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Abstract
In recent years, evolutionary computation (EC) techniques have became

one of the most popular heuristic search methods successively applied to solve
complex research and real-life problems. This chapter presents an overview of
the field of EC. Main concepts of biological evolution and some biological
paradigms are shown, their influence on EC is discussed, and a general com-
putational scheme currently used in EC is presented. The best recognized
classes of EC algorithms are described, such as Evolution Strategies, Genetic
Algorithms, Genetic Programming, Evolutionary Programming, and Learning
Classifier Systems. However, the main emphasise is on the class of Genetic
Algorithms (GAs). Mechanisms of controlling evolutionary process in GAs
are discussed, the most known variants of GAs are presented, and current
issues of development of GAs are considered.

1 EVOLUTION, LEARNING, AND EVOLUTIONARY
COMPUTATION

1.1 Lamarckian Evolution

In the nineteenth century, several theories of biological evolution were pro-
posed and three of them are used today to different degrees in evolutionary com-
puting (EC). These are (e.g., [31,85,102]) Lamarckian evolution, Darwinian
evolution (Darwin, 1859), and the theory proposed by Baldwin known as the
Baldwin effect (Baldwin, 1896). Some other concepts introduced later, such as
species, niches, or coevolution of species, are also used in EC.

One of the first concepts of evolution was the one proposed by J. B. Lamarck.
He suggested that the experience of organisms during their lifetime—their ability
of adaptation—may directly influence evolution over many generations. This



meant that traits such as the development of some organs (or the degeneration of
others) across individuals’ lifetimes to make activity more efficient, or learned
behaviors such as how to avoid preditors, could be passed on to offspring by
inheritance alone, and the offspring would not need to learn these traits. He
believed that after some number of generations, this process could lead to the
emergence of new species.

Using the notion of the phenotype as the observed characteristics of an organ-
ism and the notion of the genotype as the actual genetic structure of the organism,
one can see Lamarckian evolution as a mapping from the phenotype to the geno-
type, where environment and individual experience directly change the individual
genetical makeup. While today Lamarckian evolution is not an accepted model of
biological evolution, some research in the field of EC used this model and shown
that the search process may converge to a local optimum [131] or that it can some-
times improve (e.g. [1,54]) the effectiveness of an evolutionary algorithm.

1.2 Darwinian Evolution

Today the best known evolutionary algorithms (EAs) are loosely based on
simulated Darwinian evolution. Darwin’s theory pointed out two main factors of
an evolutionary process: natural selection and genetic variation. Natural selection,
which is today briefly described as the principle of survival of the fittest, states
that the individuals whose variations are better adapted to the environment have
a greater probability of surviving and reproducing, and selection is the mecha-
nism that reduces the number of less-adapted individuals. Shortly after the pub-
lication of Darwin’s theory, Gregor Mendel discovered the genetic basis of
inheritance, and later some scientists like Hugo de Vries developed the concept of
genetic mutations. Research from genetics shows that genes determine individual
characteristics and only genes are transmitted thorough generations. The genetic
material of the organisms is the result only of a continual variation of individu-
als, with possible influences from environmental conditions.

In contrast to Lamarckian evolution, the driving force of Darwinian evolu-
tion is a mapping from the genotype to the phenotype. This means that the envi-
ronment and genetic information determine characteristics of individuals. Today
the EC community interprets Darwinian evolution as a life-cycle of some organ-
isms, as presented in Figure 4.1.

It is assumed that a population P(t) = {x1
t, . . ., xn

t} consisting of n individ-
uals of the same species begins its life-cycle in generation t, called also an iter-
ation t. The individuals live in some environment where they get food, struggle
with illnesses, and avoid predators. At the end of their lifetime, the fitness of
each individual in the population is evaluated, and this fitness is the basis to
apply in some way the principle of natural selection, which gives a higher
chance of survival to more fit individuals. Next, for those members of the pop-
ulation that survived, genetic mechanisms are applied to reproduce them by
creating new individuals (offspring, children) that inherit features of their par-
ents. As a last step of the life-cycle of the current population, it is assumed that
new members of the population replace partially or fully the old members, and
they are considered as members of a new population that begins a new life-
cycle, termed generation t + 1.
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1.3 Baldwin Effect

Baldwin suggested the idea that individual learning can change the course of
evolution. The individual learning does not affect directly the genetic code of the
individual, but individuals with increased learning capabilities may have higher
probabilities to survive, which may result in an increasing number of their off-
spring. If, e.g., a new predator appears [85] in the environment of some species,
individuals capable of learning to avoid the predator will be favored. As the pro-
portion of such individuals in the population grows, the population will be able
to support a more diverse gene pool, allowing the evolutionary process to adapt
more rapidly. This may in turn enable the standard evolutionary process to more
quickly evolve a genetic trait to avoid the predator. This mechanism is called the
Baldwin effect. Some results of applying the Baldwin effect in EC show [131] that
the search process converges to the global optimum, while the search process
without learning converges to local optimum. Also, positive effects of the appli-
cation of the Baldwin effect were observed in experiments with evolving neural
networks [57] and in modeling immune systems [96].

1.4 Species and Niches

The concepts of species and niches existing in biology and ecology, respec-
tively, has been recently recognized by EC community (see section 3.3) to create
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new EAs. While the process of emerging species is not fully understood, there
is some agreement concerning the main principles of the development of species
[31]. Biological species are recognized more by their phenotypic differences
than by genetic criteria. It is assumed that interbreeding may happen only
between individuals of the same species. New traits in the population may be a
result only of such processes as reproduction, mutation, gene flow, and genetic
drift, which are realized on genes pool of the same species. It is believed that traits
favored by the mechanism of natural selection may lead to the appearance of new
species.

Members of the same species occupy an ecological region called a niche. The
ecological niche is associated with a survival strategy of the species, the environ-
ment in which the species’ relations to food and enemies are established.

1.5 Coevolution

The prevailing number of EAs is based on simulations of the life-cycle of a
population of a single species. The open new area of EC are EAs based on a par-
adigm of coevolution of different species (see section 3.5). Coevolution can be
defined [31] as a change in the genetic composition of one or more species in
response to a genetic change in another, which happens during the evolutionary
process as the result of interactions between different species. Different species
can occupy different niches or share the same niches. They may compete for one
or more resources. In the outcomes of coevolution, different forms of coexis-
tence between species can be observed.

When coexistence has the form of competition between different species, the
presence of each species is associated with reducing the growth of another species.
Some kind of equilibrium between species can appear. When the relation between
two species is based on exploitation, then the presence of one species stimulates
the growth of the second species, while this second species inhibits the grow of the
first. This form of coexistence is based on interaction between species having a
character of either a predator–prey interaction, resulting in the extinction of one
species, or a host–parasite interaction, leading to two coevolving species where
extinction does not take place. Most of the predator–prey forms of interaction
are based on the original model of Lotka and Voltera [75,127].

If the last form of coexistence, cooperation, takes place between species, then
the presence of each species stimulates the growth of the other species.

1.6 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are search, optimization, and learning tech-
niques based on the Darwinian concept of natural evolution and biology. Today
there are several well-established streams of EAs: Evolutionary Strategies (ESs),
Genetic Algorithms (GAs), Genetic Programming (GP), Evolutionary Programming
(EP) and Learning Classifier Systems (LCSs) [11,35,55,71,82,90,139,137,90]. A com-
mon accepted term referring to this type of computation is evolutionary computa-
tion (EC). Despite the differences between these streams, which will be shown
later, they all use the basic notions and mechanisms of evolution and biology,
such as (1) a population of individuals, (2) the fitness of an individual, (3) the
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birth/death cycle of individuals, (4) inheritance, and (5) reproduction, varia-
tion, and selection/competition.

Figure 4.2 shows a general computational scheme for EAs. The scheme can
also be presented with the use of the following pseudocode:
0. Construct a representation (an individual of a population) of a solution for a

given problem;
t ← 0

1. Randomly create an initial population P(t) of individuals
2. Evaluate fitness of all individuals in P(t)
3. If a termination condition is satisfied then go to Step 5 else go to Step 4
4. Apply selection and genetic operators in P(t);

4′. Optionally: apply competition mechanisms;
4′′. Optionally: apply local search algorithms;
t ← t + 1; go to Step 2;

5. Optionally: If restart then go to Step 6, else go to Step 7
6. t ← 0;

Generate modified initial population P(t); go to Step 2
7. Consider the best individual from P(t) as a solution of the problem.
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Steps 4′, 4′′, 5, and 6 are not used in classical versions of EAs. As a termina-
tion condition, a predefined number of generations of simulated evolutionary
process is usually used, or some more complex stopping criteria can be applied,
like, e.g., “stop if the fitness of the best individual in the population has not
increased during the predefined number of generations.”

The main differences between the streams of EAs lie in Steps 0 and 4 of the
computational scheme of EAs. Let us consider the issue of a representation [107]
of a solution of a problem to be solved (Step 0 in the computational scheme of
ES). For this purpose, it is useful to consider two separate spaces (e.g., [9]): a solu-
tion space and a search space (see Figure 4.3). If we want, e.g., to design a car
with specific features, then we can imagine a space of solutions of the problem
(see Figure 4.3, left) as a set of potential solutions. A single actual solution is a
collection of parameters of a desired construction and is called a phenotype.
Some EAs search for a solution directly in a solution space, i.e., in the space of
phenotypes. However, some other EAs search a solution indirectly in a search
space, which is constructed by mapping to it objects from the solution space. A
genotype is an object of the search space and represents a coded version of
parameters of a corresponding phenotype from the solution space. Figure 4.3
(right) shows an example of a search space of genotypes used in GAs. A binary
string is a representation of a genotype. Values of a single gene called alleles code
parameters of searched solutions. A collection of genes is called a chromosome.
Evolving individuals from the search space requires mapping genotypes into
space of phenotypes to read correctly an actual quality of a solution.

ESs differs also in Step 4, where selection and genetic operators are applied.
The differences are in the type of operator, the means of their construction, and
the order of their application.

2 EVOLUTION STRATEGIES

Evolution Strategies (ESs) were independently developed by Rechenberg and
Schwefel in the early 1960s in Germany as a method to solve practical optimiza-
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tion problems in engineering. For continuous optimization problems, ES directly
processes a real-valued n-dimensional vector x that is associated with the
extremum of a function F(x) : Rn → R. It means that there is no process of cod-
ing (see Figure 4.2) of potential solutions (phenotypes in a solution space) to a
problem into individuals of a population (genotypes in a search space) and that
ES directly operates on phenotypes (see Figure 4.3).

A number of ESs have been developed (see, e.g., [61,104,113,90,10]). All of
them are described using a specific notation, and in particular the following nota-
tion of parameters is used: m—the size of parent population, l—the size of off-
spring population, r—the size of family (parents) (1 ≤ r ≤ m). An individual v is a
pair of float-valued vectors v = (x, s), where x = (x1, x2, . . . ,xn) is a point in a solu-
tion space, and s = (s1, s2, . . . ,sn) is a vector of standard deviations. The earli-
est ES was based on a population consisting of one individual only, and was
referred to as (1 + 1) -ES.

2.1 The (1 + 1) -ES

The (1 + 1) -ES algorithm, also called two-member ES, is based on a simple
mutation-selection scheme. An initial population at generation t = 0 consists of
one parent vt. One offspring is created by an operator of mutation, which adds to
components of the vector xt normally distributed random numbers, i.e.,

( , ),x x N 0t t1= + v+ (1)

where N(0, s) is a vector of normally distributed (isotropic Gaussian), inde-
pendent random numbers with a mean of 0 and standard deviations s. An expla-
nation for this operator is the biological observation that offspring are similar to
their parents and that small changes are more likely than larger ones. It is possi-
ble to use other distributions [11] such as nonisotropic Gaussian or other con-
tinuous distributions, two-point distribution in binary search spaces, or “move
operators” for combinatorial optimization problems.

When the population temporarily contains two individuals, the operator of
deterministic selection is applied. The selection operator selects the better of
the two individuals, which then moves to the next generation. The algorithm is
continued until a termination condition is satisfied. One can notice that the
evolution process is based mainly on the mutation operator.

While it can be proved that the algorithm converges to a global optimum when
si = const, the algorithm may get stuck after a certain number of generations.
Rechenberg observed [104] that progress in evolution exists only for a small band-
width (evolution window) of mutation strength. He proposed a statistical infer-
ence method called 1/5-rule to control s during the evolutionary process. The rule
says that f—a quotient of a number of successful mutations (which improved the
fitness of individuals) to the total number of mutations—should be equal to 0.2:
if a current value of f is greater than 0.2, then the standard deviation s associ-
ated with the operator of mutation should be increased, and when f is less than
0.2, the s should be decreased. Recently some other techniques using adaptation
or self-adaptation and based on statistical inference or an evolutionary approach
were proposed (see, e.g., [10,11]) to control s.
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2.2 The (m + 1) -ES

The algorithm assumes an existing population consisting of m individuals,
where m > 1. Two individuals are selected randomly from the population to cre-
ate one offspring by using an operator of discrete recombination. The offspring
(x, s) has components xi and si, which are randomly copied from parents.
Next, as in (1 + 1)-ES, the operator of mutation is performed on the offspring.
Finally, the operator of deterministic selection is applied, which removes from
the population of the size m + 1 the least fit individual.

2.3 The (m + λ) -ES

The (m + λ)-ES algorithm is a natural extension of the previous one. In the
algorithm, m parents (usually m ≤ λ) produce λ offspring. Offspring are mutated,
but the mutation operator is modified by introducing an additional level, where s
is controlled by the mutation operator, instead of the internal strategy handling s
(e.g., 1/5-rule). If (x, s) is an offspring obtained in the result of the recombination
operator, then the two-level mutation operator converts it into an individual (x′,
s′) in the following way: first, the s component of the individual is modified into
s¢: s¢ = seN(0, Ds), and next the component x of the individual is modified: x¢ = x
+ N(0,s¢), where Ds is a step-size meta-control parameter.

The temporary population of size m + λ is next reduced by deterministic selec-
tion to m best individuals. This kind of selection is called (+) selection. The algo-
rithm can be recommended for the solution of combinatorial and discrete
problems. In such cases, e.g., for the Traveling Salesman Problem (TSP), an indi-
vidual is a permutation list containing a sequence of cities to be visited in prede-
fined order, and permutation operators of mutation similar to those used in GAs
are applied. Note that in all cases considered so far, ES algorithm parents survive
until they are replaced by fittest offspring, and well-adapted individuals may sur-
vive forever. This feature may give rise to some disadvantages of the (m + λ)-ES,
such as, e.g., getting stuck on a problem with an optimum that moves over time.

2.4 The (m, λ) -ES

To avoid disadvantages associated with (m + λ)-ES, a modification of this algo-
rithm known as (m, λ) -ES was proposed. As in the previous algorithm, a m-mem-
ber population of parents produces λ offspring by means of recombination and
mutation. However, the selection operator is applied only to the population of
offspring, reducing it to m parents of the next generation, and this kind of selec-
tion is called (,) selection. While the general computational scheme of ES is as
shown in Figure 4.2, Step 4 of ES is presented in Figure 4.4 and contains a
sequence of operators executed in the following order: recombination, mutation,
and selection.

2.5 ES with Self-adaptation: (1, λ) − s SA − ES

Observation and comparison of behavior of (m + λ) and (m, l) − ES models
show (e.g., [10,11]) that (1) if mutation strength is for some reason constant, then
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(,) strategies lead to a saturation behavior, and (2) if the mutation strength can-
not be scaled down, the (+) strategy is always beneficent. Also, for both models,
the existence of an evolution window was observed, with a value of mutation
that provided evolutionary progress. This leads to the necessity of developing
more general algorithms such as (m ,+l) − ES, where both strategies can be used,
or (m/m, l) − ES with recombination.

In [114], contemporary ESs were proposed. These are referred as (m, k, l, r)
− ES and allow a gradual transition from either (m, l) − ES or (m, l) − ES by
introducing a lifespan parameter k—the upper limit for life span (k ≥ 1), l ≥ m
if k = 1; and r—the number of ancestors for each descendant (1 ≤ r ≤ m). The
(,) and (+) strategies can be used depending on the value of k.

The more general solution for controlling mutation rate and its scalability are
ESs with self-adaptation, such as, e.g., (1, l) − sSA − ES [10,11]. Each individual
in the algorithm includes object parameters and evolvable (endogenous) strategy
parameters. Endogenous strategy parameters control the variation of the individ-
ual’s object parameters by mutation. These are inherited together with the object
parameters.

2.6 Advanced ES Techniques

A number of advanced ES techniques are currently under study [10,11]. The
general (m/r ,+l) − ES algorithm uses the m/r recombination and both (,) and (+)
strategies. The recombination is applied to r (r ≤ m) parents. The r parents (also
called a r–family) produce one offspring. If r < m, then the members of the
r–family are chosen randomly from the set of m parents, and if r = m, then all m
parents are involved in the process of creating a child. The recombination is
applied to the object parameters and can be applied also to endogenous strategy
parameters.

The Meta-ES (or hierarchically organized ES) [m′/r′ ,+ l′ (mi /ri ,+ li)
γ ] - ES,

i = 1, 2, . . ., l′, gives a possibility of mixed structural and parameter optimiza-
tion. There are l′ populations in the algorithm, and g (the exogenous strategy
parameter) sets an isolation period time between them. The outer [ ] − ES (struc-
ture evolution) improves parameters of the inner () − ES (parameter evolution)
populations.
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Another approach to construct adaptive ES search techniques to control the
variation operators (mutation, recombination) is based on use of statistical infor-
mation. While the 1/5-rule (see, section 2.1) is the simplest example of such a tech-
nique, currently more advanced algorithms are used, such as the Cumulative
Step-size Adaptation (CSA) algorithm or the Covariance Matrix Adaptation
(CMA) algorithm.

3 GENETIC ALGORITHMS

Genetic Algorithms (GAs)[34, 46, 81] were originally developed in the late
1960s at the University of Michigan by John Holland and his team, who con-
ducted their research on robust, adaptive systems. Later, GAs were refined by De
Yong, Goldberg, Michalewicz, and many others. While the computational scheme
of GAs is as shown in Figure 4.2, GAs distinctively differ in Steps 0 and 4 from
the other EAs, in particular from ESs, in the following ways: (1) a search space of
genotypes is used, and a binary string is a representation of a genotype, as shown
in Figure 4.3 (Step 0 in Figure 4.2), and (2) the sequence of selection and genetic
operators is usually, as shown in Figure 4.5, performed in the following order: sto-
chastic selection, crossover (corresponding to operator recombination in ESs), and
mutation (Step 4 in Figure 4.2).

Overviews concerning current issues on GAs can be found in [133, 55, 35].

3.1 Simple Genetic Algorithm

Selection and genetic operators of a Simple Genetic Algorithm (SGA) [46]
have the following properties: (1) proportional selection is used, alternatively
called a selection with a roulette wheel, (2) a single-point crossover is performed
on each chromosome, with a probability pc, and (3) a single-bit mutation is per-
formed with a probability pm. These selection and genetic operators are shown in
Figure 4.6.
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The proportional selection operator provides a method of stochastic selection
that selects an individual i (to survive and have a chance for mating) with a prob-
ability

p
f

f
i

jj

n
i

1

=

=
!

(2)

proportional to its fitness fi, where n is the size of the population. Assuming that
there are five individuals in a population with fitness 27, 45, 11, 5, and 32, respec-
tively, one can construct the roulette wheel with five areas (see Figure 4.6a), each
corresponding to a single individual, that are proportional to their probability of
selection. A single spin of the wheel results in a selection of one individual corre-
sponding to the area of the roulette pointed to by a pointer when the wheel stops
spinning. The selection is completed after spinning the wheel five times.

Each individual that passes selection is chosen next, with a probability pc for
mating. A single-point crossover is performed on two parent individuals (see
Figure 4.6b). A random position is chosen in both chromosomes, and two chil-
dren individuals are produced after the exchange of genetic material. The choice
of which parent contributes the bit for a given position of children can be also
determined by an additional string called the crossover mask. For the crossover
shown in Figure 4.6b, the crossover mask is 111100. The 1s and 0s of the
crossover mask define the contribution of bits of parent P1 and parent P2,
respectively, to the child Ch1. The second child uses the same mask but switches
the roles of the two parents.

After crossover, a genetic mutation operator is performed. Each locus of each
chromosome of the population is selected for mutation, with a probability pm.
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If mutation takes place, a corresponding bit switches its value either from 0 → 1
(see Figure 4.6c) or from 1 → 0.

SGA has good theoretical foundations [128], but most applications do not use
it. The main problems with SGA are the following: (1) premature convergence to
a local optimum, because of sensitivity of such parameters as population size or
crossover/mutation rate, (2) strong convergence to the wrong solution for the
problems known as deceptive problems [46], and (c) possible poor representation
and poor operators for some problems. For these reasons, a number of extensions
of SGA have been proposed, and for practical applications, customized/hybrid
GAs with domain-dependent representations and operators are frequently
designed.

3.2 Mechanisms to Control Evolutionary Process in GAs

Representations and Encoding
Representation is one of the key issues influencing the performance of EAs

used as optimizers. As mentioned earlier, when the problem of optimization with
EA use is considered, it is useful to consider two spaces: the phenotype space
representing the original definition of the problem and the genotype space rep-
resenting encoded solutions. The purpose of representation is to assign geno-
types to corresponding phenotypes [102, 107], which is often called
genotype–phenotype mapping. This mapping can be done in different ways. It
influences the suitability of applied genetic operators and the performance of
the evolutionary process.

The most common representation applied in GAs is a binary string used, e.g.,
in SGA. In some problems binary encoding is natural, e.g., for the 0-1 knapsack
problem that is very well known in operational research. In such cases there is no
distinction between genotype and phenotype spaces. The same result takes place
when continuous encoding (similar to that used in ESs) with real-valued vectors is
used for function optimization problems. For some discrete nonbinary problems,
e.g., the rotor stacking problem [102], a discrete alphabet of higher cardinality
might be appropriate.

One of the problems that may arise when the standard binary code is used is
that adjacent genotypes may not have adjacent phenotypes. In such cases, the use
of Gray code may be preferable and more effective. Some recent research [132,
133] shows that Gray encoding reduces the number of local optima, which is
important for local search algorithms, and beats binary encoding in many test
problems.

For some, problems (e.g., TSP, flowshop problem, multiprocessor scheduling),
natural encoding is a permutation representation. For these problems, special
crossover operators must be designed because the standard crossover operators
usually fail to preserve the permutation. For other problems, e.g., tree optimiza-
tion problems, a graph can be represented by its characteristic vector.

Incorporating problem-specific knowledge in the representation can increase
[107] the GA performance. This can be done in particular by (1) considering spe-
cific properties of the optimal solutions, e.g., trees and stars, and (2) delivering to
the population solutions that are similar to the optimal solution.
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Currently, analytical models do not exist that describe the influence of repre-
sentation on the performance of EAs, but there are some general recommenda-
tions [107]. Goldberg’s recommendations [46] are based on (1) the principle of
meaningful building blocks and (2) the principle of minimal alphabets, and are ori-
ented on effective processing schemata in GAs. Radcliff [101] suggests that repre-
sentation and operators cannot be considered separately from each other and
makes some recommendations [116] on how to design representation-independ-
ent EAs. According to Palmer [92], (1) encoding should represent all possible phe-
notypes, and all possible individuals should be equally represented in the set of all
possible genotypic individuals, (2) encoding should encode no infeasible solu-
tions, should possesses locality and be adjusted to a set of genetic operators, and
should minimize nonlinearities in fitness functions, and (3) decoding of the phe-
notype from the genotype should be easy.

One of the open issues in current research on representation in GAs concerns
the use of redundant representation (see, e.g., [106]), where the number of geno-
types is larger than the number of phenotypes.

Population Manipulation
Population size and the individual replacement strategy are very sensitive

parameters [102, 55] of GAs. An analysis performed by Goldberg and his col-
leagues [48] suggested a linear dependence of population size on string length.
However, some empirical results (see, e.g., [112]) show that population sizes as
small as 30 are adequate in many cases, e.g., for binary-encoded problems, but for
higher-cardinality alphabets, much larger populations are needed. For a minimum
population size, a principle was suggested in [100] that every point in the search
space should be reachable in the initial population by crossover operation only.
Some reports also show (e.g., [2]) that including in the initial population some
good-quality solution obtained from another metaheuristic can improve the per-
formance of GAs but may also lead to premature convergence to a poor solution.

The most traditional individual replacement strategy used in GAs is a genera-
tional reproduction: a current population is completely replaced by offspring gen-
erated by selection and genetic operators. Such a replacement strategy is used in
SGA and most GAs. De Yong proposed [34] a simple strategy called elitism,
which ensures the survival of the best individual in the population, and the con-
cept of population overlaps, which assumes replacing only a fraction G (generation
gap) of the population in each generation. He also introduced a crowding opera-
tor, which specifies the number of individuals initially selected as candidates to be
replaced by a newly generated offspring. A new offspring replaces the most simi-
lar individual, where the similarity measure can be, e.g., the Hamming distance
between individuals.

The opposite strategy is assumed by steady-state reproduction. In each gener-
ation, only one or two individuals are created, which replace the worst individu-
als. This strategy can be modified [102] in such a way that candidates for
replacement are chosen from those worse than the median. Another modification
of this strategy, useful for optimization in dynamic environments [15], suggests
replacing [125] the oldest instead of the worst individual but not replacing it [122]
when it is currently the best in the population.

Evolutionary Paradigms 123



Selection
The selection operators used in GAs operate on the fitness of individuals. The

mechanism of the roulette wheel used in SGA to implement proportional selection
can be changed by introducing an n-armed spinner (n is the size of the popula-
tion) [102] providing stochastic universal selection, an effective method of imple-
mentating proportional selection. The scaling problem associated with
roulette-wheel selection—i.e., when values of individual fitness in subsequent
generations become less distinguished and selection pressure becomes weaker—
can be solved by a number of algorithms proposed in [46].

Ranking selection does not need scaling and is more efficient. It sorts individ-
uals in each generation according to their decreasing/increasing fitness and
assigns new values of selection probability. Selection probabilities assigned to
ranked individuals can increase linearly or nonlinearly, creating in this way a lin-
ear ranking selection or a nonlinear ranking selection, respectively. A number
of algorithms exist [4, 81] for assigning linear or nonlinear probabilities to ranked
individuals. The algorithms provide a possibility for control of the selection
pressure.

Another effective and simple selection operator is tournament selection.
It requires choosing k individuals from a population (often k = 2), comparing
their fitness, and selecting the most fit as the winner of the tournament. A vari-
ant of tournament selection is called strict tournament, and it has similar prop-
erties to ranking selection. To provide higher selection pressure, yet another
version of tournament selection is used, which is called soft tournament. In this
case, the winner of the selection is accepted with some predefined probability.

In truncation selection, some percentage of the best individuals of a popula-
tion is selected, and parents from this selected subset only are chosen randomly
for mating. A comparison and theoretical analysis of selection schemes can be
found in [13].

Search Operators

Crossover
Two sources of bias exist [102] that can be exploited in GAs by crossover oper-

ators: positional bias and distributional bias. From this point of view, much empir-
ical evidence supports the opinion that one-point crossover is not the best
crossover construction. Two-point crossover and generally multipoint crossover are
logical extensions of the one-point crossover. In the two-point crossover, off-
spring are created by substituting intermediate segments of one parent into the
middle of the second parent string. The intermediate segment is represented in
the crossover mask by a contiguous block of 1s with the borders of the segments
created randomly. For the crossover mask 001110, two-point crossover will create
offspring 110101 and 010010.

The crossover operator that removes any bias is uniform crossover. It combines
bits sampled uniformly from two parents. For the crossover mask with random
string of bits 101100, two identical offspring are created: 110000. When the mask
is created using a Bernoulli distribution, this uniform crossover is referred as UX.

As presented above, crossover operators are suitable for problems with binary
representation. However, for problems with permutation representation, they can
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produce infeasible solutions and therefore cannot be applied. For permutation
problems such as TSP, sequencing, or scheduling, a number of nonlinear
crossover operators have been constructed. Among these, the best known are (1)
PMX (Partially Mapped Crossover), which exchanges a partial segment between
parents, (2) CX (Cycle Crossover), which finds all mapping cycles between par-
ents and next copies elements of the two parents to the offspring in correspon-
ding positions, (3) OX (Order Crossover), which randomly selects several of the
same elements in both parents and next makes exchanges between parents in
those selected positions, (4) HUX crossover, a variant of uniform crossover in
which exactly half the bits are exchanged, (5) the edge recombination crossover,
and others [81]. Recently, the edge assembly crossover [89] was proposed and
applied successfully for solving TSP problem for more than 3000 cities.

Mutation.
Mutation in GAs is usually considered as a secondary genetic operator. The

purpose of mutation is to introduce some randomness into the search and to pre-
vent the optimization process from getting stacked into local optima. Most vari-
ants of GAs apply mutation with a constant low rate, e.g., 0.005. Some research
used higher mutation rates ranging from 0.001 up to 0.01, but it was found that
higher mutation rates may transform the optimization process performed by the
GA into a random search process. The appropriate value of the mutation rate of
the GA for a given optimization problem is an open research issue.

The formula for the near optimal value of the probability of mutation pm for
a set of test functions was found experimentally [112] to be

. ,p
n l
1 7

m = (3)

where n is the population size and l is the length of a chromosome. However, the-
oretical analysis conducted in [87] using the ONEMAX function shows that the
optimal mutation rate for any unimodal binary function is approximated by the
formula

.p n
1

m = (4)

Results of research presented in [7] suggest that the mutation rate should change
dynamically during the evolutionary searching process in the following way:
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where t is the current generation and T is the total number of generations. These
results show that the mutation rate probability should change from an initial
value of 1/2 to 1/l. In [91] it was shown that the value of optimal mutation rates
in GAs differs according to whether recombination is used or not. A new muta-
tion operator proposed in [22] and named minimum-allele-reserve-keeper ensures
a minimum amount of each allele in each locus with the least possible amount of
gene inversion. In [33], a nature-based mutation operator called the frame-shift is
proposed.

A number of novel GAs with new mutation operators have been proposed
recently. In [58], a parental mutation GA is proposed in which mutation occurs not
only in offspring but also at the parental level. In [124], a novel genetic algorithm
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named the Split Search GA was proposed to fully utilize the mutation operator.
Experimental results using this algorithm show that increasing the role of muta-
tion in the evolutionary search may be beneficial.

Competition Mechanisms
A typical competition mechanism that can be applied (see Figure 4.2) is elit-

ism (see section 3.2). It assumes always keeping the best individual in the cur-
rent population to replace the worst individual in the next generation, if the
individual in the next generation is worse that the best one in the previous pop-
ulation. Another competition mechanism is applying truncation selection (see
section 3.2) to the population of parents and children.

Local Search Algorithms
Local search algorithms are based on the idea of iterative improvement of a

current solutions and are often used in GAs. A number of local search algorithms
have been developed. The best known of these are the following:

● next ascent bit-climbing: a flip-list describing the order of flipping of a selected
chromosome is created, and (1) the bit of the chromosome corresponding to
the actual position on the flip-list is flipped, (2) the flip is accepted if the new
string has a higher fitness than before flipping, and (3) after flipping all bits
according to the flip-list, the string with the highest fitness is considered to be
a solution

● steepest ascent bit-climbing: as in the next-ascent algorithm, bits of a chromo-
some are flipped in a predefined sequence; however, after flipping a current bit
according to the flip-list, (1) the remaining sequence of bits is sequentially
flipped; for each new string, fitness is evaluated, and after that the flip is
removed, (2) the bit (from the sequence of flipped bits) that obtained the high-
est fitness of the chromosome is accepted, and (c) the procedure is continued
for the next bit from the flip-list

● random bit-climbing (RBC) [28]: similar to the next-ascent algorithm, but
the flip-list is defined as a permutation of bits’ positions in the chromosome;
permutations are generated until no improving flips are found

● Lamarckian evolution [131] (see section 1.1)

● Baldwin effect [131] (see section 1.3)

● (1+1)-ES [37] (see section 2.1)

● random mutation hill-climbing or random local search [83, 129], which works
like a simple standard evolutionary algorithm (EA), which is mutation based
and works with population size 1 (referred to as (1+1)-EA) but with a differ-
ent mutation operator

● Random Walk with Uniform (or Normal) Distribution [37]

Recently some other local search algorithms have been proposed. These are
(1) the quad search algorithm [130], a specialized form of steepest ascent that
operates on a reduced neighborhood and uses a Gray encoding, (2) consecutive
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exchange [23], a modification of the 2-Opt heuristic combined with tabu search,
and (3) a local search strategy based on the idea of iterative improvement of a
solution via a series of neighbor moves until no improvement can be made [62].

Restart
One method to prevent GAs from prematurely converging to local optima

before discovering a global solution is periodically restarting GA (see Figure 4.2)
according to some restart strategy that can be either static or dynamic [42]. The
restart can be performed with the use of a new seed. When GAs are applied in
dynamic environments [15], the important issue is the content of the initial pop-
ulation of GA after restarting. The new initial randomly created population usu-
ally contains some percent of the population from the previous run.

3.3 Variants of GAs

SGA with elitism.
This is one of the simplest extensions of SGA (see Figure 4.2).

Hybrid GAs
This variant includes a wide range of GAs currently used or proposed that

apply local search algorithms (see section, 3.2 and Figure 4.2).

Genitor [134]: A Steady-State GA
This algorithm uses rank-based selection and a steady-state strategy for repro-

duction. In each generation, only one (or two) individuals are created. Two-point
crossover with reduced surrogates is used to produce a pair of children, and then
one of them is selected randomly for mutation. The offspring displace the worst
individual in the population.

CHC [36]
A fixed population of size 50 is used. Members of the population are paired

randomly, and only parents sufficiently different are mated. As crossover, a reduced
surrogate HUX is used, and no mutation is applied to offspring. Truncation selec-
tion is used and restart is applied, in which a new population is created by using the
best solutions from the previous population with 30% mutation.

GENOCOP [81]
This variant is a GA-based hybridized evolutionary system used in several ver-

sions for solving constrained optimization problems. Real-numbers representation
and a number of crossover and mutation operators are employed.

Breeder GA [88]
Breeder GA is an SGA-style algorithm developed to solve continuous prob-

lems directly, without the need for a discrete genotype. The parameters of the
algorithm that control the evolutionary process are (1) population size, (2) muta-
tion rate, and (3) selection intensity. Mutation is performed at a rate of 1/l (l is
string length), which is claimed to be optimal. A form of truncation selection
used in breeding is applied, namely, the best individual takes place in all matings.
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GAVaPS [81]
Population size in the algorithm can vary during the evolutionary

process, and it depends on the age of an individual, which is its parameter. An
individual that exceeds its lifetime is eliminated from the population. The value
of lifetime is determined at each generation, and it depends on some population
statistics.

Niching Algorithms
In many applications such as multimodal or multiobjective optimization,

dynamic function optimization, or machine learning, the important issues are
(1) the maintenance of diversity of a population and converging to different solu-
tions, and (2) preventing premature convergence when only one solution is
required. These issues are addressed by niching algorithms. One of the first mech-
anisms introduced to support diversity is crowding [34], which assures that new
individuals replace similar individuals in a population. The mechanism of fitness
sharing [46] forces similar individuals to share their fitness. The mating restriction
mechanism [32] prevent recombination between individuals in different niches.
Deterministic crowding [76] modifies crowding by a mechanism of minimizing the
sum of parent-to-offspring distance. Recently the mechanism of probabilistic
crowding [80] was proposed and a concept of niching pressure was introduced
[115] and used in the context of agent-based EC systems.

Multiobjective Evolutionary Algorithms
Multiobjective Evolutionary Algorithms (MOEAs) are one of the current

trends in developing EAs. An excellent overview of current issues, algorithms,
and existing systems in this area is presented in [24,25].

Evolutionary Optimization in Dynamic Environments
EAs for time-varying environments are the subject of current study within the

area of EC. Different aspects of dynamic optimization problem are discussed in
[15], along with evolutionary concepts to solve these problems.

Parallel GAs
See section 3.4.

Coevolutionary GAs
See section 3.5.

Competent GAs
See section 3.6.

3.4 Parallel GAs

Single-population Master-Slaves Model

The single-population master-slaves model [18,51,61] offers the easiest and sim-
plest way of parallelizing single-population GAs and is presented in Figure 4.7a.
A master-processor runs the GA performing selection and genetic operators.
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The operation of fitness evaluation is parallelized. Due to this parallelization, the
fitness of individuals in the population can be calculated in parallel by slave-
processors, if a corresponding number of processors is available.

Island Model

In the island model, also called the migration or multiple population model
[18,19,119,77,61], a population of GA is divided (see Figure 4.7b) into some
number of subpopulations, called islands or demes, which are located on differ-
ent, usually MIMD-class processors. Each subpopulation is a complete GA and
evolves in parallel, exchanging periodically with other subpopulations the best
individuals. A population structure composed of subpopulations is defined by the
topology of a communication graph, which specifies a neighborhood for each
subpopulation and serves to exchange individuals between neighbor subpopula-
tions. Both the number of subpopulations and the topology of the communica-
tion graph are user-defined parameters.
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Each subpopulation runs during some predefined number of generations
called an epoch, in the same way as it is done in the one-population GA. After
each epoch, neighbor subpopulations communicate by exchanging some number
of their best individuals, which migrate and then are assimilated into subpopula-
tions in such a way as to maintain a constant size of the subpopulation. The
island model outperforms the one-population GA, providing a nearly linear
speed-up when parameters of the algorithm are well tuned. Current modifica-
tions of the model introduce a variable subpopulation size of each island, differ-
ent lengths of chromosomes in subpopulations, and asynchronous interactions
between islands.

Diffusion Model

In the diffusion model, also called the neighborhood, fine-grained, or cellular
model [18,119,97,61], each individual from a GA population is placed into a sin-
gle processor, typically of the SIMD class. A neighborhood relation is set
between all individuals by considering each individual as a node of a user-
defined communication graph, which can be linear (see Figure 4.7c) or planar.
Additionally, a local neighborhood of each individual is specified (see dotted
area for the shadowed individual in Figure 4.7c). All selection and genetic oper-
ators are defined locally on such (possibly overlapping) neighborhoods.
Different local mating strategies [50] and different neighborhood sizes and
shapes [109] can be used.

Hierarchical Parallel GAs

Hierarchical parallel GAs are the result of an attempt to integrate the advan-
tages of the master-slaves, island, and diffusion models [18]. In [73], the island
model was combined with the diffusion model to solve the scheduling problem
efficiently, and the idea of such a hierarchical model is presented in Figure 4.7d.
A hierarchical model combining both the island and master-slaves models can be
found in [46].

Hierarchical Genetic Strategy

Recently, in [110], a parallel GA referred as hierarchical genetic strategy has
been proposed. It is a variable-length chromosome multipopulations GA model
with a number of subpopulations changing dynamically in time (see Figure 4.7e).
The algorithm starts from a single population (root) of chromosomes of the same
length. During the evolutionary process, new subpopulations (leaves) can be cre-
ated by using two operators: a prefix comparison operator and a sprouting opera-
tor. The root population can create a new subpopulation by using the sprouting
operator when a promising individual appears, and this will be detected by the
comparison operator. The new subpopulation always contains chromosomes with
increased length and runs in parallel with the root subpopulations. The process of
creating new subpopulations can be continued by both root and leaves subpopu-
lations. The stop criterion of a running subpopulation is a stagnation of evolu-
tionary process in a subpopulation.
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3.5 Coevolutionary GAs

The idea of coevolutionary algorithms comes from the biological observation
that coevolving some number of species, defined as collections of phenotypically
similar individuals, is more realistic than simply evolving a population containing
representatives of one species. So, instead of evolving a population (global or dis-
tributed) of similar individuals representing a global solution, it is more appro-
priate to coevolve subpopulations of individuals representing specific parts of the
global solution. Four coevolutionary algorithms, presented below, depict specific
lines of the research currently conducted in this area.

Coevolutionary Genetic Algorithms

The Coevolutionary GA [93,94], described in the context of the constraint sat-
isfaction problem and the neural network optimization problem, is based on a
predator–prey paradigm [56]. The algorithm operates on two subpopulations: the
main subpopulation P1(), containing individuals x, and an additional subpopula-
tion P2(), containing individuals y coding some constraints, conditions, or simply
test points concerning a solution x. Both or only one subpopulation evolves to
optimize a global function ( , )f x y .

A single act of coevolution is based on the independent selection of individu-
als x and y from subpopulations in order to encounter them and evaluate their

( , )f x y . The manner of assigning fitness to the individuals stems from the preda-
tor–prey relation: success of one individual should mean failure of the second
one. During one generation, individuals are confronted a predefined number
times. At the end of the evolution process, the best individual from P1 () is con-
sidered to be a solution of a problem.

Cooperative Coevolutionary Genetic Algorithms

The Cooperative Coevolutionary GA (CCGA) has been proposed [98] in the
context of a function optimization problem and is one of the best-known coevo-
lutionary algorithms. Each of N variables xi of the optimization problem is con-
sidered as a species with its own chromosome structure, and subpopulations for
each variable are created. A global function ( )f x is an optimization criterion. To
evaluate the fitness of an individual from a given subpopulation, it is necessary to
communicate with selected individuals from all subpopulations.

In the initial generation (t = 0), individuals from a given subpopulation are
matched with randomly chosen individuals from all other subpopulations. The
fitness of each individual is evaluated, and the best individual in each subpopu-
lation is found. The process of cooperative coevolution starts from the next gener-
ation (t = 1). For this purpose, in each generation a cycle of operations is repeated
in a round-robin fashion. Only one current subpopulation is active in a cycle,
while the other subpopulations are frozen. All individuals from the active sub-
population are matched with the best values of the frozen subpopulations. When
the evolutionary process is completed, a composition of the best individuals from
each subpopulation represents a solution of a problem. The algorithm has been
successfully used in different applications (e.g., [65]).
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Loosely Coupled Genetic Algorithms

The Loosely Coupled GA (LCGA) [117,119] is a coevolutionary algorithm
exploring a paradigm of competitive coevolution and motivated by noncoopera-
tive models of game theory.

For an optimization problem described by some function (a global criterion)
of N variables, local chromosome structures are defined for each variable, and
local subpopulations are created for each of them. With each subpopulation, a
locally defined function is associated, if possible, that describes relations between
the variable associated with the population and other variables and subpopula-
tions. This relation is described by a communication graph called a graph of inter-
action. While the purpose of each subpopulation is to optimize own local
function under constraints defined by the influence of other local variables, an
optimization of a global criterion is expected as the result of achieving by sub-
populations some equilibrium, equivalent to a Nash equilibrium point in nonco-
operative models of game theory. If local functions are not known, the
subpopulations directly optimize the global criterion.

The LCGA works in such a way that after initialization of subpopulations,
each subpopulation performs in parallel the same set of operations in each gen-
eration. Each individual in a subpopulation is matched with randomly chosen
individuals from subpopulations according to the interaction graph, and its fit-
ness is calculated according to a local (or global) function assigned to a subpop-
ulation. This matching is repeated for each individual a predefined number of
times. Next, standard GA operators are applied locally in subpopulations. The
evolutionary process is continued for a predefined number of generations until
the system achieves the state of equilibrium equivalent to a Nash equilibrium
point.

LCGAs have been applied to solve the multiprocessor mapping and scheduling
problem [118] and the function optimization problem [120].

Coevolutionary Distributed Genetic Algorithm

The Coevolutionary Distributed Genetic Algorithm (CDGA), described [63,79]
in the context of integrated manufacturing planning and scheduling, combines
features of diffusion models with coevolutionary concepts. N coevolving species
with their own genotypes represent partial solutions to a problem, e.g., plans for
a particular component to be manufactured in a machine shop. The quality of
each partial solution can be evaluated by a local function. The challenge is design-
ing an optimal schedule to minimize the total cost of executing, in parallel, a set
of plans represented in a given subpopulation. A global measure of the perform-
ance of a given plan, executed in parallel together with all plans from a popula-
tion, is a global function taking into account a possible conflict in the use of
common resources in the machine shop, and resolved by a local arbitrator.

A population of the CDGA is composed of subpopulations occupying a pre-
defined number of cells arranged in some user-defined topological structure, e.g.,
a toroidal grid. In each cell, there are single representatives (individuals) of each
species and also an individual representing an arbitrator. Only individuals of the
same species from neighborhood subpopulations take part in the breeding.
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Coevolution, i.e., an influence of another species on a given species, is taken into
account by calculating a value of a global function. An offspring that is a result
of breeding in a given local neighborhood replaces an individual in this neigh-
borhood.

3.6 Competent GAs

A theoretical explanation of the work of SGA and a number of its exten-
sions is based on the Holland’s concept of building blocks (BBs) [46]. According
to this concept, to find a global optimum of a problem GA requires identifying
and grouping together partial solutions-schemata (BBs) with above-average
value of fitness. For many hard optimization problems such as permutation
problems, GAs and especially SGA have a problem doing that. These problems
are frequently modeled by designing hard multimodal optimization problems
called deceptive problems (see, e.g., [46,69])—combinations of deceptive sub-
functions that mislead GAs to converge to a global optimum. Related to the
deceptive problems is the linkage problem, which states that no fixed operators
of recombination are able to provide mixing individuals with arbitrary codes to
obtain proper BBs.

One possible solution to deceptive-like problems is to apply problem-specific
coding and operators. A more general approach is to design more flexible and
powerful GAs, which are referred to as competent GAs [47,69]. A number of com-
petent GAs have been developed, and all of them fall into one of two classes [69]:
(1) algorithms (the fast messy GA [49], the gene expression messy GA [5], and the
linkage learning GA [52]) based on evolving the representation of solutions or
adapting recombination operators, and (b) algorithms (the extended compact GA
[53] and the Bayesian optimization algorithm (BOA) [95]) based on extracting
information from a set of promising solutions.

Fast Messy GAs and OmeGA

In messy GAs [47,69], the genes (messy genes) of a chromosome (messy chro-
mosome) are represented by a pair of number (gene locus, gene value). For example,
the chromosome ((2 0)(4 1)(1 1)(3 0)(5 1)) represents the binary string 10011. Messy
chromosomes may have different lengths, and they may be underspecified or over-
specified. As in SGA, selection and genetic operators are used. However, the tradi-
tional crossover is replaced by cut and split operators.

In the fast messy GA (fmGA), two loops—outer and inner—are performed. In
each cycle of the outer loop, three phases of the inner loop are performed. In the
first, initialization phase, a population of individuals containing all possible genic
and allelic combinations is created. In the second phase, called the building-block
filtering phase, the population is filtered in such a way as to contain a high pro-
portion of gene combinations belonging to BBs. In the juxtapositional phase,
tournament selection and genetic operators are applied to form a high-quality
solution.

To apply fmGA for solving permutation problems, the definition of messy
gene is modified: a random key (real random number) instead of a binary digit
(for gene value) is used, and such a extension of the algorithm is called ordering
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messy GA (OmeGA) [69]. For the TSP with five towns, a possible genotype may
look like ((1, 0.26)(2, 0.22)(3, 0.72)(4, 0.19)(5, 0.20)). After sorting keys, the fol-
lowing phenotype is decoded: ((4, 0.19)(5, 0.20)(2, 0.22) (1, 0.26) (3, 0.72)), which
corresponds to the permutation (4 5 2 1 3). One can easily check that the tradi-
tional single-point crossover operator will always generate feasible offspring when
random key vectors are used.

Gene Expression Messy GA

The overall organization of the gene expression messy GA (gemGA) [5,47] is
similar to that in fmGA, but the representation and the basic mechanism of the
algorithm are different. The gemGA has no variable-length chromosomes and no
under- or overspecification, and genes are stored in regular arrays. As was the
case of fmGA, the main purpose of the gemGA is to determine the linkage groups,
and the most important innovation of the algorithm to do that is the idea of tran-
scription or antimutation. During the one-bit perturbation of each string, the per-
turbations that improve the structure are ignored and perturbations that degrade
the structure are selected as possible linkage group candidates for subsequent
processing.

3.6.3 Linkage Learning GA

In the linkage learning GA (LLGA) [52,47], the main concepts of the organi-
zation and the messy representation of chromosomes are similar to those in
fmGA except that chromosomes have a circular structure. The main innovation of
this messy algorithm is the mechanism called probabilistic expression, which
reorders chromosomes in such a way as to detect important BBs in the encoding.
The extended compact GA [53] is a more efficient version of the LLGA.

3.6.4 Bayesian Optimization Algorithm

The Bayesian optimization algorithm (BOA) [95,47] is a messy GA that iden-
tifies linkage-like data in a population through the construction of Bayesian
networks. Traditional selection operators (truncation and tournament) are
applied to choose a subset of solutions in the population that is used to con-
struct a good Bayesian network modeling that subset. The probabilistic model
corresponding to the structure of the Bayesian network is used next to generate
a new population.

4 GENETIC PROGRAMMING

Genetic Programming (GP) is an evolutionary optimization technique pro-
posed by Koza [70]. The general computational scheme of EA presented in
Figure 4.2 is still valid for GP, but the main differences from other evolutionary
techniques concern (1) a representation of a solution (Step 0), and (2) the order
of selection and genetic operators (Step 4). Solutions are represented by trees (see
Figure 4.8), which provide a flexible way of describing computer programs in
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LISP language, functions, or variable length structures. To represent a tree in GP,
a potential solution of a problem and a set of functions and terminals correspon-
ding to a given problem domain must be provided by a user. For the individuals
represented in Figure 4.8, the set of functions is F = { +, *, log, sin} and the set
of terminals is T = {2.15, 7, x}. Two individuals, parent1 and parent2, represent
the expressions log (x) − sin(2.15 * x) and x2 + 7, respectively. After calculation
of fitness of each individual, selection and genetic operators are applied.
Figure 4.9 shows the order of application of the operators. Members of a new
generation are created either by a selection operator with a probability ps or by a
crossover operator with a probability pc or by a mutation operator with a proba-
bility pm (ps + pc + pm = 1). A crossover operator creates offspring by exchanging
subtrees in parents, as shown in Figure 4.8.

Advanced GP issues concern developing automatically defined functions and
specialized operators such as permutation, editing, or encapsulation [71,72]. One
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of the research issues concerns developing methodologies to reduce the search
space and increase search efficiency. Context-Free Grammar-based GP, or
Constrained GP [66], belongs to some proposed methodologies for automatic
processing of additional constraints. Recently [67], a methodology using auto-
matically adapting GP representation has been proposed. GP techniques have
been recently used to solve problems of classification and pattern recognition,
data mining, forecasting, programming parallel computers and cellular
automata, synthesis of analog circuits, and many others.

5 EVOLUTIONARY PROGRAMMING

Evolutionary Programming (EP) is another evolutionary technique developed
by Fogel and co-workers [38]. It uses finite state machines (FSMs) as a represen-
tation of solutions (see Step 0 in Figure 4.2) in a population of individuals.
Surprisingly, it does not use a crossover operator but only mutation and stochas-
tic selection, as shown in Figure 4.10. In its standard version, m parents create by
Gaussian mutation m offspring, and tournament selection is usually applied. The
basic cycle of EP is similar to (µ + µ) − ES. EP has been used as an approach to
artificial intelligence [40] and to combinatorial optimization problems [39].
Recently [140], in the context of multimodal function optimization, fast EP has
been proposed by introducing a new mutation operator based on Cauchy random
numbers. Currently [41], a meta EP type of EP is used with multiple mutation
operators and is built in to individual parameters to allow self-adaptation.

6 LEARNING CLASSIFIER SYSTEMS

Learning Classifier Systems (LCSs) are a class of rule-based learning
machines in which rules are generated and modified by GA [14,46]. Two
approaches to LCSs are known: the Pittsburgh approach (see, e.g., [3]) and, much
more popular, the Michigan approach. An LCS maintains a population of pro-
duction rules called classifiers. Each rule consists of two parts: a condition part
and an action part. The condition part is built using the ternary alphabet {0, 1,
#}, where the # symbol matches both 0 and 1. If the condition part of a classi-
fier matches the input sent from the environment (defined by an application),
the action part is executed. If more rules match an input from the environment a
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conflict resolution algorithm should be performed. Classifiers interacting with
the environment receive rewards and their fitness is updated, usually by use of the
bucket brigade algorithm in classical LCSs. Periodically, GA is applied to pro-
duce new rules, but only a small amount of the population is changed during one
generation.

Classical LCSs [14,46] appeared from the simplification of Holland’s initial
work [59] and have been successfully applied in many areas, in particular for data
mining (e.g., [60]) and complex control problems (e.g., [122]). In their implemen-
tation, a direct reward allocation scheme was used, which was problematic when
applied to complex delayed reward tasks [8]. First strength-based ZCSs [135] and
sometime later an extended classifier system (XCS) [136] were proposed as a solu-
tion to problems encountered in classical strength-based LCSs, and most current
research and development is focused on this class of LCSs (e.g., [17,30,137]).

Figure 4.11 shows a simplified version of XCS. It consists of a number of clas-
sifiers sets: the population set [P] of all classifiers (initially empty); the match set
[M]—the set of classifiers whose conditions match the current environmental
input; and the action set [A]—the set of classifiers whose actions will be send to
the environment. For a classifier, in addition to the condition and action parts
and fitness, some other parameters are specified, such as prediction p, error e, and
fitness F. All these parameters are modified by the system predictions with the use
of learning techniques. The action of a classifier is chosen based on the predicted
payoffs of the matching rules. GA is applied not to the whole population of rules
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but only to rules from the action set. The wheel roulette or tournament selection
and genetic operators of crossover and mutation are applied. A pair of offspring
is added to the population [P] and replaces two other classifiers from this popu-
lation.

Recently (e.g., [16,45,123]), Anticipatory Learning Classifier Systems (ALCSs)
have emerged in which model-based reinforcement learning is used and, instead
of GAs, heuristics are used for improvement of rules.

7 CONCLUSIONS

In this chapter, an overview of the field of EC has been presented. The main
emphasis has been on genetic algorithms, the most popular class of EC.
However, other important classes of EC were also presented, such as evolution
strategies, genetic programming, evolutionary programming, and learning clas-
sifier systems. The purpose of the overview has been to present the current state
of the field of EC and to discuss the most promising directions of developments
in the field.

The EC is a relatively young research area in which the main stream of
research is oriented toward experimentation. Despite this emerging state of the
field, EC has already proved its potential in solving many theoretical and practi-
cal problems. Techniques of EC have been successfully applied to solve, in par-
ticular, such commercial problems as [29] cellular telephone tower placement,
optical fiber network design, a securities trading system, or process scheduling.

While the theory of EC is still under development, some advances in building
such a theory can be noted [102,128]. The no free lunch theorem [138] shows that
the performance of all search metaheuristics and algorithms averaged over all
possible functions is the same if they satisfy certain conditions. The cumulative
effects of selection, crossover and mutation operators on evolutionary processes
can be studied by designing Markov chain models. Properties of GAs can be rig-
orously proven by the exact dynamical system model, covering in particular the
original schema theorem, and GA dynamics can be approximated by the statisti-
cal mechanics approach. The concept of landscape and some methodologies (e.g.,
Walsh representation) can be used to predict the performance of GA for solving
some problems.

The well-established field of EC serves also as a platform for development of
new population-based search algorithms. Differential evolution (e.g., [99]),
memetic algorithms (e.g., [86]), cultural algorithms [105], or probabilistic incremen-
tal program evolution [108] are examples of such search algorithms that are tightly
coupled with EC. Artificial immune systems (e.g., [31, 64]) and particle swarm opti-
mization (e.g., [12,68]) represent search algorithms that are based on new para-
digms, but their intersection with evolutionary concepts is visible.
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