
Chapter 9

COMPUTER ARCHITECTURE
Joshua J. Yi1 and David J. Lilja2

1Freesale Semiconductor Inc.
2University of Minnesota

1 INTRODUCTION

Originally proposed in 1945 by John von Neumann, the von Neumann archi-
tecture has become the foundation for virtually all commercial processors. von
Neumann machines have three distinguishing characteristics: 1) the stored-
program concept, 2) the partitioning of the processor into different functional
components, 3) and the fetch-execute cycle.

The key idea behind the stored-program concept is that the series of instructions
that form the program are stored in processor-accessible memory. By contrast, for
processors that do not utilize the stored-program concept, the instructions of the
program need to be fed into the processor as the program is running or the program
needs to be hard coded into the processor. Storing the program in memory where
the processor can easily access it is obviously more efficient than feeding in each
instruction while the program is running. Also, reprogramming a stored-program
concept processor is as simple as loading the next program into memory, which is
more flexible than physically reprogramming the processor.

The second key characteristic of von Neumann architectures is that the
processor is partitioned into components for input, output, computation, and
control. Figure 9.1 shows how these components are connected together. The
input and output components allow the processor to communicate to the user
through other parts of the computer. For example, the processor receives infor-
mation from the user through the keyboard and mouse while displaying informa-
tion to the user through the monitor. The arithmetic-logic unit (ALU) is the
component in the processor that actually does the computations. Computations
can be divided into two categories: arithmetic and logical. Examples of the for-
mer include addition, subtraction, multiplication, division, etc. for integer and
floating-point (real) numbers; examples of the latter include AND, OR, XOR,
NOT, etc. In current-generation processors, the ALU is not a single monolithic



component. Rather, multiple, distributed functional units perform its tasks; this
partitioning decreases the overall execution time of each type of operation.
Finally, the purpose of the control logic is to coordinate the flow of instructions
and data between the different components of the processor by producing a
sequence of signals that synchronizes the operation of each of the processor’s
components with respect to the other components. The control unit is necessary
to ensure correct execution of the fetch-execute cycle, which is the third and final
characteristic of a von Neumann architecture.

As its name implies, the fetch-execute cycle consists of two steps: instruction
fetch and instruction execution. Since the program is stored in the computer’s
memory, to fetch an instruction, the processor must first retrieve each instruction
from the computer’s memory before the instruction can be executed. To retrieve
the proper instruction, the processor sends the value of the program counter
(PC), which holds the memory address of the next instruction, to memory, which
returns the instruction stored at that memory location. After receiving that
instruction, the processor calculates the address of the subsequent instruction
and stores it into the PC. Usually, the address of the next instruction is simply the
address of the instruction immediately following the current instruction.
However, due to branch and jump instructions (which are the result of the func-
tion and subroutine calls, IF statements, etc.), the next instruction may not be the
next sequential instruction, but will instead be located somewhere else in memory.
Storing the address of the next instruction into the PC completes the instruction
fetch part of the fetch-execute cycle.

The other half of the fetch-execute cycle, instruction execution, consists of
several smaller substeps. The first substep is instruction decode, which occurs
immediately after the instruction is fetched. In this substep, the decode logic ana-
lyzes the instruction to determine what kind of instruction it is (add, multiply,
AND, branch, load, store, etc.), how many input operands there are, and where
the input operands come from. After the processor decodes the instruction, it first
gathers the values of the input operands, as specified by the instruction. For
example, before the processor can compute the result of “1+2,” it first needs to
retrieve the values of the two input operands (1 and 2) from the specified regis-
ters or memory locations. In the next substep, the processor executes the instruc-
tion. In the case of arithmetic and logical instructions, the processor computes a
new output value. In the case of load and store instructions, the processor
accesses memory to either retrieve a value from memory (load) or write a value to
memory (store). And in the case of branch instructions, the processor determines
whether the branch condition is true or false and then calculates the memory
address of the next instruction. Table 9.1 summarizes the action of these three

288 Joshua J. Yi and David J. Lilja

User I/0 ALU Control

Memory

Figure 9.1. Basic components of a von Neumann architecture



types of instructions. Finally, in the last substep, the result of the instruction is
stored into a register or a memory location so that is it available for the next
instruction. After finishing execution, the processor fetches the next instruction
and restarts the fetch-execute cycle all over again.

To summarize, instruction fetch retrieves the next instruction that the proces-
sor will execute, and in instruction execution, the processor performs the work
that is specified by that instruction. By repeatedly fetching and executing instruc-
tions, the processor executes a program.

Although proposed over 50 years ago, the three fundamental characteris-
tics of a von Neumann architecture, the stored-program concept, partitioned
processor components, and the fetch-execute cycle, still remain the foundation of
modern-day processors.

2 RISC VERSUS CISC

It is important to realize that the characteristics of a von Neumann architecture
specify only how the processor is organized and how it operates from a functional
point of view. As a result, two processors could have very different implementa-
tions, but both could still be von Neumann architectures. Given this freedom of
implementation, computer architects have proposed two implementations that
represent very different design philosophies. The first approach is known as
the reduced instruction set computer, or more commonly by its acronym RISC. The
second implementation is the complex instruction set computer, or CISC.

At heart of the difference between these two design philosophies is the proces-
sor’s instruction set architecture (ISA). The instruction set is the set of assembly-
level instructions that the processor is capable of executing and the set of registers
that are visible (directly accessible) to an assembly-language programmer.

2.1 RISC: Reduced Instruction Set Computers

The basic design philosophy for RISC processors is to minimize the number
and complexity of the instructions in the instruction set, in addition to defining
uniform-length instructions. Adding more complex or nonuniform instructions
into the processor’s instruction set makes it more difficult for the processor to exe-
cute efficiently, since each of those instructions may have its own individual idio-
syncrasies that may require specialized hardware in order to execute those cases.
A processor can execute instructions much more efficiently when they are simple
and uniform in length, since less complex “one-size-fits-all” hardware can be used
for all instructions.

In addition to reducing the complexity of the hardware, minimizing the num-
ber of instructions in the processor’s instruction set has the effect of reducing the

Computer Architecture 289

Table 9.1. Actions of the three main instruction types
Instruction Type Action
Arithmetic and Logical Computes new results
Load and Store Reads from and writes to memory
Branch Checks condition, determines next instruction



bus widths between internal processor components. Since each instruction
has its own unique identifier, known as the opcode, adding additional instruc-
tions to the processor’s instruction set may result in needing to add addi-
tional bits to the opcode. Adding more bits to the opcode may increase the
number of bits needed for each instruction, which in turn increases the width of
each internal bus.

Using simple and uniform-length instructions has two consequences. First,
only load and store instructions are allowed to access memory; this simplifies
the specification and execution latency of the instruction set’s arithmetic and
logical instructions. Instead of allowing an add instruction to directly add the
values in two memory locations, two load instructions are used to first load
those values into the processor’s registers before the add instruction can exe-
cute. After computing the result, the add instruction has to use a store instruc-
tion to write its result to memory. This type of architecture is known as a
“register-to-register” architecture, since all instructions with the exception of
loads and stores can only read their input operands from and write their out-
put values to the register file. Obviously, as compared with allowing each arith-
metic or logical instruction to directly access memory, using load instructions
to first load the values for input operands and then using a store instruction to
store the output value requires three additional instructions (two loads and one
store). While this increases the total instruction count when a program exe-
cutes, it does not change the amount of “work” (steps necessary to execute the
program) that the processor needs to do. Since this approach reduces the com-
plexity of the hardware, this approach may still allow the processor to execute
the program in less time than a CISC processor. In other words, it is easier to
design hardware that executes a few types of instructions over and over again
instead of designing hardware to execute many different types of instructions
just a few times.

The other consequence of executing simple and uniform-length instructions
is that there are fewer ways for load and store instructions to generate the
address that is used to access memory. Since these ways of accessing memory are
relatively simple, the compiler may need to insert additional instructions to help
generate the correct address. For example, when traversing a linked-list in C, if
more complex addressing modes were allowed, each load instruction could
potentially retrieve the base address for the next link in the list. In a RISC
processor, two loads are needed to retrieve the base address of the following link
in the list.

In summary, since each RISC instruction is relatively simple and is uniform in
length, programs compiled for a RISC processor contain additional instructions
to move data between the processor and memory, to support more complex
addressing modes, or to execute pieces of more complex tasks than a CISC
processor. These additional instructions obviously increase the number of
dynamic instructions that the processor executes, in addition to increasing the size
of the compiled program. On the other hand, since all the instructions are simple
and of uniform length, the hardware for the RISC processor is relatively simple
and therefore more efficient, i.e., has a higher clock rate than the equivalent CISC
processor. Simply stated, RISC processors trade off the execution of a larger
number of instructions for a faster clock frequency.

290 Joshua J. Yi and David J. Lilja



2.2 CISC: Complex Instruction Set Computers

The basic design philosophy behind a CISC processor is nearly opposite to
that of the RISC processor. First, instead of using several simple instructions
to accomplish a single task, a CISC processor may use only one or two more com-
plex instructions. Second, instead of having a set of relatively simple, uniform-
length instructions, the instruction set for CISC processors consists of many
complex instructions that are nonuniform in length and have multiple addressing
modes. Third, instead of allowing only load and store instructions to access mem-
ory, in a CISC processor, arithmetic and logical instructions can access memory
directly. As a result of these differences, a CISC processor typically executes fewer
instructions to run the same program than the RISC processor does. Also, the size
of the compiled program for the CISC processor, in terms of bytes, is also smaller
than the size of the RISC program.

Obviously, these three differences have a very significant effect on the actual
implementation of the hardware. Since each CISC instruction is much more com-
plex than its RISC counterpart, the hardware needed to execute each CISC
instruction is correspondingly more complex. In general, increasing the complex-
ity of hardware decreases the speed at which the hardware executes instructions.
As a result, the clock frequency of CISC processors is typically lower than the
clock frequencies of RISC processors. Since each CISC instruction does more
work than does a RISC instruction, each CISC instruction takes more time, as
measured in clock cycles, to execute. Therefore, not only is the clock rate of CISC
processors slower than that of RISC processors but also it typically takes
more clock cycles to execute a CISC instruction than for a RISC instruction.
However, the trade-off is that one CISC instruction does the same amount of
work as several RISC instructions.

In summary, the design philosophy of CISC processors is to support very
complex instructions that can be nonuniform in length. The upsides of this design
philosophy are that each instruction does a significant amount of work and that
the total size of the program is smaller. The downsides are that it takes more
clock cycles to execute each instruction and that the hardware is very complex
and consequently slower than the equivalent RISC processor.

2.3 Performance Analysis of RISC versus CISC

Although the previous two sub-sections compared RISC and CISC processors
somewhat indirectly, this section uses the formula below to directly compare the
performance of these two processors. The time required to execute a program is
summarized below (see Eq. 1).

Te = n * CPI * Tc (1)

Te is the total execution time of the program. n is the total number of
dynamic (executed) instructions in the program, CPI is the average number
of clock cycles needed to execute each instruction, and Tc is the time per clock
cycle.

As this formula shows, the total execution time of the program depends on the
number of instructions that the processor has to execute, the average number of

Computer Architecture 291



clock cycles that each instruction takes, and the amount of time in a clock cycle
(i.e., the reciprocal of the clock frequency). Therefore, to reduce a program’s exe-
cution time, a computer architect can 1) reduce the number of instructions that
the processor executes, 2) reduce the average number of clock cycles that it takes
to execute each instruction, and/or 3) decrease the time per clock cycle (increase
the clock frequency).

Since RISC processors execute more instructions than CISC processors do,
the value of n is higher for RISC processors. However, the corresponding trade-
off is that each RISC instruction takes fewer clock cycles when executing the
same program, which means that the CPI for RISC processors is lower. Finally,
since the hardware for RISC processors is less complex, the clock period for RISC
processors also is typically lower for a given technology.

Ultimately, the key question is, which design philosophy is the better
approach? The answer is usually RISC, and the reason is called pipelining, which
is explained in more depth in the following section. Due to its design philosophy
of simple and uniform-length instructions, RISC processors benefit more from
pipelining than the typical CISC processor does. Since pipelining is more difficult
to implement on a CISC processor, and since it yields lower performance benefits
for a CISC processor, RISC processors have evolved into the principal design phi-
losophy used in the design of most current processors.

3 EXPLOITING PARALLELISM: PIPELINING 
AND MULTIPLE INSTRUCTION ISSUE AND
EXECUTION

3.1 Pipelining

To reduce a program’s execution time, computer architects need to either
decrease the number of instructions that the processor executes, reduce the CPI
of each instruction, or reduce the clock period. However, since the number of
instructions in the program cannot be reduced at run-time by the hardware and
since the clock period is limited by the minimum transistor width, the only viable
option for computer architects to reduce the program’s execution time is to reduce
the CPI. Since it is very difficult to directly decrease the CPI of any individual
instruction, the principal method to decrease the processor’s CPI is to increase the
number of instructions that are executing concurrently, i.e., executing instructions
in parallel.

For example, assume that it takes a processor 5 clock cycles to fetch and exe-
cute an add instruction. This corresponds to a CPI of 5 cycles for that instruc-
tion. Then also assume that the multiply instruction that immediately follows the
add instruction takes another 5 cycles. When these two instructions execute
sequentially, i.e., one after another, the add instruction finishes after 5 cycles. In
the next cycle, cycle 6, the multiply starts and then finishes 4 cycles later, in cycle
10. Therefore, in the case of sequential execution, the average CPI for these two
instructions is 5 cycles.

292 Joshua J. Yi and David J. Lilja



On the other hand, assume that the multiply instruction starts executing one
cycle after the add and that there are sufficient hardware resources to execute
both instructions in parallel. The add instruction starts executing in cycle 1, while
the multiply instruction starts executing one cycle later in cycle 2. In cycle 5, the
add instruction finishes, while the multiply instruction does not finish until cycle
6. In this case, the average CPI for these two instructions is 3 cycles. In this exam-
ple, executing two sequential instructions in parallel reduces the average CPI from
5 cycles to 3 cycles, or by 40%.

In the previous example, the execution of the add and multiply instruc-
tions was pipelined. The basic idea behind pipelining is that hardware resources
should be as busy as possible. In a pipelined processor, the processor’s hardware
resources are organized into “stages.” Each major task of instruction execution
maps to one or more pipeline stages. Then, to execute an instruction, the instruc-
tion enters the pipeline and goes through each stage of the pipeline until its result
is written to the register file or to memory and it exits the pipeline.

Within the fetch-execute cycle, the processor performs several tasks to execute
an instruction. Generally, these are fetch, decode, issue and obtain input operand
values, execute, and writeback (store the newly computed results back to the reg-
ister file or to memory). Assuming that each of these tasks is organized into its
own pipeline stage, and assuming that output buffers are placed after each
pipeline stage to store the results of that pipeline stage, the result is a classical
5-stage pipeline. In this case, the first stage of the pipeline is the fetch stage, the
second stage is the decode stage, and so on.

Each pipeline stage performs its task on only one instruction at a time, or in
other words, there is only one instruction in each stage. Unless there are data
and/or control dependences between instructions, each instruction spends only
one cycle in each pipeline stage. (A more detailed explanation of data and control
dependences is given in the following section, but for now, it is only necessary to
understand that data and control dependences force delays between instructions,
which increases the average CPI.) Since each instruction spends only a single cycle
in each pipeline stage and since there is only one instruction in each pipeline
stage, the number of cycles that it takes to execute a program with n instructions,
without any data or control dependences, is (see Eq. 2):

Total Cycles = m + (n−1) (2)

m is the number of pipeline stages. Assuming that the program is running on a
processor with 5 pipeline stages, the first instruction in the program enters the
pipeline at cycle 1 and then exits the pipeline after cycle 5. Therefore, the execu-
tion time of the first instruction is 5, or m, cycles. Then, since each following
instruction starts one cycle after the instruction before it and finishes one cycle
after it, once the first instruction finishes, since one instruction finishes executing
every cycle, the remaining n−1 instructions require only an additional n−1 cycles.
Consequently, an n-instruction program takes only m + (n-1) cycles in order to
execute the program completely.

By contrast, for an unpipelined processor, since each instruction takes m cycles
to finish executing and since the following instruction cannot start executing until
the previous one finishes, the total execution time is n * m cycles. The speedup of

Computer Architecture 293



a pipelined processor – as compared with an unpipelined one – for a very large
program (n→ ∞), is (see Eq. 3):

( )

.

m n
n m

n m n m

Speedup Pipelined
Unpipelined

1

1 1 1
1

0 5
1 0

1
0 2
1 5

n = =
+ -

=
+ -

=
+ -

= =

" 3
*

*

(3)

Therefore, for a 5-stage pipeline, when there are a very large number of
instructions and when there are no data or control dependences, the execution
time of a program that runs on a 5-stage pipelined processor is 5 times faster than
the execution time of the same program on an unpipelined one.

In summary, the use of pipelining reduces the execution time of a program by
overlapping the execution of different instructions. Pipelined processors exploit
the parallelism inherent in programs to decrease the program’s execution time. In
the ideal case, when there are not any data or control dependences, a pipelined
processor with m stages is m times faster than an unpipelined one. However, in
typical programs, data and control dependences do exist and can severely degrade
the processor’s performance from its theoretical peak performance.

3.2 Data and Control Dependences

Data and control dependences are the by-products of relationships between
instructions. There are three kinds of data dependences: output, anti, and flow. In
a pipeline, these three dependences cause write-after-write, write-after-read, and
read-after-write hazards, respectively, if the dependences occur between instruc-
tions that are in the pipeline simultaneously.

Output and antidependences are known as name dependences, since they are
the result of two instructions sharing a register or memory location (name), but
not with a producer and consumer relationship. In the case of an output depend-
ence, both instructions write their output values to the same storage location, typ-
ically a register. This dependence is only a problem when both instructions are
allowed to execute in parallel and where the second instruction may finish before
the first. To ensure correct program execution, the first instruction needs to write
its output value to the register before the second instruction writes its output value.

In an antidependence, the second instruction writes to the register that the first
instruction needs to read from. To ensure correct program operation, the first
instruction needs to read the value from the shared register before the second
instruction overwrites the current value. Since output and antidependences are name
dependences, assigning the second instruction to write to a different register will
remove this dependence while maintaining correct program execution.

Flow dependences are the result of a producer and consumer relationship
between two instructions. A flow dependence exists between the two only if the
first instruction writes to a register from which second one reads. Therefore, to
ensure that the second instruction executes correctly (computes its output value
using the correct input values), the second instruction must delay its read of the
shared register until after the first instruction writes to it. Since flow dependences
have to be honored, they are known as “true dependences”. Unfortunately, since

294 Joshua J. Yi and David J. Lilja



the value of the producer flows directly to the consumer, the processor cannot
execute both instructions in parallel. Instead, the second instruction has to wait
for the first to produce its result. Proposing architectural techniques to mitigate
the effect of these dependences and/or to completely break them are very com-
mon topics in computer architecture research and are discussed in Section 3.3 to
Section 4.

The following segment of assembly code gives examples of output, anti, and
flow dependences. In particular, an output dependence exists between instruc-
tions 1 and 3 (through register r1), an antidependence exists between instructions
1 and 2 (through register r2), and a flow dependence exists between instructions 2
and 3 (through register r2).

1. add r1, r2, r3 // r1 = r2 + r3
2. sub r2, r4, r5 // r2 = r4 − r5
3. mult r1, r2, r6 // r1 = r2 * r6

The problem with forcing two instructions to execute in a specific order is that
it forces the first instruction to finish executing before the second can start or, at
the very least, decreases the amount of overlap in the execution of the two
instructions, either of which increases the CPI. From a pipeline point of view,
dependences prevent two instructions from executing in adjacent stages. Instead,
when a dependence exists between two instructions, pipeline “bubbles” (NOP or
“no-operation”) must be placed between the two instructions. The pipeline has
“stalled” when it executes NOPs instead of instructions. Alternatively, instruc-
tions without any dependences can be placed between the two instructions.

Finally, it is important to state that data dependences also exist when two
instructions are not back-to-back. That is, an output, anti, or flow dependence can
exist between two instructions that are separated by several other instructions.

While data dependences are due to the fact that two instructions read from or
write to the same register or memory location, control dependences stem from the
fact that the target (i.e., the next instruction) of the control (i.e., branch) instruc-
tion is unknown until the branch instruction finishes executing. Consequently, the
processor cannot fetch and start executing the next instruction in parallel with the
branch until after it completes execution. This forces the processor to either fill
the pipeline with other instructions or with NOPs.

When a pair of dependent instructions are in the pipeline together, the
dependence between the two instructions can cause a hazard. In other words,
the dependence between instructions evolves from being a potential problem to
an actual one, i.e., incorrect program execution.

3.3. Multiple Instruction Issue and Execution:
SuperScalar and VLIW Processors

Although pipelining can dramatically improve the processor’s performance, a
hazard between any pair of instructions can dramatically degrade a processor’s
performance, since the processor has to stall the pipeline until the first instruction
either reads its input value from, or writes its output value to, the shared register
or memory location. Although this ensures correct program execution, not only

Computer Architecture 295



does this increase the average CPI, it also has the effect of preventing instructions
that are not dependent on the first instruction from being fetched and/or exe-
cuted. Therefore, to avoid this problem, higher performance processors have the
capability of fetching and executing multiple instructions in the same cycle to
avoid being stalled by a single data dependence. This allows the processor to
extract parallelism in another “dimension” to further improve upon the base
processor’s performance. Since these types of processors can issue and subse-
quently execute multiple instructions in the same cycle, these processors are typ-
ically called n-way issue processors (e.g., 4-way issue, 8-way issue, etc.).

To clarify, pipelining reduces a program’s execution time by allowing one
instruction to start executing in every cycle. A multiple issue processor, on the other
hand, further reduces the program’s execution time by allowing multiple instruc-
tions to start executing in every cycle. In other words, a multiple issue processor
duplicates the pipeline such that multiple pipelines operate in parallel.

To support the simultaneous issue and execution of multiple instructions, sev-
eral changes and additions need to be made. First, hardware structures like the
register file need to be multiported so that multiple instructions can read from
and write to them. Second, the buses between hardware components need to be
widened to accommodate the flow of additional instructions. Third, additional
hardware needs to be added to ensure that the processor can operate at peak effi-
ciency or will operate correctly. An example of the former is the register renam-
ing hardware. Since output and antidependences can be removed by simply
renaming the shared register, the processor temporarily retargets the second
instruction to write to another temporary register. In this way, the first instruc-
tion is able to read from or write to the shared register without the possibility of
a premature write from the second instruction.

The reorder buffer (ROB) is an example of a component that is added to the
processor to ensure that the processor executes the program correctly. Since mul-
tiple instructions begin executing every cycle and since a multiple-issue processor
is pipelined, in any given cycle, there are several instructions that are currently
executing. Since some instructions may finish executing before a preceding
instruction, the processor needs to ensure that those instructions do not write
their values to the register file or to memory, since they could be overwritten by
what should be a preceding instruction. To store output values that are not yet
ready to be written to the register file or memory, the processor uses a ROB. This
hardware structure holds the results of instructions until each instruction is ready
to write its value to the register file or memory in the correct order.

Computer architects classify current-generation processors into one of two
groups: superscalar processors and very-long instruction word (VLIW) proces-
sors. Both of these processors use pipelining and multiple instruction issue and
execution to increase the amount of parallelism. The difference between the two
is in how the instructions are scheduled, that is, the order in which the instructions
are to be executed. In a VLIW processor, the compiler schedules the order in
which instructions will execute based on several factors, including any data
and control dependences between instructions, the number and type of available
functional units, and the expected execution latency of each instruction. After
determining a set of instructions that meets the compiler’s scheduling criteria, the
compiler groups these instructions together to form a superinstruction, the very-

296 Joshua J. Yi and David J. Lilja



long instruction word. Since the compiler has already determined that each group
of instructions is free of any dependences within the group, each bundle of
instructions can be fetched, executed, and retired (finished) together.

Use of the compiler to perform the instruction scheduling reduces the com-
plexity of the hardware, since there is no need for complex scheduling logic, which
could decrease the hardware’s speed. Furthermore, since the compiler determines
the instruction execution schedule at compile time, the potential exists for the
compiler to construct a better schedule than would be possible by using only
hardware. The compiler has the advantage of having more time than the hardware
does when trying to determine an optimal schedule, and the compiler can exam-
ine more instructions at a time. However, the big problem with static (i.e., com-
piler-determined) instruction scheduling is that run-time information, such as the
program’s inputs, is not available. Not having the actual inputs of the program
available to the compiler can significantly limit the compiler’s ability to statically
schedule a program.

By contrast, a superscalar processor dynamically, i.e., at run-time, determines
the order of execution for the program’s instructions. More specifically, after the
instructions are decoded, the processor examines the decoded instructions to
determine which ones are ready for execution. (An instruction is ready to be exe-
cuted after it has received its input operands. An instruction that is not ready for
execution must wait for its producer instruction(s) to compute the corresponding
input value(s).) Depending on the issue policy, the issue logic in the processor
then selects a subset of the ready instructions and issues (sends) them to the func-
tional units for execution. If the processor has an in-order issue policy, the proces-
sor issues only ready instructions from the oldest unissued instruction up to the
first nonready instruction. If the oldest unissued instruction is not ready, then no
instructions are issued in that cycle. By contrast, if the processor has an out-of-
order issue policy, it issues as many ready instructions as possible, up to the issue
width limit. Therefore, in the event that there are several ready instructions after
the first nonready one, an out-of-order processor is able to issue those instruc-
tions out of program order, bypassing the nonready instruction to issue as many
ready instructions as possible. Since ready instructions do not need to wait for
older, unready instructions, out-of-order issue can yield significant performance
improvements as compared with in-order issue.

On the other hand, the advantage that in-order processors have over out-of-
order ones is simpler hardware design. Since the processor only checks the oldest
few instructions, instead of all unissued instructions, less complex hardware is
needed to issue the instructions. The trade-off is that ready instructions younger
than the first nonready one cannot be issued that cycle. Consequently, a single
nonready instruction blocks further instruction issue, which slows down the
instruction execution rate. Although the out-of-order processor is able to issue
any instructions that are ready, the issue logic hardware is much more complex,
since the processor needs to examine all unissued instructions to find the maxi-
mum number of ready instructions that can be issued that cycle. This requirement
obviously increases the complexity of the issue logic.

In summary, the fundamental difference between VLIW and superscalar
processors is when the actual order in which the instructions are executed is
determined – either statically at compile-time or dynamically at run-time.

Computer Architecture 297



3.4 The Memory Gap and MultiLevel Caches

One of biggest problems facing computer architects, now and in the future, is
the “memory gap.” The origin of this problem is that the speed of processors is
increasing faster than the speed of memory is increasing. Therefore, as processor
clock frequencies increase, the number of cycles required to access memory also
increases. Since it may take a few hundred cycles to retrieve the data for a load
instruction, the processor will eventually stop issuing any more instructions, since
it cannot find more ready ones. Shortly after the processor stops issuing instruc-
tions, the processor finishes executing the last few issued instructions, and further
instruction execution stops completely. Therefore, until memory returns the value
of the load instruction, the processor is completely idle. For multiway issue
processors, this phenomenon is especially problematic, since the processor cannot
execute any more instructions for several hundred cycles while it is waiting for the
results of a load instruction. Instead of executing n instructions per cycle, where
n is the maximum issue width, for a few hundred cycles, the processor stalls, i.e.,
“instruction slots” are wasted. Obviously, if the processor has to stall frequently
to wait for memory accesses, the execution time of the program will be much
higher than if the processor did not have to wait for memory accesses. To further
exacerbate this problem, in addition to the increasing memory gap, the issue
width of processors is also increasing. This means that even more instruction slots
will be wasted in the future as the gap between processor and memory speeds
increases.

To combat this problem, computer architects add small, fast memory struc-
tures called caches between the processor and memory (RAM). Caches exploit
spatial and temporal locality to improve the performance of the memory hierar-
chy. Due to spatial locality, the next memory reference is likely to access an
address that is close, physically, to the last one. Due to temporal locality, the next
memory reference is likely to access an address that was recently accessed. The
memory references of typical applications exhibit both kinds of locality due to
the use of loops and the linearly increasing value of the PC. Thus, to improve the
performance of the memory hierarchy, caches store data around the most recently
accessed addresses.

When the program begins execution, the cache is said to be “cold,” or com-
pletely empty. As the processor requests data from different addresses, the cache
stores the values at those addresses and nearby addresses. When the cache
becomes full, selected entries in the cache are overwritten based on the organiza-
tion of the cache and its replacement policy. When the processor requests the
value for a memory address that is already in the cache, the cache can send
the value to the processor, instead of forcing the processor to retrieve the value
from main memory. This situation is referred to as a cache hit. The opposite situ-
ation is referred to as a cache miss. Since the latency of a cache hit is much lower
than the latency for a memory access, the number of cycles needed to retrieve the
value for that address will be much lower. Then, if a significant percentage of the
memory accesses are cache hits, the average number of cycles needed for memory
accesses – and, subsequently, the total program execution time – will be much
lower. Generally, as the cache hit rate increases, the number of cycles required for
a memory access decreases.

298 Joshua J. Yi and David J. Lilja



To balance the cost and performance benefits of cache memories, computer
architects use multiple levels of cache. The level-1 (L1) cache, the level of cache
closest to the processor, is the smallest but also the fastest. Since a cache exploits
spatial and temporal locality, a small cache can still have a high cache hit rate but
a low hit latency. A cache with a low hit latency but a high hit rate minimizes the
memory access time. Due to the stored program concept, instructions are stored
and fetched from memory. However, since the memory access patterns of instruc-
tions and data are very different, the L1 cache is usually split into two L1 caches,
one for instructions and one for data, to further improve the cache hit rate. Each
level of cache, L2, L3, etc., between the L1 cache and main memory is larger and
can hold more data, but is slower. Each level of cache services the memory
accesses that were missed in the caches between that cache and the processor,
albeit with a higher access time.

To illustrate how multilevel caches can decrease the average latency of memory
access, first assume that the memory hierarchy consists of an L1 data cache, a
combined L2 cache, and main memory, which have hit latencies of 2, 10, and 150
cycles, respectively. Also assume that the hit rate for L1 is 80% and for L2 is 90%,
while the hit rate for main memory is 100%. Then, for 1000 load instructions, 800
(1000 * 0.80) are L1 hits, 180 (200 * 0.90) are L2 hits, and the remaining 20 are
memory hits. The average latency for these load instructions is (see Eq. 4):

Average Latency = [(800 * 2) + (180 * 10) + (20 * 150)]/1000 
= 6400 / 1000 = 6.4 cycles (4)

By comparison, without the L1 and L2 caches, the average memory latency
of these 1000 load instruction is 150 cycles (the access time of main memory),
which will substantially increase the CPI. Therefore, as this example shows, by
adding some small, fast caches to exploit spatial and temporal locality, com-
puter architects are able to dramatically improve the performance of the mem-
ory subsystem.

3.5 Policies and Additions for High-Performance Memory

To further improve the performance of the memory hierarchy, computer
architects have implemented two policies into the memory hierarchy and its inter-
face with the processor core. The first policy, load bypassing, allows load instruc-
tions to bypass preceding store instructions in the order in which load and store
instructions are issued to the memory hierarchy [11]. Since load instructions
retrieve values from memory that are needed by the processor for further compu-
tations, decreasing the latency of load instructions has a larger effect on the pro-
gram’s execution time than does decreasing the latency of the store instructions.
One way to decrease the effective latency of a load instruction is to issue it sooner
than otherwise would normally occur. The one caveat to this policy is that the
addresses for all store instructions preceding this load must be known, i.e., calcu-
lated, before the load is allowed to access the memory hierarchy. The reason for
this is that a preceding store instruction may write to the same memory location
as the load. If the load is allowed to skip ahead of a store that writes to the same
memory location from which the load reads, then the load will retrieve the wrong
value from memory since the store did not first write its value. If the address of

Computer Architecture 299



the load differs from the address(es) of all of the preceding stores, then load is
allowed to skip ahead of those stores.

A more aggressive version of this policy allows the load to access memory
even when the addresses for all preceding store instructions are not known. This
version defers the address check until after the load retrieves its value from mem-
ory. If none of the addresses of the preceding stores matches the address of the
load, then the load forwards its value to the processor core. If the address of a
preceding store matches the address of the load, the load discards its value. In the
former case, the load instruction retrieves its value from memory a few cycles ear-
lier than it could have if it waited for the address calculation of the preceding
store instructions.

In the following example, instruction 3 can execute can before instructions
1 and 2, since the memory address of instruction 3 (A) differs from the addresses
for instructions 1 and 2 (B and C). However, instruction 4 can bypass only
instruction 2, since its address (B) matches the memory address of instruction 1.
1. st B, r1 // B = R1
2. st C, r2 // C = r2
3. ld A, r3 // r3 = A
4. ld B, r4 // r4 = B

When the address of the load matches the address of a preceding store – as is
the case for instructions 1 and 4 – and if both addresses have been computed, then
load forwarding can be used to improve the processor’s performance [9]. With load
forwarding, the value of the store is directly sent to the load. In the event that two
preceding stores write the same address, the load instruction receives its value
from the second store. Sending the results of the store to the load directly has
three benefits. First, it allows to the load to execute before the store, even though
the store precedes the load and accesses the same address. Second, since the load
obtains its value directly from the store instruction, it does not have to wait until
the store instruction has first written its value to memory before accessing the
memory hierarchy to retrieve that value. Finally, since the load instruction does
not need to access memory, the amount of traffic within the memory hierarchy is
reduced.

In addition to the cache size, the other factor that affects the cache hit rate is
its associativity. The associativity can be defined as the number of cache entries
where a specific memory address can be stored. In a direct-mapped cache, each
memory address can only be stored in one cache entry. On the other hand, in a
fully associative cache, any memory address can go in any of the cache entries.
Since many addresses map to the same cache entries, increasing the associativity
increases the number of locations in which the data for a memory address can be
stored, which decreases the likelihood that that memory address will be overwrit-
ten when the cache is full. Two issues limit the degree of associativity. First,
increasing the cache’s associativity requires additional hardware for comparators
and multiplexors, although the capacity of the cache, as measured in bytes, does
not increase. Second, due to this additional hardware, the access time of highly
associative caches is higher than caches with the same capacity but a lower degree
of associativity.

One very simple, yet highly effective, way of effectively increasing the cache’s
associativity is to use a victim cache [3]. A victim cache is a small, fully associative

300 Joshua J. Yi and David J. Lilja



cache that stores cache blocks that are evicted from the L1 data cache. A cache
block is a group of consecutive memory addresses that are moved in and out of
the cache together. Cache blocks are evicted from the cache whenever empty
entries in which an incoming block can be stored in cannot be found. Whenever
a cache evicts a block, the next access to that block will require a higher access
latency, since that cache block is present only in a level of cache that is further
away from the processor. By contrast, when using a victim cache, evicted cache
blocks remain in a level of cache closer to the processor. Although the victim
cache is fully associative, its access time is similar to or lower than the access time
of the L1 data cache, since it is so small. Use of a victim cache in parallel with the
L1 data cache effectively increases the associativity of the L1 data cache since
cache blocks can now be stored in the victim cache. Use of a victim cache in com-
bination with the L1 data cache increases the hit rate of caches closest to the
processor, which increases the processor’s performance.

3.6 Branch Prediction: Speculative Bypass 
of Control Dependences

As described in Section 3.2, a control dependence stems from the fact that the
instruction that should execute after a branch instruction is not known until after
the branch has executed. However, waiting to the fetch the next instruction until
after the branch has finished executing decreases the instruction throughput
through the processor, which in turn increases the execution time of the program.
Although the next instruction to follow the branch cannot be known with
absolute certainty before the branch has started to execute, while the processor is
waiting for the branch instruction to execute, the processor can predict the
address of the branch target, i.e., the next instruction to execute, speculatively
execute that instruction and the ones that follow it, and then verify whether the
prediction was correct after branch finishes executing.

The processor component that makes predictions on the branch direction and
target is the branch predictor. When the prediction is correct, the processor has
successfully guessed which instructions will execute next and, consequently, the
instructions that the processor had previously executed are correct. However, if
the processor guesses wrong on which direction the branch will take next, then all
the instructions that the processor speculatively executed are also wrong and need
to be discarded. To return the processor to the correct state, the instructions that
were speculatively executed need to be discarded and removed from the pipeline,
and the processor needs to fetch and start executing instructions on the other
path. The number of cycles that the processor needs to restore the processor state
is known as the branch misprediction penalty. During this time, the processor is
idle and not executing any instructions, which decreases the processor’s perform-
ance. To maximize the performance of the processor, computer architects attempt
to minimize the branch prediction penalty.

Two other key issues affect the processor’s performance when using branch
prediction. First, the number of stages in the pipeline affects how many cycles
elapse before the branch predictor can verify the accuracy of the prediction. To
verify the accuracy of the branch prediction, the branch predictor compares the

Computer Architecture 301



result of the branch with the prediction. However, the longer the pipeline, the
more cycles it takes for the processor to compute the result of the branch for ver-
ification—and the more cycles it takes for the processor to verify the prediction,
the more cycles the processor spends executing instructions that will never be
used. Since the number of stages in the pipeline directly affects the number of
cycles that are needed to execute the branch, the number of stages consequently
affects the processor’s performance as it relates to branch prediction.

Second, the other issue is the branch prediction accuracy. The branch predic-
tion accuracy is defined as the number of correct predictions divided by the total
number of predictions. Since the length of the processor’s pipeline and the branch
misprediction penalty apply only when the branch predictor makes a mispredic-
tion, maximizing the number of correct predictions limits the performance degra-
dation due to these two factors. Therefore, computer architects attempt to
maximize the branch prediction accuracy.

Branch predictors consist of three main components: the branch history
table (BHT), the branch target buffer (BTB), and some logic. The BHT is an on-
chip table that stores the last n-directions for a few thousand branches. In the
fetch stage, when a branch instruction is fetched from memory, the processor
uses the branch’s PC as an index into the BHT. The branch logic uses its algo-
rithm and the branch’s recent history to make a prediction as to whether the
branch is taken or not. If the branch predictor predicts that the branch is not
taken, then the next instruction that the processor will execute is the instruction
that immediately follows the branch. If the branch predictor predicts that the
branch is taken, then the branch logic uses the PC to access the BTB to quickly
determine the address of the next instruction that is to be executed so that
instruction can be fetched from memory. The BTB is a table that stores the
addresses of recently-taken branch targets. Use of a BTB allows the processor
to immediately start fetching the instruction at the predicted branch target
instead of waiting for that address to be computed. After the branch executes,
the processor updates the BHT with the direction of the branch and the BTB,
if the branch is taken.

It is important to note that since the BHT is much smaller than the maximum
number of entries that a PC could index, only a few bits from the least significant
end of the PC are used to index the BHT; the remaining more significant bits are
ignored. Consequently, since the entire PC is not needed to access the BHT, mul-
tiple branch instructions that have the same bit pattern for the BHT index will
map to the same BHT entry. This situation is known as aliasing, and it can affect
the branch predictor’s accuracy since the branch history for another branch could
be used to make predictions for the current branch instruction instead of its own
history.

One simple branch predictor makes its predictions based on the last direction
that is stored in the BHT for that branch, or another branch in the event of alias-
ing. If the last direction that the branch took was taken, then the branch predic-
tor predicts that the branch will be taken again. The opposite prediction occurs
when the branch was most recently not taken. After the branch executes, the BHT
stores the direction that the branch actually took. Since only one bit is needed to
store whether this branch was taken or not, this predictor is known as a one-bit
predictor. While this branch predictor has the advantage of minimal BHT size

302 Joshua J. Yi and David J. Lilja



and fair branch prediction accuracy, the major problem with it is that it tends to
make mispredictions when entering and when leaving a loop.

For example, assume that the processor executes a loop with five iterations.
For the first four iterations, the branch is taken; only the last iteration is not
taken. Since the one-bit predictor immediately writes the most recent direction
into the BHT, when entering the loop, the last direction that is stored in the BHT
is not taken. Therefore, the branch predictor will predict “not-taken” for the first
iteration when the direction is actually taken. After the first iteration, the BHT
stores “taken” as the last direction for that branch and is subsequently able to
make three correct predictions in a row for the next three iterations. However, for
the fifth iteration, the branch predictor predicts “taken” when the branch is actu-
ally not taken. This results in another misprediction, and the branch predictor
stores “not-taken” into the BHT, which will cause yet another misprediction when
the branch executes the next time. This results in a 60% prediction accuracy due
to mispredictions for the first and fifth iterations.

To solve this problem, a two-bit branch predictor can be used. The difference
between the one-bit and the two-bit branch predictors is that the one-bit predic-
tor changes its prediction in response to a single misprediction while the two-bit
predictor requires two mispredictions to change its prediction. In the above exam-
ple, the two-bit predictor would accurately predict the branch’s direction for the
first four iterations, making a misprediction only for the last iteration. Therefore,
in this example, although the two-bit predictor requires twice the number of his-
tory bits in the BHT, it results in an 80% prediction accuracy, which is a very sig-
nificant difference.

Other than one- and two-bit predictors, computer architects have proposed
several other branch predictors to achieve higher branch prediction accuracies.
One- and two-bit branch predictors are fairly accurate for floating-point pro-
grams where the branch behavior is relatively well behaved. But for integer
programs, where the branch behavior is less well behaved, one- and two-bit
branch predictors do not account for the effect that other branch instructions
may have on the direction that the current branch will take and consequently have
poor branch prediction accuracy.

In contrast, correlating and two-level predictors use the history of the most
recently executed branch instructions to make a prediction. While there are sev-
eral flavors and varieties of each, the basic operation for these two predictors is
relatively similar. These branch predictors use a bit pattern that represents the
taken/not-taken behavior of several recent branches as an index into a table of
one- or two-bit prediction counters [10]. To store the direction of each of the m
most recently executed branch instructions, these branch predictors use an m-bit
shift register known as the branch history register (BHR). After a branch instruc-
tion finishes executing, BHR shifts the bits such that the oldest branch is over-
written and the youngest is stored on the other end of the shift register. The
m-bits of the BHR are then used to index the pattern history table (PHT) that has
2m entries. Each entry of the PHT is a one- or two-bit predictor that ultimately
makes the branch prediction. It is important to note that basic versions of these
predictors do not use the PC of the branch instruction, which may lead to alias-
ing in the PHT. To reduce the chance of deconstructive aliasing, variants of these
predictors use at least part of the PC to index the PHT.

Computer Architecture 303



In summary, the basic assumption for these predictors is that whenever a series
of branch instructions has the same history as another series, then the direction
of the current branch can be predicted based on past behavior of the branch that
followed each series of branch instructions.

After a processor jumps to and finishes executing a subroutine, it needs to
return to the point in the program that called the subroutine. To accomplish this,
the processor could use the PC of the branch instruction, which corresponds to
the subroutine return, to access the BTB to determine what the next instruction
is. The problem with this solution is that the subroutine could be called from sev-
eral places in the program and that the calls may be interleaved. Therefore, the
target (return) address could constantly change, depending on which place in the
program called the subroutine. To avoid interrupting the instruction fetch process,
computer architects have designed the return address stack (RAS) to store the
address of the target instruction [4]. When a subroutine is called, the processor
pushes the return address onto the RAS. If that subroutine calls another subrou-
tine, or itself, another return address is pushed onto the stack. Then, when each
subroutine has finished executing, the processor simply pops each return address
off the RAS and resumes fetching instructions starting at the return address.

3.7 Branch Predication: Non-Speculative Bypass 
of Control Dependences

Although recently proposed and implemented branch predictors have become
very complex – and accordingly require a large amount of chip area and dissipate
a large amount of power – the control-flow of some branch instructions is so
complex that they are hard to predict very accurately. To achieve higher branch
prediction accuracy, which subsequently results in significantly higher processor
performance, it is very important to accurately predict the direction of these
difficult-to-predict branches. For reasons described above, difficult-to-predict
branches severely degrade performance, since they interrupt the instruction fetch
stream and since misprediction recovery requires several clock cycles.

One solution to this problem, called branch predication, is to simply fetch and
execute instructions down both directions of the branch [7]. After the branch exe-
cutes, the correct direction is known and instructions down the correct path are
saved while instructions down the wrong path are ignored and discarded. To
accomplish this, the branch instruction is converted to a compare instruction
where the result of the compare is written to a predicate register. A predicate reg-
ister is added as an input operand to each instruction down one path; instructions
down the other path are assigned another predicate register. The value of the
predicate register indicates whether the branch instruction was taken or not and
subsequently whether the output values of that instruction should be saved or
not. When the predicate register is set to zero, all instructions that have that pred-
icate register as an input operand are discarded; meanwhile, the value of the
predicate register for the instructions on the other path is 1. When the predicate
register is set to 1, the instructions that use that predicate register are saved and
eventually write their output values to the register file.

Since the processor executes instructions on both branch paths, the processor
effectively predicts the direction of the branch with 100% accuracy. Therefore,

304 Joshua J. Yi and David J. Lilja



why should branch predication not be applied to all branch instructions to
achieve a 100% prediction accuracy? First, the cost of branch predication is that
the processor must devote resources to executing some instructions that will be
discarded. Therefore, the processor’s execution rate is lower when the branch
direction is unknown than after the branch direction has been resolved. Second,
applying branch predication to all branch instructions means that even highly
predictable branch instructions will be converted. This means that instead of
making a high-accuracy prediction and then maximizing the rate of execution
along that path, the processor sacrifices that high rate of execution for a much
lower one to achieve a slight improvement in the branch prediction accuracy.
Therefore, to maximize performance, branch predication should be applied only
to difficult-to-predict branches.

In 2000, Intel began to ship the production version of the Itanium processor.
One of the most notable features of this processor was its implementation of
branch predication. Although initial academic studies suggested performance
improvements of 30% or more, the performance improvement due to branch
predication was a modest 2% [2]. Two key reasons were given to account for this
discrepancy. First, there were several differences in the production and academic
versions of the compiler and the hardware. One key difference was in the level of
detail between the academic and production versions. For instance, the academic
studies did not account for the effect of the operating system and factors such as
the effects of cache contention and pipeline flushes. These relatively small differ-
ences tend to reduce the performance of the real machine. Second, the bench-
marks that were used to generate each set of performance results differed. In the
benchmark suite that was used on the production hardware, branch execution
latency and the misprediction penalty accounted for a smaller percentage of the
program’s execution time than in the benchmark suite for the academic studies.
Despite these differences and the difference in the performance results, the authors
of [2] state that as the Itanium processor and its compiler mature, the performance
impact of branch predication will increase.

3.8 High Performance Instruction Fetch: The Trace Cache

From a conceptual point of view, the instruction fetch and execute compo-
nents of the processor exist in a producer-and-consumer relationship. The
instruction fetch components, which includes the branch predictor and instruc-
tion cache, “produce” instructions by retrieving them from memory and placing
them into a buffer known as the instruction fetch queue. The instruction execute
components, which include the issue logic and the processor’s functional units,
“consume” the instructions by executing them and writing their results to the reg-
ister file and memory. As the issue width increases, the rate at which the proces-
sor consumes instructions increases, which increases the processor’s performance.
However, to maintain the processor’s performance as the issue width increases,
the instruction fetch components need to produce the instructions at a similarly
high rate or the processor’s performance will suffer.

The problem with conventional instruction fetch mechanisms is that they can
only fetch a single cache block from memory per cycle if the cache block contains
a branch instruction that is predicted to be taken. When a cache block does not

Computer Architecture 305



contain any branch instructions or when it contains a branch instruction that is
predicted to be not taken, the next cache block is fetched next from memory.
However, if the cache block has a branch instruction that is predicted to be taken,
then the processor cannot fetch any more cache blocks until after the next block
is brought into the processor. This severely limits the rate at which instructions
can be fetched.

One solution to this problem is the trace cache [8]. The trace cache stores a
trace of instructions that were previously executed together consecutively.
Accordingly, the trace cache implicitly contains the record of which direction
each branch instruction in the trace took. The trace cache is accessed in parallel
with the L1 instruction cache, using the PC for the next instruction. When the
processor finds a matching trace – one that has a matching set of predicted
branch directions – in the trace cache, instructions are retrieved from the trace
cache instead of from the L1 instruction cache. Otherwise, the processor fetches
instructions from the instruction cache.

The advantage of using a trace cache is that by organizing the instructions into
a trace, the instructions from multiple taken branches can be fetched from memory
together in a single cycle. This gives the instruction fetch components the potential
to meet the execution core’s consumption rate. The disadvantage is that the proces-
sor designers must devote a substantial amount of chip area to the trace cache.

3.9 Value Prediction: Speculative Bypass of Data Dependences

As described in Section 3.2, in addition to control dependences, data
dependences – register or memory dependences between instructions – also can
severely degrade the processor’s performance. The counterpart to branch pre-
diction (speculative bypass of control dependences) is value prediction, which
exploits value locality to improve the processor’s performance.

Value locality is the “likelihood of the recurrence of a previously seen value
within a storage location” in a processor [6]. In other words, value locality is the
probability that an instruction produces the same output value.

Value prediction is a microarchitectural technique that exploits value locality.
Based on the past values for an instruction, the value prediction hardware pre-
dicts what the output value could be. After predicting the output value, the proces-
sor forwards that predicted value to any dependent instructions – instructions that
need that value as an input operand – and then speculatively executes those
dependent instructions based on the predicted value. To verify the prediction, the
processor executes the predicted instruction normally. If the prediction is cor-
rect, the processor resumes normal execution and can write the values of the spec-
ulatively executed instructions to the register file and memory. If the prediction
is incorrect, then all the dependent instructions need to be reexecuted with the
correct value.

It is important to realize that without value locality, value prediction would
not be able to improve the processor’s performance, since it would be virtually
impossible to accurately choose the correct value for an instruction from 2m dif-
ferent values, where m is the number of bits in each number (typically 32 or 64).

Last-value prediction is the simplest version of value prediction. Last-
value prediction stores the last output value of each instruction into the value

306 Joshua J. Yi and David J. Lilja



prediction table. Upon encountering the next instance of that instruction, the
processor uses the last output value as the predicted value. For example, if a par-
ticular add instruction computed the output value of 2 last time, then when that
add instruction next executes, the last value predictor predicts that the add will
again produce an output value of 2.

While last-value prediction can yield reasonably high prediction accuracies for
some instructions, its accuracy is very poor when it tries to predict the values of
computations such as incrementing the loop index variable. Therefore, to improve
the prediction accuracy of last-value prediction for these and similar computa-
tions, computer architects have proposed the stride-value value predictor. For this
predictor, the predicted value is simply the sum of the last output value for that
instruction and the stride, which is the difference of the last two output values.
For instance, when the output value history for an instruction is 1, 2, 3, 4, 5, etc.,
the stride value predictor will predict that the next output values will be 6, 7, 8,
etc. Note that when the stride value equals zero, the stride value predictor func-
tions as a last-value predictor.

Although stride-value prediction has a higher prediction accuracy than last-
value prediction, the two predictors are fundamentally the same. Consequently,
for more complex output value patterns such as 1, 4, 7, 9, 1, 4, 7, 9, … 1, 4, 7, 9,
etc., both value predictors have very poor performance. One value predictor that
can accurately predict this irregular pattern is the finite-context method predictor.
This predictor stores the last n output values for an instruction and then uses
some additional logic to determine which of those n values should be used as the
predicted value.

In summary, value prediction improves the processor’s performance by allow-
ing it to execute instructions earlier than would otherwise be possible, if the pre-
diction is correct. This potential performance gain comes at the cost of prediction
verification and a potentially very large value prediction table.

3.10 Value Reuse: Nonspeculative Bypass of Data Dependences

During the course of a program’s execution, a processor executes many redun-
dant computations. A redundant computation is one that the processor had per-
formed earlier in the program. Any and all computations can be redundant. It is
important to note that an optimizing compiler may not be able to remove these
redundant computations during the compilation process, since the actual input
operand values may be unknown at compile time – possibly because they depend
on the inputs to the program.

Redundant computations affect the program’s execution time in two ways.
First of all, executing the instructions for redundant computations increases the
program’s dynamic instruction count. Secondly, these redundant computations
affect the average CPI, since they produce the values for other instructions in
the program (a flow dependence exists between these instructions and others).
Unfortunately, while redundant, these computations need to be executed to
ensure correct program operation. Consequently, the hardware cannot simply
disregard these computations.

Value reuse is a microarchitectural technique that improves the processor’s
performance by dynamically removing redundant computations from the

Computer Architecture 307



processor’s pipeline [12]. During the program’s execution, the value reuse hard-
ware compares the opcode and input operand values of the current instruction
against the opcodes and input operand values of all recently executed instruc-
tions, which are stored in the value reuse table (VRT). If there is a match between
the opcodes and input operand values, then the current instruction is a redundant
computation and, instead of continuing its execution, the current instruction gets
its output value from the result stored in the VRT. On the other hand, if the cur-
rent instruction’s opcode and input operand values do not match those found in
the VRT, then the instruction is not a recent redundant computation and it exe-
cutes as it normally would. After finishing the execution for each instruction, the
value reuse hardware stores the opcode, input operand values, and output value
for that instruction into the VRT. Value reuse can be applied at the level of
individual instructions or to larger units, such as basic blocks [5].

The key difference between value prediction and value reuse is that value pre-
diction is speculative whereas value reuse is nonspeculative. Consequently, the
predictions of the value predictor must be verified with the actual result of the pre-
dicted instruction, and recovery must be initiated if the prediction is wrong. By con-
trast, since the computation and inputs are known, the results for value reuse are
nonspeculative and do not need to be verified, since they cannot be wrong.

While value reuse is able, through table lookups, to generate the output value
of an instruction sooner than would otherwise be possible, two key problems
limit its performance. First, to ensure that multiple instructions can access and
retrieve their output values from the VRT within one or two cycles, the number
of entries in the VRT has to be relatively low. Therefore, the VRT can only hold
a small number of redundant computations. The second problem is that since
VRT is finite in size and since it constantly stores the inputs and outputs of the
most recently executed instructions, the VRT may eventually become filled with
computations that are not very redundant. Therefore, instead of storing the
redundant computations that are very frequently executed, which account for a
large fraction of the program’s execution time, the VRT may store redundant
computations that are relatively infrequently executed and that have very little
impact on the program’s execution time.

3.11 Prefetching

As described in Section 3.4, the performance of the memory hierarchy is the
result of two factors: the hit latency of the caches (or memory) and the hit rate of
the caches. Since the hit latency is determined by how the cache is implemented,
its size, associativity, and location (on-chip or off-chip), computer architects can
only improve the hit rate to decrease the memory access time of load instructions.
One such approach is a mechanism called prefetching [15].

What prefetching attempts to do is to retrieve a cache block of instructions or
data from memory and put that block into the cache before the processor requests
those instructions or data from memory, i.e., needs to use them. For prefetching
to significantly improve the performance of the memory hierarchy, a prefetch-
ing algorithm needs to do two things. First, it needs to predict those address(es)
for which the processor will access memory. Due to very complex memory access
patterns that are prevalent in nonscientific applications, accurate prediction of

308 Joshua J. Yi and David J. Lilja



which address(es) will be needed in the near future is very difficult. Second, for
prefetching to be most effective, the prefetching algorithm needs to place the
block of memory into the cache before the processor requests those instructions
or data. However, due to wide-issue processors and very long memory latencies
that are only getting longer, the prefetch algorithm must determine which block
of memory to retrieve several hundred cycles or more before the processor actu-
ally makes that request. On the other hand, bringing the desired memory block
into the cache far before it is needed may result in that memory block being
replaced by another, higher-priority memory block. Therefore, the timeliness
aspect of prefetching really means that the prefetched block needs to be brought
into the cache as close as possible to when the processor will consume those val-
ues. Bringing that block into the cache too early or too late may not significantly
improve the processor’s performance.

Prefetch algorithms can be initiated either solely by hardware or with some
assistance from the compiler. In the former case, the prefetching algorithm is
completely implemented in the hardware. As a result, the hardware determines
which addresses to prefetch and at what time. In the latter case, the compiler
inserts prefetch instructions into the assembly code. Those instructions tell the
hardware prefetch mechanism when to prefetch and for what to address to
prefetch. For software prefetching, the compiler analyzes the assembly code to
determine which load instructions will seriously degrade the processor’s perform-
ance. For those instructions, the compiler then inserts the necessary prefetch
instructions into the code at a point that it determines is sufficiently far away from
the point in time when the processor will actually use that value.

One very well-known prefetching technique is next-line prefetching. When
using next-line prefetching, after a cache miss, in addition to fetching the cache
block that contains the address that caused the cache miss, the processor also
fetches the next sequential cache block and places that block in a prefetch buffer,
which is a small, fully associative cache. By fetching the next cache block, this
prefetching algorithm is counting on the program to exhibit spatial locality and
on addresses in the next cache block to be requested soon. Storing the prefetched
cache block in a prefetch buffer reduces the amount of cache pollution, which is
caused by bringing in blocks that will not be used before they are evicted or evict-
ing blocks that will be used in the near future.

Finally, due to the increasing memory gap, designing and implementing more
effective prefetching algorithms remains a very active area of research in com-
puter architecture.

4 MULTITHREADED ARCHITECTURES:
NEXT-GENERATION MULTIPROCESSOR
MACHINES

4.1 Speculative Multithreaded Processors

Scientists and engineers, in an effort to decrease the execution time of their
programs, commonly run their programs on multiprocessor systems. Ideally,
after parallelizing the code, each processor can execute its portion of the program

Computer Architecture 309



without having to wait for other processors to catch up or to produce values for
it. A deeply nested loop, where each loop iteration does not depend on the value
of a previous loop iteration, is ideal for parallelization, since it does not contain
any cross-iteration dependences. While this situation is common for scientific
floating-point applications, the loops in integer (nonscientific) programs typically
have cross-iteration data dependences that make them very difficult to run on a
multiprocessor system. These data dependences force the other processors in the
system to stall until the processor running that previous loop iteration generates
the needed value.

To address this issue, computer architects have proposed speculative multi-
threaded processors as a potential solution to allow integer programs to efficiently
run on multiprocessor systems. A representative example of a speculative multi-
threaded processor is the Superthreaded Architecture (STA) [13]. In the STA, the
compiler analyzes the program to determine which loops can be efficiently paral-
lelized to decrease the overall program execution time. Since, at compile time, the
compiler may not be able to determine whether a potential cross-iteration
dependence will actually be one at run-time, the compiler flags that address.
To ensure that those addresses that the compiler has flagged are handled properly
at run-time, the STA uses an on-chip buffer called the memory buffer.

Other than the memory buffer, the only other additions to the base processor,
which can either be an “off-the-shelf” superscalar or VLIW processor, are a little
additional logic for interprocessor communication and for processor execution
synchronization. Each processor is connected to two other processors via a uni-
directional ring. As with typical multiprocessor systems, each processor has
its own private L1 data cache but shares the L2 cache with the other processors.
The memory buffer is a private cache.

When a program begins executing on the STA, only one processor is active;
the remaining processors are idle, waiting for the program to reach a loop (paral-
lel region). The start of the parallel region is denoted by a special instruction.
After the active processor executes that special instruction, it forks off the next
processor in the unidirectional ring and begins execution of its iteration in the
parallel region. Meanwhile, the next processor copies the set of values that are
needed for parallel execution and then forks off its own processor. This process
repeats itself until all processors are executing an iteration of the loop.

When each processor in the system begins parallel execution, the processor
allocates space in the memory buffer for each potential cross-iteration depend-
ence that the compiler flagged. When a load instruction accesses the memory
hierarchy, the memory buffer and L1 data cache are accessed in parallel, although
the data can be present only in one structure. When the address for the load
instruction is found in the L1 data cache, the processor continues execution as
normal. However, when address is found in the memory buffer, the processor
needs to wait until either another processor generates that value or another
processor updates it, if the value is not already there. On the other hand, when
a processor generates a value for an address that is found in the memory buffer,
the processor forwards that value across the unidirectional ring to the other
processors. Therefore, by using the compiler to flag potential cross-iteration
dependences, the memory buffer to track and update the status of those depen-
dences, and the unidirectional ring to pass values from processor to processor, the

310 Joshua J. Yi and David J. Lilja



STA architecture is able to parallelize and efficiently run programs that have
cross-iterations dependences.

When a processor finishes its iteration, it checks to see if all processors that
are executing a previous iteration are finished. If not, the processor stalls until
they are finished. If so, then the processor writes its values back to memory. After
a processor writes its values to memory, the state of memory is the same as if this
iteration just finished executing on a uni-processor.

Finally, since there are an indeterminate number of iterations for some loops,
it is not known until run-time which processor will be the one to execute the last
iteration. To maintain high performance given this uncertainty, each processor
keeps forking off another processor as if no uncertainty exists. When the proces-
sor that executes the last iteration detects that it is the last iteration, it kills all suc-
cessor iterations running on the “downstream” processors. That processor then
starts executing another sequential region of code while all other processors are
idle. This cycle of sequential and parallel execution continues until the program
is finished.

In conclusion, speculative multithreaded processors, such as the
Superthreaded Architecture, allow multiprocessor systems to efficiently execute
programs with many cross-iteration data dependences. To accomplish this, hard-
ware like the memory buffer is added to the base processor to ensure that poten-
tial cross-iteration dependences are handled correctly.

4.2 Simultaneous Multithreading

When multiple programs are running on the same uniprocessor system, the
operating system allows each program to execute for a certain amount of time
before swapping that program out for another one. Before the next program can
start running, the processor state of the current program must be saved to mem-
ory. Then after the processor state of the next program is loaded into the proces-
sor, the next program can begin executing. Obviously, repeated storage and
loading of the processor state of each program adds extra overhead to the time it
takes to execute both programs. On the other hand, running more than one pro-
gram at a time may allow the processor the hide the latency of cache misses by
running another program while the memory hierarchy services the cache miss.

Some operating systems and processors switch programs only when there are
caches misses. This allows one program to efficiently execute the low latency parts
of the code and then allows another program to run while high latency parts of
the code are being serviced. Although this setup allows the execution of two pro-
grams to overlap, it still incurs the cost of saving and loading the processor state.

A hardware improvement on this approach is simultaneous multithreading [14].
A simultaneous multithreading (SMT) processor allows two or more programs,
or threads, to simultaneously execute on the same processor. Therefore, instead of
fetching only the instructions for a single program, an SMT processor fetches the
instructions for multiple programs at the same time. Instead of decoding and issu-
ing instructions from a single program, an SMT processor decodes, issues, and
executes the instructions for multiple programs. Finally, instead of writing the
results for a single program to the register file, an SMT processor writes the result
of each program to its own register file to maintain proper program execution

Computer Architecture 311



semantics. An SMT processor also replicates other base processor resources to
support multiple hardware-based program threads.

Suppose that eight programs are running on a SMT processor. Of those eight
programs, only two are active at any given time. To execute both programs, the
SMT processor first needs to fetch instructions for both programs at the same
time. After fetching instructions from both programs, the instructions execute on
the processor as would the instructions for a single program, with the obvious
exception that instructions for one program do not use the results from the other.
Whenever a load instruction experiences a cache miss, the SMT processor stops
fetching instructions for that program and starts fetching and executing the
instructions for another program. Use of a round-robin fetch policy ensures that
progress is made in executing each program.

It is important to note that the start-to-finish time of any one program run-
ning on an SMT processor will be longer than the start-to-finish time of the same
program running on a conventional uniprocessor of similar resources, since the
other programs compete for the processor’s resources. However, the SMT proces-
sor is able to decrease the overall execution time of all n programs by executing
them in parallel at a fine-grain level as opposed to executing them serially on the
conventional uniprocessor machine.

SMT processors are able to decrease the execution time of multiple programs
for three reasons. First, by allowing instructions from multiple instructions to exe-
cute simultaneously, the SMT processor can find more instructions that are ready
to issue, since dependences, both control and data, do not exist between the
instructions of two different programs. As a result, the SMT processor can reduce
the average CPI across all programs. Second, by supporting multiple program
execution at a very fine-grain level, the SMT processor is able to avoid the cost
of storing and loading the processor state. Third, by swapping out each pro-
gram after it incurs a cache miss, the SMT processor is able to hide the memory
latency of a load instruction in one program by executing instructions in another
program.

Finally, although their names are similar, simultaneous multithreading and
speculative multithreading have several major differences. First, an SMT proces-
sor is a single, very wide-issue processor, while a speculative multithreaded proces-
sor is a multiprocessor system. Second, SMT processors decrease the overall
execution time of multiple programs, while speculative multithreaded processors
decrease the execution time of a single program. Given these differences, these
two approaches could be combined together to form a multiprocessor system that
can quickly execute a single program or multiple programs.

5 CONCLUSION: FUTURE TRENDS AND ISSUES

Over the past few decades, computer architects have improved the perform-
ance of processors in one of three ways: increasing the processor’s clock frequency,
executing multiple instructions simultaneously via pipelining, and executing mul-
tiple instructions in parallel via wide-issue processors. Although these approaches
have significantly improved the processor’s performance, at least two factors limit
further performance gains purely by using these techniques.

312 Joshua J. Yi and David J. Lilja



First, as described in Section 3.4, the disparity in the rates of increase in the
processor speed and the memory speed has led to a memory gap that will only
widen in the future. To ensure that the processor is able to fetch an adequate num-
ber of instructions to feed the execution core and to ensure that data dependences
between load instructions and other types of instructions do not become the bot-
tleneck, computer architects need to find additional methods of decreasing the
average memory latency. Compounding this problem is that memory bandwidth
will increasingly become a limiting factor on any solutions [1]. As a result, instead
of trading off memory bandwidth for memory latency, computer architects will
need to find other solutions that decrease the average memory latency without
dramatically increasing the memory bandwidth requirements. Solutions to this
problem may include novel methods of prefetching data and instructions, differ-
ent cache and memory hierarchy designs, and new technologies that reduce the
memory latency.

Another problem that has already become a major one is the power dissipa-
tion of modern processors. Microarchitectural techniques such as branch predic-
tion, prefetching, and value prediction are all speculative techniques that rely on
predicting in what direction the branch will go, what instructions or data are
needed next, and what values a particular instruction will produce, respectively,
to improve the processor’s performance. Although these techniques are very effec-
tive in improving the processor’s performance, they also consume a lot of additional
energy to do so. The extra energy that these and other speculative techniques con-
sume increases the power consumption, which lowers the battery life of laptop com-
puters or raises the temperature of the processor to dangerous levels. Consequently,
for any performance enhancements, computer architects must balance increased
performance with increased power consumption.

In conclusion, to maintain the phenomenal rate of improvement in micro-
processor performance, computer architects need to implement the techniques that
have been discussed in this chapter. Also, architects need to develop other tech-
niques of improving the performance without exceeding power consumption goals.

REFERENCES

[1] D. Burger, J. Goodman, and A. Kägi (1996): Memory Bandwidth
Limitations of Future Microprocessors, International Symposium on
Computer Architecture.

[2] Y. Choi, A. Knies, L. Gerke, and T. Ngai (2001): The Impact of If-
Conversion on Branch Prediction and Program Execution on the Intel
Itanium Processor, International Symposium on Microarchitecture.

[3] N. Jouppi (1990): Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-associative Cache and Prefetch Buffers,
International Symposium on Computer Architecture.

[4] J. Hennessy and D. Patterson (1996): Computer Architecture: A Quantitative
Approach, Morgan-Kaufman.

[5] J. Huang and D. J. Lilja (2003): Balancing Reuse Opportunities and
Performance Gains with Sub-Block Value Reuse, IEEE Transactions on
Computers, 52, 1032–1050.

Computer Architecture 313



[6] M. Lipasti, C. Wilkerson, and J. Shen (1996): Value Locality and Load
Value Prediction, International Conference on Architectural Support for
Programming Languages and Operating Systems.

[7] S. Mahlke, R. Hank, R. Bringmann, J. Gyllenhaal, D. Gallagher, and W. Hwu
(1994): Characterizing the Impact of Predicated Execution on Branch
Prediction, International Symposium on Microarchitecture.

[8] E. Rotenberg, S. Bennett, and J. Smith (1996): Trace Cache: A Low Latency
Approach to High Bandwidth Instruction Fetching, International
Symposium on Microarchitecture.

[9] J. Shen and M. Lipasti (2003): Modern Processor Design, Fundamentals of
Superscalar Processors, McGraw-Hill.

[10] J. Silc, B. Robic, and T. Ungerer (1999): Processor Architecture: From
Dataflow to Superscalar and Beyond, Springer-Verlag.

[11] D. Sima, T. Fountain, and P. Kacsuk (1997): Advanced Computer
Architectures, A Design Space Approach, Addison Wesley Longman.

[12] A. Sodani and G. Sohi (1997): Dynamic Instruction Reuse, International
Symposium on Computer Architecture.

[13] J. Tsai, J. Huang, C. Amlo, D. Lilja, and P. Yew (1999): The Superthreaded
Processor Architecture, IEEE Transactions on Computers, 48(9).

[14] D. Tullsen, S. Eggers, and H. Levy (1995): Simultaneous Multithreading:
Maximizing On-Chip Parallelism, International Symposium on Computer
Architecture.

[15] S. VanderWiel and D. Lilja (2000): Data Prefetch Mechanisms, ACM
Computing Surveys, 32(2), 174–199.

314 Joshua J. Yi and David J. Lilja




