
Chapter 5

ARTIFICIAL NEURAL NETWORKS
Javid Taheri and Albert Y. Zomaya
The University of Sydney

Artificial Neural Networks have been one of the most active areas of
research in computer science during the last fifty years, with periods of intense
activity interrupted by episodes of hiatus [1]. The premise for the evolution of
the theory of artificial neural networks stems from the basic neurological struc-
ture of living organisms. Cells are the most important constituent of these life
forms. These cells are connected by synapses, which are the links that carry mes-
sages between cells. In fact, by using synapses to carry the pulses, cells can acti-
vate each other with different threshold values to form a decision or memorize
an event.

Inspired by this simplistic vision of how messages are transferred between
cells, scientists invented a new computational approach, which became popu-
larly known as Artificial Neural Networks (or Neural Networks for short), and
used it extensively to target a wide range of problems in many application
areas. Although the shape or configurations of different neural networks may
look different at the first glance, the networks themselves are almost similar in
structure.

A neural network consists of cells and links. Cells are the computational part
of the network that perform reasoning and generate activation signals for other
cells, while links connect the different cells and enable messages to flow among
cells. Each link is usually a one-directional connection with a weight that affects
the carried message in a certain way. This means that a link receives a value (mes-
sage) from an input cell, multiplies it by a given weight, and then passes it to the
output cell.

In its simplest form, a cell can have three states (of activation), namely, +1
(TRUE), 0, and −1 (FALSE), to represent three states: activation, unknown, and
deactivation. Figure 5.1 shows a simple network with two inputs and one output.
Table 5.1 gives the output for all possible inputs in such a network. As can be
seen, this network simply separates the sample space into two completely indi-
vidual subspaces.

1 A GENERIC NEURAL NETWORK

Figure 5.1 shows a simple instant of a neural network. Cells (or neurons) can
have more sophisticated structure that can handle complex problems. These neu-
rons can be linear or nonlinear functions with or without biases. Figure 5.2 shows
two simple neurons that can have biased and unbiased states.

148 Javid Taheri and Albert Y. Zomaya

Σ

+1

y = sgn(x1 − x2)

x1

Input Layer Neuron Output Layer

x2
−1

sgn()

Figure 5.1. A neural network with two inputs and one output

Table 5.1 Truth table of the network in Figure 5.1
x −1 0 +1

y
−1 0 −1 −1
0 1 0 −1

+1 1 1 0

f (.)
w

yx

Input Layer Neuron Output Layer

y = f(wx)(a)

w
x f (.) y

b

1

y = f(wx + b)

Output LayerNeuronInput Layer

(b)

Σ

Figure 5.2. (a) Unbiased and (b) biased structures of a neural network

1.1 Single-Layer Perceptron

The single-layer perceptron is one of the simplest classes of neural net-
works [1]. The general overview of this network is shown in Figure 5.3, where
the network has n inputs and generates only one output. The input of the func-
tion f (.) is actually a linear combination of the network’s inputs. In this case,
W is a vector of neuron weights, X is the input vector, and y is the only output
of the network. These inputs are defined as follows:

y = f (W . X + b)
W = (w1 w2 ... wn)
X = (x1 x2 ... xn)T

The above-mentioned basic structure can be extended to produce networks
with more than one output. In this case, each output has its own weights and is
completely uncorrelated to the other outputs. Figure 5.4 shows such a network,
with the following formulas:

.()Y F W X B= +

W

w
w

w

w w

w

,

,

,

, ,

,m

n

m n

1 1

2 1

1

1 2 1

f

f

f

=

R

T

S
S
S
S
S

V

X

W
W
W
W
W

X = (x1 x2 ... xn)
T

Y = (y1 y2 ... ym)T

B = (b1 b2 ... bm)T

() (() () ... ())F f f fm
T

1 2$ $ $ $=

where
n: number of inputs
m: number of outputs
W: weighing matrix
X: input vector
Y: output vector

()F $: array of output functions

Artificial Neural Networks 149

w2

f (.)

w1

y

x1

xn wn

x2

1

b

NeuronInput Layer Output Layer

Σ

Figure 5.3. A single-output (single-layer) perceptron

2 MULTILAYER PERCEPTRON

A multilayer perceptron can be simply constructed by concatenating several
single-layer perceptron networks. Figure 5.5 shows the basic structure of such a
network, which has the following parameters [1]:

150 Javid Taheri and Albert Y. Zomaya

w1
1,1

w2
1,1 w p

1,1z 1
1 z 2

1

z 2
2

z 2
m2

z m1

z 1
2

f 1
 2(.)

f 1
 1(.) f 2

 1(.) f p
 1 (.)

f p
 2 (.)f 2

 2 (.)

f p
mp

(.)

z p
1

z p
2

f 1
 m1

(.) f 2
 m2

(.)

b1
1 b2

1

b1
2

b1
m1w1

m1,n1

w2
m2,n2

x1

x2

xn

1

Output
Layer

Layer-1Input
Layer

1

1

1

1

1

1

1

1

y1

y2

ym

Layer-2 Layer-p

b p
1

b p
2

z p
mp

b p
mp

w p
mp,

b 2
2

np

S SS

S S S

SSS

Figure 5.5. The basic structure of a multilayer neural network

f1(.)

f2(.)

fm(.)

w1,1

w1,2

x1

b1

y1

y2

ym

b2

bm

xn

x2

wm,n

wm−1,n

1

Output LayerLayer - 1Input Layer

1

1

Figure 5.4. A multioutput single-layer perceptron

X: input vector
Y: output vector
n: number of inputs
m: number of outputs
p: total number of layers in the network

while
mi: number of outputs for the ith layer
ni: number of inputs for the ith layer

Note that in this network, every internal layer of the network can have its
own number of inputs and outputs only by considering the concatenation rule,
i.e. ni = mi−1. The output of the first layer is calculated as follows:

()Z F W X B1 1 1 1$= +

W

w
w

w

w w

w

,

,

,

, ,

,m

n

m n

1

1 1
1

2 1
1

1
1

1 2
1

1
1

1
1 1

f

f

f

=

R

T

S
S
S
S
SS

V

X

W
W
W
W
WW

X = (x1 x2 ... xn)
T

B1 = (b1
1 b2

1 ... bm1

1)T

Z1 = (z1
1 z2

1 ... zm1

1)T

F1()$ = (f1
1()$ f2

1()$... fm1

1 ()$)T

As a result, the output of the second layer would be

Z 2 = F 2 (W 2
˙ Z1 + B2)

W

w
w

w

w w

w

,

,

,

, ,

,m

n

m m

2

1 1
2

2 1
2

1
2

1 2
2

1
2

2
2 2 1

f

f

f

=

R

T

S
S
S
S
SS

V

X

W
W
W
W
WW

B2 = (b1
2 b2

2 ... bm 2

2)T

Z2 = (z1
2 z2

2 ... zm2

2)T

() () () ... ()F f f fm

T
2

1
2

2
2

2

2
$ $ $ $= c m
Finally, the last-layer formulation can be given as

Y = Zp = Fp(Wp . Zp−1 + Bp)

W

w
w

w

w w

w

,

,

,

, ,

,

p

p

p

m
p

p
n

p

m m
p

1 1

2 1

1

1 2 1

p p1 1

f

f

f

=

-

R

T

S
S
S
S
SS

V

X

W
W
W
W
WW

Bp = (b1
p b2

p ... bm p

p)T

Artificial Neural Networks 151

Zp = (z1
p z2

p ... zmp

p)T

() () () ... ()F f f fp p p
m

p
T

1 2 p
$ $ $ $= c m
Note that, in such networks, the complexity of the network rises quickly based

on the number of layers. Practically experienced, each multilayer perceptron can
be evaluated by a single-layer perceptron with a comparatively huge number of
nodes.

2.1 Function Representation

Two of the most popular uses of neural networks is to represent (or approxi-
mate) functions and model systems. Basically, a neural network would be used to
imitate the behavior of a function by generating relatively similar outputs in com-
parison with the real system (or function) over the same range of inputs.

2.1.1 Boolean Functions

Neural networks were first used to model simple Boolean functions. For exam-
ple, Figure 5.6 shows how a neural network can be used to model an AND oper-
ator, while Figure 5.7 gives the truth table. Note that “1” stands for “TRUE” while
“−1” represents a “FALSE” value. The network in Figure 5.6 actually simulates a
linear (function) separator, which simply divides the decision space into two parts.

2.1.2 Real-Value Functions

In real-value functions, the network weights must be set so that the network
can generate continues outputs of a real system. The generated network is also
intended to act as an extrapolator that can generate output data for inputs that
are different from the training set.

To clarify this, assume that the data set given in Table 5.2 is produced by a real-
world phenomenon (or system). The idea here is for a neural network (Figure 5.8)
to regenerate the same data and also be able to produce other values for sets of
unforeseen inputs (i.e., extrapolate). Figure 5.9 shows graphically the output of
both the system and the neural model.

152 Javid Taheri and Albert Y. Zomaya

1.4

1.4

y

x1

x2

1

−0.7

Output LayerNeuron Input Layer

Σ sgn()

Figure 5.6. A neural network that implements the logical AND operator

Artificial Neural Networks 153

x2

x1

x1

x2

−1

−1

−1

−1 −1

−1

−1

+1

+1

+1

+1+1

Figure 5.7. Representation for the network in Figure 5.6

Table 5.2. Truth table for an instance of a real value function
X1 −3 0 3

X2

−3 0.97 0.43 −3.49
0 1.85 0.28 −1.18
3 4.26 1.0 −1.36

0.3

0.4

y

x1

x2

1

−0.7

Output LayerNeuronInput Layer

Σ

Figure 5.8. A neural network that implements a simple real function

3 LEARNING SINGLE-LAYER MODELS

The main, and most important, application of all neural networks is their abil-
ity to model a process or learn a behavior of a system. Toward this end, several
algorithms have been proposed to train the adjustable parameters of a network
(i.e., W). Basically, training a neural network to adjust the Ws is categorized into
two different classes: supervised and unsupervised [2–6].

3.1 Supervised Learning

The main purpose of supervised learning is to “teach” a network to copy the
behavior of a system or a function. In this case, there is always a need to have a
“training” data set. The network topology and the algorithm with which the net-
work is trained are highly interrelated. In general, a topology of the network is
chosen first and then an appropriate training algorithm is used to tune the
weights (W) [7, 8].

3.1.1. Perceptron Learning

As mentioned earlier, the perceptron is the most basic form of neural net-
works. Essentially, this network tries to classify input data by mapping it onto a

154 Javid Taheri and Albert Y. Zomaya

−4

−6
−4
−2
0
2
4
6

−2

−2
−4 −4

−5−5

00

5
5

−2

0

2

4

4
2

0 0
2

4

6

(a)

(b)

Figure 5.9. The real values (a) and its corresponding neural model (b)

plane (Figures 5.3 and 5.4). In this approach, to simplify the algorithm, suppose
that the network’s input is restricted to {+ 1,0, − 1}, while the output can be {+ 1,
−1}. The aim of the algorithm is to find an appropriate set of weights, W, by sam-
pling a training set, T, that will capture the mapping that associates each input to
an output, i.e.,

W = (w0 w1 . . . wn)
T = {(R1, S1), (R2, S2), . . . , (RL, SL)}

where n is the number of inputs, Ri is the ith input datum, Si′ represents the appro-
priate output for the ith pattern, and L is the size of the training data set. Note
that, for the above vector W, wn is used to adjust the bias in the values of the
weights. Perceptron Learning can be summarized as follows:
Step 1: Set all elements of the weighting vector to zero, i.e., W = (0 0 . . . 0).
Step 2: Select the training pattern randomly, the kth datum.
Step 3: IF the current W hasn’t been classified correctly, i.e., W.Rk ≠ Sk, THEN

modify the weighing vector as follows: W ← W + Rk Sk.
Step 4: Repeat steps 1–3 until all data are classified correctly.

The following example is used to demonstrate how this network func-
tions. Assume a network with two inputs and one output used to classify the
data of Table 5.3. The different iterations that the network will undergo are as
follows:

Iteration Current W Choice OK ? Action
1 <0 0 0> T5 NO W=W−T5
2 <−2 3 −1> T6 YES
3 <−2 3 −1> T4 YES
4 <−2 3 −1> T2 YES
5 <−2 3 −1> T1 NO W=W+T1
6 <0 3 0> T2 YES
7 <0 3 0> T1 NO W=W+T1

<2 3 1> Works for all training data; algorithm terminates.

In this case, the final answer would be W = [2 3 1]. Figure 5.10 shows the net-
work after it converges to the previous answer, while Figure 5.11 graphically
shows the output of the network.

Artificial Neural Networks 155

2

3

y

x1

x2

1

1

Output LayerNeuronInput Layer

Σ sgn()

Figure 5.10. A perceptron neural network for the data in Table 5.3

3.2 Linear Auto-Associative Learning

An auto-associative network is another type of network that has some type
of memory. In this network, the input and output nodes are basically the
same. Hence, when a datum enters the network, it passes through the nodes and
converges to the closest memorized datum, which was previously stored in the

156 Javid Taheri and Albert Y. Zomaya

Table 5.3. A sample training set for a perceptron
Name Input Output

X1 X2 Y
T1 2 0 1
T2 1 2 1
T3 3 4 1
T4 −3 −2 −1
T5 2 −3 −1
T6 −1 −1 −1

−5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−4 −3 −2 −1 0 1 2 3 4 5

+

+

+

Figure 5.11. The output of the network of Figure 5.10

1

5 2

4 3

Figure 5.12. A sample linear auto-associative network with five nodes

network during the training process [1]. Figure 5.12 shows an instance of such
network with five nodes.

It is worth noting that the weighing matrix of such network is not symmetri-
cal. That is, wi,j, which relate node i to node j, may have different values than wj, i.
The main key of designing such a network is in the training data set. In this
case, the assumption is to have orthogonal or approximately orthogonal training
data, i.e.,

,T T
i j

i j

0

1i j

!
.

=
G H *

where Ti is the ith training data and . is the inner product of two vectors. Based
on the above, the weight matrix for this network is calculated as follows, where 7
stands for outer product of two vectors:

W T Ti i
i

N

1
7=

=

!
As can be seen, the main advantage of this network is in its one-shot learning

process, accomplished by considering orthogonal data. Note that, even if the
input data are not orthogonal in the first place, they can be transferred to a new
space by a simple transfer function.

To demonstrate the use of this network, assume the three-node network of
Figure 5.13. In this network, the inputs and outputs of the network are basically
same. Also, assume that the data in Table 5.4 need to be stored in the network.

In this case, the training data set is approximately orthogonal, i.e.,

〈 T1, T1 〉 = 0.9902
〈 T2, T2 〉 = 1.0025
〈 T1, T2 〉 = − 0.0066

Artificial Neural Networks 157

Table 5.4. Training data for a sample auto associate network
T1 <−0.29 0.90 0.31>
T2 <0.94 0.33 −0.1>

1

3 2

Figure 5.13. An auto-associative network with three nodes

Therefore, the weight matrix would be calculated as follows:

.
.
.

.
.
.

.
.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.

.

.
.
.

W T T T T

0 0841
0 2610
0 0899

0 2610
0 8100
0 2790

0 0899
0 2790
0 0961

0 8836
0 3102
0 0940

0 3102
0 1089
0 0330

0 0940
0 0330

0 0100

0 9677
0 0492
0 1839

0 0492
0 9189
0 2460

0 1839
0 2460
0 1061

1 1 2 27 7= + =

-

-

- -

+

- -

-

-

=

-

-

R

T

S
S
SS

R

T

S
S
SS

R

T

S
S
SS

V

X

W
W
WW

V

X

W
W
WW

V

X

W
W
WW

To show how the above network functions, assume that the following data,
which are not part of the training data set, are fed into the network: T = < 0.8
0.5 0.33 >. Figure 5.14 shows how this network converges to an output.
Figures 5.14a and 5.14b show the � T − T1� and � T − T2 � cases, respectively.

3.2.1 Iterative Learning

Iterative learning is another approach that can be used to train a network. In
this case, the network’s weights are modified smoothly, in contrast to the one-shot
learning algorithms. In general, network weights are set to some arbitrary values
first, and then training data are fed to the network. In this case, in each training
cycle, network weights are modified smoothly. Then the training process pro-
ceeds until it achieves an acceptable level of acceptance for the network. However,
the training data could be selected sequentially or randomly in each training
cycle [9–11].

158 Javid Taheri and Albert Y. Zomaya

0
0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 30 40 50453525

0
1.1

1.2

1.3

1.4

1.5

5 10 15 20 30 40 50453525

(a)

(b)

Figure 5.14. Convergence of the network in Figure 5.13 for the new data set

3.2.2 Hopfield’s Model

A Hopfield neural network is another example of an auto-associative network
[1, 12–14]. There are two main differences between this network and the previ-
ously described auto-associative network. In this network, self-connection is not
allowed, i.e., wi,i = 0 for all nodes. Also, inputs and outputs are either 0 or 1. This
means that the node activation is recomputed after each cycle of convergence as
follows:

()S w u t,i i j j
j

N

1
$=

=

! (1)

’
<

u
if S

if S

1 0

0 0j
i

i

$
= * (2)

After feeding a datum into the network, in each convergence cycle, the nodes
are selected by a uniform random function, the inputs are used to calculate (1),
and then (2) follows to generate the output. This procedure is continued until the
network converges.

The proof of convergence for this network uses the notion of energy. This
means that an energy value is assigned to each state of the network, and through
the different iterations of the algorithm, the overall energy is decreased until it
reaches a steady state. To show the workings of this network, one can train this
network to learn the data set given in Table 5.5. In this case, the weights matrix
would be as follows:

W T T

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1

1
1

1
1

1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

3
1
1
1

1
3
1
1

1
1
3
3

1
1
3
3

0
1
1
1

1
0
1
1

1
1
0
3

1
1
3
0

i i
i

N

1

"

7= = +
-

-

-

-

-

-

-

-

+
-

-

-

- - -

=
-

-

- -

-

-

- -

=

!

R

T

S
S
S
S
S

R

T

S
S
S
S
S

R

T

S
S
S
S
S

R

T

S
S
S
S
S

R

T

S
S
S
S
S

V

X

W
W
W
W
W

V

X

W
W
W
W
W

V

X

W
W
W
W
W

V

X

W
W
W
W
W

V

X

W
W
W
W
W

Now, suppose that the following input is applied to the network:

T

1
1
1
1

=

-

-

-

R

T

S
S
S
S
S

V

X

W
W
W
W
W

Artificial Neural Networks 159

Table 5.5. Training data for a Hopfield neural network
T1 <1 1 1 1>
T2 <−1 −1 1 1>
T3 <1 −1 −1 −1>

In this case, the network output would be

W T T

3
3
1
1

1
1
1
1

3"$ /=
-

-

-

-

-

-

R

T

S
S
S
S
S

R

T

S
S
S
S
S

V

X

W
W
W
W
W

V

X

W
W
W
W
W

Note that, in this case, the network convergence occurs in only one cycle,
although it may need more iteration for other inputs.

3.2.3 Mean Square Error (MSE) Algorithms

MSE algorithms emerged as an answer to the deficiencies experienced by
using perceptrons and other simple networks [1, 15]. One of the most important
reasons is the inseparability of training data. If the data used to train the network
are naturally inseparable, the training algorithm never terminates (Figure 5.15).

The other reason for using this technique is to converge to a better solution.
In perceptron learning, the training process terminates right after finding the first
answer, regardless of its quality (i.e., sensitivity of the answer). Figure 5.16 shows
an example of such a case. Note that, although the answer found by the percep-
tron algorithm is correct (Figure 5.16a), the answer in (Figure 5.16b) is more
robust. Finally, another reason for using MSE algorithms, which is crucial for
most neural network algorithms, is speed of convergence.

The MSE algorithm attempts to modify the network weights based on the
overall error of all data. In this case, assume that network input and output data
are represented by Ti, Ri for i = 1...N, respectively. Now the MSE error is defined
as follows:

E N W T R1
i i

i

N 2

1
$= -

=

!_ i

160 Javid Taheri and Albert Y. Zomaya

−3
−3

−2

−1

0

1

2

3

−2 −1 0 1 2 3
Figure 5.15. An example of an inseparable training data set

Note that the stated error is the summation of all individual errors for all the
training data. In spite of all the advantages of this training technique, there are
several disadvantages. For example, the network might not be able to correctly
classify the data if they are widely spread apart (Figure 5.17). The other disad-
vantage is that speed of convergence may completely vary from one set of data to
another.

3.2.4 The Widow-Hoff Rule or LMS Algorithm

In the widow-Hoff algorithm, the network weights are modified after each iter-
ation [1, 16]. A training datum is selected randomly, and then the network weights

Artificial Neural Networks 161

−3
−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

−2 −1 10 2 3 −3 −2 −1 10 2 3
(a) (b)

Figure 5.16. Two classification answers for sample data

3210−1−2−3
−3

−2

−1

0

1

2

3

Figure 5.17. An example of a training data set with spread-out members

are modified based on the corresponding error. This procedure continues until it
converges to the answer. For a randomly selected kth entry in the training data, the
error is calculated as follows:

e = (W ˙ Tk − Rk)
2

Now the gradient vector of this error would be

W W WN0 1
d

2
2

2
2 f

2
2e e e e

= G H

Hence,

()W W T R T2
j

k k k$ $
2
2e

= -

Based on the Widow-Hoff algorithm, the weights should be modified oppo-
site to the direction of the gradient. As a result, the final update formula for the
weighting matrix W would be

W ′ = W − r ˙ (W ˙ Tk − Rk) ˙ Tk

Note that r is known as the learning rate and absorbs the multiplier of
value 2.

3.4 Unsupervised Learning

Unsupervised learning networks attempt to cluster input data without the
need for the traditional “learn by example” technique that is commonly used
for neural networks. Note that clustering applications tend to be the most pop-
ular type of applications for which these networks are normally used. The
most popular networks in this class are K-means, Kohonen, ART1, and ART2
[17-21].

3.4.1 K-Means Clustering

K-means clustering is the simplest technique used for classifying data. In this
technique, a network with a predefined number of clusters is considered, and then
each datum is assigned to one of these clusters. This process continues until all
data are checked and classified properly. The following algorithm shows how this
algorithm is implemented.
Step 1: Consider a network with K clusters.
Step 2: Assign all data to one of the above clusters, with respect to the distance

from the center of the cluster and each datum.
Step 3: Modify the center of the assigned cluster.
Step 4: Check all data in the network to ensure proper classification.
Step 5: If a datum has to be moved from one cluster to another one, then update

the center of both clusters.
Step 6: Repeat steps 4 and 5 until no datum is wrongly classified.

Figure 5.18 shows an example of such a network when applied for data clas-
sification with correct and incorrect numbers of clusters. As can be seen, if
the number of clusters is properly guessed, then this algorithm can be very
effective.

162 Javid Taheri and Albert Y. Zomaya

3.4.2 Kohonen Clustering

The Kohoner classification method clusters input data based on a topological
representation of the data. The outputs of the network are arranged so that each
output has some neighbors. Thus, during the learning process, not only one out-
put but a group of close outputs are modified to classify the data. To clarify the
situation, assume that a network is supposed to learn how a set of data is to be
distributed in a two-dimensional representation (Figure 5.19).

In this case, each point is a potential output with a predefined neighborhood
margin. For example, the cell marked X and eight of its neighbors are given.
Therefore, whenever this cell gets selected for an update, all its neighbors are
included in the process too. The main principle behind this approach for classify-
ing input data is analogous to principles of biology. In a mammalian brain, all
vision, auditory, and tactile sensors are mapped into a number of cell sheets.
Therefore, if one of the cells is activated, all cells close to it will be affected, but
with different intensity levels.

Now assume that a training data set, Ti for i = 1...N, is available and that the
network must classify it based on a similarity measure. The main idea here is for

Artificial Neural Networks 163

(a) (b)

Figure 5.18. Results of applying a k-means clusterer with (a) appropriate and (b) inappropriate
numbers of clusters

X

Figure 5.19. Output topology of a sample Kohonen network

the network to assign at least one of its output weights to fire for a particular
training datum. To achieve this, for each training datum, the closest output is
found, and then the corresponding weights are modified in order to get the min-
imum possible Euclidean distance, i.e. to minimize � Tk − Wm,n �. Another consid-
eration during this training process is the learning rate of the algorithm. In
general, at the outset, the network is trained with a fast learning rate, while in the
final stages of the training process, the training data hardly change the network
weights. The following procedure explains the details of this classifier:

Step 1: Define the algorithm step size ()t L
t1 1

= -
-t c m, where L is the predefined

number of iterations.
Step 2: Generate a grid network with the dimension of the input data.
Step 3: Assign all network weights to random data.
Step 4: Select a random training data, Tk.
Step 5: Find the closest output of the network to Tk, and let this be Om,n.
Step 6: Modify Om,n and its neighboring weights, with a predefined margin, as fol-

lows: Wx,y = Wx,y + r(t)˙(Tk − Wx,y).
Step 7: Set t ← t + 1 and repeat steps 4–7 until t = L.

Figure 5.20 shows the random data that need to be classified, while
Figure 5.21 shows the end result for a number of iterations.

3.4.3 ART1

This neural classifier, known as Adaptive Resonance Theory or ART, deals
with digital inputs (Ti ∈ {0,1}). In this network, each “1” in the input vector rep-
resents information, while a “0” entry is considered noise or unwanted informa-
tion. In ART, there is no predefined number of classes before the start of
classification; in fact, the classes are generated during the classification process.

Moreover, each class prototype may include the characteristics of more than
a training datum. The basic principle of such a network relies on the similarity
factor for data classification. In summary, every time a datum is assigned to a
cluster, firstly, the nearest class with this datum is found, and then, if the similar-

164 Javid Taheri and Albert Y. Zomaya

−1
−1

−0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Figure 5.20. Training data set for a Kohonen network

ity of this datum to the class prototype is more than a predefined value, known
as a vigilance factor, the datum is assigned to this class and the class prototype is
modified to have more similarity with the new data entry [1, 22, 23].

The procedure below shows how this algorithm is implemented. However, the
following points need to be noted First.

1. �X � is the number of 1s in the vector X.
2. X ˙ Y is the number of common 1s between the vectors X and Y.
3. X ∩ Y is the bitwise AND operator applied on vectors X and Y.

Step 1: Let b be a small number, n be the dimension of the input data, and r be
the vigilance factor (0 ≤ r < 1).

Step 2: Start with no class prototype.
Step 3: Select a training datum by random, Tk.
Step 4: Find the nearest unchecked class prototype, Ci, to this datum by

minimizing
C

C T

i

i k$

+b
.

Step 5: Test whether Ci is sufficiently close to Tk by verifying

>
C

C T T

i

i k k$

+ +b b t
.

Step 6: If Ci is not similar enough, then assign a new class prototype and go to
step 3.

Artificial Neural Networks 165

−0.5 −0.8 −0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.4 −0.2 0.2 0.4 0.6 0.80
−0.5

0

0.5

1

1.5

0

(a) (b)

(c) (d)

0.5

w (i,1) w (i,1)

weight Vectors weight Vectors

weight Vectors

w
(i,

2)

w
(i,

2)

−0.8 −0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.4 −0.2 0.2 0.4 0.6 0.80

w (i,1)

−0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.80

0

w (i,1)

weight Vectors

w
(i ,

2)

−0.6

−0.4

−0.2

0.2

0.4

0.6

w
(i ,

2)

1 1.5

Figure 5.21. Classification results for the Kohonen network after (a) 0, (b) 10, (c) 20, and (d)
30 iterations

Step 7: If it is sufficiently similar, check the vigilance factor:

T
C T

k

i k$
$ t

Step 8: If the vigilance factor is exceeded, then modify the class prototype by
Ci = C i ∩ Tk and go to step 3.

Step 9: If the vigilance factor is not exceeded, then find another unchecked class
prototype (step 4).

Step 10: Repeat steps 3–9 until none of the training data causes any change in
class prototypes.

3.4.4 ART2

ART2 is a variation of ART1, with the following differences:
1. Data are considered continuous and not binary.
2. The input data are processed before passing them to the network. Actually,

the input data are normalized, and then all elements of the result vector
that are below a predefined value are set to zero and the vector is normal-
ized again. The process is used for noise cancellation.

3. When a class prototype is found for a datum, the class prototype vector is
moved fractionally toward the selected datum. As a result, contrary to the
operation of ART1, the weights are moved smoothly toward a new datum.
The main reason for such a modification is to “memorize” previously
learnt rules.

The following algorithm demonstrates the working of ART2:
Step 1: Let; n be the dimension of the input data; a be a positive small number

given by / ;n1#a m be the normalized factor such that < < / ;n0 1m and r
be the vigilance factor (0 ≤ r < 1).

Step 2: Process all the training data for k = 1 ˙ N as follows:
Normalize Tk.

Set all elements of Tk to 0 if they all are less or equal to l.
Normalize Tk again.

Step 3: Start with no class prototype.
Step 4: Select a training datum randomly, Tk.
Step 5: Find the nearest unchecked class prototype, Ci, to this datum by mini-

mizing Ci ˙ Tk.

Step 6: Test whether Ci is sufficiently close to Tk by verifying C T Ti k j
k

j
$ $$ a ! .

Step 7: If Ci is not similar enough, then assign a new class prototype and go to
step 4.

Step 8: If it is sufficiently similar, check the vigilance factor: Ci ˙ Tk ≥ r.
Step 9: If the vigilance factor is exceeded, then modify the class prototype by

()
()

C
C T
C T

1
1

i
k

k

$ $

$ $
=

- +

- +

b b

b b
and go to step 4.

Step 10: If the vigilance factor is not exceeded, then try to find another unchecked
class prototype (step 5).

Step 11: Repeat steps 3–9 until none of the training data causes any change in
class prototypes.

166 Javid Taheri and Albert Y. Zomaya

3.5 Learning in Multiple-Layer Models

As mentioned earlier, multilayer neural networks consist of several con-
catenated single-layer networks [1, 24–26]. The inner layers, known as hidden
layers, may have different number of inputs and outputs. Because of this added
complexity, the training process becomes more involved. This section presents
two of the most popular multilayer neural networks.

3.6 Back-Propagation Algorithm

The back-propagation algorithm is one of the most powerful and reliable
techniques that can be used to adjust network weights. The main principle of this
approach is to use the gradient information of a cost function to modify the net-
work’s weights.

However, the use of such an approach to train multilayer networks is a little
different from applying it to single-layer networks. In general, multilayer net-
works are much harder to train than single-layer ones. In fact, convergence of
such networks is much slower and very error sensitive.

In this approach, an input is presented to the network and allowed to “for-
ward” propagate through the network. The output is calculated, and then the
output is compared with a “desired” output (from the training set) and an error
is calculated. This error is then propagated “backward” into the network, and the
different weights are updated accordingly. To simplify the description of this
algorithm, consider a network with a single hidden layer (and two layers of
weights), as shown in Figure 5.22. In relation to this network, the following def-
initions apply. Of course, the same definitions can be easily extended to larger
networks.

Ti,Ri for i = 1...L: The training set of input and outputs, respectively.
N,S,M: The size of the input, hidden, and output layers, respectively.
W1: Network weights from the input layer to the hidden layer.
W2: Network weights from the hidden layer to the output layer.
X,Z,Y: Input and output of the hidden layer and the network output, respec-

tively.
F1(˙): Array of network functions for the hidden layer.
F2(˙): Array of network functions for the output layer.
These definitions lead to the following formulas:

Z = F 1(W 1
˙X)

W

w
w

w

w w

w

,

,

,

, ,

,s

n

s n

1

1 1
1

2 1
1

1
1

1 2
1

1
1

1
f

f

f

=

R

T

S
S
S
S
SS

V

X

W
W
W
W
WW

X = (x1 x2 ... xn)
T

Z = (z1 z2 ... zs)
T

F1 (˙) = (f1
1(˙) f2

1(˙) ... fs
1(˙))

T

Artificial Neural Networks 167

Y = F 2 (W 2
˙Z)

W

w
w

w

w w

w

,

,

,

, ,

,m

s

m s

2

1 1
2

2 1
2

1
2

1 2
2

1
2

2
f

f

f

=

R

T

S
S
S
S
SS

V

X

W
W
W
W
WW

F 2(˙) = (f1
2(˙) f2

2(˙) ... fm
2(˙))

T

Now assume that the cost function for this optimization process is defined as

E L R Y2
1 () ()

j
k

j
k

j

M

k

L 2

11
= -

==

!! a k
where Yj

(k) and Rj
(k) are the actual and desired outputs of the network, respec-

tively. In this case, k represents the kth training datum and j is the jth
output.

In this case, the following formulas represent the details:

Y f w Z f net

Z f w x f net

2

1

()
,

() ()

()
,

() ()

j
k

j j s s
k

s

S

j j
k

s
k

s s i i
k

i

N

s s
k

2 2

1

2

1 1

1

1

$

$

/

/

=

=

=

=

!

!

f a
f a

p k
p k

168 Javid Taheri and Albert Y. Zomaya

x1

x2

xn

f 1
1(⋅) f 2

1(⋅)

f 2
2(⋅)

w1
1,1

w 2
1,1

z1

z2

zs

y1

y2

ym

f 1
2(⋅)

∑

∑

∑ ∑

∑

∑

f 2
m

(⋅)

w 1
n,s

w 2
s,m

f1
m1

(⋅)

Input Layer Layer-1 Layer-2 Output Layer

Figure 5.22. A two-layer neural network

Now, the main cost function can be rewritten as follows:

E L R f w f w x2
1 ()

, ,
()

j
k

j j s s
s

S

s i i
k

i

N

j

M

k

L
2 2 1

1

1

1

2

11
$ $= -

= ===

! !!!
J

L
KK

J

L

K
K f N

P
OO

N

P

O
Op

Based on the gradient algorithm, with the assumption that all functions in the
network are derivable, the following would apply for the output layer:

w
E

L R Y
w

Y

L R Y
net

f net

w

net

L Z

1

1
2

2

1

,

() ()

,

()

() ()
()

()

,

()

() ()

f g
f
k

f
k

k

L

f g

f
k

f
k

f
k

k

L

f
k

f f
k

f g

f
k

f

k
g
k

k

L

2
1

2

1

2

2

2
1

$

2
2

2

2

2

2

2

2

= - -

= - -

= - m

=

=

=

!

!

!

a

a a
k

k k

where

() ()R Y f net() () () . ()k
f
k

f
k

f f
k

2
2

f
= -m

The gradient formulas for the hidden layer would be as follows:

w
E

L Z
E

w

Z

L R Y
net

f net
w

w

Z

L w
net

f net
X

L X

1

1

1

1

,
()

,

()

() ()
()

()

,
,

()

()
, ()

()

()

() ()

f g f
k

f g

f
k

k

L

j
k

j
k

j

M

k

L

j
k

j
k

j f
f g

j
k

k
j f

f
k

f
k

g
k

j

M

k

L

k
g
k

k

L

1 1
1

11

2

2
1

2
2

1

11

1
1

j

f

$ $

$

2
2

2
2

2

2

2

2

2

2

2

2

=

= - -

= -

=-

m

m

=

==

==

=

!

!!

!!

!

a a

a
k k

k

where

f net w() ()
,

()k
f f

k
j f

k

j

M

1
1 2

2
1

f j
$=m m

=

!o a k
To summarize the above technique, the back-propagation algorithm for a two-

layer network can be derived as follows:
Step 1: Create a network with a predefined number of nodes in the hidden layer,

and random weights for all links.
Step 2: Select a kth entry consisting of an input and desired output.
Step 3: Compute net1i

(k) and Zi
(k) for i = 1... S:

, ()net w X Z f net1 1()
,

() () ()
i
k

r i r
k

i
k

i i
k

r

N
1 1

1
$= = =

=

!
followed by net2j

(k) and Yj
(k) for j = 1...M:

, ()net w Z Y f net2 2()
,

() () ()
i
k

i j i
k

j
k

j j
k

i

2 2

1
$= = =

=

!
Step 4: Computer l1i

(k) and l2 j (k) for i = 1 ... S and j = 1...M:

Artificial Neural Networks 169

R Y f net2() () () . ()k
J
k

J
k

j j
k

2
2

j
= -m a ak k

.f net w1() . ()
,

()k
i i

k
i j

k

j

M

1
1 2

2
1

i j
=m m

=

!a k
Step 5: Calculate the gradient over the input batch:

w
E

w
E Z

, ,

() ()

i j i j

k
i
k

2 2 2 j
$

2
2

2
2

= + m

w
E

w
E X

, ,

() ()

i j i j

k
i
k

1 1 1j
$

2
2

2
2

= + m

Step 6: Repeat steps 2–5 for all training data.
Step 7: Update the network weights as follows:

() ()w new w old L w
E

, ,
,

i j i j
i j

1 1
1!

2
2

-
n

() ()w new w old L w
E

, ,
,

i j i j
i j

2 2
2!

2
2

-
n

Step 8: Repeat steps 2–7 until a predefined accuracy measure is reached for the
network.

3.7 Radial Basis Functions

The Radial Basis Function (RBF) neural network is another popular multi-
layer neural network [27–31]. The RBF network consists of two layers, one hid-
den layer and one output layer. In this network, the hidden layer is implemented
by radial activation functions while the output layer is simply a weighted sum of
the hidden-layer outputs.

The RBF neural network is able to model complex mappings, which percep-
tron neural networks can only accomplish by means of multiple hidden layers.
The outstanding characteristics of such a network makes it applicable for a vari-
ety of applications, such as function interpolation [32, 33], chaotic time series
modeling [34, 35], system identification [36–38], control systems [39, 40], channel
equalization [41–43], speech recognition [44, 45], image restoration [46, 47],
motion estimation [48], pattern classification [49], and data fusion [50].

3.7.1 Network Topology

The main topology of this network is as shown in Figure 5.23. Many functions
were introduced for possible use in the hidden layer; however, radial functions
(Gaussian) remain the most effective to use for data or pattern classification. The
Gaussian functions are defined as follows:

() () ()X X Xexpj j
T

j j
1= - - -n nU C-9 C

where j = 1,2, . . . , L, L represents the number of nodes in the hidden layer, X is
the input vector, mj and Gj are the mean vector and covariance matrix of the jth

Gaussian function, respectively. In some approaches, a polynomial term is

170 Javid Taheri and Albert Y. Zomaya

appended to the above expression, while in others the functions are normalized to
the sum of all Gaussian components as in the Gaussian mixture estimation.
Geometrically, a radial basis function in this network represents a bump in the
N-dimensional space where N is the number of entries (input vector size). In this
case, the mj represents the location of this bump in the space and Γj models its
shape. The output layer of this network is a linear combination of the hidden
layer outputs, as follows:

() ()Y X X,k i k i
i

L

1
$= m U

=

!
where L is the number of outputs of the hidden layer, Yk is the kth output, and
li, k is a linear factor (connection weight) from the ith hidden layer output to the
kth network output. In the classification application, the actual output of the
network is usually limited by a sigmoid function to be between 0 and 1:

()exp
Z

Y X1
1

k
k

=
+ -7 A

3.7.2 Training Algorithms

Because of the nonlinear behavior of this network, the training procedure of
the RBF network (as in multilayer networks) is approached in a completely dif-
ferent manner from that of single-layer networks. In this network, the aim is to
find the center and variance factor of all hidden-layer Gaussian functions as well
as the optimal weights for the linear output layer. In this case, the following cost
function is usually considered to be the main network objective:

Artificial Neural Networks 171

x1 y1

y2

ym

x2

xn

Φ1(⋅)

Φ2(⋅)

Φp(⋅)

λ1,1

λ1,2

λp,m

∑

∑

∑

Input Layer Hidden-Layer Output-Layer

Figure 5.23. The basic structure of an RBF network

() ()Min Y T R Y T Ri i

T

i i
i

N

0
$- -

=

! df np7 7A A
where N is the number of inputs in the training data set, Y(X) is the output of the
network for input X, and 〈Tk, Rk〉 is the kth training data pair. So the actual out-
put of the network is a combination of a nonlinear computation followed by a
linear operation. Therefore, finding an optimal set of weights for hidden layers
and output layer parameters is hardly achievable.

In this case, several approaches were used to find the optimal set of weights;
however, none of these can provide any guarantees that optimality can be
achieved. For example, many approaches suggest that the hidden-layer parame-
ters are set randomly and that the training procedure is just carried on for the out-
put linear components. In contrast, in some other cases, the radial basis functions
are homogenously distributed over the sample space before the output linear
weights are found. However, the back-propagation algorithm seems to be the
most suitable approach for training such a network.

Note that, in this approach, numerous iterations might be needed to converge
to a suitable answer, so the probability of getting stuck in local minima during
training process is unavoidable. To solve this problem, several algorithms were
suggested that use another classification technique, such as K-means [51], to
guess the initial location of the radial functions in the space. However, the fol-
lowing approach is mentioned as one of the simplest but most powerful
approaches to tune these sensitive weights. The main idea of this technique is sim-
ilar to that of Kohonen’s training routine. In this method, the parameters of the
radial basis functions are set randomly, and for each training datum, the closest
radial basis function in the hidden layer is selected and modified. The following
algorithm shows the details:
Step 1: Generate an RBF neural network with a predefined number of Gaussian

functions in the hidden layer, namely, L functions.
Step 2: Set the center of these Gaussian functions randomly, and, set their vari-

ance using a predefined fixed value.
Step 3: Select a random datum from the training data, Tk.
Step 4: Find the closest center of these Gaussian function with reference to the

following criterion: ,Min Tk j
< <j P1

; ;- n` j where mj is the center of the jth Gaussian
function, m*.

Step 5: Modify the center of the closest function as m* = m* + g (Tk − m*), where
g is an arbitrary small positive value as the learning rate.

Step 6: Repeat Steps 3–5 until all radial functions are almost fixed in space.
Step 7: Calculate the output-layer linear weights by Least Mean Squares or any

other optimization routine.
Note that, during step 3–5, when the centers of the radial functions are calcu-

lated, some radial functions might get close to each other during the process,
while others will never be affected. Therefore, an RBF neural network with an
excessive number of radial functions is usually generated first; then, after the
result generated by steps 3–5 is examined, the optimal number of radial functions
is guessed and the training algorithm is restarted. Figure 5.24 shows an RBF net-
work with two radial functions in the hidden layer that managed to learn the
behavior of a given data set.

172 Javid Taheri and Albert Y. Zomaya

4 LEARNING VECTOR QUANTIZATION

The Learning Vector Quantization (LVQ) network is another popular classifi-
cation technique that can be used for data clustering [52–54]. In this technique, a
two-layer network topology is used to classify the data, which can be used in
either supervised or unsupervised training.

In the supervised mode, a training data set is used to adjust the network
parameters (Figure 5.25). The first layer of this network follows the “winner-
takes-all” routine, while the second layer is linear. Basically, in the winner-takes-
all topology, the input vector is fed to the layer, and based on the layer outputs,
only one of the outputs is set to “1” and the rest to “0.” The basic topology
of this layer is usually the distance between network weights and the input
datum. This process is followed by a comparator to evaluate the outputs of dif-
ferent nodes and to emphasize the largest element by setting it to “1” and the
others to “0.”

4.1 Learning Algorithm

Because of the nonlinear nature of the first layer, the training of such a net-
work requires certain considerations. The back-propagation and other learning
methods that try to adjust network parameters by using gradient information of
the cost function cannot be readily applied here. However, a similar formulation
is used here with some modifications.

The main idea of the LVQ algorithm is based on a simple rule. A number of
hidden nodes with random weights are set as the first layer to build subclasses,
and then some of these subclasses are merged together to make up the final net-
work output. In this case, the final classes are assumed to have approximately
equal number of subclasses (Figure 5.26).

The other key element of this technique is the use of fixed subclass assign-
ments during the whole process of training. In fact, the second-layer weight
matrix is set only once, and the training process modifies the parameters of the

Artificial Neural Networks 173

21.81.61.41.21

(a) (b)
0.80.60.40.20

−0.4

−0.2

0.2

0.4

0.6

0.8

1

1.2

0

21.81.61.41.210.80.60.40.20
−0.4

−0.2

0.2

0.4

0.6

0.8

1

1.2

0

Figure 5.24. (a) A typical data set for an RBF neural network (b) corresponding network output
after training

174 Javid Taheri and Albert Y. Zomaya

x1 y1

y2

ym

x2

W
in

ne
r-

T
ak

es
-A

ll

xn

D1(⋅)

D2(⋅)

DL(⋅)

Input Layer Output LayerHidden-Layer

Figure 5.25. Basic structure of a LVQ network

Winner-Takes-All

Subclass-1

Subclass-2

Subclass-3 Subclass-5

Class-1 Class-2

Input

Subclass-4

Figure 5.26. Subclass association of an LVQ network

first layer only. Based on this classification technique, the weight matrix of the
output layer has only a “1” entry in each column, to distinguish the final class,
and several 1s in each row to assign several subclasses to a class. Now each train-
ing data entry is fed into the network, and its corresponding output is calculated,
based on the current network parameters. In this case, the parameters of the
nodes in the first layer that won (or lost) the competition are slightly moved
toward (or away from) this datum if the network correctly (incorrectly) classifies
this entry.

The following algorithm describes the overall procedure and the 〈Tk, Rk〉 rep-
resents the kth training entry (input, output).
Step 1: Set random weights for all L nodes in the first layer.
Step 2: Assign different subclasses to the same class randomly and homogenously,

because these weight won’t be changed during the training process.
Step 3: Select a random training datum, Tk.
Step 4: Find the neuron in the first layer that is closest to this input, i*.
Step 5: Calculate the final output answer for the input vector.
Step 6: If the network output is the same as the desired value, Rk, then adjust the

weights of the i* nodes of the first layer as follows: wi. ← wi. + l(Tk − wi.).

Step 7: If the network output is not the same as the desired value,
Rk, then adjust the weights of the i* nodes of the first layer as follows:
wi. ← wi. − l(Tk − wi.).

Step 8: Repeat steps 3–7 until all data are correctly classified.
Note that l is the learning rate, which can be set to a constant or modified

during the training process.
To clarify this procedure, assume that the training data set is as follows:

, , , ,T R
0
0

1
0

0
1

1
1

1
0

0
0

1
1

0
1

=G H = = = = = = = =G G G G G G G G* 4
Also, assume that the weights matrix of the first and second layer is set as fol-

lows:
.
.
.
.

.

.

.

.

W Wand

0 1
0 2
0 3
0 2

0 2
0 3
0 1
0 2

1
0

1
0

0
1

0
1

1 2= =

R

T

S
S
S
S
S

=
V

X

W
W
W
W
W

G

Now, suppose the second training datum is selected to train the network.
Therefore, the output of the first layer would be

()

[.
[.
[.
[.

.] [

.] [

.] [

.] [

]
]
]
]

.

.

.

.

A compete1

0 1
0 2
0 3
0 2

0 2 0
0 3 0
0 1 0
0 2 0

1
1
1
1

0 8062
0 7280
0 9487
0 8246

0
0
1
0

=

-

-

-

-

=

R

T

S
S
S
S
SS

R

T

S
S
S
S
S

R

T

S
S
S
S
S

V

X

W
W
W
W
WW

V

X

W
W
W
W
W

V

X

W
W
W
W
W

and the output of the network would be

Artificial Neural Networks 175

() ()A W A R2 1
1
0

1
0

0
1

0
1

0
0
1
0

0
1

1
1

2
2$ $!= = = =

R

T

S
S
S
S
S

= = =
V

X

W
W
W
W
W

G G G

Note that the network output is different from the desired output. Therefore,
the weighing vector of the second node of the first layer is modified as follows:

.

.
.

.

.
.
.

w
0 3
0 1

0 2
1
1

0 3
0 1

0 16
0 083 $= - - =

-

J

L
KK

N

P
OO= = = >G G G H

The final weight matrix for the first layer would be

.
.
.
.

.
.
.
.

W

0 1
0 16
0 3
0 2

0 2
0 08
0 1
0 2

1
!

-

R

T

S
S
S
S
S

V

X

W
W
W
W
W

This procedure should be continued until all the data have been correctly
classified.

5 NEURAL NETWORK APPLICATIONS

This section briefly reviews a number of application areas in which neural net-
works have been used effectively. This is by no means an exhaustive list of appli-
cations.

5.1 EXPERT SYSTEMS

One popular application is the use of neural networks as expert systems.
Several definitions have been presented to clearly distinguish this kind of systems
from other approaches [55–57]. Generally, an expert system is defined as a system
than can imitate the action of a human being for a given process. This definition
does not restrict the design of such systems by traditional Artificial Intelligence
approaches. Therefore, a variety of such systems can be built by using Fuzzy
Logic, Neural Networks, and Neuro-Fuzzy techniques. In most of these systems,
there is always a knowledge-based component that holds information about the
behavior of the system as simple rules followed by operators (usually in Fuzzy
Systems) or a large database collected from the system performance that a neural
network can be trained to emulate (Figure 5.27).

5.2 NEURAL CONTROLLERS

Neural controllers are a specific class of expert systems that deal with the
process of regulating a liner or nonlinear system (Figure 5.28). There are two
methods to train such system, namely, supervised and unsupervised. In the super-

176 Javid Taheri and Albert Y. Zomaya

vised approach, another controller usually exists, and the neural controller is
trained to imitate its behavior. In this case, the neural controller is connect in par-
allel to the other controller, and during the process, by sampling inputs and out-
puts, the network is trained to generate similar outputs for similar inputs of the
real controller. This process is known as online training. In contrast, in the case of
offline training, a database of the real-controller inputs and outputs can be
employed to train the network [58-60].

6 DECISION MAKERS

In the specific class of decision makers, which can also be viewed as an
expert system, a neural network is used to make critical decisions in unexpected
situations. One such application is popular in financial markets such as stock
market applications. One of the main characteristics of such systems that dis-
tinguish them from simple expert systems is their stability. In fact, these systems
must be able to produce acceptable output for untrained situations. Therefore,
a sufficiently rich data set must be used for the training process [61–63] (see
Figure 5.29).

Artificial Neural Networks 177

Knowledge-based
IF-THEN rules
Database

Inputs Outputs

Expert System

Fuzzy System

Neural Network

Neuro-Fuzzy

Figure 5.27. A generic expert system

Controller

Feedback

System

Neural Controller

Input Output

Figure 5.28. A neural network controller

7 ROBOT PATH PLANNING

Another complex scenario in which neural networks have been used with some
promise is that of robot path planning. In this case, the robot tries to navigate its
way to reach a target location. The situation can be made more complicated by
adding obstacles in the environment or even other mobile robots. Normally, this
situation is modeled as an optimization problem in which some cost function is
minimized (e.g., minimize the distance that the robot needs to travel) while satis-
fying certain constraints (e.g., no collisions) [64–66] (see Figures 5.30 and 5.31).

8 ADAPTIVE NOISE CANCELLATION

Neural networks have been used very effectively to filter noise. In this case, the
target signal (in the training set) is the nonnoisy signal that the input should be

178 Javid Taheri and Albert Y. Zomaya

109876543210 109876543210
−2

−1.5

−1

−0.5

0

0.5

1

−2

−1.5

−1

−0.5

0

0.5

1

+
+

+ ++
+

+
+

+ + +
+

+

++

(a) (b)

Figure 5.29. (a) Sample data and (b) network output after training

S

T

Figure 5.30. An optimal path for a sample robot work space

generating. The network must learn how to imitate the noise and in the process
manage to neutralize it. Many approaches have been introduced in the literature
over the years, and some of these have been deployed in real environments
[67–69]. An example is provided in Figures 5.32 and 5.33.

9 CONCLUSION

In this chapter, a general overview of artificial neural networks has been pre-
sented. These networks vary in their sophistication from the very simple to
the more complex. As a result, their training techniques vary as well as their
capabilities and suitability for certain applications. Neural networks have

Artificial Neural Networks 179

S

T

Input and Target Signals

Input
Target

Time
1

−3

−2

−1

0

1

3

2

1.5 2.5 3.52 3

Figure 5.32. Input and target signals for a noise-cancellation neural network

Figure 5.31. A robot work space with deep U-traps

attracted a lot of interest over the last few decades, and it is expected they will be
an active area of research for years to come. Undoubtedly, more robust neural
techniques will be introduced in the future that could benefit a wide range of
complex applications.

REFERENCES

[1] S. I. Gallant (1993): Neural Network Learning and Expert Systems, MIT
Press.

[2] N.B. Karayiannis and A.N. Venetsanopoulos, (1993) Efficient learning
algorithms for neural networks (ELEANNE), IEEE Transactions on
Systems, Man and Cybernetics, 23(5), 1372–1383.

[3] M.H. Hassoun and D.W. Clark (1988): An adaptive attentive learning
algorithm for single-layer neural networks, in Proceedings of the IEEE
International Conference on Neural Networks, 1, 431–440.

[4] M.E. Ulug (1994): A single layer fast learning fuzzy controller/filter: Neural
Networks, in Proceedings of the IEEE World Congress on Computational
Intelligence, 3, 1662–1667.

[5] N.B. Karayiannis and A.N. Venetsanopoulos (1992): Fast learning algo-
rithms for neural networks, IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, 39(7), 453–474.

[6] T. Hrycej (1991): Back to single-layer learning principles, in Proceedings
of the International Joint Conference on Neural Networks, Seattle, 2, 945.

[7] M.J. Healy (1991): A logical architecture for supervised learning: Neural
Networks, in Proceedings of the IEEE International Joint Conference on
Neural Networks, 1, 190–195.

[8] R.D. Brandt and L. Feng (1996): Supervised learning in neural networks
without feedback network, in Proceedings of the IEEE International
Symposium on Intelligent Control, pp. 86–90.

180 Javid Taheri and Albert Y. Zomaya

1
−4

−3

−2

−1

0

1

2

3

4
Output
Target

Error

1.5
(a) (b)

2 2.5 3 3.5 1 1.5
−1.5

−1

−0.5

−0

0.5

1

2

1.5

2.5

2 2.5 3 3.5

Figure 5.33. Final performance and error signal of the noise-cancellation neural network

[9] Y. Gong and P. Yan (1995): Neural network based iterative learning con-
troller for robot manipulators, in Proceedings of the IEEE International
Conference on Robotics and Automation, 1, 569–574.

[10] S. Park and T. Han (2000): Iterative inversion of fuzzified neural networks,
IEEE Transactions on Fuzzy Systems, 8(3), 266–280.

[11] X. Zhan, K. Zhao, S. Wu, M. Wang, and H. Hu (1997): Iterative learning
control for nonlinear systems based on neural networks, in Proceedings of
the IEEE International Conference on Intelligent Processing Systems, 1,
517–520.

[12] C.J. Chen, A.L. Haque, and J.Y. Cheung (1992): An efficient simulation
model of the Hopfield neural networks, in Proceedings of the International
Joint Conference on Neural Networks, 1, 471–475.

[13] G. Galan-Marin and J. Munoz-Perez (2001): Design and analysis of maxi-
mum Hopfield networks, IEEE Transactions on Neural Networks, 12 (2),
329–339.

[14] N.M. Nasrabadi and W. Li (1991): Object recognition by a Hopfield neural
network, IEEE Transactions on Systems, Man and Cybernetics, 21 (6),
1523–1535.

[15] J. Xu, X. Zhang, and Y. Li (2001): Kernel MSE algorithm: a unified frame-
work for KFD, LS-SVM and KRR, in Proceedings of the International
Joint Conference on Neural Networks, 2, 1486–1491.

[16] T. Hayasaka, N. Toda, S. Usui, and K. Hagiwara (1996): On the least
square error and prediction square error of function representation with
discrete variable basis, in Proceedings of the Workshop on Neural Networks
for Signal Processing, 6, 72–81. IEEE Signal Processing Society.

[17] D.-C. Park (2000): Centroid neural network for unsupervised competitive
learning, IEEE Transactions on Neural Networks, 11(2), 520–528.

[18] W. Pedrycz and J. Waletzky (1997): Neural-network front ends in unsuper-
vised learning, IEEE Transactions on Neural Networks, 8(2), 390–401.

[19] D.-C. Park (1997): Development of a neural network algorithm for unsu-
pervised competitive learning, in Proceedings of the International
Conference on Neural Networks, 3, 1989–1993.

[20] K.-R. Hsieh and W.-T. Chen (1993): A neural network model which com-
bines unsupervised and supervised learning, IEEE Transactions on Neural
Networks, 4 (2), 357–360.

[21] A.L. Dajani, M. Kamel, and M.I. Elmastry (1990): Single layer potential
function neural network for unsupervised learning, in Proceedings of the
International Joint Conference on Neural Networks, 2, 273–278.

[22] M. Georgiopoulos, G.L. Heileman, and J. Huang (1991): Properties of
learning in ART1, in Proceedings of the IEEE International Joint
Conference on Neural Networks, 3, 2671–2676.

[23] G.L. Heileman, M. Georgiopoulos, and J. Hwang (1994): A survey of
learning results for ART1 networks, in the Proceedings of the IEEE
International Conference on Neural Networks, IEEE World Congress on
Computational Intelligence, 2, 1222–1225.

[24] J. Song and M.H. Hassoun (1990): Learning with hidden targets, in the
Proceedings of the International Joint Conference on Neural Networks, 3, 93–98.

Artificial Neural Networks 181

[25] H.K. Kwan (1991): Multilayer feedbackward neural networks, in
Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing, 2, 1145–1148.

[26] J.F. Shepanski (1988): Fast learning in artificial neural systems: multilayer
perceptron training using optimal estimation, in Proceedings of the IEEE
International Conference on Neural Networks, 1, 465–472.

[27] N.B. Karayiannis and M.M. Randolph-Gips (2003): On the construction
and training of reformulated radial basis function neural networks, IEEE
Transactions on Neural Networks, 14 (4), 835–846.

[28] J.A. Leonard and M.A. Kramer (1991): Radial basis function networks for
classifying process faults, IEEE Control Systems Magazine, 11(3), 31–38.

[29] R. Li, G. Lebby, and S. Baghavan (2002): Performance evaluation of
Gaussian radial basis function network classifiers, SoutheastCon, 2002,
Proceedings IEEE, pp. 355–358.

[30] F. Heimes and B. van Heuveln (1998): The normalized radial basis function
neural network, in Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, 2, 1609–1614.

[31] R.J. Craddock and K. Warwick (1996): Multi-layer radial basis function
networks. An extension to the radial basis function, in the Proceedings of
the IEEE International Conference on Neural Networks, 2, 700–705.

[32] J.C. Carr, W.R. Fright and R.K. Beatson (1997): Surface interpolation with
radial basis functions for medical imaging, IEEE Transactions on Medical
Imaging, 16(1), 96–107.

[33] M.A. Romyaldy Jr. (2000): Observations and guidelines on interpolation
with radial basis function network for one dimensional approximation
problem, in the Proceedings of the 26th Annual Conference of the IEEE
Industrial Electronics Society, 3, 2129–2134.

[34] H. Leung, T. Lo, and S. Wang, (2001): Prediction of noisy chaotic time
series using an optimal radial basis function neural network, IEEE
Transactions on Neural Networks, 12(5), 1163–1172.

[35] R. Katayama, Y. Kajitani, K. Kuwata, and Y. Nishida (1993): Self gen-
erating radial basis function as neuro-fuzzy model and its application
to nonlinear prediction of chaotic time series, in a Proceedings of
the Second IEEE International Conference on Fuzzy Systems,
pp. 407–414.

[36] K. Warwick and R. Craddock (1996): An introduction to radial basis func-
tions for system identification. A comparison with other neural network
methods, in the Proceedings of the 35th IEEE Decision and Control
Conference, 1, 464–469.

[37] Y. Lu, N. Sundararajan and P. Saratchandran (1996): Adaptive nonlinear
system identification using minimal radial basis function neural networks,
in Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing, 6, 3521–3524.

[38] S. Tan, J. Hao, and J. Vandewalle (1995): A new learning algorithm for RBF
neural networks with applications to nonlinear system identification, in
Proceedings of the IEEE International Symposium on Circuits and Systems,
3, 1708–1711.

182 Javid Taheri and Albert Y. Zomaya

[39] T. Ibayashi, T. Hoya, and Y. Ishida (2002): A model-following adaptive
controller using radial basis function networks, in Proceedings of the
International Conference on Control Applications, 2, 820–824.

[40] P.K. Dash, S. Mishra and G. Panda (2000): A radial basis function neural
network controller for UPFC, IEEE Transactions on Power Systems, 15(4),
1293–1299.

[41] J. Deng, S. Narasimhan, and P. Saratchandran (2002): Communication
channel equalization using complex-valued minimal radial basis function
neural networks, IEEE Transactions on Neural Networks, 13(3), 687–696.

[42] J. Lee, C.D. Beach, and N. Tepedelenlioglu (1996): Channel equalization
using radial basis function network, in Proceedings of the IEEE
International Conference on Neural Networks, 4, 1924–1928.

[43] J. Lee, C.D. Beach, and N. Tepedelenlioglu (1996): Channel equalization
using radial basis function network, in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing, 3,
1719–1722.

[44] R. Sankar and N.S. Sethi (1997): Robust speech recognition techniques
using a radial basis function neural network for mobile applications, in
Proceedings of IEEE Southeastcon, pp. 87–91.

[45] H. Ney (1991): Speech recognition in a neural network framework: dis-
criminative training of Gaussian models and mixture densities as radial
basis functions, in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, 1, 573–576.

[46] I. Cha and S.A. Kassam (1994): Nonlinear image restoration by radial basis
function networks, in Proceedings of the IEEE International Conference on
Image Processing, 2, 580–584.

[47] I. Cha and S.A. Kassam (1996): Nonlinear color image restoration using
extended radial basis function networks, in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing, 6,
3402–3405.

[48] A.G. Bors and I. Pitas (1998): Optical flow estimation and moving object
segmentation based on median radial basis function network, IEEE
Transactions on Image Processing, 7 (5), 693–702.

[49] D. Gao and G. Yang (2002): Adaptive RBF neural networks for pattern
classifications, in Proceedings of the International Joint Conference on
Neural Networks, 1, 846–851.

[50] C. Fan, Z. Jin, J. Zhang, and W. Tian (2002): Application of multisensor
data fusion based on RBF neural networks for fault diagnosis of SAMS, in
Proceedings of the 7th International Conference on Control, Automation,
Robotics and Vision, 3, 1557–1562.

[51] J.T. Tou and R.C. Gonzalez (1974), Pattern Recognition, Reading, MA,
Addison-Wesley.

[52] Z.-P. Lo, Y. Yu, and B. Bavarian (1992): Derivation of learning vector
quantization algorithms, in Proceedings of the International Joint
Conference on Neural Networks, 3, 561–566.

[53] P. Burrascano (1991): Learning vector quantization for the probabilistic neu-
ral network, IEEE Transactions on Neural Networks, 2(4), 458–461.

Artificial Neural Networks 183

[54] N.B. Karayiannis and M.M. Randolph-Gips (2003): Soft learning vector
quantization and clustering algorithms based on non-Euclidean norms:
multinorm algorithms, IEEE Transactions on Neural Networks, 14(1),
89–102.

[55] L. Medsker (1994): Design and development of hybrid neural network and
expert systems, in Proceedings of the IEEE International Conference on
Neural Networks, IEEE World Congress on Computational Intelligence, 3,
1470–1474.

[56] M.S. Kurzyn (1993): Expert systems and neural networks: a comparison,
Artificial Neural Networks and Expert Systems, in Proceedings of the First
International Two-Stream Conference on Neural Networks, New Zealand,
pp. 222–223.

[57] A.V. Hudli, M.J. Palakal and M.J. Zoran (1991): A neural network based
expert system model, in Proceedings of the Third International Conference
on Tools for Artificial Intelligence, pp. 145–149.

[58] W.-Y. Wang, C.-Y. Cheng and Y.-G. Leu (2004): An online GA-based out-
put-feedback direct adaptive fuzzy-neural controller for uncertain nonlin-
ear systems, in IEEE Transactions on Systems, Man and Cybernetics, Part
B, 34(1), 334–345.

[59] Y. Zhang, P.-Y. Peng and Z.-P. Jiang (2000): Stable neural controller design
for unknown nonlinear systems using backstepping, IEEE Transactions on
Neural Networks, 11(6), 1347–1360.

[60] A.L. Nelson, E. Grant and G. Lee (2003): Developing evolutionary neural
controllers for teams of mobile robots playing a complex game, in
Proceedings of the IEEE International Conference on Information Reuse and
Integration, pp. 212–218.

[61] L. Rothrock (1992): Modeling human perceptual decision-making using an
artificial neural network, in Proceedings of the International Joint
Conference on Neural Networks, 2, 448–452.

[62] S. Mukhopadhyay and H. Wang (1999): Distributed decomposition archi-
tectures for neural decision-makers, in Proceedings of the 38th IEEE
Conference on Decision and Control, 3, 2635–2640.

[63] G. Rogova, P. Scott, and C. Lolett (2002): Distributed reinforcement learn-
ing for sequential decision making, in Proceedings of the Fifth
International Conference on Information Fusion, 2, 1263–1268.

[64] J. Taheri and N. Sadati, (2003): Fully modular online controller for robot
navigation in static and dynamic environments, in Proceedings of the 2003
IEEE International Symposium on Computational Intelligence in Robotics
and Automation, 1, 163–168.

[65] N. Sadati and J. Taheri (2002): Genetic algorithm in robot path planning
problem in crisp and fuzzified environments, in Proceedings of the IEEE
International Conference on Industrial Technology, 1, 175–180.

[66] N. Sadati and J. Taheri (2002): Solving robot motion planning problem
using Hopfield neural network in a fuzzified environment, in Proceedings of
IEEE International Conference on Fuzzy Systems, 2, 1144–1149.

[67] R. Bambang (2002): Active noise cancellation using recurrent radial basis
function neural networks, in Proceedings of the Asia-Pacific Conference on
Circuits and Systems, 2, 231–236.

184 Javid Taheri and Albert Y. Zomaya

[68] C.K. Chen and T.-D. Chiueh (1996): Multilayer perceptron neural net-
works for active noise cancellation, in Proceedings of the IEEE
International Symposium on Circuits and Systems, 3, 523–526.

[69] L. Tao and H.K. Kwan (1999): A neural network method for adaptive noise
cancellation, circuits and systems, in Proceedings of the IEEE International
Symposium on Circuits and Systems, 5, 567–570.

Artificial Neural Networks 185

