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NOISE IN FOREIGN EXCHANGE MARKETS
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Israel

“Noise makes financial markets possible, but also makes them
imperfect.”

—Fischer Black

This chapter employs a new technique to compare the level of noise in finan-
cial markets. The data that are analyzed consist of high-frequency time series of
three foreign exchange markets. It is shown that noise in the Dollar–Deutschmark
series is least intense, that the Yen–Dollar market has about 10 percent more
noise, and that there is about 70 percent more noise in the Deutschmark–Yen time
series. On average, the noise level is higher in the late summer and fall than in the
winter. The differentials may be related to the amount of news and the timing of
its arrival.

1 INTRODUCTION

Noise, omnipresent in realistic models of nature, is generally considered a nui-
sance because it keeps researchers from completely explaining natural phenom-
ena and prevents practitioners from making exact predictions. In economics this
is more true than in the exact sciences, where conditions can be controlled and
experiments can be shielded from outside influences. On the other hand, in eco-
nomic and in financial markets, noise may be one of the reasons that profits can
be made. [2]; [21].

Usually the variance that remains after the effects of all variables of the model
have been taken into account is defined as noise. This remainder is considered to
be due to variables that are unknown, or that are disregarded by the model: exter-
nal shocks, random fluctuations, or the arrival of new information. Market



behavior is often described and studied by using autoregressive models with
noise,1

xt = f (xt−1, xt −2, ..., x t−n) + et. (1)

When confronted with a time-series of observed financial or economic data,
the usual procedure is to specify a model, f(xt−1, xt−2, ..., xt−n), and then to define
noise as the unexplained remainder. Hence, in a fully specified autoregressive
time-series, noise is due to factors other than xt−j. While there exist relatively sim-
ple methods to estimate and fit linear models to time series, the problem of model
specification becomes especially difficult when the data-generating process may
be nonlinear.

Recently a new method has been proposed that reverses the process [25]
instead of first specifying a model and then defining noise as the remaining
variance, the technique permits the measurement of noise even before a linear
or nonlinear autoregressive model is specified. All that is required in this case
is that the noise’s distribution be known. By adapting a method borrowed from
theoretical physics—specifically, a well-known algorithm for the determination
of the dimension of a chaotic system [14]—the size of the noise can be com-
puted. But we can go one step further. When not only the structure of the
model is unknown but, also one has no knowledge about the noise’s distribu-
tion, the levels of noise in different time series can still be compared, and their
relative intensities can be inferred. The only prerequisite in this case is that the
noises have the same distributions, and this is the only assumption made in this
chapter.

One drawback is that massive amounts of data are needed. Therefore, this
chapter applies the methodology to high-frequency time series from foreign
exchange markets (containing between several hundred thousand and 1.5 million
data points). The intensity of the noise levels in three markets is compared, and
then possible differences between months of the year and days of the week are
investigated. As will be shown, evidence exists that the noise level is higher in the
late summer and fall than in the winter. No significant differences were found for
the days of the week.

This chapter provides a first attempt at comparing the amount of noise in
financial time series. It does not try to explain the reasons why the level of noise
in one series is higher or lower than in another. Further research about the inten-
sity of noise, its timing, and its causes (e.g., arrival of new information, external
shocks) is warranted.

The next section explains the difference between two types of noise and dis-
cusses the related problem of the tick size in foreign exchange quotes. Section 3
gives a brief description of the method used to measure noise. This method is
related to techniques used to search for nonlinear dynamics and “strange attrac-
tors” that may underlie financial and economic time-series.2 Section 4 examines
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1This can be justified by Takens’ embedding theorem [27], which states that the lagged values of
one variable suffice to characterize the dynamics of a multivariable system.
2Some studies that attempted to discover nonlinearities in the foreign exchange rates include
Hsieh [16], Meese and Rose [18], Guillaume [15], Evertsz [11], Mizrach [19], Cecen and Erkal
[6], and Brooks [5]. On the role of “chartists,” who search for simple patterns in one 



the database, and Section 5 presents the results. Section 6 concludes with a brief
summary of findings and suggestions for further research.

2 MEASUREMENT NOISE VERSUS DYNAMIC
NOISE, FINITE TICK SIZES

In experimental science, say, in physics or chemistry, one distinguishes between
two types of noise: dynamic noise and measurement noise [20]. The first, dynamic
noise δ, derives from outside influences that enter the model,

xt = f (xt −1 + dt ), (2)

while the latter, measurement noise µ, is due to the finite resolution of the
measuring apparatus or to roundoff errors [23],
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Some attempts have been made to distinguish between the two (e.g., [24]). In
economics and finance, it is generally believed that the latter noise presents few
problems, since the resolution of the measurements is small relative to the numer-
ical values involved. The cost of high-priced goods is generally given to the near-
est dollar; for low-priced goods, the dollar is divided into cents. Stock prices are
quoted in eighths of dollars; national accounts data involving trillion dollar fig-
ures are often given to the nearest million. Exchange-rate data are also quite accu-
rate: the Dollar–Deutschmark exchange rate, for example, is given to four digits
after the comma. Hence, with a DM/$ rate of, say, 1.4111, the precision is on the
order of 0.007 percent.

Even though price quotes are generally quite precise, they are nevertheless
finite. Indeed, the number of possible prices for a good or a commodity must be
limited, because if there were an infinite number of pricing possibilities – say, all
rational numbers between some upper and lower limits – buyers and sellers would
have great difficulty matching their bids. Hence markets can only exist if there is
a convention to meet at a finite number of prices. As pointed out above, the cost
of a good is usually determined in dollars and cents. If this resolution is too
coarse, market participants agree on ticks of, say, tenths or hundreths of a cent.
For high-priced goods, on the other hand, dollars and cents may provide too
many pricing possibilities for the market, and a convention evolves to trade only
at prices rounded to the next five, ten, or hundred units of the currency. The
shares of the Swiss newspaper “Neue Zürcher Zeitung,” for example, priced at
around $40,000, are traded at intervals of 250 Francs (about $180) by market
makers in Switzerland.

The size of the tick, seemingly minute when compared to the price of the com-
modity, does present problems for research, however. In Figure 22.1, we create a
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dimension, see Allen and Taylor [1]. Engle et al. [10] and Goodhart [13], for example, deal with
news in the foreign exchange market. For a survey of the recent literature on exchange rate eco-
nomics, see Taylor [28].



large sample of two-dimensional vectors from the $-DM data3 and plot the xt+1-
values against their xt-values. (In technical parlance, we embed the time series into
two-dimensional space.)4 The pattern that emerges, the so-called “compass rose,”
was discovered by Crack and Ledoit [7] and further analyzed by Szpiro [26]. As
these authors showed, the pattern arises because of the discreteness of the quotes,
i.e., the finite resolution of the prices. Finite tick-sizes may lead particular tests to
indicate the existence of structure when, in fact, there is none. The problem is
compounded by the fact that for such tests – and the method to measure noise
uses a variant of such a test – one needs to “embed” the time series in high dimen-
sions. (See Section 3.) As is well known, the lengths of objects generally expand
when they are projected upwards into higher dimensions. In fact, the distance
between two points grows on average with √ d, where d is the dimension. Hence,
for d=50, the effect of measurement errors increases about sevenfold. In conclu-
sion, it may safely be assumed that noise in financial markets consists of both
measurement and dynamic noise.
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Figure 22.1. The Compass Rose (250,000 points of the $-DM data) (x-axis: xt, y-axis: xt+1)

3Of the 1,472,241 observations, approximately every sixth vector was used, to give a sample-size
of 250,000.
4The somewhat visible predominance of points in the North–West and South–East directions is
due to the negative correlation between consecutive observations in high-frequency data. [13, 3].



3 CHAOS, DIMENSION, AND MEASUREMENT 
OF NOISE

The proposed technique [25] borrows from mathematical physics. Specifically,
an algorithm is employed that was suggested by Grassberger and Procaccia [14]
to measure the dimension of a chaotic system by embedding it in increasingly high
dimensions.5 To illustrate the technique, let us assume a very low-dimensional sys-
tem and dynamical noise that is uniformly distributed in [−M,+M]. We embed the
data into two-dimensional space, take a reference point, and count all neighbors
that are contained within a circle of radius r. Let us call this number C2(r). Now
we move to three-dimensional space. When “unfolding” the attractor, we realize
that in three-dimensional space the nearest neighbors in the circle are actually
downward projections of points that are contained in a cylinder above the circle.
The as-yet unknown height M of this cylinder corresponds to the noise level. Let
us count the neighbors that are contained in a ball around the reference point and
call this number C3(r). Since the volume of the cylinder is 2Mpr2, and the volume
of the ball is 4/3pr3, the ratio of the number of points in two-dimensional space
to those in three-dimensional space gives an indication as to the noise level.
In this case, we have
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Computing the ratio, we get
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We now run a homogenous regression between the ratio h2,3(r) and the
radius r:

h2,3 (r) = gr. (6)

From the last two equations it follows that the level of noise, M, can be com-
puted as

/ .M 2 3
= c (7)

By adding and subtracting 1.96 standard errors of the γ-estimates, an approx-
imate 95 percent confidence interval can be determined for the estimated noise
level. For reasons that will not be discussed here,6 the regressions are actually run
with both r and r2 as independent variables, and of course the technique must be
applied in dimensions much higher than just two or three. As was pointed out
above, if the noise distribution is unknown, the numerical results per se have no
meaning, but nevertheless do provide an index of the amount of noise present.
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5The algorithm is also used in a test that was devised to search for nonlinearities and chaos in
economic time series [4]. There have been numerous attempts to determine whether a chaotic
system underlies the data-generating process of financial or economic time series. [22, 12, 16]
6See Szpiro [25] for a more detailed description of the method.



Hence, the method can be used to compare relative intensities of noise in differ-
ent time series, even if the noise’s distribution is unknown.

When plotting the results of the computations against the embedding dimen-
sion, we will see high levels of noise at first that decrease as dimension increases,
and that finally converge to a constant level. The reason for this phenomenon is
that in a low-embedding dimension, several “strings” of the system are superim-
posed on each other, but the system “unfolds” when one moves to higher dimen-
sions [29]. In the present study of the foreign exchange markets, we run the
regressions with twenty r-values – for embedding dimensions 1 to 50 – starting
with the smallest sphere that contains at least 105 data points.

4 DATA

The data for this study consist of the foreign exchange rates in three markets
for the time period October 1st, 1992, to September 30th, 1993: the
Dollar–German Mark ($–DM), the German Mark–Yen (DM–Y), and the
Yen–Dollar (Y–$) markets. The data do not consist of actual trades, but of bid
and ask quotes, the means of which will serve as proxies for actual trades. The
quotes were collected by Olsen & Associates, who made it available to the aca-
demic community.7 The log-differences of the mean between the bid and the ask
price were calculated.8 The series for the $–DM market consists of 1,472,241
entries (mean 0.00992, variance 835.2, and skewness 531.7). The Y–$ series has
570,814 entries (−0.02152, 2594.6, −1324.0), and the DM–Y series has 158,979
entries (−0.17354, 3615.1, −23174.0).

An argument could be made to use only data at specified points in time—say,
at five-minute intervals—or to employ “business time” to filter the data [8]. The
present study uses every observation in the series (i.e., “quote time”), the reason
being that a higher frequency of quotes implies more hectic activity or, in
other words, a speeding up of time. Furthermore, there seems to be no empirical
evidence for intraquote dynamics of any relevance [11].

From the time-series x1, x2, x3, ... we derive k-dimensional vectors 〈x1, x2, ...,
xk〉, 〈x2, x3, ..., xk+1Ò, etc., and compute the Euclidean distance between them, for
dimensions 1 to 50. A total of (n-k)(n-k-1)/2 pairs could be calculated, but we make
do with a sample, albeit a large one. For the $–DM series, the interpair distances of
every vector with every 100th other vector were calculated; in the Y–$, every 15th vec-
tor was used; and in the DM–Y, distances were calculated with 4/5ths of the possible
vectors. This sampling ensured that an equal amount of pairs (approximately 1010)
was used in each market to compute the amount of noise.9 The pairs were grouped
into spheres with radii between 1 and 150. For each embedding dimension, regres-
sions (Eq. 6) were run for twenty consecutive spheres, starting with the smallest one
that contained at least 105 pairs.
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7Olsen & Associates Ltd., Research Institute for Applied Economics, Zürich.
8The results are multiplied by 105 in order to receive numerical values that are more manageable.
9The method is very computer intensive. The calculation of the 10 billion interpair distances in
embedding dimensions 1 to 50, and their grouping into spheres, took more than 200 hours on a
Pentium-133 computer for each of the three series.



5 FINDINGS

In Figure 22.2, the results of the noise measurements for the three markets are
depicted. Let us recall that since we do not know the distribution of the underly-
ing noise, the numerical values only give an indication as to the relative levels of
noise in the three markets, i.e., they represent indexes. As expected, the noise esti-
mates are high in the low embedding dimension, but then gradually decrease as
the embedding dimension increases. We see in the figure that in all three examples
the estimates eventually converge.10 From the evidence we conclude that the
$–DM market has a noise index of 12.2 (95 percent confidence interval: ±0.2), the
Y–$ market a level of 13.5 (±0.1), and the DM–Y market a level of 20.7 (±0.1).
In other words, with the least noisy $–DM market as a baseline, we may conclude
that the Y–$ market has about 10 percent more noise, and that there is about 70
percent more noise in the DM–Y time-series.

For comparison purposes, the identical operations are performed with time
series whose entries have the same distribution as the original series but whose
order is random. The results for the scrambled time series can serve as a bench-
mark. [4] The only difference in the scrambled series is the removal of any possi-
ble structure that existed in the order of the original entries. In Figure 22.3, the
estimated noise levels for the scrambled series are presented. Even for low embed-
ding dimensions, these are much higher than in the original series. For the $–DM
market, the level is about 35 (±0.3), and for the other two markets it lies above 45
(±0.5 and ±0.4). Hence, by scrambling the entries, two to three times as much
noise was introduced into the series as there was in the original data.
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Figure 22.2. Levels of noise in three FX markets

10Convergence occurs above an embedding dimension of about 35, which would indicate that
the time series have dimensions of not more than 17 [29]. However, such dimension estimates
may be questioned. [9].



Let us now turn to more narrow data and compute the noise level within each
month of the year, for each of the three markets. Figure 22.4 plots the develop-
ment of the measured levels of noise against the embedding dimension. Again,
the estimates converge,11 and in Figure 22.5 a summary of the results is presented
for embedding dimension 20. On average, the noise level for the months
November to January is lower than for the period July to October. A tentative
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Figure 22.3. Levels of noise in scrambled time series
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Figure 22.4. Noise level in intramonth data

11For some months the calculations were not made for all embedding dimensions up to 50, since
there was not a sufficient number of spheres that contain a minimum of 105 points. The confi-
dence intervals are again very narrow and won’t be given.



explanation of this phenomenon could be that more information arrives during
the late summer and fall than during the winter.

A comparison between Figures 22.2 and 22.5 shows that the estimates for the
single months lie above the results for the whole years (for embedding dimension
20). It may seem surprising that the noise levels, as measured in the monthly data,
do not average out to the noise level for the year as a whole. The answer to this
puzzle goes to the heart of the nature of noise. The latter is generally defined as
the data’s variance that is not explained by a certain model. With a better model,
unexplained variance decreases, and the data have less noise. In the method used
in this chapter, vectors of the time series are compared with previous vectors, and
similarities (i.e., closeness in the Euclidean norm) are sought. If one time series is
a small subseries of the other, it is more difficult to find similar vectors. On the
other hand, the longer the time series, the better known does the underlying struc-
ture become. Hence noise decreases. The time series of the data for single months
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gives less opportunity to “learn” the structure, and a larger part of the data’s vari-
ance is identified as noise. Incidentally, the reason why an approximately equal
number of pairs is used for all markets in the estimations of the noise level for the
full year was to counteract this effect.

Finally, we turn to intraday data. The noise level for 258 weekdays for the
$–DM data is estimated and depicted in Figure 22.6.12 Visual inspection does not
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Figure 22.5. Noise level in intramonth data (Embedding dimension = 20)
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Figure 22.6. Noise level intraday data (Embedding dimension = 20; Mondays indicated by
rectangles)



reveal any significant pattern, and the average noise levels for the days of the week
do not differ significantly. However, a common thread may nevertheless run
through the days of the week. A plot of the first ten autocorrelations reveals
strong “seasonality” for the fifth lag: r = 0.496 (see Figure 22.7). This suggests
that the noise on a certain day of the week is correlated somehow to the same
weekday’s noise of the previous week. Autocorrelation is especially strong for
Tuesdays and Wednesdays (r = 0.519 and 0.501, respectively). Possible reasons
for this phenomenon may be that external shocks (of unknown origin) occur on
certain weekdays, or that information arrives at specific times during the week.
Further research is warranted.

6 CONCLUSIONS

This chapter employs a new technique to compare the levels of noise present in
different time series. Since the method requires very long series, high-frequency
data from foreign exchange markets are used. It is shown that of the three markets
analyzed, the $–DM market has the least amount of noise, the Y–$ market has
about 10 percent more noise, and there is about 70 percent more noise in the
DM–Y time series. We also see that, on average, there is less noise during the win-
ter than during the late summer and fall. Intraday data show some autocorrela-
tion for the days of the week. The amount of noise may be related to the amount
of news that arrives at certain times during the week, during the months, or in
various markets.

The analysis presented in this chapter is meant to be an attempt at the com-
parative study of noise. It does not provide explanations as to why the level of
noise in one series is higher or lower than in another. Further research about the
intensity of noise and related issues, for example, the arrival and assimilation of
new information, is warranted.
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