
Chapter 18

PREDICTING GRID RESOURCE 
PERFORMANCE ONLINE
Rich Wolski,1 Graziano Obertelli,1 Matthew Allen,1 Daniel
Nurmi,1 and John Brevik1

1University of California, Santa Barbara

In this chapter, we describe methods for predicting the performance of
Computational Grid resources (machines, networks, storage systems, etc.) using
computationally inexpensive statistical techniques. The predictions generated in
this manner are intended to support adaptive application scheduling in Grid
settings, as well as online fault detection. We describe a mixture-of-experts
approach to nonparametric, univariate time-series forecasting, and detail the
effectiveness of the approach using example data gathered from “production”
(i.e., nonexperimental) Computational Grid installations.

1 INTRODUCTION

Performance prediction and evaluation are both critical components of the
Computational Grid [20, 8] architectural paradigm. In particular, predictions
(especially those made at run time) of available resource performance levels can be
used to implement effective application scheduling [13, 38, 42, 12, 43, 9]. Because
Grid resources (the computers, networks, and storage systems that make up a
Grid) differ widely in the performance they can deliver to any given application,
and because performance fluctuates dynamically due to contention by competing
applications, schedulers (human or automatic) must be able to predict the deliv-
erable performance that an application will be able to obtain when it eventually
runs. Based on these predictions, the scheduler can choose the combination of
resources from the available resource pool that is expected to maximize performance
for the application.

Making the performance predictions that are necessary to support scheduling
typically requires a compositional model of application behavior that can be
parameterized dynamically with resource information. For example, consider the



problem of selecting the machine from a Grid resource pool that delivers the
fastest execution time for a sequential program. To choose among a number of
available target platforms, the scheduler must predict the execution speed of the
application code on each of the platforms. Grid infrastructures such as Globus
[19, 15] provide resource catalogs in which static and therefore precisely known
attributes (such as CPU clock speed) are recorded. As such, the simplest
approach to selection of the best machine is to query the catalog for all available
hosts and then choose the one with the fastest clock rate.

There are several assumptions that underlie this simple example. One
assumption is that the clock speeds of the various available CPUs can be used
to rank the eventual execution speeds of the program. Clock speed correlates
well with execution performance if the machine pool is relatively homogeneous.
One of the basic tenets of the Grid paradigm, however, is that a wide variety of
resource types is available. If, in this example, a floating-point vector processor
is available, and the application vectorizes well, a slower-clocked vector CPU
could outperform a faster general-purpose machine, making clock speed an
inaccurate predictor of application performance. Conversely, if a scalar integer
code is applied, a high-clock-rate vector machine might underperform a slower
commodity processor.

A second assumption is that the CPU is the only resource that needs to be con-
sidered as a parameter in the application model. If the input and output require-
ments for the program are substantial, the cost of reading the inputs and
generating the outputs must also be considered. Generating estimates of the time
required for the application to perform I/O is particularly difficult in Grid set-
tings, since the I/O usually traverses a network. While static CPU attributes (e.g.,
clock speed) are typically recorded for Grid resources, network attributes and
topology are not. Moreover, at the application level, the required network per-
formance estimates are end-to-end. While it is possible to record the performance
characteristics of various network components, composing those characteristics
into a general end-to-end performance model has proved challenging [36, 16, 53,
17, 6, 30, 37].

However, even if a model is available that effectively composes application
performance from resource performance characteristics, the Grid resource pool
cannot be assumed to be static. One of the key differentiating characteristics of
Computational Grid computing is that the available resource pool can fluctuate
dynamically. Resources are federated to the Grid by their resource owners, who
maintain ultimate local control. As such, resource owners may reclaim their
resources or may upgrade or change the type and quantity of resource that is
available, etc., making “static” resource characteristics (e.g., the amount of mem-
ory supported by a machine) potentially time varying.

Even if resource availability is slowly changing, resource contention can cause
the performance, which can be delivered to any single application component, to
fluctuate much more rapidly. CPUs shared among several executing processes
deliver only a fraction of their total capability to any one process. Network per-
formance response is particularly dynamic. Most Grid systems, even if they use
batch queues to provide unshared, dedicated CPU access to each application, rely
on shared networks for intermachine communication. The end-to-end network
latency and throughput performance response can exhibit large variability in both

576 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.



local-area and wide-area network settings. As such, the resource performance
that will be available to the program (the fraction of each CPU’s time slices, the
network latency and throughput, the available memory) must be predicted for the
time frame that the program will eventually execute.

Thus, to make a decision about where to run a sequential program given a
pool of available machines from which to choose, a scheduler requires

● a performance model that correctly predicts (or ranks) execution performance
when parameterized with resource performance characteristics, and

● a method for estimating what the resource performance characteristics of the
resources will be when the program executes.

In this chapter, we focus on techniques and a system for meeting the latter
requirement. In particular, we discuss our experiences in building and deploy-
ing the Network Weather Service (NWS) [52, 49, 50, 35]—a robust and scalable
distributed system that monitors and predicts resource performance online.
The predictions made by the NWS are based on real-time statistical analyses
of historically observed performance measurement data. Typically deployed as
a Grid middleware service, the system has been used extensively [38, 12, 48, 3,
41, 51, 43, 9] to provide resource performance forecasts to Grid schedulers. In
this chapter, we describe the architecture of the NWS, the statistical techniques
that have proved successful from our collaborations with various Grid sched-
uling projects, and some of the lessons we have learned from building and
deploying a Grid information system capable of managing dynamic data in
real time.

2 REQUIREMENTS FOR GRID PERFORMANCE
MONITORING AND FORECASTING

As a Grid service, the NWS (as well as any other system that serves dynamically
changing performance data) must meet a demanding list of requirements. The sys-
tem must be able to run continuously so that it can gather a history of available per-
formances from each monitored resource. At the same time, the fluctuations in
performance and availability that it is tracking cannot impede its function. Network
failures, for example, cannot cause NWS outages, even though the NWS may be
using those network links that have failed to gather and serve performance data.

The performance monitoring system must also avoid introducing false corre-
lations between measurements. For example, the typical method for measuring
host availability is to use some form of “heartbeat” message to renew a soft-state
availability registration [21]. Hosts send a message periodically to a central server
to indicate their availability, and missing heartbeats indicate host failure. While this
architecture method is robust if the central server is running on a highly available
system, it inextricably convolves network failure and host failure. That is, a miss-
ing heartbeat or set of heartbeats could be because the host has failed, or because
the network linking the host to the central server has failed. For hosts within a
cluster, the problem is especially acute. If the network partitions between a clus-
ter and the soft-state registration server, the cluster hosts will appear to have

Predicting Grid Resource Performance Online 577



failed when, in fact, they can communicate with each other and with any hosts on
the same side of the partition.

Grid performance monitoring systems themselves necessarily have the most
restrictive performance requirements of all Grid services. If client applications
and services are to use the performance data served by the performance system,
in some sense the system must run “faster” than these clients so that the needed
data are immediately available. If they are not, clients may waste more time wait-
ing for performance data from the resources they intend to use than they will gain
from having the performance data in the first place. That is, the data must be gath-
ered and served in time to be useful. Few other Grid services must operate under
such restrictive performance deadlines.

Moreover, the standard technological approaches that have been developed
for serving data across a network typically are not optimized to handle dynami-
cally changing data. Most extant systems are designed under the assumption that
the rate of queries for the data is substantially higher than the rate at which the
data change. For static resource attributes such as processor type, operating sys-
tem and revision level, static memory capacity, etc. this assumption is reason-
able. As an example, queries for operating system type and revision level (which
are critical to support for automatic resource discovery) should occur at a higher
rate than the administrative OS upgrade frequency in any reasonable setting.
However, when historical resource performance is to be used to gauge resource
suitability, particularly with respect to load and availability, the opposite data
access pattern is typical. Resources update the information base with periodic
performance measurements much more frequently than queries are made. Thus
query-optimized systems, if not architecturally structural to support more fre-
quent updates than queries, may have trouble coping with the update load intro-
duced by the need to constantly gather performance measurements.

The need to monitor Grid resources constantly without perturbing those
resources requires the monitoring system to be ubiquitous yet mostly invisible to users
and administrators. Further, a resource monitoring process that has a noticeable
impact on running applications will not and should not be tolerated. These issues
imply a monitoring system that is powerful enough to provide useful information and
yet lightweight enough to not have significant impact on resource performance.

Finally, the Grid performance information system must be able to meet the
daunting engineering challenges described in this section at a relatively large
scale. While the debate about the feasibility of Internet-wide Grid computing
continues, at present Grid systems containing tens of thousands of hosts gener-
ating millions of individual performance histories are being deployed. To be effec-
tive, Grid performance monitoring systems must be able to operate at least on this
scale, in the wide area, while respecting the constraints placed upon resource
usage by each resource owner.

3 THE NETWORK WEATHER SERVICE
ARCHITECTURE

It is, perhaps, easiest to think of the NWS as a Grid application designed to
measure performance and service availability. Resource sensors must be deployed

578 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.



and executed on a large, heterogeneous, and distributed set of resources with
widely varying levels of responsiveness and availability. Due to the volatile nature
of Grid environments, the NWS is necessarily designed to be portable and scala-
ble, with functional mechanisms for load balancing, redundancy, and failure han-
dling. In this section, we describe the individual components of the NWS as well
as the mechanisms that have enabled it to be successfully deployed on Grid archi-
tectures around the world and to be compatible with or to work within the most
common Grid infrastructures (Condor [46], Globus [19, 15], GrADS [7, 23], etc.).

The NWS is composed of three persistent components and a suite of user
interface tools. The set of persistent entities that compose a minimal NWS instal-
lation includes one of each of the following: nameserver, memory, and sensor.
NWS installations typically include many sensor components, one on each
machine that is to be monitored. An installation also includes one or more mem-
ory processes, depending on the scale of the installation, and a single nameserver.
Each sensor process is responsible for gathering resource information, which is
then stored over the network to a memory, the location of which is registered in
the nameserver along with other system control information. The relationship
between these components is shown in Figure 18.1, and will be more thoroughly
explained in the following subsections.

In addition to these persistent components, NWS installations include inter-
face tools that allow users to search, extract, and request forecasts of measure-
ment data. Tools also exist that allow an NWS administrator to control the
running state of the entire installation from a single point on the network.
These tools are covered in depth at the end of this section.

Predicting Grid Resource Performance Online 579

N
W

S
 A

P
I

F
orecaster

C
ache

Replicated
Nameservers

Resource Monitors

DB

FS

nameserver

nameserver

GrADS

XML

NPACI
memory

memory

memory Globus

sensor

sensor

sensor sensor

sensor

C
P

U

N
etw

ork

A
vailability

M
em

ory

sensor

Figure 18.1. Overview of an example NWS installation.



3.1 Nameserver

The nameserver can be considered to be the phone book of the NWS—it
keeps a record of every host and activity in the system. As a single source of
control and information, NWS users and other NWS entities use the name-
server and stored registrations to perform lookup, search, store, and many
other control tasks. Essentially, if an activity, host, or process exists in an NWS
installation, information about it can be gleaned from the data stored in the
nameserver.

Although there can be multiple nameserver processes, there is only one logical
nameserver for each NWS installation. All other NWS components such as mem-
ories and sensors are in periodic contact with the nameserver to keep the view of
the system current and controllable.

To combat the inevitable downtime of a nameserver or of a machine on
which a nameserver is running, a robust failover mechanism has been built into
the system. In order to provide robustness, the nameserver is architecturally
structured with mirroring capabilities: two or more nameservers, on separate
hosts, can be directed to keep their data synchronized. In this case, every update
request coming to one nameserver will be forwarded to all others. The name-
servers also implement a queue of update requests to tolerate temporary net-
work failures. Nameservers that fail permanently are removed from the
mirroring process.

The primary datum kept by the nameserver is called a registration. Each reg-
istration is a set of flexible key/value attribute pairs, with only a few keys required
to construct a valid registration. The required keypairs in every registration are
name, objectclass, timestamp, and expiration. The former two are used to describe
the type of registration and are provided by the registering host, and the latter
two are used for management and are added by the name-server upon receipt.
The nameserver offers fast search capabilities and updates on the registrations by
keeping them ordered in memory and periodically saving a backup to stable stor-
age. Apart from the required keypairs, NWS hosts are free to add new attributes
containing whatever control information they require to operate.

Of the required keypairs, objectclass is the highest level and the only key-pair
that defines the content of the registration itself. Currently, objectclass supports
the following values and additional information:

● nwsHost. Every host registers itself with the nameserver. hostType indicates
whether the NWS host is a memory nameserver of the sensor; ip Address is the
ip address of the nwsHost, as reported by gethostbyname or forced from
the command line; port is the TCP port on which the host is listening; started
is the time when the host was executed; owner is the login name of the user that
started the host; version is the NWS version; and flags are the options passed
to configure upon NWS compilation flags. Other keypairs reflect specific host
details (systemType, releaseName, machineArch, CPUCount, etc.).

● nwsSkill. Every NWS sensor registers a list of its capabilities (called skills). It
contains the skillName, the option that can be used when starting an activity, and
an informative list of what the options take as arguments (integer, string, . . .).

580 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.



● nwsControl. Currently there are two different controls defined by the
controlName: periodic and clique. This objectclass also defines the host bound
to the control, the option that is passed to the control, and the skillName that
can be started under this control.

● nwsActivity. Experiments that are being run in the NWS system are all regis-
tered with the nameserver. Objects of this type contain the control-Name that
started the activity, the host running the activity, the skillName used for this
activity, and the option that the skill uses.

● nwsSeries. Collections of measurements are called series. Objects of this type
contain the host that ran the experiments, the activity generating the series, the
measured resource, the NWS memory that stores the series, the measuring unit
for this resource (label), and the option used for this skill.

The nameserver’s responsibility is to store small, independent data items and
make them available to users. As a result, it is optimized to make searching and
correlating data quick and simple. However, this design is not conducive to stor-
ing large sets of data such as measurement series. These data are stored by
another process that is designed to deal with the information’s specific nature.
This component, called the memory, is described in the next section.

3.2 Memory

The memory server is responsible for housing measurement data produced by
sensors within an NWS installation. The memory receives measurements from
sensors and other sources and organizes them into a collection called a series.
It makes these series available to users through a well-defined interface.

Memories are a very flexible part of the NWS infrastructure and can be used
in whatever way is appropriate to the scale of the installation. Users interested
in minimizing the network traffic that is used to save measurement data can cre-
ate a memory on each machine or administrative domain housing sensors.
Alternatively, to reduce the cost of retrieving data from a single source, a mem-
ory can be place on a nearby central host capable of handling a large number of
sensors and measurement series.

The memory registers every series that it is responsible for with the name-
server. In the case of the failure of a replicated nameserver, the memory knows
how to contact and utilize backup nameservers. Without the presence of any
functional nameserver, it can operate independently–storing measurement data
and series registration from newly started sensors. If sensors establish new series
with a memory while the nameserver is inaccessible, the memory caches their reg-
istrations and forwards them when the nameserver becomes available again.

Upon restart, a memory checks if there are older series in stable storage.
If any exist, it creates a limited registration and sends this to the nameserver.
This mechanism allows the system to access series that are no longer updated by
active sensors but are still addressable by the memory.

By default, memories store measurement data using the file system. Each
series is associated with a file named with the fully qualified series name. These
files are managed as circular queues, with a size determined by a user parameter.

Predicting Grid Resource Performance Online 581



The first line of the file contains data for managing the circular queue. Each series
measurement is stored in a fixed-length, human-readable buffer containing the
arrival timestamp, sequence number, expiration timeout, and the timestamp/
measurement pair sent by the sensor. As the circular queue becomes full, old
values are overwritten.

If data are stored in the file system in this way, the memory keeps a cache of
the most frequently accessed series in resident memory to minimize the perform-
ance hit of going to the file system. To keep update operations safe, the cache is
write-through. Although the cache reduces IO load and increases performance
for read operations, the fact that it does not cache write operations results in sub-
stantial IO overhead from writes being performed on disk files. Larger installa-
tions typically exploit the feature of NWS memories, which, by allowing multiple
memory instances within an installation, significantly reduces IO load on any one
host running a memory process.

While memories usually store a large enough backlog of data to make accu-
rate resource forecasts, some applications require a longer trace of data. In these
cases, memories can use a database instead of a circular-queue filled flat file.
In the database, a new table is generated for each series the memory is handling.
Each set of measurements is stored in the table with the same information as the
flat file design. Data are stored for as long as the database administrator decides
to keep the history.

When data are requested from an NWS installation, the memory process is
responsible for providing the data. The memory makes no effort to interpret user
requests, so users usually talk to the nameserver to discover the name of a series
and the memory that houses it. The primary source of data for the memory is the
sensor process, which is responsible for running online performance tests. This
process is described in the next section.

3.3 Sensor

The NWS sensor component is responsible for gathering resource information
from machines, coordinating low-level monitoring activities, and reporting meas-
urements over the network to an NWS memory.

On each machine that houses monitored resources, a single sensor process is
deployed. Since single machines house multiple resources, each sensor process
has the capability of spawning child processes for measuring each unique
resource. Sensors are typically measuring resources available to normal users, so
the NWS sensor should be executed using normal user permissions. Running
sensors with system privilege is, in fact, discouraged. Starting them can be done
manually through automated execution systems (cron, etc.) or at system
startup.

To account for unforeseen complications that may cause various resource
measurement processes to fail or block, the sensor separates its administrative
and measurement components into separate processes. The original parent
process is responsible for accepting control messages and starting measurements,
while child processes are created to perform the actual measurements. If this
approach is not desirable, this feature can be disabled, leaving only one process to
handle both measurements and control messages.

582 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.



If the network between the sensor and memory fails or the memory process
becomes temporarily unavailable, the sensor process will begin caching resource
measurements until such a time when the memory becomes available. In this way,
the sensor is capable of maintaining a consistent view of measured resources
without gaps incurred by network or process failures.

The introduction of firewalls often adversely affect distributed systems. NWS
sensors can be instructed to use a specified port when conducting network exper-
iments, allowing an administrator to open only two ports in the firewall: one to
control the sensor and the other to allow the sensors access to one another while
taking network measurements.

A sensor is instructed to start monitoring a resource using a specific skill with
some well-specified options. An activity is the process of using a skill at specific
interval. An activity generates one or more series measurements, and a single sen-
sor is capable of running any number of activities. The current NWS sensor
implementation includes the following predefined skills (note that, due to system
limitations, not all skills are available on all architectures):

● availabilityMonitor: measures time since the machine last booted.

● cpuMonitor: measures the fraction of the CPU available and the current CPU
load. Accepts a nice level as options.

● diskMonitor: measures available disk capacity of a specified disk. Accepts a
path as option.

● filesystemMonitor: monitors performance of a specified file system. Accepts
multiple options, including path, fstype (block/char), fstmpdir, fssize, and
fsbufmode (instruct, skill to attempt to avoid file system buffer cache using var-
ious methods).

● startMonitor: registers the numbers of seconds since the sensor started.

● tcpMessageMonitor: monitors bandwidthTcp and latencyTcp to a target host.
It accepts options to set the buffer size of the socket, the message size to be
used, and the total experiment size.

● tcp ConnectMonitor: measures the time it takes to establish a TCP connection
with a target host.

● memorySpeedMonitor (experimental): measures attainable memory speed
(random or sequential access).

In addition to predefined skills, the sensor has been architecturally structured
to make the addition of novel user-defined skills fairly straight forward. A user
who wishes to add a new skill needs only to implement a function for measur-
ing a resource of interest, and can rely on existing mechanisms for caching, com-
munication, and control, making the process of adding a new skill as simple and
efficient as possible.

Many resources, like CPU, memory, etc. are measured on a single machine.
Other resources, in particular network resources, require that two hosts participate
in the experiment. Because the NWS uses active network probes, simultaneous
tests could interfere with each other. To deal with these different types of

Predicting Grid Resource Performance Online 583



measurements, the NWS uses two methods to determine when measurements will
be taken.

Periodic skills

Periodic skills need to be run at specific time intervals and are independent
(thus running these skills on different hosts at the same time doesn’t cause inter-
ference in the measurement). Upon starting such skills, the period option is used
to determine how many seconds pass between experiments. Most predefined skills
are periodic skills, since measurement of the CPU, memory, disk, and other inde-
pendent resources has no effect on other hosts measuring the same resources.

Clique skills

NWS cliques are used to provide a level of mutual exclusion within a group of
hosts so that their measurement activities do not interfere with each other. This is
a best-effort mutual exclusion mechanism. Upon the start of a clique activity, a
token is generated and circulated within the members of the clique. A member
can take measurements only if it has the token. Once the member has
finished taking all the needed measurements, the token is passed to the next clique
member.

Because the network can partition or hosts can fail, the token can get lost. To
account for this, the clique protocol implements a mechanism to regenerate the
token if knowledge of it is lost. Every clique has a leader (by default, the member
that starts the token) that keeps track of the time needed to circulate the token.
If the leader doesn’t receive the token within a reasonable length of time, it regen-
erates the token and starts a new circulation. Also, if a member of the clique sees
a long enough delay between tokens, it becomes the leader and starts a new
instance of the token. The clique is timed out after a few multiples of the clique
periodicity.

The token system is best effort because it considers taking measurements at the
right frequency over strict mutual exclusion. The clique protocol ensures that
the sensors take their network measurements at roughly the periodicity asked
by the activity. Members can starts taking measurements without holding the
token if too much time has elapsed. If the token is then received after the sensor’s
timeout, the token is passed along without taking the measurements. Mechanisms
are in place to eliminate multiple tokens circulating at the same time (for example,
when a network partition is restored).

3.4 Design considerations

The NWS is expected to provide access to useful data for a large set of het-
erogeneous and faulty systems. As a result, it is required to be robust, portable,
and scalable. Furthermore, sensor processes are run on the machines they are
monitoring. If they have high resource requirements, they are likely to degrade
application performance and to interfere with their own measurements.

Failure is a complicating factor in the design of NWS processes, since they
cannot disregard their responsibilities because a process they report to is unavail-

584 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.



able. Passive failure detection is accomplished using heartbeat messages between
dependent processes. Heartbeats are used to detect expired registrations and fail-
ures in replicated nameservers. Also, the NWS relies heavily on timeouts to
aggressively avoid deadlock during communication among NWS processes.
Components measure the length of time to send data and receive heartbeats for
each host with which they interact. By using forecasting techniques (described in
Section 4), the processes use these measurements as a timeseries to compute a
perdition and error value. These two pieces of information are combined to form
an expected upper bound. These bounds are used to timeout network communi-
cation, determine lost clique tokens, and note which processes have not sent a
heartbeat message.

The NWS has a number of mechanisms, detailed in the sections describing
each component, for handling the failure of the processes on which they depend.
First, nameserver replication adds some robustness to the NWS’s central point of
failure. Additionally, memories and sensors all cache registrations that could not
be sent to the nameserver. This means that these processes can be started even
when the nameserver has failed, and they can also accommodate temporary
nameserver failures. Lastly, sensors cache measurement data so that measurement
are not lost when memories fail. These caches can hold a large number of meas-
urements, and can store almost an hour of CPU availability before they start to
lose information.

There are a handful of portability issues that have been addressed for the
NWS as well. For one, timing out socket communication is not a trivial task.
Early versions used alarm signals to interrupt blocking communication system
calls. This method is not portable for all OSes and does not interact well with
threaded processes. Therefore, the NWS can be configured at compile time to
use nonblocking sockets, disabling the use of the alarm signal. Other portabil-
ity issues come from the use of threads, which are notoriously different across
architectures and OSes. Therefore, forking is used in places where threads might
be used. To allow users to implement processes that use the NWS within
threads, the NWS libraries can be built with an option to add mutexes to syn-
chronize internal calls.

Monitoring the network performance of a set of hosts requires taking O(n2)
measurements, which obviously poses scalability concerns at some level.
Observing that, most likely, there are clusters of machines tightly connected (fast
local networks) that as a group are connected with wide-area networks, we make
the assumption that the statistical properties of the links from machines in one
cluster to machines of another cluster are somewhat similar. Hence we do not
require all individual measurements from all machines within separate clusters,
but can instead elect one (or a few) machines from each cluster and start a super-
clique among these selected machines. Newer versions of NWS provide a caching
mechanism that understands this operation and provides a logical view of an all-
to-all performance matrix of TCP network measurements. This caching mecha-
nism can be seen in Figure 18.2.

The NWS cache provides another scalability feature. Accessing O(n2) series
requires a user to contact the memory O(n2) times, thus increasing the time when
data are effectively available to unacceptable levels. To address this problem, we
have made the assumption that what is really needed is the single prediction

Predicting Grid Resource Performance Online 585



instead of the entire history. The cache works as proxy, collecting the data from
the memory and generating the forecasts, then returns the O(n2) forecasts in one
call, avoiding the prohibitive O(n2) connection cost.

Finally, the components themselves are designed to be able to scale to a large
number of hosts. The biggest liability is the nameserver, since it is the most cen-
tralized component. The requirements on the nameserver, however, are extremely
low, so this liability poses little problem. The worst observed example was a name-
server running on a common desktop Linux machine that served more than
50,000 registrations and hundreds of hosts. In a case where nameservers are fre-
quently accessed, they can be replicated so that different hosts and users can
depend on different nameservers. The requirements of memories are not as light
as nameservers, so they cannot serve nearly as much information. However, mem-
ories are very flexible about where they can be placed, so large systems can easily
support a large number of memories.

Sensors have been designed to be lightweight and as nonintrusive as possible
on the host being measured. Only under excessive monitoring, due to misconfig-
uration, may slower or less robust systems be taxed (when the periods of large
cliques, file system sensors, and CPU sensors are excessively short). Typically, sen-
sors uses between two and four megabytes of system memory, depending on
the number of experiments they run. They spend most of their time waiting for
control messages without using the host’s processor.

3.5 User interface

There are three main interface applications that are used to interact with an
NWS installation: nws_search, nws_extract, and nws_ctrl. These provide the core
command-line interface with the NWS processes.

586 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

C
ache

Logical RepresentationClique Hierarchy

memory

Figure 18.2. Hierarchical clique with connectivity cache reduces both the number of experi-
ments taken and the connectivity graph creation when cliques contain a large number of hosts
separated by wide-area networks.



The nws_search program allows a user to search through the registrations that
a nameserver has available. It uses a syntax reminiscent of LDIF, and all the usual
operators can be used (&, ⎜, =, >=, <= ...). For convenience, shortcuts have been
added that allow users to list standard things like sensors, series, or skills without
knowing the registration structure.

The nws_extract program allows the user to retrieve measurement data (series)
from an NWS installation. The user specifies the nameserver, the resource they
are interested in, and the hosts whose data they want to retrieve. nws_extract will
first query the nameserver to find which series name matches the user request,
then lookup in the matched object and the contact information of the associated
memory, which is then contacted for data retrieval. The series of data is then fed
to the forecaster, and the measurements, forecasts, and respective errors are then
presented to the user. If the nameserver is unknown, nws_extract can query the
first sensor asking to report which nameserver it is using. If the user knows
the series names and the memory storing them, using -M and -S they can
bypass the nameserver and query the memory directly.

Finally, nws_ctrl allows the user to control processes in an NWS installation.
Most importantly, it allows administrators to modify behavior, which is usually
specified through command line options at start time. However, there is also a
handful of other commands. The following actions are understood by nws_ctrl:

● test: performs a simple test of health of a nwsHost. The nwsHost can be dead
(no connection was made), unresponsive (connection was made but there was
no response from the sensor), sick (the sensor is reachable but it cannot talk
to its nameserver), or healthy (everything is functioning as expected).

● register: instructs the nwsHost to use a different nameserver for registration of
objects. This allows the administrator to replace, restart, or move the name-
server process without redeploying the entire NWS installation. If the com-
mand is given to a nameserver, it will begin mirroring with the target.

● memory: instructs the given sensor to send all new measurements to a differ-
ent NWS memory.

● halt: stops the nwsHost.

● log: toggles the verbosity of logging on the specified nwsHost.

● skill: asks a sensor to run a particular skill with specified options. Unlike an
activity, the results are not taken continuously or sent to the memory but are
instead reported directly to the user at his or her terminal.

● add/remove: adds or removes a member from a currently running clique. The
user needs to specify a member of the clique and the clique name, and the sen-
sor will restart the modified clique with the same options but a different list of
members.

● ping: runs a single network experiment (tcpMessageMonitor) between the host
running the command and the remote sensor, reporting the results directly to
the user.

● start/stop: asks a sensor to start or stop an activity.

Predicting Grid Resource Performance Online 587



All these processes make use of the well-defined NWS-API to retrieve infor-
mation and change the behavior of NWS processes. These functions are available
to users through the nws_api library. It is therefore possible to include the func-
tionality of these programs in a user’s application with relative ease. In fact, these
programs are invaluable examples of how to interface with the NWS at an appli-
cation level.

4 THE NWS FORECASTING METHODOLOGY

The forecasting methodology used by the NWS assumes that each resource
performance characteristic can be measured quantitatively. Each resource can be
described by a stream of performance measurements, and predictions of future
measurement values are the quantities that are of interest. Notice that useful
qualitative information may be difficult to incorporate under this assumption.
For example, it may be possible to know that “less” bandwidth will be available
to a desktop machine typically used by a person who frequently downloads
images from the Internet than to a machine used by a person who typically works
locally. The NWS approach is to gather performance measurements from both
machines and then predict future measurement values so that the predictions can
be compared quantitatively. For some Grid applications, simply knowing that
“less” or “more” resource will be available may be enough to develop an effective
schedule. The advantage of using quantifiable resource characterization, however,
is that the information is more easily encoded for use by an automatic scheduler.
That is, it may be difficult for a scheduling agent to parse and compare the qual-
ities of a resource, but forecast quantities can almost always be compared if the
units are compatible.

A second important assumption made by the NWS forecasting method is that
performance measurements can be gathered nonintrusively. In particular, any
load that the performance monitors introduce does not have a measurable effect
on the resource being monitored.

Finally, because the methods are time series based, they assume that the char-
acteristics being measured have an instantaneous value that can be sampled at
any given point in time. Not all quantifiable performance characteristics that are
useful for scheduling easily conform to this model. For example, it is useful to pre-
dict the duration of time that a resource will be available based on previous avail-
ability history. Availability, in a time series form, is a series of binary values
indicating “available” or “unavailable” at a particular time. Thus, the measure-
ment levels are bimodal. While Markov-based models are adept at predicting
modality, time-series analysis tends to be less effective. It is possible to incorpo-
rate state-transition models into the NWS forecasting framework, but at present
these are not used by the system.

Dynamic Model Differentiation
Rather than relying on a single model, the NWS uses a mixture-of-experts

approach to forecasting. A set of forecasting models are configured into the sys-
tem, each having its own parameterization. Given a performance history of pre-
viously observed measurement values, each model is exercised to generate a
forecast for every measurement value, based only on the measurement values that

588 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.



come before it. That is, given a performance history of N values, a forecast is gen-
erated for each. To generate a forecast for measurement k, only values up to meas-
urement k − 1 will be presented to each forecasting model, for all values 1 ≤ k ≤
N. We term this method of replaying a performance history to generate a forecast
for each known measurement value postcasting.

Postcast errors are generated for each forecasting method by differencing
each measurement with the forecast generated for it. By aggregating the post-
cast errors, each method is assigned an overall accuracy score for the complete
history up to the point in time when the forecast is generated. When a single
forecast is required, the NWS forecasting system applies the postcasting pro-
cedure to all the configured prediction models using the most recent perform-
ance history available, and ranks each prediction model in terms of its
accuracy. The most accurate model is then chosen to make the requested fore-
cast. Each time a forecast is requested, the NWS recalculates the accuracy
ranking using the most recently gathered history. The NWS constantly gath-
ers measurement data from sensors that it controls. Thus, the performance
histories that it uses are, typically, up to date at the time a forecast is requested
from the system, and the forecaster choice takes into account the “fresh” his-
torical data.

This method of differentiating between competing models based on previ-
ously observed accuracy has several advantages. The first is that it is nonpara-
metric. Each individual model may have a specific parameterization, but the
complete technique simply takes the constantly updated performance history
gathered by the NWS as its only input. A second potential advantage is that it is
possible for the system to adapt to changing conditions in cases where the per-
formance response series is nonstationary. For example, if an exponential
smoothing predictor with a gain factor of 0.01 is the most accurate predictor at
one point in time, and conditions change so that a sliding-window median pre-
dictor with a window size of 10 becomes the most accurate (due to a change in
the series dynamics) then the system will switch predictors if the change is per-
sistent enough to cause the aggregate error ranking to change. If, however, the
forecasters have been exposed to an extensive performance history before the
change point, it may take a great deal of time for the better method to garner a
lower aggregate error.

To improve the response of the overall technique to changes in the underlying
dynamics of each measurement series, the NWS forecasting subsystem also selec-
tively limits the amount of history during postcasting to determine if “old” data
is harming accuracy. During the dynamic model-selection phase, a postcast is
conducted using all previously available data. In addition, the system conducts
postcasts using different windows of previous data (always starting with the most
recent data and working backwards in time) and records the “winning” forecaster
for each window size. The number of postcast-limiting windows and their sizes
are fixed at compile time, but can be changed via configuration parameters when
the forecasting subsystem is built. Each window size of previous history is subse-
quently treated as a separate forecaster, and a final accuracy tournament deter-
mines which forecaster will be used.

The pseudocode shown in Figure 18.3 summarizes how NWS forecasts are
generated from a given measurement trace. The effect of using this method is that

Predicting Grid Resource Performance Online 589



either the forecaster that has the lowest aggregate error since the beginning of the
trace will be chosen as best forecaster, or the forecaster that has the lowest error
over an abbreviated history of fixed size will be chosen. If the system has quickly
changing dynamics, forecasters that work well over short histories should be more
accurate, since they do not include stale data.

5 AN EXAMPLE

To illustrate the types of forecasts that can be generated by the NWS adaptive
forecasting technique, we will use the following example. Figure 18.4 depicts an
application-level TCP/IP trace from the University of Tennessee (UTK) to the
University of California in San Diego (UCSD). The trace times a 64 kilobyte
TCP/IP socket transfer and an application-level acknowledgment, and from that
timing and data size, it calculates a throughput measure. The socket buffers for
this trace are 32 kilobytes, and the buffers used in each communication system
call are 16 kilobytes. The entire trace spans the month of June 2000, with one
transfer recorded every 30 seconds.

(Note: The actual trace contains a little over 85,000 measurements. As such,
the trace data used to generate the graphical figures in this chapter have
been decimated. All forecasting and error calculations, however, use the com-
plete trace. We decimate the time series output only for graphical display
purposes.)

A companion trace of traceroute data showing the end-to-end gateway tra-
versal indicates that the series is likely not a stationary one. The routes used to
connect UTK with UCSD changed from time to time due to routing table
misconfigurations and maintenance.

590 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

input: T: measurement trace
F: set of forecasting models that take a trace of fixed size and pro-

duce a forecast of next value
W: a set of integer window sizes to limit postcasting

for each window size in W+ (entire history)
for each forecaster in F

postcast current forecaster over current window size in T 
(window size slides over all of T)

record aggregate error for current forecaster
end for
record forecaster with lowest aggregate error for this window size

end for

choose forecaster and window size with lowest aggregated error and make 
final forecast using it

Figure 18.3. Pseudocode for NWS forecasting methodology.



In Figure 18.5 we show the NWS forecasts (the light color) superimposed over
the measurement series (dark color). After each measurement was gathered, it
was passed to the forecasting subsystem, and a forecast (using the method
described in Section 4) was generated to produce the forecast trace. From Figure,
18.5 it is clear the the NWS forecasters determine a centralized or smoothed esti-
mate at each step in the series. Figure 18.5 also provides a qualitative depiction of
the forecasting error. Each light-colored forecast point is matched vertically with
the dark-colored measurement data point it forecasts. The degree to which the
dark features are showing (i.e., are not obscured by light-colored features) pro-
vides an indication of the overall error.

Predicting Grid Resource Performance Online 591

UTK to UCSD
NWS Measured TCP/IP Throughput

June 1 through July 1,2000

0

0.2

0.4

0.6

0.8

1
T

C
P

/IP
 B

W
 (

m
b/

s)
T

ue Jun
27

15:16:51
2000

W
ed Jun
21

02:49:54
2000

W
ed Jun
14

10:19:28
2000

W
ed Jun

7 17:26:42
2000

T
hu Jun 1

00:05:14
2000

Figure 18.4. Internet throughput, 64KB messages.

1

T
C

P
/IP

 B
W

 m
b/

s)

UTK to UCSD
NWS TCP/IP Throughput

Measurements and Forecasts
June 1 through july 1 2000

0

0.2

0.4

0.6

0.8

T
ue Jun

27
15:16:51

2000

W
ed Jun
21

02:49:54
2000

W
ed Jun
11

10:19:28
2000

W
ed Jun

7
17:26:42

2000

T
hu Jun

1
00:05:14

2000

Figure 18.5. NWS forecasts of UTK to UCSD throughput.



More quantitatively, Figure 18.6 details the error performance of the fore-
casting system. The vertical axis of the graph shows those forecasters that are cur-
rently configured into the NSF Middleware Initiative (NMI) [32] release of the
NWS and their individual error performance. Error (shown on the horizontal
axis) is measured as the square root of the mean square error (MSE). If each
NWS forecast is considered to be a conditional expectation of the succeeding
measurement, then the forecasting error approximates the conditional sample
standard deviation. We do not claim, however, that the conditional expectation or
the conditional standard deviation is either an optimal or an unbiased estimates
for the true conditional mean and variance—only engineering approximations.

Each of the horizontal bars in Figure 18.6 (except the top two) shows the error
performance of a different forecasting model. Notice that one type of model (e.g.,
exponential smoothing [24]) is used multiple times with different parameterizations
(e.g., the gain factor). The entire forecasting suite is similarly populated by different
parameterizations of a smaller set of models. The software has been modularized
to permit new model types, as well as different modularizations of the included
models when it is configured. Currently, the NWS uses 24 model parameterizations
(shown in Figure 18.6) in the standard release. The choice of these models is based
on our anecdotal experience with effective prediction techniques in the Grid set-
tings, where we or our collaborators have constructed successful schedulers.

The error bar that is second from the top Figure 18.6 shows the error perform-
ance of the adaptive NWS technique. That is, this line indicates the true error an

592 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

0.20.150.10.050mb/s

Optimal Postcast
NWS Adaptive MSE

Adaptive Median Window 21-51
Adaptive Median Window 5-21

30% Trimmed Median Window 51

30% Exp. Smooth, with 10% trend
20% Exp. Smooth, with 10% trend
15% Exp. Smooth, with 10% trend
10% Exp. Smooth, with 10% trend
5% Exp. Smooth, with 10% trend

90% Exp. Smooth
75% Exp. Smooth
50% Exp. Smooth
40% Exp. Smooth
30% Exp. Smooth
20% Exp. Smooth
15% Exp. Smooth
10% Exp. Smooth
5% Exp. Smooth

Running Mean
Last Value

30% Trimmed Median Window 31
Sliding Median Window 5

Sliding Median Window 31
 Median Window 5

 Median Window 31

Figure 18.6. NWS forecasts of UTK to UCSD throughput.



NWS user would have seen from the forecasts generated when the trace was gath-
ered “live.” Notice that this performance is equivalent to the minimum error across
all configured forecasters. While space constraints prevent us from demonstrating
this effect more completely, in all postmortem trace analyses performed by our
group since the inception of the project, this phenomenon has been observed. The
NWS adaptive forecaster achieves at least equivalent (if not slightly better) error
performance as the most accurate of its constituent models. We do not claim that
the adaptive forecaster must achieve equivalent accuracy. It is clear that it is possi-
ble to construct a series artificially for which the adaptive technique will be less
accurate. Our experience, however, is that for empirically observed measurement
series taken from Grid systems, this phenomenon occurs in every case.

Also, for space constraints, we have omitted the limited postcast history errors.
For this trace, the best overall adaptive performance comes from considering all
previous values at any given point in the trace (despite the potential for nonsta-
tionarity). That is, the forecasters that adapt based on a shortened window of his-
tory are less accurate that the ones that consider all previous measurements.

The error bar marked “Optimal Postcast” at the top of the figure indicates the
theoretically maximal forecasting performance (minimum error) that the method
could have achieved if the best predictor at each step were known. That is, each
time a forecast was generated, if the most accurate prediction made by any pre-
dictor in the suite were used, the aggregate error measure shown by the top error
bar in Figure 18.6 would have resulted. This measure represents the upper bound
on accuracy, since it is the most accurate that the entire suite could have been if
perfect foreknowledge of predictor accuracy were possible.

The bottom two error bars are also noteworthy. The bottommost error bar
(marked “Last Value”) represents the accuracy obtained by simply using the last
observed value as a prediction of the next performance measurement at each step.
This method corresponds to the typical way in which Grid users make ad hoc
estimates without the aid of numerical forecasting techniques. Most users simply
“ping” the desired resources or read the most recent performance measurements
recorded for those resources by an available monitoring tool, and compare the
measurements that they observe to make their scheduling decisions. This method
is, by far, the least accurate of those that are available. A second common method
is to use a running average as an estimator, based on the assumption that the
series is converging to a single mean performance value. The running mean is
more accurate than the last value as a predictor, but again, significantly less accu-
rate than other, only slightly more sophisticated techniques.

One possible argument for using the more simple last value or running average
techniques is that the computational efficiency of these methods is quite high. The
last value requires no computation, and the running average can be calculated as
a simple ongoing update. The techniques that we have chosen to incorporate in the
NWS implementation, however, come primarily from the signal processing disci-
plines, making very high-performance versions possible. With careful implementa-
tion, each forecast shown in Figure 18.5 required 161 microseconds on an
unloaded 750 MHz Pentium III laptop. Thus the additional computational over-
head introduced by our implementation of the adaptive methodology introduces
negligible performance overhead. More concretely, considering the difference in
error performance between the Last Value predictor, the adaptive NWS predictor,

Predicting Grid Resource Performance Online 593



and the Optimal Postcast, our implementation halves the error difference between
optimal and last value at a cost of 161 microseconds per forecast.

Forecasting Error

For Grid scheduling, the forecasting error can also be used to gauge the value
of a particular resource. In Figure 18.7, we show a trace of TCP/IP throughput
between adjacent workstations attached to a 100 megabit-per-second Ethernet at
the San Diego Super Computer Center (SDSC). The probe size for this trace is
64 kilobytes, with one probe taken every 120 seconds, and the adaptive NWS min-
imum MSE forecast is superimposed over the measurement trace. The Ethernet
segment, however, is also shared by other hosts at SDSC. That is, it is not dedicated
to a particular cluster, but rather is a part of the shared, local-area network infra-
structure. In Figure 18.8, we show three days’ worth of TCP/IP trace data
between a pair of cluster nodes at UTK. The nodes are attached via a switched
gigabit Ethernet that is dedicated to intracluster communication exclusively. Both
figures are plotted using the same scale. Note that the missing values in Figure
18.8 occur when the machine was taken out of service for maintenance.

As expected, the forecast performance of the dedicated gigabit Ethernet link
is higher than that for the 100 megabit connection throughout the measurement
period. The gigabit link’s forecast hovers near 100 megabits per second for most
of the trace, while the forecasts for the 100 megabit link are mostly just above 50
megabits. However, the MSE value (termed the forecast deviation in each figure)
for the 100 megabit trace is 9.7 megabits per second. For the gigabit trace, it is
64.3 megabits per second. Roughly speaking, as a percentage of the forecast
value, the forecast deviation is approximately 20% of the forecast for the 100 MB
Ethernet, but 60% for the gigabit link. For programs with malleable granularity
that can be controlled by an online scheduler, a more predictable performance
response, despite lower absolute performance, may make a resource more valu-

594 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

TCP/IP Throughput
Adjacent workstations

100 mb/s Ethernet

Forecast Error Deviation: 9.7 mb/s

day 3day 1

0

50T
hr

ou
gh

pu
t (

m
b/

s)

100

150

200

250

Time

Figure 18.7. NWS measurements and forecasts of 100 MB Ethernet at SDSC.



able than a faster, less predictable resource. Data parallel or SPMD (Single
Program Multiple Data) programs, for example, have their overall performance
defined by the slowest task. In [9] we describe a dynamic scheduling technique for
data parallel programs that automatically partitions the workload based on fore-
cast performance levels. For that system, a grossover prediction of delivered per-
formance results is extra work assigned to the potentially slow resource, and as a
result, the application executes with less-than-expected performance.

This example also illustrates the role that forecasting can play in detecting
faulty resources. For a dedicated gigabit switched network, a forecast value near
100 megabits, with an error deviation of more than 60%, is indicative of a poten-
tial problem. When shown these data, the system administrators for the cluster
upgraded the system software (several times: hence the dropout in the trace) in an
effort to correct a suspected configuration problem. By using the NWS forecast-
ing, it is possible to build an alarm system that would have signaled the potential
problem much earlier [29].

6 FORECASTING ERROR AND EMPIRICAL
CONFIDENCE INTERVALS

In the previous example, the forecast error deviation permits a ranking of
resources by their predictability. For some measurement streams, the forecasting
error also can be used to generate a quantifiable bound on the predictability of
the measurements in the stream. By treating the MSE as the conditional sample
variance, a confidence interval for the forecasted value can be calculated as (fore-
cast − *K MSE , forecast + *K MSE ), where K is a multiplicative factor to be
determined. We have used a K value of 3 to bound the predicted execution times
of worker tasks in a master–slave distributed implementation of FASTA — a
commonly used genetic sequencing application [43]. For the genome sequences

Predicting Grid Resource Performance Online 595

TCP/IP Throughput
Switched Cluster Nodes

1000 mb/s ethernet

Forecast Error Deviation: 64.3 mb/s

day 3day 1
0

50T
hr

ou
gh

pu
t (

m
b/

s)

100

150

200

250

Time
Figure 18.8. NWS measurements and forecasts of switched gigabit Ethernet within a cluster
at UTK.



we examined, a K factor of 3 allowed the scheduler to determine the “depend-
able” task execution time across a wide range of target resources.

To predict the performance of an individual resource (as opposed to the con-
volution of data-dependent task execution time with resource performance
response, as in the FASTA experiment), smaller multiplicative factors are often
effective. For example, we observe that for network throughput, a factor of 2
yields a 90% or better “hit rate” for each succeeding measurement, with the rate
being above 95% for most of the measurement streams we have encountered.

Figure 18.9 shows this form of empirical confidence interval as generated by
plotting forecast +/− ( * MSE2 ) for the UTK-to-UCSD throughput trace shown
previously in Figure 18.4. At each point in time, the prediction interval is formed
by making a forecast for the next measurement value, and then adding and sub-
tracting * MSE2 for the MSE that has been observed up to that point. The cap-
ture rate for this trace is 95.6%. That is, over the entire measurement period, the
confidence range predicted by / * MSE2+ - captures the next measured value
for 95.6% of the total number of measurements. We note that one can also make
one-sided predictions using the same idea: For example, if a scheduler (such as
the one reported on in [97]) were concerned with the minimum available perform-
ance, it could determine a K-value to produce lower prediction bounds that have
a capture percentage approximately equal to a given value.

The dotted line in Figure 18.9 represents the 5% quantile for the entire trace,
with 95% of the measurements falling above this line. If the data were treated as
a sample rather than as a time series, this value could be used as an empirical esti-
mate of the minimum throughput level with 95% confidence. By treating the data
as a potentially nonstationary series, and recalculating the confidence interval at
each time step based on forecasting error, the NWS methodology generates a sig-
nificantly tighter lower bound than a sample-based quantile method.

As an example of how pervasive this phenomenon is for TCP/IP network
throughput, we show the distribution of forecast capture percentages (i.e., the

596 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

UTK to UCSD
NWS TCP/IP Throughput

June 1 through July 1 2000
95.6% Capture

1.2

1

0.8

0.6

0.4

T
C

P
/IP

 B
W

 (
m

b/
s)

0.2

0

NWS Forecast + 2 Dev

NWS Forecast - 2 Dev

T
ue Jun

27
15:16:51

2000

W
ed Jun
21

02:49:54
2000

W
ed Jun
14

10:19:28
2000

W
ed Jun

7 17:26:42
2000

T
hu Jun 1

00:05:14
2000

Figure 18.9. Confidence range formed by +-2 deviations.



observed confidence percentage) for a complete Grid system that we monitored
during the month of October 2002. The Grid Application Development Software
(GrADS) [7, 23] project, as part of its research agenda, maintains a Grid testbed
based on stable deployments of the Globus [19, 22] toolkit and the NWS. The pur-
pose of the testbed is to provide support for the development of Grid programming
tools and to act as a production Grid environment in which GrADS enabled appli-
cations can be tested and evaluated. Globus and the NWS provide the base Grid
software infrastructure that GrADS software tools build upon. Approximately 50
users (programmers, graduate students, and project administration personnel) have
access to the testbed at any given time, and it is maintained as a permanent resource.
Thus, the GrADS testbed constitutes an example of a practical, working Grid.

During the month of October 2002, the GrADS project developed and
deployed six GrADS-enabled applications for demonstration at SC02—a promi-
nent high-performance computing conference that takes place annually in
November. As such, the October measurement and forecast data for the testbed
reflect Grid dynamics in a production computing setting.

The testbed comprises 77 host machines organized into several Linux clusters
as well as various independent Unix and Linux machines. Within each cluster, the
available networking is either 100 megabit Ethernet or gigabit Ethernet. Clusters
at a single site are connected either via local area networking or via the campus
network infrastructure (GrADS testbed sites are located at various Universities
and two research laboratories). Intersite network connectivity is provided by the
Internet, although several of the sites have experimental, high-performance
access to an Internet backbone. The GrADS sites are geographically distributed,
with machines located at Rice University, UCSD, UTK, the University of Illinois
at Urbana-Champaign (UIUC), Indiana University, the Information Science
Institute (ISI), and the University of California at Santa Barbara (UCSB).

The NWS provides support for organizing end-to-end network measurements
hierarchically. Not all machines must conduct machine-to-machine probes of net-
work connectivity to provide forecasts for the entire resource pool (details on this
scaling technique are described in [44] and [52]). For the GrADS testbed, 1234 NWS
TCP/IP probe traces are sufficient to provide a complete end-to-end performance
forecast report. Finally, the NWS uses a variety of probe sizes ranging from 64 kilo-
bytes per probe to 4 megabytes per probe, depending on the link characteristics at
hand. As such, the complete GrADS testbed trace captures a good cross section of
available network technologies and probe sizes under Grid computing loads.

Figure 18.10 shows the distribution of capture percentage over the total October
trace set when two forecast error deviations are used to form a confidence interval.
All network types (intracluster, intrasite, and intersite) are represented. The traces
have been sorted from smallest capture percentage to largest. The x-axis depicts trace
number and the y-axis shows the capture percentage observed for each trace using
+/− ( * MSE2 ) to form each conditional prediction interval. The smallest capture
percentage is approximately 89%. In 1084 of the 1234 traces, however, the predic-
tions capture 95% or more of the future values. We are just beginning to study this
phenomenon in detail, but anecdotally the GrADS testbed analysis reflects the com-
mon experience reported by NWS users for TCP/IP throughput in different settings.

In Figure 18.11 we show the cumulative distribution of CPU load measure-
ment capture percentage that two deviations generate for the 77 hosts in the

Predicting Grid Resource Performance Online 597



GrADS testbed. The NWS supports a CPU monitor that reports the percentage
of CPU cycles that are available to an executing process. The default periodicity
(which is what has been used to monitor the GrADS machines) is 10 seconds.
Thus, each of the 77 traces contains approximately 250,000 measurements of
available CPU fraction at each 10-second time step. The number is approximate,
since data may be missing when a machine becomes unavailable as is the case in
Figure 18.8. For 75 of the 77 traces, forecast + / − ( * MSE2 ) also generates a
95% (or higher) confidence interval.

It is clear that the empirical confidence technique warrants more study.
Resource characteristics such as TCP/IP round-trip time are not as predictable as
throughput or available CPU fraction. We suspect that available nonpaged mem-
ory will prove to be similar to CPU measurements in terms of predictability, but

598 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

TCP/IP Throughput Capture Percentage
2 Forecast Deviations

GrADS Testbed, October 2002

0
89

98

93

95

98

99

200 400 600
Throughput Series Number

P
er

ce
nt

ag
e 

C
ap

tu
re

d

800 1000 1200

Figure 18.10. Distribution of capture percentages for TCP/IP throughput on the GrADS test-
bed.

CPU Availability Capture Percentage
2 Forecast Deviations

GrADS Testbed, October 2002

70605040

CPU Measurement Series Number

P
er

ce
nt

ag
e 

C
ap

tu
re

d

3020100
89

91

93

95

97

99

Figure 18.11. Distribution of capture percentages for CPU availability measurements on the
GrADS testbed.



the NWS memory sensor has only recently been developed, giving us limited
experience with true load characteristics.

7 LESSONS LEARNED FROM DEVELOPMENT 
AND DEPLOYMENT

Having developed and deployed the NWS in a variety of contexts, we have
repeatedly encountered somewhat surprising anecdotes within the user commu-
nity. While we are hesitant to give these observations the status of “principles,”
they nevertheless recur with enough frequency to warrant some exposition, if
only to provide insight into the successes and failures the system has experienced.
Moreover, many of our experiences run counter to the “conventional wisdom” or,
in some cases, contradict predicted outcomes made by acknowledged experts. In
all cases, however, we present these anecdotes without attribution and acknowl-
edge that any misrepresentation is strictly our responsibility.

7.1 Grid Performance Tools versus Grid Performance Services

Many Grid users install and use individual resource performance monitoring
tools to aid in resource discovery. While system administrators clearly understand
the need for Grid services such as remote sign-on and file system access, per-
formance monitoring services (particularly for dynamically changing perform-
ance data) are often overlooked, since they are used, primarily, to optimize rather
than to enable application execution. At the same time, user-level performance
tools, particularly for measuring network performance, are plentiful, easy to
install, and simple to use. Thus many Grid installations have an administrator-
supported infrastructure for secure access, but leave the problem of gauging
resource performance to the individual users.

There are two problems with this approach. First, most individual perform-
ance monitoring tools are designed for single-user execution. Popular applica-
tion-level network monitoring tools such as Iperf [26], netperf [28], and nttcp [33]
all measure end-to-end network throughput by sending data from a source host
to a sink host, and timing the transfer. To ensure that the effects of TCP slow-
start [27] do not affect the measurements, these tools (by default) will transfer
data continuously for tens of seconds to ensure that steady-state behavior is being
observed.

If used occasionally, in isolation (e.g., for performance debugging), the net-
work load introduced by lengthy network probes is negligible. However, if many
users each run network probes individually, without coordination, a great deal of
unnecessary load may be generated. For example, all hosts at the University of
California, Santa Barbara (UCSB) share a common network path (once they exit
the campus backbone) to the University of Wisconsin (Wisc) backbone that trav-
erses the Abilene [1] network. While the paths through each campus may differ, all
UCSB-to-Wisc transfers share the same route across Abilene and, more impor-
tantly, the performance of that route dominates the end-to-end performance. Thus
multiple users at UCSB issuing throughput probes to multiple hosts at Wisc will
each introduce tens of seconds worth of network load to measure the same

Predicting Grid Resource Performance Online 599



artifact: the performance of the cross-country Abilene route. Perhaps more prob-
lematically, if enough users issue these probes simultaneously, or if multiple users
probe the same host (or issue probes from the same host), the measurements that
are generated measure contention between probes.

The NWS solves this problem by using a hierarchy of cliques, as described in
Section 3. Cliques at either campus provide intracampus measurements, while a
single campus-to-campus probe sequence measures the cross-country through-
put. Moreover, the NWS proxy caching layer can automatically generate a virtual
fully interconnected network by filling in the “missing” network measurements
between hosts at either campus with forecasts taken for the intercampus link. As
such, the NWS measures the shared path using a single sequence of measure-
ments but at the same time can present a virtual all-to-all measurement picture to
all interested clients by correctly reporting the dominant shared performance for
any pair of hosts.

A second problem with the use of tools rather than a service for generating
measurements is that user tools are typically designed to require user intervention
when resource failure requires the tool to abort. Returning to the network prob-
ing example described above, the TCP protocol by default does not include an
inactivity timeout. That is, once a TCP handshake has been completed, a network
partition will not cause the TCP connection to shut down or abort. The optional
KEEP_ALIVE feature of TCP is designed to implement an inactivity abort
according to RFC-1122, but the timeout value by default can be no less than 2
hours, which is often too long for Grid applications. The assumption made by
most user tools is that the user will manually “time out” the tool and abort it from
the command line. Often, due to the need for continuous and historical measure-
ment, these tools are executed repeated within scripts, causing end-point memory
and process load.

The NWS TCP throughput probe, however, includes portable timeout mecha-
nisms and an adaptive timeout discovery protocol [4] so that long-running, unat-
tended execution is feasible. However, the engineering effort required to build a
portable and reliable timeout mechanism for TCP sockets (without kernel modi-
fication) introduces another potential point of confusion. In particular, it may be
that the additional mechanisms introduce overhead that affects the quality of the
measurements. Indeed, one reason often cited as justification for the use of a par-
ticular individual network monitoring tool is that the tool in question is believed,
by its user, to be the most accurate among all the available options. In addition,
several users, when queried as to why they preferred a particular tool to the NWS
as a service, claimed that the tool in question generated more accurate measure-
ments of end-to-end throughput. Questioned further, some speculated that the
reason for the loss of accuracy was that the NWS network probe included time-
out mechanisms that most applications using TCP sockets do not, and the
timeout mechanisms introduced extra overhead.

Figure 18.12 shows a comparison of the throughput measured by three popu-
lar user tools – Iperf, netperf, and nttcp – and the NWS throughput measurement
service. To generate these data, we ran each different method back-to-back (so
that all methods would experience approximately the same ambient network con-
ditions) every 60 seconds over a 72-hour period, resulting in 400 comparable
measurements for each technique. We configured all four systems to use the same

600 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.



end-point buffering, which is the one used by default in Iperf, and to transfer the
same amount of data. The large circular “dot” for each method marks the median
throughput observed, and the bars show the range of values between the first
and third quartiles. From these data, it is not possible to conclude that there is any
statistical difference between the measurements generated by these methods. The
three tools and the NWS service all generate clearly overlapping ranges of values.
The NWS probes, however, include all the overhead necessary to implement
reliable socket timeouts at the application layer.

As such, we speculate that user-reported perception of tool utility is not based
on accuracy but rather on intellectual and manual ease of use. All three of these
network measurement tools are well engineered, documented, and simple to
understand, install, and use. The NWS is a long-running Grid service designed to
support many clients and resources simultaneously. While it does not require spe-
cial user privileges (each user can in principle install a separate instance of the
NWS), it is necessarily more complicated than a simple “ping” tool. As a result,
if the local administrator has elected not to install the system, or plans to do so
as a low-priority task, we believe users will naturally gravitate towards using tools
that they can easily understand, install, and maintain themselves. Subsequent
familiarity then breeds a “lore” regarding tool accuracy that, when examined crit-
ically, is unverifiable. The cost of this convenience, however, is the wasted resource
consumed by redundant measurements. By carefully engineering and structuring
the measurement system, a Grid service such as the NWS can yield the same lev-
els of accuracy with greater dependability using significantly fewer resources.

7.2 Network Heterogeneity

Another observation that we have made while developing the NWS and Grid
applications that use it [13, 51, 9] is that network performance is truly heterogeneous,
and the way in which applications access the network should take this heterogene-
ity into account to achieve the best possible performance. The use of parallel

Predicting Grid Resource Performance Online 601

Application

Comparison of Network Measurement Tools

NWSnttcpiperfnetperf

M
ea

su
re

m
en

t (
M

b/
s)

0

1

2

3

4

5

6

Figure 18.12. Comparison of Internet throughput measurements between a host UCSB and
one at the University of Wisconsin.



sockets by applications such as GridFTP [2] and the Internet Backplane Protocol
[40] (IBP) illustrates the need to consider such heterogeneity.

For systems such as the TeraGrid [47], where a high-bandwith dedicated net-
work connects nationally distributed computing nodes, the standard congestion
avoidance and control mechanisms built into commercially available TCP imple-
mentations prevent applications from achieving maximum possible end-to-end
throughput. The specific reason is that TCP uses the timing of packet acknowl-
edgments to control the speed with which it will introduce new data into the net-
work, both at start-up and after a packet has been dropped. For networks with
high bandwidth-delay products and low drop rates (such as the 40 gigabit/second
TeraGrid network), the loss of throughput can be substantial. On these systems,
to avoid the need for specially engineered kernel-level TCP stacks, many applica-
tions use parallel sockets to circumvent the unnecessary congestion avoidance
and control mechanisms.

However, in network settings where the bandwidth-delay product is lower, or
where packet loss due to congestion is a possibility, parallel sockets can have the
opposite effect. Figure 18.13 compares the performance of the IBP streaming
download protocol [40] that uses parallel sockets with a single-socket implemen-
tation that uses NWS forecasts for proximity resolution and adaptive timeout dis-
covery [5]. The IBP progress-driven protocol [40] uses parallel sockets and a
deadline-driven scheduling algorithm to download segments from a replicated
file. Different file segments are fetched in parallel within some prespecified
progress window. If the segment at the beginning of the window is late, that seg-
ment is fetched in parallel from where it is replicated before new segment trans-
fers are initiated. One simplicity advantage of this approach is that it is
completely reactive. That is, it does not require a prediction of future perform-
ance levels or failure likelihood, but rather reacts to conditions as they occur.

In contrast, the NWS protocol uses throughput forecasts to rank the replica
sites in terms of their download speed. It then maintains a database of forecast
response times and of forecast variance so that it can automatically determine

602 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

1
0

20

40

60

80

100

29 57 85 113 141 169
Time (Seconds)

General Progfess-driven and NWS Adaptive
Timeout Discovery

6 Replicas

F
ile

s 
A

rr
iv

ed
 (

P
er

ce
nt

)

197 225 253 281 309

IBP Streaming Download

NWS Adaptive Timeout

Figure 18.13. Empirical cumulative distribution of file download arrival times for IBP down-
load protocol and adaptive NWS protocol using six replicas.



how long it should wait for each replica to respond. Only one segment of the file
is downloaded at a time. The protocol tries the replicas in order of their speed,
and switches between them when a timeout occurs [5, 4].

In Figure 18.13, we show the cumulative distribution of file arrival times, where
six replicas for each file are distributed across PlanetLab [39], the download point
is located at UCSB, and each segment has an artificially induced 5% chance of fail-
ing. From Figure 18.13, it is clear that the NWS methodology outperforms the IBP
methodology while maintaining the same level of robustness (both systems com-
pletely download all files) and using substantially less bandwidth. In this case, the
additional network load generated by the IBP protocol through the use of parallel
sockets over the Internet slows the individual file transfer times. The adaptive NWS
protocol, however, uses the fastest replica when it can and relies on rapid failure
discovery and remediation for robustness. Thus parallel sockets, while an excel-
lent choice for dedicated high—bandwidth-delay product networks, yield lower
application-level performance over the Internet when compared with a socket
scheduling system that uses performance forecasts to control resource usage.

8 MEASURING AND PREDICTING OTHER
RESOURCE CHARACTERISTICS

While the empirical and adaptive time series forecasting approach has proved
useful in a variety of contexts, there are quantifiable resource characteristics that
are not well modeled by a periodic statistical series. Resource availability dura-
tion (i.e., resource “lifetime”), for example, is represented as a highly correlated
time series with two modes namely, “available” and “unavailable” as depicted in
Figure 18.14. Essentially, “available” must be represented as one value (a 1 in the
figure) and “unavailable” as another. Further, the prediction of interest is not
for the next value but rather for the duration of time that a value will remain
constant before it changes.

Predicting Grid Resource Performance Online 603

♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦
Example Machine Availability

Time step

A
va

ila
bl

e/
U

na
va

ila
bl

e 
F

la
g

0
0

1

5 10 15 20 25 30

Figure 18.14. Machine availability as a time series.



To make predictions of this type, the NWS requires both the ability to meas-
ure the quantity of interest and a different set of forecasting models that are not
time series based. In the case of machine availability, we have developed an avail-
ability sensor that measures the time between machine restarts, and a process life-
time sensor that can be used to measure processor occupancy in cycle harvesting
systems like Condor [46], Entropia [18], and BOINC [10]. These new sensors,
which are part of the current system, do not rely on heartbeat messages and soft-
state registration to measure availability. Doing so would convolve the observed
host availability distribution with the distribution of network partition frequency
between the measured site and the storage location where the measurements are
captured. That is, sending a heartbeat message to a collector (an NWS memory
process, in our case) as a measure of host availability records both host failures
and failures in the network connecting the host and the collector in a way that
cannot be easily separated later. Instead, the sensors send a running accumulation
of “up time” so that the effect of missing messages due to network partition can
be filtered out of the measurement history.

Predicting machine availability requires forecasting techniques that are sub-
stantially more heavyweight than the online time series models. The mode of
operation, then, is for the NWS to archive availability measurements and calcu-
late predictions as a background task rather than on-demand, as it does for per-
formance levels.

The type of prediction is also different from what the current system gener-
ates. Our initial target is to provide availability predictions to aid process and
checkpoint scheduling. Dynamic application schedulers would like to be able to
predict when a checkpoint should be taken (so as to minimize checkpoint over-
head) and/or to decide if checkpointing is even necessary. For example, a machine
with a 99.9% guaranteed availability of 10 minutes can run a 10 minute job to
completion 999 times out of 1000 attempts without checkpointing.

This last example also illustrates the nature of the predictions that application
schedulers require. Rather than the mean time to failure, which is a useful metric
in many industrial engineering contexts, the scheduler must estimate how long a
resource will be available until the probability of failure exceeds some specified
threshold. That is, the scheduler is typically interested in a specific quantile from
the cumulative failure distribution, rather than the mean. Returning to the exam-
ple, if the 0.001 quantile of the cumulative machine availability distribution were
known, the probability that a machine would be available at least as long as the
specified duration would be 0.999. An application scheduler, then, requires a pre-
diction in the form of a quantile at a specified level of certainty corresponding to
a failure tolerance that either the application or its user is willing to accept.

Moreover, to make a reliable estimate that can be trusted at the given level of
certainty, the confidence bounds on the estimated quantile must also be deter-
mined. Any estimate that is generated from an observed sample of measurements
will include random estimation error. If statistical bounds on that error can be
calculated, the worst-case bound at the specified level of confidence should rep-
resent a conservative guarantee of availability.

We have explored both parametric and nonparametric approaches to the
problem of generating quantiles and confidence intervals on the estimated quan-
tiles using the NWS. Because of their computational complexity and because they

604 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.



require efficient archival storage, we have not yet incorporated quantile estima-
tion techniques into the NWS forecasting system. Our intention is to do so at
some future release, however.

The parametric approach we have taken is to develop automatic software for
implementing Maximum Likelihood Estimation (MLE) for various candidate
models such as exponential, Pareto, and Weibull. Given a model and a historical
trace of availability, the software estimates both the MLE parameters that best
describe the data with the model, and the confidence intervals for the fitted
model. Figure 18.15 depicts a comparison of model fits for the MLE-determined
exponential, Pareto, and Weibull models using availability data gathered from the
student instructional machines located at UCSB. At UCSB, the power switch on
the machines available to all computer science students is not protected. When
using a machine from its console, students routinely “clean off” foreign processes
(owned by other students) by power cycling the machine, causing a reboot. Figure
18.5 compares the cumulative distribution of observed availability measurements
for the three models.

The dark points depict individual availability durations, and the smoothed
lines show the three different models. The Pareto model carries significantly more
weight in the tail than the data indicate. It predicts that the 0.8 quantile will occur
at approximately 8,000,000 seconds (approximately 92 days). That is, the Pareto
model predicts that 20% of the availability durations will be longer than 8,000,000
seconds. From the data, however, only two of the 1765 availability durations
lasted that long, making the Pareto overly optimistic. In contrast, the exponential
model does not predict that availability durations will last as long as they did. For
example, the 0.95 quantile from the data occurs at 2,189,875 seconds (approxi-
mately 25 days), meaning that 5% of the measured availability durations were
larger than this value. The exponential model predicts the 0.95 quantile to occur

Predicting Grid Resource Performance Online 605

Measurements

Availability Duration (Seconds)
0

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100000 200000 300000 400000 500000 600000 700000 800000
0 0 0 0 0 0 0

F
ra

ct
io

n 
of

 M
ea

su
re

m
en

ts

UCSB Instructional Machines
April Through October, 2003

Weibull
Exponential
Pareto

Figure 18.15. Machine availability data and MLE exponential, Weibull, and Pareto models for
UCSB instructional machines, April through October 2003.



at 1,495,871 seconds (approximately 17 days), thereby underestimating the possi-
bility of longer durations. The Weibull model, however, fits the data so accurately
that its curve is obscured by the data themselves in Figure 18.15. For the 0.95
quantile, this model estimates the duration to be 2,234,657 seconds, missing the
measured quantile by 44,782 seconds, or a little over half a day. Maximum
Likelihood Estimation is currently the best-known automatic technique for fitting
parametric models to observed data for models with a small number of parame-
ters. Thus the Weibull model truly describes the shape of the distribution more
accurately than the Pareto or the exponential.

We have also developed software (using goodness-of-fit p-values as heuristics)
that attempts to determine the best fit automatically. We have examined other
availability contexts, including Condor [46], where jobs are terminated when a
resource owner reclaims a resource, and an Internet host availability conducted
by Long, Muir, and Golding in 1995 [31]. Perhaps surprisingly, we have found
that an MLE Weibull model fits the observed availability distributions rather
closely. Moreover, previous work with a small number of student and faculty
workstations in 2001 [25] also found Weibull models to be effective.

While the Weibull fit was clearly best in our study (see [34] for details), it did
not yield the most accurate predictions of future availability durations. The soft-
ware also generates confidence intervals on the MLE parameters it determines as
part of the model-fitting process. From these confidence intervals, it should be
possible to calculate the conservative worst-case estimate for the quantile of inter-
est. For quantile prediction, however, it is possible to use nonparametric tech-
niques to estimate a quantile, and confidence bounds for it, without specifying (or
indeed knowing) what the underlying distribution is. One such technique uses
repeated subsampling of the observed data and bootstrapping [14] to estimate the
quantile. We have developed a second nonparametric method, which we term the
Binomial Method, that is based on the binomial distribution. Table 18.1 shows a
comparison of the predictive accuracy achieved by using an MLE Weibull and its
confidence bounds, bootstrapping, and the Binomial Method to predict future
machine availability at UCSB, in the Condor pool, and in the Long, Muir, and
Golding study.

Using the first 20 measurements occurring chronologically from each machine
trace, we estimated the lower 95% confidence bound on the 0.05 quantile. This
number (which is different for each machine) is the minimum duration of time a
scheduler could depend upon for each machine with 95% confidence if the
methodology used to generate it is effective. For each data set, we identified the
individual machine traces with at least 40 measurements so that the number of
predictions made would be at least as large as the number of measurements used
to “train” the predictor. The number of machines from each data set fitting this
criterion is shown in parentheses in the left-hand column.

606 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

Table 18.1. Percentage of predictions made correctly using three different quantile estimation
methods to estimate the 0.05 quantile with 95% confidence.
Data Set MLE Weibull Bootstrapping Binomial Method
UCSB (16 machines) 56.3% 62.5% 87.5%
Condor (87 machines) 95.9% 60.2% 98.9%
Long/Muir/Golding (83 machines) 58.0% 53./;.4% 94.3%



We then record the number of future measurements that were greater than the
estimated 0.05 quantile and report them as a percentage of total number of pre-
dictions for each machine (which is greater than or equal to 20 in all cases). Thus,
this experiment depicts the empirical accuracy of each estimation method using
the first 20 measurements to predict the remaining measurements, where there are
at least 20 remaining measurements to predict. Full details from the investigation
are described in [11]. From Table 18.1, however, it is clear that the Binomial
Method is capable of making accurate, nonparametric estimates of future avail-
ability using relatively few measurements.

Thus, using the NWS, we have developed two new functionalities that will
eventually be incorporated into the distributed software base. The first is an auto-
matic modeling capability that can generate closed-form probability distributions
that “fit” empirically observed availability measurements. We believe this func-
tionality will be crucial to the development of realistic, possibly online simula-
tions of grid, peer-to-peer, and global computing systems. Second using the
Binomial Method, the NWS will be able to provide accurate predictions of future
availability levels using relatively few measurements.

9 CONCLUSIONS AND FUTURE WORK

There are several ways in which we are currently extending our work beyond
the capabilities described in the previous section. We are studying the decay in
forecast accuracy (both in terms of the forecast value and the width of the empir-
ical confidence intervals) as a function of time into the future. The current set
of NWS forecasting techniques makes predictions for the next time interval.
As such, the periodicity with which measurements are gathered defines the time
frame for which a forecast is generated. We are attempting to quantify the error
associated with multistep forecasting.

We are also investigating methodologies for automatically deriving the multi-
plicative factor that is needed to generate a given confidence range. The forecast-
ers themselves are nonparametric, but the confidence interval system requires
that the multiplicative factor be specified. We believe that the forecasting system
must be able to adapt its parameterization automatically to be truly useful in an
engineering context.

Finally, the NWS forecasting methodology does not address the problem of
translating resource performance response into an estimate of application per-
formance response. Even if resource performance forecasts were perfect, com-
posing resource performance predictions into an application performance
prediction can introduce error. To address this problem, we have been investigat-
ing ways to generate automatic correlator functions that relate resource perform-
ance forecasts to application performance [45]. The goal of this work is to combine
a small number of application performance measurements gathered via internal
instrumentation with resource performance measurements taken simultane-
ously from the resources that the application is using. From these simultaneous
application-level and resource-level measurements, we derive a correlator for the
application that can be used to predict future application performance from
resource performance only.

Predicting Grid Resource Performance Online 607



The problem of modeling and predicting resource performance is central to
Computational Grid research. Not only is it critical to effective program and sys-
tem design but also the engineering of dynamic schedulers and fault diagnosis
tools requires online access to prediction data as part of the Grid infrastructure.
While explanatory models are beginning to emerge, fast statistical techniques
applied to real-time performance measurement streams have empirically been
shown to be effective. With little added computational complexity, it is possible
to make predictions of future performance measurements and to quantify the
error associated with these predictions. The resulting prediction accuracy can be
substantially better than simply using the last observed value, or averaging — the
two most common methods of predicting future performance from historical
measurement data. In addition, it is possible to derive empirical confidence
intervals, based on forecast error, for some forms of resource performance
response. Our experience, described using a small number of representative
examples in this chapter, is that these results are general for the resource types
we have presented.

One of the unique features of Computational Grid computing is the central
role that performance prediction must play with respect to program adaptivity
and resource allocation. Despite characteristics that impede rigorous analysis
(such as nonstationarity), the work we have described in this chapter reflects
the degree to which statistical techniques have proved successful as prediction
methods in the Grid settings we have so far encountered.

ACKNOWLEDGMENTS

This work was supported, in large part, by grants from the National Science
Foundation, numbered CAREER-0093166, EIA-9975020, ANI-0213911, and
ACI-9701333. In addition, the infrastructure development for public release that
is discussed has been supported by the NSF National Partnership for Advanced
Computational Infrastructure (NPACI) and the NASA Information Power Grid
project.

REFERENCES

[1] Abilene. http://www.ucaid.edu/abilene/.
[2] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman,

S. Meder, V. Nefedova, D. Quesnal, and S. Tuecke (2002): Data management
and transfer in high performance computational grid environments. Parallel
Computing Journal, 28(5), 749–771.

[3] B. Allock, I. Foster, V. Nefedova, A. Chervenak, E. Deelman, C. Kesselman,
J. Leigh, A. Sim, and A. Shoshani (2001): High-performance remote access
to climate simulation data: A challenge problem for data grid technologies.
In Proceedings of IEEE SC’01 Conference on High-performance Computing.
http://www.globus.org/research/papers*/sc01ewa_esg_chervenak_final.pdf.

608 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.



[4] M. Allen and R. Wolski. Adaptive timeout discovery using the network
weather service. In Proceedings of HPDC-11, July 2002. http://www.cs.ucsb.
edu/~rich/publications/nws-adapt.pdf.

[5] M. Allen and R. Wolski (2003): The livny and plank-beck problems:
Studies in data movement on the computational grid. In Proceedings of
SC03.

[6] H. Balakrishnan, M. Stemm, S. Seshan, and R. H. Katz (1997): Analyzing
stability in wide-area network performance. In Measurement and Modeling
of Computer Systems, pp. 2–12.

[7] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, L. J. Dennis
Gannon, K. Kennedy, C. Kesselman, D. Reed, L. Torczon, and R. Wolski
(2001): The GrADS project: Software support for high-level grid applica-
tion development. International Journal of High-performance Computing
Applications, 15(4), 327–344.

[8] F. Berman, G. Fox, and T. Hey (2003): Grid Computing: Making the Global
Infrastructure a Reality. Wiley and Sons.

[9] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao (1996):
Application level scheduling on distributed heterogeneous networks. In
Proceedings of Supercomputing.

[10] The BOINC project. http://boinc.berkeley.edu.
[11] J. Brevik, D. Nurmi, and R. Wolski (2004): Quantifying machine avail-

ability in networked and desktop grid systems. In Proceedings of
CCGrid04.

[12] H. Casanova, G. Obertelli, F. Berman, and R. Wolski (2000): The
AppLeS Parameter Sweep Template: User-Level Middleware for the
+Grid. In Proceedings of IEEE SC’00 Conference on High-performance
Computing.

[13] W. Chrabakh and R. Wolski. GrADSAT: A Parallel SAT Solver for the
Grid. In Proceedings of IEEE SC03, November 2003.

[14] H. Cramer (1946): Mathematical Methods of Statistics. Princeton
University Press.

[15] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman (2001): Grid
information services for distributed resource sharing. In Proceedings 10th
IEEE Symp. on High Performance Distributed Computing.

[16] C. Dovrolis, D. Moore, and P. Ramanathan (2001): What do packet disper-
sion techniques measure? In Proceedings of Infocom.

[17] A. Downey (1999): Using pchar to estimate internet link characteristics. In
Proceedings of ACM SIGCOMM.

[18] The Entropia Home Page. http://www.entropia.com.
[19] I. Foster and C. Kesselman (1997): Globus: A metacomputing infrastruc-

ture toolkit. International Journal of Supercomputer Applications.
[20] I. Foster and C. Kesselman (1998): The Grid: Blueprint for a New

Computing Infrastructure. Morgan Kaufmann Publishers.
[21] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid:

An open grid services architecture for distributed systems integration.
http://www.globus.org/research/papers/ogsa.pdf.

[22] Globus. http://www.globus.org.

Predicting Grid Resource Performance Online 609



[23] GrADS. http://hipersoft.cs.rice.edu/grads.
[24] C. Granger and P. Newbold (1986): Forecasting Economic Time Series.

Academic Press.
[25] T. Heath, R. Martin, and T. Nguyen (2001): The shape of failure. In

Proceedings of the First Workshop on Evaluating and Architecting System
Dependability.

[26] The iperf tool: http://dast.nlanr.net/Projects/Iperf.
[27] V. Jacobson (1988): Congestion avoidance and control. In Proceedings of

SIGCOMM ‘88, 18.
[28] R. Jones. The netperf tool: http://www.netperf.org/netperf/NetperfPage.html.
[29] C. Krintz and R. Wolski (2001): Nwsalarm: A tool for accurately detecting

degradation in expected performance of grid resources. In Proceedings of
CCGrid01.

[30] W. E. Leland, M. S. Taqq, W. Willinger, and D. V. Wilson (1993): On the
self-similar nature of Ethernet traffic. In D. P. Sidhu, editor, ACM SIG-
COMM, pp. 183–193, San Francisco, California.

[31] D. Long, A. Muir, and R. Golding (1995): A longitudinal survey of internet
host reliability. In 14th Symposium on Reliable Distributed Systems, pp. 2–9.

[32] The nsf middleware initiative – http://www.nsf-middleware.org.
[33] New ttcp: http://www.leo.org/~elmar/nttcp.
[34] D. Nurmi, J. Brevik, and R. Wolski (2005): Modeling machine availability in

enterprise and wide-area distributed computing environments. Proceedings of
European Conference on Parallel Computing (EUROPAR) August, 2005.

[35] The network weather service home page – http://nws.cs.ucsb.edu.
[36] V. Paxon and S. Floyd (1997): Why we don’t know how to simulate the

internet. In Proceedings of the Winder Communication Conference, also cite-
seer.nj.nec.com/paxon97why.html.

[37] V. Paxson and S. Floyd. Wide area traffic: the failure of Poisson modeling.
IEEE/ACM Transactions on Networking, 3(3), 226–244.

[38] A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche, and
S. Vadhiyar (2001): Numerical libraries and the grid. In Proceedings of
IEEE SC’01 Conference on High-performance Computing.

[39] The planetLab home page. http://www.planet-lab.org.
[40] J. S. Plank, S. Atchley, Y. Ding, and M. Beck (2002): Algorithms for high

performance, wide-area, distributed file downloads. Technical Report UT-
CS-02-485, Department of Computer Science, University of Tennessee.
http://www.cs.utk.edu/~plank/plank/papers/CS-02-485.html.

[41] P. Primet, R. Harakaly, and F. Bonnassieux (2002): Experiments of net-
work throughput measurement and forecasting using the network weather
service. In Workshop on Global and Peer-to-Peer Computing on Large Scale
Distributed Systems.

[42] M. Ripeanu, A. Iamnitchi, and I. Foster (2001): Cactus application:
Performance predictions in a grid environment. In Proceedings of European
Conference on Parallel Computing (EuroPar) 2001.

[43] N. Spring and R. Wolski (1998): Application level scheduling: Gene
sequence library comparison. In Proceedings of ACM International
Conference on Supercomputing 1998.

610 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.



[44] M. Swany and R. Wolski (2002): Building performance topologies for com-
putational grids. In Proceedings of Los Alamos Computer Science Institute
(LACSI) Symposium, 2002.

[45] M. Swany and R. Wolski (2002): Multivariate resource performance fore-
casting in the network weather service. In Proceedings of IEEE SC’02
Conference on High-performance Computing.

[46] T. Tannenbaum and M. Litzkow (1995): The condor distributed processing
system. Dr. Dobbs Journal.

[47] The TeraGrid Home Page. http://www.teragrid.org.
[48] S. Vazhkudai, J. Schopf, and I. Foster (2002): Predicting the performance of

wide-area data transfers. In Proceedings of IEEE International Parallel and
Distributed Parallel Systems Conference.

[49] R. Wolski (1998): Dynamically forecasting network performance using the
network weather service. Cluster Computing, 1, 119–132.

[50] R. Wolski (2003): Experiences with predicting resource performance on-
line in computational grid settings. ACM SIGMETRICS Performance
Evaluation Review, 30(4), 41–49.

[51] R. Wolski, J. Brevik, C. Krintz, G. Obertelli, N. Spring, and A. Su (2001):
Writing programs that run everyware on the computational grid. IEEE
Transactions on Parallel and Distributed Systems, 12(10), 1066–1080.

[52] R. Wolski, N. Spring, and J. Hayes (1999): The network weather service.
A distributed resource performance forecasting service for metacomputing.
Future Generation Computer Systems, 15(5–6), 757–768.

[53] Y. Zhang, N. Du, V. Paxson, and S. Shenker (2001): The constancy of inter-
net path properties. In Proceedings of ACM SIGCOMM Internet
Measurement Workshop.

Predicting Grid Resource Performance Online 611




