrity labels are simultaneously used as in the
composite BLP and Biba models to achieve commercial uses.

Finally, it is worth noting that despite of the fact that BLP and Biba mod­
els are based on the confidentiality and integrity of information, respectively,
they can be applied to any other types of information access. The semantics
of access rights in the lattice-based models therefore can take various forms.

The Chinese-Wall Policy

The Chinese-wall policy (CWP) was developed by Brewer and Nash
[BREW89] as an instance of lattice-based security models with applications

The Chinese-Wall PoHcy 145

in the commercial world. The intent of CWP is to enforce a conflict of inter­
est policy in which a single user is prevented from having to simultaneously
access information that represents a conflict of interest. Specifically, CWP
was formulated to address a situation in which a financial institution provides
market analysis as part of its consulting services to other businesses. Each
analyst must not be able to advise a particular institution when he or she has
knowledge of business information about a competitor of that institution.
The analyst, however, is capable of advising any companies that are not in
competition with each other. Thus, every subject that is affiliated with this
consulting service must be confined to accessing information on businesses
that are not competing with one another. For example, information about
bank B should not be accessible to a subject that already has access to infor­
mation about bank A. Unlike in BLP, where access to information is based
on a static relationships between subjects and objects, in CWP access is con­
strained by what information the subject already has access to.

The elements of CWP are illustrated in Figure 4.11. A company maintains
information about other businesses that is hierarchically divided along a set
of conflict of interest classes. Within each class the company groups all
information about a particular business in a dataset. In turn, each dataset
consists of a number of individual objects containing data related to that
business.

In a way similar to the BLP model, CWP is stated in terms of its own for­
mulation of the simple security and the *-Property rules. It is also worth not­
ing that Sandhu developed a scheme in which he shows how CWP is mapped
to a lattice-based access-control model [SAND92a, SAND93].

Conflict- of-
interest classes

Company
datasets

Data
objects

FIGURE 4.11 Dividing information along a Chinese-wall policy

146 4. Mandatory-Access-Control Model

Simple Security

This represents the basis of the CWP enforcing the fact that a user is allowed
only access to information that is not in conflict with any information already
accessible to that user. Access by a subject to an object is therefore granted
only if

• The object is in the same company dataset that is already accessed by
that subject (i.e., the object is within the wall), or

• The object belongs to an entirely different conflict of interest class.

As a result. Brewer and Nash establish the following theorems:

Theorem 1: Once a subject has accessed an object the only other objects
accessible by that subject reside within the same company dataset or within a
different conflict of interest class.

Theorem 2: A subject can at most have access to one company dataset in each
conflict of interest.

Theorem 3: If for some conflict-of-interest class X there are Xy company
datasets, then the minimum number of subjects that will allow every object
to be accessed by at least one subject is Xy.
*-Property
This rule states that write access is permitted only if

• Access is permitted by the simple security rule, and
• Any object that is in a different company dataset with respect to the

one for which write access is requested cannot be read.

The *-Property is used to prevent the writing of information that results in
violating the simple security rule. An example of such scenario is the case of
two subjects s^ and 2̂ that have access to three companies as follows: s^ has
access to bank 1 and computer company 1, while ̂ 2 has access to bank 1 and
computer company 2. If s^ reads information about computer company 1
and writes it to objects containing information about bank-1, then ̂ 2 can read
computer company 1 information and thus yield a conflict of interest.

Chapter 5

Discretionary-Access Control and the
Access-Matrix Model

Introduction

Contrary to the relatively static state implied by a lattice-based security model,
discretionary-access-control (DAC) systems are characterized by unbounded
protection states. It is for this reason that in many ways modeling access-control
systems has historically been understood to implicitly relate to DAC. Although
the access-matrix model, the subject of this chapter, applies to all security poli­
cies including those that are mandatory, it lends itself well to discretionary poli­
cies. The matrix model is concerned with the study of access control directly
over the entities involved in an access policy—^namely, subjects and objects. It
reflects the access relationships that exist between these two at any point in time.
Access relationships that are based on resource ownership and enable individual
control over propagating access permissions are at the core of DAC systems.

We review the concepts defining the access-matrix model followed by a dis­
cussion of the corresponding implementation considerations. We reflect on
the history of this access model by delving into the work of Harrison, Ruzzo,
and Ullman. Subsequently, we introduce the reader to the foundation of
safety in protection systems and describe relating results in detail.

Defining the Access-Matrix Model

The pioneering work of Lampson [LAMP71] followed by that of Harrison,
Ruzzo, and Ullman (HRU) [HARR76, HARR78] has led to a generalized
form of access-control modeling known as the access-matrix model. Three
basic abstractions on which this model is built are

• Subjects,
• Objects (resources), and
• Access rights.

The two-dimensional matrix modeling a protection state has a row for every
subject, an active entity, and a column for every object. Subjects form a

147

148 5. Discretionary-Access Control and the Access-Matrix Model

subset of the objects. This leads to modeling access relationships that may
exist among subjects as well as between subjects and objects. Furthermore,
subjects may represent programming agents. Thus not all objects are pas­
sive resources. An example of such active resources is a stored procedure
that in itself is a controlled shareable resource. When the procedure exe­
cutes, it may assume an identity of its own or one corresponding to the sub­
ject that initiated it. Passive resources are those that are merely information
containers, sometimes referred to as data receptacles.

Denoting A for an access matrix, S for the set of subjects, O for the set of
objects available to a computing system {S a O), and R for the set of access
rights defined by a particular policy, the value of a cell A[s, ö\ represents the
set of permissions R^^ e R, confining the type of access subject s has to object
o. An entire row s in the matrix is referred to as the capability of subject s.
Similarly, a column corresponding to object o is called an access-control list
(ACL) for that object. A snapshot of the access matrix at any point in time
represents a protection state. The lifecycle of an access matrix follows that of
a finite state machine model. Each snapshot of the matrix corresponds to a
state variable, and the transition functions of the state machine correspond
to the processes (also referred to as commands) of creating new subjects or
objects, destroying them, as well as granting and revoking access rights. These
processes or commands transform the matrix from one protection state to
another. The transformations are driven by what is known as an authoriza­
tion scheme or an authorization policy. Figure 5.1 shows an example of an
access matrix that models a population of three subjects and four objects, all
of which are files (a total of seven objects including the three subjects).

Implementation Considerations for the Access Matrix

The large number of resources that may potentially be available within a
computing system may yield sparse access matrices. As a result, most

Subject 1

Subject 2

Subject 3

File1
Read,

Write

Append

File 2
Execute

Files

Read,

Write,

Execute

Execute

File 4
Read

Read,

Write

Subject 1 Subject 2 Subject 3

FIGURE 5.1 Example of an access-matrix modeling access of three subjects to seven
objects

Implementation Considerations for the Access Matrix 149

implementations of the access matrix represent only the entries of the matrix
that are relevant. For example, an entry corresponding to subject s that has
no access to object o is omitted. The access matrix can be viewed in two dif­
ferent ways—from the resources and from the subjects perspectives.

Resource View of the Access Matrix: Access-Control Lists

Access-control lists (ACLs) are commonly used in implementing an access
matrix. An ACL is a data structure that associates a resource identifier such
as a file name with the list of subjects that have access to it. Each subject in
the list is qualified by the access rights available to it. An ACL corresponds
to a column of the access matrix with the empty entries removed. ACLs are
generally maintained by the respective resource managers, although they can
also be managed by a dedicated access-control service independently from
the context of the resource. One of the advantages of using ACLs is the ease
by which all the subjects having access to a particular resource can be deter­
mined. Revoking or updating access for a user is also an easy operation.
Deleting an account or enumerating the list of resources accessible by a par­
ticular subject, however, require visiting all of the managed ACLs. ACLs pro­
vide one other advantage, and that is confining the scope of the semantics
associated with the access permissions within the limits of the underlying
resource manager or the access-control service that is acting as the reference
monitor that mediates access to the resource. Such a local semantics scope
prevents ambiguity and collision with similar permissions that have different
semantics. However, the ability of the ACLs mechanism for scaling to a fine-
grain level of resources may be challenging. Gladney [GLAD97] addresses
this issue by aggregating subjects and objects into equivalence sets that can
reduce the size of each ACL. These equivalence sets are known in access con­
trol as user groups and resource classes. Figure 5.2 illustrates the ACLs cor­
responding to the access matrix of Figure 5.L

Subject View of the Access Matrix: Capabilities

Capabilities correspond to the rows of an access matrix. They represent a
dual technique for ACLs. A subject's capability enumerates the list of
resources accessible to the subject. Each entry identifies an object along with
the set of access rights conferred on the subject. The main advantage of this
mechanism is the ease by which one can determine all the resources accessi­
ble to a particular user (a simple traversal of the capability list). To determine
all subjects that have access to a particular resource, or remove a resource,
however, requires traversing all the capabilities. Capability lists combined
with secure establishment of a networkwide security context are ideal for dis­
tributed computing. The semantics of permissions carried in a capability,
however, will have to be uniquely defined over the distributed environment
where they are used so that ambiguity can be prevented. Figure 5.3 depicts
the capabilities associated with the access matrix in Figure 5.1.

150 5. Discretionary-Access Control and the Access-Matrix Model

File1 File 2 File 3 File 4

Subject 1

Read, write

JL
Subject 3

Append

1
Subject 1

Execute

1
Subject 2

Read, write,
execute

1 • 1

1
Subject 1

Read

•

V

Subject 3 1

Execute

\l /
1 Subject 3

Read, write

FIGURE 5.2 ACLs of the access matrix in Figure 5.1

Definitions fi:'om the HRU Access-Matrix Model

HRU [HARR76] characterizes the protection state of an access matrix model
by the triple (S, O, A), where

• »S is the set of subjects representing all active entities in a computing
system (e.g., a user, a host system, or an application program).

• O is the set of objects (resources available to active entities of the sys­
tem) (e.g., a file, a print server). »S is a subset of O {S cz O). A system's
monitoring program, for instance, can be a resource that is both an
object and a subject. An application as such is a controlled resource in
that its configuration and its execution may be granted to a particular
system administrator only. While that same program is executing, it
becomes an active entity of its own and thus may assume the identity
and the privileges of an authorized system agent.

• ^ is an access matrix representing the protection state. Rows of the
matrix correspond to subjects, while the columns correspond to objects.
A[s, o] contains the access rights that subject s is entitled to have for
object o. Examples of access rights are read (r), write (w), execute {e),
and own.

It is worth noting that in many cases the existing literature does not explic­
itly characterize a protection state with the applicable set of rights. Because
the semantics of access rights have a direct impact on the propagation of
rights in an access-matrix model, it is useful to add another dimension to the
state of an access-matrix model—that of access rights. As such, we consider
an access state to be defined as {S, O, R, A), where R is the set of permissions
that are applicable to the elements of ^4. In what follows, however, we stick to
the shorter notation of (S, O, A) instead.

State Transitions in the HRU Access-Matrix Model 151

Subject 1 — 4

Subject 2

Subjects-

File1

Read, write

T

File3

Read, write

File1

Append

f

M/
File2

Execute

• 1 T

1/

File 4

Read

\i/
File 3

Execute

m 1 T

Nl/

File 4

Read, write

FIGURE 5.3 Capability lists of the access matrix in Figure 5.1

State Transitions in the HRU Access-Matrix Model

State transitions of the access-matrix model are the side effect of control
commands that transform the matrix. Primitive operations affecting the
states of an access matrix in the HRU model are defined as follows:

• Enter r into Afs, o]
• Delete r from A[s, o]
• Create subject s
• Create object o
• Delete subject s
• Destroy subject s
• Destroy object o

The side effects of these operations on an access matrix are summarized in
Table 5.1.

Evidently the use of the primitive operations described in Table 5.1 needs
to be controlled so that transforming the access matrix from one state to
another is accomplished according to an authorization scheme. Entities can
transform the matrix only if authorized by the policy. In practice, higher-
level commands that encapsulate one or more primitive commands are pro­
vided for users to transform the access matrix. These complex commands
are generally made of a precondition and a body. The precondition tests for

152 5. Discretionary-Access Control and the Access-Matrix Model

TABLE 5.1 Effects of the commands in the HRU model

Operation

Enter r into Als,o]

Delete r from A[s,o]

Create subject s

Create object o

Destroy subject s

Destroy object o

Precondition

rGR

r G A[s,ö\

s^ O

0^ 0

se 0

OG 0

Postcondition

cr = o,s' = s
A' = [s, o] = A [s, o] U {r}

a = o,s' = s
A' = [5, o] = A [s, o] - {r}

(y = ou {s}
S' = SU {s}
\/o e 0\ A'[s,o] = 0
V^e S\A[s,s] = (l)
0'=0U {o}
S' = S
\/s e 5", A\s,o] = (j)
(y=0-{s}
S' = S-{o}
(y = o-{o}
S' = S

the presence of a valid context in which the command body can execute.
This context is policy based and can be, for instance, defined by the pres­
ence of certain rights in certain entries of the access matrix. One might
therefore abstract the general form of a transformation command a as
follows:

coinmand aiX^fX^,..., X^) {
i f (condition)
then

oPi;
0P2?

}
OPn

where X, / = 1,...,/: represent the formal parameters of the command that are
drawn from the set of rights R and the set of objects O. The command syn­
tax above is not limited to a single conditional flow of execution. Generally,
it may contain a sequence of such conditional flows.

Example: create, confer and remove commands

Consider a protection system with a set of access rights
R = {read,write,append,execute}
and a set of commands C = {createj^^^^, confer^,remove^} where confer^ allows
subject s^ to transfer right r G i^ to subject s^, s^,s^^ S, while remove^ allows
a subject to undue the action of the confer^ command.

The Safety Problem of the Access-Matrix Model 153

command create^^^^ (subject, f i l e) {
create object f i l e ;
enter own into A [subject, f i l e] ;0
enter read into A[subject, f i l e] ;
enter write into A[subject, f i l e] ;
enter execute into A [subject, f i l e] ;

}
command confer^(subject^, subject^, r, f i l e) {

i f own in A[subject^, f i l e]
then enter r into Alsubject^, f i l e] ;

}
command remove^ {subject^, subject^, r, f i l e) {

i f own in A[subject^, f i l e] and
r in A[sujbject2, f i l e]

then delete r from Alsubject^, f i l e] ;
}

Modern access-control systems automatically retrieve the identity of the
subject performing any of the above commands from the operating environ­
ment where an established security context is maintained. From the perspec­
tive of the subject that is performing the commands in this example, the
formal parameters are

• creatCßj^ (file)
• confer^ (subject, r, file)
• remove^ (subject, r, file)

Example: command effects

We now observe the effect of the following sequence of commands on an ini­
tial configuration of a protection system {S, O, Ä), where S = O = {̂ 1,̂ 2}-

creatCß^^ (s^, data);

^^^f^^read (̂ 1' ^2' ̂ ata);

We assume that the initial access matrix is empty. Figure 5.4 illustrates the
states of the access matrix as the commands are being executed.

The Safety Problem of the Access-Matrix Model

The cumulative effects from transforming an access matrix are unbounded.
Consider the confer^^^^^ command, an instance of confer^ which discerns the
permission to transfer access rights to other subjects via the transfer^ com­
mand, which looks like

154 5. Discretionary-Access Control and the Access-Matrix Model

S, S2 createffte s^ g^ P^^^

S2 ^2 0 ^ 0

Si

S2

Data

0

(/>

0

0

0

0 S2

Data

0

0

0

0

0, r

0

Data

0

0

0

0

o,r,a

(/> S2

Si Data

(/>

0

0

0

o,r,a,w

(/>

0

0

0

0

o,r,a,

r

SiS

S2S

S^

0

0

S2

0

0

Data

o,r,a,iv,
e

(/>

•

S2

Si

0

0

S2

0

r

Data

o,r,a,w,
e

0

Data

confer^ppend S^

•

S2

Si

0

0

S2

0

0

Data

o,r,a,
IV, e

r, a

confer,eaci

FIGURE 5.4 Snapshots of the access matrix transformed by the commands of the
second example above

command t r a n s f e r ^ (sub jec t^ , sub jec t2 , r, f i l e) {
i f g r an t i n A[subjec t^ , f i l e]
then e n t e r r i n t o A[subjec t2 , f i l e] ;

}

Applying random sequences of the confer and the transfer^ commands
along with others as permitted by the protection system may lead over a

The Safety Problem of the Access-Matrix Model 155

period of time to unwarranted effects. As a result, access to resources may
take place without the concurrence of the owners. We now review a set of def­
initions as a prelude to discussing the safety problem that is characteristic of
the access-matrix model and the DAC paradigm in general.

Definition 5.1: Given a protection system, we say command a leaks access
right r from configuration Q - {S,0,Ä) if the execution of a on ß results in
a configuration g ' in which right r is entered into a cell of the access matrix
A, which did not previously contain r. In this case, configuration Q is said to
be reachable from configuration Q through command a. We denote this by

This definition is captured in Table 5.2.

Definition 5.2: A protection system is said to be unsafe or leaks right r with
respect to an initial configuration Q^ if

• There is a configuration Q that results from applying a series of trans­
formations beginning with the initial configuration Q^ (i.e., Q is reach­
able from ÖQ), and

• A command a such that a leaks r from Q,

Definition 5.3: An initial configuration Q^ of a protection system is said to be
safe for a generic right r if Q^ is not unsafe for r (i.e., Q^ does not leak right r).

Definition 5.4: A security policy is the set of rules that govern the authorized
states of a protection system. These rules should not translate into undesired
leaks of rights. For instance, r access by subject s to object o in the Bell-
LaPadula model is subject to the policy: r e A[s,o] <^ level{s) > level(o).

Definition 5.5: Let S be the set of all protection states, let P be the set of all
authorized protection states, and let R be the set of all states reachable from
some initial state:

• A system is said to be secure if jR e P.
• A system is precise if i^ = P.
• A system is insecure if —i(PeP).

Figure 5.5 illustrates these definitions.

TABLE 5.2 Leaking an access right from a configuration of a protection system
Command Precondition Postcondition

«(Zi,...,X^) Q = (S,0,A) and for some re Rmdse O, ß ' = {S\ a,A')
and o e 0,r^ A[s,o] r e A\s,ö\

156 5. Discretionary-Access Control and the Access-Matrix Model

A. secure B. Secure and precise

FIGURE 5.5 Illustration of secure, precise, and insecure systems, P being the set of
authorized states and R the set of reachable states

Definition 5.6: A protection system is said to be mono-operational if the body
of each command that it supports consists of a single primitive operation.
For example a system containing commands confer^, remove^, and transfer^
only is mono-operational. Command creatCj.^^ does not yield a mono-opera­
tional protection system. Note that in a mono-operational system the pre­
condition part of each command can be arbitrarily complex.

Definition 5.7: A protection system is mono-conditional if the precondition
part of each supported command has only one term. This implies that the
test portion of the command involves the presence of a single right in a par­
ticular entry of the access matrix. Commands confer^ and transfer^ yield a
mono-conditional protection system, while command remove^ does not.

We are now ready to state the first theoretical result of Harrison, Ruzzo,
and UUman on the safety of protection systems:

Theorem 5.1: There is an algorithm that decides whether a given mono-
operational protection system as represented by an initial configuration is
safe for a given generic right r.

Sketch of proof: We summarize the proof of this theorem based on HRU
[HARR76]. The goal is to establish that the length of the shortest leaky path
of transformations for a given initial protection state is bounded. The
assumption is that the protection system is mono-operational and hence that

The Safety Problem of the Access-Matrix Model 157

each supported command identifies in a one-to-one mapping with its corre­
sponding primitive operation.

Let Q. = (S., O., A), and suppose that

Qo^''Ql^'\..Qm-l^""Qm (5.1)

is a minimal length of a transformation path in which the reachable configu­
ration Q^ leaks right r. The authors of the theorem use the technique of
proof by contradiction in which the absurdity arrived at contradicts with the
assumption that (5.1) is minimal. Now it is claimed that C., 2 < / < m is an
enter command, and Ĉ is either an enter or a create subject command. In
other words the claim is that the sequence (5.1) contains at most one create
subject command which can only be the first command. Suppose that this is
not the case, and let C^ be the last nonenter command in (5.1). The proof pro­
ceeds by distinguishing three cases, each of which forms a leaky sequence that
is shorter than (5.1):

• if Ĉ is a delete or a destroy command (either a right or an object is
removed from the underlying protection state), then we can form a
shorter leaky sequence (5.V) by simply removing command Ĉ from
(5.1) as follows:

ß o ^ ^ ' ß i ^ " . . . ß « - i ^ < - Ö « - i ^ . - - ß '^ - i^^"ß '^ (5.10

where C. = C. and Q\ = Q. augmented with the right, the subject or the
object that C^ deletes or destroys. In other words, deleting a right or
destroying a subject or an object from a configuration along the
sequence (5.1) does not affect reaching configuration Q^ in which
generic right r is leaked. One thing to note here is the fact that com­
mands C., n + I < i < m have no distinction between configurations ß.
and ß'.. Therefore, Ĉ cannot be a delete or a destroy command since
that contradicts the basic assumption that sequence (5.1) is the short­
est leaky path for right r (length of (5. T) = length of (5.1) - 1 =m-\).

• Now suppose that C^ is a create subject or object command. Because
command a leaks r from configuration ß^, therefore it must be an enter
command. Since C., / = « + l,...,m are all enter commands by assump­
tion, it follows that when C^ is a create object command that I S^_^ I
> 1, where I S^_^ I is the total number of subjects in configuration ß^j .
Otherwise, command a that leaks right r in the sequence (5.1) will have
no subject on which to operate. Let s e S^_^, and let o be the name of
the object created by C .̂ Sequence (5.1') now can be formed by remov­
ing command C^ from sequence (5.1) and using C . = C., / = AZ + l,...,m,
with s replacing all occurrences of o in C., and ß' . = ß.. This construc­
tion leads to the fact that any precondition of command C. that is sat­
isfied by o, the corresponding condition in C. is satisfied by s as well
(due to the substitution for Ö by ^). In particular, the preconditions in

158 5. Discretionary-Access Control and the Access-Matrix Model

command a are satisfied by the actual parameters in which s replaces
all occurrences of 0. As a result, a leaks right r from configuration Q. -
Q., Thus a contradiction of the fact that (5.1) is a minimal sequence. Ĉ ,
therefore, cannot be a create object command. If C^ is a create subject
command then if I S^_^ I ̂ 0 we generate a shorter leaky sequence from
(5.1) by simply removing C^ and then substituting for the subject that C^
creates with an existing subject.

• The scenario considered in this case is the same as in the previous one but
with I 5^ J I = 0. No subjects are created prior to configuration ß^, and
therefore C^ must be a create subject command resulting in S^ = {s} and
n>2 due to the assumption. The sequence (5.1') can now be constructed
by skipping commands preceding Ĉ . In doing so, we substitute s for any
object o. created by the skipped commands. All preconditions of com­
mands C '. satisfied by o. will thus remain satisfied by s and in particular
those contained in command a. Hence generic right r can be leaked in
configuration Q'^, The following is an instance of such a sequence.

Qo^'"Q'n^'''"^'Qn^l^ . . . ^Q'm-l^'''"Q'm (5 . 2)

In (5.2) we have C '. = C. with subject s substituting for all objects in
the initial configuration Q^. Length of sequence (5.2) is (length of
sequence (5.1)) - (« - 1) = m - w + 1.

The creation of a shorter leaky path in each of the above cases contra­
dicts the fact that the leaky sequence (5.1) is of minimal length. By remov­
ing duplicate commands from a leaky sequence (i.e., those with the same
side-effect), we get an upper bound on the length of a leaky sequence as
follows:

m < ^ * (| 5 j + l) * (| 0 j + l) + l .

where g is the total number of generic rights, IŜ \ and I O^ \ are the total
number of subjects and objects in the initial configuration of (S^, O^, A^),
respectively. Note that the final state in which right r is leaked via command
a contains 15̂ I + 1 subjects and I Ô I + 1 objects at most. This is because a
leaky path contains at most one create subject command and one create
object command.

The rational for the upper bound above reflects the total number of cells
in the access matrix as well as the number of access rights that can be entered
in each cell as a side-effect from applying a chain of mono-operational com­
mands (no multiple enter commands that apply to the same parameters).
Recall that each command has the effect of entering at most a single right in
a particular position of the access matrix.

On the Safety of the Mono-Operational Protection System

The length of a shortest leaky path for the mono-operational case of a pro­
tection system is bounded. This leads to the feasibility of a brute-force

The General Safety Problem of the Access-Matrix Model 159

algorithm for deciding the safety of such system where all possible
sequences of enter commands are tried. This algorithm, however, is consid­
ered NP-complete in that it has an exponential complexity in the size of the
access matrix. Furthermore, as noted by Sandhu [SAND92b], the mono-
operation create object command is essentially useless in that there is no
opportunity for the reference monitor to attach the identity of the owner to
an object that is being created. Doing so requires the execution of two
primitive operations in the body of a command, which by definition falls
out of the scope of the mono-operational model. This aspect results in
orphaned entries in the access matrix that will have no access rights associ­
ated with them. The mere absence of the owner privilege in an access matrix
renders the protection system useless and makes it simply a theoretical
model that does not map to systems of any practical benefits.

One other restriction that was applied to the HRU model is that of monoto-
nicity. A monotonic protection system is one in which deletion of access priv­
ileges is not allowed once access rights are entered in a configuration. Safety in
the HRU access matrix model is known to be decidable only in the case of
monotonic commands, which are mono-conditional. Mono-conditional com­
mands have only one term in the precondition part and thus can test only one
cell of the access matrix. Monotonicity in the HRU model, however, does not
help when the commands are allowed to have multiple terms for the precondi­
tion. It is established that safety is undecidable even for biconditional monoto­
nic systems (with commands having exactly two terms for the precondition
part).

Even when safety in the HRU model is decidable in the mono-conditional
case of a monotonic system, it has little practical use. The ability to revoke
access rights from users is a key element of secure systems. Indeed, there is a
fundamental conflict between the expressive capability of a protection system
and the decidability of the safety problem. The general safety problem deal­
ing with unrestricted protection systems is undecidable. Nevertheless, a num­
ber of protection systems in which safety is proven to be decidable have been
developed. Although these models are restricted in terms of expressive power,
they lend themselves to practical implementations. We discuss two of these
systems in the following two chapters.

The General Safety Problem of the Access-Matrix Model

We now turn our attention to the general case of the safety problem. The
generalization is stated as follows:

Given a state of a protection system as represented by a corresponding con­
figuration, decide whether or not the configuration leaks a given generic right.

Theorem 5.2: It is undecidable whether a given configuration of a given protec­
tion system is safe for a given generic right.

160 5. Discretionary-Access Control and the Access-Matrix Model

The proof of this theorem as given by HRU consists of reducing the gen­
eral safety problem to the famous Halting problem described in the theory of
computability and stated as follows:

Given a program and an input to the program, determine if the program will
eventually terminate when it runs with the input data substituted for the actual
parameters of the program.

The following steps are generally adopted when reducing a particular prob­
lem P to the Halting problem:

• Assume that you have an effective procedure to solve problem P (an
algorithm for computing the answer to P).

• Show how to use the procedure solving P for the solution of the
Halting Problem.

• Because the Halting problem is known to be unsolvable, one therefore
concludes that problem P is in turn unsolvable.

The halting problem here corresponds to the Turing machine halting in a pre­
scribed state during the computation of a solution to an arbitrary problem.
Before we sketch the HRU proof for the undecidability of the general safety
problem, we discuss the basic concepts behind the Turing machine.

The Turing Machine

Long before the advent of modern digital computing machines, several math­
ematicians (notably Alonzo Church and Alan Turing) began to think about
what it means to state that a particular function is computable. In the 1930s
Church and Turing independently arrived at equivalent conclusions. The
common result of their work can be stated as follows:

A function is computable if it can be computed by a Turing machine.

This result stipulates that a Turing machine is capable of computing every
function there is. Turing machines have become one of the key abstractions
in modern theory of computation, the study of what computers can and
cannot do.

A Turing machine abstracts a very simple computer. Its operations are lim­
ited to reading and writing symbols on a one-dimensional, linear tape virtu­
ally of unbounded size in both directions (i.e., it has no left end and no right
end). The active part of the machine, a reading and writing head, can remain
at the same position or move left or right by one position during any compu­
tation step. Each position on the tape can be conceived as a square that is
either blank or contains a symbol from the finite alphabet of the particular
Turing machine. At any point during a computation, the machine is capable
of assuming any of a finite number of states. Depending on the content of the
square over which the head is positioned as well as the state that the machine
is in, the machine either halts or acts. It halts when there is no action defined
for the state and the symbol being read. By the same token, the machine acts
when the combination of the current state and symbol read is defined for the

The General Safety Problem of the Access-Matrix Model 161

computation at hand. Any action performed by the Turing machine consists
of at most four primitive operations defined by the following:

1. It may or may not erase the symbol that it reads at the square over which
the head is positioned.

2. A symbol erased at the current or a blank found at the current position of
the head may or may not be overridden.

3. The head of the machine may move by one position to the left, may move by
one position to the right, or may remain at the current position.

4. The machine may change to a new state.

The interval of time in which a Turing machine completes an action is
referred to as a time cycle. At most four and at least one primitive operation
as described in the above are performed during a time cycle. The machine
continuously performs action after action or comes to a halt when it reaches
a state for which no action is defined. Such a state is also called di final state.
The actions of a Turing machine are specified by a set of commands of the
following form:

(current s t a t e , current symbol) i-^
(new s t a t e , new symbol, l e f t / r igh t / same) ,

where left/right/same indicates the fact that the machine either moves left (L),
right (R), or maintains the same position. Omitting the direction of the move
implicitly means the head maintains its current position. The state transitions
of a Turing machine can be specified in a table as illustrated in the following
example. The symbol B is used to indicate a blank square and, for simplicity,
can be thought as being part of the machine alphabet.

Example: Actions of a Turing Machine

We define and illustrate the actions of a Turing machine that computes the
sum of two integers. In the initial configuration of the machine, the tape con­
tains the input to the computation. This consists of the two operands for the
addition operator delimited with the symbol *. Each integer is represented by
a sequence of "/" characters on the tape.

Actions of the Turing machine as illustrated in Table 5.3 are expressed by
the following commands:

TABLE 5.3 Example of a Turing machine for adding two integers
\ Symbol

StateN B / *

^5 ^ /^ /

/̂

162 5. Discretionary-Access Control and the Access-Matrix Model

(«„ *) -
iqyB)

(MV I) -
iq,, I) -
iq„ *) ^
(^5' /) '

(^5' *) "

(qyh R)
- (qp B,L)
^iqyi,R)
^{qs,B,L)
Hqe^B)
- iq^l^L)
• {qf,*,l)

Figure 5.6 depicts the computation of 1 + 3 = 4 by this Turing machine.

<72

02

<73

Q3

«73

<h

Q4

Qs

Qf

FIGURE 5.6 Illustration of the sum 1+3 processed by a Turing machine

The General Safety Problem of the Access-Matrix Model 163

Sketch of Proof for the Undecidability of the General
Safety Problem

Harrison, Ruzzo, and Ullman [HARR76, HARR78] reduce the general
safety question to the Halting problem as it applies to the Turing machine.
The protection system as defined by HRU is shown to simulate the behavior
of an arbitrary Turing machine. In this setting, leaking a particular generic
right in the protection system becomes equivalent to the Turing machine halt­
ing at a designated final state.

Mapping an Arbitrary Turing Machine onto the Protection System

The input to this mapping is an arbitrary Turing machine computing the
solution of a particular problem. The set of generic rights of the equivalent
protection system include

• States of the machine and
• Tape symbols of the machine.

At any time during its computation, the machine will have scanned and
processed some finite prefix of tape cells located to the left of its head, we
number these cells 1,2,...,/:. as depicted in Figure 5.7.

Each such snapshot of the machine will be represented by a sequence of k
subjects, ^p ̂ 2v? ̂ /t such that

5". corresponds to cell /.
s^ is said to own ̂ .̂ j for / = 1,2,...,/: - 1.
Symbol X written on cell / corresponds to subject s^ having generic
right X to itself in the protection system.
The cell currently being scanned by the tape head at, say, position 7,
corresponds to subject s. having generic right q to itself, where q is the
current state of the machine (the state symbols are assumed to be dis­
tinct from the tape symbols so to avoid confusion).
Subject Sj^ corresponding to the last position of the prefix string has a
special generic right to itself called end. This indicates the fact that we
have not yet defined subject ^^^ p which is to be owned by subject Sj^.

•
•
•

FIGURE 5.7 A snapshot of a Turing machine equivalent of deciding the general safety
problem

164 5. Discretionary-Access Control and the Access-Matrix Model

Figure 5.8 shows the access matrix of a protection system corresponding to
a snapshot of a Turing machine with a prefix string of "ABCD" at its current
state q.

Mapping the Actions of the Turing Machine onto Protection Commands

Generic states and symbols are now used to map the actions of the Turing
machine onto commands of the equivalent protection system. This generic
notation underscores the generality of the mapping. Based on the direction in
which the head of the machine moves after completing an action, we distin­
guish three scenarios as described below. But first we note that the tape head
is assumed to move in either direction between two consecutive positions as
shown in Figure 5.9 for the positions corresponding to subjects s and / .

Moving to the Left

Assume that the machine is in state q and that its head is positioned over a
cell corresponding to subject s' with symbol X written on it. Overriding the
cell with symbol Fand moving the head by one position to the left, changing
into state/?, means that subject / no longer has rights q and Xhut instead has
right Y to itself Meanwhile, subject s, corresponding to the new position of
the head, acquires right p to itself This case is equivalent to the following:

A

1

B

2

C

3

D

i

4
i

{D} {own}

{B,qf} {own}

{C} {own}

{D, end}

FIGURE 5.8 Correspondence between a Turing machine and an access matrix

The General Safety Problem of the Access-Matrix Model 165

Moving left

s s'

Moving right

s s'

FIGURE 5.9 Moving the tape head in the Turing machine equivalent of a protection
state

command C {s, s') {
if

own in (s,s') and
q in (s\ s') and
X in (s'f s')

then
delete q from (s\ s')
delete x from (s\ s')
enter p into {s,s) ;
enter y into (s\ s') j

}

Moving to the Right

First we consider the case in v^hich the machine moves into a cell that has
been visited before and contains a symbol from the machine's alphabet (i.e.,
not a blank).

Assume that the machine is in state q, reads symbol Xat the current posi­
tion of the head corresponding to subject s, overrides Xv^ith 7, moves by one
position to the left, and enters into state/?. This means subject s no longer has
rights q and Xbut instead has right F t o itself. Meanwhile, subject / , corre­
sponding to the new position of the head, acquires right p to itself.

166 5. Discretionary-Access Control and the Access-Matrix Model

coiranand C^ (s , s ') {
i f

own in (s,s^) and
q in {s,s) and
X i n (SfS)

then
d e l e t e q from (s,s) ;
d e l e t e X from (s,s) ;
enter p i n t o (s\ s') ;
enter Y i n t o (s,s) ;

}

Now we consider the case in which the head of the machine moves right into
a blank cell (i.e., one with special symbol B). Here the new cell needs to be
mapped onto a new subject / in the corresponding protection system. Subject
s is granted a special right own to subject / . In turn, s' is assigned the special
right of end to itself as it becomes located at the end of the tape prefix:

command D̂ĵ (SfS') {
i f

end in (s,s) and
q in (s,s) and
X in (s,s)

then
d e l e t e q from (s,s) ;
d e l e t e X from (SfS) ;
create subject s' ;
enter B i n t o (s\ s') ;
enter p i n t o (s\ s') ;
enter Y i n t o (s,s) ;
d e l e t e end from (s,s) ;
enter end i n t o (s\ s') ;
enter own i n t o {s,s') ;

}

Maintaining the Same Position In this case, the action performed by the
machine results in the head maintaining the same position on the tape but
perhaps changing state.

If (q, X) »-̂ (/7, Y) then we have the following corresponding command in
the protection system:

command D (s) {
i f

q in (s,s) and
X in (s,s)

then

The General Safety Problem of the Access-Matrix Model 167

delete q from (s,s) ;
delete X from (s,s) ;
enter Y in (s,s) ;
enter p in (s,s) ;

}

We note that this last scenario is not explicitly pointed out in the HRU
proof. For this to become a special case of the command C^̂ {s,s') when
invoked with the actual arguments of C^̂ (s,s), one has to assume that the
special right of own e (s,s) for every subject s in order to satisfy the condi­
tion if own in (^,/).

Conclusion

The HRU proof shows that the mapping of an arbitrary Turing machine to
the protection system as described is well defined and results in the protec­
tion system exactly simulating the actions of the Turing machine. Deciding
whether the protection system, as represented by the commands above, leaks
a generic right r is equivalent to the following:

• Map right r onto a final state (say, qj) in the corresponding Turing
machine.

• Deciding whether the Turing machine enters final state qj. becomes
equivalent to deciding that the protection system leaks right r.

Due to the fact that generic right r is arbitrary and hence yielding state q. is
also arbitrary and given that answering the question of whether a Turmg
machine enters an arbitrary final state is undecidable, the general safety prob­
lem of HRU protection systems is therefore undecidable. Because each state
of the machine corresponds to a generic right in the protection system, enter­
ing a final state corresponds to the protection system leaking the right.

Chapter 6

The Take-Grant Protection Model

Introduction

The take-grant (TG) protection model was introduced by Lipton and Snyder
[LIPT77] in 1977 and subsequently analyzed in considerable detail by a num­
ber of authors [BISH79, BISH88, BISK84, SNYD81]. The name of this
model is derived from the fact that it is based on two key-access rights—take
and grant. These two rights control the propagation of other primitive per­
missions (such as read and write) and hence drive the flow of information
among the protected entities of a system. Information flow in the take-grant
model is elegantly modeled using directed graphs and can be viewed as a gen­
eralization of the transitive closure problems.

Unlike the Harrison, Ruzzo, and Ullman model that is discussed in the pre­
vious chapter, the take-grant model is simple and has linear time algorithms
for deciding safety. But the take-grant scheme lacks the expressive capability
exhibited in the HRU model. Nevertheless, it lends itself to various practical
systems. In that respect, this model represents an interesting departure from
the demarcation of decidable and undecidable protection systems set by the
HRU model as noted by Sandhu [SAND92b]. Early analysis of the TG model
dealt with the transfer of access rights under the assumption that active enti­
ties of the system cooperate in achieving the transfers. Such transfers are
known as sharing or conspiring. Later analysis dealt with the conditions under
which rights can be propagated without necessarily involving the cooperation
of system subjects. The term theft is used to describe such transfers.

We begin by reviewing the basic definitions of the take-grant protection
model. The governing rules of transforming protection states are described in
detail with examples highlighting the underlying effects. We distinguish
between two kinds of information flows—sharing and stealing of rights and—
state the major results relating to the safety question of the take-grant model.

Definition of the Take-Grant Model

In the take-grant protection model, a system is represented by a finite, labeled
directed graph whose nodes correspond to the entities of the protection

168

Definition of the Take-Grant Model 169

s e
FIGURE 6.1 Directed graph modeling of access in the take-grant model

system. Active entities or subjects are represented by nodes of the form • ,
passive entities, or objects are represented by nodes O; while entities that
may correspond to either subjects or objects are represented by (8). A dir­
ected edge from subject s to an entity e (either an object or subject) repre­
sents the fact that s has access to e. The set of access rights that s has to e
are in turn represented by the weight a associated with the edge as depicted
in Figure 6.1.

Two special rights t for take and g for grant characterize the take-grant
model. The semantics of these rights are summarized as follows:

• Take Subject s that has take right to entity e underscores the fact that
s can assume any right that e has to other entities such as protected
objects.

• Grant Subject s that has grant right to entity e can transfer any right it
has for other entities to e.

Recall that the term entity is used to refer to either a subject or an object.
We qualify an entity as a subject or an object whenever the context specifi­
cally applies to either one but not to both. Figure 6.2 illustrates the effects
from exercising the take- and grant-access rights. Note the propagation of
rights in opposing directions. The take right results in propagating rights for­
ward, while the grant right disseminates rights backward with respect to the
initiating subject.

The dynamic aspect of evolving the system from one protection state to
another is driyen by the application of a fixed set of graph-rewriting rules R.
These rules transform the protection state of a system along a sequence of
graphs, GQ,Gp..., G^, such that G. follows from G._.^, i- 1,...,« by some rule
in R. Analysis of the model focuses on answering the question of whether G^
has some property X. In the realm of protection systems, property Zmay, for
instance, relate to an undesirable propagation of an access right, potentially
leading to determine a protection violation. Property X is exhibited by an
edge in graph G^ between two nodes p and q with the label a and is stated as
p can aq, meaning that entity/? has access right a to entity q in the final pro­
tection state as represented by graph G^. Note that generally a represents a
set of rights.

The rewriting rules governing the transfer of rights in the take-grant model
are known as the dejure rules. The take-grant model consists of four such
rules defined as follows:

• Take Let x, ;; and z be three distinct nodes in a take-grant protection
graph in which x is a subject. Let there be an edge from xto y labeled

170 6. The Take-Grant Protection Model

<S>

FIGURE 6.2 Propagation of rights in
the take-grant model

/wi th t G /(i.e., X has take right to y in addition to perhaps other
access rights). Let there be an edge from j to z labeled ß. The take rule
enables subject x to assume any subset of rights a e /? to entity z.
Figure 6.3 illustrates the effect of transforming a graph G^ to graph Gj
using the take rule.

The take rule is written as x takes (a to z) from ;;.

• Grant Let x, y, and z be three distinct nodes in a take-grant protection
graph GQ in which x is a subject. Let there be an edge from x to y
labeled /with g e /(i.e., x has grant right to y in addition to perhaps
other access rights). Let there be an edge from x to z labeled ß.
Applying the grant rule to graph G^ results in a protection graph G^ by
adding a new edge from 3; to z labeled a such that a e j8. Figure 6.4
depicts the effect from applying the grant rule.

t
(8>-

ß

X y z

FIGURE 6.3 Effect of the take rule

Definition of the Take-Grant Model 171

On

iS)M • • (?)

y X z

FIGURE 6.4 Effect of the grant rule

FIGURE 6.5 Effect of the create rule

Go

•

X

1—>

Ö1

9

X

oc ^

The grant rule is written as x grants {a to z) to ;;.

• Create Let x be a subject in a take-grant protection graph G^, and let a
e R, where R is the set of access rights defined in the systems. The cre­
ate rule results in graph G^ that contains a new node y and an edge
from X to j ; labeled a as shown in Figure 6.5.

The create rule is written as x creates {a to new node) y.

• Remove Let x and ;; be two distinct nodes of a take-grant protection
graph GQ such that x is a subject. Let there be an edge from x to ;;
labeled ß (i.e., x possesses rights ß^ Rio entity y). The remove rule
results in graph G^ in which subject x has a lesser number of rights to
y with the edge adjacency in G^ maintained the same as in G^. The
remove operation is illustrated in Figure 6.6 in which a subset of rights
a is removed from ß. When all the rights that x has to y are removed,
edge (x, y) becomes useless and thus is removed.

The remove rule is written as x removes a to ;;.

ß-a

FIGURE 6.6 Effect of the remove rule

172 6. The Take-Grant Protection Model

Example: A Take-Grant Model

The take-grant model lends itself well to security policies in which the set of
subjects are organized along a hierarchy reflecting the control structure of an
enterprise. Consider the application of this model to a five-member organi­
zation with a treelike structure as shown in Figure 6.7.

Note how subject s^ acquires access to the resources directly under the con­
trol of subject s^ as illustrated in the bottom portion of Figure 5.6. This fol­
lows from the transformations:

• 2̂ grants t to s^ to s^, and
• s^ takes right rwx to all the resources accessible to s^.

On the other hand, subject s^ cannot acquire access to the resources
directly owned by Sy

SA

.^^J^

S3

O O

S4

^^^^<r / N
0 0 0

FIGURE 6.7 An example of trans­
ferring privileges using the take-
and grant-control rights

Safety in the Take-Grant Model 173

Safety in the Take-Grant Model

The safety problem as it relates to the take-grant protection model asks the
question of whether it is possible for any given subject to ultimately gain
rights to a particular entity. Although the rules that define the take-grant
scheme are simple and small in number, the ramifications from applying them
can be quite surprising. The propagation of rights may not be obvious at
first. Consider the scenario in which the initial protection state is represented
by a simple graph G ,̂ as shown in Figure 6.8.

Despite the fact that there is no edge between nodes y and z in G^, we ask
the question is it possible for y to have t access to z as a result of transform­
ing GQ using the take-grant rules? The answer to this question is a surprising
yes as depicted in the transformations of Figure 6.9.

The initial protection state as represented by graph G^ of Figure 6.8 is
transformed using the following rules:

• ;; creates (tg to new node) s (G^ ^ G^)
• X takes (tg to s) from y (G^ ^ G^
• X grants {t to z) to s {G^ ^ G^
• y takes {t to z) from s (G^ ̂ -̂ G^)

The intent of this example is to demonstrate the abundance of transfor­
mations that can be applied to an initial configuration and that can result in
unexpected flow of access rights among entities of the take-grant protection
model. Although it may seem that these transformations can yield
unbounded protection states, the work performed by Lipton and Snyder
[LIPT77] as well as others [BISH88, SYND81] led to the formal determina­
tion of information flow in the take-grant model. We state those theoretical
results here but first we begin with the definitions that characterize the
results:

Definition 6.1: A tg-path is a nonempty sequence of distinct nodes x^, ...,x^
such that for all / = 0,..., n-l,x.is connected to x.̂ j by an edge in either direc­
tion—i.e., (x., X .̂ j) or (x .̂ p x.)—and with a label containing either t, g, or
both.

Definition 6.2: A nonempty set of nodes is said to be ^g-connected if there
is a ^g-path that spans all of the nodes in the set. Nodes x and y are directly

FIGURE 6.8 Example of an initial take-grant protection
configuration with potentially a wider effect

174 6. The Take-Grant Protection Model

X Z

^ t ^
X Z

^ t ^

1 - ^ t

FIGURE 6.9 Effects of transforming the take-grant protection state of Figure 6.8

^g-connected if there is an edge between the two nodes with a label that
includes either t or g.

Each tg-paih can be associated with one or more words over the alphabet
•}. The notations t*, and g* are used to

indicate one or more occurrences of the letters t and g, respectively. For
example, instances of t* g can be the sequences g, tg, ttg. A ^g-path of length
0 is referred to by the symbol v.

Safety in the Take-Grant Model 175

DeHnition 6.3: An island is a maximal ^g-connected subject only subgraph.

DeHnition 6.4: A node x^ is said to initially span to node x^ if x^ is a subject
and there is a ^g-path between x^ and x^ represented by a word in
{—r-^*-^ -^*}u{v} .

Definition 6.5: A node XQ terminally spans to node x^ if x^ is a subject and
there is a ^g-path between XQ and x^ represented by a word in {—p^*} •

Definition 6.6: A bridge is a ^g-path with endpoints that are both subjects and
is represented by a word from the set

Definition 6.7: Given a set of rights a, and two nodes x and j^ of a take-grant
protection graph GQ, the predicate can.share{a, x, y, G^) is true if and only if
there exist protection graphs Gp ..., Ĝ such that GQ »-̂ Ĝ «-̂ ... «-̂ Ĝ _j ^ G^
using only the rewriting rules of the take-grant model, and in Ĝ there is an
edge from xio y with label a.

Determinism of Sharing in the Take-Grant Model

The can. share predicate defines the potential for information flow in the take-
grant model. This flow may take place with or without the direct cooperation
of resource owners. The following theorem states the necessary and sufficient
conditions for such a flow to happen:

Theorem 6.1: The predicate can.share{a, x, y, GQ) is true if and only if there
is an edge from x to ;; in Ĝ labeled a (i.e., the sharing is expressed in the ini­
tial state of the of the take-grant system) or if the following conditions are
simultaneously satisfied:

• There is a node s in GQ with an edge from sto y labeled a.
• There exists a subject x' such that x' = x or x' initially spans to x.
• There exists a subject / such that ^' = ^ or s' terminally spans to s.
• There exist islands I^,..,I^ such that x' is in 7̂ , / is in 7̂ , and there is a

bridge from 7̂ to 7̂ ^ ^ for /: = 1,..., n-\.

Proof of this theorem is described in [LIPT77]. In what follows, we illus­
trate it for the special case where x' = x, / = s, with s and x directly ^g-con-
nected. This scenario can be expressed as follows

The predicate can.share{a, x, ;;, GQ) is true if x is a subject and the follow­
ing two conditions are satisfied:

• There is a subject node s in Ĝ with an edge from ^ to j ; labeled a,
• s and X are directly /g-connected.

176 6. The Take-Grant Protection Model

Case 6. la: {-

t
G A
^̂u ^p

X

. m
^ M

s
a

'i A ^ * ^ - «
X s y

Xtake «for yfrom s

Case 6.1b: {-<

Gr.
^ 0

G^

V-zilaV- U.XC* (̂ - ^

Gn
^0

G.
" 1

- F ^ }

A. ^
X

•".'"" '
X

w 1
a ^ ^

• ^
X

ä ' W
X

A
W
s

****** of

a

a

s
sgrant «for yto x

. A
s

. A
s

X create tgiorne\N

a

a

object z

fc <9^ 1 S

y

fc (5?̂ 1 ^
^ Vö̂ 1 y

y

^ (^ 1 S
^ V29 1 ?

y

y

Safety in the Take-Grant Model 177

4 ° >
X s y

X grant of for z tos

<̂x -^(8) f—>

s grant «for yto z

xtake Of for y from z

Case 6.1d: {-^-^ 'öT^

Gn A ^ - • (8) I — >

f ö ' /
./^

Ö1
\

X s y

X create fgffor new object z

178 6. The Take-Grant Protection Model

Gp

z

X s y
s take gf for z from X

^ ^
a \

(̂8) I—>

s grant aforytoz

a
xtake cf for y from z

Given any take-grant protection graph, it can be verified in linear time
whether the conditions of Theorem 6.1 are simultaneously satisfied as stated
by the following corollary:

Corollary 6.1: There is a linear-time algorithm in the size of a take-grant pro­
tection graph for testing the can. share predicate.

DeHnition 6.8: The predicate can.steal(a, x, y, G^) is true if and only if there
is no edge from x to ;; in G^ that has label a, and there exist protection graphs
Gp ..., Ĝ such that G^aG^a .,.a G^_^ a G^ using only the rewriting rules of
the take-grant model, and in G^ there is an edge from xtoy with label a, and
if any two entities in graph Ĝ , say s and q, are connected with an edge from
stoq that has label a, then no intermediate rule has the form s grants (a to
q) to z for any node z in G. for all / = 1, ..., n- \.

The last condition of Definition 6.8 characterizes the stealing of rights in
the take-grant model. It states that for right a over entity y to be stolen it
should not be explicitly disseminated by any entity that possesses it.
Furthermore, as it is stated in Theorem 6.2 below, there has to be some entity

Safety in the Take-Grant Model 179

in the initial protection graph that has right a to y. The act of stealing access
rights corresponds to an information flow occurring without the cooperation
of resource owners or in general terms the entities having control over the
protected resources.

Theorem 6.2: The predicate can.steal(a, x, y, G^) is true if and only if the fol­
lowing conditions are satisfied simultaneously:

• In GQ there is an edge from x to y labeled a.
• There exists a node x' representing a subject such that x'= x or x' ini­

tially spans to X,
• In GQ there is a node s with en edge from s to y that includes a in its

label.
• The predicate can.share{t, x\ s, G^) is true.

Similarly, given a take-grant protection graph the conditions of Theorem
6.2 can be checked for validity with linear-time complexity.

Corollary 6.2: There is a linear-time algorithm in the size of a take-grant pro­
tection graph for testing the can. steal predicate.

Chapter 7

The Schematic-Protection Model

Introduction

The access-matrix model of Harrison, Ruzzo, and Ullman (HRU) that we dis­
cussed in Chapter 5 is characterized by a rich expressive capabiHty. HRU can
be appHed virtually to any access policies in existence. This generality, however,
has led to the undecidability of the safety question in HRU due to the
unbounded states of the protection system. Even when limiting the expres­
siveness of HRU to only mono-conditional and monotonic transformations of
protection states, safety becomes decidable albeit nontractable. The take-grant
model introduced in the previous chapter is unique in that it defines an infor­
mation-flow model that is completely based on two control rights, take and
grant. It has a limited expressive power but a solvable safety. Furthermore,
safety in the take-grant model is efficiently computable with linear time com­
plexity. One can think of the HRU and the take-grant models as being at
opposing extremes of complexity in modeling protection systems.

The schematic-protection model (SPM) introduced by Sandhu [SAND88a,
SAND90, SAND91] is intended by its inventor to fill the gap between the
richness in expressive power of the HRU model and its intractability with
respect to the safety question as compared with the limited applicability of
the take-grant model but efficient decidability of safety. The key concept
introduced in SPM is that of typed security entities. Each entity, subject or
object, is statically associated with an invariable security type. All instances
of a given security type are viewed and treated uniformly by the authoriza­
tion scheme. This chapter introduces the novel concepts of SPM based on the
work of Sandhu. We highlight some examples of access-control policies
expressed in SPM constructs and summarize its safety results.

Overview of the Schematic-Protection Model (SPM)

Every SPM subject or object is designated to be an instance of a particular
type that remains invariable throughout its lifetime. As such, the type of an
entity needs to be determined by a thorough process during the initial setup of
an authorization policy. A subject type may underscore some kind of position

180

Overview of the Schematic-Protection Model (SPM) 181

assumed by that subject, such as membership in a department or in a partic­
ular group. Similarly, an object type may represent its security classification as
an information container—for example, a document that is company internal
only or one that can be shared with entities external to the company. The set
of types Tin SPM is the union of types of subjects TS, and the types of sys­
tem objects TO (i.e., T = TS KJ TO). It is assumed that the type of a SPM
entity is given by the function type.

SPM characterizes all active entities of a protection system (i.e., subjects)
using tw ô parameters. The first, a static one, is the type associated with the
subject. The second represents the dynamic aspect of that entity in that it
enumerates the capabilities that can be exercised by that subject on other sys­
tem entities, also called tickets or simply privileges. A ticket in SPM is
denoted by Y/x indicating that the holder of the ticket has access right x to
entity Y. The access right x may represent any abstraction of a set of opera­
tions that apply to entity Y. Its semantics are irrelevant to the analysis of
SPM. But a distinction is made between access rights as they relate to the
controls of the SPM in itself or simply inert rights such as the typical read,
write, or execute. The set of access rights R is therefore divided into a subset
of rights that are inert RI and a subset of control rights denoted by RC.
Furthermore, right x is statically defined as either copyable (xc) or not copy-
able (simply x). The type of ticket Y/x:c is given by the value of the type func­
tion type(Ylx:c), which is the ordered pair type {Y)lx:c meaning that the type
of a ticket is determined by the type of the entity to which it applies and the
right that it carries {x:c denotes either x or xc).

More generally a ticket of the form Yluvw indicates a capability to access
entity 7 via access rights w, v, and w and simultaneously denotes tickets Ylu,
Ylv, and Ylw. Yluvc is the union of Y/uc and Ylvc. The domain of a subject
in SPM denotes the set of tickets granted to that subject. As stated above,
every right x comes in two forms—x and xc where c is the copy flag. The dif­
ference between Ylx and Ylxc is that the former cannot be copied from the
domain of one subject to the domain of another subject, while Y/xc allows
the distribution of the ticket Y/x across subject domains provided other con­
trol elements are met in SPM. We describe the details of those elements in the
next section.

The space of SPM entities is expandable through the can-create binary
relationship denoted by cc e TSxT that relates a subject type to an object
type. A subject of type u can create an object of type v if and only the can-
create relationship {u, v) is prescribed by the SPM policy (i.e., (w, v) G CC). The
can-create relationship is modeled by a directed graph, called the cc-graph, in
which the nodes represent SPM protection types and an edge from u to v
symbolizes the can-create relationship (w, v). SPM has decidable safety pro­
vided the can-create graph is acyclic (i.e., not containing cycles). When allow­
ing arbitrary cycles in the can-create graph, however, SPM has undecidable
safety. In summary, the schematic-protection model is based on the following
elements:

182 7. The Schematic-Protection Model

• A finite set of entity types T that is the union of subject types TS and
object types TO;

• A finite set of rights R partitioned into inert rights RI and control
rights RC;

• The dissemination of access privileges through the generation and distri­
bution of tickets, Ylx, based on a set of SPM rules to be discussed below;

• The can-create relationships cc e TSxT'i^ the means by which the sys­
tem expands its space of entities.

SPM Rules and Operations

The protection state of a SPM can be transformed using three operations:

• Copy,
• Demand, and
• Create.

The copy and demand operations are concerned with the dissemination of
tickets across SPM subjects, while the create operation introduces new sub­
jects and objects into the system. Ticket distributions combined with gradu­
ally evolving the protection system with newly created entities result in a
dynamic and perhaps unstructured aspect of the protection system. This
makes the safety analysis a challenging task. The details of the SPM opera­
tions and rules are outlined in the next subsections.

The Copy Operation

The copy operation moves a copy of a ticket from the domain of one subject
to the domain of another subject. The original ticket remains intact. The
side-effect of the operation is that an additional subject in the system now
becomes in possession of the ticket, which is the object of the copy operation.
This operation is authorized by two rules:

• The copy flag attached to the ticket and
• The link predicate link^ and its associated filter function yj.

These rules are used by the policy setting officers and system administra­
tors to enforce the conditions under which a ticket can be copied from one
subject to another:

• The copy flag The presence of the copy symbol c in the ticket is a
requirement for its copying to other user domains. Without this flag a
ticket does not require any further policy checking to verify whether it
can be transferred.

• Link predicates A link predicate takes two arguments, subjects X and
Y, and evaluates to true or false. If true, it establishes a policy link

SPM Rules and Operations 183

between subjects X and Y that can be used to copy tickets from the
domain of X to that of Y. The presence of certain control tickets (those
associated with control rights) in the local domains of X and Y, respec­
tively, governs the evaluation of the link predicate. Because of this, it is
termed the local link predicate. Link predicates are directional and thus
are not commutative. The formal definition of the link predicate is
stated by the following: Let dom(X) be the set of tickets in possession
by subject X. A local link predicate link. (X, Y) is a function defined as
an arbitrary Boolean expression using the conjunction or disjunction
of the following basic terms for any control right z G RC\

XIz e dom(X)

X/ze dom(Y)

Ylz e dom(X)

Y/zG dom(Y)
true

A link is established from subject X to subject Y if it is statically stated by
the authorization policy in which case the link predicate for subjects X, and
Y always evaluates to true. A link is also established dynamically from X to
Y when there is a control ticket present in the domains of either subject. The
control ticket is the mechanism by which a particular policy may state the
rules for establishing the local links among its entities.

For generality, SPM makes use of a finite collection of local link predicates
{link., for / = Iv,^^} that can be defined in a protection system. Dropping
the subscript from the link predicate function means only one type of link
function is defined in the entire system.

• Filter functions Each link function link, is associated with a filter func-
iionf:. TSxTS ^ 2^^. Filtering here takes two subject types as input
arguments and assigns them a subset in the space of ticket types. It is
intended to put more restrictions on the types of tickets that can be
copied when the link predicate is satisfied.

Finally, ticket Y/x:c can be copied from the domain of subject A to that of
subject B if and only if the following conditions are satisfied for some link
function (link.) and its associated filteryj:

Y/xc e dom(A)

link. = true

y/x:c G f. (a,b)

Thus, the combination of the copy flag, the link predicates, and the filter
function is what governs a copy operation. The filter function is a means to
strengthen policy rules and allows for finer control levels. Besides the discre­
tionary information flows that can be enabled via the copy flag and the link

184 7. The Schematic-Protection Model

predicates, the filter functions may be used to set mandatory controls beyond
the powers of individual system subjects.

Examples:

The control rights t and g in these examples come from the take-grant pro­
tection model that is discussed in the previous chapter:

• Link(X, Y) <=> Y/g G dom(X) OR X/t G dom(Y): That means a link may
be established between X and Y when either subject X has the grant right
to subject Y or subject Y possesses the take right to subject X.

• Link(X, Y) <=> X/t G dom(Y): A copyable ticket can be copied from the
domain of subject X to that of subject Y if and only if Y has right t
for X. Note the definition here is not commutative, in that Link(X, Y)
does not necessarily imply Link(Y, X).

Figure 7.1 depicts the link rules that are used in the two examples above.

The Demand Operation

The demand operation allows subjects to acquire tickets ondemand. An SPM
authorization scheme allows this ticket acquisition using the demand function

Ĵ

Y/ge

X/tG

VygfG

X/te

X/te

dom(X)

dom(Y)

dom(X)

A

dom(V)

dom(y)

FIGURE 7.1 Two examples of SPM Link rules in the take-grant model

SPM Rules and Operations 185

that maps a subject type to a set of ticket types that can possibly be empty.
A ticket of type a/x:c that is a member of dQ)) for some type b implies that
every subject of type b can demand ticket A/x:c for every entity A of type a.
This implies that every existing or newly created entity of type a is accessible
immediately to any existing or new subjects of type b. Instead of having to
explicitly distribute tickets, the demand operation allows for an implicit flow
of tickets across system subjects.

The Create Operation

The create operation introduces new entities, subjects and objects, into the
system. There are two aspects associated with this operation:

• Which entities are authorized to instantiate other entities and
• Which tickets are immediately introduced as a side-effect of the create

operation.

Authorization

SPM entities are authorized to create new entities by way of the noncommu-
tative binary relationship, can-create (cc). As was previously mentioned, this
relationship is defined between an ordered pair of SPM entity types. The first
is a subject type, while the second is an entity type that can represent either a
subject or an object. The cc relationship can be thought of as a one-to-many
mapping from the set TS to the set of all types T:

or a one to one mapping

cc : TS

cc'.TS

in which a subject type is related to a subset of T (the superset of types)
The cc relationship can be modeled using a directed graph G(N, E) in

which each SPM entity type is represented by a node (i.e., N-T). An edge e
from node s to node v represents the fact that subject type s can instantiate
entities of type v. By definition, there are no edges between object types.
Only active subjects may instantiate SPM types into concrete entities. Thus
a subject of type s may be able to instantiate subjects as well as objects of
other types.

SPM restricts the cc graphs to those that are acyclic only (i.e., without
cycles except for loops) (cycles of length 1). This restriction is very practical
in that subjects should not be created directly or indirectly by other entities
that they can create. The cc relationship naturally dictates some type of sub­
ject hierarchy. Figure 7.2 illustrates an example in which a top-down hierar­
chy represents the ability of higher authorities to instantiate profiles or
accounts for new entities as they join an SPM authorization scheme.

186 7. The Schematic-Protection Model

FIGURE 7.2 Example of a hierarchical cc
relationship in SPM

Create Rules

For every pair of entities involved in the cc relationship, a SPM scheme spec­
ifies the tickets that can be generated when the underlying cc operation is
applied. Every rule for ticket generation is expected to have a local effect
meaning that tickets are generated for the entities involved in the cc relation­
ship only. The target of a cc relationship is the second argument of the rela­
tion (i.e., target of cc(a, b) is b). Depending on the type of the target, SPM
distinguishes two scenarios governing ticket generation.

• The target is of object type. The creation of an object results in a set of
inert tickets attached to the subject initiating the create operation.
Formally, the create rule in this case is specified as cr(a,b) c {b/x:c I x:c
e RT}. This means when subject A of type a creates an object B of type
b, A acquires tickets B/x:c if and only if b/x:c e cr{a,b).

• The target is of subject type. Recall that the initiator in the cc relationship
is always a subject. In this case, both the initiator and the target are sub­
jects, and the policy governing the create rule is specified in two parts.
The first one is related to the subject initiating the create operation,
denoted by LEFT, while the second is associated with the target subject,
denoted by RIGHT, The operation is defined by cr{a,b) = LEFT I
RIGHT. The LEFTpaxt of the create operation relates to the tickets that
are placed in the domain of subject A. The RIGHT part specifies the
tickets to be placed in the domain of subject B, target of the operation.
Formally, tickets contained in LEFT and RIGHT are subsets of
{a/x:c,b/x:c I x:c e R}. When both the initiator and the target are of the
same type (case of a = b), this notation uses self to refer to the initiator.
LEFT and RIGHT become subsets of {alx:c,selflx:c I x:c e R}. Here

Application of SPM 187

selflx:c denotes tickets placed in the domain of the initiator, while alx:c
denotes tickets placed in the domain of the target subject.

Attenuating Create-Rule of SPM

In addition to the requirement that the graph modeling the can-create rela­
tionships in a SPM scheme be acyclic, the create rule is required to be atten­
uating for loops (i.e., rules of the form cr(a, a)). The attenuation restriction
aids in the analysis of SPM and leads to a tractable decidability of its safety.

Consider subject A of type a such that cc(a, a). Subject A can create sub­
ject A' of type a\ recursively A' creates A" and so forth. The potential for
long sequences of create rules that take place within the same type compli­
cates the security analysis of SPM. To alleviate the effect of this complexity,
the cr(a, a) is constrained by the tickets it may introduce. The new restriction
on cr(a, a) is that after the create operation in which A instantiates A' is com­
plete, the following condition must hold:

dom (A ') e dom(A).

This means the set of tickets introduced by the cr(a, a) operation is not
extendable. A newly created subject is not allowed to acquire any more tick­
ets than what is already in possession of the subject performing the create
operation. Although this limitation may naturally exhibit itself in many prac­
tical policies, its introduction is mainly intended to ease the analysis of SPM.
In that respect, all subjects of type a for which cr(a, a) is allowed become
equivalent from the standpoint of safety analysis. Furthermore, cr(a, a)
requires that if a ticket for A' is placed in the domain of subject A, the cor­
responding ticket for A is automatically placed in the domain of A. Formally,
a cr(a, a) rule is attenuating if

LEFT BRIGHT
alxx e LEFT^ selflxx e LEFT.

The second restriction underlines the fact that an entity that creates a sub­
ject of its type should possess all the privileges to itself as those it confers on
the instantiated subject.

Application of SPM

In the following, we illustrate two SPM examples drawn from practical access
policies as originally presented by Sandhu [SAND88a, SAND88b].

Sharing Across Resource Owners

In this scenario, SPM rules model a simple policy where a resource owner
automatically grants access rights to all other users (complete sharing).

188 7. The Schematic-Protection Model

TS = {user}
TO = { f i l e }
RI = {x:c I X i s e i t h e r r, w, o r x (read, w r i t e , execute) }
RC = {}
l ink^ (X, Y) = t r u e
f^ (u s e r , u s e r) = { f i l e / x c }
d (use r) = {}
cc (user) = { f i l e }
cr{ u s e r , f i l e) = { f i l e / r c , f i l e / w c , f i l e / x c }

This scheme uses a single universal link function denoted by link^ and its
corresponding filter function f^. Note that since the link function in this
example evaluates to true for any given pair of users (X, Y), and because all
tickets created are associated with a copy flag, this scheme defines a policy in
which access to any created file is shared across the population of users in the
system.

The Basic Take-Grant Model

In this basic take-grant model, there is only one subject type and one object
type denoted by sub Sind file, respectively. We assume that inert right x allows
appropriately meaningful access to file type of resource. To allow for the copy
operation a universal link is established across subjects as follows:

link(X, Y) o Y/g e dom{X) v X/t G dom{Y)

A link from Xto Fin SPM requires Xto possess g right to For Fpossess
right ^ to Xin the corresponding take-grant formulation. The can-create rela­
tionship is defined among subjects as well as between subjects and objects.
Figure 7.3 represents the graph modeling this simple cc relationship. The cre­
ation of file Fhy subject A augments dom(^) by a new ticket Fixe. While the
creation of subject A' by subject A results in A acquiring tickets of type
subltge that apply to the instantiated subject and ticket selfitgc for subject A
itself The latter is introduced so that the scheme maintains the attenuating
create property. This basic take-grant model is specified by the following rules
as defined in Sandhu [SAND88a, SAND88b].

file
O FIGURE 7.3 Modeling the can-create rule in the take-grant example

Application of SPM 189

TS = {sub}
TO = { f i l e }
RI = {x:c}
RC = { t : c , g : c }
l i n k (X, Y) <=> Y/g 6 dom(X) v X/ t <=> dom(Y)
f (sub, sub) = TxR
d(sub) = {}
cc(sub) = { f i l e , s u b }
c r (s u b , f i l e) = { f i l e / x c }
cr(Slab, sub) = { sub / tgc , s e l f / t g c } I {}

Chapter 8

Role-Based Access Control

Introduction

The access-matrix model directly manipulates access rights in that granting
or revoking access to a resource explicitly refers to a particular permission.
This approach yields a fine-grain level of control where each access type and
its required permissions are related by a mapping that can be one-to-one at
the finest level. For example, the reo J permission clearly means one can view
the information contained in a resource but not modify it or add to it. To
allow for updates, a new access right such as write or append is needed.
Although this approach offers the advantage of fine-tuning an access con­
trol policy to accommodate any level of access needed, it can be costly to
manage. The inherent cost factor becomes apparent with the increase in the
number of managed users and resources. Furthermore, the effects from
resources removed or added to the system as well as users leaving and join­
ing an organization or simply changing job functions adds up to the com­
plexity and overhead of maintaining such policy. For example, assigning an
employee to a new function may require revoking his or her access rights to
a large number of resources that are no longer needed for the tasks required
by the new position. Similarly, functions of the new job may require access
to various new resources. In this scenario, explicit revocation of access rights
as well as the granting of new ones needs to span every old and new resource
that is or used to be accessible to the user.

The notion of user groups was introduced to alleviate some of these issues.
Users sharing similar access to the same resources become members of a sin­
gle group. The group as a single entity is then granted or denied access to the
managed resources. Access decisions take into account the fact that a user is
a member of one group or another. Grouping users is certainly one impor­
tant aspect in addressing the scale of manageability in access-control systems
but alone is not sufficient.

In addition to user groups, another important dimension in the manage­
ability of access controls is the grouping of access rights. Following on the
concept of managing users that share similar access capabilities as a unit,
role-based access control evolves around the idea of grouping access rights
pertinent to a particular functionality into a role abstraction. Access

190

Introduction 191

management as such is performed at a coarse-grain level than that of indi­
vidual privileges. In our previous example of a person moving to a new
function, he or she is simply assigned to the new role and removed from the
old one when a role-based access control (RBAC) mechanism is in place.
RBAC policies provide a natural and powerful way for an administrator to
specify the privileges required by various job functions and efficiently man­
age user to role associations.

The appeal of RBAC is its inherent representation of real-world access-
control processes. In many situations, people perform day-to-day functions
based on the role in the organizations to which they belong, within a com­
munity of people, or in society at large. A role is a higher-level concept that
can be better understood as opposed to individual access rights or opera­
tions. Roles are compatible with the hierarchical organizations found in real
Hfe, such as those in an enterprise. Roles can be easily mapped onto an
already hierarchical structure of an organization. Higher-level roles are auto­
matically granted the roles associated with lower level organizational entities.
It is for these reasons RBAC is being touted as the generalized form of
access-control models.
The underlying RBAC foundations are

• Permissions are assigned to roles,
• Users are assigned to roles, and
• Access decisions are based on users being members of applicable roles.

The premise of ease in managing an RBAC policy is based on the fact that
user assignments to roles tend to change over time, while permission assign­
ments to roles are relatively stable. The privileges associated with a particular
role may remain unchanged over a long period of time due to the fixed
semantics of the functions assigned to that role. Users can be easily reas­
signed to new roles as the need arises. Basing security administration on roles
rather than on permissions provides simplicity, is easier to understand, and
enables better scalability. Roles support the data-abstraction principle in sys­
tems design and can be viewed as higher-level encapsulations of lower-level
privileges and permissions.

Roles have been adopted in many environments and contexts, at times with
varying semantics. An early reference to roles can be found in [LOCH88],
where they are defined in a generalized hierarchy and agents representing
users are assigned to roles. Ting [TING88] describes the use of roles for appli­
cation-level security controls. Baldwin [BALD90] named protection domains
are similar to the roles as defined by Nyanchama and Osborn [NYAN94,
NYAN99]. The embodiment of modern RBAC is described by Ferraiolo and
Kuhn [FERR92], by Sandhu [SAND96], and in the proposed standard for
RBAC [FERRO 1], to mention a few. In this chapter we present the RBAC
model in its three major forms—basic RBAC, hierarchical RBAC, and con­
strained RBAC. We discuss all major aspects surrounding RBAC, including
flow analysis and the simulation of DAC and MAC policies.

192 8. Role-Based Access Control

Basic RBAC

In its basic form, RBAC consists of managing a set of users, a flat set of
roles, a set of resources, and a universe of access permissions. The idea is to
encapsulate subsets of access rights within named roles. Assigning a user to
a particular role implies that he or she is granted access to the resources that
are in the confines of that role. A role can represent a competency in a par­
ticular area and does not necessarily have to have any users assigned to it.
A role without any directly assigned users is referred to in the literature as a
virtual role and sometimes is also called 2i position [MOFF99, SAND96]. For
instance, the role of a health care provider can be used as a high-level abstrac­
tion for a physician or a nurse. Roles that are assignable to users embody a
concrete scope of responsibility. One might have the competency necessary to
be a supervisor for several work groups but have the responsibility for only
the work group he or she actually manages.

At a lower level, each resource manager exposes a functional interface pro­
viding access to its resources. Each such interface is known as an operation.
Based on the semantics of the operation performed on the resource, one or
more permissions might be required for that operation to take place.
Permissions can be discretely disjoint of one another or can be related
through some hierarchical semantics or other relationships. For example, in
the operations exposed via a file system, while the read and the append per­
missions are disjoint, they are both implied by the write permission. Similarly,
the control permission, where applicable, implies all of the permissions read,
append, and write. Depending on the access decision policy used, the list of
permissions required by an operation may be further evaluated by the under­
lying access-control systeni using a predefined expression or rule before an
access decision is made. For instance, the set of permissions required to
access a particular resource can be evaluated using a disjunctive form (a sin­
gle permission is needed) or using a conjunction in which all of the listed per­
missions are required for the operation to proceed. Figure 8.1 illustrates the
basic relationships among roles, permissions, and operations.

Permissions Role User Role Permissions Operation

FIGURE 8.1 Basic relationships among roles, users, permissions, and operations

Basic RBAC 193

RBAC as a generalized access-control model supports two well-known
security principles:

• Separation of duty Tasks requiring separation of duty are assigned to
multiple users rather than to a single individual or one programming
agent. This principle is used to formulate what is also known as a mul-
tiperson access-control policy.

• Least privilege A user is confined to a subset of roles based on the task
being performed. In turn, each of these roles can be such that it encom­
passes only the privileges necessary for achieving the activities man­
dated by the role, not more and not less.

User, Role, and Permission Associations

Central to RBAC is the role concept around which access policies are formu­
lated. Defining a set of roles is the first ingredient of RBAC. Users are assigned
to roles in a many to many relationships. A single role can be assumed by mul­
tiple users, while each user can be assigned to multiple roles. Multiple roles that
are assigned to a single user may be subject to further constraints such as the
separation of duties where users are prevented from simultaneously being
members of separated roles such as those with conflict of interest.

Roles can be discrete abstractions that are disjoint from one another or
may adhere to a particular relationship such as a hierarchical containment in
which one role may oversee several other roles and hence is automatically
granted their permissions. Other forms of role relationship such as aggrega­
tions may also exist.

Permissions are assigned to roles in a many-to-many relationship. A single
permission can be assigned to multiple roles. In turn, a single role can be des­
ignated to contain multiple permissions. Permission-to-role assignment can
be constrained depending on restrictions imposed on the roles themselves. In
the special case when role-to-permissions relationship is a one-to-one, the
RBAC model does not offer the advantage of ease of management. In this
worst-case scenario, RBAC becomes equivalent to the access-matrix model in
its overhead and complexity. Assigning permissions to roles can be best
implemented in line with the least-privilege principle, thereby avoiding the
danger that a user may be granted more access to resources than is needed.

Conceptually, these assignments can be encapsulated by two Boolean
matrices—UR {USERS x ROLES) and PR (PERMISSIONS x ROLES)
defined as follows:

\UR[u,r] = true<^u^ r

I PR \p, r] = true <=> p -^r,

where -^ symbolizes an assignment operator mapping its left and right
operands onto each other. USERS, ROLES, and PERMISSIONS are the
sets of managed users, roles, and permissions, respectively.

194 8. Role-Based Access Control

In RBAC the concept of a session refers to the mapping between a user
and an activated subset of roles that are assigned to the user. Each user can
be associated with one or more sessions at a time. A role session is defined by
the established security context of the user, and thus a session is associated
with a single user. The number of user sessions and roles that can be simul­
taneously active varies based on the underlying security policies. In some
instances, each user is serially confined to a single session that in turn remains
associated with a single role. In other cases, a user-security context may
acquire multiple concurrent sessions, and each is associated with multiple
roles at a time. Associating multiple roles to a session allows selective activa­
tion and deactivation of roles. Widely acceptable RBAC implementations
and policies limit a user's established security context to a single session but
with multiple roles at a time.

The illustration of Figure 8.2 shows roles as defining the rows of two
matrices. One matrix represents user to role assignments A, and another one
representing permission to role assignments B. While the grouping of users
has eased access-control management, a role is viewed not only as a collec­
tion of permissions but rather as a collection of both users and permissions.
The view of a role as intermediary between privileges and users represents the
major difference between roles and groups.

RBAC Relationship Reviews

Role reviews are an essential element in the administration of an RBAC pol­
icy. A reliable RBAC implementation supports bidirectional reviews of user-
role relationships whereby the roles assigned to a particular user and the users
assigned to a specific role can be determined. A comprehensive review capa­
bility also allows for permission-role reviews in which permissions assigned to
a particular role as well as roles containing a specific permission can be deter­
mined. The rows and columns of the matrices in Figure 8.2A and B illustrate

R
O

USERS PERMISSIONS
r ^

V J

R
0
L
E
S

r

l i i i i iWÄWÄi

L LI

^

J

FIGURE 8.2 User-to-role and permission-to-role assignments as viewed in matrix
forms

Hierarchical RBAC 195

user-role and permission-role reviews, respectively. Formally, user-role reviews
can be represented by a mapping ur and its inverse wr"̂ , defined as

ur : USERS -^ 2^^^^\
ur' : ROLES -^ 2^^^^^.

The set of roles assigned to a given user is defined as
user_ assigned_ roles{u) = {r e ROLES I UR[u,r] = true}.

The inverse mapping ur~' yields role-user reviews that determine the set of
users assigned to a particular role as
role _ assigned_ users(r) = {u e USERS I UR[u,r] = true}.

Permission-role reviews can be represented by a mapping pr and its inverse
pr~' defined as follows:
pr : PERMISSIONS -^ 2,^^^^^
pr-' : ROLES -^ 2^^^^^^^^^^^^

The set of roles to which a particular permission is assigned is given by
permission_assigned_roles(p) = {r G ROLES I PR[p,r] = true}.

The set of permissions assigned to a particular role is given by role_assigned_
permissions(r) = {p e PERMISSIONS I PR[p,r] = true}.

Hierarchical RBAC

Role hierarchies are a natural means of structuring an organization's line of
authorities. Support for hierarchical roles therefore is a key aspect of any
role-based access-control implementation. Mathematically, a role hierarchy
defines a partial ordering relationship among roles {ROLES x ROLES)
denoted by the symbol >. Each pair of related roles (i.e., r ,̂ r^ e ROLES)
such that Tj > r^ is characterized by the following properties:

• Tj is referred to as a senior role with respect to r^.
• r^ is referred to as a. junior role with respect to r^
• Tj acquires the permissions of r^ in addition to its own permissions.

This implies that the permission set assigned to r2 is a subset of that
assigned to r^.

• r2 acquires user membership of r^ in addition to its own base of users.
This means users with the senior role r^ are automatically a subset of
users in the junior role r^.

Figure 8.3 illustrates the containment relationships corresponding to two
hierarchical roles r^ and its junior role r2. Note the containment property with
respect to users and permissions results in the senior user membership being
part of the junior user membership, while the junior permissions are part of
the senior permissions.

196 8. Role-Based Access Control

r̂ : Senior role

rg: Junior role

FIGURE 8.3 User and permission memberships in senior and junior role relationships

The partial ordering relationship > defined among a set of hierarchical
roles is also described as an inheritance relation. Role inheritance, in its most
widely adopted definition, is expressed in terms of permissions whereby a
senior role is said to inherit permissions of a junior role. A role r^ inherits role
r^ if all permissions of r^ are also permissions of r^ and users of r̂ are auto­
matically users of r^. Role-inheritance modeling is functionally similar to
class inheritance in object oriented systems.

Two forms of role inheritance are recognized, general, and limited role
hierarchies.

General-Role Hierarchies

General-role hierarchies support the inheritance of privileges from one or
more junior roles. Role inheritance here is analogous to the concept of inher­
itance in object-oriented programming languages where functions and data
defined by a base class are inherited by a subclass, which, in turn, may fur­
ther extend itself by defining additional data and functions. In the same man­
ner by which instances of a subclass can be cast to the type of its parent class,
a senior role can be cast to a junior role in that it automatically assumes the
junior permissions. This analogy, however, does not apply when it comes to
overriding functionality by a subclass that would correspond to overriding
the semantics of an inherited permission.

The aspect of casting a specialized class of objects into a more general­
ized one is referred to in the literature by the isa relationship. Sandhu
[SAND96] adopts the isa terminology in modeling role inheritance as illus­
trated in the example of Figure 8.4A. Roles with extended powers (i.e., those
inheriting other roles) are better illustrated as higher than their juniors in the
graphic representation of a role hierarchy. This visualization reflects the
positions of lower level roles with respect to their senior roles. Figure 8.4B
depicts the same inheritance relations as in Figure 8.4A but using the isju-
nior relation, thus graphically showing senior roles above their juniors. We
adopt the isjunior relation in all of our illustrations of role hierarchies in the
remainder of our discussion.

Hierarchical RBAC 197

PrimaryCare Physician SpecialistPhysician

isa

Physician

0
HealthCareProvider

PrimaryCarePhysician

Q

SpecialistPhysician

p
isjunior \ / isjunlor

isjunioh

o

Physician

HealthCareProvider

FIGURE 8.4 Representing role hierarchy using the isa relationship A and the isjunior
relationship B

The isa and the isjunior relations are equivalent in the sense that

^ isa rj <=» rj isjunior f;.

Role-inheritance relationship is defined by the partial-order relationship

denoted by > such that r̂ > r2 <=> all permissions of r^ are also permissions of

Tj and all users of r^ are also users of r^. This is expressed formally as

role_assigned_permissions(r2) c role_assigned_permissions(rj) A
role_assigned_users(rj) e role_assigned_users(r2).

198 8. Role-Based Access Control

We illustrate role inheritance with directed edges linking roles and repre­
senting inheritance expressed using the isjunior relationship. Figure 8.5 shows
an example of a role hierarchy with multiple-role inheritance.

Limited'Role Hierarchies

This type of role hierarchy is restrictive over the general case in that it sup­
ports only single inheritance of roles. The semantics of inheritance, however,
remain the same as in the general case. Formally, the limited-role hierarchy
can be expressed as
r^> r^^> role_assigned_permissions(r2) e role_assigned_permissions(rj) A
role_assigned_users(rj) c role_assigned_users(r2) A
Vr, Tj, r^ G ROLESj >r^Ar>r^^>r^-r^ (single inheritance characterizing
limited role hierarchies). Note that the > relation here means direct inheri­
tance only.

Figure 8.6 shows a role hierarchy based on that of Figure 8.5 but with sin­
gle inheritance (i.e., a limited hierarchy).

Representation of the limited-role hierarchy corresponds to an inverted-
tree structure or generally stated an acyclic graph. Once a limited-role hier­
archy branches out (i.e., there are at least three distinct roles r^, r^, r^ such that
Yj^ > r^ and r^ > r^) (in a direct inheritance relationship), there cannot be a

Project director

Development
lead

System test
engineer

Functional test
engineer

Test lead

Development
engineer 2

Development
engineer 1

FIGURE 8.5 Example of a general-role hierarchy expressed by the isjunior relationship

Hierarchical RBAC 199

System test
engineer

Functional
test engineer

Development
engineer 2

Development
engineer 1

Developer

FIGURE 8.6 Example of a limited-role hierarchy (single-role inheritance)

single authoritative role r that encapsulates all privileges in the hierarchy. The
absence of a root authoritative role is due to the single inheritance require­
ment imposed in the limited hierarchy. One exception to that is the linear
hierarchy in which only a single role is defined at every level of authority as
illustrated in the example of Figure 8.7.

FIGURE 8.7 A linear-role hierarchy with three roles
and a single root role (CEO)

200 8. Role-Based Access Control

Role Reviews in Hierarchical RBAC

In the presence of a hierarchy, user-role reviews need to take into considera­
tion the effects of role inheritance. In addition to the direct assignment of
privileges and users to roles, one needs to factor the effects from indirect user
and privilege membership in roles. The following are the semantics of the
review functions in hierarchical RBAC:
role_authorized_users : ROLES -^ 2^^^^^
returns the set of users that are authorized for a given role directly or indi­
rectly.
role_authorized_users{r) = {w G USERS\ UR* [u,r] = true},
where UR* represents the transitive closure of UR. The inverse of this map­
ping is
user_authorized_roles'. USERS -^ 2,̂ ^^^*^
which returns the roles authorized for a given user, directly or indirectly:
user_authorized_roles{u) = {r G ROLES \ UR* [u,r] = true}.

role_authorized_permissions:ROLES ^ 2^^^^^^^^^^^
returns the set of permissions that are authorized for a given role either
directly by way of assignment or indirectly through inheritance:
role_authorized_permissions{r) = effective_permissions{r).

Modeling Hierarchical RBAC Using Role Graphs

As has been mentioned, role inheritance can be modeled using directed
graphs whereby a graph node represents a role and an edge from node r^ to
node r^ represents the fact that r^ inherits role r^ Nyanchma and Osborn
[NYAN99, OSBO02] have extensively studied the modeling of role hierar­
chies using directed acyclic graphs in what they refer to as role graphs. Roles
in a role graph are bounded by MaxRole and MinRole. MaxRole represents
the union of all privileges in the role set, and MinRole corresponds to the
minimum set of privileges available to any role in the system (i.e., a common
subset of privileges assigned to every role). In the absence of such a minimal
privilege set, MinRole reduces to an empty set as stated below:

role _ assigned _ permissions {MinRole) =

minimum required privilege set if defined

O otherwise

MaxRole is merely used for the formalism of role graphs and may or may
not have any users assigned to it. As outlined by Nyanchama and Osborn
[NYAN99], role graphs have the following properties:

• There is a single MaxRole whose set of privileges is given by the fol­
lowing formula:

role_assigned_ permissions (MaxRole) =

Hierarchical RBAC 201

U role_assigned_permissions (r^,i = 1, ...,«,
where n is the cardinality of the ROLES set.

• There is a single MinRole containing the following set of privileges:
role_assigned_permissions {MinRole) =
I role_assigned_permissions (r.),i = l,...,n,
which could result in an empty set.

• There is a path from MinRole leading to every role r.,/ = 1,...,«. This fol­
lows directly from the definition of the MinRole being at the bottom of
an inverted tree of the role graph. This also follows from the fact that
by definition MinRole is inherited by every role (i.e., r. > MinRoleJ =
1,...,«). The relationship > here can be either direct or indirect by way
of transitivity.

• The graph is acyclic. Assuming a role graph is allowed to contain
cycles, by definition of the inheritance relation, it follows that each
cycle of the graph can be reduced to a single node (role). The presence
of a cycle in a role graph therefore is useless. Role graphs should not
contain any cycles other than loops, which do exist by definition of >
since r. > r., / = 1,...,«.

• The set of junior roles of a given role r, denoted hy juniors (r), consists
of all roles represented by nodes r. such that there is a path of length 1
or more from r. to r. Immediate juniors of r are roles r. such that (r., r)
is an edge in the role graph.

• The set of senior roles of a given role r, denoted by seniors(r), consists
of all roles represented by nodes r. such that there is a path of length 1
or more from r to r . Immediate seniors of r are roles r. such that (r, r)
is an edge in the graph. Note that by definition of role inheritance, a
role can be either a senior or a junior to another role but cannot be
both at the same time. Also note the fact that seniority relationship is
the inverse of the junior relationship and vice-versa.

• For any two roles r. and r., if role_assigned_permissions (r.) cz role_
assigned_permissions (r.) then there exists a path from r. to r . This
property enforces the hierarchical structure of role graphs. By defini­
tion a role encompasses a set of privileges accumulated along the path
starting at MinRole and leading up to that role. Therefore any role r.
whose set of privileges is part of the privileges of another role r. is con­
sidered a junior role to r . A path exists between a senior role and all of
its juniors.

Effective and Direct Privileges

Nyanchama and Osborn [NYAN99] introduced the notion of effective and
direct privileges of a role. The direct privileges of role r are those privileges
associated with r but are not assigned to any of its junior roles. On the other
hand, the effective privileges of r are the union of all privileges accumulated

202 8. Role-Based Access Control

from the junior roles of r augmented with the direct privileges of r itself The
set of effective privileges of any role r is expressed by the following recursive
form:

\effective_ privileges (r) = direct_ privileges(r) U

effective_ privileges (ri):i=l,...,m

effective_ privileges (MinRole) =

direct _ privilg es (MinRole),

where m is the total number of immediate junior roles of r. Recall that a role
r. is an immediate junior to r if and only if in the role graph there is an edge
from r. to r.

Direct privileges of a role can be an empty set. An example of that is a sce­
nario in which a particular role is used to join multiple other roles. The priv­
ileges associated with a role created as a result of this role-join operation are
the union of the effective privileges of its junior roles. Formally,

effective_ privileges (r) = U, = i ^ effective_ privileges (̂),

where r., i = 1,..., m is the set of immediate junior roles of r. Similarly, some
roles in a hierarchy may have no users assigned to them. These virtual roles
are defined only to capture competencies of some kind and are not assigna­
ble. For instance, an educator role is simply used to encapsulate the generic
tasks that are common to every educator. A physical educator role that inher­
its from educator can be an elementary teacher, for instance.

Role-Graph Modeling of Generalized Role Inheritance

Direct role inheritance is a role-to-role relationship that can be viewed as hap­
pening in three different ways:

• One-to-one A role is inherited by a single role only. Therefore, propa­
gating the privileges of the inherited role in one direction along the
upper hierarchy. This case yields a linear role hierarchy.

• One-to-many A single role is inherited by multiple other roles and
hence propagating the privileges of the inherited role in multiple direc­
tions. This scenario can be viewed as a split in the hierarchy in that dif­
ferent inheriting roles will have to exist at the level immediately above
the level of the inherited role.

• Many-to-one Here multiple roles are inherited by a single role. This
case can be viewed as a join operation in which multiple lower-level
roles are inherited by a single upper role.

Figure 8.8 depicts the generalized role-to-role relationships and their impli­
cation on privilege sharing. For simplicity we refer to roles R^, R^ and R^ to
describe each of the scenarios illustrated. Case A is meaningful only when
effective_privileges {R^ cz effective_privileges {R^. This implies that

file:///effective_

Hierarchical RBAC 203

f?2 R3

FIGURE 8.8 Scenarios of role-to-role relationship cardinality in the generahzed RBAC
model

direct_privieleges{R^ ^ O. Role R^ therefore has to be assigned permissions
that are not in the effective permission set of R^ The same applies to case B.
In case C role R^, however, does not need to introduce new privileges. This
case assumes that effective_privileges {R^ and effective_prmleges (R^) are
disjoint sets; otherwise, there is no use from joining two identical roles. Role
i?3 is used to join the authoritative powers of R^ and R^ into a single role and
may in turn acquire new direct privileges.

Role-Graph Operations

The modeling of role hierarchies using acyclic directed graphs leads to the
application of various graph-theoritic algorithms for manipulating and ana­
lyzing them. Given a role graph, one can deduce a corresponding graph that
has no redundant edges by computing the transitive closure of the graph
[AH072, CHAR96]. For a particular role r, we compute the set of its junior
roles by simply executing a breadth or a depth first search beginning at node
r. Similarly, the set of seniors(r) can be computed by reversing the direction
of edges in the role graph then computing a breadth or a depth first search
starting at node r. Reversing the direction of edges is easily accomplished by
making a copy of the original adjacency matrix then transposing it.

204 8. Role-Based Access Control

Nyanchama and Osborn [NYAN94] have studied and proposed a number
of role-graph management algorithms. We particularly describe the algo­
rithms they suggest for role addition and deletion. Subsequently, we discuss
the effect from updating a role with a new privilege.

Role Addition Introducing new privileges in an RBAC scheme may necessi­
tate the addition of new roles instead of extending the controls of an existing
one. This is particularly useful in supporting the least-privilege principle
enabled through RBAC. The addition of a new role may be required to reflect
the evolving authoritative structure of a particular organization. A new role
may also be needed to join multiple existing roles into a single supervising role
without any direct privileges assigned to it and in which case only the junior
roles of the new role need to be specified to perform the join operation.

Role addition is an operation that transforms a role graph into a new state
encompassing the new role and its relationship to other roles. The new role
can be defined by name and a set of privileges. The name must be unique so
that it does not conflict with existing roles. It is desirable that the privileges
be given in terms of eflFective privileges as this eases the placement of the role
within the entire graph and prevents privilege distribution redundancies. On
the other hand, direct privileges can be used as well, but alone they are not
sufficient to determine the position of the new role in the graph and hence the
underlying organization as a whole. To determine the position of the new
role, say r, we compute the sets of its senior as well as junior roles. The jun­
ior roles are those with an eflFective privilege set that is contained in the eflFec­
tive privileges of r; while the senior roles are those with eflFective privileges
containing those of r. The result of this computation determines the edges
incident to r (i.e., (r., r)) and those that are outgoing from r (i.e., (r,rp, i i^j),
thus shaping the state of the new graph.

Finally, we need to perform privilege resolution to update direct and hence
eflFective privileges of the nodes leading from r to all of its seniors. The direct
set of privileges of the new role is decreased by any privileges that may be
inherited along the paths leading up to the specified set of juniors of r.
Similarly, any redundant direct privileges along the paths leading from r to all
of its seniors are removed. In a well-formed role graph, the privilege resolu­
tion step should not result in removing an existing role; otherwise, the newly
added role introduces an inconsistency in the graph, or it may indicate the
fact that the addition of the new role is useless.

Another approach for adding roles as outlined by Nyanchama and Osborn
[NYAN99] is to specify the new role with its direct privileges, the set of its
junior roles, and the set of its senior roles. These parameters are sufficient for
the placement of the new role in the graph. The following are the processing
steps needed to transform the graph:

• Update edges of the role graph. We identify a subset of edges to be
removed from the role graph based on the new role relations as

Hierarchical RBAC 205

derived from the set of senior and junior roles of the new role, r. This
step concerns the removal of all edges (r., r) such that r. e jumors(r),
r. G seniors{r) and the addition of edges (r., r) and (r, r).

• Perform privilege resolution as outlined before.

Figure 8.9 illustrates the effect of adding a role to a role graph.

Role Deletion This operation involves the elimination of a role from the role
graph and is determined simply by the name of the role r to be deleted. Once
the corresponding node in the graph is deleted, role relations are updated
such that all immediate juniors of r are now joined with the immediate sen­
iors of r prior to the deletion taking place. Formally, we build all edges (r, r^
into the new graph where r. is a member of the immediate set of juniors of r;
while rj is a member of immediate seniors of r. This process is termed as
short-circuiting role r.

1̂ ^ h ^

R, w R, W

im>

^2 A-\ ^3 ^

FIGURE 8.9 Inserting a role in a role graph

206 8. Role-Based Access Control

The privileges associated with the deleted role can either be eliminated or
distributed across senior or junior roles of r. Eliminating the privileges of r
affects only the effective privileges of its superior roles. Each may now
account for a decrease in privileges. Retaining the privileges, however, is pol­
icy dependent in that they may be distributed across the senior roles of r in
accordance to organizational needs and requirements. To make role deletion
as much a transparent operation as possible, the privileges of the deleted role
can simply be reassigned to each of its immediate senior roles or can all be
reassigned to its junior roles. Other policies may elect to reassign the privi­
leges of the deleted role to a combination of immediate senior or junior roles.
A more complex policy may redistribute the deleted privileges arbitrarily
across junior and senior roles that are not necessarily immediate to the
deleted role. Figure 8.10 depicts the role-deletion operation.

«6 b ' Ö "^

^ / ¥ \
Ri n R: FI3 R-i

A ! \ A

A

FIGURE 8.10 Removing a role from a role graph

Hierarchical RBAC 207

Role-Privilege Update Role-privilege update is concerned with the changes
made to the direct privileges of a given role r. These privileges may increase
or decrease depending on the update operation performed. Removal of priv­
ileges may alter the structure of the underlying role graph in two ways.

• In the first scenario, the privilege deletion operation leaves the affected
role (say, r) with no direct privileges of its own. We distinguish two cases:
The affected role has no senior roles. If r has the same set of effective
privileges as any of its immediate juniors, then it is considered redun­
dant and thus can be deleted. As a result of the role deletion, the
appropriate updates of the graph are applied as previously discussed.
Otherwise r is left connected to the smallest set of incident nodes
whose union of effective privileges yields the set of effective privileges
of r. This step is used to optimize the structure of the graph and is evi­
dently applicable only when r has one or more junior roles.
The affected role has one or more senior roles. Since this role no longer
contributes any direct privileges to its seniors, it can be short-circuited
by deleting it.

• In the second scenario, the delete operation leaves the affected role with
a nonempty set of direct privileges. The newly updated role can be
examined against other roles to determine any potential for overlaps.
Overlapping roles are those with identical effective roles. An optimiza­
tion process can be applied to the role graph to remove any redundan­
cies in edge connectivity as a result of the new effective privileges of all
seniors of r.

In addition to the automatic updates of a role graph as a result of a privi­
lege deletion, one certainly should consider the effect on the entire role hier­
archy, particularly as it relates to the senior roles of the affected role. This has
to be taken in light of the fact that the deleted privilege may no longer be
available to any superior roles of the affected role.

Increasing the direct privileges of a role implies an increase in its effective
privileges. This operation, therefore, is useful only when the new set of effec­
tive privileges for the affected role is not identical to that of any other role;
otherwise the affected role is considered redundant. In addition to the
updates of the effective privileges of all seniors of the affected role, the graph
structure may require changes to any eliminate potential redundancies.

Role graph updates may also be the result of modification to the sets of
junior or senior roles of a particular role. The effects from such changes have
to be accounted for throughout all nodes in the graph that are reachable from
the affected node.

Optimizing Role Graphs The transformation of role graphs using role- and
privilege-level operations may result in arbitrary graphs with redundant
paths. A path/7, MinRole -> r̂ ... ^^ r leading to node r is said to be redun­
dant if there is one or more other paths starting at MinRole and terminating

208 8. Role-Based Access Control

at r such that the union of their effective privileges contains the set of effec­
tive privileges accumulated along path/?. Figure 8.11A shows a role subgraph
in which path r^ ^»^ r^-^ ris by definition redundant with the combination
of two other paths r^^*^ r^^>^ r and r^-^ r^^>' r. This is due to the fact that
the set of privileges inherited by role r along the first path {p^,P2,Pi} is a sub­
set of that inherited along the union of the two other paths, which is {/7p p^,
PVPA^PS^' Edges of the graph are labeled with the direct privileges associated
with the source node. The subgraph of Figure 8.1 IB shows edge (r^, r) elim­
inated as a result of this redundancy.

RBAC: A Comparative Discussion

RBAC has been touted as a policy-neutral access-control model. This implies
that it can be used to model various access schemes such as discretionary and
mandatory policies. Although the neutrality aspect of RBAC with respect to
various security policies is not evident, researchers have shown its viability as
a generalized access-control model encompassing both commercial as well as
military access policies [SAND98, OSBOOO].

P2,P3

4̂ 0 ^ 5̂

P1

A : ^
P3,P4

P2

O

Ps

'OK

P2.P3

P1

Ö

^
P3.P4

I
P2

Ps

^Q
J^
P\.Pz

FIGURE 8.11 Removing edge redundancies from a role graph

RBAC: A Comparative Discussion 209

Performing access decisions based on user groups pales in comparison to
the benefits of RBAC for the main reason that user grouping is one-
dimensional. RBAC, on the other hand, is viewed as a two-dimensional
grouping of users and privileges. A role, by definition, is an encapsulation of
a set of users and at the same time a set of privileges. Because members of
the same role have common privileges, simulating user groups using roles is a
straightforward exercise. Each designated group is mapped to a separate role
with user to role assignments that are identical to the membership in the
group. Assigning privileges to roles is not needed here because user groups
are not directly concerned with privilege grouping. This construction is very
simple and unnecessary since it does not exploit the benefits brought forth by
RBAC—namely, encapsulation of privileges, arbitrary role hierarchies, and
role constraints.

Discretionary access policies are founded on the notion of user ownership
of resources and hence the unconditional access to the resource by its owner.
The owner may further grant other users access to his or her resources on a
discretionary basis. RBAC can be configured to emulate a DAC policy by
simulating the owner-centric view of resources as well as the power of grant­
ing access to others on a discretionary basis. We discuss this simulation
shortly. To impart the benefits of RBAC on a DAC policy, however, it might
be better to redesign an existing DAC policy so that it is effectively modeled
by an entirely new RBAC scheme.

Mandatory access-control (MAC) policies evolve around the concept of a
one-directional flow of information in a lattice of security classes. In its basic
confidentiality scheme, a MAC policy is concerned with preventing the flow
of information from higher levels of the lattice to the entities that are lower.
Hierarchical and constrained RBAC has been formally shown to simulate
various MAC policies, the details of which are discussed in the next section.

Mapping of a Mandatory Policy to RBAC

The work done by Osborn, Sandhu, and Munawer (OSM) [OSBOOO] is an
excellent proof that RBAC deserves to be described as a generalized frame­
work for articulating various access-control policies rather than its limitation
to one scheme or another. In particular, mandatory-access control referred to
as a lattice-based-access control (LBAC) can be formally expressed using
RBAC. The essential element of mapping an LBAC policy onto a correspon­
ding RBAC model as noted by Osborn et al. lies in the similarity between an
activated session role in RBAC and the security classification associated with
a login session of LBAC. Another aspect that contributes to the similarity
between these two models is the hierarchical nature of roles and security clas­
sifications. Nonetheless, the similarities alone are not sufficient to establish an
evident mapping between LBAC and RBAC or to demonstrate that LBAC is
indeed an instance of RBAC. The development of this mapping eliminates
the barriers that have for long separated mandatory policies, in use mainly by

210 8. Role-Based Access Control

the military, and the commercial access-control policies as described by many
implementations of RBAC and DAC. In that respect, this mapping along with
others can be considered a major step in unifying access control models.

At the core of a mandatory security policy is a set of security labels, also
referred to as security classes, assigned to system users and resources in a
static fashion by authorized system administrators. These assignments
remain invariant, an aspect known in LBAC systems as tranquility. A confi­
dentiality LBAC is defined as a finite lattice of security classes SC with a par­
tially ordered relationship denoted by > satisfying the simple security
property, also known as the read-down rule, and the liberal *-property, known
as the write-up rule. Both of these rules are formally defined by

• Simple security property Subject s can read object o only if X{s)>X (o).
• Liberal *-property Subject s can write object o only if X{s)<X {o).

X represents the procedure by which an association is made between a partic­
ular security class and a system entity, a subject or an object. This LBAC con­
fidentiality policy as we have known imparts a dual property on the governed
entities in that a higher entity can read a lower entity but cannot write it and
vice versa.

The OSM construction is based on the following two observations:

• A higher-level subject in an LBAC lattice has complete power with
respect to the read operation over objects that it dominates but has no
authority with respect to the write operation over the same objects.

• A subject that is higher in an RBAC hierarchy always has more control
over entities lower in the hierarchy. Specifically, when the privilege set
of an RBAC system is reduced to the read operation only, a higher sub­
ject can read all of the objects that are lower in the hierarchy. Similarly,
when the privilege set of an RBAC model is reduced to the write oper­
ation only, subjects higher in the hierarchy can write all objects gov­
erned by roles that are lower in that hierarchy.

The dual aspect of an LBAC lattice with respect to the read and write
operations led to the use of two role hierarchies in the equivalent OSM con­
struction that maps LBAC onto RBAC. The first hierarchy simulates the read
operation, while the second one simulates the write authority. Consider the
basic confidentiality LBAC of Figure 8.12A in which SC-{L, M^, M^, H),
with ^ a n d L being the highest and the lowest security labels, respectively. Mj
and M^ are two disjoint labels that both dominate L but dominated by H.
The equivalent RBAC of this lattice is represented by two role hierarchies as
shown in the role graphs of Figure 8.12B.

The duality of the two role hierarchies of Figure 8.12B is apparent. The
highest read role Hj^ is able to read all objects, while the lowest write role can
write them all. Meanwhile, intermediary read roles Mj^ and M^j^ are each
able to read objects at their respective levels and those readable by role L^
corresponding to the lowest security label in LBAC. On the other hand.

RBAC: A Comparative Discussion 211

FIGURE 8.12 A basic LB AC model A and its RBAC equivalent B

intermediary roles M^^ and M^^ are able to write objects at their respective
levels, and those that are writable by H^ (the highest security label in the
LB AC model). The OSM construction results in each security label x being
modeled as two roles x^ and x^ for read and write at level x, respectively.

OSM Mapping of a Confidentiality-Mandatory Policy

Given a confidentiality LBAC system defined by a finite set of security labels
SC = {Lp...,L^} and a partial ordering relationship among the labels denoted
by >, an equivalent RBAC system is formulated by the following OSM con­
struction, referred to as Construction 1:

• Two disjoint role hierarchies RH and WH for read and write, respec­
tively, are defined as RH = {L^R,...,L^R} and WH = {L^W„„,LJV}.
Each security label L., / = 1,...,« is mapped onto two roles LR with the
same partial order as ^^^^^ and L.PF with a partial order that is the
inverse of '^i^ß^c The notation ĵr̂ ^̂ ^ is used herein to explicitly refer to
the dominance relationship in the LBAC model as opposed to role
inheritance.

• Because an LBAC object o has a single security label (say, x) associated
with it, in RBAC o is accessible through read and write permission-
to-role assignments on object o such that (o, r) is assigned to role xR
<^ (o, w) is assigned to role xW. This enforces the policy that at secu­
rity label X the objects that can be simultaneously read and written are
those at level x only. It represents the duality of a security label with
respect to read and write operations. Coupled with this constraint is

212 8. Role-Based Access Control

the requirement that permission (o, r) be assigned to exactly one role
xR. This constraint is equivalent to the use of a single security label
for o.

• Each subject is assigned to exactly two roles xR and LW, where x is the
security label of the subject and L ^ i s the write role that corresponds to
the lowermost security label in accordance with the relationship '^j^ß^c

• Each active session has exactly two roles yR and yW.

The last two constraints allow for user sessions that are bounded by the xR
role for the read privilege and the LWXOXQ for the write privilege, x being the
security label associated with the user activating the session. Since each ses­
sion must have a matching pair of roles yR and yW, these roles must be jun­
ior roles of xR and LW, respectively. A special case arises when the user
session consists of the pair of roles LR and LW, thereby allowing the user to
write all other objects but to read none of them, except those that are
assigned to role LR. This case corresponds to the bottom of the lattice in the
LBAC model.

Note that the constructed-role hierarchy is a special role graph in which the
effective privilege set and the direct privilege set of each role are equal. The
difference among roles, however, lies in the scope of objects accessible to
each. Higher roles evidently have access to more objects than lower roles. For
the RH hierarchy, the constant effective privilege set contains the read per­
mission, while that of the PF^ hierarchy consists of the write permission. The
effect of role inheritance in this construction is the widening scope of objects
that can be read or written by a particular senior role. This construction leads
to the formal proof of the following theorem:

Theorem 8.1: An RBAC system defined by Construction 1 satisfies the simple
security property and the liberal *-property of an LBAC system.

Given an object o whose security label is A {o) - x, and a subject s simu­
lated by an active session corresponding to user u whose security label is
X (u) = z, for user u to read object o, permission (o, r) must be assigned to
role zR or one of its juniors (i.e., one corresponding to a security label;; such
that z ^Lßy^cy^ which in turn corresponds to the user's active session role yR).
Hence, X (w) ^^^^^ X {s) and X {s) ^^^^^ ^ (^)' which is the simple security
property.

Similarly, for user u to write object o, (o, w) must be among the permis­
sions assigned to u directly or indirectly through role inheritance. Since u is
assigned to role LW with L corresponding to the lowest security label, and
LW being at the top of the write role hierarchy, (o, w) is therefore within
reach of role LW. However, user u can only have a session activated with the
pair of roles zR and zW or one such as yR and yW, where yR and yW SLTQ

junior roles of zR and zW, respectively. Since the write role hierarchy is the
inverse of the LBAC lattice, it follows that X (o) '^j^^^c ^ ^^)'

RBAC Correspondence to a Mandatory Policy 213

OSM Mapping of an Integrity-Mandatory Policy

The integrity of a security lattice, also referred to as the strict ^-property,
mandates that subject s is able to write object o only if s and o are both at the
same level in the lattice—i.e., X{s) = X(0). The OSM mapping of the integrity
LBAC policy onto an equivalent RBAC model, herein called Construction 2,
follows exactly the same construction as we saw with the confidentiality-
based LBAC but with the following two exceptions:

• The write roles L^ W,...,L^ WavQ all disjoint—i.e., there is no hierarchy
relation between any two roles L., Lj, ij = 1,...,«,/ 9̂ 7.

• Each user is assigned exactly two roles xR and xW, where x is the secu­
rity label of that user in the LBAC system.

The result of the mapping above is expressed by the following theorem:

Theorem 8.2: An RBAC system defined by Construction 2 satisfies the simple
security property and the strict *-property of an integrity-based LBAC system.

The simple security property follows immediately from the construction of
theorem 8.L The strict *-property is evident in that each object is writable by
a single role only. For user u to write object 0, u must activate session s with
the pair of roles (yR, yW), where ;; corresponds to a security label that is
dominated by /I (w) = z and (o, w) is assigned to xo\QyW. Since u is assigned
to a single role zW a,nd because the roles are disjoint, the session will always
consist of the pair of roles (zR, zW); therefore, X(s) = X (o).

Figure 8.13 represents the read and write role hierarchies resulting from the
OSM mapping onto RBAC of the basic integrity LBAC model with four
security labels SC = {L, M^, M^, H) layered as shown in Figure 8.12A.

RBAC Correspondence to a Mandatory Policy

The OSM constructions are concerned with a mapping that formulates an
existing mandatory policy into a corresponding new role-based policy. Given

0 0 0

FIGURE 8.13 The OSM mapping of a basic integrity LBAC onto corresponding
RBAC

214 8. Role-Based Access Control

a RBAC system, however, one might be interested in knowing whether the
role-based policy in fact satisfies a mandatory policy over the same set of
subjects and objects if they were to be assigned security labels. Such an analy­
sis was first undertaken by Osborn [OSB097] in which it was shown that the
structure of an RBAC hierarchy that at the same time corresponds to an
LBAC scheme is constrained in many ways. We discuss some of these sce­
narios here.

For example, a role with permissions to write a low-level object and read a
high-level object is not assignable to any subject for the obvious reason that
it yields a conflict with the mandatory policy. Similarly, a role with permis­
sions to simultaneously read and write a mixture of high-level and low-level
objects cannot be assigned to a user with a high security label. Doing so vio­
lates the write-up-mandatory policy. In the meantime, that same role cannot
be assigned to users at lower labels as it results in the violation of the read-
down-only policy. On the other hand, if a particular role is assigned read per­
missions for objects that are at intermediary security levels only and write
permission is assigned only to higher-level objects, a user with the corre­
sponding security label can be assigned to that role.

The analysis of Osborn reduces the set of privileges assignable to each role
in an existing RBAC scheme to read (r) and write (w) operations only, calling
it the modified privilege set. Given a role R, any object o such that (o, r) is in
the modified privilege set of R is considered to be in the r-scope of R.
Likewise, an object o that is writable by R (i.e., (o, w) is in the modified priv­
ilege set of K) is said to be in the w-scope of R.

Consider a write-only role R (i.e., one with an empty r-scope). For subject
s to be assigned this role, the security label of s has to be dominated by the
security labels of all objects that are members of the w-scope of R so that s
adheres to the write-up mandatory rule as illustrated in Figure 8.14A. Thus,
the constraint

^^^Jevel^^{R)>X{s\

where ^Jevel^^^ (R) is the lowest security label assigned to objects in the w-
scope of R, This constraint enforces the write-up policy. Similarly, when R is
a read-only role (i.e., the w-scope of R is empty), for subject s to be assigned
to this role, the security label of s has to dominate the security labels of all
objects in the r-scope for R as illustrated in Figure 8.14B. Thus, the constraint

X{s)>rJevel^^^(RX

where rjevel^^^ (R) is the highest security label assigned to objects in the
r-scope of R. This constraint is needed to enforce the read-down policy.

For roles with nonempty r-scope and nonempty w-scope, the analysis can
be complicated depending on the layout of objects in the r-scope and w-scope
sets with respect to the intended security lattice. This case may range from
simple scenarios to situations where it cannot be possible for a given role R
to be assigned to any subject. The simplest of such cases arises when all
objects in the r-scope and the w-scope of a role R have the same security

RBAC Correspondence to a Mandatory Policy 215

FIGURE 8.14 Scenarios of mapping a role hierarchy onto a mandatory policy

label. This role can therefore be assigned to any subject whose security label
is equal to that of objects in the r-scope or the vî -scope of R.

In the case of the r-scope and the w-scope of R being assigned security labels
that arbitrarily span multiple levels in a security lattice, the combinations can

216 8. Role-Based Access Control

be unbounded. A special scenario is one in which the security labels of the r-
scope and those of the w-scope are drawn from disjoint levels in the lattice and
are ordered such that either

w_level_min (R) > r_level_msix (R), or
r_level_rmn (R) > w_level_max (R).

In the first case above, role R can be assigned to any subject with a security
label between ^Jevel^^^ (R) and ^Jevel^^ (R) as shown in Figure 8.14C. In
the second case above as illustrated in Figure 8.14D, however, no user can be
assigned to R due to the violation separately of the read-down rule and write-
up rules or both at the same time.

These examples point to the fact that the structure of role hierarchies that
may possibly map to valid lattice-based configurations can indeed be greatly
restricted. In the next section, we discuss the formal constraints that when sat­
isfied by a role hierarchy, lead to the existence of a mapping to an LBAC con­
figuration. It is evident, however, that for a role hierarchy to map onto an
LBAC system there cannot be an object member of the w-scope for any role R
with a label that dominates that of another member of its r-scope. Otherwise,
the read-down and write-up policies are not satisfied for that particular object.

The OSM Constraints for Mapping RBAC to a Mandatory Policy

Osborn, Sandhu, and Munawer (OSM) have formally described the con­
straints that an existing role hierarchy needs to satisfy for it to map onto a
mandatory policy [OSBOOO]. The assumption is that users and objects of a
system already governed by an RBAC access model are now assigned secu­
rity labels in accordance with the need-to-know policy of LBAC. The ques­
tion is to determine whether the existing role hierarchy serves the new
mandatory policy. We refer to these restrictions by the OSM constraints for
mapping RBAC onto LBAC. These are in essence reflecting the read-down
and the write-up properties of LBAC and are based on the following two def­
initions:

Definition 8.1: The r-level of a role R, denoted by r-level(R), is the least upper
bound of the security labels of all objects o for which (o, r) is in the r-scope
of R. Because the least upper bound exists in a security lattice, the r-level is
always defined.

Definition 8.2: The w-level of a role R, denoted by w-level(R), is the greatest
lower bound of the security labels of all objects o for which (o, w) is in the
w-scope of R, When such a bound does not exist, the w-level is undefined.
The following theorem by OSM follows directly from these definitions.

Theorem 8.3: An authorization scheme that is governed by a role hierarchy sat­
isfies the read-down and the write-up mandatory properties if the following con­
straints on the user-to-role assignments (UA) hold:

RBAC Correspondence to a Mandatory Policy 217

FIGURE 8.15 OSM constraints mapping an existing RBAC policy onto a mandatory
policy

\/R GUA,W- level(R) is defined
y(u,R)G UA,X(u)>r-level(R)

V (w, R) G UA, X(u)<w- level{R\

where for all user u and object o, /l(w) and X {o) represent the security labels
of u and o, respectively. The last two constraints define the range of security
labels to which role R can be mapped. User sessions are as always confined
within the bounds of the security label assigned to the user—i.e.,

V̂ G sessions, X{s)< X (u).

Figure 8.15 illustrates the constraints outlined of theorem 8.3.

Mapping Discretionary-Access Control to RBAC

RBAC has been shown by Osborn, Sandhu, and Munawer to be capable of
simulating discretionary policies [OSBOOO]. Recall that the central theme of
DAC is that of resource ownership. The owner of an object has the author­
ity over who else can access that object. Information flow in DAC is therefore
driven by owner-based administration of access rights. Overlooking the role
of a super administrative user, generally all variations of the DAC policies
share the following characteristics:

• The creator of an object, such as a file in a file system, automatically
becomes the owner of that object.

• An object can be destroyed only by its owner.
• While an object is automatically owned by its creator, ownership may

optionally be shared with other subjects as well.

218 8. Role-Based Access Control

We discuss the formal mapping of discretionary access models into corre­
sponding role-based models. As for the mapping of LBAC onto RBAC, we
refer to this mapping as the OSM construction after its developers Osborn,
Sandhu, and Munawer. But first we begin by recalling the major variations of
the DAC models.

• Strict DAC The owner of an object is the sole entity that may grant
other subjects access to that object. Similarly, revoking access to the
object is confined to the authority of the owner. Information flow from
or to that object is under complete control of the owner.

• Liberal DAC Allows the owner of an object to further delegate the
authority of granting/revoking access to the object by other subjects.
The OSM construction specifically treats the following variations of
the liberal DAC:

One-level grant: Delegation of the grant/revoke authority is limited
to one level only. The owner may delegate grant/revoke authority to
other users but they cannot further delegate this power.

Two-level grant: The chain of delegating the grant/revoke authority is
limited to a maximum of two levels. Besides the owner delegating his or
her authority to another user, the latter can further delegate that author­
ity to other users. For instance, Elyes can delegate the grant/revoke
authority over his files to Aicha. In turn, Aicha can delegate the same
authority to Alice. But Alice has no control over further delegating this
authority to other users.

Multilevel grant: The power to delegate the grant/revoke authority can
be propagated down to multiple levels. Elyes can authorize Aicha, who
can authorize Alice, who can further authorize Fatima, and so forth.

• DAC with change of ownership This variation allows a user to transfer
ownership of an object to other users.

• DAC with grant-independent revocation In this variation revoking
access can be performed by any subject with the appropriate authority,
not necessarily the one who granted access in the first place.

• DAC with Grant-Dependent Revocation Revocation can be performed
only by the granter of access. The entity performing the grant access is
required to be the same as that revoking it.

The Elements of the OSM DAC to RBAC Mapping

The central aspect of the OSM DAC to RBAC mapping is the simulation of
the owner-centric and delegated information flow exhibited in the DAC
model. For simplicity, the OSM construction is described for a DAC policy
with a single read operation. Construction for DAC with multiple operations
follows in the same way.

The creation of an object O in a DAC system corresponds to the creation
of a role hierarchy consisting of three administrative roles and one regular role
in the corresponding RBAC model. This hierarchy consists of the following

RBAC Correspondence to a Mandatory Policy 219

roles in which READ_0 is the regular role (i.e., one with no privileges affect­
ing properties of other roles):

• READ_0 This role encapsulates the privilege to read object O. It is
assigned the canRead_0 permission. An entity assigned to this role has
the authority to read object O.

• PARENT_0 This role represents the authority to assign and remove
users from role READ_0. It is assigned permissions addReadUser_0
and deleteReadUser_0. PARENT_0 captures the authority of grant­
ing access in the DAC model.

• PARENTwithGRANT_0 This role is used to express the delegated
powers of grant and revoke down in a DAC chain. It is used to admin­
ister the PARENT_0 role via two permissions (addParent_0 and
deleteParent_0) and represents the recursive grant and revoke in DAC.

• OWN_0 This role is used to simulate the concept of resource owner­
ship in DAC. It is assigned two permissions for administering the
PARENTwithGRANT role via addParentWithGrant_0 and
deleteParentWithGrant_0 which add and remove users from the
PARENTwithGRANT_0 role, respectively. Additionally, 0 W N _ 0 is
assigned the privilege destroyObject_0, making it the only role with
the power to destroy object O. Destruction of O automatically results
in the deletion of all the roles above.

These roles are structured in a linear inheritance hierarchy, at the bottom of
which is the READ_0 role inherited by PARENT_0, which in turn is inherited
by PARENTwithGRANT_0. The latter is further inherited by the 0WN_0
role positioned at the top of the hierarchy. Privileges are therefore inherited
along this hierarchy in such a way that OWN_0 has the authority of assuming
all of the permissions defined in the above. Figure 8.16 depicts this hierarchy.

Note that that role OWN_0 has the power to add and remove users from
role PARENTwithGRANT_0, which in turn is capable of adding and
removing users from role PARENT_0. This construction embeds the recur­
sive property of delegating authorities and is needed to allow for multiple lev­
els of grant and revoke down the stream of discretionary controls governing
a particular object.

Simulating Strict DAC This policy can be enforced by the corresponding role
hierarchy of Figure 8.16 by simply imposing the following cardinality con­
straints on the administrative roles:

• Cardinality of 1 for OWN_0,
• Cardinality of 0 for PARENTwithGRANT_0, and
• Cardinality of 0 for PARENT_0.

Strict DAC is thus simulated using only two roles OWN_0 and READ_0 as
shown in Figure 8.17 with OWN_0 assigned the privileges addReadUser_0,
deleteReadUser_0, and destroyObject.

220 8. Role-Based Access Control

OWN_0

"O"

PARENTwithGRANT_0

O

PARENT_0

TJ

READ_0

"O"
FIGURE 8.16. The OSM hierarchy of roles corre­
sponding to resource ownership in the DAC model

Imposing cardinality of 1 restriction over role OWN_0 prevents multiple
ownership of object O, The owner in this case is the sole entity that grants
access to the protected object.

Simulating Liberal DAC In this case, the OSM construction distinguishes
three scenarios based on the level of the grant authority as follows:

One-level grant This policy can be simulated by imposing the following
cardinality constraint: Cardinality of 0 for PARENTwithGRANT_0.

OWN_0

i

READ_0

O"

{addReadUser_0

deleteRead_User_0

destroyObject_0

^ canRead_0

FIGURE 8.17. Simulating strict DAC by an RBAC policy

RBAC Correspondence to a Mandatory Policy 221

Here the construction requires only three roles: OWN_0, PARENT_0,
and READ_0 as illustrated in Figure 8.18. The one-level grant can be
achieved by way of the owner adding a user to the PARENT_0 role. The lat­
ter becomes capable of adding other users to the READ_0. A user that is
added to the READ_0 role only cannot further delegate the grant authority
to other users.

Two-level grant No cardinality constraints are set on any of the three
administrative roles to achieve the semantics of this policy. The owner can
assign users to role PARENTwithGRANT_0, which is in turn used to assign
users to PARENT_0 thereby realizing a two-level grant. Note that a «-level
grant can be similarly achieved using n roles:

PARENT_0,
PARENTwithGrant_0^,
PARENTwithGRANT_0,
PARENTwithGrant_0^
PARENTwithGrant 6

2 ' * " '

K-2'

n-\

Deeper «-level constructions performed in this way, however, are not
amenable to a larger degree of scalability.

Multilevel grant Recursive nesting of the grant authority is achieved by
removing all cardinality constraints on the three administrative roles and fur­
thermore assigning the addParentWithGrant privilege to the role
PARENTwithGRANT_0. To couple the grant and the revoke authorities the
deleteParentWithGrant_0 privilege is also assigned to the role
PARENTwithGRANT_0. The permissions addParentWithGrant_0 and
deleteParentWithGrant_0 therefore become direct privileges of role

OWN_0

"O"

PARENT_0

IT

READ_0

"O"

raddParent_0
< deleteParent_0

[destroyObject_0

J addReadUser_0

I deleteRead_User_0

canRead_0

FIGURE 8.18 Simulating a one-level grant DAC policy by RBAC

222 8. Role-Based Access Control

PARENTwithGRANT_0 and are simply inherited by role 0WN_0 as part of
its effective set of privileges. This recursive pattern is depicted in Figure 8.19.

An example of a three-level grant follows. Aicha, being the owner of object
O, assigns user Elyes to role PARENTwithGRANT_0. Hence Elyes is auto­
matically granted read access to object O through privilege inheritance from
role READ_0. In his role, Elyes invokes the privilege addParentWithGrant_0
to assign user Alice to the PARENTwithGRANT_0 role and thereby gives
Alice read access to object O. In turn, Alice invokes the privilege
addParentWithGrant_0 to assign user Bob to role PARENTwithGRANT_0.
At this point. Bob decides not to disseminate any further grant privilege and
thus maintains a three-level grant.

Simulating DAC with Changes to Ownership Resource ownership can be
transferred by redefining the administrative authority of role OWN_0. This
can be accomplished by assigning a new privilege—say, changeOwner_0 to
role OWN_0. The owner of an object O may invoke this privilege to change
ownership to another user. Due to the cardinality constraint over role
OWN_0 being 1, ownership of the object transfers solely to the new user.
Multiple owners can be accommodated by simply increasing the cardinality
of role OWN_0.

Simulating Grant-Dependent Revoke In all previous constructions, revoca­
tion of access is independent of the granter. The roles considered allow for
user A to grant access to user B, while a third user, C with the appropriate
authority, may revoke access to B. Grant-dependent revoke enforces a policy
whereby only the user who granted access in the first place is capable of
revoking it. In essence, grant-dependent revoke draws distinct administrative
domains across the entities governed by a DAC policy as such.

OSM RBAC construction for the grant-dependent revoke enforces a strict
separation of roles for each user Ui, owner of a particular object O, and is
described in the context of a one-level grant authority. Here the one-level grant

OWN_0

O"
defet0P^enWitjQrant_O

ii
PARENTwithGRANT O k O a<:kiPar̂ ntWlth(3ranL.O

FIGURE 8.19 Simulating a multi-level grant DAC policy by RBAC

RBAC Correspondence to a Mandatory Policy 223

policy is simulated by creating a different administrative role Ui_PARENT_0
and a different regular role Ui_READ_0 for each user authorized by the
owner to perform a one-level grant. Each role Ui_PARENT_0 is assigned two
permissions used to manage user assignments to role Ui_READ_0 as follows:

• addU_ReadUser_0 is used to add a user to role Ui_READ_0.
• deleteU_ReadUser_0 is used to remove a user from role Ui_READ_0.
• The key to the separation of these administrative tasks however is the

constraints: Each role Ui_PARENT_0 has cardinality of 1.
• Membership in role Ui_PARENT_0 remains unchanged once it is

assigned.

A single user Ui, therefore, will be the only one granting read access to users
and the only one capable of revoking it by invoking addU_ReadUser_0 and
deleteU_ReadUser_0, respectively, on role Ui_READ_0.

In this one-level grant construction, each role Ui_PARENT_0 is auto­
matically created by the owner invoking the administrative privilege
addParent_0 for user Ui. Figure 8.20 depicts the association between each
Ui_READ_0 and its corresponding Ui_PARENT_0 role. Note that all of
these roles are juniors to role OWN_0.

A Note About the OSM DAC to RBAC Mapping

It is quite apparent that OSM constructions for mapping DAC onto a corre­
sponding RBAC policy do not scale to any average size of resource inventory

OWN_0

U1_PARENT_0

Ö
U2_PARENT_0

Ö
Un_PARENT_0

Ö

U1_READ_0

XJ
U2_READ_0

U
Un_READ_0

TJ
FIGURE 8.20 RBAC Simulation of a grant-dependent revoke in one-level grant DAC
policy

224 8. Role-Based Access Control

in a computing system. The lack of scalability is due to managing separate
role hierarchies for each object owned by entities of a system such as users,
programming agents, processes, and hosts. The overhead incurred from set­
ting these role hierarchies becomes prohibitive particularly when contrasted
with the cost and scalability of a simple DAC mechanism such as access-con­
trol lists that can be readily used to protect resources. The OSM construction
for mapping DAC onto RBAC therefore may be regarded as only theoretical
proof of concept. Indeed, such mapping is yet another demonstration that
role-based access control deserves to be viewed as a unified access-control
model now that mandatory policies can also be modeled using RBAC.

RBAC Flow Analysis

The modeling of role hierarchies using role graphs provides a formal way of
studying and analyzing RBAC. The fact that directional edges of role graphs
correspond to privilege hierarchies translates immediately into the paths of
an RBAC information flow. Osborn used the role-graph modeling process as
a tool to analyze the flow of information across objects of an RBAC system
[OSBO02].

Given a role graph, the Osborn analysis constructs a flow graph represent­
ing all potential information flows across objects. This analysis is based on
the ability of copying the content of one object into another object. The copy
operation usually takes place using a combination of read r and write w priv­
ileges. As such, the Osborn RBAC flow analysis is based on the following ele­
ments:

• If the privileges (Oj,r) and (Ö2,W) are in the same role R, then a user
assigned to R has the ability to cause the flow of information from
object o^ to object O2 by way of a copy operation.

• Regardless of the roles to which the privileges {o,r) and {o,w) are
assigned information will always be considered to flow from any object
o to itself

The first element corresponds to a directed edge from node (o^,r,R) to node
(o2,w,R) in the flow graph, while the second one is represented by potentially
multiple bidirectional edges from (o,r,R) to {o,w,Rj) and {p,r,R^, where R^,RJ
are any two roles to which either of the privileges (ö,r) and/or {o,w) is assigned.
These edges essentially represent the flow of information from an object to
itself irrespective of the permissions and roles controlling that object.

The Osborn Flow-Analysis Algorithm

Given a role graph RG = {Nj^^, Ej^^ with the set nodes 7V̂ ^ representing
modeled roles and the set of directed edges E^^^ corresponding to the role
hierarchy relationships, the Osborn flow-analysis algorithm outputs a flow

RBAC Flow Analysis 225

graph FG = {Np^^Ep^ in which a node in Np^ represents an object that is con­
trolled by some role R. through privilege r or w, or both. Edges Ep^ represent
the flow of information across the protected objects. Figure 8.21 describes
the details of this algorithm.

In the following, we discuss two examples of the Osborn flow analysis.

Example 1: Flow Analysis of a Simple LBAC Scheme We map an LB AC
with strict *-property to an RBAC model and then apply the Osborn algo­
rithm to determine the paths of information flow in the resulting RBAC sys­
tem. We consider a simple LBAC scheme with four security labels
{L,M^,M^,H} as we illustrate in Figure 8.12A. The strict *-property states
that subject s can write object o only if o is at the same security label as s—
i.e., M^s) - X{o). Recall also that two role hierarchies are created by the OSM
mapping construction in which the read hierarchy has a partial order identi­
cal to that of LBAC, while the write roles are completely disjoint. We select
an object as a representative of every security level as follows:

o^ for level L

o^^ for level Ml

Ojj for level H

The RBAC construction results in eight roles—four for the read hierarchy
RH - {L^, Mj^, M^j^, Hj^ and four for the write hierarchy WH = {L^, ^iw^
M2^, H^}. Because users assigned the privilege of writing an object at level
L for instance are also able to read the same object, role L^ automatically

for each role i?^ G N^^^ do

for each privilege p - (o.

construct node n eN^r^

rlw)e. Effective{Rj^) do

and label it with role R^^

for every pair of privileges in Effective{R^) that is

{Oj,W)

construct a directed edg

(i?^,o^,r);

for each object o do
for each pair of nodes

objecto
construct edges n^ —>

e eeEpQ from node (R^

and privilege/7,

of the form (op

, o^, r) to node

n^,n.eNpg whose labels refer to the

Hj, fij - > n^ e EpQ;

r)

common

FIGURE 8.21 The Osborn algorithm for the information-flow analysis in role graphs

226 8. Role-Based Access Control

inherits privilege (O^, r). Similarly, role H^ inherits privilege (O^, r), while
roles Mjp^and M2ĵ inherit privileges (O^p r) and (0^2' 0? respectively. Due
to this inheritance structure we rename the write hierarchy as follows:
WH - {Lj^^, ^\Rw^ ̂ 2Rw^ ^Rw^' "^^^ resulting read and write hierarchies are
now combined into a single hierarchy as represented by Figure 8.22. The
effective privileges associated with each role are shown.

To simplify the Osborn algorithm and add to the clarity of the resulting
flow graph, we omit the evident information-flow paths from an object to
itself. This relevant omission yields a simplified version of the algorithm as
described in Figure 8.23.

The application of the simplified Osborn algorithm directly to the graph of
Figure 8.22 yields the simplified flow graph shown in Figure 8.24. Note how
the labels in the final graph are reduced to the names of objects, thereby
expressing the flow of information among the set of objects irrespective of
the roles responsible for that flow.

Example 2: Reduction of a Role Hierarchy Governing Read and Write
Access We now consider a role hierarchy governing read and write access to
three objects op o^, o^ via roles R^, R^, R^, R^ as shown in Figure 8.25A. The
resulting flow graph is illustrated in Figure 8.25B. In turn, the final reduction
of this graph yields a flow graph that is equivalent to a single node as
depicted in Figure 8.25C. This indicates that all of the objects modeled by the

HF RW

{(OH,MOM^MOM2MOLMOH,W)}

{(OH,^)XOM^A{OM2MOu')}

{(OM^A(OI^

{{OM^MOL,')}

,wUOuÖ]

M2R

{(OM2MOL,f)}

FIGURE 8.22 Application of the Osborn flow analysis to a role graph corresponding
to an integrity LBAC model

Separation of Duty in RBAC 227

for each role R^^ e jV^̂ do

for each privilege p = (o,r/w)e Effective(R^) do

construct a node ne N^r^ and label it with role R, and

the privilege/?;
for every pair of privileges in Effective(R,^) that is of the form

construct a directed edge e e Ej,^ from node (i?^ ,o,, r) to node

(R^,Oj,r);

remove all nodes n e N^g that are not connected to any other nodes;

FIGURE 8.23 A simplified version of the Osborn flow-analysis algorithm

initial role graph are equivalent with respect to information flow (i.e., infor­
mation received by each of these objects is visible to the rest of objects).

Flow graphs are not acyclic. The graph of Figure 8.25B is a complete
directed graph and thus is cycHc. Nodes comprising a cycle are identical with
respect to information flow. As such, each cycle in the flow graph is logically
equivalent to a single node. In other terms, each strongly connected compo­
nent of a flow graph reduces to a single node as shown in Figure 8.25C.

Separation of Duty in RBAC

RBAC lends itself to enforcing the separation-of-duty (SoD) principle. Recall
that the goal of SoD is to guard against internal fraud and errors by limiting
the powers of individuals. As a result, accountability becomes automatically
built in the governing policy of an enterprise. We refer to this fact as
autonomous accountability. The classical example expressing assurance in

FIGURE 8.24 Application of the simplified
Osborn algorithm to the role graph of Figure
8.22

228 8. Role-Based Access Control

A /?4

{(o^JUo2,r),(o^,wUo2,w),(03,r),(03,w)}

^1

{(Oi,r),(02,M^)}
^ 2

{(0i,r),(02,r)}

FIGURE 8.25 A: Example of a role hierarchy governing access to objects o^, o^, Oy
B: its information flow graph. C: and the final reduced flow graph.

accountability based on SoD is the rule that prohibits auditors for auditing
themselves. An auditor must be designated to perform audits on actions of
other individuals. Auditing oneself yields a conflict of interest in v^hich the
individual is confronted v^ith two semantically exclusive interests. The first is
the requirement for impartiality, while the second is the natural bias that one
may exhibit toward oneself.

Contrary to the potential for singlehandedly perpetrating fraud when
sufficient powers are assigned to individuals, SoD is achieved by dissemi­
nating computing tasks along with associated permissions among multiple

Separation of Duty in RBAC 229

individuals. This is usually accomplished by first breaking a business process
that presents a conflict of interest when viewed as a single set of transactions
into its basic tasks that are free of conflict of interest. Once independent sub-
tasks are identified, separate individuals are then authorized to perform each
subtask. For instance, a role that evaluates a procurement process in an
organization and one that authorizes payment represent a conflict of inter­
est. An SoD policy that may remedy the potential for fraud in this case would
assign different individuals to each of these two roles. Early work on SoD was
described by Clark and Wilson [CLAR87], Sandhu [SAND88b], and Brewer
and Nash [BREW89], to mention a few.

SoD, however, cannot protect against a deliberate collusion in which indi­
viduals trusted with the enforcement of a policy collaborate in performing
the tasks required but in a fraudulent manner. To alleviate this concern, SoD
policies can be best implemented when the separated roles are assigned to
individuals with divergent interests, with no relationships to one another and
perhaps even with no knowledge that the other role exists. Separated roles as
such become discrete entities that are disconnected with respect to the indi­
viduals assigned to them.

SoD is achieved in RBAC by first recognizing roles that are associated with
conflicts of interests. A set of constraints are then established over user-to-
role assignments in a way that no individual can assume the powers of any
two or more conflicting roles at the same time. Two broadly defined cate­
gories of separation of duty are in common use, static and dynamic. The
static separation of duty encapsulates an invariant role-assignment policy
that is maintained under any execution context. The dynamic separation of
duty, however, can be represented by an unlimited number of variants. Each
is characterized by the constraints it imposes on role activation. We discuss
the details of each type in the following sections.

Elements of Role Conflicts in RBAC

Conflict of interest is the key element in any separation of duty policy. Even
though the goal is always to prevent a conflict of interest from taking place
through fraud, the origins of the conflict can be attributed to a number of
factors.

Conflicting Permissions

One or more permissions that when exercised together (i.e., are members of
the effective privileges of any single role) have the potential to cause fraud are
said to be conflicting permissions (CP). In the simplest case, such permissions
can be organized as unordered pairs that conflict with one another. Formally,
CP c PERMISSIONS x PERMISSIONS with

{p., p) e CP^ (pj, p) e CP, i ̂ j and (p., p) ^ CP.

230 8. Role-Based Access Control

Conflicting permissions may also arise when a combination of certain per­
missions becomes a subset of the effective privileges associated with any one
single role. A permission set may yield a conflict of interest whenever a com­
bination of n or more permissions from the set results in a conflict situation.
Formally, the set of conflicting permissions in this case can be described as
CP e 2^^^^^^^^^^^ X N, which is a collection of pairs (ps, n), where each;?^ is
a permission set and n din integer > 2 with the property that any combination
of n or more permissions from ps yields a conflict. The special case of mutu­
ally conflicting permissions results from n-1.

The basic safety condition associated with conflicting permissions is that
they must not be a subset of the effective privileges of any single role in the
role set. On the other hand, nonconflicting permissions (those that do not
represent a conflict of interest of some sort) are allowed to be part of the
privilege set of any role.

Conflicting Users

A set of users that are likely to conspire for one or more social or any other
reason is said to be a conflicting user set. When separation of duty policies are
being formulated, any such set of users is reduced to a single user from
the perspective of safety analysis and thus cannot be assigned to conflict­
ing roles. Formally, a pair of conflicting users {CU) is defined as
CU e USERS x USERS with

(t/., u^ G CU <=> {Uj, u) e CU, i ^j and (w., w.) ^ CU.

The extension to a set of conflicting users may formally be described as:
C t / e 2^^^^^ X N, which is a collection of pairs (us, n), where each us is a user
set and n din integer > 2 with the property that any combination of n or more
users from us yields conflicting users. The special case of mutually conflict­
ing users results from n-2.

Conflicting Tasks

A collection of tasks representing a particular business process as a unit
and that require conflicting permissions to complete are considered conflict­
ing tasks. Pairs of conflicting tasks {CT) are formally described by
CT c TASKS X TASKS with

(?., t) e CT^ (tj, t) e CT, i ^j and {t., t) ^ CT.

The extension to a set of conflicting tasks can be formally described as
CT c 2^ '̂̂ '̂̂ X N, which is a collection of pairs {ts, n), where each ts is a task
set and n din integer > 2 with the property that any combination of n or more
tasks from ts yields a conflict. The special case of mutually conflicting tasks
arise when « = 2.

Separation of Duty in RBAC 231

Because conflicting tasks require conflicting privileges, they are assigned to
different roles. Nonconflicting tasks, however, can be assigned to conflicting
or nonconflicting roles.

Safety Condition from the Perspective of Conflicting Tasks A safety condi­
tion can be formulated as an indicator of correctness in processing conflict­
ing tasks governed by a separation-of-duty policy. First, we map the tasks
required by the business processes at hand onto their respective sets of privi­
leges, which in turn translates into roles required by the tasks. Formally,
S(t): TASKS -^ 2^^^^^^^^^^ .̂

We then determine the set of mutually conflicting tasks CT based on a pre­
defined policy. The safety condition for processing the set of mutually con­
flicting tasks is to ensure that no single person can be assigned all of the
privileges required to perform each pair of conflicting tasks p̂ 2̂ ^ ^^•
Formally,

Vw G USERS, V î, t2 G CT, -1 {S(ti) U 5fe) ^ effective_ rmleges(u)).

The safety condition above extends in the same way to any conflicting set of
tasks ^p..., t.. The union in this case is performed over the sets S{t^),...,S(t).
Note that this safety property is a sufficient condition but not a necessary
one.

Static Separation of Duty

Static separation of duty (SsoD) is also known in the Hterature as authoriza­
tion-time separation of duty and sometimes is referred to as strong exclusion,
SSoD places constraints on the assignment of users to roles in the context of
an overall security policy independently of time or any other constraints. The
effect of SSoD is limiting user-to-role in that membership in a particular role
may prevent a user from becoming a member of one or more other roles.
A wide variety of rules may govern SSoD policy. Most basic and common of
these rules is the identification of mutually disjoint roles by the permissions
assigned to each of them. Two roles require static separation when assigned
permissions that result in a conflict of interest at all times. As such, a user is
prohibited from being simultaneously a member of both roles. For instance,
an individual assigned to the role of billing should not be assigned to the role
of account receivable at any time.

Various implementations of the SSoD policy have adopted constraints on
user-to-role assignments by simply identifying mutually exclusive role pairs.
Each user is then assigned to at most one role in every such conflicting pairs
of roles. A generalized model as proposed by Ferraiolo et al. [FERRO 1]
defines SSoD relations as constraints over arbitrary sets of role sets instead of
simply role pairs. Each such relation consists of a set of two or more roles
along with a cardinality number for the lack of a better term. This cardinality

232 8. Role-Based Access Control

integer, which must be greater than one, indicates the smallest number of roles
from the constrained set that requires separation of duty (i.e., not assignable
to a single user). For instance, an organization with five defined roles may
require that no single user be assigned three or more roles. This constraint is
denoted by the pair: (rs, 3), where rs is the role set over which the constraint is
defined, rs = {R^, R^, R^, R^, R^} in our example. The assignment of roles R^,
R^, and R^ to any particular user would constitute a violation of the separa­
tion of duty relation expressed by the policy {rs, 3).

The formal definition of SSoD relations in this generalized model is
expressed as follows:

• The SSoD relations are SSoD e 2^^^^^ x Â consisting of pairs (rs, n)
where each rs is a set of roles involved in the separation of duty, and n
is an integer > 2.

• No user is assigned to a combination of n or more roles from each set
rs such that (rs, n) G SSOD. This is formally expressed as

V(rs,n)E SSoD,Mec rs\\e\>n^

n role_assigned_users (r) = O

The constraint (rs, 3) in our example above limits the simultaneous assign­
ment of a user to each of the following role sets only: {R^, R^, {R^, R^},
{R„ R,}, {R„ R,}, {R^, R,}, {R^, R,}, {R^, R,}, {R,, R,}, {R^, R,}, and {R,,
R^}. Note that a mutually exclusive role set rs results from (rs,2). The assign­
ment of any two roles from rs to a user violates the SSoD policy. The mutual
exclusion of roles underscores the fact that the user sets denoting member­
ships in mutually excluded roles are completely disjoint as formally expressed
by the following property:

Vw G USERS, VRi,R2G ROLESii^i/ î 2

({Rp R2}, 2) G SSoD ^^ ue role_authorized_users(R^ =>

u ^ role_authorized_users(R^.

Static separation of duty has the advantage of simplicity but exhibits a
degree of rigidity that may present itself in some situations as a handicap
rather than a control feature. Many real-life controls require the assignment
of restricted roles to the same individual. Controls over which role can be
assumed by the user at one time are dynamically applied based on context.

The Effect of Role Hierarchy

Mutually exclusive roles are established due to the conflict in one or more per­
missions that are assigned to those roles. The extension to an arbitrary con­
straint (rs, n) follows for the same reason that two or more mutually exclusive
permissions end up being assigned to any combination of n or more roles. The
effective permission set of each role is therefore a determinant factor of

Separation of Duty in RBAC 233

whether a pair of roles represents a conflict of interest in the case of mutual
exclusion and similarly whether a particular set of roles exhibits a conflict in
the general case. It is evident that if role R^ is in conflict with role R2 and role
R^ inherits from R^ then R^ is also in conflict of interest with jR̂ due to the fact
that Effective{R^ c Effective{R^. Furthermore, R^ and R^ as well as any role
that inherits either of them will remain in conflict of interest with any roles
that inherit Ry The separation-of-duty relations are thus inherited along a role
hierarchy. The following two properties characterize the static separation-
of-duty relationships in the presence of role hierarchies:

• The inheritance hierarchy implies that the static separation of duty is
defined in terms of users authorized for a role instead of users directly
assigned to that role. Recall that the set of users authorized for a role
includes all users inheriting that role directly or indirectly. As such,
SSoD can be formally expressed as

V (rs, n) G SSoD, Me Q rs: \e\>n=>

n role_assigned_users(r) = (^
r G e

• Any two roles that are assigned to the same user directly or indirectly,
through inheritance, are not members of any static separation-of-duty
relation. Formally,

Vw G USERS,yRuR2^ ROLES,Ry,R2^

user_authorized_roles{u) => {R^R^ ^ SSoD

This can be further generalized as

VwG USERS,VRuR2,...,RiG ROLES,RuR2,...,RiG
user_authorized_roles{u) =^

{R^R^,..,, R) ^ (rs,i)
for any integer / and role set rs for which (rs,i) e SSoD.

Dynamic Separation of Duty

Dynamic separation of duty (DsoD), also known as runtime separation of duty
and sometimes referred to as weak exclusion, is intended for the same reasons
SSoD is. The distinction between these two policies, however, is related to the
runtime context. While an SSoD policy remains invariant throughout all exe­
cution environments, DSoD policies place constraints on the roles that can be
activated within a user's session during system operation. Furthermore, the
restrictions are enforced across multiple, simultaneous sessions initiated by
the same subject. Two roles that are designated to be mutually exclusive in a
user session cannot be simultaneously activated by the user logging to multi­
ple sessions.

The main goal of DSoD is to provide a dynamic and variable method of
setting the scope of authorized session roles based on the execution context.

234 8. Role-Based Access Control

This flexibility is used to remove the rigid constraints of SSoD. For instance,
while a static policy separating a procurement role that initiates a payment
from one that authorizes payment, prohibits an individual initiating payment
ever from authorizing any payment. A dynamic separation-of-duty policy
may allow the same subject to act in a payment initiation and a payment
authorization roles provided no individual is able to authorize payments that
he or she had initiated.

The flexibility of DSoD is intended to decrease the overhead incurred by
the adoption of a static security policy. A user can be assigned to two roles
that have a DSoD relationship, but a user cannot be assigned to two roles that
have an SSoD relationship. While time of activation is usually what restricts
roles in a DSoD policy from being activated simultaneously, it is not always
the sole criterion. In the example of payment initiation and authorization
roles, the rule governing role activation in DSoD is related to the identity of
the user performing payment initiation and that authorizing it. The applica­
ble execution context here is related to the parameters of the transaction per­
formed, the subject performing the action, and the object of the transaction.
This scenario illustrates the potential for various rules and application-ori­
ented policies that may govern DSoD relations. DSoD can be viewed as a
finer means of enforcing the principle of least privilege, where it is referred to
by the terms of timely grant and revocation of trust. The formal definition of
DSoD can be expressed as follows:

• DSoD relations are DSoD e 2^^^^^ x N consisting of pairs (rs, n),
where each rs is a set of roles involved in the dynamic separation of
duty, and n is an integer > 2.

• No subject may activate n or more roles from the set rs in each relation
dsod = {rs,n) e DSoD, This is stated formally as

yrs G 2^^^^*^,n G N,(rs,n) G DSoD => «> 2 A| r^ |> «, and

V^ G SESSIONS, Vrs G 2^^^^^, Vröfe_ subset G 2^^^^^,

VnGN,(rs,n)GDSoD,

role_subset e rs,role_subset c session_roles(s) =>

I role_subset I < n.

As a special case, the DSoD mutual role exclusion for a given session s
has the following property:

Vw G USERS,ys G SESSIONS, Vi?i,i?2^ ROLES\ R^^ R2,

session _ user{s) - u

{{R^,R^,2)} G DSoD => w G role _ authorized _ users(R^) AU e

role _ authorized _ usersiR^ =>

R^ G session _ active _ roles(s) ^^ R^^ session _ active _ roles{s).

Separation of Duty in RBAC 235

The semantics of dynamic separation of duty are much broader than those
of static classification of separated roles. DSoD is amenable to encompass­
ing a richer set of policies that exist in real organizations and manifest in
many day-to-day tasks. Simon and Zurko [SIM097] describe a number of
variants of DSoD policies, which are outlined below. The term restricted role
was rightly used by Simon and Zurko to mean any role that participates in a
dynamic separation of duty. This indicates that DSoD virtually does not
concern itself as much with user assignment to roles as it does with the con­
straints imposed on those assignments in the form of one or another dynamic
policy. We use the terms restricted roles and separated roles interchangeably.
DSoD is tightly related to application semantics and thus is not amenable to
formal classifications at a broader level. Nevertheless, a number of well-
defined policies have emerged. Below is a discussion of some broadly catego­
rized dynamic separation of duty policies.

Simple Dynamic Separation of Duty

The simplest case of a DSoD policy calls for the separation of roles during
run-time using a basic rule: no user can activate two restricted roles in two or
more sessions at the same time. Recall, however, that separated roles as such
may still have common members assigned to them. The dynamic aspect is the
execution context, which in this case is defined by a user session. The major­
ity of existing literature equates this variation to the dynamic separation of
duty itself. The reason for this might simply be chronological since this is the
first and simplest variation of DSoD devised.

Object-Based Separation of Duty

In this variation, separated roles may share user members but with the con­
straint that a user assigned to two separated roles may assume both roles at
the same time but cannot act on an object that he or she has already acted
on. An example is the commonly adopted policy in which one cannot
approve a purchase order that he or she had initiated but can approve one
that someone else did. In this case, a user may perform two functions:
approve an order that another entity had initiated or initiate one that some
other individual will have to approve. If we abstract the set of available priv­
ileges in this example to order and approve, an object encapsulating a pur­
chase transaction may be ordered or approved only by any one individual but
not ordered and approved by the same individual. This variant was first iden­
tified by Nash and Poland [NASH90]. Note the dynamic aspect of this pol­
icy is due to the user being capable of performing all operations exposed by
an object instead without limitation but restricted in terms of objects on
which to act.

Another criterion for object-based restriction of roles is the situation in which
a user is capable of acting on all objects of some type (e.g., one representing

236 8. Role-Based Access Control

a banking transaction), except for those that apply to the user performing the
action. For instance, a teller is not allowed to act on his or her bank account.
The constraint in this case may be driven by any policy-based rule governing the
relationship between the user and a business object.

The semantics of yet another object-based separation of duty variant can
be stated as follows: restricted roles are allowed to have common users, and
those users are authorized to assume the authorities of the restricted roles in
a single session, but no user may act on an object that another user author­
ized for the restricted roles had acted on. In essence, this partitions roles
across the set of controlled objects but in a dynamic fashion, meaning roles
restricted as such may interchangeably be used to act on the controlled
objects but only once. Further actions on an object controlled as such have to
be performed by users that are not common members of the restricted roles.
Figure 8.26 illustrates this case. The intersection of roles R^ and R2 represents
users assigned simultaneously to two restricted roles. An arrow from a user to
the controlled object represents an action performed by that user. Once a user

FIGURE 8.26 A variant of DSoD based on role partitioning across controlled objects

Separation of Duty in RBAC 237

concerned with this policy has acted on an object as in case A, no further
actions are allowed by any users that are participants in this policy as illus­
trated in cases B and C.

Operational Separation of Duty

Ferraiolo, Cugini, and Kuhn first introduced the paradigm of operational sepa­
ration of duty [FERR95]. Here business processes or more generically comput­
ing tasks are broken into subtasks each is associated with its own required
operations. The operational controls in this case are such that no single role may
have sufficient privileges to perform all the tasks of a particular business process.
Instead, subsets of the total privileges that are needed by a business process
are disseminated across multiple roles, not all of which can be assigned to a
single individual. The intent is to prevent any one person from performing all
of the tasks of a business process controlled as such. Note the fact that an
operational separation of duty applies to every object governed by such pol­
icy and hence the difference with the object-based DSoD policy.

This policy at first seems to equate the static separation of duty. The sub­
tle difference between the two lies in the fact that users under the operational
separation of duty can be shuffled across the role set in a dynamic fashion as
long as the principle of this policy is not violated. In the static case, user to
role assignment is quite rigid and remains strictly attached to the user.
Operational separation of duty is well suited for the security of workflow
processes in which at least two distinct roles are required for the completion
of a business function. Long-running processes in workflow environments
move from one state to another and may require various roles to be assumed
at different stages. The classical example is that of the purchasing process,
which can be separated into five tasks:

• Initiating a purchase order,
• Authorizing a purchase order,
• Processing an invoice,
• Processing the arrival of an item, and
• Authorizing payment.

Assigning each of these tasks to a distinct role and ensuring that no user is
assigned to more than one of these roles diminish the likelihood of fraud. In
this example, any possibility for fraud requires the conspiracy of all five par­
ties. This raises the risk of disclosure and thus capture. The overhead
incurred by this policy is dependent on the granularity of subdividing larger
business processes.

History-Based Separation of Duty

This policy is essentially a combination of object-based and operational poli­
cies. Object-based separation of duty alone limits a user to performing only

238 8. Role-Based Access Control

a single action on any one particular object. Some real-life policies may
require the flexibility of performing further actions by the same individual.
Similarly, an operational separation-of-duty policy alone does not allow a
single person to perform all actions required by a particular business process
to different objects. The combination of both policies makes the object-based
policy borrow the ability to perform multiple actions on the same object from
the operational policy (e.g., a complex transaction), while the operational
policy borrows the aspect of distinguishing among various objects based on
the actions required by each. The combination allows a single individual to
perform all actions required by a particular business object but not on any
single object in what is known as history-based separation of duty. This vari­
ant of DSoD requires tracking the individual histories of users in two ways:

• The list of objects acted on by any one user is maintained, and
• The actions performed by a user on any particular object are also kept.

The tracking process is used to determine if a user is in violation of the his­
tory-based separation-of-duty policy. An attempt to violate such policy
occurs when a user tries to single handedly perform all tasks required by a
particular business object. On the other hand, a user performing all tasks but
on different business processes is considered in line with the policy. Overhead
due to maintaining histories may be incurred in this policy, although history
information may serve another security purpose—that of maintaining audit
trails. Depending on the context in which a history-based separation of duty
policy is implemented, history trails associated with each object may require
strong integrity checks. Figure 8.27 illustrates this policy.

Example: Dynamic Separation of Duty in a Workflow Activity
We consider a business process dealing with the reimbursement of travel
expenses in an organization that we abstract as consisting of three roles—a
manager, a regular employee, and a secretary. The hierarchy corresponding to
these roles is depicted in the graph of Figure 8.28. It reflects the fact that a
manager role is empowered with all privileges assigned to the roles of a reg­
ular employee and that of a secretary. The controlled business process con­
sists of four steps driven by the activities of an expense reimbursement
workflow process as follows:

• An employee fills out a form to apply for the reimbursement of his or
her expenses incurred by a business travel.

• The form is sent to two managers for approval.
• Both managers signal their approval.
• The secretary transfers money to the employee's bank account.

Despite the fact that from a static policy perspective, a manager is author­
ized to perform all these workflow steps, a meaningful dynamic separation of
duty can be instituted, subject to the following constraints:

Separation of Duty in RBAC 239

Taski

Task2

Task3

Taski

Task2

Tasks

FIGURE 8.27 Illustration of his­
tory-based dynamic separation-
of-duty policy

Taski

Task2

Tasks

• A manager is not allowed to approve his or her own travel-reimbursement
claim.

• A single manager is not allowed to perform both approval tasks on any
one claim.

• A manager cannot refund a claim that he or she approved.
• A secretary is not allowed to transfer reimbursement funds for his or

her own travel expenses.

The most apparent type of dynamic separation-of-duty principle in this
example is the operational one. An object representing a particular reim­
bursement claim cannot be acted on entirely by one individual. A single man­
ager can at most perform the actions {approve, refund} out of {initiate,

240 8. Role-Based Access Control

Employee

Initiate
claim

Approve claim

Approve claim

Secretary

Refund
claim

FIGURE 8.28 Example of a dynamic separation-of-duty policy involving a workflow
process

approve, refund}. The application of the object-based separation-of-duty
principle is also clear from the fact that an individual may act only once on
any given claim processing. Once a regular employee initiates a claim, he/she
cannot further act on it. The claim cannot be reinitiated, approved, or
refunded by that user. Similarly, a manager that initiates his or her own claim
cannot approve it nor refund it. A secretary can refund a claim only once.

Finally, the history-based separation-of-duty principle should be enforced
to satisfy the constraints above for the manager role. This history is used first
to make sure a single manager cannot perform two approval tasks required
by any claim. Second, and given that a manager is empowered with all privi­
leges {initiate, approve, refund}, an activity history for every claim is main­
tained so that a manager cannot perform all three actions on any one
particular claim in light of the fact that a manager cannot approve or refund
a claim of his or her own.

Role Cardinality Constraints

The cardinality constraint limits the number of users that can be members of
a particular role. This constraint naturally fits with certain roles that may
exist within an organization. For instance, only one person can fill the role of
a department chair in an educational institution. Conversely, the number of
roles that an individual user can be assigned to could be limited. The cardi­
nality constraints can thus be applicable to the user as well as to the role sets.

In some cases this constraint may be applicable to lower or upper bounds
for user memberships. For example, a role may be required to be assigned to

RBAC Consistency Properties 241

a defined minimum number of individuals. To increase the assurance of a
separation-of-duty policy, an organization may decide to require that the
auditor role have a minimum of three members. The maximum and the min­
imum cardinality constraints are formally defined by

cardinality^^^^^^ : ROLES ^ TV U {00}

cardinality^^^^^ : ROLES ^ TV U {00}.

The set {00} denotes an unbounded condition, which basically underscores
the fact that the cardinality constraint is not applicable.

RBAC Consistency Properties

In this section we look at 13 properties that should hold throughout the life­
time of an RBAC system. This is mostly based on the work of Serban et al.
[SERB98].

Property 8.1 Imposing a maximum cardinality constraint on a given role
means the number of authorized users for that role at any time should not
exceed its cardinality. Formally,

yR G ROLES, I role_ authorized_ users(R)\ < cardinality^^^{R).

Property 8.2 Imposing a minimum role cardinality constraint means the
number of users authorized for that role should not be lower than the cardi­
nality requirement for that role. Formally,

Vi^ G ROLES,\ role_authorized_users{K)\ > cardinality^^^ (^)-

Note the use of authorized users here due to the effect of a hierarchical
RBAC. In the case of a flat RBAC, authorized users are identical to the
assigned users.

Property 8.3 To maintain consistency and avoid useless cyclic scenarios, no
role should inherit itself directly or indirectly. Formally,

VR G ROLES, -I (R ^^R).

-^'^ denotes an inheritance path of length one or more.

Property 8.4 Any two roles authorized for the same user are not in any
static separation-of-duty relationship. Formally,

Vw G USERS,VRi,R2G ROLES,RuR2^

user_authorized _roles{u)=^ Ri,R2^ SSoD.

Property 8.5 Any two roles explicitly assigned to a user should not inherit
directly or indirectly from each other. Formally,

242 8. Role-Based Access Control

Vw G USERS, Vi^i,7^2^ ROLES, Ri,R2^ user _ assigned_ roles(u) =>

^{R^^R2)A^(R2-^Ri).

Property 8.6 No role can be in a static or dynamic mutual exclusion rela­
tionship with itself. Formally,

Vi^ G ROLES^ ({R,R),2}) ^ SSoDA ({R,R},2) ^ DSoD.

Property 8,7 The static and the dynamic separation-of-duty relations are
symmetric. Formally,

yRi,R2^ R0LES,(Ri,R2) G SSoD^(R2,Ri) G SSoD,Sind

yRi,R2^ R0LES,{RuR2) ^ DSoD^{R2,Ri) G DSoD

Property 8.8 Any two roles in a static or dynamic separation of duty do not
inherit one another either directly or indirectly. Stated in terms of the role
graph, this property means there is no path between any pair of nodes (roles)
that are in separation of duty relation. Formally,

yRi,R2^ ROLES,(Ri^'^R2)V(R2^^Ri) => (RuR2) ^ SSoD.

The same holds for DSoD:

V7^i,i^2e R0LES,{R^-^^R2) V (i^2-^'^^i) =^ i^u^i) ^ DSoD.

This means two roles can be in a mutual separation-of-duty relation only
when they are incomparable with respect to the partial ordering relationship
representing role inheritance.

Property 8.9 Two roles that are in separation-of-duty relationship cannot be
both inherited directly or indirectly by another role. Formally,

\/R,RuR2^ ROLES,(Ri^^R) A (i^2^^^) => (^b^2) ^ SSoD, and

yR,R^,R2^ ROLES,(R^^^R)A(R2^^R) => (A,i^2) ^ ^SoD.

The implication of the above property is that a role graph can have a
"root" role (i.e., a role that inherits from every other role) only when no pair
of roles in the entire role hierarchy is in any separation of duty relation.
Formally, a role hierarchy can have a root super user only if

'^Ri,R2^ R0LES,(Ri,R2) ^ SSoDA(Ri,R2) ^ DSoD.

Property 8.10: The static and dynamic separation-of-duty relations are
inherited along a role hierarchy chain. Formally,

WR,RuR2^ ROLES,(Ri--'^R) A (Ri,R2) G SSoD =» (R,R2) G SSoD.

Similarly,

The Privileges Perspective of Separation of Duties 243

yR,i^i,R2G ROLES,{Ri^^R) A (Ri,R2) G DSoD => (R,R2) G DSoD,

Property 8.11 In a dynamic separation-of-duty context, the active role set of
any user is bounded by his or her set of authorized roles. Note that in the case
of an SSoD policy the active role set is identical to the set of roles for which
the user is authorized. Formally,

Vw G USERS,user_active_roles(u) G user_authorized_roles(u).

Property 8.12 Any two roles that are in a dynamic mutual-exclusion relation
cannot be both in the active set of roles for a user. Formally,

Vw G USERS,VRi,R2G ROLES,Ri,R2^ user_active_roles(u) =>

{Ri,R2)^DSoR

Property 8.13 The dynamic separation of duty and the static separation-
of-duty relations form disjoint sets. Formally,

VRi,R2^ R0LES,(Ri,R2) G SSoD^(R^,R2) ^ DSoD,

and

Vi^i,jR2^ ROLES,(Ri,R2) G DSoD=^ (R^,R2) ^ SSoD,

The proof of this property is by absurdity. Assume that R^ and R2 are two
roles that are in a static separation of duty relation. By definition, this means
no user can be authorized for both roles R^ and î 2- Hence there is no further
need to dynamically constrain the two roles—i.e., {R^, R2) € DSoD. Now
assume that R^ and R2 are in a dynamic separation-of-duty relation. By def­
inition, this means a user can be authorized for both roles but cannot have
both roles active at the same time. This implies that these two roles do not
represent a static separation-of-duty relation.

The Privileges Perspective of Separation of Duties

Separation of duty yields separation of roles, which in turn inevitably implies
separation of privileges. While the premise of separation-of-duty policies is
to not assign two or more separated roles to the same individual, care also
must be taken to ensure that the same individual is not empowered with the
separated privileges through a combination of multiple roles that may not be
participating directly in any separation of duty relations.

Suppose there are two roles R^ and R2 that are mutually exclusive and 7̂ ^
has access to a total of two privileges a and b—i.e, Effective_privileges(R^ -
{a,b}. Assume that role R^ has privilege a and another role R^ has privilege b.
Although access to privilege aovb alone by role R does not yield a separation
of duty with R^, a user assigned to R, which when simultaneously inherits
directly or indirectly from R^ and R^, results in a conflict of interest with R^,

244 8. Role-Based Access Control

Any separation-of-duty policy therefore must take into account the incremen­
tal effects from the propagation of individual privileges across roles.

Kuhn [KUHN97] outlines four scenarios for sharing privileges in a mutual
separation-of-duty policy. He presents his view along two dimensions. The
first is the privilege sharing among separated roles only, while the second one
is the sharing of privileges with roles that are not part of any separation-
of-duty relations.

• {Disjoint, Disjoint) Denoted by (D,D), this indicates the fact that if two
roles are designated to be mutually exclusive, then each privilege is
assigned to at most one of the roles. Furthermore, these two roles share
no privileges with any other role with which they have no separation-
of-duty relations. Each pair of mutually exclusive roles has unique
individual privileges that are not assigned to any other role. Formally,

yRuRi.R^^ ROLES, Vp G PERMISSIONS, (RuRi) ^ SoD =>

p G Effective _privileges(R^) =^

p € Effective _priveleges{R^ A

p€ Effective _privelges{R^).

In this scenario, each two roles in a mutual exclusion relationship is
completely disjoint and does not inherit from any other role in the role
set. The effective set of privileges of each such role is therefore identi­
cal to its direct set of privileges. Alternatively, the property above can
be stated as

WRu R2,R3^ ROLES, \fp E PERMISSIONS, {R^Ri) G SoD =>

p G Direct _privileges{R^ =^ p ^ Effective _privileges{R^.

• {Disjoint, Shared) Denoted by (D,S), this indicates the fact that the
privilege sets of each pair of roles that are mutually exclusive are com­
pletely disjoint but can be shared with other roles outside of the mutual
exclusion relationship. Formally,

^/RuRi^ ROLES,\/p G PERMISSIONS, {Ri,R2) G SoD =»

pe Effective _ privileges{R^) =^ p ^ Effective _ priveleges{R^

• {Shared, Disjoint) Denoted by (S,D), this means privileges may be
shared between two roles that are in a mutual exclusion relationship
but are not shared with any other role outside of this relation. Note
that for the separation-of-duty relation to hold in this case, each role
must have at least one privilege that is not available to the other role.
Formally,

yRi,R2,R2^ ROLES, 3p G PEMRISSIONSI Vq G

PERMISSIONS, {R,R) e SoD ^

The Privileges Perspective of Separation of Duties 245

p G Effective _ privelges{R^ =>

p ^ Effective _priveleges{R^ A

{q G Effective _ priveleges{R^ v

q G Effective _privileges{R^ =»

q G Effective _ privileges{R^)

• {Shared, Shared) Denoted by (S,S), this represents a situation in which
each tv^o mutually exclusive roles are allowed to share privileges, pro­
vided that each role must have at least one privilege that is not available
to the other role. Additionally, a privilege assigned to a role that is
mutually exclusive with another role may be assigned to other roles
outside of the mutual exclusion relationship.

Figure 8.29 is an illustration of the four scenarios outlined above. It is easier
to manage and maintain the safety of a separation-of-duty policy in the com­
pletely disjoint case (D,D). One only needs to ensure that each privilege is
uniquely assigned to any role in the mutual exclusion relationship and never
assign the same privilege to any other role. We also need to maintain the isola­
tion of any roles participating in mutual exclusion relationships such that they

(D,D) (D,S)

(S,D) (D,D)

FIGURE 8.29 Illustration of the privileges view of separation-of-duty relationships

246 8. Role-Based Access Control

remain discrete and not participate in role inheritance. The manageability of
the (S,D) scenario is more or less similar to that of the (D,D) case, although its
safety might be slightly more complex to maintain. In the (D,S) and the (S,S)
cases, one has to be concerned about the possibility that mutually exclusive
privileges may be acquired through the combination of other roles. One way of
avoiding this situation is to carefully handle assignment of mutually exclusive
privileges to roles outside any mutual exclusion relationship.

Functional Specification for RBAC

In their proposed RBAC standard, Ferraiolo et al. [FERRO 1] have described
a set of functional interfaces for the implementation of RBAC. These inter­
faces not only are expressed syntactically but have defined semantics, albeit
at a higher level. The key benefit of adopting a standard interface across var­
ious RBAC implementations is the decoupling of applications using RBAC
security controls from the components providing and managing those con­
trols. One should not, however, expect a perfect portability of applications
across RBAC implementations. For one thing, the policies may differ in the
semantics of roles and their authoritative scope. Standard interfaces are also
useful in implementing RBAC administrative tools such as graphical inter­
faces. This enables portability of such tools across RBAC policies and can be
easily reusable as independent components.

The proposed specification addresses RBAC functionality from three per­
spectives:

• Administrative functions These concern the instantiation of various ele­
ment sets of USERS, ROLES, OPS (operations), and OBS (objects)
and the management of relationships across these elements (e.g.,
assignment of users to roles).

• Supporting system functions These concern the processing entailed by
an RBAC implementation in supporting various constructs such as
sessions and in enforcing the underlying RBAC policy via access deci­
sion making.

• Review functions These functions facilitate the review of an RBAC pol­
icy state as it evolves through the administrative functions. An example
would be reviewing which entities have been assigned to a particular role.

We review the proposed functions for core RBAC, hierarchical RBAC, and
constrained RBAC (separation of duty).

Core RBAC Functions
Functions in this category represent basic functionality aspects and as such
are applicable to all RBAC implementations.

Functional Specification for RBAC 247

Administrative Functions

Tthese are concerned with the management of various RBAC element sets
including USERS, ROLES, OPERATIONS, and OBJECTS. Users and roles
evolve dynamically during the lifetime of an RBAC system. Operations may
evolve but with a lesser frequency. Likewise, objects are usually predefined by
the underlying computing system and evolve slowly over the lifetime of a pol­
icy. The following functions are needed:

• AddUser Creates a new user in the RBAC repository,
• Delete User Deletes an existing user from the RBAC repository,
• AddRole Creates a new role in the repository,
• DeleteRole Deletes an existing role from the repository,
• AssignUser Assigns a user to a role,
• DeAssignUser Removes a user from a role,
• Grant Permission Grants a role the permission to perform an opera­

tion on an object, and
• Revoke Permission Removes a permission from the set of permissions

assigned to a role.

Supporting System Functions

These are functions necessary for managing user sessions and enforcing
underlying RBAC policies. They provide the runtime required for tracking
active roles of each user session and RBAC policy management functional­
ity. In broad terms, these functions are responsible for the runtime manage­
ment of RBAC-based user-security contexts. The following is a set of
functions supporting basic system RBAC functionality:

• CreateSession Creates a new session with a given user as session
owner and an associated set of active roles,

• DeleteSession Removes an existing session associated with a given user,
• AddActiveRole Adds a role to an active user session,
• DropActiveRole Deletes a role from the active role set of a session, and
• CheckAccess Performs an access decision related to a subject associ­

ated with a given session and attempting to perform an operation on a
particular object.

Review Functions

These functions provide the sense of control over the various relationships
that may exist among users, roles, permissions, operations, and objects. The
proposed standard makes a distinction here between the review functions
that are mandatory in any basic RBAC implementation and those that are
optional. The following is the Hst of mandatory review functions:

• AssignedUsers Returns the set of users assigned to a given role, and
• AssignedRoles Returns the set of roles assigned to a user.

248 8. Role-Based Access Control

These are the optional review functions:

• RolePermissions Returns the set of permissions granted to a given role,
• UserPermissions Returns the set of permissions a user is granted

through his or her assigned roles (this is essentially the set of effective
privileges),

• SessionRoles Returns the active roles associated with a user session,
• SessionPermissions: returns the permissions assigned to the active roles

of a given session, and
• RoleOperationsOnObjects Returns the set of operations a given role

is allowed to perform on an object.
• UserOperationsOnObjects Returns the set of operation a given user is

allowed to perform on an object.

Hierarchical RBAC Functions

Hierarchical RBAC includes the functionality of core RBAC and further
adds functions necessary to establish and manage role hierarchies. The
semantics of some core RBAC functions are modified to account for role
hierarchy.

Administrative Functions

The semantics of DeAssignUser poses an issue in the presence of a role hier­
archy and gives rise to two possibilities:

• Apply the DeAssignUser function to a role that is directly assigned to
the user, or

• Apply the DeAssignUser function to any role that a user may inherit.

In the first case, the implementation is simplified and reduces to that of the
core RBAC. The second case, however, is more complex as the impact could
affect the entire role hierarchy. While the first case is more restrictive, the sec­
ond one responds to the practical needs of an organization in a more accom­
modating fashion. Additional administrative functions needed by
hierarchical RBAC are as follows:

• Addlnheritance Establishes a new immediate inheritance relationship
between two existing roles,

• Deletelnheritance Deletes an existing immediate inheritance relation­
ship between two roles,

• AddAscendant Creates a new role and places it in an existing role
hierarchy as an immediate ascendant of a particular role, and

• AddDescendant Creates a new role and places it in an existing role
hierarchy as an immediate descendant of a particular role.

Functional Specification for RBAC 249

Supporting System Functions

These are the same as the supporting functions for core RBAC. The presence
of role hierarchies, however, impacts the semantics of functions CreateSession
and AddActiveRole. Two implementation scenarios can be possible:

• An active session role automatically activates the roles it inherits, or
• A role has to be explicitly activated within a session or else is not con­

sidered active.

Although implementations may choose to implement either of these sce­
narios, explicit activation of an inherited role can be considered a drastic
change to the semantics of role inheritance. Access decisions can be compli­
cated by supporting the inheritance of certain permissions only as opposed
to the effect from inheriting the entire permissions assigned to inherited roles.

Review Functions

In addition to the functions supported by core RBAC, the following is a list
of review functions needed to support role hierarchies:

• AuthorizedUsers Returns the set of users authorized for a given role,
• AuthorizedRoles Returns the set of roles authorized for a given user,
• RolePermissions Returns the set of all permissions in the form of

(operation, object) that are granted to a given role rather directly or
through inheritance,

• User Permissions Returns the set of permissions granted to a given
user through his/her authorized role set,

• RoleOperationsOnObjects Returns the set of operations a given role
is allowed to perform on an object, and

• UserOperationsOnObjects Returns the set of operations a given user
is allowed to perform on a particular object.

Functional Specification for Static Separation-of-Duty
Relations

All of core RBAC as well as hierarchical RBAC functions remain in effect
where applicable.

Administrative Functions

The first thing to note is a change in semantics for the AssignUser and
GrantPermission functions. Assignment of a user or granting a permission to
a particular role must take into consideration any conflict of interest con­
straints. A user must not be simultaneously assigned to conflicting roles, and
similarly conflicting permissions must not be assigned to nonconflicting
roles. Aside from this, administrative functions for managing static separa-

250 8. Role-Based Access Control

tion of duty relations are all related to the definition and maintenance of sets
of conflicting roles. The following is a list of such functions:

• CreateSsdSet Creates a named set of roles participating in a SSoD
relationship with a given cardinality number,

• DeleteSsdSet Deletes an existing SSoD role set,
• AddSsdRoleMember Adds a role to a named SSoD role set (no

change is effected in cardinality of the SSoD relationship),
• DeleteSsdRoleMember Removes a given role from an SSoD role set

(the cardinality of the SSoD relationship remains unchanged; however,
the relationship will not have any semantics when the total number of
roles remaining in the role set drops below the designated cardinality of
the relationship), and

• SetSsdCardinality Sets the cardinality associated with a given SSoD
relationship.

Supporting System Functions

These functions are the same as those of core RBAC.

Review Functions

The following is the list of review function needed for tracking existing static
separation-of-duty relations of an RBAC system:

• SSDRoleSets Returns the list of all existing SSoD role sets,
• SSDRoleSetRoles Returns the set of roles associated with a given

SSoD relationship, and
• SSDRoleSetCardinality Returns the cardinality associated with a

given SSoD role set.

Functional Specification for Dynamic Separation-of-Duty
Relations

All of core RBAC as well as hierarchical RBAC functions remain in effect
where applicable.

Administrative Functions

The semantics of administrative functions for DSoD are similar to those of
SSoD. The difference as we know relates to the enforcement of DSoD con­
straints being done at time of activation for session roles, while for SSoD it is
performed during the process of user assignment to roles. Below are the
administrative functions for DSoD following their counterparts in SSoD:

• CreateDsdSet Creates a named DSoD set of roles with a given car-
dinaltity.

Functional Specification for RBAC 251

• DeleteDsdSet Deletes an existing DSoD role set,
• AddDsdRoleMember Adds a role to a named DSoD role set (the car­

dinality associated with the DSoD relationship remains unchanged),
• DeleteDsdRoleMember Deletes a role from a named DSoD role set

(the cardinality of the DSoD relationship remains unchanged but may
not be meaningful when the total number of remaining roles drops
below the cardinality), and

• SetDsdCardinality Sets the cardinality associated with a given DSoD
role set.

These functions are based on the definition of separation-of-duty relations
as described in the proposed RBAC standard. Based on this definition, sep­
aration-of-duty relations are expressed in terms of conflicting role sets qual­
ified with a cardinality number beyond which a conflict of interest arises. As
we have discussed dynamic separation of duty relations can be expressed in
various other means including rule and time-based constraints.

Supporting System Functions

These functions are the same as those of core and hierarchical RBAC but
with a slight change in semantics, as follows:

• CreateSession Creates a new session owned by a given user and asso­
ciated with a given role set,

• Add Active Roles Adds a role as an active role of a given session asso­
ciated with a particular user, and

• DropActiveRole Drops a role from the active role set of a session.

Review Functions

Additional functions needed specifically for supporting DSoD relations are
similar to their counterparts for SSoD as summarized below:

• DsdRoleSets Returns the list of all existing DSoD role sets,
• DsdRoleSetRoles Returns the set of roles of a given DSoD role set, and
• DsdRoleSetCardinality Returns the cardinality of a given DSoD

relationship.

References

[ABAD93] Abadi, M., Burrows, M, Lampson, B., and Plotkin, G., A Calculus for
Access Control in Distributed Systems, TOPLAS, vol. 15, no. 4, pp. 706-734, 1993.

[ABRA95] Abrams, M., Jajodia, S., and Podell, H., Information Security: An Integrated
Collection of Essays, IEEE Computer Society Press, Los Alamitos, CA, 1995.

[AH072] Aho, A. V, Garey, M. R., and Ullman, J. D., The Transitive Reduction of a
Directed Graph, SI AM Journal of Computing, pp. 13-137, 1972.

[ANDE80] Anderson, J., Computer Security Threat Monitoring and Surveillance, P.
Anderson Co., Fort Washington, PA, 1980.

[BALD90] Baldwin, R., Naming and Grouping Privileges to Simplify Security
Management in Large Databases, Proceedings of the 1990 IEEE Symposium on
Research in Security and Privacy (Oakland, CA), IEEE Computer Society Press,
Los Alamitos, CA, pp. 116-132, 1990.

[BDTI91] British Department of Trade and Industry, Information Technology
Security Evaluation Criteria, 1991. Can be found at http://www.itsec.gov.uk/.

[BELL75] Bell, D. E., and LaPadula, L. X, Secure Computer Systems: Mathematical
Foundations and Model, M74-244, Mitre Corporation, Bedford, MA, 1975.

[BELL92] Bellovin, S. M., and Merritt, M., Encrypted Key Exchange: Password-
Based Protocols Secure Against Dictionary Attacks, Proceedings of the 1992 IEEE
Computer Society Conference on Research in Security and Privacy, IEEE Computer
Society Press, Los Alamitos, CA, pp. 72-84, 1992.

[BENA02] Benantar, M., Introduction to the Public Key Infrastructure for the Internet,
Prentice Hall, Upper Saddle River, NJ, 2002.

[BERN98] Bemers-Lee, T , Uniform Resource Identifiers (URI) Syntax, IETF RFC
2396, 1998.

[BIBA77] Biba, K. J., Integrity Considerations for Secure Computer Systems, Mitre
TR-3153, Mitre Corporation, Bedford, MA, 1977.

[BISH02] Bishop, M., Computer Security: Art and Science, Addison Wesley, Reading,
MA, 2002.

[BISH79] Bishop, M., and Snyder, L., The Transfer of Information and Authority in
a Protection System, Proceedings of the Seventh ACM Symposium on Operating
Systems Principles, Pacific Grove, CA, pp. 45-54, 1979.

[BISH88] Bishop, M., Theft of Information in the Take-Grant Protection Model,
Proceedings of the Workshop on Foundations of Computer Security, MITRE TR
M88-37, Franconia, NH, pp. 194-218, 1988.

[BISK84] Biskup, X, Some Variants of the Take-Grant Protection Model, Information
Processing Letters, vol. 19, no. 3, pp. 151-156, 1984.

[BLAZ96] Blaze, M., Feigenbaum, X, and Lacy, X, Decentralized Trust Management,
Proceedings of the IEEE Conference on Security and Privacy, Oakland, CA, USA, 1996.

252

http://www.itsec.gov.uk/

References 253

[BLAZ99] Blaze, M., Feigenbaum, J., and Keromytis, A. D., KeyNote: Trust
Management for Public-Key Infrastructures, Lecture Notes in Computer Science,
pp. 59-63, 1999.

[BREW89] Brewer, D. F. C, and Nash, M. J., The Chinese Wall Security Policy,
Proceedings of the IEEE Symposium on Research in Security and Privacy, Oakland,
CA, pp. 206-214, 1989.

[CALL98] Callas, J., Donnerhacke, L., Finney, H., and Thayer, R., OpenPGP
Message Format, IETF RFC 2440, http://www.ietf org, 1998.

[CANA93] Canadian System Security Centre, The Canadian Trusted Computer
Evaluation Criteria, Version 3.0e, 1993.

[CHAR96] Chartrand, G., and Lesniak, L. M., Graphs and Digraphs, Chapman and
Hall, 1996.

[CLAR87] Clark, D. D., and Wilson, D. R., A Comparison of Commercial and
Military Computer Security Policies, Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA, pp. 184-194, 1987.

[DENN?6a] Denning, P., Fault-Tolerant Operating Systems, Computing Surveys,
vol. 8, no. 4, pp. 359-390, 1976.

[DENN76b] Denning, D. E., A Lattice Model of Secure Information Flow,
Communications of the ACM, vol. 19, no. 5, pp. 236-243, 1976.

[DIESOO] Diestel, R., Graph Theory, Springer-Verlag, New York, 2000.
[DIFF76a] Diffie, W, and Hellman, M. E., Multiuser Cryptographic Techniques,

Proceedings of AFIPS National Computer Conference, AFIPS Press, Montvale, NJ,
pp. 109-112,1976.

[DIFF76b] Diffie, W, and Hellman, M. E., New Directions in Cryptography, IEEE
Transactions on Information Theory, Vo. 22, pp. 644-654., 1976.

[ELGA95] El Gamal, T, A Public-Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms, Advances in Cryptology: Proceedings of CRYPTO 84, vol.
196 of Lecture Notes in Computer Science, Blakley, GR., and Chaum, D., Editors,
Springer-Verlag, Berlin, pp. 10-18, 1995.

[FERRO 1] Ferraiolo, D. F., Sandhu, R., Gavrila, S., Kuhn, D. R., and ChandramouH,
R., Proposed NIST Standard for Role-Based Access Control, ACM Transactions on
Information and System Security, vol. 4, no. 3, 2001.

[FERR95] Ferraiolo, D., Cugini, X, and Kuhn, D. R., Role-Based Access Control
(RBAC): Features and Motivations, Proceedings of Computer Security Applications
Conference, New Orleans, LA, pp. 241-248, 1995.

[FERR92] Ferraiolo, D., and Kuhn, R., Role-based access control. Proceedings of the
NIST-NSA (USA) National Computer Security Conference, Gaithersburg, MD,
pp. 554-563, 1992.

[FREI96] Freier, A., Kariton, R, and Kocher, P C, The SSL Protocol Version 3.0,
Netscape Communications, 1996.

[GLAD97] Gladney, H. M., Access Control for Large Collections, ACM Transactions
on Information Systems, vol. 15, no. 2, pp. 154-194, 1997.

[GLAS67] Glaser, E. L., A brief description of privacy measures in the Multics oper­
ating system. Proceedings of AFIPS SJCC, vol. 30, AFIPS Press, Montvale, N J.,
pp. 303-304, 1967.

[GLIG85] GHgor, V G, Guidelines for Trusted Facility Management and Audit,
University of Maryland Press, College Park, MD, 1985.

[GORD85] Gordon, J. A., Strong Primes Are Easy to Find, Advances in Cryptology:
Proceedings of Eurocrypt 84, Springer-Verlag, New York, pp. 216-223, 1985.

http://www.ietf

254 References

[GRANOO] Grandison, T., and Sloman, M., A Survey of Trust in Internet
Applications, IEEE Communications Surveys and Tutorials, vol. 3 no. 4., 2000.

[GRAN02] Grandison, T , and Sloman, M., Specifying and Analysing Trust for
Internet Applications, Proceedings of Second IFIP Conference on e-Commerce, e-
Business, e-Government, I3e2002, Lisbon, Portugal, 2002.

[HARR76] Harrison, M. H., Ruzzo, W. L., and UUman, J. D., Protection in Operating
Systems, Communications of the ACM, vol. 19, no. 8, pp. 461-471, 1976.

[HARR78] Harrison, M. H., and Ruzzo, W. L., Monotonie Protection Systems, R.
Demillo et al. (eds.). Foundations of Secure Computations, Academic Press, 1978.

[HOUS99a] Housley, R., Ford, W., Polk, W, and Solo, D., Internet X.509 Public Key
Infrastructure Certificate and CRL Profile, IETF RFC 2459, http://www.ietf org,
1999.

[HOUS99b] Housley, R., and Hoffman, P., Internet X.509 Public Key Infrastructure
Operational Protocols: FTP and HTTP, IETF RFC 2585, http://www.ietf org, 1999.

[HOWE03] Howes, A. T, Good, G. S., and Smith, M. C , Understanding and
Deploying LDAP Directory Services, McMillan PubUshing, New York, 2003.

[HOWE95] Howes, A. T , and Smith, M., The LDAP Application Program Interface,
IETF Informational RFC 1823, http://www.ietf org, 1995.

[IBMC02] IBM Corporation, IBM Resource Access Control Facility, http://www-
1 .ibm.com/servers/eserver/zseries/zos/racf/, Somers, NY, 2002.

[IBMC03] IBM Corporation, Websphere Application Server, http://www-3.ibm.com/soft-
ware/webservers/appserv/infocenter.html, Somers, NY, 2003.

[KOBL87] KobHtz, N , Elliptic Curve Cryptosystems, Mathematics of Computation,
vol. 48, no. 177, pp. 203-209, 1987.

[KOHL93] Kohl, J., and Neuman, C , The Kerberos Network Authentication Service
(V5), IETF RFC 1510, 1993.

[KOHN78] Kohnfelder, L. M., Toward a practical public-key cryptosystem, B.Sc. the­
sis, MIT Department of Electrical Engineering, Cambridge, MA, 1978.

[KONR99] Konrad, K., Fuchs, G , and Bathel, J., Trust and Electronic Commerce:
More Than a Technical Problem, Eighteenth Symposium on Reliable Distributed
Systems, Lausanne, Switzerland, 1999.

[KRISOO] Kristol, D., and Montulli, L., HTTP State Management Mechanism, IETF
RFC 2965, http://www.ietf org, 2000.

[KUHN97] Kuhn, D. R., Mutual exclusion of Roles as a Means of Implementing
Separation of Duty in Role-Based Access Control Systems, Proceedings of the
ACM Workshop on Role-Based Access Control, pp. 23-30, 1997.

[LAMP71] Lampson, B. W., Protection, Fifth Princeton Symposium on Information
Science and Systems, Princeton, NJ , pp. 437-443, 1971.

[LAMP73] Lampson, B. W., A Note on the Confinement Problem, Communications
of the ACM, vol. 16, no. 10, pp. 613-615, 1973.

[LAMP74] Lampson, B. W., Protection, ACM Operating System Review, vol. 8, no. 1,
pp. 18-24, 1974.

[LAMSOl] Lamsal, P., Understanding Trust and Security, Department of Computer
Science, University of Helsinki, Finland, 2001.

[LIPN82] Lipner, S. B., Non-Discretionary Controls for Commercial AppHcations,
Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, IEEE
Computer Society, pp. 2-10, 1982.

[LIPT77] Lipton, R. J., and Snyder, L., A Linear Time Algorithm for Deciding
Subject Security, Journal of ACM, vol 24, no. 3, pp. 455-464, 1977.

http://www.ietf
http://www.ietf
http://www.ietf
http://www-
http://ibm.com/servers/eserver/zseries/zos/racf/
http://www-3.ibm.com/soft-
http://www.ietf

References 255

[LOCH88] Lochovsky, F. H., and Woo, C. C , Role-Based Security in Data Base
Management Systems, Database Security: Status and Prospects, Landwehr, C.
E.(ed.), North-Holland Publishing Co., Amsterdam, The Netherlands, pp. 209-222,
1988.

[MERK78] Merkle, R. C , Secure Communications Over Insecure Channels,
Communications of the ACM, vol. 21 no. 4, pp. 294-299, 1978.

[MILL86] Miller, V. S., Use of ElHptic Curves in Cryptography, Advances in Cryptology,
CRYPTO'85 Proceedings, Springer-Verlag, New York, pp. 417^26, 1986.

[MCLE88] McLean, X, The Algebra of Security, IEEE Symposium on Security and
Privacy, Oakland, CA, 1988.

[MOAT97] Moats, R., URN Syntax, IETF RFC 2141, http://www.ietf org, 1997.
[MOCK87a] Mockapetris, P., Domain Names: Concepts and Facilities, IETF RFC

1034, http://www.ietf org, 1987.
[MOCK87b] Mockapetris, P., Domain Names: Implementation and Specification,

IETF RFC 1035, http://www.ietf org, 1987.
[MOFF99] Moffett, J. D., and Lupu, E. C , The Uses of Role Hierarchies in Access

Control, Proceedings of the Fourth ACM Workshop on Role-Based Access Control
(RBAC), George Mason University, Fairfax, VA, 1999.

[NASH90] Nash, M. J., and Poland, K. R., Some Conundrums Concerning
Separation of Duty, Proceedings of the 1990 IEEE Symposium on Security and
Privacy, pp. 201-207, 1990.

[NEED87] Needham, R. M., and Schroeder, M. D., Authentication Revisited, ACM
Operating Systems Review, vol. 21, no. 1, 1987.

[NIST92] National Institute of Standards and Technology, Federal Criteria for
Information Technology Security, Version 1.0, 1992.

[NIST94] National Institute of Standards and Technology, Digital Signature
Standard, Publication 186, 1994.

[NIST95] National Institute of Standards and Technology, Secure Hash Standard,
Federal Information Processing Standards Publication 180-1, 1995.

[NIST99] National Institute of Standards and Technology, Common Criteria, Version
2.1, 1999.

[NYAN94] Nyanchama, M., and Osbom, S., Access Rights Administration in Role-
Based Security Systems, Proceedings of the IFIP WG11.3 Working Conference on
Database Security VII vol. A-60, North-Holland, 1994.

[NYAN99] Nyanchama, M., and Osbom, S., The Role Graph Model and Conflict of
Interest, ACM Transactions on Information and System Security, vol. 2, no. 1,
pp. 3-33, 1999.

[OASI02] OASIS Organization, Security Services Technical Committee, Security
Assertion Markup Language, http://www.oasis-open.org, 2002.

[OASI03] OASIS Organization, Security Services Technical Committee, Web Services
Security Assertion Markup Language, http://www.oasis-open.org, 2003.

[OSBO02] Osborn, S., Information Flow Analysis of an RBAC System, Proceedings
of SACM AT '02, Monterey, CA, 2002.

[OSB097] Osbom, S., Mandatory Access Control and Role-Based Access Control
Revisited, Proceedings of the Second ACM Workshop on Role-Based Access Control
(RBAC97), VA, USA, pp. 31^0 , 1997.

[OSBOOO] Osborn, S., Sandhu, R., and Munawer, Q., Configuring Role-Based Access
Control to Enforce Mandatory and Discretionary Access Control PoHcies, ACM
Transactions on Information and System Security, vol. 3, no. 2, pp. 85-106, 2000.

http://www.ietf
http://www.ietf
http://www.ietf
http://www.oasis-open.org
http://www.oasis-open.org

256 References

[RESNOl] Resnick, R, Internet Message Format, IETF RFC 2822, http://www.ietf.org,
2001.

[RIVE78] Rivest, R. L., Shamir, A., and Adleman, L. M., A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems, Communications of the ACM,
vol. 21, no. 2, pp. 120-126, 1978.

[RIVE92] Rivest, R. L., The MD5 Message-Digest Algorithm, IETF RFC 1321,
http://www.ietf org, 1992.

[RSA99] RS A Corporation, PKCS #11 v2.10: Cryptographic Token Interface
Standard, RS A Laboratories, 1999.

[SALT75] Saltzer, J. H., and Schroeder. M. D., The Protection of Information in
Computer Systems, Proceedings of IEEE, vol. 63, no. 9, pp. 1278-1308, 1975.

[SAND88a] Sandhu, R., The Schematic Protection Model: Its Definition and
Analysis for AcycHc Attenuating Schemes, Journal of the ACM, vol. 35, no. 2,
pp. 404-^32, 1988.

[SAND88b] Sandhu, R., Transaction Control Expressions for Separation of Duties,
Proceedings of the Fourth Aerospace Computer Security Applications Conference,
IEEE Computer Society Press, pp. 282-286, 1988.

[SAND90] Sandhu. R., Undecidability of the Safety Problem for the Schematic
Protection Model with Cyclic Creates, Journal of Computer and System Sciences, 1990.

[SAND91] Sandhu, R., Expressive Power of the Schematic Protection Model, Journal
of Computer Security, 1991.

[SAND92a] Sandhu, R., A Lattice Interpretation of the Chinese Wall Policy,
Proceedings of the Fifteenth NIST-NCSC National Computer Security Conference,
Washington, D C , pp. 329-339, 1992.

[SAND92b] Sandhu, R., The Typed Access Matrix Model, Proceedings of IEEE
Symposium on Security and Privacy, Oakland, CA, pp. 122-136, 1992.

[SAND93] Sandhu, R., Lattice-Based Access Control Models, IEEE Computer
Magazine, pp. 9-19, 1993.

[SAND96] Sandhu, R., Feinstein, C. L., and Youman C. E., Role-Based Access
Control Models, IEEE Computer Magazine, pp. 38-47, 1996.

[SAND98] Sandhy, R. S., and Munawer, Q., How to do Discretionary Access Control
Using Roles, Proceedings of the Third ACM Workshop on Role-Based Access,
Fairfax, VA, USA, 1998.

[SCHN96] Schneier, B., Applied Cryptography, John Wiley & Sons, New York, 1996.
[SERB98] Serban, I. G., and Barkley, J. F , Formal Specification for Role-Based

Access Control User/Role and Role/Role Relationship Management, Proceedings of
the ACM Workshop on Role-Based Access Control, pp. 81-90, 1998.

[SHAN02] Shankar, N., and Arbaugh, W. A., On Trust for Ubiquitous Computing,
Department of Computer Science, University of Maryland College Park, MD,
USA, 2002.

[SIM097] Simon, R. T , and Zurko, M. E., Separation of Duty in Role-Based
Environments, IEEE Computer Security Foundations Workshop, 1997.

[SNYD81] Snyder, L., Theft and Conspiracy in the Take-Grant Model, Journal of
Computer and Systems Sciences, vol. 23, no. 3, pp. 337-347, 1981.

[TING88] Ting, T , A user Role-Based Data Security Approach, in Database Security:
Status and Prospects, Landwehr, C , (ed.), Elsevier North-Holland, New York, NY,
pp. 187-208, 1988.

[PARKOO] Park, J. S., and Sandhu, R., Secure Cookies on the Web, IEEE Internet
Computing, pp. 37-45, August 2000.

http://www.ietf.org
http://www.ietf

References 257

[POPE74] Popek, G., A Principle of Kernel Design, 1974 NCC, AFIPS Conference
Proceedings, vol. 43, pp. 977-978, 1974.

[USDOD85] U.S. Department of Defense, Trusted Computer System Evaluation
Criteria (Orange Book), DoD 5200.28-STD, 1985.

PCNS02] XNS Public Trust Organization, http://www.xns.org, 2002.
[WAHL97] Wahl, M., Howes, T, and S. Kille, Lightweight Directory Access Protocol

(v3), RFC 2251, http://www.ietf org, 1997.
[W3C099] W3C Organization, Namespaces in XML, http://www.w3.org, 1999.
[W3CO00] W3C Organization, SOAP: Simple Object Access Protocol LI,

http://www.w3.org, 2000.
[W3CO01a] W3C Organization, XML Schema Part L- Structures, http://www.w3.org,

2001.
[W3CO01b] W3C Organization, XML Schema Part 2: Datatypes, http://www.w3.org,

2001.
[W3CO02a] W3C Organization, Web Services Architecture, http://www.w3.org, 2002.
[W3CO02b] W3C Organization, XML Signature Syntax and Processing,

http://www.w3.org, 2002.
[W3CO02c] W3C Organization, XML Encryption Syntax and Processing,

http://www.w3.org, 2002.

http://www.xns.org
http://www.ietf
http://www.w3.org
http://www.w3.org
http://www.w3.org
http://www.w3.org
http://www.w3.org
http://www.w3.org
http://www.w3.org

Index

access-control list (ACL), 26, 148-149, 224
access-control policies, 23-25, 180, 209-210
access-matrix model, 25, 147, 148f, 150f,

151f, 153, 155, 159, 180, 190, 193
accessor control environment element

(ACEE), 18
address-space separation, 7
address-space-management instructions, 7
application-based reference monitors, 24f
application-level message, 113
ASCII, 14
asserting party (AP)118, 121
assertion-based application, 119
attribute authority (AA), 106, 117-118
attribute certificate (AC), 106-107
attribute-management services, 66
authority-information access, 109
authority-key identifier, 109
authority-revocation list (ARL), 96
automatic teller machines (ATMs), 12

B

backtracking, 94-95
base64 form, 14
basic mapping support (BMS), basic

mapping-support messages, 45t
Bell-LaPadula (BLP) flow model, 127, 137,

138f, 139-140, 141f-143f, 144-145, 155
best-known assurance program, 28
bottom-up fashion, 95, 140
brute-force collision, 13

Canadian Trusted Computer Production
Evaluation Criteria (CTCPEC), 29

can-create (cc) binary relationship, 185
central-identity manager, 69f, 70, 71f
certificate authority (CA), 85
certificate revocation list (CRL), 91

Chapter 1, 1
Chinese-wall policy (CWP), 144-145
Cleartext, 89, 127
coarse-grain level, 191
codenamed, 9
Common Criteria (CC), 28-31, 34t
common-name (CN) attribute, 104
common-role semantics, x
confidentiahty-based model, 143
confidentiality-mandatory policy, 211
configuration-management system, 31
conflicting permissions (CP), 229-230, 249
conflicting tasks, 230-231
conflict-of-interest classes, 146
constructed-role hierarchy, 212
cookie-harvesting threats, 127
covert-channel analysis, 33
credential-management services, 67
credit-card number, 2., 35, 54
cross-cerfificafion, 46, 97-99, lOOf
cross-referencing, 40, 48, 64, 65f
Customer Information Control System

(CICS) (IBM), 45t

D

daemon, 1,40
data-abstraction principle, 191
data base, data-base systems, 36, 67
data-integrity procedures, 4
data-origin authenticity, 86, 88
data-scrambling algorithm, 4
day-to-day activities, 25
denial-of-service attack, 3
directory-attribute synchronization, 53
directory-services markup language

(DSML), 54
discretionary-access control (DAC),

discretionary-access-control (DAC)
systems, 26, 147-148, 217

distinguished name (DN), 45f, 90, 106

258

Index 259

domain-name services (DNS), 46, 55-56,
57f-59f, 60, 66

dynamic separation of duty (DSD), 229,
233, 235, 238-240, 242-243, 250-251

easy-to-remember words, 14
elliptic-curve analogs, 88
email, 14, 52F, 57, 101, 122
encrypted-key exchange (EKE), 128
end-entity certificate (EEC), 102
endpoints, 58, 59f, 60, 66
end-system threats, 127
end-to-end encryption, 11
end-user application, 58f
enterprise-level identity management, 40
evaluation-assurance levels (EALs), 34t
extensible name service (XNS), 54

fail-safe defaults, 38-39
Federal Criteria for Information Technology

Security (PC), 29
Figure 2.1, 41^2
fine-grain level, 190
flat-file data store, 57
flow-analysis algorithm, 224, 227f

I
identification and authentication (I&A),

2,10-11
identity-management models, 40
identity-representation schemes, 69-71
identity-trust mechanisms, 51, 73-74
information-flow model, 129, 131-132, 135,

137,180
information technology (IT), 6, 29
Information Technology Security Evaluation

Criteria (ITSEC), 29
input-output (I/O) commands, 7
integration mandatory policy, 213
integrity-check sum, 4
integrity-mandated policy, 213
International Organization for

Standardization (ISO), 29
Internet, 2, 5, 14, 35, 40, 46, 51, 55, 57-58,

60, 73-74, 77, 85, 90, 97, 101, 117, 122
Internet protocol (IP), 55
inverted-tree structure, 55

K

key-bearing subelement ,114
key-distribution center (KDC), 76
key-update process, 97

gatekeeper, 21
general-role hierarchies, 196
grant-access rights, 169
grant-control rights, 172f
grant-dependent revoke, 222, 223f
grid security infrastructure (GSI), 102

H

hard-to-guess passwords, 14
Harrison, Ruzzo, and Ullman (HRU)

model, 147, 156, 163, 168, 180
health-care provider, 6
high-assurance public key, 95
higher-assurance component, 30
high-integrity objects, 139
high-level view, 41, 46, 68f, 72, 77, 230-231
high-risk situations, 31
high-trust authority, 94
history-based separation, 237-238, 240
host-centric paradigm, 2
hub-based certification, 99
human-based trust, 35
human-to-human interactions, 5

lattice-based-access control (LBAC), 209
lattice-based models, 144
least-common mechanism, 38
least-privilege principle, 193, 204
life-cycle support, 33
lightweight directory-access protocol

(LDAP), 53, 70-71, 83-84
limited-role hierarchies, 198
linear-time complexity, 179
local-identity model, 42^4
location-transparent names, 58
a login, 4, 125,209
lower-bound operator, 134
lower-case characters, 132
low-integrity objects, 139
low-level access, 2

M

mandatory-access control (MAC), manda­
tory-access-control model, 129

mechanism-related vulnerabilities, 3
message-authentication codes (MACs), 93
middleware-based reference monitors, 23, 24f
mono-operational system, 156

260 Index

multiple-factor authentication, 11-12
multiple-identity documents, 64
multiple-role inheritance, 198

N
name-to-address resolution, 46
National Institute of Standards and

Technology (NIST), x
network-computing era, 40, 73
network-distribution computing, 76,

95-96, 101
network-identity concept, 46
network security context, 4
network-trusted computing base

(NTCB), 8

O

object-based separation, 235-237, 240
one-to-many relationship, 67
one-to-one correspondence, vii
one-way functions, 86
operating system components, 19
Organization for the Advancement of

Structured Information Standard
(OASIS), 113

Osborn, Sandhu, and Munawer (OSM),
209, 216

owner-centric view, 209

partial-order relationship, 197
a pass-phrase, 10
password-aging scheme, 15
password-based authentication, 13
path-validation scheme, 96
peer-to-peer nature, 59
permission-to-role assignments, 194f
personal identification number (PIN), 10
plaintext, 13, 85
policy-based identity provisioning, 69
policy-neutral access-control model,

26, 208
pretty good privacy (PGP), pretty-good-

privacy web, 101
problem-program state, 7
product-design time, 30
profileattribute information, 49f
proof of possession (POP), 73, 77
protection profiles (PPs), 29
proxy-certificate approach, 102
proxy issuer (PI), 103
public-key algorithm (PKA), public-

key-algorithm keys, 87

public-key aspect, ix
public-key models, 109
public-key certificate, 90-91, 102
public-key cryptography, 84-86, 88-89
public-key infrastructure (PKI), 84, 90, 93,

96-97

R

a read-down, read-down property, 137,
138f, 139-140,210,214

a read-up, 139
real-life entities, 40
real-time events, 15
real-world examples, 2
reference-monitor topology, 21
Resource-Access Control Facility (RACF)

(IBM), 13-14
resource-access synchronization, 36
resource-owner centric, 129
resource-ownership paradigm, 25
role-based access control (RBAC), 26, 191
role-inheritance modeling, 196
role-to-role relationship, 202, 203f
root-trusted CA, 94
running daemons, 1, 40
running resources, 5

schematic-protection model (SPM), 180
secure socket-layer (SSL) channel, 83
secure-system implementation, 37
security target (ST), 29-30
security-assertion markup language

(SAML), 48, 55, 74, 112, 116
security-assurance criteria, 29
security-design principles, 2, 37
security-enforcement porfion, 28
security-evaluation criteria, 29
security-related events, 15
security-relevant information, 16
separation-of-duty (SoD) relations, 233, 243,

250-251
serial-number-generation process, 92
service-authentication information, 107
setup, 180
signature-validation process, 95
simple-integrity property, 139
simple-object access protocol (SOAP),

60,113
single sign-on (SSO), single-sign-on

solutions,43-^4, 102, 117, 127
single sign-on, 43-44, 102, 117, 127
single-end-user transaction, viii

Index 261

single-user machines, 1, 7
special-purpose devices, 12t
stand-alone service, 17
startup, 30-31
static separation of duty (SSoD), 231
storage-protection keys, 7
system authorization facility (SAP), 19
system-overloading conditions, 22

T

Table 2.1,45
take access rights, 159
take-grant (TG) model, 168
tamper-proof hardware, 5
target-application servers, 78
target of evaluation (TOE), 29
third party approach, 74
ticket-granting service (TGS), 77
ticket-granting ticket (TOT), 77
Tivoli identity manager (TIM), TivoH

identity manager products, 71
top down fashion, 95
toward, 5, 228
trust-delegation task, 94
trusted computer-system-evaluation criteria

(TCSEC), 29
trusted computing bases (TCB),

trusted-computing-bases
components, 7

trust-management systems, 110
trust-path validation, 105
two-state environment, 7

U
uniform resource identifier (URI), 20
uniform resource name (URN), 63
United States Department of Defense

(DoD), 25, 29, 144
upper-bound (operator), 132, 134
upper-case characters, 132
user-name token, 115
user identifier (uid), user-identifier token,

13,15,70,114-115
user-identity information, 53, 74
user-profile information, 45
user-security context, 194, 247
user-to-role assignments, 216, 231

W

a web, the Web, 11, 20, 51, 54-55, 57, 59-60,
65, 71,74, 100, lOlf, 109, lll,112f,
113,116-117,123-126

web-of-trust model, 101, 109-111
Web apphcation servers (WASs), Web

application-server environment, 23,
67,84

Web-identity infrastructure, 54
Web-services security (WS-security), 112
wide-area network, 67
workflow, 71,237-238, 240
workplace, 41
World Wide Web, 51, 55, 56f, 63, 123
worst-case scenarios, 6
a write-down, 139
a write-up, write-up poHcy, 137, 214

