
Chapter 8

QUANTUM COMPUTING
J. Eisert1,2 and M.M. Wolf 3

1Imperial College London,
2Universität Potsdam
3Max-Planck-Institut für Quantenoptik

Quantum mechanics is one of the cornerstones of modern physics. It governs
the behavior and the properties of matter in a fundamental way, in particular on
the microscopic scale of atoms and molecules. Hence, what we may call a classi-
cal computer, i.e., those machines on or under the desktops in our offices together
with all their potential descendants, are themselves following the rules of quan-
tum mechanics. However, they are no quantum computers in the sense that all the
inside information processing can perfectly be described within classical informa-
tion theory. In fact, we do not need quantum mechanics in order to explain how
the zeros and ones – the bits – inside a classical computer evolve. The reason for
this is that the architecture of classical computers does not make use of one of
the most fundamental features of quantum mechanics, namely, the possibility of
superpositions. Throughout the entire processing of any program on a classical
computer, each of the involved bits takes on either the value zero or one.
Quantum mechanics, however, would in addition allow superpositions of zeros
on ones, that is, bits – now called qubits (quantum-bits) – that are somehow in the
state zero and one at the same time. Computing devices that exploit this possibil-
ity, and with it all the essential features of quantum mechanics, are called quan-
tum computers [1]. Since they have an additional capability, they are at least as
powerful as classical computers: every problem that can be solved on a classical
computer can be handled by a quantum computer just as well. The converse,
however, is also true, since the dynamics of quantum systems is governed by lin-
ear differential equations, which can in turn be solved (at least approximately) on
a classical computer. Hence, classical and quantum computers could in princi-
ple emulate each other, and quantum computers are thus no hypercomputers.1

1A hypercomputer would be capable of solving problems that cannot be handled by a universal
Turing machine (the paradigm of a classical digital computer). The most famous example of

So why quantum computing? And if there is any reason, why not just simulate
these devices (which do not exist yet anyhow) on a classical computer?

1 WHY QUANTUM COMPUTING?

1.1 Quantum computers reduce the complexity
of certain computational tasks

One reason for quantum computers is that they will solve certain types of
problems faster than any (present or future) classical computer – it seems that the
border between easy and hard problems is different for quantum computers than
it is for their classical counterparts. Here easy means that the time for solving the
problem grows polynomially with the length of the input data (as with the prob-
lem of multiplying two numbers), whereas hard problems are those for which the
required time grows exponentially. Prominent examples for hard problems are the
traveling salesman problem, the graph isomorphism problem, and the problem of
factoring a number into primes.2 To the surprise of all, Peter Shor showed in 1994
that the latter problem could efficiently be solved by a quantum computer in poly-
nomial time [2]. Hence, a problem that is hard for any classical computer becomes
easy for quantum computers.3 Shor’s result gets even more brisance from the fact
that the security of public key encryption, i.e., the security of home banking and
any other information transfer via the Internet, is heavily based on the fact that
factoring is a hard problem.

One might think that the cost for the exponential speedup gained with quan-
tum computers would be an exponential increase in the required accuracy for
all the involved operations. This situation would then be reminiscent of the
drawback of analogue computers. Fortunately, this is not the case, and a con-
stant accuracy is sufficient. However, achieving this “constant” is without doubt
experimentally highly challenging.

1.2 Quantum systems can efficiently simulate
other quantum systems

Nature provides many fascinating collective quantum phenomena such as
superconductivity, magnetism, and Bose–Einstein condensation. Although all

254 J. Eisert and M.M. Wolf

such a problem is the halting problem, which is in modern terminology the task of a universal
crash debugger, which is supposed to spot all bugs leading to crashes or infinite loops for any
program running on a universal Turing machine. As shown by Turing, such a debugger cannot
exist.
2These problems are strongly believed to be hard (the same is, by the way, true for a special
instance of the computer game “Minesweeper”). However, in all cases, there is no proof that a
polynomial-time algorithm cannot exist. The question whether there exists such an algorithm
(for the traveling salesman or the minesweeper problem) is in fact the notorious P NP=

? ques-
tion, for whose solution there is even a prize of 1 million.
3In fact, Shor’s algorithm strikes the strong Church-Turing thesis, which states that every rea-
sonable physical computing device can be simulated on a probabilistic Turing machine with at
most a polynomial overhead.

properties of matter are described and can in principle be determined from the
laws of quantum mechanics, physicists have very often serious difficulties in
understanding them in detail and in predicting them by starting from fundamen-
tal rules and first principles. One reason for these difficulties is that the number of
parameters needed to describe a many-particle quantum system grows exponen-
tially with the number of particles. Hence, comparing a theoretical model for
the behavior of more than, say, thirty particles with experimental reality is not
possible by simulating the theoretical model numerically on a classical computer
without making serious simplifications.

When thinking about this problem of simulating quantum systems on classi-
cal computers, Richard Feynman came to the conclusion in the early 1980s that
such a classical simulation typically suffers from an exponential slowdown,
whereas another quantum system could in principle do the simulation efficiently
with bearable overhead [3].

In this way a quantum computer, operated as a quantum simulator, could
be used as a link between theoretical models formulated on a fundamental level
and experimental observations. Similar to Shor’s algorithm, a quantum simula-
tor would yield an exponential speedup compared with a classical computer.
An important difference between these two applications is, however, that a useful
Shor-algorithm quantum computer would require thousands of qubits, whereas a
few tens of qubits could already be useful for the simulation of quantum systems.
We will resume the idea of a quantum simulator in Sections 6 and 7.

1.3 Moore’s law has physical limits

Apart from the computational power of a quantum computer there is a much
more banal argument for incorporating quantum mechanics into computer sci-
ence: Moore’s law. In 1965 Intel cofounder Gordon Moore observed an expo-
nential growth in the number of transistors per square inch on integrated circuits
and he predicted that this trend would continue [4]. In fact, since then this den-
sity has doubled approximately every 18 months.4 If this trend continues, then
around the year 2020 the components of computers will be at the atomic scale,
where quantum effects are dominant. We thus will inevitably have to cope with
these effects, and we can either try to circumvent and eliminate them as long as
possible and keep on doing classical computing or try at some point to make use
of them and start doing quantum computing.

1.4 Even small quantum circuits may be useful

Besides the quantum computer with its above-mentioned applications, quan-
tum information science yields a couple of other useful applications that might be
easier to realize. The best example is quantum cryptography, which enables one to
transmit information with “the security of nature’s laws” [5]. However, small

Quantum Computing 255

4Actually, not every prediction of the pioneers in computer business was that Farsighted: For
instance, in 1943 Thomas Watson, chairman of IBM, predicted a world market for five com-
puters, and in 1977 Digital Equipment Corp. founder Ken Olson stated that “there is no reason
anyone would want a computer in their home.”

building blocks of a quantum computer, i.e., small quantum circuits, may be use-
ful as well. One potential application, for instance, is in precision measurements,
as in atomic clocks [6, 7], which are important in global positioning systems as
well as in synchronizing networks and distant telescopes. By generating quantum
correlations between the N relevant atoms in the atomic clock, a quantum circuit
could in principle reduce the uncertainty of the clock by a factor of N .

Another application of small quantum circuits is entanglement distillation: in
order to distribute entangled states over large distances, we have to send them
through inevitably noisy channels, thereby losing some of the entanglement.
Fortunately, however, we can in many cases distill a few highly entangled states
out of many weakly entangled ones [8, 9].

2 FROM CLASSICAL TO QUANTUM COMPUTING

Let us now have a closer look at the way a quantum computer works. We will
do so by comparing the concepts of classical computing with the basics of quan-
tum computing. In fact, many classical concepts have very similar quantum coun-
terparts, like bits become qubits, and the logic is still often best explained within
a circuit model [10, 1]. However, there are also crucial differences, which we will
describe below.

2.1 Qubits and quantum parallelism

The elementary information carriers in a quantum computer are the qubits –
quantum bits [11]. In contrast to classical bits, which take on a value of either
zero or one, qubits can be in every superposition of the state vectors �0〉 and �1〉.
This means that the vector �Y 〉 describing the (pure) state of the qubit can be any
linear combination

�Y 〉 = a �0〉 + b�1〉 (1)

of the vectors �0〉 and �1〉 with complex coefficients a and b.5 In the same way, a
system of many qubits can be in a superposition of all classically possible states

�0, 0,...,0〉 + �1, 0,..., 0〉 + ... + �1, 1,...,1〉. (2)

The basis {�0, 0,...,0〉, �0, 1,...,0〉,...,�1, 1,...,1〉} that corresponds to the binary
words of length n in a quantum system of n qubits is called the computational basis.6

Using the superposition of Eq. (2) as an input for an algorithm means somehow
running the computation on all classically possible input states at the same time.
This possibility is called quantum parallelism, and it is certainly one of the reasons
for the computational power of a quantum computer. The mathematical struc-
ture behind the composition of quantum systems is the tensor product.

256 J. Eisert and M.M. Wolf

5The “Dirac notation” �˙〉 is frequently used in quantum mechanics. Eq. (1) could as well be writ-
ten in the standard vector notation, i.e., Y = (a, b) such that �0〉 and �1〉 correspond to the basis
vectors (1, 0) and (0, 1), respectively.
6In finite-dimensional quantum systems such as those we encounter here, the computational
basis spans the Hilbert space associated with the physical system.

Hence, vectors like �0, 0,...,0〉 should be understood as 0 0 0
n

7 7f =
7

. This

implies that the dimension of space characterizing the system grows exponentially
with the number of qubits.

Physically, qubits correspond to effective two-level systems like the ground
state and excited state of an atom, the polarization degree of freedom of light, or
the up- and down-orientation of a spin-1/2 particle (see Section 9). Such a physi-
cal system can be in any pure state that can be represented by a normalized vec-
tor of the above form.7 A pure state of a composite quantum system that is not a
product with respect to all constituents is called an entangled pure state.

2.2 Read-out and probabilistic nature of quantum computers

An important difference between classical and quantum computers is in the
read-out process. In the classical case, there is not much to say: the output is a bit-
string obtained in a deterministic manner, i.e., repeating the computation will lead
to the same output again.8 However, due to the probabilistic nature of quantum
mechanics, the situation is different for a quantum computer. If the output of
the computation is, for instance, the state vector �Y 〉 in Eq. (1), a and b cannot be
determined by a single measurement on a single specimen. In fact, �a�2 and �b�2
are the probabilities for the system to be found in �0〉 and �1〉, respectively. Hence,
the absolute values of these coefficients can be determined by repeating the com-
putation, measuring in the basis �0〉, �1〉, and then counting the relative frequencies.
The actual outcome of every single measurement is thereby completely indeter-
minate. In the same manner, the state of a quantum system consisting of n qubits
can be measured in the computational basis, which means that the outcome cor-
responding to some binary word occurs with the probability given by the square
of the absolute value of the respective coefficient. So, in effect, the probabilistic
nature of the read-out process on the one hand and the possibility of exploiting
quantum parallelism on the other hand are competing aspects when it comes to
comparing the computational power of quantum and classical computers.

2.3 The circuit model

A classical digital computer operates on a string of input bits and returns a
string of output bits. The function in between can be described as a logical circuit

Quantum Computing 257

7States in quantum mechanics, however, can also be mixed, in contrast to pure states, which can
be represented as state vectors. A general and hence mixed quantum state can be represented by
a density operator r. A density operator r is a positive operator, r ≥ 0, which is normalized, tr[r]
= 1. For qubits, the state space, i.e., the set of all possible density matrices representing possible
physical states, can be represented as a unit ball, called the Bloch ball. The extreme points of this
set are the pure states that correspond to state vectors. In the Bloch picture, the pure states are
located on the boundary of the set: the set of all pure states is hence represented by a unit
sphere. The concept of mixed quantum states is required in quantum mechanics to incorporate
classical ignorance about the preparation procedure, or when states of parts of a composite
quantum system are considered.
8Within the circuit model described above, this observation is trivial, since all the elementary
gates are deterministic operations. Note that even probabilistic classical algorithms run essen-
tially on deterministic grounds.

built up out of many elementary logic operations. That is, the whole computation
can be decomposed into an array of smaller operations – gates – acting only on
one or two bits, like the AND, OR, and NOT operation. In fact, these three gates
together with the COPY (or FANOUT) operation form a universal set of gates
into which every well-defined input–output function can be decomposed. The
complexity of an algorithm is then essentially the number of required elementary
gates, resp. its asymptotic growth with the size of the input.

The circuit model for the quantum computer [10, 1] is actually very reminis-
cent of the classical circuit model: of course, we have to replace the input–output
function by a quantum operation mapping quantum states onto quantum states.
It is sufficient to consider only those operations that have the property of being
unitary, which means that the computation is taken to be logically reversible. In
turn, any unitary operation can be decomposed into elementary gates acting only
on one or two qubits. A set of elementary gates that allows for a realization of any
unitary to arbitrary approximation is again referred to as being universal [12, 10].
An important example of a set of universal gates is, in this case, any randomly
chosen one-qubit rotation together with the CNOT (Controlled NOT) operation,
which acts as

, , ,x y x y x7 5 (3)

where 5 means addition modulo 2 [13]. As in the classical case, there are infinitely
many sets of universal gates. Notably also, any generic (i.e., randomly chosen)
two-qubit gate (together with the possibility of switching the leads in order to
swap qubits) is itself a universal set, very much like the NAND gate is for classi-
cal computing [12].9 Notably, any quantum circuit that makes use of a certain
universal set of quantum gates can be simulated by a different quantum cir-
cuit based on another universal set of gates with only polylogarithmic overhead
[16, 17, 1]. A particularly useful single-qubit gate is the Hadamard gate, acting as

() , () .H H0 0 0 1 2 1 1 0 1 27 7= + = - (4)

A phase gate does nothing but multiply one of the basis vectors with a phase,

, ,i0 0 1 17 7 (5)

and a Pauli gate corresponds to one of the three unitary Pauli matrices (see Figure
8.1). The CNOT, the Hadamard, the phase gate, and the Pauli gate are quantum
gates of utmost importance. Given their key status in many quantum algorithms,
one might be tempted to think that with these ingredients alone (together with
measurements of Pauli operators: see below), powerful quantum algorithms may
be constructed that outperform the best-known classical algorithm to a problem.
This intuition is yet not correct: it is the content of the Gottesman-Knill theorem
that any quantum circuit consisting of only these ingredients can be simulated effi-

258 J. Eisert and M.M. Wolf

9Any such generic quantum gate has so-called entangling power [14], in that it may transform a
product state vector into one that can no longer be written as a tensor product. Such quantum
mechanical pure states are called entangled. In the intermediate steps of a quantum algorithm,
the physical state of the system is, in general, highly multiparticle entangled. In turn, the imple-
mentation of quantum gates in distributed quantum computation requires entanglement as a
resource [15].

ciently on a classical computer [1, 18]. The proof of the Gottesman-Knill theo-
rem is deeply rooted in the stabilizer formalism that we will encounter later in the
context of quantum error correction.

One of the crucial differences between classical and quantum circuits is that,
in the quantum case, the COPY operation is not possible. In fact, the linearity of
quantum mechanics forbids a device that copies an unknown quantum state – this
is known as the no-cloning theorem.10 The latter has far-reaching consequences, of
which the most prominent is the possibility of quantum cryptography coining this
“no-go theorem” into an application [5].

2.4 How to program a quantum computer?

The good thing about the classical computer on which this chapter has been
written is that it is programmable. It is a single device capable of performing dif-
ferent operations depending on the program it is given: word processing, alge-
braic transformations, displaying movies, etc. In more abstract terms, a classical
computer is a universal gate array: we can program every possible function with n
input and n output bits by specifying a program of length n2n. That is, a fixed cir-
cuit with n(1 + 2n) input bits can be used in order to compute any function on the
first n bits in the register. Is the same true for quantum computers? Or will these
devices typically be made-to-measure with respect to a single task?

Nielsen and Chuang showed that quantum computers cannot be universal
gate arrays [20]. Even if the program is itself given in form of a quantum state, it
would require a program register of infinite length in order to perform an arbi-
trary (unitary) operation on a finite number of qubits – universality was shown
to be only possible in a probabilistic manner. In this sense, quantum computers
will not be the kind of all-purpose devices that classical computers are. In prac-
tice, however, any finite set of quantum programs can run on a quantum com-
puter with a finite program register. This issue applies, however, to the
programming of a quantum computer with a fixed hardware, which is, needless
to say, still in the remote future as a physical device.

Quantum Computing 259

B

σzA H

(i) (ii) (iii)

Figure 8.1. Representation of (i) a quantum CNOT gate, (ii) a Hadamard gate, and (iii) a Pauli
sz gate. In the CNOT gate, the first qubit, here denoted as A, is typically referred to as control,
the second qubit B as target. The CNOT gate is a quantum version of the XOR gate, made
reversible by retaining the control.

10If one knows that the state vector is either �0〉 or �1〉, then a cloning machine is perfectly con-
sistent with rules of quantum mechanics. However, producing perfect clones of an arbitrary
quantum state as given by Eq. (1) is prohibited, as has been shown by Wootters, Zurek, and
Dieks [19].

2.5 Quantum error correction

When it comes to experimental realizations of quantum computers, we will
have to deal with errors in the operations, and we will have to find a way to pro-
tect the computation against these errors: we have to find a way of doing error
correction. Roughly speaking, error correction in classical computers is essentially
based on two facts:
1. Computing with classical bits itself provides a simple means of error correc-

tion in the form of a lock-in-place mechanism. If, for instance, two bits are real-
ized by two different voltages (as is the case in our computers, as well as in our
brains), then the difference can simply be chosen large enough such that typi-
cal fluctuations are small compared with the threshold separating the two bits.

2. The information can be copied and then stored or processed in a redundant
way. If, for instance, an error occurs in one of three copies of a bit, we can
recover the original information by applying a majority vote. Of course, there
are much more refined versions of this method.
Unfortunately, in quantum computers we cannot use either of these ideas in a

straightforward manner because
1. there is no lock-in-place mechanism, and
2. The no-cloning theorem forbids copying the state of the qubits.

To naively measure the state of the system to find out what error has actually
happened before correcting it does not help, since any such attempt would neces-
sarily disturb the state in an irreversible manner. So at the very beginning of
quantum information science, it was not clear whether or not, under physically
reasonable assumptions, fault-tolerant quantum computing would be possible. It
was obvious from the beginning on, in turn, the goal of suitable quantum error
correction would need to be achieved in some way. Without appropriate error cor-
rection techniques, the promise of the Shor-class quantum computer as a com-
putational device potentially outperforming modern classical computers could
quite certainly not be met.

Fortunately, Steane, Shor, and many other researchers showed that error cor-
rection is nevertheless possible and that the above problems can indeed be over-
come [21–24]. The basic idea is that a logical qubit can be protected by encoding
it in a nonlocal manner into several physical qubits. This amounts to a lossless
encoding in longer code words to make the states robust against the effects of
noise, without the need to actually copy the quantum state under consideration
and introduce redundancy in the literal sense.

3 ELEMENTARY QUANTUM ALGORITHMS

In the same scientific paper in which David Deutsch introduced the notion of
the universal quantum computer, he also presented the first quantum algorithm
[25].11 The problem that this algorithm addresses, later referred to as Deutsch’s
problem, is a very simple one. Yet the Deutsch algorithm already exemplifies the

260 J. Eisert and M.M. Wolf

11Quantum Turing machines were first considered by Benioff [26] and developed by
Deutsch [25].

advantages of a quantum computer through skillfully exploiting quantum paral-
lelism. Like the Deutsch algorithm, all other elementary quantum algorithms in
this section amount to deciding which black box, out of finitely many alternatives,
one has at hand. Such a black box is often also referred to as an oracle. An input
may be given to the oracle, one may read out or use the outcome in later steps of
the quantum algorithm, and the objective is to identify the functioning of the
black box. It is assumed that this oracle operation can be implemented with some
sequence of quantum logic gates. The complexity of the quantum algorithm is
then quantified in terms of the number of queries to the oracle.

3.1 Deutsch algorithm

With the help of this algorithm, it is possible to decide whether a function has
a certain property with a single call of the function, instead of the two calls that
are necessary classically. Let

f : {0, 1} → {0, 1} (6)

be a function that has both a one-bit domain and range. This function can
be either constant or balanced, which means that either () ()f f0 1 05 = or

() ()f f0 1 15 = holds. The problem is to find out with the minimal number of
function calls whether this function f is constant or balanced. In colloquial terms,
the problem under consideration may be described as a procedure to test whether
a coin is fake (has two heads or two tails) or genuine.

Classically, it is obvious that two function calls are required to decide which of
the two allowed cases is realized, or, equivalently, what the value of () ()f f0 15

is. One way to compute the function f on a quantum computer is to transform the
state vector of two qubits according to

, , , () .x y U x y x f x yf7 5= (7)

In this manner, the evaluation can be realized unitarily. The above map is what
is called a standard quantum oracle (as opposed to a minimal quantum oracle [27],
which would be of the form ()x f x7H H). The claim now is that by using such an
oracle, a single function call is sufficient for the evaluation of () ()f f0 15 . In order
to show this, let us assume that we have prepared two qubits in the state with state
vector

() , ,H H 0 17=W (8)

where H denotes the Hadamard gate of Section 2. We now apply the unitary Uf
once to this state, and finally apply another Hadamard gate to the first qubit. The
resulting state vector hence reads as (see Figure 8.2)

Quantum Computing 261

Uƒ1

0

H

H H

Figure 8.2. The circuit of the Deutsch algorithm.

() () , .H U H H1 0 1f7 7=Wl (9)

A short calculation shows that HWl can be evaluated to

() () .f f H0 1 1! 5=H H HWl (10)

The second qubit is in the state corresponding to the vector H 1 , which is of
no relevance to our problem. The state of the first qubit, however, is quite
remarkable: encoded is () ()f f0 15 , and both alternatives are decidable with unit
probability in a measurement in the computational basis, since the two state vec-
tors are orthogonal.12 That is, with a single measurement of the state, and notably,
with a single call of the function f of the first qubit, we can decide whether f is
constant or balanced.

3.2 Deutsch–Jozsa algorithm

The Deutsch algorithm does not yet imply superiority of a quantum computer
as compared with a classical computer, as far as query complexity is concerned.
After all, it merely requires one function call instead of two. The situation is dif-
ferent in the case of the extension of the Deutsch algorithm known as Deutsch-
Jozsa algorithm [29]. Here, the task is again to find out whether a function is
constant or balanced, but f is now a function

f : {0, 1}N → {0, 1}, (11)

where N is some natural number. The function is guaranteed to be either con-
stant, which now means that either f (i) = 0 for all i = 0,..., 2N − 1 or f (i) = 1 for
all i, or balanced. The function is said to be balanced if the image under f takes
the value 1 as many times as it takes the value 0. The property of being balanced
or constant can be said to be a global property of several function values. It is a
promised property of the function, which is why the Deutsch–Jozsa algorithm is
being classified as a promise algorithm. There are only two possible black boxes
available, and the tasks is to find out which one is realized.

It is clear how many times one needs to call the function on a classical com-
puter: the worst-case scenario is that after 2 2N function calls, the answer has
been always 0 or always 1. Hence, 2 2 1N + function calls are required to know
with certainty whether the function is balanced or constant (a result that can be
significantly improved if probabilistic algorithms are allowed for). Quantum
mechanically, again, a single function call is sufficient. Similarly to the above sit-
uation, one may prepare N + 1 qubits in the state with state vector

, , , ,H 0 0 1()N 1 f=W 7 + (12)

and apply to it the unitary Uf as in Eq. (7), acting as an oracle, and apply H 1N 77

to the resulting state, to obtain (see Figure 8.3)

() , , , .H U H 0 0 11 ()N
f

N 17 f=W 7 7 +l (13)

262 J. Eisert and M.M. Wolf

12Note that the algorithm presented here is not quite the same as in the original paper by
Deutsch, which allowed for an inconclusive outcome in the measurement. This deterministic
version of the Deutsch algorithm is due to Cleve, Ekert, Macchiavello, and Mosca [28].

In the last step, one performs a measurement on the first N qubits in the com-
putational basis. In effect, one observes that if the function f is constant, one
obtains the measurement outcome corresponding to � 0, ..., 0〉 with certainty. For
any other output, the function is balanced. So again, the test for the promised
property can be performed with a single query, instead of 2N/2 + 1 classically.13

In the end, the performance of the Deutsch–Jozsa algorithm is quite impres-
sive. If there is any drawback to it, it is that, unfortunately, the algorithm is to
some extent artificial in nature and lacks an actual practical application emerging
in a natural context. The astonishing difference in the number of queries in the
quantum and classical case also disappears if classically probabilistic algorithms
are allowed for: in fact, if we use a probabilistic algorithm, a polynomial number
of queries achieves an exponentially good success probability.

3.3 Simon’s algorithm

Simon’s problem is an instance of an oracle problem that is hard classically,
even for probabilistic algorithms, but tractable for quantum computers [32]. The
task is to find the period p of a certain function f : {0, 1}N → {0, 1}N, which is
promised to be 2-to-1 with f(x) = f(y) if and only if y x p5= . Here, x and y denote

Quantum Computing 263

0

1

0

0

0

UfH

HH

H H

H H

H H

13A number of related problems show very similar features. In the Bernstein–Vazirani algorithm
[30], once again a function f : {0, 1}N → {0, 1} is given, promised to be of the form

f(x) = ax (14)

for a, x ∈ {0, 1}N for some natural number N. ax denotes the standard scalar product ax = a0x0
+ ... + a2N−1 x2N−1. How many measurements are required to find the vector a of zeros and
ones? Classically, one has to perform measurements for all possible arguments, and in the end
solve a

system of linear equations. With the standard oracle , , ()x y x f x y7 5 at hand, in its

quantum version in the Bernstein–Vazirani algorithm, only a single call of the oracle is required.
Although it has been convincingly argued that one does not have to evoke the metaphor of quan-
tum parallelism to interpret the functioning of the quantum computer in the Bernstein–Vazirani
problem – the difference from quantum to classical lies rather in the ability to reverse the action of
a CNOT gate by means of local operations on the control and target qubits – the surprisingly
superior performance of the quantum algorithm to its classical counterpart is self-evident.

Figure 8.3 The circuit of the Deutsch–Jozsa algorithm.

binary words of length N, where 5 now means bitwise addition modulo 2. The
problem can be stated as a decision problem as well, and the goal would then be
to decide whether or not there is a period, i.e., whether f is 2-to-1 or 1-to-1.

Classically the problem is hard, since the probability of having found two
identical elements x and y after 2N/4 queries is still less than 2−N/2. Simon’s quan-
tum solution is the following: start with a state vector ()H 0 0N N7 7

and run the
oracle once, yielding the state vector 2−N/2 ∑x �x〉� f (x)〉. Then measure the second
register.14 If the measurement outcome is f(x0), then the state vector of the first
register will be

().x x p
2

1
0 0 5+ (15)

Application of a Hadamard gate to each of the N remaining qubits leads to

() () y
2

1 1 1()/
()

N
x y x p y

y1 2
0 0- + -$ 5 $

+ ! a k (16)

() .y
2

1 1()/N
x y

p y1 2 0
0= - $

$- =
! (17)

If we finally measure the first register in computational basis, we obtain a
value y such that y p 0$ = modulo 2. Repeating this procedure in order to get N −
1 linearly independent vectors y1, ..., yN−1, we can determine p from the set of
equations y p 0i $ =# -. To this end we have to query the oracle ()O N times.15

Hence, we get an exponential speedup compared with any classical algorithm.
And in contrast to the Deutsch–Jozsa algorithm, this exponential gap remains if
we allow for probabilistic classical algorithms.16 Simon’s algorithm has much in
common with Shor’s algorithm: they both try to find the period of a function,17

both yield an exponential speedup, and both make use of classical algorithms in
a post-processing step. Actually, Shor’s work was inspired by Simon’s result.

4 GROVER’S DATABASE SEARCH ALGORITHM

The speedup due to the quantum algorithms presented for the Deutsch-Jozsa
and Simon problems is enormous. However, the oracle functions are constrained
to comply with certain promises, and the tasks considered hardly appear in prac-
tical applications. In contrast, Grover’s algorithm deals with a frequently appear-
ing problem [33]: database search.

Assume we have an unsorted list and want to know the largest element, the
mean, whether there is an element with certain properties, or the number of such
elements. All these are common problems or necessary subroutines for more com-

264 J. Eisert and M.M. Wolf

14Note that this step is not even necessary – it is merely pedagogical.
15This symbol is the “big-O” Landau symbol for the asymptotic upper bound. In the rest of
this chapter, this notation will be used even if the asymptotic behavior could be specified more
precisely.
16Simon’s problem is an instance of an oracle problem relative to which BPP≠BQP. That is, clas-
sical and quantum polynomial-time complexity classes for bounded error probabilistic algo-
rithms differ relative to Simon’s problem.
17Whereas Simon’s problem is to find a period in ()Z N

2 , Shor’s algorithm searches for one
in Z2N .

plex programs. Due to Grover’s algorithm, all these problems in principle admit
a typically quadratic speedup compared with classical solutions. Such an
improvement in performance might not seen very spectacular; however, the prob-
lems to which it is applicable are quite numerous,18 and the progress from ordi-
nary Fourier transform to the FFT has already demonstrated how a quadratic
speedup in an elementary routine can boost many applications.

Consider the problem of searching a marked element x0 ∈ {1,, N} within
an unsorted database of length N = 2n. Whereas classically we have to query our
database ()O N times in order to identify the sought element, Grover’s algorithm
will require only ()O N trials. Let the database be represented by a unitary19

Ux0 = 1 − 2 �x0〉 〈x0�, (18)

which flips the sign of �x0〉 but preserves all vectors orthogonal to �x0〉. The first
step of the algorithm is to prepare an equally weighted superposition of all

basis states
N

x1
x

=H HW ! . As we have seen previously, this step can be

achieved by applying N Hadamard gates to the state vector �0〉. Next, we apply the
Grover operator

G = UY Ux0, UY = 2 �W〉 〈W � − 1 (19)

to the state vector �W〉. Geometrically, the action of G is to rotate �Y 〉 towards �x0〉
by an angle 2 j, where sin x N10= ={ W . The idea now is to iterate this

rotation k times until the initial state is close to �x0〉, i.e.,

Gk�W 〉 ≈ �x0〉 (20)

Measuring the system (in computational basis) will then reveal the value of x0
with high probability.

So, how many iterations do we need? Each step is a 2 j -rotation, and the ini-
tial angle between �W 〉 and �x0〉 is p/2 − j.20 Using that for large N sin ϕ ≈ ϕ, we
see that k N 4.r rotations will do the job, and the probability of obtaining
a measurement outcome different from x0 will decrease as (/)O N1 . Since every
step in the Grover iteration queries the database once, we need only ()O N
trials compared with ()O N in classical algorithms. To exploit this speedup, we
need of course an efficient implementation not only of the database-oracle Ux0

but
also of the unitary UY. Fortunately, the latter can be constructed out of

()logO N elementary gates.
What if there are more than one, say M, marked elements? Using the equally

weighted superposition of all the respective states instead of �x0〉, we can essen-
tially repeat the above argument and obtain that (/)O N M queries are required
in order to find one out of the M elements with high probability. However, per-
forming further Grover iterations would be overshooting the mark: we would
rotate the initial state beyond the sought target, and the probability for finding a

Quantum Computing 265

18For instance, the standard solution to all NP-complete problems is doing an exhaustive search.
Hence, Grover’s algorithm would speed up finding a solution to the traveling salesman, the
Hamiltonian cycle, and certain coloring problems.
19�x0〉 〈x0� means the projector onto the vector �x0〉. That is Ux0 �x〉 = (−1) dx, x0 �x〉.

20This clarifies why we start with the state vector �Y 〉: the overlap �〈Y �x0〉� does not depend on x0.

marked element would rapidly decrease again. If we initially do not know the
number M of marked elements, this problem is, not serious, however. As long as
M N% , we can still gain a quadratic speed-up by simply choosing the number of
iterations randomly between 0 and /N 4r . The probability of finding a
marked element will then be close to 1/2 for every M. Notably, Grover’s algo-
rithm is optimal in the sense that any quantum algorithm for this problem will
necessarily require ()O N M queries [34].

5 EXPONENTIAL SPEED-UP IN SHOR’S
FACTORING ALGORITHM

Shor’s algorithm [2] is without doubt not only one of the cornerstones of
quantum information theory but also one of the most surprising advances in the
theory of computation itself: a problem that is widely believed to be hard becomes
tractable by refering to (quantum) physics – an approach completely atypical
for the theory of computation, which usually abstracts away from any physical
realization.

The problem Shor’s algorithm deals with is factorization, a typical NP prob-
lem. Consider for instance the task of finding the prime factors of 421301. With
pencil and paper, we might well take more than an hour to find them. The inverse
problem, the multiplication 601 × 701, can, however, be solved in a few seconds,
even without having pencil and paper at hand.21 The crucial difference between
the two tasks of multiplication and factoring is, however, how the degree of diffi-
culty increases with the length of the numbers. Whereas multiplication belongs to
the class of “tractable” problems for which the required number of elementary
computing steps increases polynomially with the size of the input, every known
classical factoring algorithm requires an exponentially increasing number of
steps. This is what is meant when we say that factoring is an “intractable” or
“hard” problem. In fact, it is this discrepancy between the complexity of the fac-
toring problem and its inverse that is exploited in the most popular public
key encryption scheme based on RSA -its security heavily relies on the assumed
difficulty of factoring. In a nutshell, the idea of Shor’s factoring algorithm is the
following:
1. Classical part: Using some elementary number theory, one can show that the

problem of finding a factor of a given integer is essentially equivalent to deter-
mining the period of a certain function.

2. QFT for period-finding: Implement the function from step (1) in a quantum
circuit and apply it to a superposition of all classical input states. Then per-
form a discrete quantum Fourier transform (QFT) and measure the output.
The measurement outcomes will be probabilistically distributed according
to the inverse of the sought period. The latter can thus be determined (with
certain probability) by repeating the procedure.

266 J. Eisert and M.M. Wolf

21Actually, it takes eleven seconds for a randomly chosen Munich schoolboy at the age of 12 (the
sample size was one).

3. Efficient implementation: The crucial point of the algorithm is that the QFT
as well as the function from step (1) can be efficiently implemented, i.e., the
number of required elementary operations grows only polynomially with
the size of the input. Moreover, the probability of success of the algorithm can
be made arbitrarily close to 1 without exponentially increasing the effort.
Clearly, the heart of the algorithm is an efficient implementation of the QFT.

Since Fourier transforms enter into many mathematical and physical problems,
one might naively expect an exponential speedup for all these problems as well.
However, the outcome of the QFT is not explicitly available but “hidden” in the
amplitudes of the output state, which cannot be measured efficiently. Only
global properties of the function, like its period, can in some cases be determined
efficiently.

Nevertheless, a couple of other applications are known for which the QFT
leads again to an exponential speedup compared with the known classical algo-
rithms. The abstract problem, which encompasses all these applications, is known
as the hidden subgroup problem [1]. Another rather prominent representative of
this type is the discrete logarithm problem. Let us now have a more detailed look
at the ingredients for Shor’s algorithm.

5.1 Classical part

Let N be an odd number we would like to factor and a < N be an integer
that has no nontrivial factor in common with N, i.e., gcd(N, a) = 1. The latter
can efficiently be checked by Euclid’s algorithm.22 A facot of N can then be
found indirectly by determining the period p of the function : � �f N$,
defined as

f(x) = ax mod N. (21)

Hence, we are looking for a solution of the equation ap − 1 = 0 modN. Assuming
p to be even, we can decompose

2 2()() ,moda a a N1 1 1 0p
p p

- = + - = (22)

and therefore either one or both terms 2()a 1
p

! must have a factor in common with
N. Any nontrivial common divisor of N with 2()a 1

p

! , again calculated by Euclid’s
algorithm, yields thus a nontrivial factor of N.

Obviously, the described procedure is only successful if p is even and the final
factor is a nontrivial one. Fortunately, if we choose a at random,23 this case occurs
with probability larger than one half unless N is a power of a prime. The latter
case can, however, be checked again efficiently by a known classical algorithm,
which returns the value of the prime. Altogether, a polynomial time algorithm for
determining the period of the function in Eq. (21) leads to a probabilistic poly-
nomial time algorithm that either returns a factor of N or tells us that N is prime.

Quantum Computing 267

22In (())logO N 3 time.
23For each randomly chosen a, we must again check whether gcd(N, a) = 1. The probability for
this can be shown to be larger than Nlog1 . The total probability of success is thus at least

()log N1 2 .

5.2 Quantum Fourier Transform

The step from the ordinary discrete Fourier transform (based on matrix mul-
tiplication) to the Fast Fourier Transform (FFT) has been of significant impor-
tance for signal and image processing as well as for many other applications in
scientific and engineering computing.24 Whereas the naive way of calculating the
discrete Fourier transform

nc
n

c e1
y x

i xy

x

n 2

0

1

=
=

- r!t (23)

by matrix multiplication takes ()O n2 steps, the FFT requires ()logO n n . The quan-
tum Fourier transform (QFT) [2, 35–37] is in fact a straightforward quantum gen-
eralization of the FFT, which can, however, be implemented using only

(())logO n 2 elementary operations – an exponential speedup!
Let now the computational basis states of q qubits be characterized by the

binary representation of numbers x = ∑i=1
q xi2

i−1 via

�x〉 = �x1,...,xq〉. (24)

That is, in this subsection, x denotes from now on a natural number or zero
and not a binary word. Then for n = 2q, the QFT acts on a general state vector
of q qubits as c x c yx yyx

7H H!! t . This transformation can be implemented
using only two types of gates: the Hadamard gate and conditional phase gates Pd ,
acting as

, , ,a b a b e i 2,a b
d

27
d r+ (25)

which rotate the relative phase conditionally by an angle p2−d, where d is the “dis-
tance” between the two involved qubits.

Figure 8.4 shows the quantum circuit, which implements the QFT on q = 3
qubits. The extension of the circuit to more than three qubits is rather obvious
and since q(q + 1)/2 gates are required, its complexity is () (())O O logq n2 2= . Being
only interested in an approximate QFT, we could reduce the number of gates even
further to ()O logn by dropping all phase gates Pd with d ≥ m. Naturally, the accu-
racy will then depend on m.25

268 J. Eisert and M.M. Wolf

24Although FFT is often attributed to Cooley and Tukey in 1965, it is now known that by 1805
Gauss had already used the algorithm to interpolate the trajectories of asteroids [38].
25An e-approximation of the QFT (in the 2-norm) would require (())logO q q f operations,
i.e., m is of the order log (q/e) (cf. [35]).

x1

x2

x3

y3

y2

y1

P1H P2

H P1

H

Figure 8.4 The circuit of a discrete quantum Fourier transform on three qubits. The gate Pd
adds a conditional relative phase p/2d, where d is the distance between the two involved qubits
in the circuit.

5.3 Joining the pieces together

Let us now sketch how the QFT can be used to compute the period p of the
function in Eq. (21) efficiently. Consider two registers of q qubits each, where 2q

= n ≥ N2 and all the qubits are in the state vector �0〉 initially. Applying a

Hadamard gate to each qubit in the first register yields ,
n

x1 0
x! . Now suppose

we have implemented the function in Eq. (21) in a quantum circuit that acts as
, , ()x x f x0 7 , where x is taken from �n. Applying this to the state vector and

then performing a QFT on the first register, we obtain

, () .n y f xe1
,

n
i xy

x y

n 2

0

1

=

- r! (26)

what will the distribution of measurement outcomes look like if we now measure
the first register in computational basis? Roughly speaking, the sum over x will
lead to constructive interference whenever y/n is close to a multiple of the inverse
of the period p of f, and will yield destructive interference otherwise. Hence, the
probability distribution for measuring y is sharply peaked around multiples of
n/p, and p itself can be determined by repeating the whole procedure ()O logN
times.26 At the same time, the probability of success can be made arbitrary close
to 1. In the end, we can easily verify whether the result, the obtained factor of N,
is valid or not.

What remains to be shown is that the map

, , () , () modx x f x f x a N0 x
7 = (27)

can be implemented efficiently. This can be done by repeatedly squaring in order
to get a2j mod N and then multiplying a subset of these numbers according to the
binary expansion of x. This requires ()O logN squarings and multiplications of
log N-bit numbers. For each multiplication, the “elementary-school algorithm”
requires (())O logN 2 steps. Hence, by implementing this simple classical algo-
rithm on our quantum computer, we can compute f (x) with (())O logN 3 ele-
mentary operations. In fact, this part of performing a standard classical
multiplication algorithm on a quantum computer is the bottleneck in the quan-
tum part of Shor’s algorithm. If there could be a more refined quantum modular
exponentiation algorithm, we could improve the asymptotic performance of the
algorithm.27

Altogether, the quantum part of Shor’s factoring algorithm requires on the
order (log N)3 elementary steps, i.e., the size of the circuit is cubic in the length of
the input. As described above, additional classical preprocessing and postpro-
cessing is necessary in order to obtain a factor of N. The time required for the

Quantum Computing 269

26For the cost of more classical postprocessing, it is even possible to reduce the expected num-
ber of required trials to a constant (cf. [2]).
27In fact, modular exponentiation can be done in (())log log log loglog logO N N N2 time
by utilizing the Schönhagen–Strassen algorithm for multiplication [39]. However, this is again a
classical algorithm, first made reversible and then run on a quantum computer. If there exists a
faster quantum algorithm, it would even be possible that breaking RSA codes on a quantum
computer is asymptotically faster than the encryption on a classical computer.

classical part of the algorithm is, however, polynomial in log N as well, such that
the entire algorithm does the job in polynomial time. In contrast, the running
time of the number field sieve, which is currently the best classical factoring

algorithm, is [(() ())]Oexp log log logN N3

1

3

2

. Moreover, it is widely believed that
factoring is a classically hard problem, in the sense that no classical polynomial
time algorithm exists. However, it is also believed that proving the latter conjec-
ture (if it is true) is extremely hard, since it would solve the notorious P NP=

?

problem.

6 ADIABATIC QUANTUM COMPUTING

Shor’s factoring algorithm falls into a certain class of quantum algorithms,
together with many other important algorithms, such as the algorithm for com-
puting orders of solvable groups [40] and the efficient quantum algorithm for
finding solutions of Pell’s equation [41]: it is an instance of a hidden subgroup
problem. In fact, it has turned out in recent years that it appears difficult to leave
the framework of hidden subgroup problems and to find novel quantum algo-
rithms for practically relevant problems. This motivates the quest for entirely new
approaches to finding such new algorithms. The algorithm of [42] based on quan-
tum random walks [43] is an important example of such a new approach, although
the problem it solves does not appear in a particularly practical context. Another
approach is the framework of adiabatic quantum algorithms:

In 2000, Farhi, Goldstone, Gutmann, and Sipser introduced a new concept to
the study of quantum algorithms, based on the adiabatic theorem of quantum
mechanics [44]. The idea is the following: let :{ , }f 0 1 N IR be a cost function
for which we would like to find the global minimum, assumed to be in x ∈ {0, 1}N.
In fact, any local combinatorial search problem can be formulated in this way. For
simplicity, suppose that this global minimum is unique. Introducing the problem
Hamiltonian

() ,H f z z z
,

T

z 0 1
N

=

!

!" ,
(28)

the problem of finding the x ∈ {0, 1}N where f attains its minimum amounts to
identifying the eigenstate �x〉 of HT corresponding to the smallest eigenvalue f (x),
i.e., the ground state energy associated with HT. But how does one find the ground
state in the first place? The key idea is to consider another Hamiltonian, H0, with
the property that the system can easily be prepared in its ground state, which is
again assumed to be unique. One then interpolates between the two
Hamiltonians, for example linearly:

() () ,H t T
t H T

t H1T 0= + - (29)

with t ∈ [0, T], where T is the run time of the adiabatic quantum algorithm. This
Hamiltonian governs the time evolution of the quantum state of the system from
time t = 0 until t = T. According to the Schrödinger equation, the state vector
evolves as i∂t�Y(t)〉 = H(t)�Y(t)〉. In a last step, one performs a measurement in the
computational basis. If one obtains the outcome associated with �x〉, then the
measurement result is just x, the minimal value of the function f. In this case

270 J. Eisert and M.M. Wolf

the probabilistic algorithm is successful,—an outcome that happens with success
probability p = |〈x|Y (T)〉|2.

What are the requirements for such an algorithm to work, i.e., to result in x
with a large success probability? The answer to this question is provided by the
quantum adiabatic theorem: If the Hamiltonian H(t) exhibits a nonzero spectral
gap between the smallest and the second-to-smallest eigenvalue for all t ∈ [0, T],
then the final state vector �Y(T)〉 will be close to the state vector �x〉 correspon-
ding to the ground state of HT , if the interpolation happens sufficiently slowly,
meaning that T is sufficiently large. The initial state is then said to be adiabatically
transferred with arbitrary accuracy into the desired ground state of the problem
Hamiltonian, which encodes the solution to the problem. The typical problem of
encountering local minima that are distinct from the global minimum can in prin-
ciple not even occur. This kind of quantum algorithm is referred to as an adia-
batic algorithm.

Needless to say, the question is how large a time T has to be chosen. Let us
denote with

()min E E
[,]

() ()

t T t t0

0 1= -D
!

(30)

the minimal spectral gap over the time interval [0, T] between the smallest Et
(0)

and the second-to-smallest eigenvalue Et
(1) of H(t), associated with eigenvectors

�Yt
(0)〉 and �Yt

(1)〉, respectively, and with

() .max H t
[,]

() ()

t T t t t0

1 02=H W W
!

(31)

Then, according to the quantum adiabatic theorem, the success probability
satisfies

p = �〈YT
(0)�Y(T)〉�2 ≥ 1 − e2 (32)

if

.2e $
D
H (33)

The quantity Q is typically polynomially bounded in N for the problems one
is interested in, so the crucial issue is the behavior of the minimal gap D. Time
complexity is now quantified in terms of the run time T of the adiabatic algo-
rithm. If one knew the spectrum of H(t) at all times, then one could immediately
see how fast the algorithm could be performed. Roughly speaking, the larger the
gap, the faster the algorithm can be implemented. The problem is that the spec-
trum of H(t), which can be represented as a 2N × 2N matrix, is in general
unknown. Even to find lower bounds for the minimal spectral gap is extraordi-
narily difficult, unless a certain symmetry highly simplifies the problem of find-
ing the spectrum. After all, in order for the Hamiltonian to be “reasonable,” it is
required to be local, i.e., it is a sum of operators that act only on a bounded num-
ber of qubits in N. This restriction is very natural, since it means that the physi-
cal interactions involve always only a finite number of quantum systems [45].
Note that, as an indication whether the chosen run time T for an adiabatic algo-
rithm is appropriate, one may start with the initial Hamiltonian and prepare the
system in its ground state, interpolate to the problem Hamiltonian and – using the
same interpolation – back to the original Hamiltonian [46]. A necessary condition

Quantum Computing 271

for the algorithm to have been successful is that, finally, the system is to a good
approximation in the ground state of the initial Hamiltonian. This is a method
that should be accessible to an experimental implementation.

Adiabatic algorithms are known to reproduce the quadratic speedup in the
Grover algorithm for unstructured search problems [47]. But adiabatic algorithms
can also be applied to other instances of search problems: In [48], adiabatic algo-
rithms have been compared with simulated annealing algorithms, finding settings
in which the quantum adiabatic algorithm succeeded in polynomial time but sim-
ulated annealing required exponential time. There is, after all, some numerical
evidence that for structured NP hard problems like MAX CLIQUE and 3-SAT,
adiabatic algorithms may well offer an exponential speedup over the best classi-
cal algorithm, again assuming that P ≠ NP [44]. In fact, it can be shown that adi-
abatic algorithms can be efficiently simulated on a quantum computer based on
the quantum circuit model, provided that the Hamiltonian is local in the above
sense (see also the subsequent section). Hence, whenever an efficient adiabatic
algorithm can be found for a specific problem, this implies an efficient quantum
algorithm [45]. The concept of adiabatic algorithms may be a key tool to estab-
lish new algorithms beyond the hidden subgroup problem framework.

7 SIMULATING QUANTUM SYSTEMS

A typical application of computers is that of being workhorses for physicists
and engineers who want to simulate physical processes and compute practically
relevant properties of certain objects from the elementary rules of physics. If
many particles are involved, the simulation might become cumbersome or even
impossible without exploiting serious approximations. This is true classically as
well as quantum mechanically28: simulating turbulences is not necessarily easier
than dealing with high temperature superconductors. There is, however, a crucial
difference between classical and quantum systems regarding how many are “many
particles.” Whereas the dimension of the classical phase space grows linearly with
the number of particles, the size of the quantum mechanical Hilbert space
increases exponentially. This fact implies that the exact simulation of an arbitrary
quantum system of more than 25 qubits is already no longer feasible on today’s
computers. Consider, for instance, a closed system of N (say 25) qubits whose time
evolution is determined by a Hamiltonian H via Schrödinger dynamics,

�Y(t)〉 = e−iHt�Y(0)〉. (34)

Since H is a Hermitian 2N × 2N matrix, it is, although often sparse, extremely hard
to exponentiate – for N = 25, it has about 1015 entries!

Once we have the building blocks for a universal quantum computer of N
qubits, i.e., a universal set of gates, we can in principle simulate the dynamics of
any closed N-qubit system. That is, we can let our quantum computer mimic the
time evolution corresponding to any Hamiltonian we were given by some theorist

272 J. Eisert and M.M. Wolf

28Even the types of differential equations we have to solve can be very similar. The classical dif-
fusion equation is, for instance, essentially a real version of the quantum mechanical
Schrödinger equation.

and then perform some measurements and check whether the results, and with
them the given Hamiltonian, really fit the physical system in the laboratory.
Despite the naivete of this description, one crucial point here is whether or not
the simulation can be implemented efficiently on our quantum computer. In fact,
it can, as long as the Hamiltonian

H Hl
l

L

=! (35)

is again a sum of local Hamiltonians Hl acting only on a few particles.29 The basic
idea leading to this result is the following [49]:

The evolution according to each Hl can be easily simulated, i.e., with an over-
head that does not grow with N. Since the different Hl in general do not commute,

we have e el
iH t iHtl !P - - . However, we can exploit Trotter’s formula

lim e e
k

iH
k

t

l

L
k

iHt

1

l =
" 3

-

=

-%f p (36)

in order to move in the direction in Hilbert space corresponding to H by con-
catenating many infinitesimal moves along H1, H2, To use Lloyd’s metaphor,
this is like parallel parking with a car that can only be driven forward and back-
ward. In fact, this process is part of everyday life not only for car drivers but also
for people, say, working in nuclear magnetic resonance, where sophisticated pulse
sequences are used in order to drive a set of spins to a desired state. The impor-
tant point, however, is that in such a way e−iHt can be efficiently approximated
with only a polynomial number of operations. Moreover, the number of required
operations scales as (())O 1poly f , with the maximal tolerated error e.

The evolution of closed discrete systems is not the only thing that can be sim-
ulated efficiently. If, for instance, the terms Hl in Eq. (35) are tensor products and
L is a polynomial in N, this simulation also works [1]. Moreover, the evolution of
open systems; approximations of systems involving continuous variables [50, 51];
systems of indistinguishable particles, in particular fermionic systems [52], and
equilibration processes [53] have been studied as well.

Since the simulation of quantum systems has already become an interesting
application for a few tens of qubits, we will see it in the laboratories long before
a “Shor class” quantum computer will be built that strikes classical factoring
algorithms (and thus requires thousands of qubits) [54]. In fact, we do not even
need a full quantum computer setup, i.e., the ability to implement a universal set
of gates, in order to simulate interesting multipartite quantum systems [55].

8 QUANTUM ERROR CORRECTION

Quantum error correction aims at protecting the coherence of quantum states
in a quantum computation against noise. This noise is due to some physical inter-
action between the quantum systems forming the quantum computer and their
environment—an interaction that can never be entirely avoided. It turns out
that reliable quantum computation is indeed possible in the presence of noise,

Quantum Computing 273

29That is, every Hl involves at most a number of particles independent of N.

a finding that was one of the genuinely remarkable insights in this research field.
The general idea of quantum error correction is to encode logical qubits into a
number of physical qubits. The whole quantum computation is hence performed
in a subspace of a larger dimensional Hilbert space, called the error correcting
code subspace. Any deviation from this subspace leads to an orthogonal error sub-
space, and can hence be detected and corrected without losing the coherence of
the actual encoded states [56]. Quantum error correcting codes have the ability to
correct a certain finite-dimensional subspace of error syndromes. These error
syndromes could, for example, correspond to a bit-flip error on a single qubit.
Such bit-flip errors are, however, by no means the only type of error that can
occur to a single qubit. In a phase flip error, the relative phase of �0〉 and �1〉 is
interchanged. Quantum error-correcting codes can be constructed that correct for
such bit-flip and phase errors or both. In a quantum computing context, this
error correction capability is still not sufficient. It is the beauty of the theory of
quantum error correcting codes that indeed, codes can be constructed that have
the ability to correct for a general error on a single qubit (and for even more gen-
eral syndromes). What this means we shall see after our first example.

8.1 An introductory example

The simplest possible encoding that protects at least against a very restricted
set of errors is the following: Given a pure state of a single qubit with state vec-
tor �Y 〉 = a �0〉 + b �1〉, this state can be protected against bit-flip errors of single
qubits by means of the repetition encoding , ,0 0 0 07 and , ,1 1 1 17 , such
that �Y 〉 is encoded as

, , , , .0 1 0 0 0 1 1 17= + +a b a bW (37)

This encoding, the idea of which dates back to work by Peres as early as
1985 [57], can be achieved by means of two sequential CNOT gates to qubit sys-
tems initially prepared in �0〉. Note that this encoding does not amount to a
copying of the input state, which would be impossible anyway. If an error
occurs that manifests itself in a single bitflip operation to any of the three
qubits, one can easily verify that one out of four mutually orthogonal states is
obtained: these states correspond to no error at all, and a single bit flip error to
any of the three qubits. This encoding, while not yet being a quantum error-
correcting code in the actual sense, already exemplifies an aspect of the theory:
With a subsequent measurement that indicates the kind of error that has
occurred, no information can be inferred about the values of the coefficients a
and b. A measurement may hence enquire about the error without learning
about the data.

While already incorporating a key idea, this encoding is nevertheless not a par-
ticularly good one to protect against errors: If a different error than a bit-flip
occurs, then the measurement followed by an error correction cannot recover the
state. Moreover, and maybe more seriously, the state cannot be disentangled from
the environment, if the error is due to some physical interaction entangling the
state with its environment. Let us consider the map involving the qubit undergo-
ing the error and the environment, modeled as a system starting with state vector
�Y0〉, according to

274 J. Eisert and M.M. Wolf

, , , , , ,and0 1 1 00 0 0 17 7W W W W (38)

such that the environment becomes correlated with the qubit undergoing the
error. This process is typically referred to as decoherence. The above encoding
cannot correct for such an error and recover the original state. Such an entan-
gling error, however, corresponds instead to the generic situation happening with
realistic errors. In Preskill’s words, the manifesto of quantum error correction is
to fight entanglement with entanglement [56]. What he means is that the
unwanted but unavoidable entanglement of the system with its environment
should be avoided by means of skillfully entangling the systems in a quantum
error-correcting code, followed by appropriate correction.

8.2 Shor code

There are, notably, error correcting codes that can correct for any error
inflicted on a single qubit of the code block. That such quantum error correcting
codes exist was first noted by Steane and Shor in independent seminal work in
1995 and 1996 [21, 23]. Shor’s 9 qubit code is related to the above repetition code
by encoding again each of the qubits of the codewords into three other qubits,
according to (, , , ,)0 0 0 0 1 1 1 27 + and (, , , ,)1 0 0 0 1 1 1 27 - . If effect,
in the total encoding, each logical qubit is encoded in the state of nine physical
qubits, the codewords being given by

(, , , ,)(, , , ,)(, , , ,) ,0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 87 + + +H H H H H H H (39)

(, , , ,)(, , , ,)(, , , ,) ,1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 87 - - -H H H H H H H (40)

In a sense, the additional encoding of the repetition code mends the weak-
nesses of the repetition code itself. Such an encoding of the encoding is called a
concatenation of codes, which plays an important role in quantum error correc-
tion. What errors can it now correct? If the environment is initially again in a pure
state associated with state vector �Y0〉, then the most general error model leads to
the joint state vector

() () ()

() () ,

0 1 0 1 1 0

0 1 1 0

0 0 1

2 3

+ = + + +

+ - + -

a b a b a b

a b a b

W W W

W W
(41)

where no assumption is made concerning the state vectors �Y0〉, �Y1〉, and �Y2〉,
and �Y3〉. One particular instance of this map is the one where

�Y0〉 = �Y2〉 = �0〉, �Y1〉 = �1〉, �Y3〉 = −�1〉. (42)

One can convince oneself that when disregarding the state of the environment
(reflected by the partial trace), this error is a quite radical one: in effect, it is as if
the qubit is discarded right away and replaced by a new one, prepared in �0〉. The
key point now is that the Shor code has the ability to correct for any such error if
applied to only one qubit of the codeword, and to completely disentangle the
state again from the environment. This includes the complete loss of a qubit, as
in the previous example. In a sense, one might say that the continuum of possible
errors is discretized, leading to orthogonal error syndromes that can be reliably
distinguished with measurements, and then reliably corrected. But then, one

Quantum Computing 275

might say, typical errors affect not only one qubit in such a strong manner but
rather all qubits of the codeword. Even then, if the error is small and of the order
O (e) in e, characterizing the fidelity of the affected state versus the input, after
error correction it can be shown to be of the order O (e 2).

8.3 Steane code

Steane’s 7-qubit quantum error-correcting code is a good example of how
the techniques and the intuition from classical error correction can serve as a
guideline to construct good quantum error-correcting codes [21, 22]. Steane’s
code is closely related to a well-known classical code, the [7, 4, 3]-Hamming code.
The starting point is the parity check matrix of the [7, 4, 3]-Hamming
code, given by

.h
0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

=

J

L

K
K
K

N

P

O
O
O

(43)

The codewords of the classical Hamming code are all binary words u of
length 7 that satisfy huT = 0, which is meant as addition in �2. It is a straightfor-
ward exercise to verify that there are in total 16 legitimate codewords (the kernel
of h is four-dimensional). In the classical setting, if at most a single unknown bit-
flip error occurs to a word u, leading to the word u′, it can be easily detected: if
the error happens on the ith bit, then, from the very construction of h, hu′T is
nothing but a binary representation of i, indicating the position of the error.
If hu′T = 0, one can conclude that u′ = u, and no error has occurred.

The 7-qubit Steane code draws from this observation. It is now defined as fol-
lows: For the logical �0〉, the quantum codeword is the superposition of the eight
codewords of the classical Hamming code with an odd number of 0s, represented
in terms of state vectors. The latter term means that the binary word x1,...,x7 is
represented as �x1,...,x7〉. The logical �1〉 is encoded in a similar state vector corre-
sponding to an even number of 0s. That is,

(, , , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , ,)

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1

0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0

1 1 0 0 1 1 0 1 1 0 1 0 0 1 8

7 + +

+ + +

+ +

(44)

(, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , .

1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 0 0 1 1 0 0

1 1 1 0 0 0 0 1 1 1 1 1 1 1 8

7 + +

+ + +

+ +

(45)

The central idea now is that, in the quantum situation, one can make use of
the idea of how the syndrome is computed in the classical case. When appending
a system consisting of three qubits, the transformation , , h0 0 0 7y y yl l l

can be realized in a unitary manner, and the measurement of the state of the
additional qubits reveals the syndrome. But this procedure, one might be tempted
to think, is merely sufficient to correct for bit-flip errors from the construction of
the [7, 4, 3]-Hamming code. This is not so, however: a rotation of each qubit

276 J. Eisert and M.M. Wolf

of the quantum codewords with a Hadamard gate H, as described in Section 2
with () ()0 0 1 2 1 0 1 2and7 7+ - , will yield again a superposition of
binary words. In fact, it is again a superposition of Hamming codewords, and bit-
flip errors in this rotated basis correspond to phase flips in the original basis. So
applying the same method again will in fact detect all errors. The encodings of the
Shor and the Steane code are shown in Figure 5.

8.4 CSS and stabilizer codes

The formalism of Calderbank–Shor–Steane (CSS) codes [58, 22] takes the idea
seriously that the theory of linear codes can almost be translated into a theory of
quantum error-correcting codes. Let us remind ourselves what [n, k, d] in the
above notation specifying the classical Hamming code stands for: n is the length
of the code, k the dimension, and d the distance—the minimum Hamming dis-
tance between any two codewords. At most ()O d 1 2- errors can be corrected
by such a code. Any such linear code is specified by its generator matrix G, which
maps the input into its encoded correspondent. The parity check matrix h can be
easily evaluated from this generator matrix. Associated with any linear code is its
dual code with generator matrix hT. The construction of CSS codes is based not
on one but on two classical codes: on both an [n1, k1, d1] code C1 and an [n2, k2,
d2] code C2 with C2 ⊂ C1, such that both the former code and the dual of the lat-
ter code can correct for m errors. The quantum error-correcting code is then con-
structed for each codeword x1 of C1 as a superposition over codewords of C2,
again represented as pure states of qubits.

With this construction, much of the power of the formalism of classical lin-
ear error correcting codes can be applied. It turns out that with such CSS codes,
based on the classical theory, up to m errors can be detected and corrected, indi-
cating that good quantum error-correcting codes exist that can correct for more
than general errors on single qubits. The above Steane code is already an exam-
ple of a CSS code, but one that corrects for only a single error. Is Steane’s 7-qubit
quantum code the shortest quantum code that can correct for a general error to
a single qubit? The answer is no, and it can be shown that five qubits are suffi-
cient, as was first pointed out by Laflamme, Miquel, Paz, and Zurek on the one
hand [24] and by Bennett et al. [59] on the other. What can also be shown, in turn,
is that no even shorter quantum code can exist with this capability. This insight is
important when considering the hardware resources necessary to design a quan-
tum computer incorporating error correction.

This 5-qubit code is a particular instance of a so-called stabilizer code [18].
The stabilizer formalism is a very powerful means to grasp a large class of unitary
quantum operations on states, as well as state changes under measurements in the
computational basis. Essentially, instead of referring to the states themselves,
the idea is to specify the operators that “stabilize the state,” i.e., those opera-
tors the state vector is an eigenvector of with eigenvalue 1. It turns out that it is
often far easier and more transparent to specify these operators than to specify the
state vectors. The power of the stabilizer formalism becomes manifest when con-
sidering the Pauli group, i.e., the group of all products of the Pauli matrices and
the identity with appropriate phases. Based on this stabilizer formalism, an impor-
tant class of stabilizer codes can be constructed that are a genuine generalization

Quantum Computing 277

of the CSS codes and also embody the 9-qubit Shor code. But the significance of
the stabilizer formalism goes much beyond the construction of good quantum
error-correcting codes. The Gottesman-Knill theorem that has been mentioned
previously in Section 2 can, for example, be proved using this formalism.

There is a notable link between stabilizer codes and quantum error-correcting
codes based on graphs. A large class of quantum error-correcting codes can be
constructed based on a graph, where edges, roughly speaking, reflect an interac-
tion pattern between the quantum systems of the quantum codewords [18, 60].
It turns out that these graph codes present an intuitive way of constructing error-
correcting codes, and they exactly correspond to the stabilizer codes. It is an inter-
esting aspect that the graph states [60, 61] associated with graph codes can also
serve a very different purpose: they themselves form a universal resource for
measurement-based one-way quantum computation [62]. In this scheme, a partic-
ular instance of a graph state is initially prepared as a resource for the quantum
computation. Implementing a quantum algorithm amounts to performing meas-
urements on single qubits only (but not necessarily in the computational basis),
thereby realizing an effective unitary transformation on the output qubits.

8.5 Fault-tolerant quantum computation

Very nice, one might say at this point, it is impressive that errors affecting
quantum systems can be corrected. But is there not a crucial assumption hidden
here? Clearly, when one is merely storing quantum states, errors are potentially
harmful, and this danger can be very much attenuated by means of appropriate
quantum error correction. But so far, we have assumed that the encoding and
decoding of the quantum states can be done in a perfectly reliable manner, with-
out errors at all. Given the degree of complexity of the circuits necessary to do
such an encoding (see, e.g., Figure 8.5), amounting essentially to a quantum com-
putation, it does not seem very natural to assume that this computation can be
done without any errors. After all, one has to keep in mind that the whole proce-
dure of encoding and decoding complicates the actual computation and adds to
the hardware requirements.

It was one of the very significant insights in the field that this assumption is,
unrealistic as it is, unnecessary. In the recovery process, errors may be allowed for,
leading to fault-tolerant recovery, as has been shown in seminal work by Shor [63],
with similar ideas having been independently developed by Kitaev [64]. Fault-
tolerant recovery is possible as long as the error rate in this process is sufficiently
low. But then, it might not be optimal to first encode, then later (when appropri-
ate) decode, perform a quantum gate, and then encode the state again. Instead, it
would be desirable to find ways of implementing a universal set of gates in
the space of the encoded qubits itself. This leads to the theory of fault-tolerant
quantum computation. That this is possible has again been shown by Shor [63],
who devised fault-tolerant circuits for two-qubit CNOT gates, rotations, and

three-qubit Toffoli gates acting as , , , ,x y z x y z xy7 5 30. This might still not be

278 J. Eisert and M.M. Wolf

30Note that, quite surprisingly, Toffoli and Hadamard gates alone are already universal for
quantum computation, thereby eliminating the need for general single-qubit rotations [65, 16].

enough: from quantum error correction above, alone, as described it is not clear
how to store quantum information for an arbitrarily long time with high fidelity.
Knill and Laflamme demonstrated that this is possible with concatenated encod-
ing, meaning that the encoded words are encoded again to some degree of hier-
archy, and appropriate error detection and correction are performed [66, 67].
Uniting these ingredients, it became evident that a threshold for the required
accuracy of general fault-tolerant quantum computation can be identified, allow-
ing in principle for arbitrarily long quantum computation with high fidelity.
Several nonequivalent threshold theorems, asking essentially for only a constant
error rate, have been developed that hold under a number of different assump-
tions [56, 68, 64, 18, 67]. Such schemes for achieving reliable quantum computa-
tion at a constant error rate can be achieved with a polylogarithmic overhead in
both the time and space of the computation to be performed. Hence, the addi-
tional cost in depth and size of the quantum circuit is such that the superiority
of quantum algorithms like Grover’s and Shor’s algorithms over their classical
counterparts is essentially preserved.

So, in a nutshell, quantum error correction, together with techniques from
fault-tolerant quantum computation, significantly lessens the threat posed by the
unavoidable decoherence processes from which any quantum computer will suf-
fer. To preserve the coherence of the involved quantum over the whole quantum
computation remains the central challenge of realization. The theory of quantum
error correction, however, shows that the pessimism expressed in the mid 1990s,
culminating in the statement that these daunting problems cannot be overcome as
a matter of principle, was not quite appropriate.

9 HOW TO BUILD A QUANTUM COMPUTER

We have seen so far what purposes a quantum computer may serve and what
tasks it may perform well (better than any classical computer), and we have

Quantum Computing 279

0

0

0

0

0

0

0

0

0

0

0

0

0

0

H

H

H H

H

H

Figure 8.5. The encoding circuits of the Shor (left) and Steane (right) quantum codes. To the
left of the dotted line, the depicted circuit corresponds to the repetition code. The first line
corresponds to the input qubit.

sketched what the underlying computational model is like. Also, ways have been
described to fight the decoherence due to coupling with the environment, and
eventually to the same devices that are designed to perform the readout. The cru-
cial question remains: how can a quantum computer be built? What are the phys-
ical requirements to appropriately isolate a quantum computer from its
environment? What is the physical hardware that can maintain the promise of the
quantum computer as a supercomputing device?

Needless to say, there are no satisfactory answers to these questions so far. On
the one hand, progress has been made in recent years in the experimental con-
trolled manipulation of very small quantum systems that cannot be called other
than spectacular, in a way that was not imaginable not long ago. Quantum gates
have been implemented in the quantum optical context, and with nuclear mag-
netic resonance (NMR) techniques, even small quantum algorithms have been
realized. On the other hand, however, it seems fair to say that a universal quan-
tum computer as a physical device that deserves this name is still in the remote
future. The only thing that seems safe to say is that none of the current experi-
mental efforts probably deals with exactly the physical system that will be used in
an eventual realization of a Shor-class quantum computer. Supposedly, com-
pletely new ways of controlling individual quantum systems will have to be
devised, potentially combining previous ideas from quantum optics and solid
state physics. Any such implementation will eventually have to live up to some
requirements that have perhaps been most distinctly formulated by DiVincenzo
as generic requirements in practical quantum computation [69], (see Figure 8.6).
It is beyond the scope of this chapter to give an introduction to the very rich lit-
erature on physical implementations of quantum computers. After all, this is the
core question that physicists seek to address in this field. Instead, we will sketch
a few key methods that have been proposed as potentially promising or that have
already been demonstrated in experiments.

9.1 Quantum optical methods

Among the most promising methods to date are quantum optical methods
where the physical qubits correspond to cold ions in a linear trap, interacting with
laser beams. A plethora of such proposals have been made, dating back to semi-
nal work by Cirac and Zoller [70]. In the latter proposal, qubits are identified with
internal degrees of freedom of the ions, which are assumed to be two-level sys-
tems for practical purposes. Single qubit operations can be accomplished by
means of a controlled interaction with laser light, shone onto the ions by differ-
ent laser beams that can individually address the ion. The ions repel each other

280 J. Eisert and M.M. Wolf

(i) Scalable physical system with well-characterized qubits
(ii) Ability to initialize the state of the qubits to a simple fiducial state

(iii) Long decoherence times, much longer than the gate operation time
(iv) Universal set of quantum gates
(v) Qubit specific measurement capability

Figure 8.6. The DiVincenzo criteria of what requirements must be met in any physical imple-
mentation of a quantum computer.

by Coulomb interaction, forming a string of ions, with adjacent ions being a cou-
ple of optical wavelengths apart from each other. More challenging, of course, is
to find ways to let two arbitrary qubits interact to realize a two-qubit quantum
gate. This outcome can be achieved by means of exciting the collective motion of
the canonical degrees of freedom of the ions with lasers, i.e., by using the lowest-
level collective vibrational modes. Several refinements of this original proposal
aim at realizing the gates faster, and in a way that does not require extremely low
temperatures or is less prone to decoherence [71]. Such quantum gates have
already been realized in experiments, notably the implementation of two-qubit
quantum gates due to work by Monroe and coworkers [72] with a single ion and
by Blatt and coworkers [73] with a two-ion quantum processor.

Alternatively to using degrees of freedom of motion to let quantum systems
interact, this goal can be achieved by means of the tools of cavity quantum elec-
trodynamics (cavity QED) [74, 75]. The key idea is to store neutral atoms inside
an optical cavity formed, for example, by two optical supermirrors. The inter-
actions required to perform two-qubit gates are moderated by means of the
interaction of the atoms with a single quantized mode of a high-Q optical cav-
ity. In [74] it is assumed that adjacent atoms are separated by a few wavelengths
of the cavity mode, interacting with laser beams in an individual manner
(standing qubits); but atomic beams passing through the cavity have also been
considered, both theoretically and experimentally (flying qubits). Two regimes
can in general be distinguished: the strong coupling limit, where coherent
atom–cavity dynamics dominates cavity losses and spontaneous emission, and
the bad cavity limit, where cavity loss rate is much larger than the atom–cavity
coupling.

Still using a quantum optical setting, but without a quantum data bus in the
closer sense, are proposals that make use of controlled collisions of cold atoms.
This outcome can be realized, for example, with neutral atoms in optical lattices,
where direct control over single quantum systems can be achieved [76].

Not to be confused with the classical optical computer, in the optical quantum
computer the qubits are encoded in the state of field modes of light [77]. The state
is manipulated by means of optical elements such as beam splitters, mirrors,
phase shifts, and squeezers. The advantage – that photons are not very prone to
decoherence – is at the same time the disadvantage, since letting them interact is
difficult, as is realizing strong Kerr nonlinearities without significant losses. Yet
in order to circumvene the latter problem, instead of requiring that a given task
is accomplished with unit probability, one may effectively realize the required
nonlinear interactions by means of measurements of the photon number. This
is possible at the cost of the scheme becoming probabilistic. Notably, Knill,
Laflamme, and Milburn have proposed a scheme for universal quantum compu-
tation employing optical circuits that merely consist of passive linear optical ele-
ments (hence excluding squeezers), together with photon counters that have the
ability to distinguish 0, 1, and 2 photons [78].

Finally, the vibrational modes of molecules can be employed to serve as qubits
in molecular quantum computers [79]. Both single qubit and two-qubit gates can
be implemented in principle by suitably shaped femtosecond laser pulses, the
form of which can be computed by applying techniques from control theory.
Drawbacks are problems related to the scalability of the setup.

Quantum Computing 281

9.2 Solid-state approaches

Solid-state approaches serve as an alternative to quantum optical settings.
Several different systems have been considered so far, including proposals for
quantum dot quantum computers with dipole–dipole coupling. Ideas from solid-
state physics and cavity QED can be combined by considering solid-state quan-
tum computers, where gates can be realized by controlled interactions between
two distant quantum dot spins mediated by the field of a high-Q microcavity [80,
81]. The Kane proposal is concerned with a silicon-based nuclear spin quantum
computer, where the nuclear spins of donor atoms in doped silicon devices corre-
spond to the physical qubits [82]. The appeal of the proposal due to Ladd is that
it sketches a silicon quantum computer that could potentially be manufactured
using current fabrication techniques with semi-conductor technology and current
measurement techniques [83]. Finally, SQUIDs, superconducting quantum inter-
ference devices, with the quantized flux serving as the qubit, could be candidates
for a physical realization of a quantum computer.

9.3 NMR quantum computing

Probably the most progressed technology so far in a sense is bulk ensemble
quantum computation based on nuclear magnetic resonance (NMR) techniques
[84, 85]. This idea is different from those previously described in that no attempt
is made to control the state of individual quantum systems, trapped or confined
in an appropriate way. Instead, the state of nuclear spins of 1020–1023 identical
molecules is manipulated using well-developed tools from NMR technology. Bulk
techniques are used not only because the standard machinery of NMR is avail-
able but also because the nuclear spin state of a single molecule can hardly be
properly prepared. This setup literally allows for quantum computation with a
cup of coffee. Single qubit gates can be realized fairly easily. With appropriate
hand-tailored molecule synthesis and a sophisticated magnetic field pulse
sequence, a 7-qubit NMR quantum computer has been realized that implements
a shortened and simplified version of Shor’s algorithm [85]. However, quantum
computation with bulk NMR techniques comes with a caveat. Although the most
progress has so far been made in this area, it has been convincingly argued that
the scalability of these kinds of proposals is limited by serious problems: notably,
the signal is exponentially reduced in the number of qubits by effective pure-state
preparation schemes in an exponential manner in the number of qubits [31].

10 PRESENT STATUS AND FUTURE PERSPECTIVES

In the information age, where DVDs, wireless LAN, RSA encryption, and
UMTS are the antiquated technologies of tomorrow, quantum information the-
ory aims to understand the old rules of quantum mechanics from the new per-
spective of information theory and computer science. In contrast to some earlier
approaches to a better understanding of quantum mechanics, this approach is very
pragmatic, leaving aside all metaphysical issues of interpretation and transform-
ing former apparent paradoxes into future applications. The most challenging and

282 J. Eisert and M.M. Wolf

outstanding of these is the universal quantum computer. Its potential is not yet
fully understood. At the moment there are essentially two classes of very promis-
ing quantum algorithms: search algorithms based on Grover’s database search
and applications of the quantum Fourier transform like Shor’s factoring and dis-
crete logarithm algorithms.31 In particular, the latter yield an exponential speedup
compared with the best-known classical algorithms. For which other problems
can we expect such a speedup? The killer application would of course be a poly-
nomial-time algorithm for NP-complete problems. Being optimistic, one could
consider results in adiabatic computing as supporting evidence for this desire.
However, the optimality of the quadratic speedup in search algorithms might be
evidence to the contrary. Moderating our optimism a bit, we could try to find effi-
cient quantum algorithms for problems that are believed to be hard classically but
not NP-complete. The hottest candidate among such problems is probably the
graph isomorphism problem, for which, despite considerable effort, no efficient
quantum algorithm has been found so far.

What role does entanglement play in quantum computers? This question is in
general not entirely answered yet. However, if we consider a quantum computer
unitarily acting on a pure input state, then an exponential speedup compared with
classical computers can only be achieved if the entanglement present in interme-
diate states of the computation increases with size of the input [87, 88].32

It appears that computations based on such (rather typical) quantum evolutions
can in general not be simulated efficiently on classical computers.

Let us finally speculate on how a quantum computer will eventually look.
What will be its hardware? In the past, the most successful realization was NMR,
where even small quantum circuits have been implemented. Unfortunately, it has
been convincingly argued that this implementation is not scalable to larger cir-
cuits. For the near future, ion traps and, in particular regarding the simulation of
quantum systems, optical lattices seem to be quite promising, whereas in the
remote future solid-state realizations would be desirable. However, progress is
never smooth:

Where a calculator on the ENIAC is equipped with 18,000
vacuum tubes and weighs 30 tons, computers in the future may
have only 1,000 tubes and perhaps only weigh 1 1/2 tons.
(Popular Mechanics, March 1949)

Quantum Computing 283

31More recent progress in this direction includes polynomial-time quantum algorithms for esti-
mating Gauss sums [86] and solving Pell’s equation [41].
32As shown by Vidal [88], the evolution of a pure state of N qubits can be simulated on a clas-
sical computer by using resources that grow linearly in N and exponentially in the entanglement.
Similarly, the evolution of mixed states, on which the amount of correlation is restricted, can be
efficiently simulated. Note that subexponential speedups as in Grover’s search algorithm could
also be achieved without entanglment, or with a restricted amount of it [89].

REFERENCES

[1] M. Nielsen, I. L. Chuang (2000): Quantum Computation and Information.
Springer: Berlin Heidelberg New York.

[2] P. W. Shor (1994): Proc 35th Annual Symposium on Foundations of
Computer Science, IEEE Press; Shor PW (1997): SIAM J Comp 26:1484.

[3] R. P. Feynman (1996): Feynman lectures on computation. Addison-Wesley,
Reading; Feynman RP (1982): Int J Theor Phys 21:467.

[4] G. E. Moore (1965): Electronics 38:8.
[5] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden (2002): Rev Mod Phys 74:145.
[6] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore (1992): Phys Rev A

46:R6797; Wineland DJ, Bollinger JJ, Itano WM (1994): Phys Rev A 50:67.
[7] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, J. I.

Cirac (1997): Phys Rev Lett 79:3865.
[8] C. H. Bennett, G. Brassard, B. Popescu, J. A. Smolin, W. K. Wootters

(1996): Phys Rev Lett 76:722.
[9] P. Horodecki, R. Horodecki (2001): Quant Inf Comp 1(1):45.

[10] D. Deutsch (1989): Proc R Soc London A 525:73.
[11] B. Schumacher (1995): Phys Rev A 51:2738.
[12] A. Barenco, D. Deutsch, A. Ekert, R. Jozsa (1995): Phys Rev Lett 74:4083;

Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor PW,
Sleator T, Smolin J, Weinfurter H (1995): Phys Rev A 52:3457.

[13] J. Preskill (1998): Lecture Notes for Physics 229: Quantum Information and
Computation. CalTech: Pasadena.

[14] D. Collins, N. Linden, S. Popescu (2001): Phys Rev A 64:032302.
[15] J. Eisert, K. Jacobs, P. Papadopoulos, M. B. Plenio (2000): Phys Rev A

62:052317; Gottesman D (1998): quant-ph/9807006; J. I. Cirac, W. Dür,
B. Kraus, M. Lewenstein (2001): Phys Rev Lett 86:544.

[16] A. Y. Kitaev (1997): Russian Mathematical Surveys 52:1191.
[17] R. Solovay (1995): Unpublished.
[18] D. Gottesman (1997): Stabilizer Codes and Quantum Error Correction.

PhD thesis, CalTech, Pasadena.
[19] W. K. Wootters, W. H. Zurek (1982): Nature 299:802; Dieks D (1982): Phys

Lett A 92:271.
[20] M. A. Nielsen, I. L. Chuang (1997): Phys Rev Lett 79:321.
[21] A. Steane (1996): Phys Rev Lett 77:793.
[22] A. Steane (1996): Proc R Soc London 452:2551.
[23] P. W. Shor (1995): Phys Rev A 52:2493.
[24] R. Laflamme, C. Miquel, J. P. Paz, W. H. Zurek (1996): Phys Rev Lett

77:198; E. Knill, R. Laflamme, A. Ashikhmin, H. Barnum, L. Viola, W. H.
Zurek (2002): quant-ph/0207170.

[25] D. Deutsch (1985): Proc R Soc London A 400:97.
[26] P. Benioff (1980): J Stat Phys 22:563.
[27] V. Vedral, A. Barenco, A. Ekert (1996): Phys Rev A 54:147.
[28] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca (1998): Proc R Soc London A

454:339.
[29] D. Deutsch, R. Jozsa (1992): Proc R Soc London A 439:553.
[30] E. Bernstein, U. V. Vazirani (1997): SIAM J Comput 26:1411.

284 J. Eisert and M.M. Wolf

[31] N. D. Mermin (2004): IBM Journal of Research and Development 48, 53.
[32] D. R. Simon (1994): Proc 35th Annual Symposium on Foundations of

Computer Science:166.
[33] L. K. Grover (1996): Proceedings STOC:212.
[34] C. H. Bennett, E. Bernstein, Brassard, U. Vazirani (1997): SIAM J Comput

26:1510.
[35] Coppersmith (1994): IBM Research Report RC 19642.
[36] A. Y. Kitaev (1995): quant-ph/9511026.
[37] M. Pueschel, M. Roetteler, T. Beth (1998): quant-ph/9807064.
[38] M. T. Heideman, D. H. Johnson, C. S. Burrus (1984): Gauss and the his-

tory of the fast Fourier transform, IEEE ASSP Magazine 1(4):14.
[39] D. Knuth (1973): The Art of Computer Programming II. Addison-Wesley:

Reading, MA.
[40] J. Watrous (2000): quant-ph/0011023.
[41] S. Hallgren (2002): Symposium on the Theory of Computation (STOC).
[42] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, D. A. Spielmann

(2002): Proc ACM Symposium on Theory of Computing (STOC 2003).
[43] D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani (2001): Proc ACM

Symposium on Theory of Computing (STOC 2001).
[44] E. Farhi, J. Goldstone, S. Gutmann, M. Sipser (2000): quant-ph/0001106;

E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren (2001): Science
292:472.

[45] D. Aharonov, A. Ta-Shma (2003): quant-ph/0301023.
[46] V. Murg, J. I. Cirac (2004): Phys Rev A 69: 042320.
[47] J. Roland, N. J. Cerf (2003): Phys Rev A 65:042308.
[48] E. Farhi, J. Goldstone, S. Gutmann (2002): quant-ph/0201031.
[49] S. Lloyd (1996): Science 273:1073.
[50] B. M. Boghosian, W. Taylor (1998): D. Physica 120:30.
[51] C. Zalka (1998): Proc R Soc London A 454:313.
[52] D. S. Abrams, S. Lloyd (1997): Phys Rev Lett 79:2586; Ortiz G, Gubernatis

JE, Knill E, Laflamme R (2001): Phys Rev A 64:022319.
[53] B. M. Terhal, D. P. DiVincenzo (2000): Phys Rev A 61:22301.
[54] E. Jané, G. Vidal, W. Dür, P. Zoller, J. I. Cirac (2003): Quant Inf Comp

3(1):15.
[55] M. Greiner, I. Bloch, O. Mandel, T. W. Hänsch, T. Esslinger (2001): Phys

Rev Lett 87:160405; M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch,
I. Bloch (2002): Nature 415:39.

[56] J. Preskill (1998): Proc R Soc London A, 454:385.
[57] A. Peres (1985): Phys Rev A 32:3266.
[58] A. R. Calderbank, P. W. Shor (1996): Phys Rev A 54:1098.
[59] C. H. Bennett, D. DiVincenzo, J. Smolin, W. Wootters (1996): Phys Rev A

54:3824.
[60] D. Schlingemann (2002): Quant Inf Comp 2:307.
[61] M. Hein, J. Eisert, H. J. Briegel (2004): Phys Rev A 69: 062311.
[62] R. Raussendorf, H. J. Briegel (2000): Phys Rev Lett 86:5188; Raussendorf

R, Browne DE, Briegel HJ (2003): Phys Rev A 68:022312.
[63] P. W. Shor (1996): Proc 37th Annual Symposium on Fundamentals of

Computer Science, IEEE:56.

Quantum Computing 285

[64] A. Y. Kitaev (1997): Russian Mathematical Surveys 52:1191.
[65] D. Aharonov (2003): quant-ph/0301040.
[66] E. Knill, R. Laflamme (1996): quant-ph/9608012.
[67] E. Knill, R. Laflamme, W. H. Zurek (1998): Science 279:342.
[68] D. Aharonov, M. Ben-Or (1999): quant-ph/9906129.
[69] D. DiVincenzo (2000): Fort Phys 48:771.
[70] J. I. Cirac, P. Zoller (1995): Phys Rev Lett 74:4091.
[71] S. Scheider, D. F. V. James, G. J. Milburn (1999): J Mod Opt 7:499; Sørensen

A. Mølmer K. (1999): 82:1971; Jonathan D, Plenio MB, Knight PL (2000):
Phys Rev A 62:42307.

[72] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, D. J. Wineland
(1995): Phys Rev Lett 75:4714.

[73] F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, Q. P. T. Lancaster,
T. Deuschle, C. Becher, C. F. Roos, J. Eschner, R. Blatt (2003): Nature 422:408.

[74] T. Pellizzari, S. A. Gardiner, J. I. Cirac, P. Zoller (1995): Phys Rev Lett
75:3788.

[75] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, H. J. Kimble (1995):
Phys Rev Lett 75:4714; Domokos P, Raimond JM, Brune M, Haroche S
(1995): Phys Rev Lett 52:3554.

[76] D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, P. Zoller (1999): Phys
Rev Lett 82:1975.

[77] G. J. Milburn (1989): Phys Rev Lett 62:2124.
[78] E. Knill, R. Laflamme, G. J. Milburn (2001): Nature 409:46; Ralph TC,

White AG, Munro WJ, Milburn GJ (2001): Phys Rev A 65:012314; Lapaire
GG, Kok P, Dowling JP, Sipe JE (2004): Phys Rev A 68:042314; Scheel S,
Nemoto K, Munro WJ, Knight PL (2003): Phys Rev A 68:032310.

[79] C. M. Tesch, R. de Vivie-Riedle (2002): Phys Rev Lett 89:157901; Vala J,
Amitay Z, Zhang B, Leone SR, Kosloff R (2002): Phys Rev A 66:062316.

[80] M. S. Sherwin, A. Imamoglu, T. Montroy (1999): Phys Rev A 60:3508.
[81] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss,

M. Sherwin, A. Small (1999): Phys Rev Lett 83:4204.
[82] B. E. Kane (1998): Nature 393:133.
[83] T. D. Ladd, J. R. Goldman, F. Yamaguchi, Y. Yamamoto, E. Abe, K. M.

Itoh (2002): Phys Rev Lett 89:017901.
[84] N. A. Gershenfeld, I. L. Chuang, S. Lloyd (1996): Phys Comp 96, Proc of

the 4th Workshop on Physics and Computation:134; Gershenfeld NA,
Chuang IL (1997): Science 275:350; Cory DG, Fahmy AF, Havel TF
(1997): Proc Natl Acad Sci USA 94:307.

[85] L. M. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood,
I. L. Chuang (2001): Nature 414:883.

[86] W. van Dam, G. Seroussi (2003): Proc RSoc London A 459:2011.
[87] R. Jozsa, N. Linden (2002): quant-ph/0201143.
[88] G. Vidal (2003): Phys Rev Lett 91:147902.
[89] S. Lloyd (2000): Phys Rev A 61:010301.

286 J. Eisert and M.M. Wolf

