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Abstract
Most of the approaches for association rule mining focus on the perform-

ance of the discovery of the frequent itemsets. They are based on the algo-
rithms that require the transformation of data from one representation to
another, and therefore excessively use resources and incur heavy CPU over-
head. This chapter proposes a hybrid algorithm that is resource efficient and
provides better performance. It characterizes the trade-offs among data rep-
resentation, computation, I/O, and heuristics. The proposed algorithm uses an
array-based item storage for the candidate and frequent itemsets. In addition,
we propose a comparison algorithm (CmpApr) that compares candidate item-
sets with a transaction, a filtering algorithm (FilterApr) that reduces the num-
ber of comparison operations required to find frequent itemsets. The hybrid
algorithm (ARM++) integrates filtering methods within the Partition algo-
rithm [7]. Performance analyses from our implementation indicate that
ARM++ has better performance and scales linearly.

1 BACKGROUND

We are living in an information age that is overwhelmed by enormous amount
of data and information. Data mining within the database community, also
known as knowledge discovery by the AI community, is the science of automated
extraction of useful information or hidden patterns from large databases. Data
mining is a new, multidisciplinary field ranging across database technology, sta-
tistics, artificial intelligence, machine learning, etc. It normally processes data that
have already been collected, such as records of all transactions in a bank, and
does not involve the data collection strategy itself.

Data mining is not concerned with a small set of data, as these can be well
handled by classical statistical analysis techniques. Data mining focuses on new



problems that may arise with large data repositories, such as finding a target
within a massive dataset in a short time, finding hidden (i.e. not explicit) rela-
tionships amongst a huge volume of information within data repositories (e.g.,
analysis of emails to detect terrorist threats). Such relationships found through
the use of data mining techniques are called models or patterns. Descriptive mod-
els characterize the general properties of the data in the database, while predictive
models perform inferences on the current data for predictions. One typical finan-
cial application using data mining is the profiling of customer behavior. A bank
keeps transaction records of its customers and can use data mining technology to
cluster customers into levels of high credit risk, medium credit risk, and trust,
which may help them to advertise suitable new products and bank loan approval.

There are many data mining tasks and algorithms. These are often classified
into four components [11]:

● Models (pattern structures): these model the underlying structures in a data-
base.

● Score functions: the role is to decide how well the developed model fits with
the data.

● Optimization and search methods: these relate to the optimization of the score
function and searching over many models and structures.

● Data management strategies: These deal with efficient access and use of data
during the search/optimization.

Data mining systems are categorized as follows [12]:

● Classification according to the types of databases to be mined: object-oriented
databases, object-relational databases, spatial database, temporal databases
and time-series databases, text databases and multimedia databases, heteroge-
neous databases and legacy databases, and the World Wide Web.

● Classification according to the types of knowledge to be mined: characteriza-
tion, discrimination, association, classification, clustering, outlier analysis,
and evolution analysis.

● Classification according to the types of techniques utilized: machine learning,
statistics, pattern recognition, visualization, trees, networks and rules, etc.

● Classification according to the types of applications: finance, telecommunica-
tions, DNA, stock markets, etc.

2 MOTIVATION

This chapter focuses on a specific area of data mining, namely, mining of
association or relationships between data items. The problem of mining associa-
tion rules was introduced in [1] and can be defined as follows. Given a set of trans-
actions, where each transaction is a set of items, an association rule is an
expression of the form X ⇒ Y, where X and Y are sets of items. There are two
measurements of an association rule; confidence and support. The confidence of a

46 Zahir Tari and Wensheng Wu



rule represents the percentage of transactions that contain Y out of those that
contain X. The support of a rule is the percentage of transactions that contain
both X and Y. The problem of mining association rules becomes then a two-step
process [1–3]. The first step consists of finding all sets of items (called itemsets)
that have transaction support above minimum support. The support for an item-
set is the number of transactions that contain the itemset. Itemsets with minimum
support are called frequent itemsets, and otherwise small itemsets. The second
step uses the frequent itemsets to generate the desired rules. For a given frequent
itemset Y = {I1, I2,....,Ik}, k ≥ 2, it generates all rules that use items from the set
{I 1,I2,...,Ik}. The antecedent of each of these rules will be a subset X of Y, and
the consequent will be the itemset Y-X. If the confidence, i.e., the ratio of the sup-
port of Y divided by the support of X, is greater than a confidence factor c, it is
an association rule; otherwise, it is not.

Because the number of candidate itemsets and that of transactions are both
very large, all the frequent itemsets can be found only in an iterative way, where
the itemset with k items is defined as a k-itemset. In this way, iteration means each
frequent k-itemset is generated in an increasing order of k. To obtain better per-
formance, different algorithms and data structures have been designed [1-7] to
reduce the number of iterations, the number of candidate itemsets, the number of
transactions in each iteration, the number of items in each transaction, and the
method of comparison between candidate itemsets and transactions to accelerate
the identification of a candidate itemset in a transaction. In particular, a lot of
work on the efficiency of association rule mining was done in the context of the
following approaches: Apriori [2], AprioriTid [2], and Partition [7]. These
approaches aim to reduce the execution time by applying heuristics and trans-
forming the data into different representations. However, the transformation of
the data from the original form to another will require extra resources and CPU
time. On one hand, the required resources are not guaranteed to be available. For
example, there might not be enough disk space to hold the transformed data for
Partition. This results in the failure of the execution. On the other hand, the time
savings from the new data representation might not be able to compensate for the
time spent on the transformation. This depends somewhat on the characteristics
of the data. To our knowledge, none of the existing algorithms performs as well
as others with all the simulation data of different characteristics.

In this chapter, we propose three algorithms, namely, CmpApr, FilterApr, and
ARM++, that aim to improve the performance of association rule mining algo-
rithms at difference stages of the construction of the frequent itemsets. After an
evaluation of the performance of the existing algorithms, as shown in Section 5,
our findings is that ARM++ provides a better performance. This gain in perform-
ance is mainly related to the fact that ARM++ applies new heuristics in the early
stage of association rule mining and changes the data structure when the trans-
formation is beneficial and the resources are available in the late stage. In the early
stage, to improve the performance of the existing algorithms, e.g., Apriori [2], we
come up with two heuristics: (1) a new comparison method, which is implemented
in CmpApr; and (2) the inherent relations between the data items used to reduce
the comparison of unnecessary items, which is implemented in FilterApr.

After a detailed analysis of these two heuristics, we realized that the second
heuristic reduces the number of comparisons to such an extent that the original
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beneficial comparison method in CmpApr has a negative impact on the execution
time in FilterApr. Based upon the fact that FilterApr is much faster than CmpApr,
we choose FilterApr as the algorithm for the early stage of the algorithm. In the
late stage of the algorithm, we use the existing Partition [7]. However, we start the
conversion of the data only when the estimated transformed data can be held in
the memory, thereby minimizing the possible overhead of data I/O operation and
extra requirement of disk space.

This chapter is organized as follows. Section 3 reviews some of the major
approaches for association rule mining. Section 4 is dedicated to the implementa-
tion of the array-based data structure (ArrayApr). In Section 5 we describe in
detail the three different algorithms, that is, CmprApr, FilterApr, and ARM++.
Section 6 provides a detailed analysis of the performance of our algorithms, and
finally future extensions of these algorithms are given in Section 7.

3 RELATED WORK

The discovery of frequent itemsets and the construction of association rules
are two sub-problems of association rule mining. Our focus here is on the fre-
quent itemset searching of the first sub-problem. The three major data represen-
tations used by existing algorithms to store the database are item-lists,
candidate-lists, and TID-lists. We describe them and discuss the impact of these
data representations on the performance of the algorithms that use them.

3.1 Existing Approaches

AIS [1]
The problem of association rules was first introduced in [1] along with an

algorithm that was later called AIS [2]. To find frequent sets, AIS creates can-
didates “on-the-fly” while it reads the database. Several passes are necessary,
and during one pass, the entire database is read, one transaction after the
other. Adding items to sets that were found to be frequent in previous passes
creates a candidate. Such sets are called frontier sets. The candidate that is cre-
ated by adding an item to a frontier set F is called a 1-extension of F because
one item was added to F. To avoid duplicate candidates, only items that are
larger than the largest item in F are considered for 1-extensions. To avoid gen-
erating candidates that do not even occur in the database, AIS does not build
1-extensions on blind faith, but only when they are encountered while reading
the database.

Associated with every candidate, a counter is maintained to keep track of the
frequency of the candidate in the database. When a candidate is first created, this
counter is set to 1, and when the candidate is found subsequently in other trans-
actions, this counter is incremented. After a complete pass through all transac-
tions, the counts are examined, and candidates that meet the minimum support
requirement become the new frontier sets. This is a simplification because deter-
mination of which expansions to include as candidates becomes trickier in the
presence of k-extensions and support estimation. For k-extensions, for example,
only maximal frequent sets become frontier sets [1].
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Unfortunately, the AIS candidate generation strategy creates a large number
of candidates, and sophisticated pruning techniques are necessary to decide
whether an extension should be included in the candidate set. The methods
include a technique called pruning function optimization and estimating support
for a prospective candidate based on relative frequencies of its subsets. Pruning
functions use the fact that a sum of carefully chosen weights per item can rule out
certain sets as candidates without actually counting them. An example is the total
transaction price. If fewer transactions than the fraction required for minimum
support exceed a price threshold, then sets that are more expensive cannot possi-
bly be frequent. These decisions can be fairly costly; moreover, they have to
be made repeatedly for many subsets for each transaction. If an unlikely candi-
date set is rejected, this decision has to be made for every transaction the set
appears in.

SETM (Set Oriented Mining)
The SETM algorithm [5] uses only standard database operations to find fre-

quent sets. For this reason, it uses its own data representation to store every item-
set supported by a transaction along with the transaction’s ID (TID). SETM
repeatedly modifies the entire database to perform candidate generation, support
counting, and remove infrequent sets.

SETM has a few advantages over AIS because it creates fewer candidates.
However, the problem with the SETM algorithm is that candidates are repli-
cated for every transaction in which they occur, which results in huge sizes of
intermediate results. Moreover, the itemsets have to be stored explicitly, i.e., by
listing their items in ascending order. Using candidate IDs would save space, but
then the join could not be carried out as an SQL operation. What is even worse
is that these huge relations have to be sorted twice to generate the next larger
frequent sets.

Apriori, AprioriTid, and AprioriHybrid Algorithms [2–4,6–8]
The vast number of candidates in AIS caused its authors to design a new can-

didate generation strategy called apriori-gen as part of the algorithms Apriori and
AprioriTid [2]. Apriori-gen has been so successful in reducing the number of can-
didates that it has been used in every algorithm proposed since it was published
[3,4, 6–8]. The underlying principle, based on the a priori property, is to generate
only those candidates for which all subsets have been previously determined to be
frequent. In particular, a (k+1)-candidate will be accepted only if all its k-subsets
are frequent. Upon reading a transaction T in the counting phase of pass k,
Apriori has to determine all the k-candidates supported by T and increment the
support counters associated with these candidates.

The major problem for Apriori is that it always has to read the entire database
in every pass, although many items and many transactions are no longer needed
in later passes of the algorithm. In particular, the items that are not frequent and
the transactions that contain fewer items than the current candidates are not nec-
essary. Removing them would obviate the expensive effort to try to count sets that
cannot possibly be candidates.

The shortcoming of Apriori, that it could not remove unwanted parts of the
database during later passes, has led to the design of AprioriTid [2], which uses a
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different data representation than the item-lists used by Apriori. AprioriTid can be
considered an optimised version of SETM that does not rely on standard data-
base operations and uses apriori-gen for faster candidate generation. Therefore,
comparing Apriori and AprioriTid is more interesting because they both gener-
ate the same number of candidates and differ mainly in their underlying data
representation.

While Apriori avoids swapping data to disk, it does not weed out useless
items in later passes and hence wastes time on futile attempts to count support
of sets involving these items. AprioriTid, on the other hand, prunes the data set
as described in the previous section and as a result outruns Apriori in later
passes. Unfortunately, in the second iteration, as a consequence of the candi-
date-list representation, the data usually do not fit in memory, so swapping is
necessary.

Partition [7]
While all the algorithms presented so far are more or less variations of the

same scheme, the Partition algorithm takes a different approach. Partition tries to
address two major shortcomings of previous algorithms. The first problem with
the previous algorithms is that the number of passes over the database is not
known beforehand, regardless of which representation is used. Therefore, the
number of I/O operations is not known and is likely to be very large. AprioriTid
tries to circumvent this problem by buffering the database, but then the database
size is limited by the size of main memory. The second problem lies with pruning
the database in the later passes, i.e., removing unnecessary parts of the data. AIS
and Apriori fail to optimize the Item-lists structure. Candidate-lists do permit
pruning the database, but they cause problems because of their unpredictably
large intermediate results in the early passes.

The approach taken in Partition [7] to solve the first problem (unpredictably
large I/O-cost) is to divide the database into equally sized horizontal Partitions.
An algorithm to determine the frequent sets is run on each subset of transactions
independently, producing a set of local frequent itemsets for each partition. The
partition size is chosen such that an entire partition can reside in memory. Hence,
only one read is necessary for this step, and all passes access only the buffered
data. To address the second problem (failure to reduce the database size in later
passes), Partition uses a new “TID-list” data representation both to determine the
frequent itemsets for each partition and to count the global supports during
the counting phase. TID-lists invert the candidate-list representation by associat-
ing with each itemset X a list of all the TIDs for those transactions that sup-
port the set. The TID-lists for a k-candidate can be computed easily by
intersecting the TID-lists of two of its (k-1)-subsets. All TID-lists are sorted so
that this intersection can be computed efficiently with a merge-join, which only
requires traversing the two lists once.

Like candidate-lists, TID-lists change in every pass and may have to be
swapped to disk if there is not enough memory available to store them. Again, the
size of intermediate results can be larger than the original data size, and this fig-
ure is not known. The reason is the same as that for candidate-lists, with the dif-
ference that in Partition, TIDs are replicated for every candidate set instead of
replicating candidate identifiers for every transaction.
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3.2 The ARM++ Approach

If we need to select an algorithm for later iterations of the frequent itemset
discovery, which algorithm should we choose? Both AprioriTid and Partition out-
perform Apriori in the later iterations mainly due to their underlying data struc-
tures. All three algorithms generate the same number of candidates and frequent
itemsets. For Partition, if a k-frequent itemset is in a transaction t, to make this
count, it needs only one comparison of the TID-lists of the two (k-1) frequent
subsets. In contrast, AprioriTid needs two comparisons to detect the existence
of two subsets of the k-frequent itemset, in addition to the overhead of the
access to the two subsets through the auxiliary data structure. If the data for
both algorithms are kept in memory, Partition beats AprioriTid in terms of per-
formance. With the increasing number of iterations, the gap of the number of
comparisons between Partition and Apriori gets wider.

In this chapter, we propose three new algorithms, varying in the comparison
methods, transaction filtering, and transaction transformation. The underlying
data structure is described in ArrayApr, which stores candidate and frequent
itemsets with the proposed array-based data representation rather than the com-
monly used hash-tree representation [2-4,6–7]. ARM++ is a hybrid algorithm.
It is a combination of FilterApr and Partition [7], where FilterApr is used in the
early passes (FilterApr phase) and Partition in the subsequent passes (Partition
phase). The pivot point is, whenever the estimated TID-list of Partition can be
held in memory, we switch from FilterApr to Partition. A brief overview of these
algorithms is shown in Table 2.1, and their interdependencies are described in
Figure 2.1:
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Table 2.1. An Overview of the Proposed Algorithms
Itemset Data Comparison Original 
Representation Representation Method Algorithm New Algorithms
Array Item-list Itemset vs. Trans ArrayApr CmpApr
Array Item-list Sub-trans vs. Itemset ArrayApr FilterApr
Array Item-list Sub-trans vs. Itemset FilterApr ARM++

TID-list Merge-Join Partition

ARM++(Hybrid)

TID-list
Partition[ 7]

Item-list

CmpApr (Candidate comparison)

FilterAPr (Transaction Filtering)

O
Integration

Performance

ArrayApr

Figure 2.1. Algorithm Evolution Diagram



● CmpApr employs a new comparison method, candidate comparison, which
compares candidate itemsets against a transaction instead of comparing sub-
sets of the transaction with the itemsets. The new array-based data represen-
tation of candidate itemsets provides fast access to the items of the itemsets
for the new comparison method.

● FilterApr harnesses the power of our new transaction filtering, which sharply
reduces the number of comparison operations required to find the frequent
itemsets among the candidates.

● ARM++ integrates FilterApr with Partition. This new hybrid algorithm
is the last of our series of optimizations. This new hybrid algorithm aims to
make the best use of the available resources, i.e., the memory and secondary
storage, to achieve the minimum execution time.

4 ARRAYAPR DATA STRUCTURE

In this section, we first introduce the array-based itemset storage and later
show its application in the generation of the candidate and frequent itemsets
(Figure 2.2). In contrast to Apriori, which uses a tree to store the candidates
(that have to be tested against a transaction) in order to reduce the number of
comparisons, ArrayApr uses the hash function to reach the candidates that are
supported by the transaction. Then we explore the functions of the hash-tree
during the counting phase and see how they are implemented with the array
structure. We have used the data generation technique proposed in [2] to meas-
ure the performance of ArrayApr. Results of such evaluation are presented in
Section 5.

4.1 Arrays: Itemset-counter Table, Hash Table,
and Sibling Table

In ArrayApr, as in Apriori, itemsets are stored separately. However, they are
stored in different structures. Our array structure contains three tables: a Hash
table, an Itemset-counter table, and a Sibling table. The hash table is part of a
hash function, which, given an itemset, can calculate that itemset’s mapping
address in the Itemset-counter table. After comparing the itemset with its coun-
terpart in the Itemset-counter, we know whether it exists in the itemset-counter
table. The sibling table stores the clustering information of itemsets in a
bitmap representation. For an itemset in the Itemset-counter table, if the next
one in the table is its sibling, its corresponding bit in Sibling Table is “1”; other-
wise, it is “0.”

For example, {1, 4, 5, 6}, {1, 4, 5, 7}, {1, 4, 5, 9}, and {1, 4, 6, 9} are candi-
date 4-itemsets. The layout of their storage is shown in Figure 2.2a. After scan-
ning through the database and counting their supports, we assume all are
frequent. We copy from the candidate array structure all the frequent itemsets and
their clustering information into the frequent Itemset-counter table and the fre-
quent Sibling table, respectively. Then we initialize the hash table based on the
itemsets in the Itemset-counter table. After the creation of the frequent itemset
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array structure, we delete the candidate array structure. The layout of the frequent
4-itemsets is depicted in Figure 2.2b.

The next step is to generate 5-candidates. We scan through the Sibling table
of frequent 4-itemsets. If there are siblings, we invoke apriori-gen to create the
5-candidates. Instead of generating all the 5-candidates and then detecting their
candidacy, immediately after we generate a candidate, we check its candidacy.
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In our example, {1, 4, 5, 6}, {1, 4, 5, 7}, and {1, 4, 5, 9} are siblings. First, {1, 4,
5, 6, 7} is created in Phase I of apriori-gen. In Phase II, {1, 4, 6, 7}, {1, 5, 6, 7},
and {4, 5, 6, 7} are checked against the frequent Itemset-counter table
through the frequent hash table for their existence. We assume all are frequent.
The 5-candidate {1, 4, 5, 6, 7} is inserted into the new candidate Itemset-counter
table, with its counter and sibling bit initialized to zero. Then we generate another
potential 5-candidate {1, 4, 5, 6, 9} in Phase I of apriori-gen. In Phase II, {1, 4, 6,
9}, {1, 5, 6, 9}, and {4, 5, 6, 9} are checked against the frequent array structure.
We know {1, 4, 6, 9} is there. We assume the other two are both frequent. Hence,
{1, 4, 5, 6, 9} is appended to the new candidate Itemset-counter table, with its
counter and sibling initialized to zero. Because {1, 4, 5, 6, 9} is an immediate sib-
ling of {1, 4, 5, 6, 7}, the bit corresponding to {1, 4, 5, 6, 7} is set to “1” in the
new candidate Sibling table. The last step is the processing of {1, 4, 5, 7, 9}.
We assume it is also a candidate. It is appended to the new candidate array struc-
ture, with its counter and sibling bit reset. After the creation of the candidate
array structure, the frequent Itemset-counter table is reserved for the rule discov-
ery, while the frequent Hash table and frequent Sibling table are deleted. The
candidate 5-itemsets are shown in Figure 2.2c.

4.2 Counting

So far, we have discussed the generation of frequent and candidate itemsets
with the array structure. Next, we investigate the functions of the hash-tree in the
counting phase and see how the array structure can provide the same functional-
ity. We use the example shown in Figure 2.3 to illustrate the functions of the hash
tree in the phase of counting. Internal nodes of such a tree are implemented as
hash tables to allow fast selection of the next node. To reach the leaf for a set,
start with the root and hash on the first item of the set. Reaching the next inter-
nal node, hash on the second item and so on until a leaf is found.

Consider now the transaction T = {1, 4, 5, 6, 7}. Apriori needs to iden-
tify whether the combinatorial subsets with 4 items of T are candidates. The
set of subsets SS of T is {s1, s2, s3, s4}, where s1={1, 4, 5, 6}, s2={1, 4, 5, 7},
s3={1, 4, 6, 7}, and s4={4, 5, 6, 7}. Assume that all are candidates. So there are
four candidates, c1, c2, c3, and c4, where c1=s1, c2=s2, c3=s3, and c4=s4.

Assume further that c1 and c2 are stored in a leaf node LN1. Inside LN1, there
is another candidate, {1, 4, 5, 9}, which also has the prefix {1, 4, 5} but is not
supported by T. Similarly, c3 is stored in a leaf node LN2 along with another
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candidate {1, 4, 6, 9}. And c4 is stored in a leaf node LN3 with another candidate
{4, 5, 6, 9}.

In order to identify the candidacy of the first two subsets, s1 and s2, Apriori
reaches LN1 from the root by traversing first the edge labeled with item 1, then the
one with item 4, and last the one with item 5. The edge selections are implemented
as the hash-table loop-ups. Apriori tests items 1, 4, and 5 once to reach the leaf.
Then it checks all the candidates in the leaf to determine whether they are sup-
ported by T. The first three items (1, 4, and 5) do not have to be considered any
more, but for all the larger items i in a candidate set, we have to check whether
i ∈ T. Here, the sets of the larger items are stored as item-lists, while the transac-
tion is in the form of a bitmap. In our example, after reaching LN1, we need one
comparison to identify a candidate. So after another three comparisons, s1 and s2
are found to be candidates, the counters of c1 and c2 are increased by 1 separately,
while there is no match for {1, 4, 5, 9}. For s3, after reaching LN2, we need another
two comparisons. Also, we need another six comparisons for s4 after reaching LN3.
In Figure 2.4, the paths to locate sets {1, 4, 5, 6}, {1, 4, 5, 7}, {1, 4, 6, 7}, and
{4, 5, 6, 7} are marked with bold arrows. The associated items are in bold.

The above example demonstrates three functions of the hash tree in Apriori:

● Store the candidate/frequent itemsets: c1, c2, c3, and c4 are stored in the hash
tree.

● Identify the status of a set of items, i.e., whether it is a candidate/frequent
itemset: s1, s2, s3, and s4 are candidates.

● Further, if an itemset is a candidate, locate the position of the candidate and
its counter. The counters of c1, c2, c3, and c4 are found and incremented.

In contrast to Apriori, we employ the Itemset-counter array to store the item-
sets, along with the auxiliary Hash table and Sibling table to achieve the same
functionality provided by the hash-tree:

● All the frequent itemsets and candidate itemsets are stored in the Array
structure.

● For any given set of items, if it is a candidate/frequent itemset, the hash func-
tion maps it to a bucket within its hash table that points to an itemset in the
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Itemset-counter table. The given itemset and the one in the table are the same,
e.g., {1, 4, 5, 6} in Figure 2.2a. Otherwise, the hash function maps it to an
empty bucket within its hash Table, e.g., {1, 6, 7, 8} in Figure 2.2a.

● Because both the itemset and its counter are stored together in the Itemset-
counter table, once the itemset is located, the counter can be incremented quickly.

Let us use the same example as that for Apriori, T = {1, 4, 5, 6, 7} to illustrate
how the Array structure works. When comparing the transaction against the can-
didate itemset, instead of initializing a bitmap for each transaction, we generate
clusters of possible candidate itemsets. For SS = {s1, s2, s3, s4 ⎪ s1={1, 4, 5, 6},
s2={1, 4, 5, 7}, s3={1, 4, 6, 7}, s4={4, 5, 6, 7}}, there are three clusters: cluster1
= {1, 4, 5, 6, [7]}, cluster2 = {1, 4, 6, 7}, and cluster3 = {4, 5, 6, 7}. Because in a
cluster, all the itemsets are the same except for their last items, we need only store
item 7 instead of {1, 4, 5, 7} in cluster1. Then we compare each cluster with the
candidate itemsets. For cluster1, the hash function leads s1 to its corresponding
position in the Itemset-counter table with four comparisons. The counter of the
itemset increases by 1. Next, for s2=[7], there are two ways to check its candidacy.
If the sibling chain is short, say, less than 4, we compare item 7 with the last item
of the next itemset along the sibling chain until these items match, or until 7 is
less than the last item of the next itemset along the chain. If the chain is long, for
all the itemsets in the cluster, the hash function generates their addresses in 
the Itemset-counter table all at once, so we can check directly their existence in the
Itemset-counter table. Because both the candidate itemsets and the itemsets in 
the clusters are stored in ascending order, the two methods generate the same results.

In our example, the sibling chain is three itemsets long, less than 4. Hence, on
the fifth comparison, we compare 7 with the last item of {1, 4, 5, 7}. They match,
so the counter of the next itemset increases by 1. Because there is nothing left in
cluster1, we move on to cluster2. The hash function maps subset {1, 4, 6, 7} to its
corresponding entry in the Itemset-counter table. With four comparisons, we
match the subset with the itemset and increase the counter by 1. In the same man-
ner, with four comparisons, we locate and increase the counter of {4, 5, 6, 7}.

5 ARM++: A HYBRID ALGORITHM 
FOR ASSOCIATION RULES

This section presents three new algorithms, which vary in their comparison
methods, transaction filtering, and transaction transformation. As in ArrayApr,
the candidate and frequent itemsets in all the new algorithms are stored with the
new array-based data representation rather than the common hash-tree represen-
tation [2,3,4,6,7].

5.1 Methods of Comparison: CmpApr

For a transaction and a set of candidate itemsets, there are two ways to com-
pare them. Existing Apriori-based algorithms [2,6] only compare the transaction
against the candidate itemset by hashing the items in the transaction against the
hash-tree. Up to now, all our discussions have been based upon this method,
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namely, subset comparison. For example, in ArrayApr, in the kth iteration, given a
transaction, for all subsets that are k-candidates, k comparisons are needed to
determine the candidacy of each subset. However, for the subsets that are not
candidates, the comparison stops after the first mismatch between the candidate
and the subset, so the number of comparisons might be less than k for each sub-
set. In this example, we assume that six comparisons are needed to determine the
candidacy of a subset in the sixth iteration, no matter whether it turns out to be
a candidate or not. With a transaction of 20 items, for the subset comparison
method, ignoring the overhead of hashing, the number of item comparisons is 

( ) * ,6 232 5606
20 = .

However, there is another comparison method, namely, candidate comparison.
It compares the candidate itemsets against the transaction. The transaction is ini-
tialized in a bitmap. We assume that the number of comparisons between a k-can-
didate and the transaction is k, though it might be less if the candidate is not
supported by the transaction. We continue with the previous example. If there are
8,192 candidates in the 6th iteration, the number of item comparisons is 8,192 * 6
= 49,152. In this case, it is obvious that candidate comparison performs better
than its counterpart. Also, the candidate comparison method does not have the
hashing overhead. The description of candidate_compare() routine is given in
Function 1 (see below).

Nevertheless, candidate comparison does not guarantee a smaller number of
comparisons. For the same transaction, in the third iteration with 28,000 candi-
dates, the subset comparison generates ( ) * ,3 3 4203

20 = comparisons, while candi-
date comparison requires 28,000 *3 = 84,000 comparisons.

Candidate_compare
1) m=1
2) while m <= ⎜Ck⎜ % ⎜Ck⎜ is the number of candidates in Ck%
3) if all items i in cm ∈ T % cm is the mth candidate in Ck%
4) cm.count ++
5) m++
6) while cm is sibling of cm-1 % skip the first k-1 items of the

sibling candidates %
7) if kth item in cm ∈ T
8) cm.count++
9) end-if

10) m++
11) end-while
12) else % skip all the sibling candidates %
13) m++ % because none is supported by T %
14) while cm is sibling of cm-1
15) m++
16) end-while
17) end-if
18) end-while
end.

Function 1: Candidate_compare
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In our candidate comparison method, the comparison of sibling candidates
within a cluster can be accelerated in the same fashion as described in subsection
2.2. After we find that a sibling candidate is supported by a transaction, its sib-
lings only need to check whether or not their last items are in the transaction
bitmap. This process is implemented in steps 6-11 of Function 1. Similarly, in
steps 14–16, once we find that a candidate is not supported, all the comparisons
of its siblings with the transaction are skipped. The candidate comparison bene-
fits from our array structure, since, when we compare the items in a candidate
with a transaction, all the items are stored adjacently.

Our new algorithm, CmpApr, is described in Algorithm 1 (see below). It is based
upon both the subset comparison (step 8–11) and the candidate comparison (step 6).
From the above example, we can see that in the early iterations, when we have a large
number of candidates and a comparatively small number of subsets in a transaction,
the subset comparison method is better. In the later iterations, when we have a small
number of candidates and comparatively large number of subsets in a transaction,
the candidate comparison method is preferable. Fortunately, when we start to
process a transaction, we know the number of items in the transaction, the length of
candidates, and the number of candidates. For a transaction with ⎜T ⎜ items in the kth

iteration, we can precalculate the number of subsets, (⎜T ⎜
k ). If it is smaller than the

number of candidates, we select the traditional subset comparison method; other-
wise, we use our candidate comparison method. Preference is given to the latter when
the number of subsets equals the number of candidates, because the overhead of the
hashing function is larger than that of the initialization of the transaction into a
bitmap. The condition statement of step 5 incorporates the above selection criteria.

CmpApr
1) L0 = Ø, k = 1
2) C1 = { {i} ⎜ i ∈ I }
3) while ( Ck ≠ Ø ) do

% count support %
4) forall transactions T ∈ D
5) if (estCmp(⎜T ⎜, k) > = ⎜Ck ⎜) % In CmpApr, estCmp(⎜T ⎜, k) = (⎜T ⎜

k )%
6) candidate_compare(Ck, T)
7) else

% ArrayApr body: subset comparison %
8) Ct = subset(Ck, T)
9) forall c ∈ Ct

10) c.count ++
11) end-forall
12) end-if
13) end-forall
14) Lk = {c ∈ Ck ⎜ c.count ≥ n * smin}
15) Ck+1 = generate_candidates(Lk )
16) k++
17) end-while
18) return L Lk

k
='

end.
Algorithm 1 CmpApr
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5.2 Online Transformation: FilterApr

This subsection describes the FilterApr algorithm, which is used for the subset
comparison. This algorithm introduces two layers of filtering. The first is called
transaction transformation, which occurs while the transactions are being read;
the other is called subset transformation, which happens during the subset gener-
ation from transactions.

Within an iteration, if an item in a transaction is not part of the frequent item-
sets supported by the transaction, it is useless since it contributes nothing to the
generation of frequent itemsets; otherwise, it is useful. Processing the data with-
out the useless items is vitally important. As mentioned earlier, AprioriTid and
Partition outperform Apriori in the later iterations in that their underlying data
structures, itemset-list and TID-list, store only the useful data. During the count-
ing phase, both algorithms save the overhead of computation associated with
items of no interest, whilst Apriori cannot efficiently trim the item-list structure
and has to process the subsets containing useless items. Because FilterApr reads
and then drops the useless items before checking the candidacy of the subsets
of the transactions, the number of the comparisons in FilterApr is much less
than that in ArrayApr, though the filtering in FilterApr is not as efficient as the
built-in pruning of the useless items in itemset-list and TID-list.

5.2.1 Transaction Transformation

The essence of transaction transformation is to screen out useless items before
the real processing. We achieve this by building a set of transaction filers derived
from the candidate itemsets.

The items in a transaction that do not appear in any of the supporting frequent
itemsets in the kth iteration can be dropped in the kth iteration. However, we have
a problem in applying this property to practice. Before we finish the kth iteration,
we don’t know which candidate is frequent. A workable and less stringent property
is that the items in a transaction that do not appear in any of the candidate item-
sets in the kth iteration can be removed. Before the start of the kth iteration, we
can build an item filter with only those items that appear in the k-candidates. The
filter is implemented as a bitmap. In the kth iteration, all items that do not belong
to the filter will be discarded; only items that exist in it will be processed.

For example, suppose we have only four candidate itemsets {1, 4, 5, 6}, {1, 4,
5, 7}, {1, 4, 5, 9}, and {1, 4, 6, 9} in the fourth iteration. A transaction T = {2, 3,
4, 5, 6, 7, 9, 10}, with item filter, will be trimmed down to {4, 5, 6, 7, 9}. However,
if we investigate the above example more carefully, we find there is no item 1 in
the transaction, whereas item 1 is the very first item of all the candidate itemsets.
This means that none of the itemsets is supported by the transaction. Therefore,
without item 1, all the items in T are useless. Our example shows that the set of
possible candidate items at a particular position of all candidate itemsets can
determine the potential usefulness of an item in a transaction.

We call all the possible items at a position j of the candidate k-itemsets the
necessary candidate items of position j, denoted by Ij, where,

Ij = {ij⎜ ij is the jth item of c ∩ c∈Ck}.
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In our example, the necessary candidate items of position 1, I1, is {1}, I2 is {4},
I3 is {5, 6}, and I4 is {6, 7, 9}.

In order to use the necessary candidate items to filter the transactions, let us
consider the procedure of the generation of the subsets of a transaction. In the
kth iteration, from the start of a transaction T, the first item t1 in T can only be
the first item of a subset. For t1 to be useful, the subset or one of the subsets, in
which t1 is the first item, must be a candidate. Hence, the first useful item t1 must
belong to I1, i.e., t1 ∈ I1. The second transaction item t2 can be either the first or
the second item of a subset. For t2 to be useful, the subset or one of the subsets,
in which t2 is the either the first item or the second item, must be a candidate.
Hence, the second useful item t2 must belong to either I1 or I2, i.e., t2 ∈ I1 ∪ I2.
Hence, for the useful mth item in transaction T, tm, we have

tm ∈
m

1
jI' , where m < k.

The useful kth item and the useful items after it in a transaction have to appear
in our item filter. Hence, we have

tn ∈
k

1
jI' , where n ≥ k ∩ n ≤ ⎜T ⎜.

If we look from the other side of the same transaction TR, that is, from the
end going backwards, the last useful item of a transaction, tR

1, can only be the
last item of some of the candidate itemsets, i.e., tR

1 ∈ Ik. The second-to-last use-
ful item of a transaction, tR

2, can be either the last or the second-to-last of some
of the candidate itemsets, i.e., tR

2 ∈ Ik ∪ Ik-1. Hence, for the mth-to-last useful item
in the transaction, tR

m, we have

tR
m ∈

k

k m 1- +

jI' , where m < k.

The kth-to-last useful item and the useful items before it in a transaction have
to appear in our item filter. Hence, we have

tR
n ∈

k

1

jI' , where n ≥ k ∩ n ≤ ⎜TR⎜.

Based upon our analysis of the subset generation from the transaction, we can
derive the possible transaction items at position j of a transaction from the neces-
sary candidate items. The formal definition is in Figure 2.5. A graphical repre-
sentation is shown in Figure 2.6.

We define transaction_transform() in Function 2, as shown below. Forward
possible transaction items are used in steps 1–9, the item filter is used in steps
11–19, and backward possible transaction items are used in steps 20–28. Before
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the start of the kth iteration, we can generate the possible transaction item filters
from the candidate itemsets in the form of a bitmap. When we read a transaction,
we apply the possible transaction item filters by invoking transaction_transform()
to remove the useless items from the transaction. After the invocation, if the
length of the transformed transaction is not less than k, we continue to count
its support; otherwise, the transaction is discarded, since it will not support any
k-candidates. This process is implemented in step 30.

Transaction_transform
1) m=1, j =1 % Phase I: Forward possible transaction items %
2) while (m<k ∩ j< ⎜T ⎜) % transaction T %
3) if (tj∈Tm) % useful item %
4) m++, j++
5) else % useless, discarded %
6) mark tj to be discarded
7) j++
8) end-if
9) end-while

10) if (m is k ∩ j < ⎜T ⎜) % k potentially useful items, items not
transformed %

11) while ( j ≤ ⎜T ⎜) % Phase II: Item filter %
12) if (tj∈Tk)
13) m++, j++
14) else
15) mark tj to be discarded
16) j++
17) end-if
18) end-while
19) adjust T to remove discarded item

20) m=1, j=⎜ T⎜ % Phase III: Backward possible transaction
items %

21) while (m<k ∩ j≥0)
22) if (tj∈TR

m) % useful item %
23) m++, j−−
24) else % useless, discarded %
25) mark tj to be discarded
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26) j−−
27) end-if
28) end-while
29) end-if
30) adjust T to remove discarded item
31) return T
end.

Function 2: Transaction_transform

Transaction transformation works on the transactions based upon the possi-
ble transaction items, which are generated from necessary candidate items accord-
ing to the relationship between the items at a particular position in the
transaction and the items at a particular position in the candidate itemsets.

5.2.2 Subset Transformation

Transaction transformation finishes before the generation of the subset.
The next layer of filtering, subset transformation, works on the subsets generated
from the transactions to reduce the combinatorial subset space for the support
counting. We discover the inter-item relationships between the adjacent items of
the candidate itemsets and use these heuristics to avoid the generation of useless
subsets, which turn out to be small itemsets.

In the previous example, with only four candidates at the fourth iteration,
namely, {1, 4, 5, 6}, {1, 4, 5, 7}, {1, 4, 5, 9}, and {1, 4, 6, 9}, and a transaction
T = {1, 4, 5, 6, 7, 9}, the transaction transformation cannot trim T any more. The
subsets generated from T with four items are

s1 = {1, 4, 5, 6}, s2 = {1, 4, 5, 7}, s3 = {1, 4, 5, 9}, s4 = {1, 4, 6, 7},
s5 = {1, 4, 6, 9}, s6 = {1, 5, 6, 7}, s7 = {1, 5, 6, 9}, s8 = {1, 6, 7, 9}.

From the candidate itemsets, we know that after the first item, 1, the only pos-
sible second item is 4. So only those subsets with the second item as 4 are gener-
ated. We have s1, s2, s3, s4, and s5 left. After the second item 4, the possible third
items are 5 or 6. The remaining five subsets have no problems. After the third item
5, the possible fourth items are 6, 7, or 9. s1, s2, and s3 survive the test. After
another third item, 6, the only possible fourth item is 9. s4 is discarded and s5 is
generated. In the example, after our possible subset item test, subset s4, s6, s7, and
s8 are discarded “on-the-fly” instead of being passed on to the hashing function
to check their candidacy.

The heuristics behind the usage of inter-item relationships are these: when we
generate a subset from the first item to the last, the set of (j+1)th possible subset items
can be limited based upon the known jth item. In the example shown above, without
the knowledge of the third item, we can only use the set of necessary candidate
items at position 4, i.e., I4 = {6, 7, 9}. We cannot filter any item. Once we know that
the third item is 6, the fourth possible subset item is 9, so we can filter out s4.

In order to save the inter-item relationship, we apply the module-2n (n ≥ 0)
operation on the item at the (j−1)th (j > 1) position of a candidate itemset. If the
result is i, we add the jth item of the candidate to the ith set of possible subset
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items. Actually, we split Ij, the sets of the necessary candidate items at the jth posi-
tion, into 2n sets of possible subset items (PSI). We denote the ith set of possible
subset items at position j by PSIji. There is an exception for I1: it will not be
divided, since there are no items before the first. The number, 2n, into which the
possible subset items split the necessary candidate items is called the splitting fac-
tor. For fast detection, we select the splitting factor as a number to the power of 2.

In the kth iteration, similar to the k possible transaction item filters created for
the transaction transformation, we build k*2n possible subset item filters, which
are also in the form of a bitmap. The possible subset item filters of our previous
example, with the splitting factor of 2, are shown in Figure 2.7. The dashed lines
mark the module operations on the items.

The splitting factor is a measurement of how thoroughly PSIs represent the
inter-item relationships among the candidate itemsets. With a splitting factor of
1, PSIs reduce to the possible candidate itemsets. The larger the splitting factor,
the more fully PSIs represent the inter-item relationship, and the better they
screen out useless subsets. However, the memory requirement of PSIs increases
linearly with the splitting factor. The trade-off of the space-and-time problem of
the splitting factor is further investigated with experimental results in subsection
6.2. Subset transformation is based upon the set of PSIs and is described below
as Function 3. For each subset, subset_transform marks its usefulness.

Subset_Transform
1) set c useful
2) m=2 % start from the second item %
3) while (m ≤ k)
4) previous = cm-1 MOD 2n % calculate which set of PSI %
5) if cm in PSIm, previous % subset item in the Possible Subset Items %
6) m++ % check next subset item %
7) else
8) set c useless
9) break % skip to next subset %

10) end-if
11) end-while
end.

Function 3: Subset_Transform
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To integrate transaction transformation and subset transformation, we come
up with a new routine, filterCount(). It applies the transaction transformation in
step 3 and the subset transformation in step 8, as defined in Function 4. Firstly,
the transaction transformation reduces the number of items in the transactions to
be processed in the counting phase. Secondly, the subset transformation reduces
the number of subsets to be detected for candidacy.

filterCount()
1) forall transactions T ∈ D
2) % Transaction transformation %
3) T = transaction_transform(T)
4) if ⎜T ⎜≥ k
5) Ct = subset(Ck, T)
6) forall c ∈ Ct
7) % Subset Transformation %
8) subset_transform(c)
9) if c is useful

10) c.count ++
11) end-if
12) end-forall
13) end-if
14) end-forall
end.

Function 4: filterCount()

To end this section, we propose a new algorithm, FilterApr, as shown
in Algorithm 2 below. It uses filterCount() in step 4 to find all the frequent
itemsets.

FilterApr
1) L0 = Ø, k = 1
2) C1 = { {i} ⎜ i ∈ I } % all 1-itemsets %
3) while ( Ck ≠ Ø ) do
4) filterCount()
5) Lk = {c ∈ Ck ⎜c.count ≥ n * smin}
6) Ck+1 = apriori_gen(Lk )
7) k++
8) end-while
9) return L Lk

k
='

end.
Algorithm 2: FilterApr

5.3 ARM++: A Fast Algorithm

In this section, we combine FilterApr with Partition [7] to propose a new algo-
rithm, ARM++, as defined in Algorithm 3. It is a hybrid of FilterApr in the early
passes (FilterApr phase) and Partition in the subsequent passes (Partition phase).
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The pivot point is that whenever the estimated TID-list of Partition can be held
in memory, we switch from FilterApr to Partition.

5.3.1 Implementation of ARM++: Partition Phase

Being similar to Partition, in steps 24–31 of the partition phase, ARM++
works with the TID-list representation. The count for a candidate is deter-
mined immediately after it has been generated from two frequent sets. To com-
pute the count, the TID-lists of the two frequent sets are joined using a
merge-join.

One minor difference between ARM++ of the partition phase and Partition is
that ARM++ uses the same Array structure to store frequent sets and the same
candidate generation technique as those in ArrayApr. Use of the same data struc-
ture and the candidate generation code further simplifies the comparison between
TID-lists and item-lists, because our results are not obscured by different storage
and candidate generation procedures.

5.3.2 No Partitioning of data

The very reason Partition divides the data into several parts is that it cannot
keep all the TID-lists in memory, especially in the early iterations. With the itera-
tion number increasing, the number of candidates decreases sharply. Also, with
the length of the candidate itemsets increasing, they are less likely to be supported
by transactions. Hence, in the later iterations, it is possible to cache all the TID-
lists in memory if it is not possible in the early iterations.

When the size of the TID-lists exceeds the amount of free memory, the data
that cannot be held in memory will be swapped onto the disk by the virtual mem-
ory system. This process is not only time-consuming but also not always possible.
Given a large database that occupies nearly all the disk space, there might not be
enough space for the swapping area. For example, with our 79.6 MB simulation
data containing only 1,000,000 transactions, for support as low as 0.25%, with an
average transaction size as long as 20 and an average itemset length of 6, in the
third iteration, there are 12,933 frequent itemsets. The minimum length of the
TID-lists is 2,500, and each TID takes 4 bytes. Hence, we need a minimum of 123
MB to store the TID-lists before the start of the third iteration. With physical
memory of 64 MB, and free disk space of 64 MB, my computer cannot run
Partition, since there is not enough space to store the data in the format of a TID-
list. After eight or more iterations, the memory requirement to store the TID-lists
of the candidate itemsets drops to no more than 25 MB, so one partition is
enough. In this case, my computer can run Partition from the eighth iteration.

Based upon the above analysis, with large databases on the disk, it is likely
that we do not have enough free space to store the intermediate TID-lists. So we
implement ARM++ as a hybrid of FilterApr and Partition. In the early iterations,
before the TID-lists can be held in memory in step 6, we adopt FilterApr. Once
we can start Partition without splitting the data, we transform the data from item-
list format into TID-list in steps 9–22 and switch to Partition. In the
partition phase, ARM++ has only one partition, so the whole TID-list is held
in memory; there is no extra disk space needed to store the intermediate TID-list,
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as in the case of multiple partitioning. Another advantage is that we can test the
performance of the TID-list data structure against that of the item-list in the later
iterations without the impact of partitioning.

ARM++
1) L0 = Ø, k = 1
2) C1 = { {i} ⎪ i ∈ I }
3) transformed-to-TID = false
4) while ( Ck ≠ Ø ) do

5) if( Ce emin

C
k

k 1e e+

k
! > available mem) % the estimated size TID-lists vs.

avail. mem.%
6) filterCount()
7) else

% transfer from item-list to TID-list %
8) if NOT transformed-to-TID
9) forall transactions T ∈ D

10) T = transaction_transform(T)
11) if ⎪T⎪ ≥ k
12) Ct = subset(Ck, T)
13) forall c ∈ Ct
14) subset_transform(c)
15) if c is useful
16) c.count ++
17) T(c) + = T.id % add transaction id to tid-list %
18) end-if
19) end-forall
20) end-if
21) end-forall
22) transformed-to-TID = true
23) else

% Partition Phase%
24) forall candidates c of size k
25) T(c) = generate_TID_list(c)
26) if (⎪T (c)⎪≥n*Smin)
27) Lk = Lk U{c}
28) else
29) drop_candidate(c)
30) end-if
31) end-forall
32) end-if
33) Lk = {c ∈ Ck ⎪ c.count ≥ n* smin}
34) Ck+1 = apriori_gen(Lk )
35) k++
36) end-while
37) return L Lk

k
='

end.
Algorithm 3: ARM++
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5.3.3 Estimation of the size of intermediate TID-list data

When we implement the above strategy, we need to determine the size of the
TID-lists of all (k+1)-candidates before the start of the (k+1)th iteration. We can
calculate the potential maximum size of the data when we use apriori-gen to gen-
erate the k+1 candidates.

After the kth scan, we already know the support of each k-frequent itemset.
Based upon the first property of a priori, the support of any k+1 frequent item-
set is equal to or less than that of its child k-frequent itemset with the smallest
support. In Partition, the support for a candidate is generated at the same time the
candidate is generated. If the count is no less than the minimum support, the can-
didate becomes a frequent itemset; otherwise, it is discarded. The length of the
TID-list of a frequent/candidate itemset ck+1 is actually its support. Hence, the
maximum possible length of the TID-list of the candidate, ⎪ck+1⎪max, is the mini-
mum of all the supports of the k− containing frequent itemsets of the candidate,
i.e., ⎪ck+1⎪max = mink⎪Ck⎪, where ck ⊂ ck+1. For example, given four 3-frequent
itemsets {3 169 377}, {3 169 555}, {3 337 555}, and {169 337 555} with their sup-
ports, i.e., 326, 327, 333, and 310, respectively, the support of {3 169 377 555}
cannot exceed 310.

Before the start of the (k+1)th iteration, we have gathered all the supports for
k-frequent itemsets. In step 34, when we derive k+1 candidates from k-frequents,
for each generated candidate, we can calculate the maximum possible length of its
TID-list, ⎪ck+1⎪max= mink ⎪Ck⎪. The sum of such lengths associated with all 

candidates, Ce emin

C
k

k 1e e+

k
! , is the estimation of the size of the TID-list 

data of the (k+1)th iteration. In step 5, if the sum is equal to or less than the
size of the free memory, we know if we start to transform the data from item-
list to TID-list in the k+1 iteration, we do not need to swap the resulting data.
In this case, while we count the supports of the candidates in the k+1 iteration
using modified FilterApr in steps 9–22, if a transaction includes some candi-
dates, we save the ID of the transaction into the TID-list buffers associated
with the candidates. After the k+1 iteration, we enter the partition phase of
ARM++.

5.3.4 Combining 1-itemsets and 2-itemsets counting

Let us consider the performance of the TID-list and item-list. It is in the later
iterations that the savings on the computation of irrelevant items give Partition an
edge over FilterApr. However, in the second iteration, FilterApr outperforms
Partition. Consider a database of m = 1,000 items, all of which we assume to be
frequent, when the support is very low. This means that all 2-combinations of
those items, m*(m-1)/2, at the level of 500,000 candidates have to be evaluated by
Partition in pass 2. Assume further that there are 10,000,000 transactions with an
average of 20 items. The average length of a TID-list for a 1-itemset is therefore
10,000,000*20/1,000 = 200,000 TIDs. One merge-join to count a candidate
requires as many comparisons as there are items in the longer list; thus, 500,000
* 200,000 = 1011 comparisons are necessary during pass 2. This figure is usually
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even larger because the lists that are longer than average cause more comparisons
than assumed here. We can estimate the number of hash operations performed by
FilterApr. In iteration 2, with so large a number of candidate itemsets, FilterApr
would use subset comparison based upon the Array structure. Again, we assume
that all items are frequent. The approximation of the comparison is (2

20)*
10,000,000 = 3.8* 109.

As shown in the above example, in the second iteration, both the Apriori
and Partition require a large number of comparisons to locate the candidate item-
sets. We can optimize the counting in the second iteration by counting the support
for 2-candidates directly, saving all the comparison overheads. Further, the direct
counting can be done in the first scan of the database. We can combine the 1-item-
set and 2-itemset counting in the first iteration, saving the I/O cost of one scan of
the data. The performance results of all the above algorithms, ArrayApr, CmpApr,
FilterApr, and ARM++, in Section 5 are generated with this optimization.

6 PERFORMANCE ANALYSIS

This section illustrates the performance of the proposed algorithms. In par-
ticular, we demonstrate the effects of online transformation of transactions,
which significantly reduce the CPU overhead in the early iterations. Also, we pres-
ent the efficiency of TID-lists in the later iterations whenever the resources
needed for execution are available. We evaluate the algorithms with two different
methods. The first is based upon the execution time of different algorithms listed
in Figures 2.8, 2.9, and 2.10. It gives preference to the actual execution time of the
different parts of the algorithms. However, the implementation tools and under-
lying execution environment also have direct impact on the execution time. This
makes the comparison result of algorithms tested on different platforms obscured
by factors other than the algorithms themselves. The second method is based
upon the number of integer comparisons involved in the algorithm of the fre-
quent itemset discovery, as specified in Table 2.2. Because it is independent of the
implementation tools and testing platform, this method genuinely reflects the effi-
ciency of the algorithm.

All our algorithms use the a priori [2] optimization to reduce the number of
candidate itemsets. In addition, CmpApr adopts different comparison methods to
reduce the number of comparisons. FilterApr reduces the combinatorial search
space by cutting the number of items in the transactions as well as the number of
subsets of the transactions. In the early iterations, FilterApr outperforms
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Table 2.2. Number of comparisons to determine the candidacy of itemsets
Algorithm No. Subset No. Candidate No. TID Total Time 

Comparisons Comparisons Comparisons (Sec.)
ArrayApr 3,735,752,027 0 0 3,735,752,027 20,952.00
CmpApr 518,788,343 1,924,005,176 0 2,442,793,519 1,856.92
FilterApr 191,467,720 0 0 191,467,720 174.66
ARM++ 85,722,627 0 17,432,961 103,155,588 108.42
Item-list 137,343,148 0 0 137,343,148 N/A
ideal



Partition, which might require too much space to hold the intermediate result,
thereby making it impossible to execute. However, Partition [7] needs only one
comparison to determine the existence of a candidate itemset in a transaction,
while FilterApr needs n comparisons in the nth iteration. That is the reason why
Partition outperforms FilterApr in later iterations. As a compromise of FilterApr
and Partition, ARM++ also considers the availability of resources. It executes
FilterApr in the early iterations when resources are not enough for Partition. Then
it shifts to Partition whenever the resources are available for execution.

ARM++: A Hybrid Association Rule Mining Algorithm 69

Execution Time: T5I2D100K

Execution Time: T10I4D100K

Execution Time: TI012D100K

0
7654321 7654321

0.5

1

1.5

2

2.5

3

Minimum Support

Minimum Support

Minimum Support

ArrayApr

CmpApr

ArrayApr

CmpApr

ArrayApr

CmpApr

ArrayApr

CmpApr

ArrayApr

CmpApr

ArrayApr

CmpApr

0

2

4

6

8

10

12

14

16

T
im

e 
(s

ec
)

T
im

e 
(s

ec
)

T
im

e 
(s

ec
)

Execution Time: T202D100K

Execution Time: T2016D100KExecution Time: T2014D100K

76543217654321

Minimum Support

76543217654321

Minimum SupportMinimum Support

T
im

e 
(s

ec
)

T
im

e 
(s

ec
)

0

50

100

150

200

250

300

350

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0

5000

10000

15000

20000

25000

18(a) 18(b)

18(c) 18(d)

18(e) 18(f)

Figure 2.8.



6.1 Compare Candidate Comparison 
and Subset Comparison

In this section, we compare the performance of ArrayApr and that of
CmpApr. ArrayApr is our implementation of the a priori optimization on the can-
didate itemsets stored in the array structure. Its performance shows the effect
of a priori without any other heuristics. In addition to the subset comparison
used in ArrayApr, CmpApr selectively uses candidate comparison to reduce the
number of comparisons and thus reduces the overall computation time.

70 Zahir Tari and Wensheng Wu

Execution Time: T5I2D100K Execution Times: T1012D100K

0

0.5

1

1.5

2

2.5

3

Minimum Support

CmpApr

FilterApr

CmpApr

FilterApr

CmpApr

FilterApr

CmpApr

FilterApr

0

2

4

6

8

10

12

14

T
im

e 
(s

ec
)

T
im

e 
(s

ec
)

T
im

e 
(s

ec
)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

T
im

e 
(s

ec
)

T
im

e 
(s

ec
)

0

50

100

150

200

250

300

350

400

450

0
20
40
60
80

100
120
140
160
180
200

0

50

100

150

200

250

19(a)

19(c)

19(e) 19(f)

19(d)

19(b)

7654321

Minimum Support
7654321

Minimum Support

7654321

Minimum Support
7654321

Minimum Support
7654321

Minimum Support

7654321

Execution Time: TI014D100K

Execution Times: T2014D100K Execution Times: T2016D100K

Execution Times: T2012D100K

CmpApr

FilterApr

CmpApr

FilterApr

Figure 2.9. Execution times for CmpApr and FilterApr



Execution time. Figure 2.8 shows the execution time for the six synthetic
datasets of 100,000 transactions given in Table 2.3 for decreasing values of mini-
mum support. In the figure, as well as in Figures 2.9 and 2.10, the values of 1, 2,
3, 4, 5, 6, and 7 on the X-axis represent the minimum support threshold of 2%,
1.5%, 1%, 0.75%, 0.5%, 0.33%, and 0.25%, respectively. As value on the X-axis
increases from 1 to 7, the minimum support drops from 2% to 0.25%, and the exe-
cution times of the algorithms increase. This is because with the decrease of the
minimum support, the total numbers of candidate itemsets and of frequent item-
sets increase, both of which take more time to generate. Moreover, if we compare
Figure 2.8(a) through Figure 2.8(f), we find that as the average length of transac-
tions increases, the execution time increases. Further, for the same average length
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of transactions, with the increase of the average length of itemsets, the execution
time also increases. Both these outcomes result from the increase of the numbers
of frequent itemsets and of candidate itemsets.

With a small average length of transactions, small average length of itemsets,
and high minimum support rate, the numbers of candidate itemsets and of fre-
quent itemsets are much less than those with large average length of transaction,
large average length of itemsets, and low minimum support rate. We can see that
the “easiest” dataset is T5I2D100K at the highest support setting of 2%, while the
“hardest” is T20I6D100K at the lowest support setting (0.25%).

It is with the hard dataset that the effect of reduction of the algorithm search
space can show up. With the easy dataset, the gain in the reduction of the num-
ber of candidate and frequent itemsets is so small that it might not offset the extra
complexity introduced. As to the performance comparison of ArrayApr and
CmpApr, for example, the execution times of CmpApr on T5I2D100K are slightly
longer than those of ArrayApr with all settings of minimum support. With
T10I2D100K, the speed gain of CmpApr over ArrayApr is marginal. It is with the
hardest dataset that the true efficiency of CmpApr is fully represented. Therefore,
in the following discussion, we will focus on the performance of the algorithms
on the hardest dataset, both in terms of the time and the number of comparisons
that occurred.

As shown in Figure 2.8(f), the improvement in execution times for the hardest
dataset is quite significant. The execution time improves from 20,952 seconds to
1,856.92 seconds. Since both ArrayApr and CmpApr use the same candidate item-
set generation technique and process the same transactions, the latter mainly ben-
efits from the candidate comparison method. Subset comparisons are much more
expensive than candidate comparison because of the overhead of hashing func-
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Table 2.3. Synthetic Data Sets
Name ⎪T⎪ ⎪I⎪ ⎪D⎪ Data Size(corr=0.5, c=0.5)
T5.I2.100K 5 2 100,000 2.33 MB
T10.I2.100K 10 2 100,000 4.19 MB
T10.I4.100K 10 4 100,000 4.23 MB
T20.I2.100K 20 2 100,000 7.99 MB
T20.I4.100K 20 4 100,000 7.97 MB
T20.I6.100K 20 6 100,000 7.97 MB
T5.I2.500K 5 2 500,000 11.6 MB
T10.I2.500K 10 2 500,000 20.9 MB
T10.I4.500K 10 4 500,000 21.1 MB
T20.I2.500K 20 2 500,000 39.9 MB
T20.I4.500K 20 4 500,000 39.8 MB
T20.I6.500K 20 6 500,000 39.8 MB
T5.I2.1M 5 2 1,000,000 23.3 MB
T10.I2.1M 10 2 1,000,000 41.9 MB
T10.I4.1M 10 4 1,000,000 42.3 MB
T20.I2.1M 20 2 1,000,000 79.9 MB
T20.I4.1M 20 4 1,000,000 79.7 MB
T20.I6.1M 20 6 1,000,000 79.6 MB
T10.I4.2M 10 4 2,000,000 84.6 MB
T10.I4.5M 10 4 5,000,000 211 MB
T10.I4.10M 10 4 10,000,000 423 MB



tions. Before each subset comparison, the position of the subset has to be calcu-
lated based upon the content of the subset. The longer the subset, the higher the
overhead of hashing. Though special optimization has been implemented on the
hashing calculation, it is still very expensive, considering the fact that it is required
for each subset. In contrast, for candidate comparison, the candidates are stored
in the array structure sequentially. The comparisons are conducted in the order
of the candidate itemset, so there is no extra cost in determining the positions of
candidate itemsets.

6.2 Transform Transactions and Subsets

This subsection compares the performance of CmpApr and that of FilterApr.
CmpApr uses a different comparison method to reduce the number of item com-
parisons as well as the cost of each comparison, while FilterApr reduces both the
number of items in the transactions and the subsets of transactions.

Execution time. Figure 2.9 shows the execution times of both CmpApr and
FilterApr. With all the data sets, FilterApr outperforms CmpApr. Especially for
the hardest data set, the execution time drops significantly from 1,856.92 seconds
to 174.66 seconds. Since FilterApr only uses the comparatively slower subset com-
parison, the improvement is mainly due to the significant reduction in the num-
ber of subsets of transactions. There is overhead associated with the transaction
transformation, which processes data at the speed of 1 MB/second. We derive this
number by subtracting the sequential input throughput with transformation of
about 4 MB/second from the measured raw sequential of about 5 MB/second.
Compared with the time saved, this optimization is very effective. One good fea-
ture about subset filtering is that the longer the subset, the more information
about the interrelationship between the adjacent items, the more powerful the
transaction transformation, and the more significant the reduction on the execu-
tion time.

Number of comparisons. In subset comparison, for each subset of a transac-
tion, we need to determine whether it is a candidate or not. The subsets of a
transaction are generated combinatorially from the items of the transaction.
Transaction transformation reduces the number of subsets by filtering out the
useless items and the unnecessary subsets generated from the retained items.
In Table 2.2, the total number of item comparisons of FilterApr is 7.84% of that
of CmpApr, and execution time of FilterApr is 9.4% of that of CmpApr. We can
see that the filters increase the hit-ratio by removing over 92% of futile item
comparisons.

6.3 Integrate FilterApr and Partition

Here we compare the performance of FilterApr and that of ARM++. Because
FilterApr and ARM++ share the same algorithm in the early iterations, actually
we compare the performance of FilterApr and the Partition phase of ARM++ in
the later iterations. Although FilterApr has employed several new optimizations
to improve its performance, in the later iteration, the TID-list underlying ARM++

ARM++: A Hybrid Association Rule Mining Algorithm 73



beats the item-structure behind FilterApr. In the kth iteration, to compute a count
for a candidate itemset, ARM++ needs only one comparison of the TIDs of its
two sub-itemsets, while FilterApr needs o(k) comparisons, i.e., the comparisons of
the k items of the subset with the items in one or multiple hash buckets. Recall
itemset-list also needs o(k) comparisons. Inherently, the TID-list is the best
among the three possible structures in later iterations. However, the size of the
TID-list is in proportion to the number of the transactions in the database. For
data with the same support for the same number of frequent itemsets, the length
of TID-lists of the database with 10,000,000 transactions would be 100 times
those of the database with 100,000 transactions. In contrast, FilterApr needs no
extra memory to hold the database. It works on the original database, and the
processing can be accelerated with the help of filters.

Execution time. Figure 2.11 shows the execution times of both FilterApr and
ARM++. For the hardest data set, the execution time drops from 174.66 seconds
down to 108.42 seconds. As discussed above, the improvement is due to the adop-
tion of Partition in the later iterations of execution. Similar to the subset com-
parison, there is hashing overhead associated with the TID comparison.
Therefore, TID comparison is much quicker than the candidate comparison.
However, in ARM++, there is an overhead to transform the data from the item-
structure to the TID-structure when switching from FilterApr to Partition. As to
the memory requirement, the filters in FilterApr requires less than 104 KB mem-
ory. When ARM++ switching to the Partition phase, we use all the available 64
MB of memory to store the intermediate TID-lists.

Number of comparisons. In Table 2.2, for ARM++, there is a new column, No.
TID Comparisons, to summarize the number of item comparisons based upon the
TID-lists. The total number of item comparisons of ARM++ is 53.88% of that of
FilterApr, and the execution time of ARM++ is 62.07% of that of FilterApr. We
can see that the adoption of the TID-list increases the hit-ratio by removing over
46% of the unnecessary item comparisons.

In the first column, we list an Item-list Ideal algorithm, which represents the
perfect algorithm based upon item-structure where none of the item comparisons
is related to any small itemsets. Actually, the total number of item compar-
isons of ARM++ is only 75% of that of the Item-list Ideal algorithm. This demon-
strates that the underlying TID-list data structure can provide a more efficient
comparison method than the item-structure in the later iterations.
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Scalability. Figure 2.11 shows the scalability of the ARM++ when the num-
ber of transactions scales up. The number of transactions ranges from 100 K,
500 K, 1 M, 2 M, 5 M, up to 10 M. The minimum supports of the experiments
are set to 0.25% and 0.75%. ARM++ scales linearly with the increasing number of
transactions.

6 CONCLUSIONS

Based upon our study of association rule mining, we have proposed a sequen-
tial algorithm, ARM++, which achieves better performance with the available
resources and displays near-linear scale-up behavior. We believe that ARM++ is
the first attempt to integrate different algorithms based upon the available
resources. In the early iterations, it requires fewer resources than Partition, and in
the late iterations, it performs faster than FilterApr. In our analysis of different
algorithms, we compare both their execution times and the number of compar-
isons involved. The execution of different algorithms at different stages is per-
formance oriented and resource based. The flexibility of the approach enables us
to integrate the latest research result in the association rule mining and related
field.

Unfortunately, the utilization of computer power was limited to a single machine
due to the sequential nature of our algorithm, so our future work will consist of
extending the proposed algorithms in a context of heterogeneous environments.
Several algorithms have been proposed [3,4,6] that aim to reduce execution time by
running on multiple machines and minimizing costly intercommunication.
However, all these algorithms are designed for parallel machines or homogeneous
network environments, where the performance of each node or machine is the same
or similar and the connection is reliable and fast. In a heterogeneous network envi-
ronment, the power of each machines varies, and the throughput of network con-
nection between different machine varies. Because usually there are multiple jobs
running at the same time, the local resources, i.e., CPU, memory, disk, and com-
munication resources, change over time. The challenge is to maximize performance
while using minimum resources.
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