
Chapter 7

FUZZY LOGIC
Javid Taheri and Albert Y. Zomaya
The University of Sydney

The principles of Fuzzy Logic were introduced several decades ago by Lotfi
Zadeh [1]. The thrust of Zadeh’s work was in the realization that decision mak-
ing in the real world is not crisp. Most of the time, decisions are not “binary” in
nature, such as yes/no, black/white, up/down, etc. Events and decisions tend to be
“fuzzy,” and a good example is the case of a glass of water that can be described
as full or empty. Now, if one is to take a sip of water, then the glass is neither
empty nor full, but in between. If the process continues until the glass is empty,
then one can say that the glass has undergone different states from the time it was
full to the time it became empty. It is obvious that the above phenomenon cannot
be described by using binary logic and different rules need to be adopted to
account for the different levels of “fuzziness” that any a decision process can take.

1 FUZZY PRINCIPLES

1.1 Multivalue Algebra

The most important difference between fuzzy and binary representations is
the way a variable is quantized. The binary world uses two values (0 or 1) to rep-
resent each phenomenon, while in the fuzzy world variables are quantized by a
function that takes a smooth shape ranging from 0 to 1 [1, 2].

1.2 Simplicity versus Accuracy

Fuzzy logic attempts to formulate an environment not accurately but in a sim-
ple manner. In modern sciences, especially mathematics and physics, there is an
accurate formulation for every event. On the other hand, if an event cannot be
explained accurately, a decision can be made with a given probability. Fuzzy logic



tends to simplify the process of making a decision, especially in cases where an
exact formula is very difficult to derive or does not exist.

1.3 Probability versus Possibility

To explain the interplay between probability and possibility, let’s return to our
earlier example, the glass of water. If one is to say that this is “a glass containing
water with the probability of 0.5,” it means that the whole glass might contain
water or some other liquid like gasoline. On the other hand, if one uses the expres-
sion that this is “a glass containing water with the possibility of 0.5,” it means that
the liquid is definitely a mixture of water and another unknown liquid. Another
distinguishing factor between these two expressions is the sample spaces they rep-
resent. In probability, the sum of all events that could happen should add up to
1.0, while in the case of possibility, the sum can be smaller or larger than 1.0.

1.4 Fuzzy Sets

A fuzzy set is a fundamental component of a fuzzy system [2]. Traditionally,
a set is a collection of elements or objects that can be of finite or infinite size.
In this case, a given element, x, can be a member of set A, or otherwise. So the
answer to the question “Does x belong to set A?” is either true or false. In con-
trast, each fuzzy set is a set of ordered pairs and is usually defined as follows:

,A x xA= nu u^` hj& 0
where ( )xAn u is the membership function and represents the degree of truth or

compatibility of variable x with the set. Figure 7.1 shows a simple fuzzy set with
following definition:
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1.5 Fuzzy Numbers

A fuzzy number Mu is called positive (negative) if its membership function is
such that [2]

( ) , < >x x x0 0 0M 6=n u ^ h
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Figure 7.1. Representation of the fuzzy numeral “approximately 5”



1.6 Basic Set-Theoretic Operations

Different logic operations are defined for fuzzy sets and numbers. The basic
logic operations of union, intersection, and complement are usually defined as
follows [2].

1.6.1 Union

The union of two fuzzy sets A Bandu u is

, ( ) , ( ) ( ), ( )maxC A B x x x x xC C A B,= = =n n n nu u u u u u u_ _i i% /
1.6.2 Intersection

The intersection of two fuzzy sets A Bandu u is

, ( ) , ( ) ( ), ( )minD A B x x x x xD D A B+= = =n n n nu u u u u u u_ _i i% /
1.6.3 Complement

The complement of a fuzzy set Au is

, ( ) , ( ) ( )A x x x x1A A A= = -n n nu u u u_ i% /
Figure 7.2 shows the results of the above operations on fuzzy sets Au and Bu .

These definition are simple and don’t obey advance set-theoretic operations such
as monotonicity, commutativity, and associativity. To overcome this problem,
several complex definitions have been proposed in the literature [2].
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Figure 7.2. Fuzzy operations. (a) Representation of two fuzzy numbers A and B; (b) union of
A and B; (c) intersection of A and B; (d) complement of A



2 FUZZY SYSTEMS

Figure 7.3 shows a generic fuzzy system. In all fuzzy systems, there are three
main components: Rule Database, Fuzzification, and Defuzzification.

2.1 Fuzzy rules

Fuzzy systems are based on the preliminary information given to the system
as fuzzy rules. These rules, which are written as linguistic commands, are usually
not so precise. In fact, they are written to enable decision to be made in cases
where there is imprecise or no preliminary information about the system under
considerations. The following rules represent instances of generic fuzzy rules:

● IF “Salary is High” then “Tax is High”

● IF “Speed is Low” then “Accident Probability is Low”

● IF “Left Obstacle is Near” and “Front Obstacle is Near” then “Turn Right
Quickly” and “Reduce Speed”

The above rules may have single or multiple antecedents and/or consequences.

2.2 Fuzzification

One of the most important components of every fuzzy system is the fuzzifi-
cation phase, during which the crisp values from a real-world system are managed
so that they can be processed by the fuzzy system [2]. Fuzzy rules, as seen earlier,
are linguistic expressions that need to be further clarified, as in the case of the fol-
lowing rule:

IF “Salary is High” then “Tax is High”

So what does “High” mean? How high does the salary need to be so that it
is considered “High”? Also, what is “High” in the context of how much tax
needs to be paid? The process of defining this kind of information for a fuzzy sys-
tem is known as fuzzification. To achieve this, knowledge-based information is
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categorized into several parts as membership functions or fuzzy sets. Then a label
is assigned to each part. For example, “Salary” could be categorized as shown in
Figure 7.4. Note that membership functions designed to separate the different
classes of salary earnings are overlapped smoothly to reduce the sensitivity of the
fuzzy system.

2.3 Defuzzification

This process attempts to generate a crisp value for each fuzzy output gener-
ated by the fuzzy system. The following methods are the most popular for the
defuzzification process.

2.3.1 Center of Area (COA)

In this case, the crisp value is calculated as the integral of the output fuzzy
number weighted by the value of the membership function, which can be defined
as follows:

( )

. ( )

u
u du

u u du
COA

C
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where ( )uCn is the membership function of the fuzzy value.

2.3.2 Center of Sum (COS)

This defuzzification method is a simplified version of COA and is defined as
follows:
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2.3.3 Mean of Maximum (MOM)

The maximum of the fuzzy number is computed, and then the average of both
the maximum and the actual number is the defuzzified version.

2.3.4 Smallest of Maximum (SOM)

The maximum of the fuzzy number is computed, and then the smallest value
is considered as the defuzzified number [2].

2.3.5 Largest of Maximum (LOM)

The maximum of the fuzzy number is computed, and then the largest value
is considered as the defuzzified number [2]. To clarify the above definitions,
Figure 7.5 shows how a fuzzy variable can be defuzzified.

2.4 Mamdani Fuzzy Systems

The Mamdani system is one of the two most famous fuzzy systems and is usu-
ally used for making fuzzy decisions [2–5]. In this system, the input and output
variables are all fuzzified with several membership functions. For example,
assume that a fuzzy system is designed to define the salary of an employee. Also
suppose that the salary of an employee is related to his/her work experience and
education level.

Figure 7.6 provides an overview of the above system. Although the output of
this system is the level of salary, the first step is to fuzzify the input variables with
membership functions. Towards this end, work experience (WrkExp) is fuzzified
by three triangular membership function (Figure 7.7) as Beginner, Intermediate,
or Expert, and the Education level (Edu) is fuzzified by three membership func-
tions (Figure 7.8) as High School Diploma, Bachelor Degree, or Post Graduate
Degree. The output of the system, Salary, is fuzzified by five labels (Figure 7.9) as
Very-Low, Low, Medium, High, and Very-High. Note that, to generalize the con-
troller, all variables are normalized to 1.0.
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Table 7.1 lists the rules of this system. To clarify how this fuzzy system com-
putes the salary of an employee, the general data flow of this system is shown in
Figure 7.10, while the general surface view of this system is shown in Figure 7.11.

Note that there are two other logic operations that need to be performed to com-
pute the final fuzzy answer: implication and aggregation. These two operators are
usually defined as AND and OR operators [2]. In this example, the COA is chosen
as the defuzzification method. The Work Experience and Education Level variables
are set to 0.1 and 0.3, respectively. Therefore, the Salary output for these inputs is
0.365. The general Surface View of this controller is presented in Figure 7.11.
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Figure 7.6. The general overview of Mamdani’s salary system
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2.5 Sugeno Fuzzy Systems

The Sugeno fuzzy system is another class of fuzzy systems that is usually used
for control system applications [2, 6]. The output of each rule in this system is a
linear, or in some cases a nonlinear, combination of its inputs. The output of the
different rules is augmented to calculate the final output, which is actually the
weighted sum of the rules.
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Figure 7.8. Fuzzification of the “Education” variable

Figure 7.9. Fuzzification of the “Salary” variable
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Table 7.1: Fuzzy rules for the system of Figure 7.6
Antecedent Æ Consequence
IF WrkExp is Beginner And Edu is High School Then Salary is Very-Low
IF WrkExp is Beginner And Edu is Bachelor Then Salary is Low
IF WrkExp is Beginner And Edu is Post Graduate Then Salary is Medium
IF WrkExp is Intermediate And Edu is High School Then Salary is Low
IF WrkExp is Intermediate And Edu is Bachelor Then Salary is Medium
IF WrkExp is Intermediate And Edu is Post Graduate Then Salary is High
IF WrkExp is Expert And Edu is High School Then Salary is Medium
IF WrkExp is Expert And Edu is Bachelor Then Salary is High
IF WrkExp is Expert And Edu is Post Graduate Then Salary is Very High



To clarify the above, a Sugeno fuzzy system is designed to solve the salary
problem given previously. Figure 7.12 shows the general overview of the system.
The way the input variables are fuzzified is exactly the same as in Mamdani’s ver-
sion of this controller. The only difference is in defining the output for each fuzzy
rule. In this case, five different formulas are defined to determine the salary cate-
gory. To simplify the problem, these formulas are selected as constant numbers
(although they can be any linear or nonlinear combination of the inputs) labeled
as Very-Low, Low, Medium, High, and Very-High, with the following definitions:

Very-Low = 0.1
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Figure 7.11. A surface view of Mamdani’s salary system



Low = 0.25
Medium = 0.5
High = 0.75
Very-High = 1.0

The rules of Table 7.1 are applicable here, with the only difference being how
the output is defined. Figure 7.13 shows a general overview of the rules firing
scheme when the input variables are 0.1 and 0.3 for Work Experience and
Education Level, respectively. In this case, the salary output is 0.232. The general
Surface View of this system is given in Figure 7.14.

2.6 Fuzzy Decision Makers

Fuzzy decision makers are another class of fuzzy systems used for real-world
applications [7-9]. In these systems, a predefined number of simple rules are
embedded into the system, and then the system is allowed to make its own deci-
sions, even in the case of unknown events for which the system was never trained.

To demonstrate the general idea of such systems, assume that one knows how
the system must behave in extreme conditions, as shown in Figure 7.15, which is
drawn for the examples provided in the last two sections to set the amount of
salary for an employee. Then the aim of the whole system is to decide for all con-
ditions inside the plate shown in Figure 7.15, while the rules are actually written
for the known conditions that are marked with spheres (the system is trained for
these points as its rules).
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2.7 Fuzzy Controller

Fuzzy Controllers are the other type of system employed for systems control
[10–13]. The most famous example of this kind of system is reverse car parking.
This example is one of the Demos of the Matlab® Releases, Version 13, Fuzzy
Toolbox [14]. Figure 7.16 shows the initial conditions of a car to be parked, while
Figure 7.17 shows the trajectory of the car position when the fuzzy controller is
parking the car.
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Figure 7.13. A flow diagram of Sugeno’s fuzzy system
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2.8 Fuzzy Classifiers

Fuzzy classifiers are other classes of systems with different functionalities.
[16, 17]. The aim here is to cluster objects, for example, in cases of system identi-
fication, time-series prediction, and noise cancellation. For further information,
please refer to the Fuzzy Toolbox of the Matlab®, released version 13 [14].
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Figure 7.15. The rules are composed for the marked areas, although the system is able to make
its decision for all the points

Figure 7.16. The relative positions of a car and the parking spot



3 DATA CLUSTERING ALGORITHMS

Clustering algorithms are used extensively not only to organize and catego-
rize data but also to compress them in order to construct a model [17–24].
Through use of clustering techniques, data are partitioned into several groups
such that the similarity within a group is larger than the similarities with other
groups. These techniques are usually used in conjunction with radial basis func-
tions or fuzzy modeling to determine the initial locations of the radial basis
functions or fuzzy IF – THEN rules. In this case, a similarity function is usually
defined to take two variables and generate a small output for similar inputs
and large numbers for nonsimilar ones. It is important to note that clustering
techniques used for structure identification in neural or fuzzy models are highly
heuristic, and it is possible to find a data set in which none of the clustering
techniques is applicable.

3.1 K-Means Clustering

The K-means algorithm partitions a group of n vectors xj: j = 1,...,n into c
groups Gi:i = 1,...,c, and finds a cluster center in each group such that a cost func-
tion of dissimilarity measure is minimized [19,20]. To achieve this outcome, let’s
assume that

J J x c
,

i k i
k x Gi

c

i

c 2

11 k i

= = -
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where J x c
,

i k i
k x G

2

k i

= -
!

! is a cost function within group i.

The partitioned groups are typically defined by a c × n binary membership
matrix U, where the elements uij are 1 if the jth data point xj belongs to group i and
0 otherwise.
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Figure 7.17. The trajectory of the car in reverse parking mode
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The membership matrix U has the following properties:
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Finally, after every iteration, ci should be updated as follows:
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Note that the algorithm is inherently iterative, and no guarantee can be made

that it will converge to an optimum solution. The performance of the K-means
algorithm depends on the initial position of the cluster centers.

3.2 Fuzzy C-Means Clustering

Fuzzy C-means clustering (FCM), also known as fuzzy ISODATA, is a data
clustering algorithm in which each data point belongs to a cluster to a degree
specified by a membership grade [20,21].

FCM partitions a collection of n vectors xj : j = 1,...,n into c fuzzy groups
Gi:i = 1,...,c, and finds a cluster center in each group such that a cost function of
dissimilarity measure is minimized. To accommodate the introduction of fuzzy
partitioning, the membership matrix U is allowed to have elements with values
ranging between 0.0 and 1.0 such that
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i

c

1
6 f= =

=

!

The cost function for FCM is then a generalization of
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where uij is between 0 and 1; ci is the cluster center of fuzzy group i;

d c xij i j= - ; and m ∈[1,∞) is a weighting exponent.
The necessary conditions for the above equation to reach a minimum can be

determined by
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where lj; j = 1,...,n are the Lagrange multipliers for the n constraints. A solu-

tion of the above problem should lead to the following formulas:
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As in the previous case, no guarantee ensures that FCM will converge to an

optimum solution. The performance depends on the initial cluster centers.

3.3 Mountain Clustering Method

The mountain clustering method is a relatively simple and effective approach
to approximate estimation of cluster centers on the basis of a density measure
called the mountain function [22, 23]. This method can be used to obtain initial
cluster centers that are required by more sophisticated cluster algorithms such as
fuzzy C-mean. This clustering method involves three major steps. The first step
forms a grid over the data space. The second step entails constructing a mountain
function representing a data density measure:

( ) expm v
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where xi is the ith data point and s is an application specific constant. The
mountain function can be viewed as a measure of data density, since it tends to
be higher if more data points are located nearby and lower if fewer data points
are around. The third step involves selecting the cluster centers by sequentially
destructing the mountain function. First, the point in the candidate centers v ∈ V
that has the greatest value for the mountain function is found. This point will be
considered as the first cluster center c1.

Now let
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After the subtraction operation, the second cluster center is selected as the
point v ∈ V that has the greatest value for the new mountain function. This
process of revising the mountain function and finding the next cluster center con-
tinues until a sufficient number of cluster centers are reached.

Mountain clustering can also be applied to identify the structure of a fuzzy
model. To do this, firstly, a training data set is used to find cluster centers (xi, yi),
and then a zero-order Sugeno fuzzy model is formed in which the ith rule is
expressed as

IF X is close to xi THEN Y is close to yi

Then other tuning methods can be used to tune the rules further.

3.4 Subtracting Clustering

A new approach in fuzzy clustering is subtractive clustering, in which data
points (not grid points) are considered as candidates for cluster centers [24]. With
this method, the computation is simply proportional to the number of data points
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and independent of the dimensional of the problem under consideration, since
each data point is potentially a candidate for a cluster center. Then, a density
measure at data point xi is defined as
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where ra is a positive constant. The radius ra defines a neighborhood; data points
outside this radius contribute only slightly to the density measure.

When the density measurement for each data point has been calculated, the
data point with the highest density measure is selected as the first cluster center.
Let xc1

be the point selected, with Dc1
as its density measure. Now the density

measure for each data point xi is revised by the formula
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where another rb is a positive constant. Note that the constant rb is normally
larger than ra to prevent closely spaced cluster centers. In general, rb = 1.5 ra.

After the density measure for each data point is revised, the next
cluster center xc2

is selected and all the density measures for data points are
revised again. This process is repeated until sufficient cluster centers have been
generated.

Like the mountain clustering algorithm, the subtractive clustering algorithm
can be launched to determine fuzzy rules. For instance, assume that the center for
the ith cluster is ci in an M-dimensional and that the consequent parts are assumed
to have RBFN membership. In this case, the membership function m can be
assigned as

exp
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3.5 Fuzzy Rules Generation

As explained earlier, each fuzzy system consists of three main components:
input variables that must be fuzzified, output variables that must be defuzzified,
and the most important part, namely, the rules database. The rules of a fuzzy sys-
tem are the part of the system that actually relates the outputs to the inputs. It is
obvious that without appropriate rules, the system may function inefficiently.
Although rule generation is the most important part of a fuzzy system, it has
rarely been considered because of its complexity.

Several approaches have been presented to help designers of fuzzy systems
develop their rules in an efficient and concise way. However, most of these
approaches have limited applicability. This section attempts to introduce some
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effective approaches to generate fuzzy rules [25–31]. Further, appropriate fuzzifi-
cation and defuzzification methods are also important because they are corre-
lated with the rules of the system.

3.6 Fuzzy Rules from Fuzzy Knowledge

The first approach employed for generating fuzzy rules is based on the experience
of actual system operators, who usually intuitively know how to control the system.
In this case, the fuzzy designer codes the ideas of an expert user into linguistic
expressions, as seen earlier. The only thing the designer must consider is the consis-
tency of the coding process so as to achieve maximum robustness of the system.

To clarify this situation, suppose a controller must be designed to control
the temperature and flow of a shower using Hot and Cold values as inputs.
In this case, the simplest controller can be that of Figures 7.18 and 7.19. Note that
this system is a simple feedback controller that tries to reduce the difference
between the actual temperature and flow rates and the desired ones (Feedback
Errors).

To achieve this result, temperature and flow errors are both fuzzified by three
triangular membership functions, as shown in Figures 7.20 and 7.21, while the
outputs of the system are represented with three trapezoidal membership func-
tions, as shown in Figure 7.22. Figures 7.23 and 7.24 show the temperature and
flow rate of the system when their desired values are changes with square wave-
forms. Table 7.2 lists the rules for this system. This example is one of the Matlab®

Fuzzy Logic Toolbox Demos [14].
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3.7 Fuzzy Rules from Fuzzy Patches

Fuzzy patches are actually fuzzy clusters that are generated by a given fuzzy
clustering technique. Then a rule is written for each patch to imitate the behavior
of the system in that condition. These patches can also be used to design a con-
troller. In fact, the controller is designed so that it compensates the behavior of
the system for each one of the patches. Then some other fuzzy rules are added to
the system just to achieve overall stability for the system.
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3.8 Tuning Fuzzy Rules

Once the general structure of a fuzzy system has been determined, the system
must be tuned to have the best performance. This process is usually performed
by some optimal control routines that tune the parameters of the membership
functions. In some cases, these routines even change the whole structure of the
fuzzification and defuzzification processes [29].

3.9 Tuning Fuzzy Systems Using Gradient Descent Training

In this section, it is assumed that the structure of the fuzzy system is known
and that the aim is to tune the parameters. In this case, a fuzzy system with a
Gaussian membership function and COA defuzzification method is considered:
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where M is the number of rules and , ,y xl
i
l

i
lv are free parameters to be adjusted.

Note that, although the structure of the system is chosen, the whole system has
not been designed yet because of the , ,y xl

i
l

i
lv parameters. To determine these
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parameters, it is helpful to represent the fuzzy system f (x) as a feedforward
network—specifically, the mapping from the input x ∈ U ⊂ �n to the output,
f (x) ∈ V ⊂ � .

Now in order to design the parameters by the Gradient Descent Method, the
matching error of the system is assigned as follows:

( ( ) )e f x y2
1p p p

0 0
2= -

Considering a minimization problem, the , ,y xl
i
l

i
lv parameters should be

adjusted such that ep is minimized. In this case, using the gradient descent algo-
rithm, the following formulas are used to tune these parameters. yl would be
adjusted as follows:
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This algorithm is also called the error back-propagation training algorithm. The
following algorithm is the final procedure that can be used to adjust the parame-
ters of a fuzzy system using the gradient descent technique.

Step 1: Structure determination and initial parameter setting
Choose the fuzzy system in the above form and determine the M. Have

in mind that larger values for M need more computation as well, but bet-
ter accuracy. The initial parameters yl (0), xi

l (0), si
l (0) must be chosen

carefully, too. These initial parameters may be determined according to the
linguistic rules from experts or any other clustering technique.

Step 2: Present input and calculate the output of the fuzzy system
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For a given input–output pair (x0
p, y0

p), p = 1,2,..., the following auxiliary
parameters are calculated, where q is the iteration cycle:
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Step 3: Update the parameters
Modify the parameters ( ),y q 1l

+ ( ),x q 1i
l

+ si
l (q + 1) based on the

results of Step 2, where y = y0
p.

Step 4: Repeat Steps 2 and 3 with q = q + 1 for a predefined number of itera-
tions, or until the output error of the system � f − y0

p� becomes less than
another predefined value e.

Step 5: Repeat Steps 2 through 4 with p = p + 1, that is, update parameters
using the next input–output pair (x0

p+1, y0
p+1).

Step 6: Repeat the whole training procedure if applicable.
If desirable and feasible, set p = 1 and repeat Steps 2–5 until the designed

fuzzy system is satisfactory. For online control and dynamic system identifi-
cation, this step is not feasible because the input–output pairs are provided
one-by-one in a real-time fashion. However, for pattern recognition prob-
lems where the input–output pairs are provided offline, this step is desirable.

Note that, because of the nature of the above training algorithms, choosing
the initial parameters is crucial to the success of the algorithm. If the initial
parameters are chosen close to the optimal ones, the algorithm has a good chance
of converging to the optimal solution; otherwise, the algorithm may converge to
a nonoptimal solution or even diverge.

Setting the Initial Parameters
The choice of initial parameters is detrimental to the overall quality of the

final solution. In some cases, these parameters can be selected by experts, but in
other occasions this is not possible. So, to solve the above identification problem,
the following method is proposed for setting the initial parameters [29].

An online initial parameter choosing method:

Step 1: Collect the input–output pairs

(x0
k+1, y0

k+1)

where

x0
k+1 = (y(k),...,y(k − n + 1),u(k),...,u(k − m + 1))

for the first

y0
k+1 = y(k + 1)
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M points (k = 1,...,M − 1).
Note that the training algorithm is actually started when k = M − 1.
Step 2: Choose the initial parameters

These parameters are chosen as ( )y y0l l
0= and ( )x x0l

i
l
0= , while si

l(0)
can be 

set according to one of the following criteria:
1. Set si

l (0) to a small number

2. Set ( )
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x x
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= +v f f= =

3. Set si
l (0) so that it makes the membership functions uniformly cover the

range of x0i
l from l = 1 to l = M.

The following lemma is a stability proof of the presented technique.

Lemma: For any arbitrary e > 0, there exist s* > 0 such that the fuzzy system 

( )f xt , with the preceding initial parameters ,y xl
i
l , and si

l = s*, has the property that

( ) < , , , .f x y k M0 1 1k k
0

1
0

1 fe- = -+ +t

Note that, by using this method, the first M input–output pairs will be prop-
erly matched. Thus, if these first M input–output pairs contain important features
of the unknown system f(x), it is very likely that, after training, the fuzzy identifier
will converge rapidly and determine the unknown parameters of the system.

3.10 Design of Fuzzy Systems Using Recursive Least Squares

The gradient descent algorithm in the previous section tries to minimize the 

criterion ( ( ( ) ) )e e f x y2
1p p p p

0 0
2= - , which actually accounts for the matching error 

of only one input–output pair (x0
p, y0

p). In other words, the training algorithm
updates the parameters to match one input–output pair at a time. In this new
approach, a training algorithm that minimize the summation of the matching
errors for all the input–output pairs up to p is used to adjust the training param-
eters; that is, the objective here is to design a fuzzy system f(x) to minimize the
following cost function:

( )J f x yp
j j

j

p

0 0

2

1
= -

=

! ` j
Moreover, the fuzzy system is designed iteration by iteration in a recursive

manner; that is, if fp is the fuzzy system designed to minimize Jp, then fp should
be represented as a function of fp−1. To accomplish this, the recursive least squares
algorithm is used as follows:

Step 1: Suppose that U = [a1, b1] ×...× [an, bn] ⊂ � n. Then, for each [ai, bi],
i = 1,2,...,n, define Ni fuzzy sets as Ai

li, li = 1, 2,..., Ni , which cover [ai, bi]
homogenously.

Step 2: Construct the fuzzy system from the following Nii

n

1=
% fuzzy IF – THEN

rules as follows:
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IF x1 is A1
l1 and ... and xn is An

ln THEN y is Bl1,...,ln

where li = 1, 2,..., Ni , i = 1, 2,..., n, and Bl1,...,ln is any fuzzy set with center at yl ,..., ln1

(which is free to change). In particular, when the fuzzy system with product infer-
ence engine, singleton fuzzifier, and COA defuzzifier is chosen with the following
formula:
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where y , ,l ln1 f are free parameters (that need to be properly chosen).

Step 3: Collect the free parameters y Ninto the, ,l l
ii

n

1
n1 f

=
% -dimensional vec-

tor as follows:
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to form f(x) = bT (x) ˙ q, where
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Step 4: Choose the initial parameters q (0) as follows:

If there are linguistic rules from experts whose IF parts agree with the
IF parts of one of the existing rules, then choose ( )y 0, ,l ln1 f to be the cen-
ters of the THEN part fuzzy sets in these linguistic rules; otherwise, choose
q (0) arbitrary in the output space V ⊂ � ; or from a clustering algorithm.

Step 4: For p = 1, 2,..., compute the parameter q using the following recursive
least squares algorithm:

q(p) = q (p − 1) + K(p) ˙ [y0
p − bT (x0

p) ˘ q (p − 1)]
K(p) = P(p − 1) ˙ b(x0

p) ˙ [bT (x0
p) ˙ P(p − 1) ˙ b(x0

p) + 1]−1

P(p) = P(p − 1) − P (p − 1) ˙ b (x0
p).

[bT (x0
p) ˙ P(p − 1) ˙ b(x0

p) + 1]−1 bT (x0
p) ˙ P (p − 1)

where q(0) is chosen from Step 4, and P(0) = sI, where s is a large constant.
In this fuzzy system, the parameters y , ,l ln1 f are equal to the corresponding

elements in q (p).

4 DESIGN OF FUZZY SYSTEMS USING CLUSTERING

In this section, the input–output pairs are used to design the rules for the fuzzy
system. Basically, the input–output pairs are grouped into clusters and one rule is
formulated for each cluster [32–37].
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4.1 An Adaptive Fuzzy System

Suppose that N input–output pairs (x0
l, y0

l ), l = 1, 2,..., N, are given and the
task is to construct a fuzzy system f (x) that can match all the N pairs with a given
accuracy. That is, for any given e > 0, it is required to satisfy � f (x0

l ) − y0
l � < e for

all l = 1,2,..., N. In this case, the optimal fuzzy system is considered as
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while the membership functions are
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In this case, the designed optimal fuzzy system will have one rule for one
input–output pair. Therefore, the larger the number of input–output pairs, the
larger the number of rules in the system. To solve this problem, various cluster-
ing techniques can be used to categorize the input–output pairs and, conse-
quently, reduce the number redundant rules.

4.2 Design of Fuzzy System Using Nearest-Neighbor Clustering

Use of the nearest-neighbor technique is one of the most effective ways to
design fuzzy systems [34, 35]. This technique can be summarized as follows:

Step 1: Starting with the first input–output pair (x0
l, y0

l ), establish a cluster
center xc

1 at x0
1, and set A1(1) = y0

1, B1(1) = 1. Select a radius r.
Step 2: Suppose that the algorithm is going to assign the kth input–output pair 

(x0
k, y0

k), k = 2, 3,..., to a cluster when there are M clusters with centers at 

xc
1, xc

2,..., xc
M.

Step 3: Compute the distance of x0
k to those M cluster centers, and then find the 

nearest cluster to x0
k, namely, xc

lk. Then:

● If ⎜x0
k − xc

lk ⎜ > r, establish x0
k as a new cluster center xc

M+1 = x0
k, set 

AM+ 1 (k) = y0
k, BM + 1 (k) = 1

and keep

Al (k) = Al (k − 1)
for all l = 1, 2,...,M.

Bl(k) = Bl(k− 1)

● If �x0
k − xc

lk� ≤ r, do the following:

246 Javid Taheri and Albert Y. Zomaya



Alk (k) = Alk(k − 1) + y0
k

Blk (k) = Blk (k −1) + 1

and set

Al(k) = Al(k−1)
for all l = 1,2,...,M.

Bl(k) = Bl(k − 1)

Step 3: If x0
k does not establish a new cluster, then the designed fuzzy system

based on the k input–output pairs (x
0
j, y

0
j ), j = 1, 2,...,k is
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Step 4: If x0
k establishes a new cluster, then the designed fuzzy system is
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Step 5: Repeat by returning to Step 2 with k = k+1 until the process converges
to a satisfactory solution.

5 FUZZY APPLICATIONS

This section presents two popular applications that demonstrate the potential
of fuzzy logic in solving complex problems [36–38].

6 APPLICATION TO NONLINEAR DYNAMIC
SYSTEM IDENTIFICATION

System identification is a process of determining an appropriate model for a
system based on measurement form sensors [36, 37]. This process is important
because many applications in science and engineering depend on the accurate
modeling of a real-world system. In this section, a fuzzy system is used to approx-
imate the unknown nonlinear components of a dynamic system. Now, consider a
discrete-time nonlinear dynamic system as follows:

y(k+1) = f(y(k),..., y(k − n + 1), u(k),..., u(k − m + 1))
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where f is an unknown function that needs to be “identified”, u and y are the
inputs and outputs of the system, respectively, and n and m are positive integers.
Now let ( )f xt be the fuzzy system that is supposed to be an approximate of the
real system f.

( ) ( ( ),..., ( ), ( ),..., ( ))y k f y k y k n u k u k m1 1 1+ = - + - +t

Based on the identification scheme given in Figure 7.25, the aim is to adjust
the parameters of ( )f xt such that the output of the identification model ( )y k 1+t

converges to the output of the real system ( )y k 1+ as k → ∞.
To achieve this outcome, any of the previously presented tuning algorithms

can be used with the following formulation. The input–output pairs in this
problem are (x0

k + 1, y0
k + 1), where

x0
k + 1 = (y(k),..., y(k − n + 1), u(k),..., u(k − m + 1))

y0
k + 1 = y(k + 1) k = 0, 1, 2,...

Now the system parameters are modified iteration by iteration to follow the
real output.

6.1 Fuzzy robot navigator

Robot control is another area that benefited from advances in fuzzy logic
[38]. A fuzzy navigator is designed to control a robot that moves around a room
containing several static obstacles (chairs, tables, etc) and dynamic obstacles
(humans). Now the idea is that a fuzzy navigator will aid the robot to get to any
arbitrary point in the room from any other arbitrary point without colliding with
any static or dynamic obstacle [39].

In summary, the robot is equipped with ultrasonic sensors to detect its sur-
rounding obstacles. These sensors are mounted on the front, left, and right side of
the robot. Three completely individual controllers were designed to seek the goal,
avoid obstacles, and follow edges in the room. Figure 7.26 shows the general
overview of the controller, while Figures 7.27 and 7.28 are two examples of
launching the proposed algorithm in the presence of dynamic and static obstacles.
In these figures, the robot starts from the “S” point to get the target point “T”.
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Figure 7.26. A fuzzy robot navigator
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Figure 7.28. A path generated in the presence of static and dynamic obstacles



Static obstacles are shown in gray, are dynamic (moving) obstacles are shown in
black. The robot itself is shown as a circle with a tick to show its head angle. Note
that, in Figure 7.27, the target is also a moving point, such as a carriage.

7 CONCLUSION

In this chapter, a general overview of the fuzzy logic has been presented. The
premise of fuzzy logic relies on the fact that decisions in the real world may not
be clear-cut, especially in complex scenarios. Fuzzy logic is a powerful tool that
can be applied to a wide range of applications ranging from fuzzy control to fuzzy
decision makers and fuzzy classifiers.
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