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1 HISTORICAL PERSPECTIVE

In last 50 years, the field of scientific computing has undergone rapid change—
we have experienced a remarkable turnover of technologies, architectures, vendors,
and the usage of systems. Despite all these changes, the long-term evolution of per-
formance seems to be steady and continuous, following Moore’s Law rather closely.
In 1965 Gordon Moore, one of the founders of Intel, conjectured that the number
of transistors per square inch on integrated circuits would roughly double every year.
It turns out that the frequency of doubling is not 12 months, but roughly 18 months
[8]. Moore predicted that this trend would continue for the foreseeable future. In
Figure 15.1, we plot the peak performance over the last five decades of computers
that have been called supercomputers. A broad definition for a supercomputer is that
it is one of the fastest computers currently available. These are systems that provide
significantly greater sustained performance than that available from mainstream
computer systems. The value of supercomputers derives from the value of the prob-
lems they solve, not from the innovative technology they showcase. By performance
we mean the rate of execution for floating-point operations. Here we chart KFlop/s
(Kiloflop/s, thousands of floating-point operations per second), MFlop/s
(Megaflop/s, millions of floating-point operations per second), GFlop/s (Gigaflop/s,
billions of floating–point operations per second), TFlop/s (Teraflop/s, trillions
of floating-point operations per second), and PFlop/s (Petaflop/s, 1,000 trillions of
floating-point operations per second). This chart shows clearly how well Moore’s
Law has held up over almost the complete lifespan of modern computing—we see
an increase in performance averaging two orders of magnitude every decade.

In the second half of the 1970s, the introduction of vector computer systems
marked the beginning of modern supercomputing. A vector computer or vector
processor is a machine designed to efficiently handle arithmetic operations on
elements of arrays, called vectors. These systems offered a performance advantage



of at least one order of magnitude over conventional systems of that time. Raw
performance was the main, if not the only, selling point for supercomputers of
this variety. However, in the first half of the 1980s, the integration of vector sys-
tems into conventional computing environments became more important. Only
those manufacturers that provided standard programming environments, operat-
ing systems, and key applications were successful in getting the industrial cus-
tomers that became essential for survival in the marketplace. Performance was
increased primarily by improved chip technologies and by producing shared-
memory multiprocessor systems, sometimes referred to as symmetric multiproces-
sors or SMPs. An SMP is a computer system that has two or more processors
connected in the same cabinet, managed by one operating system, sharing the
same memory, and having equal access to input/output devices. Application pro-
grams may run on any or all processors in the system; assignment of tasks is
decided by the operating system. One advantage of SMP systems is scalability;
additional processors can be added as needed up to some limiting factor deter-
mined by the rate at which data can be sent to and from memory.

Fostered by several government programs, scalable parallel computing using dis-
tributed memory became the focus of interest at the end of the 1980s. A distributed
memory computer system is one in which several interconnected computers share
the computing tasks assigned to the system. Overcoming the hardware scalability
limitations of shared memory was the main goal of these new systems. The increase
of performance of standard microprocessors after the Reduced Instruction Set
Computer (RISC) revolution, together with the cost advantage of large-scale paral-
lelism, formed the basis for the “Attack of the Killer Micros.” The transition from
Emitted Coupled Logic (ECL) to Complementary Metal-Oxide Semiconductor
(CMOS) chip technology and the usage of “off the shelf” commodity microproces-
sors instead of custom processors for Massively Parallel Processors or MPPs was the
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Figure 15.1. Moore’s Law and peak performance of various computers over time.



consequence. The strict definition of an MPP is a machine with many intercon-
nected processors, where “many” is dependent on the state of the art. Currently, the
majority of high-end machines have fewer than 256 processors, with the highest
number on the order of 10,000 processors. A more practical definition of an MPP is
a machine whose architecture is capable of having many processors—that is, it is
scalable. In particular, machines with a distributed memory design (in comparison
with shared memory designs) are usually synonymous with MPPs, since they are not
limited to a certain number of processors. In this sense, “many” is a number larger
than the current largest number of processors in a shared-memory machine.

2 STATE OF SYSTEMS TODAY

The acceptance of MPP systems not only for engineering applications but also
for new commercial applications, especially for database applications, emphasized
different criteria for market success, such as stability of the system, continuity of
the manufacturer, and price/performance. Success in commercial environments is
now a new, important requirement for a successful supercomputer business. Due
to these factors and the consolidation in the number of vendors in the market,
hierarchical systems built with components designed for the broader commercial
market are currently replacing homogeneous systems at the very high end of per-
formance. Clusters built with off-the-shelf components are also gaining more and
more attention. A cluster is a commonly found computing environment consist-
ing of many PCs or workstations connected together by a local area network. The
PCs and workstations, which have become increasingly powerful over the years,
can together be viewed as a significant computing resource. This resource is com-
monly known as a cluster of PCs or workstations and can be generalized to a het-
erogeneous collection of machines with arbitrary architecture.

At the beginning of the 1990s, while the multiprocessor vector systems reached
their widest distribution, a new generation of MPP systems came on the market,
claiming to equal or even surpass the performance of vector multiprocessors. To pro-
vide a more reliable basis for statistics on high-performance computers, the Top500
[4] list was begun. This report lists the sites that have the 500 most powerful installed
computer systems. The best LINPACK benchmark performance [9] achieved is used
as a performance measure to rank the computers. The Top500 list has been updated
twice a year since June 1993. In the first Top500 list in June 1993, there were already
156 MPP and SIMD systems present (31% of the total 500 systems).

The year 1995 saw remarkable changes in the distribution of the systems in
the Top500 according to customer types (academic sites, research labs,
industrial/commercial users, vendor installations, and confidential sites). Until June
1995, the trend in the Top500 data was a steady decrease of industrial customers,
matched by an increase in the number of government-funded research sites. This
trend reflects the influence of governmental High Performance Computing (HPC)
programs that made it possible for research sites to buy parallel systems, especially
systems with distributed memory. Industry was understandably reluctant to follow
this path, since systems with distributed memory have often been far from mature or
stable. Hence, industrial customers stayed with their older vector systems, which
gradually dropped off the Top500 list because of low performance (see Figure 15.2).
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Beginning in 1994, however, companies such as SGI, Digital, and Sun began
selling symmetric multiprocessor (SMP) models in their workstation families.
From the very beginning, these systems were popular with industrial customers
because of the maturity of the architecture and their superior price/performance
ratio. At the same time, IBM SP systems began to appear at a reasonable number
of industrial sites. While the IBM SP was initially intended for numerically inten-
sive applications, in the second half of 1995 the system began selling successfully
to a larger commercial market, with dedicated database systems representing a
particularly important component of sales.

It is instructive to compare the growth rates of the performance of machines at
fixed positions in the Top500 list with those predicted by Moore’s Law. To make
this comparison, we separate the influence of increasing processor performance
and that of the increasing number of processors per system on the total accumu-
lated performance. (To get meaningful numbers, we exclude the SIMD systems for
this analysis, since these tend to have extremely high processor numbers and
extremely low processor performance.) In Figure 15.3 we plot the relative growth
of the total number of processors and of the average processor performance,
defined as the ratio of total accumulated performance to the number of proces-
sors. We find that these two factors contribute almost equally to the annual total
performance growth—a factor of 1.82. On average, the number of processors has
grown by a factor of 1.30 each year and the processor performance by a factor 1.40
per year, compared to the factor of 1.58 predicted by Moore’s Law.

3 PROGRAMMING MODELS

The standard parallel architectures support a variety of decomposition strate-
gies, such as decomposition by task (task parallelism) and decomposition by data
(data parallelism). Data parallelism is the most common strategy for scientific
programs on parallel machines. In data parallelism, the application is decomposed
by subdividing the data space over which it operates and assigning different
processors to the work associated with different data subspaces. Typically, this
strategy involves some data sharing at the boundaries, and the programmer is
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responsible for ensuring that this data sharing is handled correctly—that is, that
data computed by one processor and used by another is correctly synchronized.

Once a specific decomposition strategy is chosen, it must be implemented.
Here the programmer must choose the programming model to use. The two most
common models are

● the shared-memory model, in which it is assumed that all data structures are
allocated a common space that is accessible from every processor; and

● the message-passing model, in which each processor (or process) is assumed to
have its own private data space, and data must be explicitly moved between
spaces as needed.

In the message-passing model, data are distributed across the processor mem-
ories; if a processor needs to use data that are not stored locally, the processor
that owns those data must explicitly “send” the data to the processor that needs
them. The latter must execute an explicit “receive” operation, which is synchro-
nized with the “send,” before it can use the communicated data.

To achieve high performance on parallel machines, the programmer must be
concerned with scalability and load balance. Generally, an application is thought
to be scalable if larger parallel configurations can solve proportionally larger prob-
lems in the same running time as smaller problems on smaller configurations. Load
balance typically means that the processors have roughly the same amount of
work, so that no one processor holds up the entire solution. To balance the com-
putational load on a machine with processors of equal power, the programmer
must divide the work and communications evenly. This division can be challenging
in applications applied to problems that are unknown in size until run time.

4 FUTURE TRENDS

Based on the current Top500 data (which cover the last 13 years) and the
assumption that the current rate of performance improvement will continue for
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some time to come, we can extrapolate the observed performance and compare
these values with the goals of government programs such as the Department of
Energy’s Accelerated Strategic Computing Initiative (ASCI), High Performance
Computing and Communications, and the PetaOps initiative. In Figure 15.4, we
extrapolate the observed performance using linear regression on a logarithmic
scale. This means that we fit exponential growth to all levels of performance
in the Top500. This simple curve fit of the data shows surprisingly consistent
results. Based on the extrapolation from these fits, we can expect to see the first
100 TFlop/s system by 2005. By 2005, no system smaller than 1 TFlop/s should
be able to make the Top500 ranking.

Looking even farther into the future, we speculate that based on the current
doubling of performance every twelve to fourteen months, the first PetaFlop/s
system should be available around 2009. Due to the rapid changes in the tech-
nologies used in HPC systems, there is currently no reasonable projection possi-
ble for the architecture of the PetaFlops systems at the end of the decade. Even
as the HPC market has changed substantially since the introduction of the Cray
1 three decades ago, there is no end in sight for these rapid cycles of architectural
redefinition.

There are two general conclusions we can draw from these figures. First, par-
allel computing is here to stay. It is the primary mechanism by which com-
puter performance can keep up with the predictions of Moore’s law in the
face of the increasing influence of performance bottlenecks in conventional
processors. Second, the architecture of high-performance computing will con-
tinue to evolve at a rapid rate. Thus, it will be increasingly important to find
ways to support scalable parallel programming without sacrificing portability.
This challenge must be met by the development of software systems and algo-
rithms that promote portability while easing the burden of program design and
implementation.
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4.1 Grid Computing

Grid computing provides for a virtualization of distributed computing and
data resources such as processing, network bandwidth, and storage capacity to
create a single system image, providing users and applications seamless access to
the collective resources. Just as an Internet user views a unified instance of con-
tent via the Web, a grid user essentially sees a single, large virtual computer.

Grid technologies promise to change the way organizations tackle complex com-
putational problems. However, the vision of large-scale resource sharing is not yet a
reality in many areas—Grid computing is an evolving area of computing, where
standards and technology are still being developed to enable this new paradigm.

The early efforts in Grid computing started as projects to link US supercom-
puting sites, but now that initiative has grown far beyond its original intent.
In fact, there are many applications that can benefit from the Grid infrastruc-
ture, including collaborative engineering, data exploration, high-throughput
computing, and of course distributed supercomputing.

Ian Foster [12] defines a Grid as a system that

● coordinates resources that are not subject to centralized control . . . (A Grid
integrates and coordinates resources and users that live within different con-
trol domains—for example, the user’s desktop vs. central computing, different
administrative units of the same company, or different companies—and
addresses the issues of security, policy, payment, membership, and so forth
that arise in these settings. Otherwise, we are dealing with a local management
system.)

● . . . using standard, open, general-purpose protocols and interfaces . . .
(A Grid is built from multipurpose protocols and interfaces that address such
fundamental issues as authentication, authorization, resource discovery, and
resource access. As discussed further below, it is important that these proto-
cols and interfaces be standard and open. Otherwise, we are dealing with an
application-specific system.)

● . . . to deliver nontrivial qualities of service. (A Grid allows its constituent
resources to be used in a coordinated fashion to deliver various qualities of
service, relating for example to response time, throughput, availability, and
security, and/or co-allocation of multiple resource types to meet complex user
demands so that the utility of the combined system is significantly greater
than that of the sum of its parts.)

At its core, grid computing is based on an open set of standards and protocols
— e.g., Open Grid Services Architecture (OGSA) — that enable communication
across heterogeneous, geographically dispersed environments. With grid comput-
ing, organizations can optimize computing and data resources, pool them for
large capacity workloads, share them across networks, and enable collaboration.

A number of challenges remain to be understood and overcome in order for
Grid computing to achieve widespread adoption. The major obstacle is the need
for seamless integration over heterogeneous resources to accommodate the wide
variety of different applications requiring such resources.
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5 TRANSFORMING EFFECT ON SCIENCE 
AND ENGINEERING

Supercomputers have transformed a number of science and engineering disci-
plines, including cosmology, environmental modeling, condensed matter physics,
protein folding, quantum chromodynamics, device and semiconductor simula-
tion, seismology, and turbulence. As an example, consider cosmology—the study
of the universe, its evolution and structure—where one of the most striking par-
adigm shifts has occurred. A number of new, tremendously detailed observations,
deep into the universe, are available from such instruments as the Hubble Space
Telescope and the Digital Sky Survey [2]. However, until recently, it has been
difficult, except in relatively simple circumstances, to tease from mathematical
theories of the early universe enough information to allow comparison with
observations.

However, supercomputers have changed all that. Now cosmologists can simu-
late the principal physical processes at work in the early universe over space–time
volumes sufficiently large to determine the large-scale structures predicted by the
models. With such tools, some theories can be discarded as being incompatible
with the observations. Supercomputing has allowed comparison of theory with
observation and thus has transformed the practice of cosmology.

Another example is the DOE’s Accelerated Strategic Computing Initiative
(ASCI), which applies advanced capabilities in scientific and engineering com-
puting to one of the most complex challenges in the nuclear era—maintaining the
performance, safety, and reliability of the nation’s nuclear weapons without phys-
ical testing. As a critical component of the agency’s Stockpile Stewardship
Program (SSP), ASCI research develops computational and simulation technolo-
gies to help scientists understand aging weapons, predict when components will
have to be replaced, and evaluate the implications of changes in materials and
fabrication processes for the design life of aging weapons systems. The ASCI pro-
gram was established in 1996 in response to the Administration’s commitment to
pursue a comprehensive ban on nuclear weapons testing. ASCI researchers are
developing high-end computing capabilities far above the current level of per-
formance, as well as advanced simulation applications that can reduce the current
reliance on empirical judgments by achieving higher resolution, higher fidelity, 3-
D physics, and full-system modeling capabilities for assessing the state of nuclear
weapons.

Parallelism is a primary method for accelerating the total power of a super-
computer. That is, in addition to continuing to develop the performance of a tech-
nology, multiple copies are deployed that provide some of the advantages of an
improvement in raw performance, but not all.

Employing parallelism to solve large-scale problems is not without its price.
The complexity of building parallel supercomputers with thousands of proces-
sors to solve real-world problems requires a hierarchical approach—associating
memory closely with Central Processing Units (CPUs). Consequently, the cen-
tral problem faced by parallel applications is managing a complex memory hier-
archy, ranging from local registers to far-distant processor memories. It is the
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communication of data and the coordination of processes within this hierarchy
that represent the principal hurdles to effective, correct, and widespread accept-
ance of parallel computing. Thus, today’s parallel computing environment has
architectural complexity layered upon a multiplicity of processors. Scalability, the
ability for hardware and software to maintain reasonable efficiency as the number
of processors is increased, is the key metric.

The future will be more complex yet. Distinct computer systems will be net-
worked together into the most powerful systems on the planet. The pieces of this
composite whole will be distinct in hardware (e.g., CPUs), software (e.g., operat-
ing system), and operational policy (e.g., security). This future is most apparent
when we consider geographically distributed computing on the Computational
Grid [10]. There is great emerging interest in using the global information infra-
structure as a computing platform. By drawing on the power of high-performance
computing resources that are geographically distributed, it will be possible to
solve problems that cannot currently be attacked by any single computing system,
parallel or otherwise.

Computational physics applications have been the primary drivers in the
development of parallel computing over the last twenty years. This set of prob-
lems has a number of features in common, despite the substantial specific differ-
ences in problem domain:
1. Applications were often defined by a set of partial differential equations

(PDEs) on some domain in space and time.
2. Multiphysics often took the form of distinct physical domains with different

processes dominant in each.
3. The life cycle of many applications was essentially contained within the

computer room, building, or campus.
These characteristics focused attention on discretizations of PDEs, the corre-

sponding notion of resolution being equivalent to accuracy, and solution of the
linear and nonlinear equations generated by these discretizations. Data paral-
lelism and domain decomposition provided an effective programming model and
a ready source of parallelism. Multiphysics, for the most part, was also amenable
to domain decomposition and could be accomplished by understanding and trad-
ing information about the fluxes between the physical domains. Finally, attention
was focused on the parallel computer, its speed and accuracy, and relatively little
attention was paid to I/O beyond the confines of the computer room.

The Holy Grail for software is portable performance. That is, software should
be reusable across different platforms and should provide significant perform-
ance, say, relative to peak speed, for the end user. Often, these two goals seem to
be in opposition to each other. Languages (e.g., Fortran, C) and libraries (e.g.,
Message Passing Interface (MPI) [7] and Linear Algebra Libraries, i.e., LAPACK
[3]) allow the programmer to access or expose parallelism in a variety of standard
ways. By employing standards-based, optimized libraries, the programmer can
sometimes achieve both portability and high performance. Tools (e.g., svPablo
[11] and Performance Application Programmers Interface (PAPI) [6]) allow pro-
grammers to determine the correctness and performance of their codes and, if
falling short in some ways, to suggest various remedies.
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