
Chapter 3

MULTISET RULE-BASED PROGRAMMING
PARADIGM FOR SOFT-COMPUTING IN
COMPLEX SYSTEMS
E. V. Krishnamurthy
Australian National University
and
Vikram Krishnamurthy*
University of British Columbia

Abstract
This chapter describes a rule-based multiset distributed programming par-

adigm as a unifying theme for conventional as well as soft and innovative com-
puting, e.g., Markov Chain Monte Carlo (MCMC)-based Bayesian inference;
biological, chemical, DNA, dynamical, genetic, immuno-, and membrane
computation; and nature-inspired, self-organized criticality and active
walker (swarm and ant intelligence) models. The computations are inter-
preted as the outcome arising out of deterministic, nondeterministic, or sto-
chastic interaction among elements in a multiset object space that includes
the environment. These interactions are like chemical reactions, and the evo-
lution of the multiset can mimic biological evolution. Since the reaction rules
are inherently parallel, any number of actions can be performed coopera-
tively or competitively among the subsets of elements so that the elements
evolve toward an equilibrium or an emergent state. Practical realization of
this paradigm is achieved through a coordination programming language
using Multiset and transactions. This paradigm permits carrying out parts or
all of the computations independently in a distributed manner on distinct
processors and is eminently suitable for cluster and grid computing. Some
important applications of this paradigm are described.

* Research was supported by the National Sciences and Engineering Research Council
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1 INTRODUCTION

Most systems we observe in nature are complex dynamical systems that con-
sist of a large number of degrees of freedom. Further, they may contain several
inhomogeneous subsystems that are spatially and temporally structured on dif-
ferent scales and characterized by their own dynamics and interacting with each
other in a complex manner. Such complex systems often exhibit collective
(“Emergence”) behavior that is difficult to model deterministically, based entirely
on the properties of the individual subsystems. Probabilistic models such as sto-
chastic dynamical systems provide an efficient methodology for modeling such
complex systems by capturing the average behavior of the system at different spa-
tial and temporal scales. Despite the relative simplicity of a probabilistic model
(in terms of the number of degrees of freedom) compared with a deterministic
model, the dynamics of the resulting stochastic system are often highly nonlinear,
implying that it is not possible to obtain analytical expressions for the distribu-
tions or statistics such as mean and variance. Thus we need to resort to Monte
Carlo simulation-based methods to compute estimates of the distribution and
statistics. These Monte Carlo estimators are based on the strong law of large
numbers, which under suitable regularity conditions (e.g., geometric ergodicity of
the dynamical system) states that the arithmetic mean of the simulated random
samples converges strongly (with probability one) to the true statistic. This simu-
lation-based approach for computing estimates of the distribution and statistics
of a stochastic dynamical system can be viewed as “soft computation,” since
unlike conventional computation, where exactness is our goal, we allow here for
the possibility of error and randomness. Soft computation needs to be supported
by a suitable choice of a datastructure and an associated programming paradigm.
It is the object of this chapter to describe a unifying programming paradigm for
carrying out soft computation in complex systems.

A programming paradigm is a class of programs that solve different problems
while having the same control structure [6, 7, 70]. This permits us to write a generic
program—called a program shell—that implements the common control structure.
The program includes a few unspecified data types and procedures that vary from
one application to another. We can then devise a parallel application program by
substituting the types and procedures needed for a specific application.

In this chapter we describe a unified multiset programming paradigm (UMPP)
that constitutes a unifying theme for several widely used computational schemes.
These include all conventional algorithms, Markov chain Monte Carlo (MCMC)
[26], Particle filters [27], evolutionary algorithms, such as classifier systems, proba-
bilistic bucket brigade learning [19], genetic algorithms [8, 12, 29, 30, 32, 61, 62],
genetic programming [42], membrane computing [74], immunocomputing [33], Self-
organized criticality [10], and active walker models (ants with scent or multiwalker-
paradigm, where each walker can influence the other through a shared landscape),
also called Stigmergy [9, 11, 18, 23, 24, 38, 39, 60, 56, 40] stochastic marked point
processes [78, 81], random graph models [15, 25], biomimicry [72], and DNA com-
puting [2, 58]. Also it is applicable to nonequilibrium systems interacting with sur-
roundings [63, 76] using feedback mechanisms involving catalytic reactions—as,
for example, the production of ATP (adenosine triphosphate) from ATP. These
lead to the necessity for the open-world hypothesis (rather than the closed-world
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assumption used in logic) to discover newer unknown possibilities, e.g., self-organ-
ization and active walks (swarm intelligence: see [11, 23, 39, 56]).

1.1 Structure of Unified Multiset Programming Paradigm
(UMPP)

The UMPP proposed in this chapter consists of the following features [65, 37,
41, 80] that mimic evolutionary behavior in a biological system and innovative
aspects of other nonclassical computational schemes [85]:
1. One or more object spaces that contain elements whose information is structured

in an appropriate way to suit the problem at hand (e.g., the genomic library).
2. A set of interaction rules that prescribes the context for the applicability of the

rules to the elements of an object space. Each rule consists of a left-hand side
(a pattern or property or attribute) of named objects and the conditions under
which they interact, and a right-hand side that describes the actions to be per-
formed on the elements of the object space, if the rule becomes applicable,
based on some deterministic or probabilistic criteria. For example, techniques
in the lock-key paradigm [20, 21] abstracted from shape matching in molecular
biology form the basis for molecular computing. The lock-key paradigm arises
from the notions of complementarity and the union of opposites that pervade
the entire science and natural philosophy. It is based on the recognition of an
object (molecule) through complementary shape matching.

3. A control strategy that specifies the manner in which the elements of the object
space will be chosen and interaction rules will be applied, the kinetics of the
rule-interference (inhibition, activation, diffusion, chemotaxis), and a way of
resolving conflicts that may arise when several rules match at once. This is anal-
ogous to the selection strategy (possibly stochastic) in a biological system.

4. A mechanism to evaluate the elements of the object space in order to deter-
mine the effectiveness of rule application (e.g., evaluating fitness for survival
in a biological system).
Thus, UMPP provides a stochastic framework of generate and test for a wide

range of problems [92, 62]. Also, the system structure of UMPP, consisting of
components and their interaction, is supported by contemporary software archi-
tecture design [5].

1.2 Computational Features of UMPP

The UMPP has the following computational features:
1. Interaction-based: The computations are interpreted as the outcome of inter-

acting elements of the object space that produce new elements (or the same
elements with modified attributes) according to specific rules. Hence, the
intrinsic (genotype) and acquired properties due to interaction (phenotype)
can both be incorporated in the object space. Since the interaction rules are
inherently parallel, any number of actions can be performed cooperatively or
competitively among the subsets of elements so that the new elements evolve
toward an equilibrium or unstable or chaotic state. Such an evolution may
retain certain invariant properties of the attributes of the elements.
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2. Content-based activation of rules: The next set of rules to be invoked is deter-
mined solely by the contents of the object space, as in the context of chemical
reactions. This feature is very powerful, since it provides for automating the
discovery of solutions, as in genetic programming [42].

3. Pattern matching: Search takes place to bind the variables in such a way as to
satisfy the left-hand side of the rule. It is this characteristic of pattern (or
attribute) matching that gives the rule-based paradigm its distinctive capabili-
ties for innovative computing [36, 85, 91].

4. Simplicity of implementation: The implementation involves three basic tasks:
a. Searching for elements of the object space satisfying the interaction condi-

tion
b. Carrying out the action to these elements, ensuring that certain invariants

hold before and after the actions
c. Evaluation of the new elements in the object space for the required termi-

nation or equilibrium or self-organized criticality or emergent states
5. Suitable for deterministic, nondeterministic, and probabilistic evolutionary

modes: The object space mentioned above is analogous to phase space in
dynamical systems. It permits the introduction of a probabilistic formulation
in rule applications. As each element of the ensemble changes over time, its
phase point is carried into a new phase point. The evolution of the resulting
probability cloud (e.g., probability mass function associated with the discrete
phase points) in phase space corresponds to a distributed probabilistic com-
putation. Thus this paradigm is suitable for deterministic exact computation
when the initial conditions are exactly specified and the evolution is governed
by a deterministic system. It is also suitable for approximate probabilistic com-
putation when the initial conditions and interactions are not complete and not
well specified. The probabilistic computation mode is useful when one wants
to derive macroscopic or bulk properties of matter from the rules governing a
large number of objects, as in a statistical mechanical system interacting with
an environment.

6. Choice of objects and actions: We can use strings, arrays, sets, trees
and graphs, multisets, tuples, molecules, particles, and even points as the basic
elements of computation and perform suitable actions on them by defining a
suitable topology, geometry, or metric space. Accordingly, this approach is
widely applicable to several innovative computing approaches.
The rest of this chapter is organized as follows. In Sections 2 and 3, general

properties and those of rule-based paradigms are developed. In Section 4, we use
these properties to give a complete description of the UMPP. In Section 5, exam-
ples are given that are completely modeled by UMPP. These are, respectively,
Markov Chain Monte Carlo methods, Classifier/Bucket Brigade systems, Genetic
Algorithms, Genetic Programming, Oscillatory Chemical Reactions, Swarm and
Ant-Colony techniques, and Conrad’s Lock-Key Paradigm, membrane and
immunocomputing, and quantum field theory. In Section 6, UMPP is interpreted
in terms of relational databases. Section 7 explains the molecular DNA compu-
tation using multiset datastructure. Section 8 presents some simulation examples
of adaptive learning algorithm for Nernst potential, and adaptive spreading code
optimization in wireless CDMA systems. Section 9 contains some concluding
remarks.
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2 DEFINITIONS AND FORMALIZATION

We define the following terms:

System. A system is a set of objects together with relationships between
objects and their attributes.

Environment. For a given system, the environment is the set of all objects, a
change in whose attributes affects the system, and also those objects whose attrib-
utes are changed by the behavior of the system.

Specification. We also define a specification of a deterministic computation as
a description that, when executed, would transform the given input object space
into a desired output object space satisfying the prescribed attributes.

The main feature of the general rule-based paradigm is the specification of the
program:

G(R, A)(M) = If there exists elements a, b, c, . . . in an object space M such
that an interaction rule R (a, b, c, . . . ) involving elements a, b, c is applicable,
then G(R, A)((M-{a, b, c,. . }) + A(a, b, c,. . . )); else M.

Here M denotes the initial object space. This is a multiset or a bag in which a
member can have multiple occurrences [14]. The sign “−” denotes the removal (anni-
hilation) of the interacted elements; it is the multiset difference. The sign “+” denotes
the insertion (or creation) of new elements after the action A; this is multiset union.
Note that R is a condition text (or an interaction condition that is a boolean) that
determines when some of the elements of the object space M can interact. The func-
tion A is the action text that describes the result of this interaction.

The function R can be interpreted as the query evaluation function in a data-
base M, and the function A can be interpreted as the updating function for a set
of database instances. Hence, if one or several interaction conditions hold for sev-
eral nondisjoint subsets at the same time, the choice made among them can be
nondeterministic. This leads to competitive parallelism. However, if the interac-
tion condition holds for several disjoint subsets of elements in the database at the
same time, the actions can take place independently and simultaneously. This
leads to cooperative parallelism.

Deterministic Iterative Computation. This paradigm is a deterministic iterative
dynamic computation consisting of applications of rules that consume the inter-
acting elements of the object space and produce new or modified elements in the
multiset. This is essentially Dijkstra’s Guarded Command Program [45]. It is well
known that the Guarded Command approach serves as a universal distributed
programming paradigm for all conventional algorithms with deterministic or non-
deterministic components [70]. So we will not elaborate on this aspect any further.

Termination. To achieve termination of rule application, the interaction con-
ditions R have to be designed so that the elements in the object space can interact
only if they are in opposition to the required termination condition. When all the
elements meet the termination condition, the rules are not applicable and the
computation halts, leaving the object space in an equilibrium state (or a fixed
point of the iterative dynamics).
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Nontermination, instability and irreversibility. These cases arise when the rules
continue to fire indefinitely. Then the object space can be in a nonequilibrium
state. It is also possible that the evolution of the system is chaotic.

As an example, consider the rule-based iterative deterministic dynamical system:

For X(0) in the range [−1,1],
if X(i) ≥ 0 then G(X(i+1)) = −2X(i) +1 ;
else G(x(i+1)) = 2X(i)+1

The two rules for X(i) ≥ 0 and X(i) < 0 are mutually exclusive and do not com-
pete. This generates a chaotic dynamical system that is unstable and has a dense
orbit in the interval [−1,1] [17, 56].

3 TYPES OF RULE-BASED SYSTEMS

Several types of rule-based systems are used in computer science [31, 41, 65, 80]:
1. Monotonic. Here the application of one rule does not prevent or interfere

with the application of another rule that could have also been applied at the
time when the first rule was selected.

2. Nonmonotonic. Here the application of one rule interferes with the applica-
tion of another rule.

3. Partially commutative. If the application of a particular sequence of rules
transforms the system from state 1 to state 2, then any interleaved set of rules
in the sequence would equally well create the same transformation from state
1 to state 2.

4. Commutative. A system that is both monotonic and partially commutative is
called commutative.
Commutative systems are useful for problems in which changes occur but can

be reversed and the order in which operations occur is not critical. Non-partially
commutative production systems are useful when irreversible changes occur; here
the order is important.

The implementation of a production system operates in three-phase cycles:
matching, selecting, and execution. The cycle halts when the elements of the data-
base satisfy a termination condition. The task of match phase is similar to query
matching—that is, unification of the rules with the database. This phase returns
a conflict set that satisfies the conditions of different rules. In the select phase, we
select those compatible rules after conflict resolution. In the execution phase, all
selected rules are fired and actions are implemented.

Parallelism can be achieved in the matching and execution phases as follows:
In the matching phase, we can

1. Match in parallel several partitions of the rule set
2. Match several partitions of the object space

In the execution phase, we can
1. Execute several rule actions on the object space elements if these are inde-

pendent (interrule actions)
2. Execute several instantiations of the same rule simultaneously (intrarule

actions)
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3.1 Kinetics of the Multiset Rule-based Systems

In order to speed up the use of UMPP, we need to consider how to permit
multiple rule execution concurrently. This offers the possibility of carrying out
parts or all of computations in parallel on distinct processors or performing mul-
tiple simulations simultaneously in a grid or cluster computing environment.
Such possibilities would require the analysis of how the rules interfere with each
other. There are three ways in which the rules can interfere [35, 37, 41, 55, 43, 45].
We call these interference rules Turing’s kinetic rules, as they are similar to
those enunciated by Turing [88] to describe the development of shape, form, and
pattern in organisms (chemical morphogenesis rules: see [69]).
1. Enabling dependence (ED). Rule i and rule j are called enable dependent if the

application (or firing) of rule i updates (writes, or W ) the elements of the object
space, and creates the required precondition that is read (R) by rule j and causes
it to fire. As a special case, the update can be either insertion (W+) or deletion
(W−) of elements, and the precondition of rule j to fire is respectively the pres-
ence (R+) or absence (R) of those identical elements. (In parallel programming,
these WR, W+R+, W−R− types of dependencies are called dataflow dependence).

2. Inhibit dependence (ID). Rule i and rule j are called inhibit dependent if the
application (or firing) of rule i updates (W) the elements of the object space,
and disables the required precondition that is read (R) by rule j and prevents
it from firing. As a particular case, the updates can be either insertion (W+) or
deletion (W−) of elements, and the precondition of rule j to fire can be respec-
tively the absence (R−) or presence (R+) of those elements. The WR, W+R−,
or W− R+ types of dependencies are called inhibit dependencies.

3. Opposition dependence (OD). Rule i and rule j are said to be opposition depend-
ent if the following situation holds. Rule i updates (W) or deletes (W−) or adds
(W+) elements, while rule j respectively overwrites (W) or simply adds (W+) or
deletes (W) the same elements. (In parallel programming, this WW type of
dependence is called data-output dependence).
The rules are called compatible if they are not inhibit dependent (ID) and not

opposition dependent (OD). The communication among the objects takes place
through ED and ID. Note that a rule can enable (be autocatalytic) or inhibit itself.

We can relate the parallelism in production rules with vector, pipeline, and
data parallelism thus:
1. Vector parallelism. If all the rules are compatible, then we can apply all the

rules simultaneously, e.g., a vector addition.
2. Pipeline parallelism. Here multiple rules are fired in parallel and passing data

in a pipeline fashion, e.g., multienzyme reactions, where at each membrane an
“imprisoned” enzyme performs a given operation and then sends it on to the
next stage [76].

3. Data parallelism. Multiple instantiations of the same rule are fired in parallel
based on distinct data, e.g., forming matrix products.
The rule-based paradigm can be supported by a database transaction process-

ing system if we identify the condition text with a database query evaluation func-
tion (to find those elements or subsets of elements of the database satisfying
particular conditions) and the action text with the updating operation in the
database. Such identification relates the rule-based programming style and the
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database transactional programming style [59]. When one or more reaction con-
ditions hold for several disjoint subsets at the same time, the query or Read (R)
operation and the update (W ) operation can take place concurrently. This paral-
lelism corresponds to cooperative parallelism.

If, however, one or more conditions hold for nondisjoint subsets of the data-
base, then a transaction is chosen among the alternatives either nondeterministi-
cally or probabilistically, as dictated by a random number generator. The actions
on the chosen subset are executed atomically and committed. In other words, the
chosen subset undergoes an asynchronous atomic update. This ensures that the
process of matching and the follow-up actions satisfy the four important proper-
ties called ACID properties [49]: Atomicity (indivisibility and either all or no
actions carried out), Consistency (before and after the execution of a transac-
tion), Isolation (no interference among the actions), and Durability (no failure).
Once all the actions are carried out and committed, the next set of conditions is
considered. As a result of the actions followed by commitment, we derive a new
database; this may satisfy new conditions of the text, and the actions are repeated
by initiating a new set of transactions. This set of transformations halts when
there are no more transactions executable or the database does not undergo a
change for two consecutive steps, indicating a new consistent state of the data-
base. Such a scheme would correspond to competitive parallelism.

The implementation of a rule based-system for mathematical problems requires
that the application of the rules eventually terminates. Termination for a rule set is
guaranteed if rule processing always reaches a stable state in which none of the rules
will be enabled to react. However, note that rule processing does not terminate if
rules provide new conditions to fire indefinitely—that is, if actions of Ri create the
right conditions for Rj to fire. This would correspond to cyclic computations and
could lead to circularity or a deadlock situation.

3.2 Closed-World Assumption and Closed Systems

In conventional computer programming, we usually choose a commutative
production system that is sure to lead us to termination of the program corre-
sponding to a fixed point. This is achieved by choosing the positive world of facts
in which any fact that is not present (or cannot be derived from other assertions)
is assumed to be false. This assumption is called the Closed World Assumption
(CWA; [31]). It is an important assumption used in database design that is based
on first-order logic. The Gamma paradigm described by Banatre and Me’tayer [6]
is based on the closed-world assumption and corresponds to a commutative pro-
duction system; here we do not check for facts that are not present or derivable.
If CWA does not hold, we have a nonmonotonic system. CWA is valid only in
first-order logic or for Horn clauses in second-order logic [31].

First-order logic has the three important properties:
1. Completeness. It is complete with respect to the domain of interest. That is,

all facts needed to solve a problem are present in the system or can be derived
from the given rules.

2. Consistency. All axioms are contradiction free.
3. Monotonicity. The only way it can change is that new facts can be added as

they become available.

84 E. V. Krishnamurthy and Vikram Krishnamurthy



If these new facts are consistent with all other facts that have been asserted,
then nothing ever will be retracted from the set of facts that are known to be true.

Formal reasoning requires the CWA to specify what can be produced from the
rules. This means that a formal system, no matter how well constructed, will not
be able to model the changes in a nonstationary world. Therefore, if any of the
above properties are not satisfied, conventional first-order logic cannot be applied
and we need to use nonmonotonic logic.

Classical dynamics (also called rational mechanics) uses the laws of reasoning
based on CWA and a monotonic production rule system. Given a well-defined
initial state, we can precisely compute the evolutionary trajectory in the phase
space and a well-defined final state of the system. This is because such a system
is characterized by a deterministic set of equations (or rules) of motion, we have
complete knowledge about the system, and no other unknown fact exists. Hence
it is a closed system that is reversible or invariant under the transformation of a
positive to negative time coordinate. Such a closed system does not usually inter-
act with the environment and there is no energy or mass exchange outside the sys-
tem [76].

CWA assumes that anything that is not necessarily true should be assumed to
be false. It has two limitations:
1. It only operates on individual predicates and not on interactions among them.
2. It assumes that all the predicates have their instances listed. This is true per-

haps in the database context but not otherwise. But, in general, we cannot
completely describe all predicates, and the assumption that the world is closed
is not valid—we must assume that the world is open.
Nonmonotonic systems [1] can contain empirical statements and plausible set

of rules that make the system open.

3.3 Open Systems

An open system, unlike a closed system, is characterized by a system interact-
ing with an environment. Its evolution is not governed by a deterministic set of
equations of motion, and we are usually concerned about the average behavior of
the system as it evolves. For the open system, we need to introduce probabilities
due to the following reasons:
1. Ignorance of the relevant variables and functions involved in the rules to rep-

resent a given problem domain.
2. Inadequacy of the rules to model a given system and its environment, since we

do not know whether an object belongs to a system or whether it belongs to
an environment or how to subdivide the objects to establish a dichotomy of
sets of related objects into a system and an associated environment.

3. The introduction of a probabilistic approach permits us to take into account
all possible sequences of events into the future, from the most to the least
probable.
Open systems interact with the environment accompanied by an exchange of

energy, entropy, and matter. These systems are characterized by a nonmonotonic
production system in which we need to discover new rules that may violate old
rules. Examples of such systems are thermodynamical and nonequilibrium sys-
tems, including chaotic and self-organized critical systems; and non-Markovian
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active-walker models, where the system and the environment interact with each
other. Such systems need probabilistic modes of computation to account for
ignorance of some relevant variables or functions and inadequacy of the rule sets
due to interaction with the environment. This computation is imprecise, reflect-
ing the average behavior of the system [66].

As described in [71] and [47], closed systems with no dissipation of energy
have zero metric entropy, while open systems are dissipative and have a positive
metric entropy. Thus we have two major classes of systems or machines, ordi-
nary (O) and dissipative (P), which are based on metric entropy as described
below:

Ordinary or Zero Metric Entropy Machines (O)
These are completely structured, deterministic, exact behavior (or algorith-

mic) machines.
This class contains the machines in Chomskiian hierarchy [43]:

1. Finite State machines: obey regular grammar or type 3 grammar;
2. Push down-stack machines: obey context-free grammar or type 2 grammar;
3. Linear bounded automata: obey context-sensitive or type 1 grammars;
4. Turing Machines that halt: obey an unrestricted or type 0 grammar, and
5. Exactly integrable Hamiltonian flow machines.

Such machines are, in principle, information lossless; their outputs contain all
the required information as dictated by the programs. Further, the fixed point of
a terminating Turing computation is an analogue of an attractor or equilibrium
point in an integrable Hamiltonian system.

Positive Metric Entropy Machines (P)
The Lyapunov exponent of a dynamical system is a measure of the sensitivity

of the state of the system to its initial conditions. A nonlinear dynamical system
with an attractor that has a positive Lyapunov exponent exhibits chaotic behav-
ior—the attractor is exponentially sensitive to the initial condition of the system.
Such systems are analogues of a problem that stands at the border of com-
putability and noncomputability, where we do not know whether the computa-
tion halts or reaches a fixed point. To be at the edge of computability is analogous
to entering a route to chaos in dynamics. Thus chaos in dynamical systems and
noncomputability can be considered as parallels in their respective domains.
Undecidable (nonterminating) partially recursive schemes also exhibit chaoslike
behavior, such as lack of predictability and decidability! In fact, it is suspected
that deterministic chaos corresponds to Godel’s undecidability.

Nonintegrable positive entropy machines exhibit various degrees of irregular
dynamics:
1. Ergodicity. Here the set of points in phase space behave in such a way that the

time-average along a trajectory equals the ensemble average over the phase
space. Although the trajectories wander around the whole phase space, two
neighboring initial points can remain fully correlated over the entire time of
evolution. Ergodicity in a dynamical system is a result of nonintegrable per-
turbation in an integrable system [57]. The term ergodicity in dynamical sys-
tems means statistical homogeneity. This means the trajectory starting from
any initial state can access all other states in the phase space.
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2. Mixing. The initial points in the phase space can spread out to cover the space
in time but at a rate weaker than the exponential (e.g., inverse power of time).

3. Bernoullicity, K-flow, or chaos. The trajectories cover the phase space in such
a way that the initially neighboring points separate exponentially and the cor-
relation between two initially neighboring points decays with time exponen-
tially. It is with this class of irregular motion that we define classical chaos.
These trajectories lie on the border and beyond the Turing computable region;
that is, they belong to partial recursive schemes leading to undecidability.

4. Nonequilibrium systems. These systems exhibit emergent behavior, such as
chemical and biological machines and living systems.
Each of the above properties implies all the properties above, e.g., within a

chaotic region the trajectories are ergodic on the attractor and wander around the
desired periodic orbit. Classical motion is chaotic if the flow of the trajectories in
a given region of phase space has positive Lyapunov exponents that measure the
rate of exponential separation between two neighboring points in the phase
space. Chaos indicates hypersensitivity on the initial conditions. Also, the system
becomes inseparable (metric transitivity), and the periodic points are dense. That
is, the whole dynamical system is not simply a sum of parts; it functions as a
whole, leading to what is known as emergence. Also, strange attractors with frac-
tal dimensions govern such dynamic systems!

Thus, to simulate open systems, we need to combine zero and positive entropy
machines to carry out computation and also provide environmental interaction.
This can be achieved by the introduction of entropy through random choices.

The introduction of positive entropy through the injection of either chaotic-
ity (deterministic randomness) or stochasticity (statistical randomness) has sev-
eral advantages [44, 46, 50, 67]:
1. It provides ergodicity of search orbits. This has the property that every point

in the set of accessible states is approached arbitrarily closely during the iter-
ation. This property ensures that searching is done through all possible states
of the solution space, since there is a finite probability that an individual can
reach any point in problem space with one jump.

2. It provides solution discovery capabilities (as in genetic programming) due to
embedded randomness [82]. This property arises due to the fact that chaotic
orbits are dense and have a positive Lyapunov exponent, two initially close
orbits can separate exponentially from each other.

3. It cuts down the average running time of an otherwise worst–case running
time-algorithm. We pay for this gain by producing an output that has an error
with a small probability. Accordingly, we cannot claim that the solutions
would always exist, and even if they exist, they are exact.

4. It can solve problems of high complexity by facilitating cross-fertilization
across discipline; e.g., genetics (genetic algorithms), thermodynamics (simu-
lated annealing), statistical mechanics (particle transport), and complex sys-
tems (active-walker, self-organization, and percolation models).

5. Also, stochastic mechanisms plays a vital role in many physical processes
involving motion of particles: e.g., mechanisms such as diffusion, aimless drift
of particles, convection, annihilation of particles from the population, and
creation of particles. These mechanisms change the local density of the popu-
lation. Numerous physical and social systems behave in this manner.
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Remarks

1. It is possible that quasi-ergodic behavior arises, resulting in the entrapment
of the orbit in isolated regions. This behavior can be avoided by using per-
turbations to the chaotic orbit that are highly sensitive to initial conditions or
by using more than one Markov chain, with the initial states reasonably
apart.

2. Prigogine [76] suggests the use of nonunitary transformations, called star-
Hermitean operators, to extend the capabilities of computational systems to
reflect average behavior. That is, the tools of both equilibrium and nonequi-
librium quantum statistical mechanics are needed to create open systems.

3.4 Simulating Open Systems

A way to simulate a mixture of the zero and positive entropy machines is by
choosing the mode of application and the action set of a rule-based program
to be either deterministic, nondeterministic, probabilistic, or fuzzy. Rule appli-
cation policy in a production system can be modified by
1. Assigning probabilities/fuzziness for applying the rule
2. Assigning strength to each rule by using a measure of its past success
3. Introducing a support for each rule by using a measure of its likely relevance

to the current situation.
The above three factors provide for competition and cooperation among the

different rules. In particular, the probabilistic rule system can lead to emergence
and self-organized criticality. Thus, the capabilities of class O machines can be
enlarged by simulating special features of class P machines—using nondetermin-
ism, randomness, approximation, probabilities, equilibrium statistical mechanical
(e.g., simulated annealing), and nonequilibrium statistical mechanical (e.g.,
genetic algorithms and the Ant algorithm) approaches.

We will describe in Section 4 how the probabilistic rule-based paradigm can
simulate the open system.

4 THE STOCHASTIC RULE-BASED PARADIGM

In every closed logical, physical, chemical, or biosystem, certain properties (or
attributes) do not change (are conserved) or remain invariant when the system
evolves over time, moving from one state to another. Such attributes are called
invariants and play an important role in the specification of the system. A deter-
ministic rule-based paradigm in a closed system ensures that when an interaction
triggers an action, certain specified invariants always hold before and after the
actions. However, in open systems—such as complex systems, which consist of a
large number of simple elements interacting with each other and the environ-
ment—new properties such as self–organized criticality and the active walk sys-
tem can emerge [56]. Such systems are dissipative, do not necessarily satisfy
predetermined invariant conditions (such as conservation of certain specific
properties), and need to use probabilistic rule selection and modification. Here,
the probabilistic rule paradigm plays an important role [83].
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In Section 3 we discussed the necessity for the introduction of probabilistic
variant of the production rule paradigm for nonmonotonic or open systems. This
paradigm is obtained by introducing probabilities for selection when one or more
reaction conditions hold for several nondisjoint subsets at the same time. In this
case, the choice made among these subsets is determined by a random number
generator that selects the ith possible subset with a probability p(i) to perform the
required actions, thus providing for probabilistic competition among the different
choices. This results in the Unified rule-based Multiset Programming Paradigm
(UMPP) and is defined by the function

PG (R(p(i), A) (M) = if there exists elements a, b, c,. . . belonging to an object
space M (a multiset) such that R(a, b, c,. . .), then G(R,A)((M-{a, b, c,.. }) +
A(a, b, c,..)), else M,

where each of the possible number of subsets i that satisfy the conditions R is
chosen with a probability p(i) and the corresponding text of action A is imple-
mented. Note that the sum of p(i) equals 1. Also, when p(i) is not specified, the
choice can be deterministic or nondeterministic. Thus UMPP can contain within
itself the deterministic, nondeterministic, and probabilistic components.

The UMPP is useful in many ways:
1. It can be used to realize evolutionary algorithms such as classifier systems,

probabilistic, bucket brigade learning, the genetic algorithms [8, 12, 29, 30, 32,
61], self-organized criticality, and active walker models—ants with scent or
multiwalker-paradigm, where each walker can influence the other through a
shared landscape based on nondeterministic or probabilistic action [11, 23, 56].

2. The multiset datastructure used in UMPP is suitable to describe physical
events. It can represent pointlike variables in physics (time, space, velocity, or
other quantity) or discreteness of events intrinsic to the physical processes
(intrinsic point processes) or arising out of observations (observational point
processes) [64, 78, 81]. Also it can represent iterative dynamical systems,
including cellular automata [36, 91] and evolving networks [25].

3. It can support the design of a wide variety of programs to seek answers to
questions such as:
a. Which is the most likely state that a system will reach if supplied with a

given input sequence?
b. What is the average survival time of a population that is subject to repro-

duction and death of its members?
c. How long does it to take to learn a particular concept?
d. Can a system reach self-organized criticality?
e. Can a system become chaotic?

4.1 Properties of UMPP

The nondeterministic as well as probabilistic computations are organized in
two phases [44]:
Phase 1: Guessing or tossing (random choice)
Phase 2: Evaluation and verification of the validity of the result

These two phases work interactively. Thus nondeterministic and probabilistic
computations are no more than guess-check and toss-check actions. In the guessing
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or tossing phase, we apply certain reaction rules probabilistically to individual
elements satisfying the required conditions and perform the required actions.
In the verification phase, we evaluate either the individual elements of the data-
base or a selected subset or the whole database using some acceptance criteria.

As mentioned in Section 2, the deterministic and nondeterministic UMPP
programs are based on two-valued logic, and they terminate when the interac-
tion conditions (guards) are false [45]. But to determine the speed of conver-
gence and termination of the probabilistic UMPP paradigm, we need to use
probabilistic arguments. In practice, to detect a fixed point (or equilibrium), we
need to use some acceptance criteria, and at the end of each trial evaluate an
individual element or a selected subset or the whole object space, to decide
whether to repeat the trial or to halt. That is, the evaluation of the object space
can take place at different levels of granularity depending upon the problem
domain. Also, the acceptance criteria may be chosen dependent on or independ-
ent of the number of previous trials, and the choice of probabilities can remain
static or can vary dynamically with each trial. Thus, depending upon the evalu-
ation granularity, acceptance criteria, and the manner in which the probability
assignments are made, we can devise various strategies. We will give examples of
these in Section 5.

4.2 Iterative Dynamics of UMPP

In Section 2 we described the deterministic iterative scheme that can either
lead to a fixed point for closed systems or exhibit aperiodic and chaotic behavior
or self-organization when applied to open systems. In the stochastic approach, we
need to deal with stochastic difference or differential equations. For search and
optimization problems, one could use either chaoticity or stochasticity in iterative
schemes to create ergodicity. While it is still not known whether chaoticity or sto-
chasticity is superior in computational performance, the stochastic method seems
to be more easily amenable for proof techniques and seems to be more robust
under dynamic noise. This is a major research area currently [17]. Since UMPP
can deal with deterministic, nondeterministic (deterministic random and chaotic-
ity), and stochasticity, it permits simulating a variety of schemes, namely, piece-
wise deterministic, piecewise stochastic, and nondeterministic systems
encountered in time-varying systems, and point processes that have a variety of
applications [78, 64, 81].

UMPP provides a suitable model for understanding a large class of evolu-
tionary events. Such a model is applicable to very wide areas in biological and
social systems that are characterized by different kinds of attractors belonging to
four classes, called Wolfram classes [91]:
1. Evolution to a fixed homogeneous state in living systems (limit points in

dynamical systems) corresponding to fixed points in programming
2. Evolution to simple separated periodic structures in living systems (or limit

cycles in dynamical systems) corresponding to competitive cycles of deadlock
or livelock in concurrent computation

3. Evolution to chaotic behavior, yielding aperiodic patterns in living systems
(strange attractors in dynamical systems) that have no correspondence in com-
puter science
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4. Evolution to complex patterns of localized structures in living systems, which
have no analog in dynamical systems or in computer science.
In addition, phase transitions can arise between the various classes. For exam-

ple, between periodic and chaotic behavior there is a phase transition. While the
periodic and chaotic regions are governed by rules, the transition region is not
governed by any rules. Thus one proceeds through a complexity hierarchy from
simple to complex upto the transition region and beyond that complex to simple
dynamics. The phase transition therefore separates the space of computation into
an ordered and a disordered regime, which can be thought to correspond with
halting and nonhalting computations. The transients grow very rapidly in the
vicinity of a transition between ordered and disordered dynamics. Dynamics in
the vicinity of the phase transition gives rise to a critical slowing down, and the
various complexity classes (constant, linear, polynomial, exponential) are
encountered. Critical slowing down of a system appears like the exponential
slowdown in computing the solution of an intractable or nonpolynomial time-
solution problem.

Phase transition-like phenomenon arises in a wide variety of algorithms and
heuristics used for search problems in the NP class or beyond [96] and in random
graph models [15]. Although simulation is a poor substitute, there seems to be no
other way to guess the threshold of certain properties like phase transition in
complex systems. However, no satisfactory conclusions have been arrived at so far
to distinguish NP-complete problems or many other similar properties from the
phase transition point of view.

5 REALIZATION OF UMPP AND EXAMPLES

Practical realization of the UMPP can be achieved through a coordination
programming language using Multiset and transactions; the design details will be
published elsewhere.

5.1 Markov Chain Monte-Carlo and Randomized Grid
Bayesian Inference

The Markov Chain Monte Carlo (MCMC) methods [79], which include sim-
ulated annealing, data augmentation, and Metropolis Hastings-type algo-
rithms, are used to construct the a posteriori probability density function of a
random dynamical system. The UMPP proposed in Section 4 can realize such
MCMC methods as follows: the first condition text (say, R /pi) prescribes the
nature of random variable (i.e., probability distribution function) to be used for
the selection of the elements of the database and also a set of deterministic cri-
teria for the acceptance or rejection of the elements. The corresponding action
text (A) implements these conditions and accepts or rejects the elements as and
when they are randomly generated (on the fly). Following the rejection of ele-
ments, the second condition text (say, R* /p*i) prescribes a probabilistic criterion
to accept (or reject) some of the earlier rejected elements; the corresponding
action text A* implements these conditions. The condition text R* /p*i is
then varied as a function of the current number of trials and a parameter called
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temperature [61]. The effect of this variation is such that the probability of
accepting a new solution that is worse than the current solution decreases with
the degree of the deterioration of the solution, and more significantly with the
run time of the method.

More recently, a recursive (real-time) MCMC algorithm called a particle filter
[27], has been developed. This algorithm iteratively updates the currently available
set of particles into a new set of particles so that the empirical probability distri-
bution of the particles closely follow the true distribution. That is, the simulated
evolution of the particles mimics the real system. This algorithm is based on ran-
domized grids for propagating the conditional density of the state of a dynami-
cal system given noisy observations. Then sequential importance sampling,
together with the Bayes rule, is used to update the weights of the grid points from
a priori distribution to a posteriori distribution. In order to avoid degeneracy
problems, a random resampling method is used to eliminate low-probability
points in the grid. This step mimics evolution in the sense that it eliminates most
poorly adapted species (selective extinction or death). It is clear that these steps
can be completely captured by the UMPP. In MCMC methods, the granularity of
the evaluation takes place at the elemental level, and hence these methods permit
on-the-fly acceptance of elements, thereby providing high concurrency in the
implementation.

The use of Multiset facilitates the realization of the Multiple Particle Filter
approach recently described by Yuen and MacDonald [94]. It can be computa-
tionally advantageous by splitting a multidimensional problem into multiple low-
dimensional ones if there is sufficient degree of independence among the
components in the estimation problem.

5.2 Classifier / bucket-Brigade systems

The classifier system [8, 12, 29, 30, 32, 61] is a parallel rule-based production
system based on two-valued logic. Each classifier can be regarded as a separate
instruction that takes messages as input and produces messages as output. As in
a production system, there is a match cycle, where each rule is matched against
the state of the short-term memory containing a message list M. If its precon-
ditions are satisfied by at least one message, then the classifier is activated, and
an execute cycle carries out the required actions and posts an external message.
All external communications are via the message list. Thus all internal control
and external communication reside in the same data structure. The classifier sys-
tem can therefore be realized by the rule-based model, if the messages are rep-
resented by a database of appropriate type. When the classifier system is used
deterministically, it iterates for a fixed number of times or until the message list
does not change for two successive atomic steps. It has been shown in Forrest
[29] that
1. any finite function can be computed by some classifier system in a single

match-and-execute step, with an arbitrary amount of parallelism, by distribut-
ing the representation of the function over enough number of processors, and

2. a classifier system can be made to behave completely sequentially.
These two properties permit the classifier system to behave with maximal par-

allelism or completely sequentially. Thus a classifier system offers a flexible for-
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malism that permits optimization of the three parameters, namely, the number of
processors (classifiers), the length of computation, and the amount of inter-
processor communication.

In the Bucket-Brigade system (BBS) [8, 12, 29, 30, 32, 34], the classifier system
is generalized by introducing two factors, called the strength and the activation of
each rule based on its relevance and support from other rules.
1. Strength of the individual rule. The strength of each rule is based on its success.
2. Support and relevance of the rule. Each rule is evaluated by its likely relevance

to the current situation and support from other rules.
Here, the first rule reflects the success of the individual rule, while the second

rule reflects the performance of the collection of the different rules acting as a
whole, by evaluating the relevance of each individual and providing support for
its activity.

These two factors, namely, the strength and the support, provide for competi-
tion and cooperation among the different rules. When a posted message matches
a rule, each classifier makes a bid proportional to its strength; hence, highly fit
rules are given preference. The bid made by an activated classifier is then propor-
tionately divided and sent as a reward to other classifiers earlier responsible for
activating it. Thus if a rule is instrumental in permitting other rules to fire favor-
ably, it receives payoff and hence its strength will be increased; otherwise, its
strength is decreased due to bidding. In the steady state, the strength remains
invariant. BBS is useful to construct a database whose attributes are not known
in advance but are adaptive or evolving probabilistically. The UMPP can realize
the BBS, if the probabilities pi are replaced by strengths and at the end of each
atomic update, the actions are evaluated and the strengths are reassigned depend-
ing upon downstream and upstream payoff.

The ant algorithm and swarm intelligence use an approach similar to BBS (see
subsection 5.7 below).

5.3 Genetic Algorithm

The genetic algorithm goes a step further than the BBS: after selecting the
most successful rules, these rules are combined by selecting pairs and performing
crossover and mutation. The crossover may be thought of as a combination of
independent rules, while the mutation may be thought of as an error in input or
an approximation.

The genetic algorithm [8, 12, 29, 30, 32, 68, 13, 62, 84, 83, 90] chooses an ini-
tial population of objects called chromosomes, represented by a multiset M of
binary strings with a length of m bits. Then it performs on M three different prob-
abilistic operations that mimic the operations found in nature, namely, selective
reproduction, crossover, and mutation. These operations can therefore be repre-
sented in the UMPP using four transactions:
Transaction 1 evaluates the given generation for assigning the selection probabil-

ities q to initiate the actions for the creation of a new generation.
Transaction 2 performs reproduction; its condition text enables us to select prob-

abilistically those strings that are fit, and its action text replaces the original
multiset with the fittest strings.
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Transaction 3 performs crossover; its condition text picks up any two elements
and the crossover site; the corresponding action text performs crossover and
returns the two offspring back to the multiset.

Transaction 4 performs mutation; its condition text gives the probabilistic condi-
tions to select a string as well as the site for mutation; the action text performs
mutation and returns the string back to the multiset. This sequence of trans-
actions is then repeated until the multiset is stable or does not undergo a
change.
If the reproduction, crossover, and mutation are performed sequentially, one

after another, then the UMPP is given by the composition of the four transac-
tions applied to M. We can introduce concurrency among the three transactions
2, 3, and 4, subject to the constraint that they act on different strings. Such a
genetic algorithm is called an elitist model, where the parents and offspring
together can undergo selective reproduction, crossover, and mutation [32, 61, 84].

Note that the evaluation transaction cannot be interleaved with others. In
implementing the paradigm, therefore, we must decide how to interleave tasks
of different types and size (granularity). This problem is called multilevel atom-
icity. It is possible to interleave the simulated annealing algorithm with the
genetic algorithm; the accepted elements in the annealing algorithm can
undergo selection, mutation, and crossover or other new operations listed in
Michalewicz [61].

The correspondence between the genetic algorithm and UMPP is summarized
below:

Genetic Algorithm UMPP
Generation Iteration of the multiset
String Elements
Crossover, Mutation Interaction
Selection Deterministic, Probabilistic Choice
Evaluation Pattern matching, Evaluation
Fitness Test
Population Fitness Global test of the multiset
Family fitness Local test of sets of varying granularity
History Computational history

5.4 Genetic Programming

Koza’s [42] genetic programming can be ably supported and implemented with
the very general multiset data structure by a proper choice of the features
described in the Introduction, namely, the choice initial object spaces, set of reac-
tion rules and their probabilities, the self-activation of the rules, the control strat-
egy, and the termination condition for evaluating the fitness of elements.

5.5. Evolutionary Optimization

In nature, highly specialized complex structures emerge when their most inef-
ficient elements are selectively driven to extinction. Evolution progresses by
selecting against the few most poorly adapted species, rather than by expressly
breeding those species best adapted to the environment. The experimental
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approach by Boettcher and Percus [10] uses the extremal optimization (EO)
processes in which the least fit variables are progressively eliminated [35]. The EO
process uses a different strategy in comparison to simulated annealing. In simu-
lated annealing, the system is forced to equilibrium dynamics by accepting or
rejecting local changes. EO, however, takes the system to a far-from-equilibrium
position, and persistent selection against the worst fitness (i.e., selective extinction
or death) leads to a near-optimal solution. Also, EO differs from the genetic algo-
rithm (GA); whereas GA keeps track of entire gene pools of states from which to
select and breed an improved generation of solutions, EO operates only with local
updates on a single copy of the system, with improvements achieved instead by
elimination of the bad. EO also differs from the greedy strategy, which aims at
improving the solution at each step and as a result falls into a local optimum. EO,
however, can fluctuate between good and bad solutions and can enable us to cross
barriers and approach new regions in configuration space. Note that EO can be
simulated using UMPP.

5.6 Oscillatory Chemical Reactions

We mentioned in Section 3 that the rule processing does not terminate if and
only if rules provide new conditions to fire indefinitely—that is, actions of a rule
Ri create the right conditions for another rule Rj to fire. This leads to circularity
in definition or a deadlock. Usually in computer science we do not want this sit-
uation to happen, as it leads to a wasteful consumption of resources and insta-
bility. However, such a cyclic system occurs commonly in biology and seems to
form the basis of all living systems. For example, the energy-rich molecule adeno-
sine triphosphate (ATP) is produced through a succession of reactions in the gly-
colytic (sugar-splitting) cycle that involves ATP at the start. To produce ATP, we
need ATP. These reactions correspond to catalytic reactions that arise in non-
equilibrium systems, where a set of reactants produce a set of products that react
with some of the reactants and continue reacting indefinitely as an oscillatory
reaction. These reactions, for example, can be of the form in which one of the ini-
tial reactants A and another reactant X produce Y, and Y produces Z, and Z pro-
duces X. Such reactions have rates that are determined by the concentration of
the reactants and the products. Such oscillatory systems are called nonequilibrium
systems or the Brusselator model [76, 86, 87] and can be realized using UMPP.

The Brusselator model consists of the four production rules:

(1) A → X; (2) BX → YD; (3) XXY → XXX; (4) X → E

Thus this model is a multiset M = {A, B, X, Y, E} and a set of reaction rules
R defined above among the elements. Note that an element can undergo self-
mutation on its own (autolysis) or due to interaction with the environment, e.g.,
in the rules for

A → X or X → E.

We can also incorporate the rate of reaction within each rule, which can be
either deterministic or probabilistic. By varying the reaction rates or rates of
application of rules to the system, the number of elements X and Y can diverge,
become unstable, oscillate, or converge.
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For example, a simple simulation shows that the relative frequencies of appli-
cation of rule (1) and rule (2) can produce varying kinds of effects in the popula-
tion (numbers) of X and Y.

5.7 Swarm and Ant Colony Paradigm

A swarm (consisting of birds, ants, cellular automata) is a population of inter-
acting elements that is able to optimize some global objective through coopera-
tive search of space. Interactions that are relatively local are often emphasized
[39, 11, 24, 60, 56]. There is a general stochastic tendency in a swarm for individ-
uals to move toward a center of mass in the population on critical dimensions,
resulting in convergence to an optimum. In real number space, the parameters of
a function space can be conceptualized as a point. Here, individual elements in
the multiset are points in space, and change over time is represented as move-
ment of points, representing particles with velocities, and the system dynamics is
formulated in UMPP using the following rules:
1. Stepping rule. The state of each individual element is updated in many dimen-

sions, in parallel, so that the new state reflects each element’s previous best
success, e.g., the position and momentum (velocity) of each particle.

2. Landscaping rule. Each element is assigned a new best value of its state that
depends on its past best value and a suitable function of the best values of its
interacting neighbors, with a suitably defined neighborhood topology and
geometry.

Remark: The above two rules are similar to the strength and support of rules
used in BBS in subsection 5.2 above. The first rule reflects the betterment of the
individual, while the second rule reflects the betterment of the collection of
the individuals in the neighborhood as a whole by evaluating the relevance
of each individual and providing support for its activity.

All elements in the multiset or selected chunks are updated using rules (1) and
(2). These two rules permit us to model Markovian random walks, which are
independent of the past history of the walk and non-Markovian random walks,
which are dependent upon past history—such as self-avoiding, self-repelling,
and active random-walker models. This can result in a swarm (a self-organizing
system) whose global nonlinear dynamics emerges from local rules due to sto-
chasticity or chaoticity introduced by the parameter variation. In nonlinear
dynamics, the beautiful property of superposition (namely, the linear combina-
tions of solutions are also solutions and such solutions form a linear vector
space) is lost. As a result, there is no general solution. Also, analytic solutions are
rare and nonexistent; solutions may exhibit singularities not present in the equa-
tions of motion, and these may be sensitive to initial conditions. Further, inter-
esting new properties may show up: low-dimensional attractors, bifurcations, and
chaos. Accordingly, various kinds of attractors (as described in Section 4.2) can
arise that result in fractal dimensions, presenting a swarmlike, flocklike appear-
ances depending upon the Jacobian of the mapping [57]. Thus, in nonlinear
dynamics, integration (solving differential equations) and finding attractors are
the key issues.
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5.8 Conrad’s Lock–Key Paradigm

Conrad and Zauner [20, 21, 22, 95] suggest the lock–key paradigm as the basis
for molecular computing. This paradigm arises from the notions of complemen-
tarity and the union of opposites that pervade the entire science and natural phi-
losophy. The lock–key paradigm is based on the recognition of an object
(molecule) through complementary shape matching. This assumes the existence
of a suitably defined “complement” among pairs of objects. Such a complement
can be defined for molecular structures at three levels [16]:
1. Primary level. Here we refer to purely syntactic attributes, as in the

Watson–Crick complement of a sequence (got by interchanging purines and
pyrimidines: A (Adenine) for T (Thymine) and conversely, and G (Guanine)
for C (Cytosine) and conversely; or

2. Secondary level. Here we refer to the structure that describes local internal
arrangements (alpha helices and beta sheets); or

3. Tertiary level. Here we deal with the 3-D configuration of the structure,
namely, the geometric and topological features that are complementary.
To simulate the lock–key paradigm at the above three levels, we need to have a

database of elements with complementary attributes, much as in a relational data-
base. However (unlike in a database), here the query and retrieval take place through
molecular reaction when a pair matches (at the primary, secondary, or tertiary level
according to a specified rule), followed by the required actions (e.g., chemoreceptors
for gustation and olfaction). The rule system can be explicit as in a production sys-
tem or can be implicit as in a dynamical system, where energy minimization brings
the required elements into physical contact to self-assemble and generate the
required actions. Thus the complementarity paradigm is applicable to both the com-
putational and dynamical systems. It is also useful in synthetic biology [89, 48].

5.9 Membrane and Immunocomputing

The basic datastructure used in membrane [74] and biomolecular immuno-
computing [33] are multisets with a priority relation among rules, and the rules
are applied in a conditional manner. UMPP provides all these features.

5.10 Quantum Field Theoretical Computations

In the “occupation number formalism” used in Quantum Field theoretical
computation [75], states are characterized by a specification of how many parti-
cles there are in each of a complete set of single-particle states [51]. The occupa-
tion number notation is a multiset datastructure or a bag that has repetitive
elements in a set [70]. The repeated elements correspond to indistinguishable
objects in the same state. For example, the shell notation for atoms:

(1s)2, (2s)2 (2p)1 meaning that two electrons are in state 1s, two are in state 2s,
and one is in the state 2p. This can be written in the multiset notation as
{1s.2,2s.2,2p.1}.

Thus, the occupation number formalism in quantum physical computations
can be implemented in UMPP. Also, UMPP can simulate the evolution of states
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of quantum systems with arbitrarily many particles described by vectors in the
Fock space by appropriate choice of rules and actions that satisfy the desired
invariant properties.

Quasi-particles are entities in quantum field theory. These consist of a main
particle surrounded by a cloud of associated particles that are in certain definite
relationship to the main particle. Thus a quasi-particle provides for a collective
operation, and hence it simplifies the analysis of the evolution of a system
through its propagation. This is the main reason for the use of quasi-particles in
physics, as well as in the mutiset parallel computational paradigm. Thus quasi
particles behave like user-defined objects that encapsulate data and procedures
that can be mobile, e.g., agents in distributed systems.

6 RELATIONAL DATABASE MODEL 
AND LOCK–KEY PARADIGM

The lock–key paradigm is closely related to rule-based programming and the
relational database model. The relational database model consists of one or more
relations, each expressed as a set of tuples, often expressed as a table. Each row of
this table represents one of the tuples, and each column represents one of the
component positions of all the tuples. The tuples are also called attributes.

The following properties [41] of relational database programming make it suit-
able for biosystems:
1. Entire relations are accepted as inputs, and conceptually complete relations

are delivered as results.
2. The contents of relations change as a function of time.
3. The relations are always finite, unlike in ordinary computing, where we deal

with infinite relations.
4. Individual elements in tuples are always simple ground constants with no vari-

ables or complex structures.
Among the many operators of relational algebra, the most important one,

which we need for computation with molecular biosystems, is a variant of the join
operation. The join operation accepts two relations and joins them along the
columns if the attribute names and domains are common to both. Thus it builds
up relationships among the relations. However, we still have ground constants as
elements of tuples, limiting the expressive power of the relational algebra to that
of the first-order logic. When the join condition involves only comparing equal-
ity, it is called equijoin. Thus when equijoin is performed, we will have one or more
pairs of attributes with identical values. In order to remove the superfluous ele-
ments, a new operation called natural join is used in relational databases. It is basi-
cally an equijoin operation followed by the removal of superfluous elements.

In the lock–key or complementarity paradigm, we indeed need a modification
of natural join in which the attributes are not equal but are complementary: after
the operation the result is a single tuple. We call this new operation conjoin to
indicate that two objects are united into one, after the natural join of their com-
plementary attributes. The conjoin of two relations R and S, denoted by R<>S,
is formed by taking each tuple r from R and each tuple s from S and comparing
them. If the component of r for Ai equals the complement of the component of
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s for Bj, then we form one tuple from r and s; otherwise, no tuple is formed. This
requires a lock–key matching of attribute values that are mutually complemen-
tary. While forming the tuple from r and s, we take the components of r followed
by the components of s, but indicating the match. Note that the conjoin opera-
tion is no more expensive than the natural join, since we look for complementary
features in each defined attribute. Using conjoin, we can realize the three types of
complementary paradigms—primary, secondary or tertiary—with well-defined
attributes. Note that the conjoin operation need not necessarily result in a unique
tuple, since matching may not be unique.

6.1 Algorithm Conjoin

Consider conjoining relations R with attributes {A,B} and relation S with
attributes {B*,C}, where B* is a suitably defined complement of B. The algorithm
for conjoin, based on a nested “for” loop, is as follows:

for each tuple r in R do
for each tuple s in S do

if r and s are complements on their B and B* attributes
then

conjoin the tuple matching r and s on attributes A, B, B*, and C
The above algorithm would take O(rs) time, since we need to pair all the

tuples.

6.2 Conjoin and Self-Assembly

In nature, the conjoin is a fundamental operation carried out by RNA poly-
merase, the enzyme that synthesizes a complementary RNA copy of one or more
genes of a DNA molecule. The RNA serves to direct the synthesis of the proteins
encoded by those genes. The polymerase essentially carries out a “for” loop; in
each cycle, it takes a small molecule (one of the four nucleotide pyrophosphates,
ATP, GTP, CTP, or TTP, whose base is complementary to the base about to be
copied on the DNA strand) from the surrounding solution, forms a covalent
bond between the nucleotide part of the small molecule and the existing uncom-
pleted RNA strand, and releases the pyrophosphate part into the surrounding
solution as a free pyrophosphate molecule (PP). The enzyme then shifts forward
one notch along the DNA in order to copy the next nucleotide and repeats. The
proofreading of DNA replication and repairing damage requires a similar “for”
loop. Conrad [20] proposes a jigsaw puzzle model for self-assembly based on
the lock–key paradigm and the energy minimization criteria. In this model,
energy plays an important role in directing the computation, unlike the models
(such as Turing machine) used in computer science.

7 MOLECULAR DNA COMPUTATION

The DNA molecular computation scheme introduced by Adelman [2] [16, 58,
77, 54, 28] models the actual instance of a problem rather than providing a uni-
versal approach to computation. It provides for a fine-grained parallelism based
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on the free-energy minimization (annealing) associated with the self-assembly
properties of DNA sequences. That is, the physical structure of the machine is
specific so as to cater to the need for solving a single problem instance [96].

The actual computation proceeds in three phases:
Phase 1. Encoding phase: Here the input is encoded into a multiset whose ele-

ments are DNA sequences and their Watson–Crick complements (WCC) so
that the required conditions R for the chemical reactions A driven by chemi-
cal free-energy minimisation are feasible.

Phase 2. Action (chemical reaction) phase: The encoded molecules chemically
react with each other autonomously to form supermolecular complexes (new
elements of the multiset) through the association of WCC sequences. Each of
the complexes denotes a partial solution to the problem.

Phase 3. Solution selection and termination: The complexes are selected and
tested for the existence of the solution or as to whether they satisfy the termi-
nation condition of the solution expected.
The above three phases are the basic steps in UMPP. Note that the updating

action A (Phase 2) in the conditional in G(R,A)(M), namely: if there exists ele-
ments a,b,c, . . , . . . belonging to a multiset M such that R(a,b,c,. . .), then

G(R,A)((M−{a,b,c, . . }) + A(a,b,c, . . .)), else M

is implemented autonomously by the free-energy minimization. However,
Phase 3 requires a test for the solution through external physicochemical means,
such as polymerase reaction, gel electrophoresis, and hybridization probing.

7.1 Molecular multiset data structure

Adelman’s approach uses the biological–chemical reaction in DNA molecules
to solve the Hamilton Path Problem (HPP)–[2, 73]: Given a graph G, is there a
path through the graph that visits every node in the graph exactly once? This is a
proverbially hard problem for which no polynomial time solutions are as yet
known.

The data structure chosen is a chemical graph whose vertices are uniquely
labeled by a short even-member sequence of DNA consisting of nucleotides A,
G, C, or T. This sequence is called oligonuleotide and is a single-stranded DNA
molecule. Each edge is an ordered pair of nodes (i,j). Such an edge is denoted
by the oligonuleotide that combines the righthalf of the DNA sequence (R(i))
representing the vertex i and the left -half of the sequence (L(j)) representing the
vertex j.

To join any two edges (i,j) and (j,k), a chemical reaction known as ligation is
used. This consists in tying two edges together by using a WCC oligonuleotide of
j (in which A is replaced by T and conversely, and C is replaced by G and con-
versely). Thus the fusing of two edges denoted by the ordered triplet (i,j,k) is rep-
resented by the fused double-stranded DNA sequence R(i),L(j),R(j), L(k), in
which the middle part L(j) R(j) is ligated to WCC (j) = L(j*) R(j*). This double-
stranded sequence is denoted by

{R(i), (L(j) & L(j*)), (R(j) & R(j*)), L(k)}, where “&” denotes an elementwise
nucleotide fusing operation that can be looked upon as conjoin operation earlier
described in a relational database context .
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Adeleman’s algorithm consists of three basic tasks:
1. Using molecules to represent elements of multiset
2. Self-assembly of elements of the multiset satisfying the reaction condition
3. Checking for termination conditions

The above tasks are implemented by Adelman to find the Hamilton path using
the following four steps:
1. Synthesize a random path in the graph
2. Retain only those paths that satisfy the condition specified for the beginning

and ending vertices of the path.
3. Keep only those paths that contain exactly n different vertices
4. Check for termination by looking for only those paths that go through all the

vertices at least once.

7.2 Molecular Chemical Transactions

Adelman uses different types of chemical and physico–chemical operations
(these may be called genetic engineering operations): copy, paste, amplification,
extraction, identification zero-test, sum, for which we use the computer science
term transaction meaning that these need to have four important
properties called ACID properties [49, 95]: Atomicity (indivisibility and either
all or no actions carried out), Consistency (before and after the execution of a
transaction), Isolation (no interference among the actions), and Durability (no
failure).
1. Copy/ replicate. This synthesizes a large number of copies of any single-

stranded DNA. That is, it creates a large number of copies of the elements of
a multiset M.

2. Paste or create double strands. This produces a combination of elements of
multisets, resulting in a multiset containing new elements that can be ordered
sequences containing WCC fused subsequences. Such a fusion creates double
strands. This set of elements can be represented by a parallel elementwise
operation on subsequences, denoted by “&”. This operation is chemically
achieved through self-assembly by free-energy minimization.

3. Selective amplify. This operation is different from “copy” in that it is a higher-
level or macro-copy operation that replicates any selected element (single- or
double-stranded DNA) whose attributes are specified. This operation is exter-
nally achieved either through cloning or through the more efficient poly-
merase reaction (PCR). This is analogous to the selective reproduction
strategy widely used in the genetic algorithms.

4. Extraction. This operation extracts sequences of specified lengths. It is carried
out using the physicochemical operation known as gel electrophoresis. This
operation is similar to the message pattern matching used in classifier and pro-
duction systems. Also, it is similar to the selection or projection operation used
in the theory of recursive functions to select the k elements among n ordered
elements.

5. Identification. This operation selects those sequences of specified lengths that
contain specified subsequences. Using hybridization probes of subsequences
that are complementary to the selected subsequence, individual vertices are
identified.
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6. Zero test. this operation determines whether or not there is a DNA strand.
This is a fundamental operation required in the recursive functions.

7. Sum or merge. Given two multisets M and N, the sum denoted by M+N is the
multiset where each element has a multiplicity that is a sum of its multiplicity
in M and N.
In DNA computing, knowledge is represented by omission of negative facts.

Propositions that are not given are assumed to be false; that is, we use the Closed
world assumption (CWA), in which only positive facts are stated. As mentioned
earlier, CWA is valid only for Horn clauses; that is, if there are non-Horn clauses,
we cannot make the closed-world assumption [31]. For nonequilibrium systems
interacting with their surroundings through an entropy flow, this assumption is
invalid [76]. Most such systems use feedback mechanisms involving catalytic reac-
tions, as, for example, production of ATP (adenosine triphosphate) from ATP.
Such reactions arise from far-from-equilibrium conditions. These lead to the
necessity for the Open-world hypothesis, which leads to newer phenomena such as
self-organization and active walks (swarm intelligence) [11, 23, 39, 56].

Finally, we observe that we can combine neural and molecular computing.
The genetic code may be looked upon as a string of spin variables undergoing
dynamical development in the course of reproduction. Analogous to Hopfield’s
spin-glass approach for neural nets, Anderson and others have formulated a
model for the evolution of organisms using a fitness landscape. Kuhn’s model
uses the concept of RNA replication and autocatalysis driven by temperature
cycling [38]. A population of organisms (strings of + or − spins S(i)) is encour-
aged to conjugate randomly in pairs during a cooling cycle, and if two shorter
strings (RNA polymers) are conjugated end to end on a third longer one, they
are allowed to bond to each other, giving a long single RNA polymer. The
strings are then subjected to a heating cycle, where they separate and also
encounter a fitness function that can be identified by a spin-glass Hamiltonian
and that serves as a criterion for survival into the next conjugation. The fitness
landscape is a spin-glass function. The use of autocatalysis seems to extend the
power of first-order logic to overcome the limitations of the closed-world
assumption.

8 DISCRETE ADAPTIVE STOCHASTIC
OPTIMIZATION

Searching and exploration form the basis for many types of data analysis,
adaptive learning, and pattern classification problems. Adaptive systems need to
use some form of search operation to explore a feature space that describes all
possible configurations of the system. Usually we are interested in “optimal” or
“near optimal” configurations defined with respect to a specific problem
domain. Such problem domains are usually high dimensional with no single
optimal solution and are multimodal, i.e., they can have many local and global
optimal solutions.

In general, finding the global maximum and minimum of multimodal prob-
lems with high dimensions and conflicting constraints turnsout to be exponential
in complexity, and usually the problems are NP-complete or even NP-hard [46].
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Therefore, conventional search techniques are inefficient. We need to use a prob-
abilistic approach that is adaptable to the particular problem domain so that the
search space can be sampled to yield near-optimal solutions with a high proba-
bility. Any such adaptive (learning) search methods are characterized by taking
the following aspects into account:
1. How are solutions (parameters, hypotheses) represented? What data structures

are used?
2. What search operators are used in moving from one configuration to the next?

How is the adaptive step defined?
3. What type of search is conducted by applying the search operators iteratively?

How is the search space explored and exploited?
4. Is the adaptive system supervised (interactive) or unsupervised (noninterac-

tive)?
5. How can problem-specific knowledge be incorporated into the adaptive learn-

ing algorithm?

8.1 Example

Consider the following discrete stochastic optimization problem. Let
Θ = {1,2,. . . ,S} denote a finite set and consider the following problem: Compute

q* = minq∈Θ E{Xn(q)},

where E denotes mathematical expectation and, for any fixed q ∈ Θ, {Xn (q)}
denotes a sequence of independent and identically distributed (iid) random vari-
ables that can be generated for any choice of q∈Θ. If the density function of Xn
(q) is not known, then it is not possible to analytically evaluate the above expec-
tation, and hence q*. In such a case, one needs to resort to simulation-based sto-
chastic approximation to compute the optimal solution q*.

A brute-force approach of computing the optimal solution to the problem
involves exhaustive enumeration over all Θ and proceeds as follows: For each q ∈
Θ, generate a large number N of random samples X1 (q), X2 (q),. . . XN(q). Then
compute an estimate of E{Xn (q)} using the sample average (arithmetic mean)

GN (q) = (X1 (q) + X2(q) + . . . + X N(q)/N.

By Kolmogorov’s strong law of large numbers (which is one of the most fun-
damental consequences of the ergodic theorem for iid processes), GN (q) →
E{Xn(q)} with probability one as N → ∞. This and the finiteness of Θ imply that

arg maxq ∈Θ GN (q) → arg maxq∈ Θ E{Xn (q)} as N → ∞.

However, the above brute-force procedure is extremely inefficient—evaluating
GN (q) at values q ∈ Θ with q ≠ q* is wasted effort, since it contributes nothing
towards evaluating GN (q*). What is required is an intelligent dynamic scheduling
(search) scheme that decides at each time instant which value of q to evaluate
next, given the current estimates, in order to converge to the maximum q* with
minimum effort.

There are several different classes of methods that can be used to solve the
above discrete stochastic optimization problem [3, 52]. When the feasible set Θ is
small (usually 2 to 20 elements), statistical ranking and selection methods and
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multiple comparison methods can be used to locate the optimal solution.
However, for large Θ, the computational complexity of these methods becomes
prohibitive. The above problem can also be viewed as a multiarmed bandit prob-
lem, which is a special kind of infinite-horizon Markov decision process with an
“indexable” optimal policy. However, as mentioned in Andradottir [4], multi-
armed bandit solutions and learning automata procedures often tend to be con-
servative because they are designed to spend as much time as possible at the
optimum solution.

8.2 Stochastic Approximation Algorithm

In recent years a number of discrete stochastic approximation algorithms have
been proposed. Several of these algorithms [3], including simulated annealing-type
procedures and stochastic ruler, fall into the category of random search. Here we
present a globally convergent discrete stochastic approximation algorithm based
on the random search procedures in Andradottir [3]. The basic idea is to generate
a homogeneous Markov chain, taking values in Θ that spend more time at the
global optimum than at any other element of Θ. This generation consists of the
following UMPP steps:

Step 0: Initialization. At time n=0, select starting point q0 ∈ Θ randomly with
uniform probability. Set D0 = eq0, where ei denotes the S-dimensional unit vector
with 1 in the ith position and zeros elsewhere. Set the initial solution estimate

x0 0=it .

Step 1: Sampling. At time n, sample un ∈ Θ − {qn} with uniform distribution.

Step 2: Evaluation and acceptance.
Evaluate the random sample costs Xn (qn) and Xn (un).
If Xn (qn) > Xn (un), then set qn + 1 = qn; else set qn + 1 = un.

Step 3: Update duration time vector at time n+1 as Dn+1 = Dn + eq n

Step 4: Update estimate of maximum at time n as nit = arg maxi ∈ {1,2,. . ., S} Dn+1 (i)
Set n → n + 1 and go to Step 1.
Then, as proved in Andradottir [3], under suitable conditions (e.g., if the den-

sity function with respect to which the expected value is defined above is sym-
metric), the estimate nit generated by the above random search stochastic
approximation algorithm converges with probability one to the global optimum
q*. It is also shown in Andradottir [3] that the algorithm is attracted to the global
optimum, i.e., the algorithm spends more time at the global optimum than at any
other candidate value. That is, for sufficiently large n, the duration time vector Dn
has its maximum element at q*.

8.3 Applications

The above discrete stochastic approximation algorithm has several applications.
For example, in Krishnamurthy and Chung (2003), it is used to learn the behavior
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of an ion channel (large protein molecule) in a nerve cell membrane to estimate the
Nernst potential efficiently. In Krishnamurthy, Wang and Yin [53], a recursive ver-
sion of the algorithm is used to optimize the spreading code of a CDMA spread
spectrum transmitter over a fading wireless channel. More recently, in Yin,
Krishnamurthy and Ion [93], an adaptive version of the above algorithm is pre-
sented that can track a slowly time-varying global optimum. For a weak conver-
gence analysis and complexity aspects of this adaptive algorithm, [93, 52].

9 CONCLUSION

This chapter presents a unified rule-based multiset programming paradigm
(UMPP) as a general model and unifying theme for conventional and soft-com-
puting. The introduction of probabilistic choices in a multiset chemical reaction
model provides a soft-computational model to study evolutionary biological,
chemical, and physical systems based on intermittent feedback from the environ-
ment. Unlike conventional computation, where exactness is our goal, in soft com-
putation, we allow the possibility of error and randomness to model features that
are inherent in problems arising in nature. The paradigm described here provides
a new programming environment based on a distributed architecture for classifier,
bucket brigade, genetic, and molecular algorithms as well as ant-algorithms,
swarm intelligence, membrane and bio-immunology computing, multiple-particle
filtering, adaptive stochastic optimization and self-organized criticality. This par-
adigm is well suited for cluster and grid computing.
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