
Chapter 13

IMPLEMENTING NEURAL MODELS IN SILICON
Leslie S. Smith
University of Stirling

Abstract
Neural models are used in both computational neuroscience and in pat-

tern recognition. The aim of the first is understanding of real neural systems,
and of the second is gaining better, possibly brainlike performance for systems
being built. In both cases, the highly parallel nature of the neural system con-
trasts with the sequential nature of computer systems, resulting in slow and
complex simulation software. More direct implementation in hardware
(whether digital or analogue) holds out the promise of faster emulation both
because hardware implementation is inherently faster than software and the
operation is much more parallel. There are costs to this: modifying the system
(for example, to test out variants of the system) is much harder when a full
application-specific integrated circuit has been built. Fast emulation can per-
mit direct incorporation of a neural model into a system, permitting real-time
input and output. Appropriate selection of implementation technology can
help to make simplify interfacing the system to external devices. We review the
technologies involved and discuss some example systems.

1 WHY IMPLEMENT NEURAL MODELS
IN SILICON?

There are two primary reasons for implementing neural models: one is to
attempt to gain better and possibly brainlike performance for some system, and
the other is to study how some particular neural model performs. Current com-
puter systems do not approach brainlike system performance in many areas (sens-
ing, motor control, and pattern recognition, for example, to say nothing of the
higher level capabilities of mammalian brains). There has been considerable
research into how the neural system attains its capabilities. Implementing neural
systems in silicon can permit direct applications of this research by permitting
neural models to run rapidly enough to be applied directly to data. It is true that

increases in workstation performance have allowed some software implementa-
tions of neural models to run in real time, but the highly parallel nature of neu-
ral systems, coupled with increasing interest in the application of more
sophisticated (and computationally more expensive) neural models, has caused
interest in more direct implementation to be maintained. Interest in applying neu-
ral models to sensory and sensory-motor systems has made attaining real-time
performance a critical factor. Real sensory systems are highly parallel, with mul-
tiple parallel channels of information, so even though each channel might be
implementable in real-time in software, implementing multiple channels implies
hardware implementation.

The study of how particular models of neural systems perform is one aspect
of computational neuroscience. Such studies are usually carried out in software,
since this allows easy alteration of and experimentation with systems. However,
models of the highly parallel architecture of neural systems run slowly on stan-
dard computers. This has led to interest in the use of parallel computer systems
for such models [1, 2] and to interest in silicon implementations. Some researchers
in computational neuroscience would like to apply their models directly to real
data (implying real-time operation). Even if parallel computers can provide the
speed required, it is easier and cheaper to interface silicon implementations to
external hardware.

Recently, another motivation for silicon implementation has arisen as well.
The continuing applicability of Moore’s Law (which states that the number of
transistors on a chip doubles every 18 to 24 months) suggests that we shall soon
have chips with more than 108 transistors but that we may also have chips whose
transistors may be relatively noisy. Such large numbers of transistors seem to
entail highly parallel algorithms if these transistors are not to sit unused almost
all of the time [3]. Further, biological systems seem to produce relatively robust
solutions with relatively noisy components, something that standard computer
systems cannot achieve. This has led to increased interest in the study and imple-
mentation of neural models directly in silicon.

1.1 What this review covers—and what it omits

This review covers the implementation of a number of different types of
model neuron, ranging from the very simple McCulloch–Pitts neuron to highly
complex multicompartment models. It includes implementations of integrate-
and-fire neurons and other models of intermediate complexity. It does not cover
those silicon chips that are primarily concerned with using these neural models to
solve a particular problem. We do describe some of the implementation tech-
niques used for the back-propagated delta rule and the Boltzmann machine, but
we do not review all these chips, concentrating instead on specific issues such as
synapse implementation or noise. A more detailed review of such chips may be
found in [4].

1.2 Organization of this review

We start by outlining the organization and structure of a real neuron. This
overview will allow us to see the different aspects of neuron behavior that are

434 Leslie S. Smith

being modelled. We review the different types of models for neural systems that
have been proposed, differentiating between those that deal with simple vector
input (in which time is either irrelevant or occurs only in terms of the order in
which the input vectors are presented), and those in which the precise timing of
the inputs matters. We then discuss the different technologies for implementation
and describe how different types of model neurons have been implemented. We
discuss some applications, and consider what has been and can be expected to be
achieved by using these different implementation technologies.

2 AN OUTLINE OF A REAL NEURON

Real neurons, like all real cells, are very complex. The aim of this subsection
is to describe a neuron at a level of detail and in a language that is informative to
a wide range of scientists and that can also be used to illustrate what is actually
being modeled in particular implementations. A detailed neurophysiological
description of real neuron operation may be found in [5], part II, and in [6].

There are many different types of neurons, and these very enormously in mor-
phology (shape) and extent, as well as in the details of their biophysics. Neurons
are found in a very wide range of animal species: invertebrate, insect, and verte-
brate. What they all share is operation using electric charge. The operation of the
neuron relies on the neuron’s excitable membrane. The membrane of any cell is its
outermost layer: its boundary. In neurons, this membrane is a bilipid membrane
that contains ionic channels (see Figure 13.2). What makes the membrane
excitable is the way in which its characteristics alter depending on the (localized)
voltage across the membrane. The purely bilipid part of the membrane is essen-
tially a very thin insulator, separating the relatively conducting electrolytes inside
and outside the cell. The ionic channels (and there are many different types of
ionic channel) embedded in this membrane allow selected (charged) ions to cross
the membrane. Unbalanced movement of ions into and out of the neuron alters
the potential difference between the inside and the outside of the neuron (see
Figure 13.3). The ions of particular significance here are potassium (K+), sodium
(Na+), and calcium (Ca++). There is some disagreement as to whether ion channels
are static or can move around inside the membrane [7].

In the absence of any input to the neuron, the excitable membrane will main-
tain the inside of the neuron at a particular potential relative to the outside of
the neuron. This resting membrane potential is usually on the order of −65 mV
(millivolts) (though this does vary across different populations of neurons). This
resting potential results from the movement of ions, primarily due to the differ-
ent ionic concentrations inside and outside of the neurons, and this is maintained
by the Na+–K+ pump which keeps the Na+ concentration inside the cell low and
the K+ concentration inside the cell high (see Figure 13.3). External inputs to the
neuron result in the increase of this potential (known as depolarization in the neu-
rophysiology community) or decrease of this potential (hyperpolarization).

Before discussing the details of how this potential changes, we consider the
overall structure of a neuron: see Figure 13.1. The neuron has a cell body (the
soma), and in most neurons, this has projections. These projections are of two
types: the dendrites and the axon. The dendrites have a treelike structure (hence

Implementing Neural Models in Silicon 435

their name, which comes from the Greek ed odtqo [dendron], a tree) and are
located where inputs to the neuron arrive. The axon, which also has a branching
structure, transfers the output of the neuron to other neurons. These two projec-
tions can be difficult to tell apart in electron micrographs, but they have different
populations of ion channels in their membranes, and they function in different
ways.

Connections between neurons take place at synapses. Mostly, each synapse is
between the axon of one neuron (the presynaptic neuron) and the dendrite of

436 Leslie S. Smith

Axon

Dendrite

Dendrite

Soma

Nucleus

Synapse

Synapse

Synapse

Synapse

Soma

Dendrite

Dendrite

Dendrite

Nucleus

K+
K+

Extracellular

Intracellular

Na+

Figure 13.1. Overall structure of a neuron (actually, a local interneuron). Figure modified from
[5] (Figure 2.8), with permission.

Figure 13.2. Patch of cell neuron membrane. Ion channels are embedded in the bilipid mem-
brane. The membrane is made up of molecules each with a hydrophilic end (circle) and a
hydrophobic end (lines), and is impermeable to ions. There are many types of ion channels, each
consisting of a protein embedded in the membrane: different proteins have different permeabil-
ities to ions because of the conformation of the protein. Additionally, the protein confirmation
itself may be dependent on the voltage across the membrane, so the ion channel’s behavior may
be dependent on the voltage across the membrane as well.

1There are also axo-axonic and dendro-dendritic synapses, as well as axonic synapses that con-
tact the cell body.

another neuron (the postsynaptic neuron).1 It is through the synapse that the
potential at that point in the presynaptic axon alters the potential at that point in
the postsynaptic neuron’s dendrite. Brains contain a large number of highly inter-
connected neurons, and each interconnection consists of a synapse. Some neu-
rons (e.g., cortical pyramidal neurons) may have as many as 10,000 synapses on
their dendrites. There are therefore a very large number of synapses in animal
brains. According to Koch [6], in primates there are about 100,000 cells, and
about 6 × 108 synapses per cubic mm in the cortex.

In an animal brain, synapses are of many different types. Actual synaptic
operation is complex. Many synapses operate by releasing small bubbles (called
vesicles) of a chemical (called a neurotransmitter) from the presynaptic axon into
the space (called the cleft) between the presynaptic axon and the postsynaptic
dendrite (see Figure 13.4). In one type of synapse (ionotropic), this process
directly affects the ionic channels on the dendrite, causing some of them to open
and to allow influx or efflux of ions, altering the potential at that point in the
postsynaptic dendrite. In another type of synapse (metabotropic), the effect is less
direct, altering the ion transport of neighboring proteins. Clearly, both types of
synapse require some time for the effect of the presynaptic pulse to be felt post-
synaptically, and this effect (called postsynaptic potentiation or PSP) takes some
time to decay as well. There are many types of both ionotropic and metabotropic
synapses (often classified by the neurotransmitters used). Ionotropic synapses are
faster in operation than metabotropic synapses.

Implementing Neural Models in Silicon 437

Extracellular

Sodium/Potassium ion pump

Intracellular (Cytoplasmic)

E_Na

g_Na

I_Na

g_CI g_k

I_k

I_k

I_Na

C
_m

em
br

an
e

E_kE_Cl

Figure 13.3. Equivalent circuit of a patch of membrane. The arrows show the direction of the
ion movement (which is the same direction as current transfer). The sodium–potassium pump
maintains the inside of the cell at a negative potential (more Na+ ions are transferred out than
K+ ions are transferred in). The capacitance is provided by the (insulating) bilipid membrane.

When the potential alteration is depolarizing, the synapse is said to be
excitatory, and when the potential alteration is hyperpolarizing, the synapse is
said to be inhibitory. These small alterations in potential are summed on the den-
drites. On many neurons, this summation appears to be essentially linear within a
certain range of potentials: outside of this range, ion channels alter their config-
uration, and the dendrite ceases to be linear. This nonlinearity may occur at some
small portion of the dendrite, due, for example, to many nearby synapses being
simultaneously stimulated. On some neurons, synapses are located on spines on
the dendrite (spiny neurons, as opposed to smooth neurons), leading, it is believed,
to greater ionic and electrical isolation of each synapse. Some researchers believe
that the dendrites perform a considerable amount of processing (the neurophysi-
ology is discussed in Section 19.3.2 of [6], and modeling in [8]), and that there are
essentially nonlinear processes operating on the neuron that provide neurons with
considerable information processing power.

In many neurons, it is the potential at a particular part of the neuron, the axon
hillock (located on the soma of the neuron, at the root of the axon projection)
that is of particular importance. At this trigger zone on the neuron, there is a
large concentration of particular types of sodium channels. The result is that
when the voltage at this location increases beyond a certain threshold value (usu-
ally about −48 mv), a particular set of voltage-sensitive ion channels opens and
allows the influx of Na+ ions, rapidly increasing the depolarization. This results
in even more of these channels opening, causing a very fast and large rise in the
membrane potential. As a result of this increased depolarization, two things
occur: firstly, the sodium ion channels close, and secondly, another set of ionic
channels opens, allowing the efflux of a different set of ions (K+), causing the
potential to drop nearly as rapidly as it rose (see Figure 13.5). This potential
increase and decrease is regenerated along the axon, resulting in a spikelike signal
passing along the axon, arriving at the synapses that this axon makes. Because the
spike is regenerated, its shape is characteristic of the mechanism of its produc-
tion and does not carry information. It is worth noting that (1) the sodium ion

438 Leslie S. Smith

pre-synaptic nerve terminal

2 3

Transmitter
Ca++

synaptic
cleft

post-synaptic cell

Na+

receptor
channel

1

Figure 13.4. Diagram showing the operation of an ionotropic synapse. Modified with permis-
sion from [5] (Figure 10.7).

channels are not able to reopen immediately, so there is an inbuilt maximal rate
at which these spikes can be produced by the neuron, and (2) the potassium efflux
normally overshoots, causing a brief after-spike hyperpolarization. The delay in
the reusability of the sodium channels results in the neuron’s absolute and rela-
tive refractory period: that is, the period during which the neuron cannot fire
again, and the period during which it is more difficult for the neuron to fire again.

The actual propagation speed of the spike is relatively slow due to both the
nature of the conductance and the distributed resistance and capacitance of the
axon. It can be speeded up by a process known as myelinization. In myelinization,
glial cells form a myelin insulation a round the axon, reducing its capacitance, and
allowing the spike to jump (by electrical conductivity, rather than by regenera-
tion) from point to point (actually, to breaks in the myelin, known as Nodes of
Ranvier) along the axon. Actual propagation speeds vary from 1 mm/sec to 100
mm/s inside brains (and faster along peripheral nerves).

Not all neurons actually produce spikes: some output graded potentials.
Indeed, not all neurons have actual dendrites: some receive synapses only on the
soma itself. In many synapses, the alteration in potential produced depends also
on the potential at the synapse. In particular, some synapses (shunting synapses)
tend to drive the potential back towards the resting potential (and thus are either
excitatory or inhibitory, depending on the local potential). In addition, synapses
do not always have exactly the same effect postsynaptically as a result of a presy-
naptic spike. Many synapses are depressing synapses: the effect of the first few
spikes (after a period of presynaptic inactivity) is much larger than that caused by
later spikes. Other synapses are facilitating: after a period of presynaptic inactiv-
ity, the effect of a train of spikes gradually increases. These effects appear to be
due partly to depletion of presynaptic neurotransmitter, and partly to changes at
the membrane on the postsynaptic dendrite (see [9], chapter 10).

Implementing Neural Models in Silicon 439

Na+
influx

K+
efflux

2ms

time

−70mV

+50mv

Figure 13.5. Graph of depolarization on an axon during an action potential (spike).

One important aspect of real neural systems is that they alter in response to
their inputs. They adapt, so identical inputs at different times can have different
effects. This adaptation takes place over many time scales: it may occur rapidly,
as a result of a single event, or very slowly over the lifetime of the animal. Early
in the animal’s life, the neural system grows. There is a great deal of evidence that
the stimulation it receives is critical in adjusting the processing that takes place to
the actual input arriving (e.g., in vision: see chapter 56 of [5]). In mammals many
synapses are formed but do not last. Changes inside the system take many forms:
in addition to growth and decay of synapses, there are structural and biochemi-
cal alterations at synapses, alterations in neuron morphology, and subtler changes
due to hormones and diffusable neurotransmitters such as nitrous oxide (NO)
and peptides. Neural models have tended to focus almost exclusively on changes
at synapses. In addition to the short-term synaptic alteration above (called
dynamic synapse behavior), synapses can also become stronger over a longer
period (long-term potentiation, LTP), or become weaker over a longer period
(long-term depression, LTD). Somehow, out of all these forms of adaptation, the
system appears to learn: we see systemwide changes that provide appropriate
changes in behavior.

There are many views on how much of the detail of the behavior of neurons
is important for understanding their information-processing capabilities. These
views range from the view that only the firing of the neuron matters to views that
voltage-based processing on the dendrite is crucial in information processing, to
views that it is the detail of the quantum effects upon the movement of ions and
the conformation of proteins that matter. Some believe that the firing of neurons
is essentially for information transfer, and that what happens on the dendrites is
critical to information processing (see [6] chapter 20, and [10]). These differences
in beliefs are at the root of the many models that we will now describe.

3 SIMPLE (TIME-FREE) NEURON MODELS

The simplest neural models do not include time: that is, each neuron’s input is
considered as a vector, and the output is computed from this input without regard
for what the neuron’s previous input (or output) had been. There is no internal
state inside the neuron that would allow previous inputs to affect current opera-
tion. Networks of such neurons can be made sensitive to previous inputs if the
network contains loops (because the state information is contained in these new
inputs), but even then, these networks are sensitive only to the order of the inputs
and not to their actual timing. This type of neuron model is the basis for most of
the current work in neural networks for pattern recognition. Such models have
been implemented on analogue computers, digital computers, and in various
types of hardware.

3.1 The McCulloch–Pitts model

The earliest model was the McCulloch-Pitts neuron [11]. This model forms the
weighted sum of its (vector) input and produces a binary output, which is 1 if
the weighted sum exceeds some threshold, and 0 otherwise. This can be written

440 Leslie S. Smith

A w Xi i
i

n

1
=

=

! (1)

followed by Y = 1 if A > q, and Y = 0 otherwise. Here wi is the weight char-
acterizing the synapse from input i, Xi is the ith input, A is the activity of the neu-
ron, q is the threshold, and Y is the neuron’s output.

The model has been formed by (1) considering each spiking neuron as a two-
state device, in which the neuron is either firing (output = 1) or not (output = 0),
and (2) considering each synapse as characterized by a single number (wi). An
excitatory synapse has wi > 0, and an inhibitory synapse has wi < 0. The effect
of the presynaptic neuron on the postsynaptic neuron is found by simple multi-
plication. The overall effect of all the presynaptic neurons—the activity, A—is
a simple linear sum: the dendrite is reduced to a single point. The nonlinearity
is introduced only at the end, where the activity is thresholded to produce the
output.

What makes this very simple model interesting is that it can be used to do
computation. It is straightforward to design simple NOT, AND, and OR gates,
and these can be assembled to provide any logical predicate. The addition of a
clock allows one to build a digital computer from such devices.

3.2 Learning systems

Many extensions to this simple model have been proposed. In terms of basic
operation, these extensions have often been relatively minor, such as graduating
the output. The knowledge that real neural systems are not preprogrammed (at
least in vertebrates) but adapt or learn has been very influential, partly because
useful adaptation has proven very difficult to achieve in traditional computer sys-
tems, and partly because there are many problems for which a purely algorithmic
solution is virtually impossible to find, whereas examples of correct behavior are
quite simple to produce. A system based on learning might be able to solve such
problems.

The earliest form of neural learning was suggested by Hebb [12]. In this form
of learning, synapses that connect neurons that fire together are strengthened.
This type of learning can be applied to make simple learning systems. These have
been investigated in the context of both time-free models and models that include
time: in the time-free case, they can provide a basis for certain self-organizing sys-
tems [13]. We will discuss the case including time in more detail in Section 5.4.3.
We first discuss learning systems that have a teacher: that is, learning systems in
which there is a known correct output for many of the possible inputs. We return
to systems without a teacher in Section 3.3.

3.2.1 Perceptrons

One of the earliest learning systems was the perceptron [14], in which some of
the geometry of the dendrite was reintroduced. What the perceptron is best
known for is the perceptron learning rule [14]. This rule (described in many
Neural Networks textbooks, (e.g., [15,16])) was the first one discussed that
allowed the neural model to adapt itself so as to produce the desired input:out-
put mapping. It was limited to a single layer of simple perceptrons (i.e., perceptrons

Implementing Neural Models in Silicon 441

which had the dendrite geometry removed) with binary outputs (which are the
same as McCulloch–Pitts neurons), but was shown to be able to generate any log-
ical predicate that this architecture could permit. This was the first truly adaptive
system, and it was hugely influential. It led to various forms of implementation
(see Section 5).

3.2.2 The Delta rule

The Delta rule is another learning algorithm for the same architecture [17, 18].
This rule minimizes the Euclidean (least squares) distance between the actual out-
put and the desired output by adjusting the weights (and is sometimes known as
the least mean squares rule). It is applicable to units whose output is a continu-
ously increasing function of the weighted sum of the inputs. The unit output
function may be linear (i.e., the output is simply a constant times the activity
A from Equation 1), or may be a squashing function such as a logistic:

Y = 1/(1 + exp(−k1 A + k2)) (2)

where Y is the output, and k1 and k2 are constants that determine the magni-
tude and location of the maximum slope. The logistic function has a value that is
always between 0 and 1. Other squashing functions (e.g., tanh) have also been uti-
lized. Again, it has been shown that the Delta rule can produce any output that
the particular single-layer architecture could produce, and given small enough
weight changes, will converge to a solution (see, e.g., Section 5.4 of [15]). The way
in which the network is used is that a set of (input, output) pairs is produced, and
these are then applied to the network as the input and the desired output for this
input. The weights are then adjusted to reduce the error: that is, the square of the
sum of the differences between the desired and actual outputs.

However, the limited computational ability of the single-layer architecture was
proven in [19]. The architecture can only produce linearly separable mappings.
Minsky and Papert’s doubt as to whether it could be extended either to more
complex perceptron networks or to a larger class of functions led to a decrease in
the effort extended in neural computing (see [15], Section 1.2) in the 1970s and
early 1980s.

3.2.3 The Hopfield network and the Boltzmann machine

Two new adaptation algorithms were introduced for similar types of neurons
in the early 1980s, one for binary neurons (the Hopfield model, and its extension,
the Boltzmann machine), and the other an extension of the Delta rule (the back-
propagated Delta rule). Both of these networks were hugely influential, and both
were implemented in various forms in hardware.

Hopfield’s network [20] is symmetrical: that is, wij = wji, where wij is the weight
from presynaptic neuron j to postsynaptic neuron i. This network is not a simple
layer of neurons, but has cycles. Updating the network was done neuron by neu-
ron, asynchronously, and the Hopfield proved that the network eventually settles
into a stable state. It was therefore the first network to have a dynamical behav-
ior, although this was not normally used in its operation. The network is consid-
ered to have an overall energy

442 Leslie S. Smith

E w X X2
1

,
ij i j

i j

N

1
= -

=

! (3)

where the neuron’s output, Xi, is either +1 or 1, rather than +1 or 0, and updat-
ing each neuron’s state minimizes this total energy, E. The network could be
trained to be an associative memory by applying the vectors to be stored and then
adjusting the weights so as to minimize E. Hopfield and others (as is clearly
explained in [15]) showed that such a network could remember a maximum of
0.138N vectors. These could be recalled by providing the network with an incom-
plete vector, thus providing content-addressable memory.

An important extension to this network was the Boltzmann machine [21]. In
this network, the original Hopfield network is extended by adding new nodes that
are not connected to the outside world. These so-called hidden nodes can learn to
form internal representations that can allow the network to learn additional vec-
tors and can be used to allow the network to classify its inputs by examining the
hidden unit state. However, the learning technique also has to change (since the
Hopfield learning recipe cannot train weights to and from hidden nodes). The
learning algorithm used is statistical in nature: essentially, it uses concepts from
statistical physics and Boltzmann distributions (hence the algorithm’s name) to
set these weights. A comprehensible description may be found in [15], chapter 7
or in [16], chapter 11. Using such techniques in software is exceedingly slow.
However, the idea that this type of network could learn some form of internal
representation helped rekindle interest in the whole area, and the slowness of
the algorithm in software helped motivate implementations of this type of net-
work in silicon.

3.2.4 The back-propagated Delta rule

The best known of the simple neural network learning rules is the back-prop-
agated Delta rule. Discovered independently at least five times [22–26], it permits
a Delta rule like network to be extended from a simple single layer to a feed-for-
ward network (see Figure 13.6). The basic idea is that errors at the output layer
are funneled back to the units of each hidden layer: for details see any book on
neural networks, e.g., [15] chapter 6, or [16], chapter 4. Once the error at a unit is
known, it can be used to adjust the weights to that unit, essentially using the orig-
inal Delta rule.

There are two problems with the back-propagated Delta rule: firstly, it is no
longer the case that continued application of the learning rule will necessarily
allow the network to learn the input:output mapping, even although it may be
possible for the architecture to do so; and secondly, learning tends to be slow. The
result of the first problem is that one cannot be sure that the network produced
is the best network possible given the (input:output) pairs that have been pro-
vided. So-called local error minima can result in the network stopping learning
before it has done as well as it can. Further, if the (input:output) pairs contain
some noise (perhaps the result of measurement errors), it is quite possible for the
network to attempt to learn this noise. A great deal has been written about the
best ways in which to use this type of network. Certainly, like the Boltzmann
machine, it is capable of extracting information about the (input:output) pairs
provided and coding this into its weights. Learning is slow because the mapping

Implementing Neural Models in Silicon 443

between the weights and the error (the so-called error surface) can be very com-
plex: gradient descent methods applied to high-dimensional complex surfaces
must move slowly because they otherwise risk missing the desired minima of the
surface. The error surface may also contain local minima: if the weights are
trapped in one of these, the performance will be suboptimal.

Because of the wide possible applicability of this network, and because it is
slow to train, many attempts have been made to implement it directly into hard-
ware. These are reviewed in Section 5.3.

Many extensions to this rule have been described and many have been con-
cerned with improving the form of the gradient descent, attempting to make it
closer to steepest descent (some are described in [16], chapter 4). Others have
attempted to replicate the hidden layer’s effects by recoding the input. The idea
here is that what the back-propagated Delta rule does in its hidden layers is to
recode the input so that the mapping from the recoded input to the output
becomes separable, thus permitting the Delta rule to be used. This is essentially
the basis for the Radial Basis Function network [27], (see also [16] chapter 5),
which performs recoding and uses the simple Delta rule between the recoded
input and the desired output.

Bishop [28] has shown that these types of network essentially implement a
form of statistical algorithm. This does not reduce the utility of these systems,
and indeed helps to explain why they are so useful. However, it does show that the

444 Leslie S. Smith

Figure 13.6. Feed-forward neural network. The input layer simply transfers its inputs through
(adjustable) weighted synapses to the hidden layer. There may be a number of hidden layers,
with different numbers of units. The radial basis function network [16] has a similar structure,
with one hidden layer, whose units have a peak response at one point in the input space.

Weighted connections
from hidden to output

units

Weighted connections
from input to hidden

units

Output Units

Input Units

Hidden Units
(1 layer)

limitations of this type of algorithm are essentially the same as the limitations of
the statistical techniques.

3.2.5 Learning sequences

All the above rules can be turned into systems that learn sequences of inputs,
either classifying the sequence or attempting sequence completion. In such
sequences it is the order of the elements, not their precise times, that matters.
Learning can be achieved in a number of ways: a window through the sequence
can be used as the input to the network (i.e., the last n elements of the input are
used as input, and the output target might be the next element in the sequence),
or a network with loops may be used, in which case information about the previ-
ous sequence element is held internally inside the network (see, e.g., [29]). What
networks of these types cannot achieve is learning anything that requires infor-
mation about the precise timing (as opposed to order) of the input vectors.

3.3 Self-organizing systems

Self-organizing systems are systems that adjust their behavior in response to
their input. No correct output is provided: instead, the system adjusts its internal
parameters so as to detect some regularity in the input. Such situations com-
monly occur in sensory perception: the input is of very high dimensionality (for
example, there is one value per light sensor in a camera system, or one value per
bandpass filter in a sound sensor), yet although this suggests a very high number
of possible inputs, real inputs are confined to some relatively small subspace. In
other words, the probability distribution functions of each of the (scalar) inputs
are not independent. It is usually the case that the aim of self-organizing systems
is to adjust the weights in the system so as to produce outputs (usually of lower
dimensionality than the input) that catch the important aspects of the variation
in the input.

The idea of neural processing as data reduction goes back to [30]. Simple
Hebbian learning systems have some utility in this area: consider a number of
inputs that converge on a single output. Assume that the synapses are excitatory,
and that a number of coincident inputs are required to make the output neuron
fire. Inputs which co-occur in large enough numbers to make the output unit fire
will tend to increase their weights, making the output neuron more sensitive to
these inputs. However, simple Hebbian learning alone fails to work effectively
because the weights increase without limit. Below, we discuss two algorithms that
add something to Hebbian learning and that have been candidates for silicon
implementation. A useful introduction to this field may be found in [16], chapter 8.

3.3.1 Learning vector quantisation

Learning vector quantization (LVQ) is used to map a number of inputs (each
with a scalar value) into one of a number of outputs. LVQ is one of a class of
algorithms known as competitive learning algorithms (see [15], chapter 9). This
class of algorithms clearly produces outputs of lower dimensionality: the map-
ping is from some subset of RN to {1..M} where N is the number of inputs and

Implementing Neural Models in Silicon 445

M the number of output units. Normally, all the input units have synapses to all
the output units, initially with random weights. The learning algorithm has a
Hebbian aspect, in that weights between input units and output units that fire are
increased. However, usually only one output unit is allowed to be active at a time,
and the weights to that unit are adjusted in such a way that the total weight (or
the total squared weight) remains the same. Some variants also reduce the weights
on some of the synapses on inactive output units.

LVQ algorithms are of particular interest in compressive coding: by replacing
the input vector with the code for the output unit that best represents it, a very
considerable reduction in data volume can be achieved. Further, the LVQ net-
work adjusts itself to the statistics of the data. Because such coding is fre-
quently required in real time (for example, for transmitting coded images), there
is considerable interest in the hardware implementations of LVQ systems.

3.3.2 The Kohonen mapping network

The Kohonen mapping network is a variant of LVQ in which not only the
weights of the winning unit are adjusted but also weights to nearby units are
adjusted (see [16], chapter 9, or [31]). This description presupposes a definition of
“nearby”, forcing the designer to place some form of topology on the output
units. For example, the output units might be organized in one dimension (as
points on a line or a circle) or in two dimensions (as points on a grid or on the
surface of a sphere or cylinder or torus). The network is trained by being exposed
to many input vectors, and the weights to the output units are adjusted.
Usually, the number of units whose weights are adjusted for each winning pattern
is gradually reduced.

After training, novel inputs will normally result in some localized area of
the output units being activated. In this way, high-dimensional data are mapped
into some area on a surface. Such data compression can be very useful for sen-
sory information, for example, in robotics or surveillance. Often the require-
ment is that training can be relatively slow, but operational results are required
quickly for real-time applications. This situation has led to interest in silicon
implementations of this technique.

4 MODELS THAT INCLUDE TIME

Model neurons that include time are those in which the actual timing of the
input (as opposed to the order of the input) matters. Models of this form can
be sensitive to the actual timing of their inputs, as opposed to their order: the
neurons contain internal time-varying state. The simplest form of neural model
that includes time is the integrate-and-fire model. Such neurons can process
general time-varying signals, but their outputs are normally spike trains.
In common with spike trains of real neurons, the actual shape of the spike is
irrelevant. All that matters is the timing of the spike. Thus, the output can be
characterized by

S = {ti : i = 1 ... n}, ti < ti+1

446 Leslie S. Smith

where ti is the time of the ith spike train in a train of n spikes. More complex mod-
els model the neuron in more detail, sometimes including the membrane itself
and sometimes including the actual production of the spike.

4.1 The leaky integrate-and-fire model

The leaky integrate-and-fire neuron has a very long history: the concept can
be traced back to 1907 [32]. In this neuron model, the dendrites are modeled as
single points at which the synaptic inputs are summed, while current leaks away
linearly: a detailed description can be found in [6], chapter 14. Below threshold,
the voltagelike state variable at that point, A, is described by the equation

()A A I td
d

t = - +x (4)

where t is the time constant of the point neuron (i.e., a [reciprocal] measure of its
leakiness), and I(t) is the total external input to the neuron (see Figure 13.7). In
the presence of positive input, the activity A can rise to the threshold q. When this
threshold is crossed from below, the neuron emits a spike, and A is reset to some
initial value. The mechanism of spike generation is generally ignored in the
model, and the output is characterized entirely by the sequence of spike times.
This type of neuron is sometimes known as a point neuron, because all the geom-
etry of the dendrite has been shrunk to a single point. If R is infinite, then the
neuron is not leaky, and it simply integrates its input until it reaches the thresh-
old. If t is small, then more recent inputs have a larger effect on A. If I(t) is made
up of a number of excitatory synaptic inputs, each of which is not large enough
to cause A to exceed q, then the neuron will act as a coincidence detector, firing
when a number of its excitatory inputs occur at about the same time, allowing A
to reach q in spite of the leakage.

Implementing Neural Models in Silicon 447

Comparator,
spike generator

Sike
output

Threshold

Discharge
C

0v

CR

I(t) A(t)

Figure 13.7. Leaky integrate-and-fire unit. The resistor R models the overall (fixed) leakage of the
membrane (if omitted, there is no leakage), and the capacitor C models the overall capacitance of
the membrane. The time constant t = RC. When a spike occurs, the capacitor is discharged.

4.1.1 Other point neuron models

The leaky integrate-and-fire model is the best known (and most frequently
implemented) of the models that represent the dendrite as a single point. Another
important model is Gerstner’s spike response model [33,34], in which the thresh-
old is dynamic and the shape of the postsynaptic potential is modeled. The
dynamic threshold permits the neuron’s refractory period and relative refractory
period to be included in this relatively simple model.

In Equation 4, the leakage is linear. Feng and Brown [35] suggest a nonlinear
leakage coefficient (equivalent to making t = t(A)), with the result that under cer-
tain conditions, inhibitory input can increase the firing rate [36]. Izhikevich [37]
reviews a number of point neuron type models, both from the point of view of
neural plausibility and computational efficiency. Not surprisingly, the more bio-
logically plausible models take much more computing time. Izhikevich has pro-
posed a new model [38] based on bifurcation analysis, which can generate realistic
neural output from a simple simulation.

4.2 More detailed neuron models

Compartmental neuron models divide up the neuron into a number of sec-
tions (or compartments), each of which is modeled individually, with electrical
current feeding into neighboring sections. The advantage is that the whole neuron
(soma, dendrites, and axon) may be modeled with a degree of accuracy that can
be determined by the modeller. The morphology may be simulated (at least as far
as branching and neurite diameter is concerned), and each section may be given
different properties. The usual techniques are based on the Hodgkin–Huxley
equations (see [6], chapter 6, and [5] chapter 7), and these allow different popula-
tions of ion channels in each compartment to be modeled. Essentially, a nonlin-
ear leakage current is associated with each ion type. There are some standard
simulation tools developed for this type of simulation, most notably Neuron [39].

There are also simplified models, often based on the Hodgkin–Huxley equa-
tions—for example, the FitzHugh–Nagumo equations and the Morris–Lecar
equations (both reviewed in [6], chapter 7, and discussed in terms of computa-
tional efficiency in [37]). Indeed, Feng and Brown’s model [35] is a version of the
FitzHugh–Nagumo model. These models can aid the speed of computation (in
software) and possibly the complexity of a hardware implementation.

4.3 Learning in models that include time

Neural models that include time generally have a spike-based output. This
spike output may be thought of either as coding a value in terms of its instanta-
neous spiking rate (rate coding) or by the precise timing of the spikes. In rate cod-
ing (and also in the case where the output is not a sequence of spikes, but a
continuously varying value), it is possible to apply, for example, Hebbian-type
learning rules as discussed in section 3.2. There are no equivalents of the Delta
rule or the perceptron learning rule that make specific use of these types of code.
These learning rules are based on the idea of a single vector input producing a
single vector output. One can still use this formulation of a network that uses

448 Leslie S. Smith

rate-coded spiking neurons, but no advantage is being taken of the neurons
including time.

Although rate-coded and graded-output neurons clearly can have more
sophisticated learning rules, there has been more interest in learning rules for
spike timing-coded neurons. This case is of particular interest to computational
neuroscientists, since it may inform brain science. There has been particular
interest in temporal versions of Hebbian learning rules (reviewed in [40] and
also in chapter 10 of [34]). To apply Hebbian learning to spiking neurons, we
need to reconsider what “firing together” means: the usual view is that, for exci-
tatory synapses, those whose postsynaptic currents assist in making the postsy-
naptic neuron fire are strengthened, while those whose postsynaptic currents
do not help are weakened. Generally, these new rules do not alter synaptic
strength unless the postsynaptic neuron fires: thus their effect is to strengthen
synapses that were active just before the postsynaptic neuron fired and to weaken
those that were active just after the postsynaptic neuron fired. Although such
learning rules have not yet been demonstrated to be effective in applied neural
networks, there is considerable interest in silicon implementations of this type of
rule (see Section 5.4.3).

5 TECHNIQUES FOR HARDWARE
IMPLEMENTATION

Hardware implementation of neural models and networks of neural models
can allow these systems to operate in real time and to use the massive parallelism
inherent in these types of design. Sequential computers cannot provide true par-
allelism, and parallel computers are expensive: further, there is often a mismatch
between the very intense intercommunication required for neural computers and
the relatively low bandwidth parallelism provided by the cheaper forms of paral-
lel computer, such as networks of transputers or Beowulf clusters [41].

In fact, direct hardware implementation of neural systems and networks has a
relatively long history. Prior to the advent of the workstation, neural modelers
were forced either to use mainframe computers or to develop their own hardware.
Models of excitable membranes using discrete components were developed
[42–45], as well as full neurons [46]. More computationally oriented models of
perceptron-based machines were built [47,48]. This chapter is not the place for a
full review of this historically interesting material: however, the history does show
that dedicated hardware for neural systems is not a new idea. Modern neural
hardware developers are primarily interested in chip-based implementation. This
focus has certainly made the resulting hardware smaller (the neural model of the
avian retina developed by Runge et al. [49] ran to 50 circuit boards!), though more
difficult to test and modify.

There are many possible ways of organizing a review of implementations of
neural models. In a much earlier article [50], these were organized by chip type. In
[4], they are organized by actual chip, and in [51], a table of chips and their charac-
teristics is provided. Here, we review some of the issues, then discuss the analogue
versus digital issue, and then look at the question of whether the implementations
use static (time-free) or dynamic (including time) approaches.

Implementing Neural Models in Silicon 449

5.1 VLSI implementation of neural models

Chip-based implementations are very attractive to the neural system imple-
mentor. Not only are they small (and easily incorporated into complete systems)
but also most design systems proffer at least some facilities for testing the design
prior to actual chip manufacture. Further, if the implementation is successful, the
designer will normally receive a number of chips, allowing more than one
researcher to work with the implementation. In addition, reusing designs or sec-
tions of designs is relatively straightforward. However, implementors of neural
systems in silicon do not have the luxury of developing a new silicon technology,
and so must use technologies that were developed for other purposes, such as for
high-speed digital processors.

The basic implementation techniques are summarized in Table 13.1. There are
many different possibilities within each of these classes of implementation tech-
nique. Analogue implementations are normally custom integrated circuits. These
may use the linear range of the field-effect transistors (above threshold) or the
very-low-power exponential part of their range (subthreshold). Digital imple-
mentation techniques range from software (i.e., implementation on a normal
computer) to field-programmable gate array (FPGA: a technology in which an
array of electrically programmable gates can be interconnected in an electri-
cally programmable way) to application-specific digital integrated circuits (digital
ASIC). Of course, these technologies may be mixed, even on the same chip. We
note in passing that field-programmable analogue arrays (FPAAs) are in devel-
opment (see, for example, [52]), although they are not yet nearly large enough to
replace complex analogue ASICs. The downside of hardware implementation is
the length of the timescale from design (or modification) to implementation. For
all the hardware implementation techniques (except FPGA), change of design
means refabrication, and this process generally takes months. On occasion, focused
ion beam (FIB) machines (see, e.g., http://www.feico.com/support/fiblab.htm) can
be used to modify devices, but this option is often not available, or else is inappro-
priate for the modification required. FPGAs can be reprogrammed quickly: they
are a technology with aspects of both hardware and software.

In Table 13.1, the “Degree of Implementation” [53] column relates to the
extent to which all the elements of all neurons exist as separate hardware compo-
nents. Fully implemented systems have identifiable (and different) circuit ele-
ments for each entity being modeled. Real neural systems are fully implemented.
Most analogue implementations are also fully implemented. However, full imple-

450 Leslie S. Smith

Table 13.1. Summary of characteristics of different implementation techniques for
implementing neural systems.

Degree of Real-time Power
Implementation Technology Implementation Speed System Consumption
Subthreshold a VLSI High High Yes Very low
Above threshold a VLSI High Very high Yes Medium
dVLSI Low High Possible Medium to high
FPGA Low-medium Medium Possible Medium to high
Workstation software Minimally low Low Not usually High
DSP based software Low Medium-high Possible High

mentation is not usually possible for digital VLSI implementations since replicat-
ing, e.g., digital multipliers at each synapse would make the circuit impossibly
large: instead, the same functional unit may be reused frequently. For example,
one digital multiplier may well be used as part of the implementation of many
synapses. Such a virtual design (again using the terminology of [53]) trades off the
speed of the functional unit against its area and the switching involved in multi-
plexing signals to the functional unit. By careful design, real-time performance
may still be possible, but even with fast digital electronics, it is not guaranteed.
FPGA- and DSP-based implementation are not normally fully implemented.
Depending on the design chosen, component re-use will occur to a greater or
lesser extent. Pure software implementations use the CPU(s) of the workstation
for all computational tasks and have the lowest degree of implementation. Even
implementations on parallel sets of workstations (e.g., Beowulf) simply tend to
distribute the different parts of larger simulations across a number of worksta-
tions. DSP chips are also software driven and are normally controlled from a
workstation. The degree of implementation depends on the details of the design
(for example, on the number of chips used). The systems are easily reconfigurable,
but because they are special purpose, they require specific software packages and
can be difficult to program.

5.2 Analogue or digital VLSI

The first choice facing a designer intent on implementing a neural model in
VLSI is whether to use an analogue or a digital design. If an ASIC is being pro-
duced, it is very likely that the technology being used for chip manufacture might
have been developed for digital designs. When the implementor is attempting to
build an analogue ASIC, or, indeed, any target except a digital ASIC (for exam-
ple, a mixed (or hybrid) design: part digital and part analogue), problems arise.
The quoted feature size for a particular technology (λ) is intended for use in the
production of digital gates. For such gates, all that matters is that the realized
circuit conforms with the designed circuit and that the switching voltage between
an FET being on and off is within a particular range. For above-threshold ana-
logue VLSI, the implementor is attempting to use the linear part of the transis-
tor’s characteristic, and so is reliant on the actual placing and shape of the
transistor’s Ids/Vgs characteristic. This reliance can lead to matching problems,
though it does appear to be the case that these problems are not major. However,
for subthreshold aVLSI, the designer is reliant on the characteristic of the tran-
sistors before they turn on (i.e., Ids/Vgs below threshold). This is not a character-
istic that digital chip designers generally care about since it does not impact on
their designs.

Why then would anyone consider analogue implementation? We discuss below
some of the differences in implementation characteristics implied by these two
different approaches.

5.2.1 Signal coding

The primary difference between digital and analogue systems is in how signals
are coded. Digital signals are discrete values, valid at specific instants, and analogue

Implementing Neural Models in Silicon 451

signals are continuous values in continuous time. In a digital system, the two pri-
mary parameters of a signal are sampling rate and sample length. In an analogue
system, the parameters are bandwidth, slew rate (maximal rate at which a signal can
change), noise level, and drift. (Drift causes the analogue signal to change slowly
[perhaps due to temperature variation], again reducing overall accuracy.) There is a
third form of coding, namely, spike encoding, that provides spikes at specific
instants, which we discuss further in Section 5.4.

In a digital system, the sampling rate determines the signal bandwidth: the
maximal bandwidth is half the sampling rate. The bandwidth determines the
maximal rate at which values (such as postsynaptic potentials) can change, For
fully implemented systems, both analogue and digital systems normally have
plenty of bandwidth in hand compared with real neural systems. However, digi-
tal systems are not normally fully implemented, so they need to have a higher
bandwidth. If a particular piece of circuitry is used in P different ways (for exam-
ple, a digital multiplier might be used in P different synapses), then its processing
bandwidth (or speed) must be at least P times the actual required bandwidth. The
sampling rate also determines the accuracy with which the time of an event can
be determined: this can be important for spiking neurons (see also Section 5.4).

In a digital system, sample length determines the accuracy with which a value
can be held: theoretically, an analogue system holds a value precisely, but the
effect of noise is that the value is no longer precise, and drift causes further diffi-
culties. Maximizing sample length leads to space problems: for most circuitry, the
number of gates required is at best proportional to sample length.

5.2.2 Memory technologies

Memory is required in neural systems to hold constant values (such as thresh-
olds, delays, or characteristics for ion channels) as well as variable values such as
those characterizing synapses or any other aspect of the model that can alter.
Digital memory techniques are well known: memory consists of a string of bits,
each held either as a static RAM (sRAM) or a dynamic RAM (dRAM) cell.
dRAM requires frequent refreshing, and both sRAM and dRAM are volatile and
thus require reinitializing on power cycling. Another possibility is to use electri-
cally erasable programmable read-only memory (EEPROM or flash memory)
techniques to provide nonvolatile but rewritable memories.

Analogue memory elements are more problematic. In discrete systems, fixed
values may be held by selecting discrete components (usually resistors and/or
capacitors) with particular values. This approach is not practical on analogue
VLSI chips: resistors can be fabricated, but their accuracy is low, and capacitors of
any reasonable size take up too much space. One method of keeping values in ana-
logue systems is to use a digital storage solution combined with a digital-analogue
convertor (DAC). Such a system can provide accurate storage, with storage for
each value taking up little space. If many values are required (as might be the case
for synapse weight storage), this usually means using a smaller number of DACs
and sharing them, with a consequent need for additional routing of signals.

True analogue VLSI storage generally uses either the charge on a capacitor or
floating gate technology [54]. The simplest technique relies on simply storing
some charge on a capacitor, which is essentially isolated. However, this charge

452 Leslie S. Smith

tends to leak away, and so a refresh system is often introduced. A variant on this
technique for increasing the quality of this form of representation is to use the
ratio of the charge stored on two neighboring capacitors, relying on them both
leaking at the same rate [55]. Such memories are essentially volatile. Restoration
of these values often makes use of external digitally held values and an on-chip
DAC. Floating-gate technology proffers the possibility of longer-term nonvolatile
analogue storage: it is based on the same techniques that are used for EEPROM,
but attempts to retain an analogue value [54, 56, 57]. Extended analogue storage
is not a requirement of standard digital technology, and so is not supported in
design systems. This can make chip development more difficult because the
devices are often not supported in simulation environments.

The above techniques are for storing constant values. However, an important
aspect of neural simulations (and particularly of neural networks) is adaptivity:
we need to be able to adjust values, and to adjust them gradually. This process
consists of first determining what the parameter alteration should be (discussed
in Sections 5.3.1 and 5.4.3), and second, implementing some mechanism for on-
chip parameter alteration. For digital storage, there is no difficulty in adjusting a
binary string: what is required is either an adder or a step-up/step-down counter,
or each value may be rewritten, having been recalculated elsewhere. For analogue
systems, the problem requires novel solutions. This is not a new problem: special-
ized devices for weight storage and updating in the analogue domain have a long
history (see Section 8.2 of [53]). The original Perceptron Mark 1 used motor-
driven potentiometers. Later, Widrow introduced the memistor, a copper/elec-
trolyte variable-resistance electrochemical cell. Some systems expect weight
adjustments to be determined and effected from outside of the chip: weights are
recalculated and then updated using a digital computer interface (e.g., [55, 58]).
If the neural simulation is to be be trained without an external computer, then
it should incorporate internal adaptation. For capacitative storage, there must be
some mechanism for gradually increasing or gradually decreasing the charge
stored on the capacitor. For floating-gate techniques, there needs to be a mecha-
nism for charging and discharging the floating gate. Meador [56] suggested using
pairs of floating-gate transistors and transferring charge between them. Diorio
[57] uses hot-current injection to add electrons to its floating gate and
Fowler–Nordheim tunneling to remove them. External checking of the actual
weight may be required because of variations in chip processing. This is still an
area of active research: Hsu et al. [59] have developed Diorio’s ideas in a compet-
itive learning chip, and Morie et al. [60] are developing a multinanodot floating-
gate technique for postsynaptic pulse generation.

5.2.3 Simple arithmetic operations

Whether one is using a simple neuron like that in Equation 1 or a more com-
plex neuron with an explicit dendrite, one needs to use arithmetic operations both
for calculating neuron output and for any internal parameter alteration. For
example, to calculate the postsynaptic activation one requires at least a multiply;
to compute the total activation, one requires addition. In a digital implementa-
tion, these process imply the use of adders and multipliers, and in an analo-
gue implementation the use of circuitry that can sum voltages (or currents) and

Implementing Neural Models in Silicon 453

perform multiplication on whatever circuit value is being used to represent the
output, activation, or synaptic data.

Such arithmetic operators occur very frequently in neural models. In real neu-
rons, these operations are accomplished using (for synapses) the effects of alter-
ing release probabilities for presynaptic neurotransmitter vesicles and changing
the probabilities of opening postsynaptic ion channels, and (for the activation
summation) by charge summation inside the dendrite. Both these operations take
up very little space indeed. In digital systems, very fast adders and multipliers can
easily be built. Adders tend to be relatively small, but multipliers tend to be larger.
Depending on the multiplier implementation, one has a choice between having
the latency and the size of the multiplier increase linearly with operand length (or
having the latency increase as the log of the operand length) and having the size
of the multiplier increase as the square of operand length [61]. In either case, it is
not practical to use a separate multiplier per synapse for neural network imple-
mentation, although it can be practical to use one adder per neuron for activation
summation.

In analogue implementation, simple multiplication of positive values (single-
quadrant multiplication) is relatively straightforward. Thus, if a neuron’s output
can be guaranteed to be positive, and the weight is known to be excitatory
(inhibitory), the product can be added to (subtracted from) the postsynaptic
activity. However, the most popular time-free neural model (back-propagation)
has neurons whose weights can be either excitatory or inhibitory, and can change
between these during training. In addition, some versions of back-propagation
use a tanh(A) output function, rather than a logistic (1/(1 + exp(−A))) function,
resulting in outputs being either negative or positive. Thus, either two-quadrant
or even four-quadrant multiplication is required. This can be problematic, since it
is very easy for the product to be outside the linear range of the multiplier (see
[62], chapter 6).

In analogue implementations, it is possible to use the transfer characteris-
tics of MOSFETs (or of circuits of MOSFETs) directly, even when these are
nonlinear. This option was one of the driving forces behind the Mead’s origi-
nal proposal to use subthreshold a VLSI for neural modeling (and for neuro-
morphic systems) [62]. In this way, exponential functions, differentiators, and
integrators can be built directly (see also [63]). This approach is clearly much
more space efficient than developing digital circuits for the same function, and
this is the reason why subthreshold a VLSI systems have a very high degree of
implementation. However, design is more difficult (or perhaps more skilled),
and one is reliant on the silicon implementation behaving in exactly the same
way as the designer’s model, which, as discussed earlier, may be difficult to
achieve.

5.3 Implementing simple time-free neuron model networks

An implementation of a simple time-free neuron model consists of an imple-
mentation of the synapses, of the dendrites, and of the generation of the output
of the model neuron. In addition, it is necessary to implement the interconnec-
tion between the neurons. Further, for adaptive systems, one must also implement
both parts of the mechanism for adaptation. The primary difficulties arise at

454 Leslie S. Smith

synapses. The problems are computation of postsynaptic potential and computa-
tion (and implementation) of synaptic parameter alterations. If there are many
neurons, there may also be problems associated with neuron interconnection.

The dendrites accumulate the activity passed to them by the synapses. This is
a simple additive process (see Eq. 1). In a digital implementation, this is simple
addition, with the number of bits used determining both the precision of the
result and when overflow or underflow might occur. In an analogue implementa-
tion, either currents or voltages may be summed. Accuracy is then a function of
noise, drift, and the linearity of the system. Analogue equivalents to overflow and
underflow occur when the current or voltage reaches its limit.

The output of the neuron may be binary (for McCulloch–Pitts neurons or per-
ceptrons, for example), or it may be graded (for a linear threshold unit, for exam-
ple). In digital implementations, the former is achieved by numerical comparison
with a fixed (binary-coded) threshold, and therefore requires an adder. In ana-
logue implementations, this adder is replaced by a comparator, and the threshold
is required to be stable. Where the output is graded (as is the case for Delta rule
[plain and and back-propagated] and for the Radial Basis Function networks),
some function must be applied to the activity. This may be simple multiplication
(for linear units) or a logistic function (Eq. 2) or some other function. Accurate
implementation may be quite complex in a digital implementation. Sometimes
look-up tables are used to speed up this operation. Generally, the output function
is shared between a number of neurons on the same chip (partial implementa-
tion). In analogue implementations, it may be virtually impossible to achieve
exactly the output function required. However, in both the Delta and back-prop-
agated Delta rule, it is not the exact function that matters but rather that the func-
tion is a squashing function, which is smooth and always has a positive derivative.
Given suitable limits to the activity of the neuron, this outcome can often be
achieved relatively easily and compactly in an analogue implementation. One can
claim some biological plausibility for this approach as well, since the activation at
the axon hillock (where spiking is initiated) will necessarily limit as it tends
towards both positive and negative values due to the opening of additional ion
channels. Both this form of limitation and the limitation on maximal spiking
rates are likely to have similar forms of characteristics, but are unlikely to follow
some analytical mathematical function.

Lastly, model neuron outputs must be connected to the appropriate synapses.
Each neuron output may be connected to many different synapses, though each
synapse is normally connected to only one neuron output. In a digital implemen-
tation, this outcome is best achieved by the use of some form of bus, particularly
if the synapses are not fully implemented. The bus allows values to be directed to
whichever element of circuitry is implementing that synapse at that time: it is
straightforward to calculate whether the bus speed is sufficiently high, and to
replicate it if required. In an analogue system, it is more common to use a rec-
tangular array of synapses, as discussed in the next section.

5.3.1 Synapses for time-free neurons

The emulation of synapses is critical in silicon implementations of model
neurons. As with real neurons, synapses are by far the most frequently occurring

Implementing Neural Models in Silicon 455

element of model neural networks. Because a single model neuron may have so
many synapses, the system designer is faced with a choice between replicating a
small amount of circuitry and hence a simple synapse (full implementation) or
sharing the circuitry between a number of synapses (partial implementation).
Replicating large amounts of circuitry is generally not practical.

The basic function of a synapse in a network of time-free neurons is to allow
a presynaptic input to affect the postsynaptic neuron. Simple implementations of
synapses are generally multiplicative: the change in postsynaptic activity is pro-
portional to the presynaptic input, and the constant of proportionality is known
as the weight, as in Eq. (1). For simple binary neurons, this set up can be imple-
mented by adding or substracting a constant (weight-dependent) amount from
the activity. For graded output neurons, multiplication of the output of the presy-
naptic neuron and the weight is required. Digital multipliers are standard circuit
components but contain a considerable amount of circuitry. Full implementation
of such multipliers results in the synapse numbers becoming the limiting factor in
what can be placed on a single chip, while partial implementation implies precise
switching of the presynaptic input and the appropriate weight, and of the result-
ing product.

Mechanisms for weight storage were discussed in Section 5.2.2. Chips nor-
mally have the weights on-chip, although some may require the weights to be
downloaded at start-up. Analogue synapses are often stored in a rectangular
array, as illustrated in Figure 13.8. For example, the Intel 80170NX chip [55] has
a 160 by 64 array of synapses. Each set of synapses belonging to a single neuron
is in a vertical column. The presynaptic inputs from a single neuron are in a hor-

456 Leslie S. Smith

Dendrite_j Dendrite_j+1 Dendrite_j+2 Dendrite_j+3

Input_i

Synapses

Input_i+1

Input_i+2

to axon hillock model

XXXX

X X X X

XXXX

Figure 13.8. Synapses (each a simple multiplier) are arranged in a rectangular formation.
Dendrites accumulate current from all synapses to that neuron.

izontal line. Where the two meet, there is a synapse (though some may have no
effect). The vertical lines accumulate this input (whether as a current Isyn or a volt-
age Vsyn) and apply this to the simulated axon hillock. Weight storage precision
can affect the system in terms of both the system displaying the correct behavior
once trained and the system being able to work correctly during training. (This is
a general problem in digital signal processing: see [64].) In general, attaining cor-
rect behavior once trained is less demanding than attaining appropriate behaviour
during training: 4 to 8 bits is enough for almost any application [65,66].

For specific fixed applications, weights may be set externally and fixed.
Generally, synaptic adaptivity is attained by weight alteration, which requires that
the weights be updatable. We discussed mechanisms for updating the weight in
Section 5.2.2: here we are interested in determining what this weight update
should be. This calculation may take place on-chip or off-chip. Different neural
network algorithms make different changes: with the exception of the perceptron
rule and the Hopfield network, however, these changes are often small. Further
when using the back-propagated Delta rule, small changes often occur a long way
from the best solution due to nearly flat areas in the error/weight space. If the
weight update calculation is off-chip, this situation may not present a problem
since high-precision arithmetic will be available off-chip. However, if the changes
are calculated on-chip, there can be difficulties with digital weight storage update
calculation when the weight change becomes less than one bit. (Indeed, these
problems apply equally at weight update, even if the changes are calculated at
high precision.) This critical point results in a sudden performance breakdown
[67] in training, although such precision is not required in recall. Digitally stored
analogue weights suffer from exactly the same problem. There has been consider-
able software exploration of this problem [68]. In a purely analogue system,
weights can often be adjusted by very small amounts (exactly how small depends
on the details of the implementation), limited by the noise and drift in the system.
Failure from this source tends to be less sudden. Changing purely analogue
weights can be an imprecise affair, and some systems allow a “chip in the loop”
form of updating (e.g., the Intel 80170 [69]), where the effect of the weight update
is tested immediately and the update is possibly repeated.

5.3.2 Developed hardware for time-free neurons

Hardware time-free neuron implementations have been around for some time
(see [4,51]): a number of chips have been produced commercially and by
University Departments (see [70] for a list). A number of the major semiconduc-
tor manufacturers have also produced chips: Intel produced the 80170NX (or
Electronically Trainable Artificial Neural Network, ETANN) [69], an essentially
analogue device directly implementing a number of neurons. Synapses were
implemented using the difference between voltages on two neighboring floating
gates. The values were externally determined and nonvolatile, with analogue mul-
tipliers at each synapse. IBM produced the ZISC036 (ZISC, for zero instruction
set computer) [71], a digital chip implementing a radial basis function with on-
chip learning. This chip could load and evaluate a vector in about 4 microseconds.
Motorola collaborated with Adaptive Solutions to develop CNAPS [72], which is
essentially a specialized DSP device that can be programmed to implement neural

Implementing Neural Models in Silicon 457

network applications in a highly efficient fashion. Phillips produced Lneuro [73]
and Lneuro 2.3 [74], both digital implementations. Both were intended as spe-
cial-purpose processors used in conjunction with a computer. Lneuro2.3 was
intended also for other signal and image-processing applications. Siemens pro-
duced the SYNAPSE-3 neurocomputer, based on their MA16 chip [75,76],
a digital chip that can be programmed to perform many different neural network
algorithms at high speed. Many other smaller companies (and many university
departments) also developed neural network chips in the early 1990s.

Very few of these chips appear to be currently in production, even though the
technology of neural networks is quite widely applied. There are two reasons why
neural network chips have not taken off. The first is that workstation prices have
tumbled while at the same time their performance has rocketed. The result is that
(1) training up neural networks does not take an unreasonably long time, even
when large amounts of data are involved, and (2) using neural network software
after training is very fast: real-time performance is often possible without special
hardware. Since most users do not really care, how long training takes, so long as
recall is fast, there is no commercial advantage in building systems a round neu-
ral network chips. The second reason is that neural networks themselves (and
therefore neural network chips) are components in larger systems. These systems
are required in order to massage the data into a form where it can be used directly
with a time-free neural network: generally these systems already require a PC, so
adding on some neural network software to complete the system is a much more
attractive proposition than adding on neural network hardware. Neural network
chips tend to be in use either in specialized defense applications (e.g., Irvine
Sensors 3DANN devices, see http://www.irvine-sensors.com) or in visual sensors
(e.g. NeuriCam, see www.NeuriCam.com). There is still interest in developing
neural network chips for algorithms: the Boltzmann machine’s capability for gen-
erating representations (and for using noise in the algorithm itself) has led to con-
tinuing interest in that algorithm ([77,78]). In addition, there has been interest in
hardware for the more recent products of expert algorithms [79], resulting in a
mixed-signal (hybrid) implementation [80].

Perhaps a third reason can be added as well: as is clear from the paragraph
above, there has been no agreement among chip designers as to the best way to
implement this type of device. Technologies have varied from specialized ana-
logue systems to specialized digital systems to systems that were essentially
adapted digital signal processors. All these approaches work, but none had a spe-
cific competitive edge.

5.4 Implementing spiking neurons

The earliest implementations of spike-based neurons used existing pulse-
based technologies. Interest in this approach appears to have decreased in favor
of more biologically plausible systems based on integrate-and-fire neurons.

5.4.1 Pulse-based neuron implementations

Pulse-based techniques have been used in signal processing for many years.
Signals take the form of a train of pulses, usually with the signal in an inactive

458 Leslie S. Smith

(zero) state most of the time. Such signals have advantages over level coded sig-
nals: they are low power (assuming that power consumption is minimal during
the zero period), reasonably noise immune, and easily regenerated if the pulse
edge is flattened. There are essentially three basic techniques for coding (modu-
lating) values onto pulses: pulse height modulation, pulse width modulation, and
pulse frequency modulation. These techniques are, up to a point, independent of
each other. One can argue that these pulse-based techniques do have a degree of
neural plausibility: pulse frequency modulation is the same as biological spike-
rate coding. One can argue that pulse height modulation is what is happening at
synapses, although the postsynaptic smearing of the precise spike timing could
also be interpreted as pulse width modulation.

A number of groups have developed pulse-based neural systems. Murray’s
group [81–83] used pulse frequency modulation for neuron-to-neuron communi-
cation, and pulse width modulation inside the neuron for neuron state (or activ-
ity). Their chips were used in robot controllers. Richert’s group [84] also used
pulse height modulation. Hamilton [83] uses pulse height modulation for postsy-
naptic currents. The systems produced are relatively compact and low power, and
can process and produce time-varying signals (for example, by modulating the
pulse frequency). One problem is that it takes time to decode such pulse outputs:
one needs to sample pulses for some time in order to estimate the value repre-
sented by a pulse frequency coded signal. Lehmann describes circuits for imple-
menting classical conditioning [85] and for biologically inspired learning [86] in
pulsed neural networks.

5.4.2 Point neurons

Point neurons such as leaky integrate-and-fire (LIF) neurons are more accu-
rate models than time-free models because, even although they reduce the den-
drite to a single point, they do model behavior in time. The mathematical model
for this neuron is described in Eq. (4). Implementing such a neuron can be
achieved very directly in discrete analogue electronics, as was shown in Figure
13.7. The capacitor C models the membrane capacitance, and the resistor R mod-
els the (constant) membrane leakage (in Eq.(4), t = RC). The threshold q is mod-
eled using a comparator. Circuitry to generate the spike is required, as is circuitry
to discharge the capacitor when a spike is generated. Additional aspects of LIF
neurons, such as an absolute refractory periods (the period after spiking during
which the neuron cannot fire), relative refractory periods (the period following
the absolute refractory period during which it is more difficult to make the neu-
ron fire), postsynaptic current pulse shaping, and spike output shaping can, if
required, also be implemented directly in analogue circuitry. The problem with
such analogue models in size and complexity: researchers are usually interested in
experimenting with networks of LIF neurons, and in adaptation in such net-
works. It is impractical (or perhaps just unfashionable) to produce discrete ana-
logue implementations of such networks. Such direct implementations are larger,
and one has to build each one individually. However, considering the difficulties
involved in VLSI implementation, and the fact that many hardware implementa-
tions are used for experimenting with relatively small networks (taking advantage

Implementing Neural Models in Silicon 459

of speed, rather than size), there may still be a place for such discrete component-
based systems.

Researchers are often more interested in software and hardware implementa-
tions of such networks. Software for such neurons is straightforward to develop.
There are two basic techniques used. The direct approach involves modeling the
development of the voltage on each neuron using discreticized time (where the
timestep is chosen to be small enough to capture the behavior being studied). This
approach is useful for small numbers of neurons and can permit the modeling of
postsynaptic current pulse shaping. Where large numbers of neurons are to be
simulated, this approach can be slow. The alternative is the next spike time
approach. In this case, the effect of each spike’s arrival is modeled. Membrane
voltages are updated only when a spike arrives, relying on the fact that for a neu-
ron with fixed threshold and no noise, spiking is always the direct effect of the
most recent excitatory presynaptic pulse. The effect is that the simulation time
becomes dependent on the level of spiking and on the degree of interconnection.
This technique has been used by [2, 87–89] for simulating large numbers of neu-
rons. In addition, Grassman and Cyprian [89] have developed special-purpose
hardware to support this.

Neither of these software techniques will work in real time unless the network
being simulated is small. Hardware implementations offer this possibility. Both
digital [90, 91] and analogue [58, 92–95] implementations have been built. Digital
implementations using the direct approach are attractive, since we can update the
representation of the membrane voltage with each timestep. Turning Equation 4
into voltage and discreticizing gives

() () ()
()

V t t V t t V t C
I t t

+ = - +xD D D
(5)

where V(t) is the voltage on the membrane, ∆t is the timestep, and I(t) is the
postsynaptic current injected. If we use floating-point arithmetic throughout, this
presents few problems. However, using fixed-point (which takes up much less chip

space), we run into problems when t
x
D V (t) or

()
C

I t tD
disappears because they

are less than the smallest number representable. This occurs when either number

is less than 2n
i for an n-bit representation. This problem is serious, particularly for

attempts at fully implemented chips [91]. The problem can result in the failure of
continuous small inputs to push the V over the threshold. Further, attempting to
gain better accuracy for spike times by decreasing ∆t makes the problem worse.
Only increasing the length of the representation really helps.

Including a refractory period (relative or absolute) presents few problems: the
absolute refractory period uses a timer, and the neuron simply may not fire dur-
ing this time. The relative refractory period requires adjusting the value of q:
though not implemented in the examples above, it could be implemented either by
setting q to a high value and then decrementing it towards its rest value, or using
a number of q values and setting the values with the aid of another timer.

Analogue implementations suffer from different problems. The most crucial
problem is that the timing expected from LIF neurons does not match well with
the values of R and C (and hence t) that can be produced with standard analogue
technologies. (Meador’s design [56] appears to integrate signals in less than 1 ms.)

460 Leslie S. Smith

We would like values for t of around 20 ms. This would imply that RC = 0.02.
Capacitors are produced using areas of metal (often deposited aluminium) sepa-
rated by a thin layer of silicon dioxide. The capacitance is directly proportional
to the area, making it impossible to fabricate a number of large capacitors on a
single chip. The maximal value realistically achievable is of the order of 1 pF, or
10−12 F. This value implies a value for R of 2*1010, or 20 GΩ. Resistors are
produced either as tracks of polysilicon or by using transistors with fixed Vgs as resis-
tors. The former produces only resistors with low values: the latter can produce
much higher values of resistance by utilizing the part of the transistor characteristic
just below the transistor’s conduction threshold. However, in this region, the drain-
source resistance is an exponential function of Vgs, so precision (and stability) of this
resistance requires both precision (stability) in Vgs. Unless one is willing to manually
trim Vgs for each neuron, this also requires reproducibility of below-threshold cur-
rents across the chip. Chicca et al. [95] used careful layout, with an additional metal
layer, but report about 16% variation in leakage current over one chip.

Switched capacitor techniques [96] have been used to increase the value of R
achievable, and hence to reduce the value of C that needs to be implemented.
Switched capacitor techniques introduce a digital switching signal to partially dis-
charge the capacitor. This results in problems associated with hybrid systems, par-
ticularly adding noise to circuitry that is attempting to use precise analogue
values. This situation can be problematic, requiring very careful circuit and sys-
tem design. Additionally, the use of switched circuit designs also can make the
precise timing of spike generation (resulting from the activation exceeding the
threshold) become phase entrained to the switching signal [97].

Liu and Minch [94] have achieved a degree of adjustment in firing rate in
response to perturbations in the neuron’s overall input by adapting the integrate-
and-fire neuron’s threshold upwards in response to each generated spike, and
gradually downwards otherwise. The decrease uses a tunneling mechanism with a
time constant of seconds or minutes. Indiveri [98] achieves spike frequency adap-
tation by charging a capacitor. In addition, this low power chip has a refractory
period. A different variety of point neuron has been implemented by Patel and
DeWeerth [99]. Their approach implements a more complex (but more biologi-
cally realistic) model neuron: the Morris–Lecar model [100]. Their aVLSI imple-
mentation is particularly relevant to the design of neural oscillators, since it can
produce outputs with frequencies in the range of 0.1 Hz to 1 Khz, depending on
circuit parameters.

5.4.3 Synapses for spiking neurons

Spiking neuron synapses receive a train of pulses, rather than values. These
spike trains are digital in the sense that a spike is an all-or-nothing event, yet ana-
logue in the sense that in an unclocked implementation, the spike time is uncon-
strained. Although real neuron spikes are of the order of 1ms in duration,
implemented spikes are often much shorter (about 100 ns in [93]), or they may be
coded simply as event times, with no duration assumed at all. Implementing these
synapses means translating these pulse trains (or event lists) into activity changes.
One way of achieving this outcome is to inject a small amount of current for each
spike. The exact amount and the direction of current injection depend on the

Implementing Neural Models in Silicon 461

synaptic weight and on whether the weight is inhibitory or excitatory. Such cur-
rent pulses may be fixed length and height modulated (as in [83, 93]), or could use
other pulse modulation techniques. The use of pure pulse-based techniques does
tend to result in relatively small synapses [81, 83].

Simple modulated current injection for each spike assumes that the shape of
the postsynaptic current is rectangular. One result of this is that if the activity
is near threshold, and a spike arrives at an excitatory synapse, then the thresh-
old is instantly reached, and the postsynaptic neuron fires at once. Though there
are occasions when this outcome can be useful, resulting in instant synchro-
nization of firing neurons, it is certainly not biologically realistic, and can cause
problems if neurons are reciprocally connected without a refractory period. In
simulations, the effect of the synapse is often approximated by an alpha func-
tion, at exp(−at): in hardware implementations, the noninstantaneous effect of
the synapse can be implemented using capacitances (only really practical in sub-
threshold aVLSI where minute currents are used), or by using a table lookup (in
a digital system).

Weight storage and manipulation can be the same as for time-free neurons.
The time parameter means that there are additional options in terms of synaptic
weight changes. In addition to the long-lasting changes discussed earlier, synapses
may have shorter-term changes—for example they may be depressing or facilitat-
ing (see Section 2). A simple depressing synapse has been implemented by Rasche
and Hahnloser [101]. The weight on this synapse is set by the charge on a capac-
itor, which each incoming spike discharges. This capacitor is slowly being charged
up to its maximal level (which corresponds to the synapse’s original weight). The
result is that a sequence of closely spaced presynaptic spikes have a gradually
decreasing effect: if, however, there is then a gap, the synapse recovers to its ini-
tial weight. Liu and Minch [94] have also implemented a depressing synapse, but
with a longer time constant: their work is aimed at maintaining neural processing
in the face of rising input spike frequencies.

A number of different mechanisms for altering weights in spiking neuron net-
works have been suggested. Some of these are extensions of techniques used in
time-free networks. Maass has suggested how spiking neuron firing times might
be interpreted in order to implement a spiking neuron equivalent of the back-
propagation learning algorithm [102]. However, such rules do not take advantage
of the capabilities of spiking networks to use patterns over time, and have low
biological plausibility. Designers of spiking neural networks have generally been
interested in more biologically plausible rules, perhaps because there has not been
a spiking equivalent of a perceptron network or a Delta rule. Instead, such
designers have been interested in variations on the original Hebbian learning
rules, particularly temporally asymmetric Hebbian learning [40].

There has been considerable interest in the implementation of such rules.
Bofill et al. [103] have produced one possible circuit. This form of a VLSI imple-
mentation has been used to detect synchrony by taking advantage of the tendency
of this implementation of the rule towards making weights go to one of their end-
points [104]. Chicca et al. [95] have implemented a bistable excitatory Hebbian
synapse. Paired presynaptic spiking input and postsynaptic neural activity result
in the synapse being strengthened towards its higher level, but otherwise the
synapse decays towards its lower level. There is also a stochastic element in the

462 Leslie S. Smith

synaptic strength variation. In [105] these, authors report that each synapse uses
14 transistors.

One specific synapse that has received a great deal of attention is the synapse
between the inner hair cell of the the organ of Corti (in the cochlea, in the inner
ear) and the neurons of the spiral ganglion whose axons form the auditory nerve.
The reason for interest in this synapse is that this synapse is part of the transduc-
tion of the movement of the membranes in the cochlea into a neural signal, and
maintaining precise timing is known to be important for finding the direction of
sound. Software models have been built (reviewed in the similar manner as in
[106]), as have hardware implementations. These often include depression (since
the biological synapses appear to be depressing). Hardware implementations are
popular, as they permit real-time implementations of biologically inspired audi-
tory models. The first silicon implementation is discussed in [107], and the field is
reviewed in [108]. The most sophisticated version is in [109].

5.4.4 Interconnecting spiking neuron systems

Single chips may contain a number of spiking neuron implementations, and
for small networks, it is sometimes possible to produce the whole network on a
single chip. In general, however, one will want to connect up neurons on different
chips. In addition, it is often the case that the inputs to the network and the out-
puts from the network will be required off-chip. On chips that contain a small
number of neurons, one can connect neurons and the appropriate synapse using
point-to-point wiring. For larger numbers of neurons, this approach is impracti-
cal.

The address/event representation (AER) was introduced for this purpose (see
[110] for a tutorial introduction). This is a time-division multiplexing system that
uses a digital bus to transfer spikes from neurons to the appropriate synapses. It
allows for interconnection to be described in biologically natural ways, and also
for reprogrammable configuration. “Virtual” wiring is possible as well. There is
ongoing work on chip-based support at the Institute for Neuroinformatics in
Zurich, Switzerland.

5.5 Implementing more complex neuron models

Many researchers are not satisfied with time-free or point neuron models. It is
well known that real neurons are far more complex than either of these models.
The computational properties of time-free neural models have been well investi-
gated over many years. Networks of point neurons and learning mechanisms for
point neurons are still under research. Point neurons make the implicit assump-
tion that there is no interaction between the different inputs that arrive on the
dendrite. Even although relatively complex postsynaptic functions may be used,
what arrives at the thresholding element is simply the (linear) sum of these inputs.

Yet there is a school of thought (discussed in [111]), which holds that the
spikes from neurons are simply the mechanism whereby neurons communicate
their results, and that complex processing can take place on the neuron itself, pos-
sibly even without any spiking occurring at the axon hillock. Such a view seems
attractive when one considers both the complex morphology of many neurons

Implementing Neural Models in Silicon 463

and the nonuniform placing of ion channels on these neurons. Even the briefest
inspection of neural images shows that the dendrites have very considerable com-
plexity: indeed, many types of neuron are differentiated by their dendrite shapes.

The limiting factors in the accuracy of neuron simulation are time and space.
One could model neurons right down to the molecular or atomic level. Before a
researcher produces a model, the researcher normally has some particular idea
that they want to investigate. More complex models of full neurons have normally
been either compartmental models or models of dendrites: others have gone fur-
ther and have modeled patches of membrane (though such models are rarely
modeling full neurons).

5.5.1 Multicompartment neurons

Software implementations of compartmental models model the dendrites, cell
body, and axon as an interconnected set of cylinders and branches. Each modeled
element has its inputs and outputs to and from adjacent elements, as well as its
various cross-membrane leakage currents modeled. In addition, postsynaptic cur-
rents from model synapses can be included in the modeled elements. The most
prevalent package for this is Neuron [39]. This form of model is generally slow,
though this depends on the number of compartments being modeled. However,
even although hardware implementation would clearly be faster, it is rarely
attempted, primarily because such simulations are carried out with a view to
understanding detailed neuron operation (for example, the effects of synapses on
distal and proximal dendrites, and the effects of branching both in dendrites and
axons) rather than actual information processing.

There has been more interest in hardware implementation of dendrites.
Extending the dendrite beyond a single point means that the activity of the neu-
ron is no longer a single value but is a function of location as well as time.
Further, the precise time ordering of presynaptic signals will have an effect on this
activity. Mel [8] has provided a major review of information processing on the
dendrite, concluding that dendrites from single neurons could perform logical
operations or discriminate between images. Elias [112] and Northmore and Elias
[113] have developed an analogue VLSI dendrite implementation which can
process spike trains. In [114], they have used switched capacitor techniques to
achieve the range of membrane resistances required. Simple dendritic processing
has been used to design an aVLSI chip that is sensitive to the direction of motion
[115]. In [116], learning in dendritic systems is emulated. There is current interest
in combining model dendrites with temporal Hebbian learning: recent research
suggests that the precise timing of presynaptic and postsynaptic signals [40], and
the location of the synapse on the dendrite [117], can affect the way in which
weights characterizing synapses alter. Dendritic models are usually combined
with spike-generating entities, and sometimes with models of delay in the axon,
due to axon diameter (wide axons conduct faster) and even myelinization2 to pro-
duce models of whole neurons in which precise spike timing can be modeled.

464 Leslie S. Smith

2Myelin is a protein produced by glial brain cells. It is often wrapped around axons, reducing
both their leakage and their capacitance, and allowing much faster transfer of action potentials
(see [5], chapter 4).

5.5.2 Implementing models of excitable membranes

The lowest level of neural modeling currently attempted is modeling of
excitable membranes. The impetus for producing such models is clear: as dis-
cussed in Section 2, ion channels embedded in the membrane are the primary
mechanism whereby the potential of the neuron is modified or altered. The aim
of this work has generally been “explanatory neuroscience” [118], rather than bio-
logically inspired computing. It is not possible to emulate multiple different yet
interacting ion species directly in electronics. Electronic systems have only one
charge carrier, the electron. Similarly, one cannot model multiple varieties of
voltage-sensitive (and ion-type-sensitive) ion channels. These can be modeled in
software, but such models are slow and complex.

The idea of using subthreshold FETs to emulate the exponential conductance
properties of ion channels is discussed at length in Mead’s book [62], where he
calls it eclectronics. A highly influential implementation of the spiking character-
istics of the soma and axons was produced by Mahowald and Douglas [119]. This
aVLSI implementation implements bulked ion channels (rather than individual
ones) and is essentially a silicon compartment model. It was the first to achieve
this goal in hardware and thus to operate in real time. A more detailed discussion
of the elements of this chip can be found in [120]. A number of other authors
have followed this early start: Rasche, Douglas, and Mahowald [121] added extra
conductances, and Rasche and Douglas [122] have developed this concept and
have produced a more robust chip. Both [119] and [122] implement these ion
channels as a circuit, rather than as a single transistor, as implied by Mead.
Implementing ion channels as single transistors was attempted in [123]: however,
it proved difficult to get the range of behaviors one would want from a range of
different types of ion channels. Shin and Koch [124] provide an aVLSI imple-
mentation of an adaptive algorithm that permits an electronic neuron to enable it
to adapt its current threshold to the mean of the input current. Rasche [125] has
produced aVLSI adaptive dendrite that can operate in widely varying levels of
overall neural activity. This form of adaptation allows the dendrite to signal
changes from the short-term mean of their input. Rasche and Douglas [126]
have developed the silicon axon so that it can support both forward and back-
ward propagation of spikes. Minch et al. [127] have produced a silicon axon that
recreates a pulse along its length.

Real synapses, of course, are not simple mulipliers. One form of synapse (a
chemical synapse: see [5] chapter 10) consists in essence of a set of ion channels
on the postsynaptic membrane that are opened when neurotransmitter is released
presynaptically. This occurs in response to presynaptic action potentials. Such a
synapse has been implemented in aVLSI by Rasche and Douglas [128], where
they provide equivalent circuits for (bulk) AMPA and NMDA conductances.

5.5.3 Applications of hardware spiking neurons

What evidence is there that more sophisticated neural hardware, such as that
of point neurons, might have application, when those for time-free neurons (dis-
cussed in Section 5.3.2) have proven largely a graveyard for silicon implementa-
tions? Firstly, these chips can process time-varying signals directly. They do not

Implementing Neural Models in Silicon 465

require the signal to be sampled initially. Thus a minimum of extra hardware is
required (bringing the signal into the desired voltage/current range, or pulse cod-
ing it, for example), greatly simplifying the direct interfacing of the neural net-
work system with the devices providing input and accepting output from the
network. If interfacing the chip does not entail using a PC, then there is more
advantage to be gained from direct hardware implementation.

Although such silicon neural systems have not yet found industrial applica-
tions, there have been applications for this type of technology in the neuromor-
phic field. These applications vary from line following in a robot [129] to sound
direction finding [130, 131], including sonar [132], to real-time image analysis [133,
134] to motor control [135]. They have been applied particularly in autonomous
systems, where the simplicity of interfacing the implemented neuron to the rest of
the system has been important. Even where digital computers are part of the
overall system, there are still advantages in using hardware-implemented neu-
ral systems, particularly at the sensor-processing end of the system. Their
explicit parallelism can permit effective real-time exploitation of the signals
being interpreted, distributing the processing in an effective way.

The other application area for hardware neural implementations is in model-
ing and interfacing to real neural systems. One interesting example of modeling
neural systems is Tobi Delbruck’s “Physiologist’s Friend” chip [136], a model of a
visual cortical neuron with retinal sensors that can model the receptive field of a
visual cortical neuron well enough to be used instead of a live animal for training
psychology or physiology students. In addition, spiking silicon neurons are one of
the underlying technologies that may permit effective sensory implants [137],
both auditory [138] and visual [139]. These prosthetic applications may prove to
be an important growth area for this type of technology, where small size and
ultra-low power consumption are critical.

There is also rather less disagreement about the most appropriate technologies
to use for implementing these systems. Most implementations are either analogue
or hybrid, using aVLSI (often largely subthreshold, partly because of its low
power consumption and partly to take advantage of its nonlinear circuit ele-
ments) and sometimes combining this with pulse techniques. One recent paper
[140] uses a mixture of excitatory and inhibitory neurons, implemented in sub-
threshold aVLSI, with separate dendrites for different types of input. The ana-
logue circuitry produces an essentially digital output, using strong positive
feedback to provide a robust selection output—robust against the actual level of
the input. This mixture of analogue and digital, inspired by biology yet not con-
strained to follow it exactly, is conceptually reasonably simple (and thus effi-
ciently implementable) and able to implement an algorithm. This approach may
represent a direction that could lead to a greater range of applications.

6 CONCLUSION

Modeling neurons at a number of different levels has uncovered a number of
what appear to be computational principles of the brain. These have then been
used in electronic systems or in software and where appropriate in hardware as
well. Neural network technology is now well established. Whether the novel com-

466 Leslie S. Smith

putational paradigms from more sophisticated model neurons will prove useful
remains to be seen. Initial applications seem to suggest that the first areas of
application will be in what is currently the niche area of autonomous systems.
Other research areas (with titles like “the disappearing computer” or “the ubiq-
uitous computer”) suggest that greater autonomy for computer-based systems
will be required, so this niche area may well come to be more important.

It is, however, still the case that brains can do many things that are not possi-
ble in current electronic systems. Neuromorphic systems have been proposed as
one set of techniques for capturing some of these capabilities. They have indeed
helped to explain some of the brain’s sensory capabilities, particularly in vision
and in motor control. Yet the deeper, less peripheral capabilities of brains remain
essentially untouched. It is an open question as to which, if any, of the other
aspects of neural systems apart from those already modeled might provide a clue
as to the nature of these capabilities. Currently, spiking systems are being investi-
gated by many laboratories. These certainly show promise for parallel processing
of time-varying signals. However, so far, investigation of spiking systems has
thrown no light on awareness, self-consciousness, or indeed, consciousness. Even
planning is still entirely in the domain of old-fashioned software.

There are a number of candidate “biotechnologies” for possible further inves-
tigation. These range from the interactions between the different ion types gated
by the zoo of ion channels found in neurons to interactions between elements of
neurons at the quantum level (as suggested by Hammeroff and Penrose).
Modeling these systems in software or hardware presents one way of investigat-
ing these possibilities. There are other possibilities as well, such as producing
hybrid machines, part electronic and part neural [141].

There are difficulties in producing simulations of interacting ions or of sys-
tems at the quantum level on normal computers. Such computers are inherently
deterministic, and this makes the modeling of stochastic or quantum systems
slow and cumbrous. It is possible that Moore’s Law will come to the rescue: as
feature sizes decrease, gates and transistors become more noisy do to various
noise effects, making the emulation of stochastic systems in hardware much sim-
pler (even if it does make building deterministic systems that much harder). It
may yet be that there are general principles of another sort of computation
grounded in this stochasticity, and that understanding these using modeling will
provide some other general principles, perhaps even shedding light on some of the
brain’s deeper capabilities.

ACKNOWLEDGMENTS

The support of the UK EPSRC (grant number GR/R64654) is acknowledged.

REFERENCES

[1] P. Hammarlund and O. Ekeberg (1998): Large neural network simulations
on multiple hardware platforms. Journal of Computational Neuroscience 5,
443–459.

Implementing Neural Models in Silicon 467

[2] E. Claverol, A. Brown, and J. Chad (2001): Scalable cortical simulations on
Beowulf architectures. Neurocomput. 43, 307–315.

[3] D. Hammerstrom (2001): Biologically inspired computing. [Online].
Available: http://www.ogi.ece.edu/strom

[4] Neural network hardware. [Online]. (1998): Available: http://neuralnets.web.
cern.ch/NeuralNets/nnwlnHepHard.html

[5] E. Kandel, J. Schwartz, and T. Jessell (2000): Principles of Neural Sci.
(4th Ed.) McGraw Hill.

[6] C. Koch (1999): Biophysics of Computation. Oxford.
[7] T. Bell (1991): A channel space theory of dendritic self-organisation.

AI Laboratory, Free University of Brussels, Tech. Rep. 91–4.
[8] B. Mel (1994): Information processing in dendritic trees. Neural Comput. 6,

1031–1085.
[9] D. Aidley (1999): The Physiology of Excitable Cells. (4th Ed.) Cambridge

University Press.
[10] S. Hammeroff (1999): The neuron doctrine is an insult to neurons.

Behavioural and Brain Sciences, 22, 838–839.
[11] W. McCulloch and W. Pitts (1943): A logical calculus of ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, 5, reprinted in [142].
[12] D. Hebb (1949): The Organization of Behavior. Wiley, New York. partially

reprinted in [142].
[13] J. Anderson (1995): An Introduction to Neural Networks. Cambridge, MA:

MIT Press.
[14] F. Rosenblatt (1962): Principles of Neurodynamics. Spartan, New York.
[15] J. Hertz, A. Krogh, and R. Palmer (1991): Introduction to the Theory of

Neural Computation. Addison Wesley.
[16] S. Haykin (1999): Neural Networks: A Comprehensive Foundation. (2nd Ed.)

Macmillan.
[17] B. Widrow and M. Hoff (1960): Adaptive switching circuits, In 1960 IRE

WESCON Convention Record. New York: IRE, 4, 96–104.
[18] R. Rescorla and A. Wagner (1972): A theory of pavlovian conditioning:

The effectiveness of reinforcement and nonreinforcement. In Classical
Conditioning II: Current Research and Theory (A. Black and W. Prokasy,
eds) Appleton-Century-Crofts, New York: 64–69.

[19] M. Minsky and S. Papert (1969): Perceptrons. MIT Press, Cambridge par-
tially reprinted in [142].

[20] J. Hopfield (1982): Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy of
Sciences. USA, 79, 1982, reprinted in [142].

[21] D. Ackley, G. Hinton, and T. Sejnowski (1985): A learning algorithm for
boltzmann machines. Cognitive Science, 9, reprinted in [142].

[22] A. Bryson and Y.-C. Ho (1969): Applied Optimal Control. Blaisdell, New
York.

[23] P. Werbos (1974): Beyond regression: New tools for prediction and analysis
in the behavioral sciences. Ph.D. dissertation, Harvard University.

[24] D. Parker (1985): Learning logic. Center for Computational Research in
Economics and Management Science, Massachusetts Institute of
Technology, Cambridge, MA, Tech. Rep. TR–47.

468 Leslie S. Smith

[25] Y. Le Cun (1985): Une procédure d’apprentissage pour réseau à seuil
assymétrique. In Cognitiva 85: A la Frontière de l’Intelligence Artificielle des
Sciences de la Connaissance des Neurosciences, (Paris 1985). CESTA, Paris:
599–604.

[26] D. Rumelhart, G. Hinton, and R. Williams (1986): Learning representa-
tions by back-propagating errors. Nature, 323, 533–536, reprinted in
[142].

[27] J. Moody and C. Darken (1988): Learning with localized receptive fields. In
Proceedings of the 1988 Connectionist Models Summer School, (D. Touretzky,
G. Hinton, and T. Sejnowski, eds) (Pittsburg). Morgan Kaufmann, San
Mateo 133–143.

[28] C. Bishop (1995): Neural networks for Pattern Recognition. Clarendon
Press, Oxford.

[29] J. Elman (1990): Finding structure in time. Cognitive Science. 14,
179–211.

[30] H. Barlow (1959): Sensory mechanisms, the reduction of redundancy and
intelligence. The Mechanisation of Thought Processes: NPL Symposium, 10.

[31] T. Kohonen, T. Huang, and M. Schroeder (2000): Self-organizing Maps.
(3rd ed.) Springer-Verlag.

[32] L. Lapique (1907): Sur l’excitation electrique des nerfs. J. Physiology. Paris,
620–635.

[33] W. Gerstner (1995): Time structure of the activity in neural network
models. Physical Reviews E. 51, 738–758.

[34] W. Gerstner and W. Kistler (2002): Spiking Neural Models. Cambridge.
[35] J. Feng and D. Brown (2000): Integrate-and-fire models with nonlinear

leakage. Bulletin of Mathematical Biology. 62, 467–481.
[36] J. Feng and G. Wei (2001): Increasing inhibitory input increases neu-

ronal firing rate: when and why? Diffusion process cases. J. Phys. A. 34,
7493–7509.

[37] E. Izhikevich. Which model to use for cortical spiking neurons? submitted
to IEEE Transactions of Neural Networks.

[38] —— , Simple model of spiking neurons, accepted for publication in IEEE
Transactions of Neural Networks.

[39] M. Hines and N. Carnevale (1997): The NEURON simulation environ-
ment. Neural Computation. 9, 1179–1209.

[40] G. Bi and M. Poo (2001): Synaptic modification by correlated activity:
Hebb’s postulate revisited. Annual Review of Neuroscience. 24, 139–166.

[41] L. Smith (2002): Using Beowulf clusters to speed up neural simulations.
Trends in the Cognitive Science. 6, 231–232.

[42] R. Fitzhugh (1966): An electronic model of the nerve membrane for
demonstration purposes. J. Appl. Physiology. 21, 305–308.

[43] R. Johnson and G. Hanna (1969): Membrane model: a single transistor
analog of excitable membrane. J. Theoretical Biology. 22, 401–411.

[44] E. R. Lewis (1968): An electronic model of the neuroelectric point process.
Kybernetik. 5, 30–46.

[45] G. Roy (1972): A simple electronic analog of the squid axonmembrane:
the neuro FET. IEEE Transactions on Biomedical Engineering. BME-18,
60–63.

Implementing Neural Models in Silicon 469

[46] W. Brockman (1979): A simple electronic neuron model incorporating both
active and passive responses. IEEE Transactions on Biomedical Engineering.
BME-26, 635–639.

[47] F. Rosenblatt (1958): The perceptron: a probabilistic mode for information
storage and processing in the brain. Psychological Rev. 65, 386–408.

[48] B. Widrow (1962): Generalization and information storage in networks of
ADALINE neurons. In Self-Organizing Systems (G. Yovitts, ed) Spartan
Books.

[49] R. Runge, M. Uemura, and S. Viglione (1968): Electronic synthesis of the
avian retina. IEEE Transactions on Biomedical Eng., BME-15, 138–151.

[50] L. Smith (1989): Implementing neural networks. In New Developments in
Neural Computing (J. Taylor and C. Mannion, eds) Adam Hilger, 53–70.

[51] I. Aybay, S. Cetinkaya, and U. Halici (1996): Classification of neural net-
work hardware. Neural Network World. 6(1), 11–29.

[52] “AN220E04 datasheet: Dynamically reconfigurable FPAA,” Anadigm, 2003.
[53] R. Hecht-Nielsen, Neurocomputing. Addison-Wesley, 1990.
[54] E. Vittoz, H. Oguey, M. Maher, O. Nys, E. Dijkstra, and M. Cehvroulet

(1991): Analog storage of adjustable synaptic weights. In VLSI Design of
Neural Networks. (U. Ramacher and E. Rueckert, eds) Kluwer Academic.

[55] “80170nx electrically trainable analog neural network,” Intel Corporation,
1991.

[56] J. Meador, A. Wu, C. Cole, N. Nintunze, and P. Chintrakulchai (1991):
Programmable impulse neural circuits. IEEE Transactions on Neural
Networks. 2(1), 101–109.

[57] C. Diorio, P. Hasler, B. Minch, and C. Mead (1996): A single-transistor
silicon synapse. IEEE Transactions on Electron Devices. 43(11), 1982–1980.

[58] L. Smith, B. Eriksson, A. Hamilton, and M. Glover (1999): SPIKEII: an
integrate-and-fire aVLSI chip. Int. J. Neural Syst. 9(5), 479–484.

[59] D. Hsu, M. Figueroa, and C. Diorio (2002): Competitive learning with
floating-gate circuits. IEEE Transactions on Neural Networks. 13, 732–744.

[60] T. Morie, T. Matsuura, M. Nagata, and A. Iwata (2003) A multinanodot
floating-gate mosfet circuit for spiking neuron models. IEEE Transactions
on Nanotechnology. 2, 158–164.

[61] D. Green (1999) Digital Electronics (5th ed.) Prentice Hall.
[62] C. Mead (1989): Analog VLSI and Neural Systems. Addison-Wesley.
[63] S.-C. Liu, J. Kramer, G. Indiveri, T. Delbruck, and R. Douglas (2002):

Analog VLSI: Circuits and Principles. MIT Press.
[64] E. Ifeachor and B. Jervis (2002): Digital Signal Processing: A Practical

Approach (2nd ed.) Prentice Hall.
[65] M. Hohfield and S. Fahlman (1997): Probabilistic rounding in neural net-

work learning with limited precision. Neurocomputing. 4, 291–299.
[66] E. Sackinger (1997): Measurement of finite precision effects in handwriting

and speech recognition algorithms. In ICANN 97: LNCS 1327 (W. Gerstner,
A. Germond, M. Hasler, and J.-D. Nicoud, eds), Springer Verlag, 1223–1228.

[67] P. Moerland and E. Fiesler (1997): Neural network adaptations to hard-
ware implementations. In Handbook of Neural Computation (E. Fiesler and
R. Beale, eds) IOP Publishing.

470 Leslie S. Smith

[68] S. Draghici (2002): On the capabilities of neural networks using limited
precision weights. Neural Networks. 15, 395–414.

[69] I. Corporation (1990): 80170NN electrically trainable analog neural
network. Datasheet.

[70] C. S. Lindsey, B. Denby, and T. Lindblad. Neural network hardware.
[Online]. Available: http://www.avaye.com/ai/nn/hardware/index.html

[71] A. Eide (1994): An implementation of the zero instruction set computer
(zisc036) on a pc/isa-bus card, [Online]. Available: citeseer.nj.nec.com/
eide94implementation.html

[72] H. McCartor (1991): Back propagation implementation on the adaptive
solutions cnaps neurocomputer chip. In Advances in Neural Information
Processing Systems 3, (R. Lippmann, J. Moody, and D. Touretzky, eds),
Morgan Kaufmann pp. 1028–1031.

[73] N. Mauduit, M. Duranton, and J. Gobert (1992): Lneuro 1.0: A piece of
hardware LEGO for building neural network systems. IEEE Transactions
on Neural Networks. 3(3).

[74] Y. Deville (1995) Digital VLSI neural networks: from versatile neural
processors to application-specific chips. Proc. of the International
Conference on Artificial Neural Networks ICANN’95, Paris, France,
Industrial Conference, Session 9, VLSI and Dedicated Hardware.

[75] U. Ramacher, J. Beichter, W. Raab, J. Anlauf, N. Bruels, U. Hachmann, and
M. Weseling (1991): Design of a 1st generation neurocomputer. In VLSI
Design of Neural Networks, (U. Ramacher and E. Rueckert, eds), Kluwer
Academic.

[76] U. Ramacher, W. Raab, J. Anlauf, U. Hachmann, J. Beichter, N. Bruls,
R. Manner, J. Glas, and A. Wurz (1993): Multiprocessor and memory archi-
tecture of the neurocomputer SYNAPSE-1. Proc. International Conference
on Microelectronics for Neural Networks. Edinburgh, pp. 227–232.

[77] H. Chen and A. Murray (2002): A continuous restricted Boltzmann
machine with a hardware amenable training algorithm. In Proceedings of
ICANN 2002, pp. 426–431.

[78] — , A continuous restricted Boltzmann machine with an implementable
training algorithm. In IEEE Proceedings on Vision Image and Signal
Processing.

[79] G. Hinton, B. Sallans, and Z. Ghahramani (1999): A hierarchical commu-
nity of experts. In Learning in Graphical Models (M. Jordan, ed) MIT Press
pp. 479–494.

[80] P. Fleury and A. Murray (2003): Mixed-signal VLSI implementation of the
products of experts’ contrastive divergence learning scheme. In Proceedings
of ISCAS 2003. 5, pp. 653–656.

[81] A. Murray, L. Tarassenko, H. Reekie, A. Hamilton, M. Brownlow,
D. Baxter, and S. Churcher (1991): Pulsed silicon neural nets—following
the biological leader. In Introduction to VLSI Design of Neural Networks
(U. Ramacher, ed), Kluwer pp. 103–123.

[82] A. Murray, S. Churcher, A. Hamilton, A. Holmes, G. Jackson,
R. Woodburn, and H. Reekie (1994) Pulse-stream VLSI neural networks.
IEEE MICRO, pp. 29–39.

Implementing Neural Models in Silicon 471

[83] A. Hamilton, S. Churcher, P. Edwards, G. B. Jackson, A. Murray, and
H. Reekie (1994): Pulse-stream VLSI circuits and systems: the EPSILON
neural network chipset. Int. J. Neural Sys. 4(4), 395–405.

[84] P. Richert, L. Spaanenburg, M. Kespert, J. Nijhuis, M. Schwarz, and
A. Siggelkow (1991): ASICs for proto-typing pulse-density modulated neu-
ral networks. In Introduction to VLSI Design of Neural Networks
(U. Ramacher, ed), Kluwer pp. 125–151.

[85] T. Lehmann (1997): Classical conditioning with pulsed integrated neural
networks: Circuits and system. pt. II, IEEE Transactions on Circuits and
Systems, 45(6), 720–728.

[86] T. Lehmann and R. Woodburn (1999): Biologically-inspired learning in
pulsed neural networks. In Learning on Silicon: Adaptive VLSI Neural
Systems (G. Cauwenberghs and M. Bayoumi, eds) Kluwer, pp. 105–130.

[87] L. Watts (1993): Event driven simulation of networks of spiking neurons.
In Advances in Neural Information Processing Systems 6 (J. Alspector,
J. Cowan, and G. Tesauro, eds), pp. 927–934.

[88] A. Nishwitz and H. Glünder (1995): Local lateral inhibition—a key to
spike synchronization. Biological Cybernetics. 73(5), 389–400.

[89] L. Smith, B. Eriksson, A. Hamilton, and M. Glover (1999): Fast digital
simulation of spiking neural networks and neuromorphic integration with
SPIKELAB. Int. J. Neural Sys. 9(5), 473–478.

[90] S. Lim, A. Temple, S. Jones, and R. Meddis (1998): Digital hardware imple-
mentation of a neuromorphic pitch extraction system. In Neuromorphic
Systems: Engineering Silicon from Neurobiology (L. Smith and
A. Hamilton, eds), World Scientific.

[91] N. Mtetwa, L. Smith, and A. Hussain (2000): Stochastic resonance and
finite resolution in a network of leaky integrate-and-fire neurons.
In Artificial neural networks—ICANN 2002. Springer, Madrid, Spain
pp. 117–122.

[92] S. Wolpert and E. Micheli-Tzanakou (1996): A neuromime in VLSI. IEEE
Transactions on Neural Networks, 7(2), 300–306.

[93] M. Glover, A. Hamilton, and L. Smith (1998): Analogue VLSI integrate
and fire neural network for clustering onset and offset signals in a sound
segmentation system. In Neuromorphic Systems: Engineering Silicon from
Neurobiology (L. Smith and A. Hamilton, eds), pp. 238–250.

[94] S.-C. Liu and B. A. Minch (2001): Homeostasis in a silicon integrate and
fire neuron. In Advances in Neural Information Processing Systems 13, Papers
from Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA
(T. K. Leen, T. G. Dietterich, and V. Tresp, eds), MIT Press, pp. 727–733.

[95] E. Chicca, D. Badoni, V. Dante, M. D’Andreagiovanni, G. Salina,
L. Carota, S. Fusi, and P.D. Giudice (2003): A vlsi recurrent network of
integrate-and-fire neurons connected by plastic synapses with long term
memory. IEEE Transactions on Neural Network. 14(5), 1409–1416.

[96] J. Mavor, M. Jack, and P. Denyer (1983): Introduction to MOS LSI Design.
Addison Wesley.

[97] B. Eriksson (2002): A critical study of a hardware integrate-and-fire neural
network. Master’s thesis, University of Stirling, Department of Computing
Science and Mathematics.

472 Leslie S. Smith

[98] G. Indiveri (2003): A low-power adaptive integrate-and-fire neuron circuit.
In Proc. IEEE International Symposium on Circuits and Systems. May 2003.

[99] G. Patel and S. P. DeWeerth (1997): Analog VLSI Morris-Lecar neuron.
Electronics Letters, 33, 997–998.

[100] C. Morris and H. Lecar (1981): Voltage oscillations in the barnacle giant
muscle fiber. Biophysics J. 35, 193–213.

[101] C. Rasche and R. Hahnloser (2001): Silicon synaptic depression. Biological
Cybernetics. 84, 57–62.

[102] W. Maass (1997): Networks of spiking neurons: The third generation of
neural network models. Neural Networks. 10 (9), 1659–1671.

[103] A. Bofill, R. Woodburn, and A. Murray (2001): Circuits for VLSI implemen-
tation of temporally-asymmetric Hebbian learning. In Neural Information
Processing Systems. Vancouver.

[104] A. Bofill-i-Petit and A. Murray (2003): Synchrony detection by analogue
VLSI neurons with bimodal STDP synapses. accepted for NIPS 2003.

[105] E. Chicca, G. Indiveri, and R. Douglas (2003): An adaptive silicon synapse.
In Proc. IEEE International Symposium on Circuits and Systems. May.

[106] M. Hewitt and R. Meddis (1991): An evaluation of eight computer models
of mammalian inner hair-cell function. J. Acoustical Soc. Am. 90(2),
904–917.

[107] J. Lazzaro and C. Mead (1989): Circuit models of sensory transduction in
the cochlea. In Analog VLSI Implementations of Neural Networks. Kluwer
pp. 85–101.

[108] I. Grech, J. Micallef, and T. Vladimirova (1999): Silicon cochlea and its
adaptation to spatial localisation. IEE Proceedings—Circuits Devices and
Systems. 146(2), 70–76.

[109] A. van Schaik and A. McEwan (2003): An analog VLSI implementation of
the meddis inner hair cell model. EURASIP J. Applied Signal Processing.

[110] K. Boahen, Point-to-point connectivity between neuromorphic chips using
address-events. IEEE Transactions on Circuits and Systems II. 47(5), 416–434.

[111] I. Segev, M. Rapp, Y. Manor, and Y. Yarom (1992): Analog and digital pro-
cessing in single nerve cells: dendritic integration and exonal propagation.
In Single Neuron Computation (T. McKenna, J. Davis, and S. Zornetzer,
eds) pp. 173–198.

[112] J. Elias (1993): Artificial dendritic trees. Neural Comput. 5(4), 648–664.
[113] D. Northmore and J. Elias (1996): Spike train processing by a silicon neu-

romorph: The role of sublinear summation in dendrites. Neural Comput.
8(6), 1245–1265.

[114] J. Elias and D. Northmore (1995): Switched-capacitor neuromorphs with
wide-range variable dynamics. IEEE Transactions on Neural Networks. 6(6),
1542–1548.

[115] M. Ohtani, H. Yamada, K. Nishio, H. Yonezu, and Y. Furukawa (2002)
Analog LSI implementation of biological direction-sensitive neurons. part 1
Japanese Journal of Applied Physics, 41, 1409–1416.

[116] W. Westerman, D. P. Northmore, and J. G. Elias (1998): A hybrid (hard-
ware/software) approach towards implementing hebbian learning in silicon
neurons with passive dendrites. In Neuromorphic Systems: Engineering Silicon
from Neurobiology. (L. Smith and A. Hamilton, eds), World Scientific.

Implementing Neural Models in Silicon 473

[117] A. Saurdagiene, B. Porr, and F. Woergoetter (2004): How the shape of pre-
and post-synaptic signals can influence STDP: A biophysical model,
accepted for Neural Comput.

[118] R. Douglas, M. Mahowald, and K. Martin (1996): Neuroinformatics as
explanatory neuroscience. Neuroimage. S25–S27.

[119] M. Mahowald and R. Douglas (1991): A silicon neuron. Nature, 354
(6354), 515–518.

[120] R. Douglas and M. Mahowald (1995): A construction set for silicon neu-
rons. In An Introduction to Neural and Electronic Networks (S. Zornetzer,
J. L. Davis, C. Lau, and T. McKenna, eds) Academic Press pp. 277–296.

[121] C. Rasche, R. Douglas, and M. Mahowald (1998): Characterization of a
silicon pyramidal neuron. In Neuromorphic Systems: Engineering Silicon
from Neurobiology (L. Smith and A. Hamilton, eds) World Scientific.

[122] C. Rasche and R. Douglas (2001): An improved silicon neuron. Analog
Integrated Circuits and Signal Processing. 23(3), 227–236.

[123] C. Breslin and L. Smith (1999): Silicon cellular morphology. International
Journal of Neural Systems. 9(5), 491–495.

[124] J. Shin and C. Koch (1999): Adaptive neural coding dependent con the
time-varying statistics of the somatic input current. Neural Computation.
11(8), 1893–1913.

[125] C. Rasche (1999): An aVLSI basis for dendritic adaptation. IEEE
Transactions on Circuits and Systems II. 48(6), 600–605.

[126] C. Rasche and R. Douglas (2001): Forward- and backpropagation in a sil-
icon dendrite. IEEE Transactions on Neural Networks. 12(2).

[127] B. A. Minch, P. Hasler, C. Diorio, and C. Mead (1995): A silicon axon.
In Advances in Neural Information Processing Systems (G. Tesauro,
D. Touretzky, and T. Leen, eds) 7. The MIT Press, pp. 739–746.

[128] C. Rasche and R. Douglas (1999): Silicon synaptic conductances.
J. Comput. Neuroscience. 7(1), 33–39.

[129] R. Mudra and G. Indiveri (1999): A modular neuromorphic navigation sys-
tem applied to line following and obstacle avoidance tasks. In Experiments
with the Mini-Robot Khepera: Proceedings of the 1st International Khepera
Workshop (A. A. Loeffler, F. Mondada, and U. Rueckert, eds), pp. 99–108.

[130] C. Schauer, T. Zahn, P. Paschke, and H. Gross (2000): Binaural sound local-
ization in an artificial neural network. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, pp. 865–868.

[131] A. van Schaik and S. Shamma (2003): A neuromorphic sound localizer for
a smart mems system. In IEEE International Symposium on Circuits and
Systems. pp. 864–867.

[132] G. Cauwenberghs, R. Edwards, Y. Deng, R. Genov, and D. Lemonds
(2002): Neuromorphic processor for real-time biosonar object detection. In
IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP). pp. 3984–3987.

[133] G. Crebbin and M. Fajria (2000): Integrate-and-fire models for image
segmentation. In Visual Communications and Image Processing 2000,
pp. 867–874.

474 Leslie S. Smith

[134] T. Netter and N. Franceschini (2002): A robotic aircraft that follows terrain
using a neuromorphic eye. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2002), pp. 129–134.

[135] M. Lewis, M. Hartmann, R. Etienne-Cummings, and A. Cohen (2001):
Control of a robot leg with an adaptive aVLSI CPG chip. Neurocomputing.
38, 1409–1421.

[136] T. Delbrck, S.-C. Liu, E. Chicca, G. M. Ricci, and S. Bovet. (2001): The
physiologist’s friend chip. [Online]. Available: http://www.ini.unizh.ch/tobi/
friend/chip/index.html

[137] T. Berger, M. Baudry, R. Brinton, J. Liaw, V. Marmarelis, A. Park,
B. Sheu, and A. Tanguay (2001): Brain-implantable biomimetic electron-
ics as the next era in neural prosthetics. Proceedings of the IEEE. 89(7),
993–1012.

[138] T. Lande, J. Marienborg, and Y. Berg (2000): Neuromorphic cochlea
implants. In IEEE International Symposium on Circuits and Sys. (ISCAS
2000), pp. 401–404.

[139] E. Maynard (2001): Visual prostheses. Annual Review of Biomedical
Engineering. 3, 145–168.

[140] R. Hahnloser, R. Sarpeshkar, M. Mahowald, R. Douglas, and H. Seung
(2000): Digital selection and analogue amplification coexist in a cortex-
inspired silicon circuit. Nature. 405, 947–951.

[141] T. DeMarse, D. Wagenaar, A. Blau, and S. Potter (2001): The neurally con-
trolled animat: Biological brains acting with simulated bodies. Autonomous
Robots. 11, 305–310.

[142] J. Anderson and E. Rosenfeld (eds) (1988): Neurocomputing: Foundations of
Research. MIT Press, Cambridge.

Implementing Neural Models in Silicon 475

