
Chapter 12

EVOLVING HARDWARE
Timothy G. W. Gordon and Peter J. Bentley
University College London

1 INTRODUCTION

In the hundred years since John Ambrose Fleming invented the diode at
University College London and gave birth to the field, electronics has become a
well-understood engineering discipline. This solid grounding of knowledge has
allowed the commercial semiconductor industry to grow at a remarkable rate in
the intervening years, both in volume and in the complexity of hardware. As a
result, the now-famous Moore’s Law has held true for almost forty years [85]. But
problems are beginning to emerge. For the industry to flourish, the growth in
hardware complexity must continue, but it is becoming clear that current design
methodologies applied to silicon-based technologies can no longer support the
present rate of scaling.

In the medium term, the requirement for new and innovative designs is set to
grow as it becomes necessary to squeeze more and more out of the technologies
we already have. The long-term solution is likely to lie in the development of new
circuit medium technologies. But even when new circuit media do eventually
become commercially feasible, they are likely at best to require features in our
designs that our current circuit methodologies are not aimed at providing, such as
fault tolerance, and at worst require a complete rewriting of the design rules.
So it is clear that there is a significant requirement for innovative circuit designs
and design methodologies, and the cost of developing these in man-hours of
research and design is likely to be considerable.

Over the past decade, a new field applying evolutionary techniques to hard-
ware design and synthesis has emerged. These techniques may be able to give us
a new option. We can use evolution to design automatically, or at least aid in the
design and realization of innovative circuits. This field has been coined evolution-
ary electronics, hardware evolution, and evolvable hardware, amongst others. Here
it will be referred to as evolvable hardware.



The field of evolvable hardware draws inspiration from a range of other fields,
as shown in Figure 12.1. For many years computer scientists have modeled their
learning algorithms on self-organizing processes observed in nature. Perhaps the
most well-known example is the artificial neural network (ANN) [93]. Others
include the collective decision-making of ant colonies [12], the adaptive ability of
immune systems [98], the growth of self-similar structures in plants [64], and of
course Darwinian evolution [19]. Collectively, work on such algorithms is known
as bio-inspired software, which is shown at the intersection of Computer Science
and Biology in Figure 12.1.

Ideas from nature have also been used in electronic engineering for many
years; for instance, simulated annealing algorithms are used in many circuit par-
titioning algorithms. (Simulated annealing algorithms are based on the physical
phenomenon of annealing in cooling metals.) Interest in using ideas from nature
has grown in recent years to the extent that the field of bio-inspired hardware is
now firmly established in its own right. This field uses many of the ideas adopted
from nature by software developers, and some new ones, to allow fault tolerance,
reconfigurability, and even automatic circuit design in modern hardware. The
field of evolvable hardware is shown at the intersection of Computer Science,
Biology, and Electronic Engineering in Figure 12.1. The focus of this chapter is
in this central area.

The interrelationships between areas of hardware design and synthesis, and
evolutionary computation are shown in Figure 12.2. Digital hardware synthesis is
traditionally a combination of two processes. First, a human-designed circuit
specification is mapped to a logical representation through the process of logic
synthesis. This is represented as the lower right-hand set in Figure 12.2. This
netlist then undergoes further combinatorially complex optimization processes in
order to place and route the circuit to the target technology. This area is repre-
sented as the lower left-hand set in Figure 12.2. Many modern electronic
design automation (EDA)1 tools use intelligent techniques in these optimization
algorithms, and research into the use of evolution for these purposes abounds [18,
74]. Hence we see the set representing evolutionary design intersect with that of

388 Timothy G. W. Gordon and Peter J. Bentley

Biology

Bio-
inspired

Hardware

Evolvable
HardwareSystems

Engineering

Computer
Science

Electronic Engineering

Bio-
inspired
Software

Figure 12.1. The field of evolvable hardware originates from the intersection of three sciences



technology mapping, placement, and routing in Figure 12.2 to yield evolutionary
mapping, placement, and routing. However, circuit design, along with some opti-
mization decisions during the synthesis process, is still in the domain of the
human designer. It has only been recently that significant interest has developed
in implementing evolutionary techniques higher up the VLSI design flow at cir-
cuit design, a move that can allow evolution to generate creative designs that can
rival or improve on human ones. The most widespread examples of this have been
to use evolution for the design of logic, as represented by the intersection of the
areas of evolutionary design and logic synthesis in Figure 12.2. Some of the work
in this intersection falls into the field of evolvable hardware. However, much work
at the logical level is carried out in the spirit of evolving programs or other forms
of logic, and so is beyond the scope of this chapter.

The rest of the chapter is organized as follows. Section 2 begins with a brief
discussion of how evolvable hardware can be realized, and surveys its areas of
application. The field is still young, and there are several problems that must be
tackled before large-scale commercial use of the techniques will become viable.
Section 3 discusses key past and current research into evolvable hardware by
focusing on the two largest and most actively researched of these problems,
namely, generalization and evolvability, along with the most important benefit of
evolvable hardware in our eyes: innovation. We use “level of abstraction,” “learn-
ing bias,” and “evolving platform” as the main features to map out this research.

A distinction commonly made is the difference between extrinsic evolution,
where candidate circuit designs are evaluated in simulation, and intrinsic evolu-
tion, where candidate circuit designs are synthesized and evaluated directly on
programmable logic devices (PLDs). In the case of circuits evolved intrinsically,
the choice of platform used can have a profound effect on evolution’s perform-
ance. Criteria for choosing a suitable platform are discussed at the end of Section
3, along with an appraisal of platforms that have been used for evolvable hard-
ware to date. Section 4 presents some of our recent work into a new branch of
evolvable hardware, developmental hardware evolution, which has the potential
to solve many of the evolvability issues in the field. Finally, a summary will be
given in Section 5.

Evolving Hardware 389

Evolutionary
Design

Evolutionary Logic
Design

Logic
SynthesisHardware

Synthesis

Evolvable
Hardware

Evolutionary
Map, Place,

Route

Technology Map,
Place, Route

Figure 12.2. Evolvable hardware can include aspects of hardware design and optimization 
techniques



2 EVOLVABLE HARDWARE IN PRACTICE

Evolutionary Computation is the field of solving problems using search algo-
rithms inspired by biological evolution. These algorithms are collectively known
as evolutionary algorithms. They model the principles of selection, variation, and
inheritance that are the basis of the theory of Darwinian evolution, and have
been applied to a huge spectrum of problems, from classic optimization [52] to
the creation of original music [5]. Typically they work on a population of
prospective solutions in parallel. Each member of the population is evaluated
according to a problem-specific fitness function that tests how well each solution
performs a required task and then assigns that solution a fitness score. A selection
operator then probabilistically chooses solutions with higher fitness from the
population to form the basis of a new generation of solutions. These solutions are
then varied, commonly by randomly altering each solution to model mutation
and/or by recombining two solutions in some way to model sexual reproduc-
tion—a procedure commonly called crossover. The process is then iterated for a
number of generations until a stopping condition is met, for instance, the discov-
ery of a solution with a given fitness or the completion of a predefined number
of generations.

This chapter concerns the application of evolutionary algorithms to the auto-
matic design of electronic circuits. In order to familiarize the reader with how cir-
cuits might be evolved, an example is now presented.

2.1 An Example of Evolvable Hardware

The class of evolutionary algorithms most commonly used in evolvable hard-
ware is the genetic algorithm. Most commonly, these operate on a fixed-size pop-
ulation of fixed-length binary strings called chromosomes. Each chromosome
encodes a common set of parameters that describe a collection of electronic com-
ponents and their interconnections. Thus, each set of parameter values represents
an electronic circuit. The set of all possible combinations of parameter values
defines the search space of the algorithm, and the circuits that they represent
define the solution space of the algorithm. Traditionally, every parameter set in
the search space encodes a unique circuit description in the solution space. For
every chromosome/circuit pair, the chromosome is called the genotype and the cir-
cuit is called the phenotype.

An example of evolvable hardware is shown in Figure 12.3. The algorithm
begins by initializing the bits of each chromosome with random values. The chro-
mosomes are then evaluated in turn by creating a circuit based on the parameter
values, either as a simulated model of the circuit or as a concrete circuit embod-
ied in reconfigurable hardware (an example of which is shown in Section 5). The
circuit’s fitness for performing the target task is then measured by passing to it a
set of test values and evaluating the veracity of the circuit’s output. The selection
operator then probabilistically populates the next generation of chromosomes
such that chromosomes with high fitness are more likely to be selected. There are
many methods to achieve this, a common approach being two-member tourna-
ment selection [19]: the operator selects two individuals at random and compares
their fitness. Only the individual with the highest fitness is inserted into the next

390 Timothy G. W. Gordon and Peter J. Bentley



generation. If the two have equal fitness, the individual to be inserted is chosen at
random. Once the new population has been selected, it is varied. Common varia-
tion operators are one-point crossover and point mutation [19]. One-point
crossover recombines two chromosomes by choosing a position at random along
the chromosome and swapping every bit beyond this point between the strings. It
is stochastically applied according to a fixed probability. Point mutation inde-
pendently inverts each bit in the chromosome according to a fixed probability.
These operators are applied to all members of the new population. Often, in addi-
tion to these operators, the best member of the original population is copied into
the new population unchanged, a strategy called elitism [19]. The new population
is now complete, and the algorithm then iterates the steps of evaluation, selection,
and variation until a circuit that functions adequately is found or a prespecified
number of generations is completed.

Using evolution to design circuits in this way brings a number of important
benefits to electronics, allowing design automation and innovation for an increas-
ing range of applications. Some of the more important areas where evolvable
hardware can be applied include the following:

Evolving Hardware 391

0 10110 101 1

1 10010 100 1

1 10111 010 0

1 10100 110 0

1 11010 010 1

1 10010 010 0

1 10100 110 0

Fitness

30

14

14

28

18

0 10110 101 1

1 10111 100 1

1 11010 010 1

1 11010 010 1

1 10111 100 1

1 111 11 010 1

1 010 10 100 1

1 110 01 000 1

1 110 10 100 0

2. Evaluate Circuit

3. Select Breeding Pairs

1. Create New Population

4. Cross Over

5. Mutate6. Insert Into New Population

Iterate until
stopping conditions

are met

Figure 12.3. An example of evolvable hardware



● Automatic design of low-cost hardware

● Coping with poorly specified problems

● Creation of adaptive systems

● Creation of fault-tolerant systems

● Innovation in poorly understood design spaces

The remainder of this section will explore research in these areas in a little
more detail.

2.2 Automatic Design of Low-Cost Hardware

Automation has been used in circuit synthesis for many years. Traditional digi-
tal design involves the mapping of an abstract human-designed circuit to a specific
technology through the application of simple minimization, placement, and rout-
ing rules. As our capability for synthesizing more complex circuits has grown, so has
the need for more resourceful processes to handle the combinatorially complex
mapping procedures. Intelligent techniques such as simulated annealing [97] and
ANNs [133] have been routinely used to search these exploding spaces of mappings
and minimizations for some time. More recently, so has evolution [18, 74].

Evolvable hardware allows us to take the automation of circuit production a
step further, automating how to generate the actual circuit design from a behav-
ioral specification and simultaneously automating the circuit synthesis process.
The behavioral specification presented to the evolvable system may be as simple
as a series of circuit input signals that the system must match to a corresponding
predefined set of output signals, although other representations of circuit behav-
ior may be used, often including environmental conditions or simulated error test
cases or depending on the requirements of the circuit. How the representation
and contents of the circuit specification affect the functionality of circuits is cur-
rently the center of much interest and is discussed in more detail under the head-
ing of generalization in Section 3.

In applications where a suitable behavioral specification has been found,
evolvable hardware can remove the necessity for a designer, or at least reduce the
design time that is required, thus reducing production costs. This advantage is
particularly useful when design costs are a significant proportion of total cost, for
instance for hardware that is produced in low volumes. Evolvable hardware even
allows us to evolve designs to suit an individual. Many medical applications have
not been suitable for hardware solutions owing to the expense of personalization.
Evolvable hardware allows cheap, fast solutions to such applications. For exam-
ple, a system has been developed to control a prosthetic hand by recognition of
patterns of myoelectric signals in a user’s arm [45]. The implementation is an
entirely hardware-based solution with reconfigurable logic, a hardware genetic
algorithm unit, a CPU core for evaluation, a chromosome memory, and a ran-
dom number generator implemented on the same integrated chip.

Evolution can also be used to reduce production costs on larger scales by opti-
mizing circuits that fail to meet their required specifications due to variations dur-
ing fabrication. For instance, [88] corrected variations in the frequency of

392 Timothy G. W. Gordon and Peter J. Bentley



intermediate frequency filters by using evolution to control the output of a series
of transconductance amplifiers. This is a useful tool in the case of analogue cir-
cuit designs, where individual component behaviors can vary quite markedly, and
in particular for designs where power and size are important, since tuning the
components in this way allows smaller, low-power components to be used. In
light of this, intermediate frequency filters tuned using this technique are already
in use in commercial mobile communications products [87]. The idea of using
evolution to counteract fabrication variations has also been explored for digital
circuits. For instance, Takahashi, Kasai, et al. incorporated programmable delay
elements in the registers of a memory test pattern generator [112], thus allowing
the evolved circuits to compensate for not only clock skew but also any variations
in data delays throughout the circuit. Simulation results demonstrated that an
almost 50% improvement in production yield was possible using this method.
Such improvements in yield can reduce production costs considerably.

2.3 Poorly Specified Problems

For some problems, it is difficult to specify functionality succinctly but easy to
specify a behavioral description. Computer scientists have used evolution to han-
dle problems with such poor specifications for many years. ANNs have been
applied to problems such as noisy pattern recognition [93]. Evolvable hardware
techniques have similarities with and advantages over ANNs, as noted by Yao
and Higuchi [132]. Both can be feed-forward networks, and both can learn non-
linear functions successfully. But, in addition, hardware is by nature a fast
medium, and in many cases, such as when restricted to feed-forward networks,
evolved hardware designs are more easily understood than ANNs. Therefore this
approach is often suited to problems usually tackled with ANNs but that require
fast operation and good solution tractability. Evolvable hardware suitable for
such purposes has already been developed for industrial use [88].

One problem where evolved hardware can rival ANNs is pattern recognition.
For example, Sekanina has successfully evolved image noise filters that rival the
best traditionally designed circuits [100]. One of the advantages of evolutionary
systems is the ease with which learning biases can be incorporated. For instance,
Higuchi et al. have evolved high-speed robust classifiers [34, 42] Good general-
ization characteristics were incorporated into the solutions by specification of a
bias based on machine learning theory. More recently, do Amaral et al. evolved
fuzzy functions that can be used as building blocks in the construction of fuzzy
logic controllers [11].

2.4 Adaptive systems

With sufficient automation (i.e., real-time synthesis provided by PLDs), evolv-
able hardware has the potential to adapt autonomously to changes in its environ-
ment. This ability can be very useful in situations where real-time manual control
over systems is not possible, such as on deep space missions. It could be particu-
larly useful when unexpected conditions are encountered.

Stoica et al. have noted that current lack of validation for online evolutionary
systems means that critical spacecraft control systems, and other mission-critical

Evolving Hardware 393



systems, cannot currently be placed under evolutionary control [104]. Greenwood
and Song have proposed using evolutionary techniques in conjunction with for-
mal verification techniques to circumvent this problem [22]; however, to date only
noncritical systems such as sensor processing systems have been explored, for
example, adaptive data compression systems [15]. Other systems that could bene-
fit from the ability to autonomously evolve are power management systems and
controller deployment mechanisms for booms, antennae, etc. [91]

Several other adaptive hardware compression systems have also been devel-
oped. Two systems have been developed at the Electrotechnical Lab. (ETL), both
using predictive coding. The first predicts each pixel, using a standard prediction
function, from a subset of surrounding pixels selected by a genetic algorithm. It
has proved successful in compressing bi-level images for high precision elec-
trophotographic printers, outperforming JBIG, the ISO standard for bi-level
image compression, by an average of around 50%. Since then the method has
been proposed as a new ISO standard [94]. The second approach breaks images
into smaller sections and uses evolution to model a function for each section [95].
They also suggested that a similar system could be used for real-time adaptive
compression of video signals. A similar technique was used by Sekanina to evolve
adaptive circuits that filter image noise in changing environments [99].

Many other adaptive filters have been evolved, including digital finite impulse
response (FIR) filters, commonly used in audio applications such as noise and
echo cancellation [125, 131] and their more complex but less reliable counterparts,
infinite impulse response (IIR) filters [100]. Analogue adaptive filters have also
been evolved. For example, Zebulum et al. presented signal extraction filters
capable of adaptively amplifying the strongest component of the input signal
while attenuating others, thus improving a hypothetical signal/noise ratio [135].
Through evolution, these circuits could be adapted to new input profiles.

Online scheduling hardware has also been developed, most notably adaptive
cell scheduling systems for ATM networks, that responds to changes in traffic
flow [59, 65]. In a related field, Damiani et al. have developed an online adaptive
hashing system that could be used to map cache blocks to cache tags dependent
on the access patterns of the data over time [9].

2.5 Fault-Tolerant Systems

Ongoing advances in component miniaturization have not been complemented
by improvements in fabrication reliability. This means that many modern VLSI
circuit designs must be tolerant to fabrication faults. It is expected that this issue
will become even more important in future circuit technologies. Miniaturization
also exposes components to a greater risk of operational faults—for instance, due
to the effects of power fluctuations or ionizing radiation. Reliability is of para-
mount importance for many systems, such as medical equipment and transport
control systems. Military and spacecraft systems are particularly susceptible to
reliability problems, as they are regularly subjected to harsh conditions. Current
techniques for fault tolerance rely on the presence of additional redundant com-
ponents and thorough testing, either at the point of manufacture or online, and
add considerable cost and design complexity. Fortunately, evolvable hardware pro-
vides a number of mechanisms to introduce fault tolerance into circuits.

394 Timothy G. W. Gordon and Peter J. Bentley



A class of adaptive system that was not mentioned in Section 2.4 comprises
circuits that can adapt to faults in their own hardware, thus providing a mecha-
nism of fault recovery. An early demonstration of this ability was that of Higuchi
et al. [34], where an adaptive hardware system learned the behavior of an expert
robot controller by example using a genetic algorithm. More recently, Vigander
demonstrated that a simple evolutionary system could restore most but not all
functionality to a 4-bit × 4-bit multiplier that had been subjected to random faults
[130]. Complete functionality could be restored by applying a voting system to
select between several alternative circuits that had been repaired by evolution.
Sinohara et al. used a multiobjective evolutionary algorithm that allowed essen-
tial functionality to be restored at the expense of secondary behavior that was not
deemed to be important by the designer, such as power dissipation [102]. This
algorithm was demonstrated in the repair of NOR gates and inverters. Hounsell
and Arlsan have explored the repair of an evolved FIR filter after the injection of
multiple faults [38]. They examined two different recovery methods. The first was
to recall the final population of the evolutionary run that created the original fil-
ter design, and the second was to seed a new random population with a copy of
the original design. Both mechanisms recovered functionality faster than rerun-
ning evolution with a completely random population, with population seeding
outperforming population recall by a small margin. Zebulum et al. demonstrated
evolutionary recovery with a 4-bit DAC that had initially been evolved using tra-
ditionally designed operational amplifiers and smaller DACs evolved in earlier
experiments as building blocks. Faults were introduced into one of the opera-
tional amplifiers. The recovered circuit outperformed the circuit that had initially
been evolved. It was suggested that operational amplifiers were not useful build-
ing blocks for evolution. Gwaltney and Ferguson investigated fault recovery in an
evolved analogue motor controller [26], again by re-evolving the population that
gave rise to the best nonfaulty controller after introducing faults. They discovered
that evolution could recover from faults in some components better than others,
although at least some functionality was restored in all cases.

Louis [70] combined an evolutionary approach with a case-based memory,
where partial solutions to similar, previously attempted problems were inserted
into the evolutionary population. This process demonstrated that better quality
solutions to parity problems could be evolved in less time than when using evolu-
tion alone and suggested that this method might prove useful for fault recovery.

Most evolutionary fault recovery systems that have been demonstrated to date
have only explored recovery from errors introduced into the logic of the circuit.
However, Lohn et al. have demonstrated an evolutionary fault recovery system
that can repair routing in addition to logic [66], which they suggest is important
for modern routing-rich programmable devices. Another type of fault is the fail-
ure of a component at extreme temperatures. Stoica et al. have observed that mul-
tipliers, Gaussian curve generators, and logic gates that have evolved under
standard conditions degrade or fail at extreme temperatures. However, when re-
evolved at those temperatures, the circuits regained functionality in all cases.

Fault detection is traditionally dealt with by incorporating additional hard-
ware into a design to perform a built-in self test (BIST). Garvie and Thompson
have demonstrated that evolution can be used to design small adders and multi-
pliers that incorporate BIST at very low additional cost by sharing components

Evolving Hardware 395



between BIST and the circuit function [17]. Innovative circuit designs such as this
will be discussed in Section 2.6.

A number of other bio-inspired online autonomous hardware, fault-tolerance
mechanisms have been developed for both fault detection [7] and recovery [72,
126]. Although these have been proposed as a platform for evolutionary experi-
ments, they do not use evolution as an adaptive repair mechanism, and so will not
be considered further here.

Fault tolerance refers to systems that are inherently tolerant to faults, rather
than systems that can detect and/or recover from faults. Evolution has proved an
ideal candidate for the exploration of fault-tolerant systems and is discussed
under the heading of generalization in Section 3.3.

2.6 Design Innovation in Poorly Understood Design Spaces

Traditional circuit designers tend to work on a problem from the top down,
decomposing the problem into smaller subproblems that have limited interactions
and then repeating the process until only a number of small problems remain that
are well understood in the field of circuit design and have known solutions. Each
decomposition carefully directs the process towards these solutions by using for-
mal design rules. Evolution works differently. It works from the bottom up,
adding components together to make partial solutions to the design problem,
which are in turn combined and tinkered with, until the solution meets the design
criteria. This idea is discussed more fully in Section 3. For now, we shall discuss
when this approach might be useful.

The clearest cases for application are design spaces for which we have very lim-
ited knowledge of how components will interact, and so design rules have not yet
been developed. Advances in electronic engineering are beginning to generate new
kinds of circuit technologies for which the design spaces are often very poorly
understood. In these cases, evolution can prove a useful technique in searching for
innovative designs, since it can be guided purely by the behavior of the evolving
circuit rather than by relying on domain knowledge. An example of this is the
field of nanoelectronics, where Thompson and Wasshuber have successfully
evolved innovative (but at this stage not particularly useful) single-electron NOR
gates [122].

There is also a set of current technologies for which traditional logic synthe-
sis techniques have not yet been designed but that are becoming increasingly
important for circuit designers. Many programmable logic technologies provide
XOR gates and multiplexers, but digital design rules are best suited to generating
sum-of-products solutions that do not map well to these elements. In these cases,
an evolutionary approach can work directly with a design abstraction suitable for
the technology and potentially search areas of space that a traditional designer
would miss if using the techniques above, and this approach may discover more
parsimonious solutions, as has been demonstrated by Miller et al. [76].

Beyond these technologies, there are design spaces where the interactions are
so complex that it has not been possible to develop formal methods to partition
and decompose the design space. For instance, when compared to the design
space of digital logic, analogue design is much less well understood. Hence circuit

396 Timothy G. W. Gordon and Peter J. Bentley



design in this domain requires more expert knowledge. Evolutionary algorithms
have proved very successful in discovering human-competitive (and better) analogue
circuit designs [1, 51].

Perhaps the most successful application of evolution to complex design spaces
is the automatic design of antennas. Traditional antenna designs are based on a
handful of known, regular topologies. Beyond these, the interactions between ele-
ments become too complex to abstract. Linden has demonstrated that evolution
is capable of discovering an array of highly unconventional, irregular antenna
designs [63] and has shown that evolved antennas can be evolved and operate
effectively in real-world settings using transmission of real data [61] and trans-
mission where the signal path is obstructed [61]. Such is evolution’s performance
when applied to antenna design that an evolved antenna is undergoing flight
qualification testing for NASA’s upcoming Space Technology 5 mission [69], and
if successful will be the first evolved hardware in space.

A more subtle and perhaps surprising point is that evolution searches an
inherently different area of search space than traditional designers do. Because of
this difference, it is possible for evolution to discover innovative solutions even for
well-understood design spaces, since some useful circuits lie beyond the areas of
solution space we would normally explore if we were to tackle the problem. This
outcome, of course, demands that evolution is allowed to work without the design
constraints that we would normally place on circuit designs, as was first demon-
strated by Thompson. Currently, this approach has not yet yielded any significant
real-world applications, but the concept has prompted a great deal of research, as
discussed in Section 3.

Current evolutionary techniques only works well for small problems, since the
search spaces can become vast for large circuits. A great deal of research is cur-
rently directed at scalability, which is discussed later in this chapter. That said, we
can still make use of evolution by finding small yet innovative designs that are
evolved to produce limited interactions and so can be used by traditional design-
ers as building blocks for larger circuits. Such building blocks have been found for
both analogue and digital designs [1, 78]. This approach has also been advocated
for use at higher abstractions [101], where it was suggested that evolved or evolv-
able IP cores could now be provided for commercial use in programmable logic
devices. It has also been suggested that previously evolved building blocks may
help evolution discover larger circuits [135].

Finally, evolution has proved to be very successful at the generation of circuits
that incorporate several functions within one set of shared components, a task for
which there is little domain knowledge. We have described an example of this in
Section 2.5, where adders and multipliers were evolved to incorporate a BIST
function. A related idea is that of polymorphic electronics [108], where a circuit
is evolved to perform multiple functions using a shared set of components, with
each function becoming apparent under different environmental conditions. For
example, a circuit might perform as an AND gate at one temperature and an OR
gate at another. Such circuits might prove very useful for military and intelligence
purposes.

Design innovation is, in our eyes, the most significant benefit of evolvable
hardware; hence, research in this area is discussed in more detail in Section 3.

Evolving Hardware 397



3 RESEARCH IN EVOLVABLE HARDWARE

Having discussed the benefits of evolvable hardware, and some of the appli-
cations that these benefits allow, this section reviews the main thrusts of research
in this field. The research is decomposed into three areas: innovation, generaliza-
tion and evolvability.

3.1 Innovation

Traditional circuit designers decompose a problem from the top down, itera-
tively splitting the task into smaller and smaller subproblems by applying con-
straints on their interactions. This partitioning is actively directed to reach a set of
subproblems contained within the reservoir of electronics and materials knowl-
edge, and is known as abstraction. These subproblems can then be individually
modeled as an encapsulated physical device, without the need to understand its
complex internal interactions. An example is a digital memory device, which can
be mapped to an array of analogue circuits that use different techniques to
achieve similar input/output characteristics. When the subproblems are reassem-
bled, care must be taken to ensure that the constraints made during the parti-
tioning process are adhered to. For example the digital memory device
mentioned above is often constructed of high-gain analogue components, so we
must ensure that its output is allowed to saturate before it is passed to another
part of the circuit.

Evolution uses a different approach. It works from the bottom up, attempting
to find correlations between sets of components that consistently improve the
behavior of a circuit with respect to the problem at hand. Unlike traditional
design, the direction of its search does not have to be directed by previous knowl-
edge. If evolution is set up in such a way that it can exploit correlations between
the components it manipulates and the observed external behavior of a circuit,
then circuit designs can be discovered using this behavior alone as a guide, regard-
less of the complexities of the interactions within the circuit.

In Section 2 we discussed four areas of application for innovative evolution-
ary design: familiar design technologies with relaxed abstractions, programmable
logic abstractions, complex design technologies, and new design technologies.
These are now discussed in turn.

3.1.1 Relaxing Abstractions

Seminal work on the relaxation of design abstractions was carried out by
Thompson. He first set out to show that evolution could successfully manipulate
the dynamics and structure of circuits when the dynamical and structural con-
straints that traditional designers depend on heavily had been relaxed. He demon-
strated this [120] by evolving a complex recurrent network of high-speed gates at
a netlist level abstraction to behave as a low-frequency oscillator. Fitness was
measured as an average error based on the sum of the differences between desired
and measured transition periods. Circuits were evaluated in simulation using an
asynchronous digital abstraction. Hence a search space containing only circuits

398 Timothy G. W. Gordon and Peter J. Bentley



that used behavior modeled by the simulator was searched, with the space strictly
partitioned into units of logic gates. However, as the simulator allowed the gates
to interact asynchronously, the selection operator could explore the asynchronous
dynamics of the model, being free to make use of any such behavior or ignore it
as it saw fit.

The required behavior of the circuit was successfully evolved, showing that it
is possible for evolution to search without the constraints (in this case, synchro-
nous constraints) usually needed by traditional designers. Further, a graph-parti-
tioning algorithm showed that the structure of the circuit contained no significant
structural modules, as would be seen through the successive abstraction approach
of a traditional top-down approach. Thompson also showed that the circuit
behavior relied on methods that would not have been used by traditional design-
ers. So not only had evolution found a solution by searching the space beyond
conventional circuit design space but also it had found a solution that that actu-
ally lay within this space.

Thompson went on to show that evolution with relaxed restrictions on circuit
dynamics was possible in physical hardware, rather than simulation [120]. The
hardware was a finite-state machine for a robot controller. However, whether the
states were controlled synchronously by a given clock or not was under genetic
control, an architecture Thompson termed a dynamic state machine (DSM). The
evolved robot controller used a mixture of synchronous and asynchronous behav-
ior and interacted with the environment in a complex dynamical manner to pro-
duce behavior that would not have been possible using the finite-state machine
abstraction with such limited resources. Importantly, he suggested that the ability
of such a parsimonious controller to interact in such a complex manner with its
environment was not attributable to the DSM architecture. Rather, it arose from
the ability of evolution to exploit it. Again, evolution had found a circuit that tra-
ditional design techniques could not generate by avoiding a traditional design
constraint, which in this case was the synchrony imposed on the finite-state
machine abstraction. But in addition, evolution had found a circuit that used the
rich dynamics that can arise by relaxing design constraints to perform a real task,
demonstrating that such dynamics can give rise to useful behavior in the real
world.

Thompson also carried out the first intrinsic evolution of a circuit evaluated
on an FPGA. A 10 × 10 area of a Xilinx XC6126 bitstream was evolved. Almost
all bits in the bitstream corresponding to this area were evolved directly as the bits
of the chromosome of a genetic algorithm [116]. Thereby Thompson set about
evolving a circuit at the lowest level of abstraction possible with the device he
had—that of the physical behavior of the target technology. The task was to
evolve a circuit to discriminate between 1 kHz and 10 kHz signals. Fitness was
calculated by subjecting each circuit to five 500 ms bursts of each signal in a ran-
dom order, and awarding high fitness to circuits with a large difference between
the average voltage of the output during these bursts. The average voltages were
measured with an analogue integrator. The only input to the circuit was the
1 kHz/10 kHz signal—no clock was given, and hence the task required that a con-
tinuous-time arrangement of components be found that discriminated between
signals many orders of magnitude longer than the delay afforded by each indi-
vidual component. The resulting circuit used a fraction of the resources that a

Evolving Hardware 399



traditional designer would need to achieve the same task. Following months of
analysis, Thompson and Layzell described the functionality of the circuit as
“bizarre,” and to date, the nature of some of the mechanisms it uses are still not
completely understood, although the authors postulated that the circuit made use
of the underlying physics of the substrate in a way that traditional design would
consider too complex to consider.

Later, Thompson and Layzell carried out a similar experiment, this time pro-
viding the circuit with a 6 MHz oscillator signal that could be used or ignored as
evolution required [121]. The prime motivation for the experiment was to investi-
gate robustness, and so evaluation was carried out under a range of conditions
specified by an operational envelope. Hence the constraints to the system were the
same as before, except that a soft bias towards robust behavior had been added
through the fitness function. However, an additional dynamical resource had
been provided. The resulting circuit made use of the clock, and the design was
simulated by using the PSpice digital simulator. The simulated design behaved
exactly like that of the real circuit, showing that evolution had found a solution
within the digital design abstraction of the simulator, even through the con-
straints did not explicitly require that. However, analysis of the simulation wave-
forms showed a large number of transient signals. This finding allows us to
conclude that potentially useful circuits lie within the digital abstraction that are
undiscoverable using traditional digital design methodologies owing to their
greedy, top-down nature, and that at least some of these circuits can be discovered
using evolution.

3.1.2 Programmable Logic Abstractions

In Section 2 we noted that most digital circuit design methodologies are
geared towards producing logic in the canonical sum-of-products form. However,
many programmable logic devices support additional components that are not
easily utilized by such an abstraction, such as XOR gates, multiplexers, and
lookup tables (LUTs). Miller et al. have conducted research into the discovery of
innovative circuits, one of their main motivations being the derivation of new
design principles that could be applied to logic abstractions such as those found
in programmable logic devices. They note [78] that Boolean or other algebraic
rules can map from a truth table of required circuit behavior to an expression in
terms of that algebra. They then suggest that a bottom-up evolutionary approach
could search not only the class of expressions that the algebraic rules map to but
also a larger space of logical representations beyond commonly used algebras.

In an attempt to demonstrate this idea, they successfully evolved one- and
two-bit adders based on the ripple adder principle using a feed-forward netlist
representation of AND, OR, NOT, XOR and MUX gates. This space lies beyond
the commonly used Boolean and Reed–Muller algebra spaces but is of interest
since the multiplexer is available as a basic unit in many technologies. This argu-
ment is very similar to Thompson’s in principle—that the discovery of innovative
circuits can be facilitated through the modification of design abstractions imple-
mented through representational biases.

Many of the circuits reported in this and other work [83, 76] were unusual but
interesting because of their efficiency in terms of gate count. They lay in the space

400 Timothy G. W. Gordon and Peter J. Bentley



of circuits making use of multiplexers and XOR gates, outside the space of tra-
ditional atomic Boolean logic units. The authors argued that these circuits were
unlikely to be found using traditional algebraic methods, and so evolutionary
“assemble-and-test” was a useful way that such a space can be explored. The work
continued with the evolution of two-bit and three-bit multipliers. All work was
carried out using gate-level logic simulation. Similar work has been carried out
with multiple valued algebras [46].

Another aspect of this group’s work is the contention that design principles
useful to traditional designers could be discovered by searching for patterns in
evolved circuits. In particular, they hypothesis that by evolving a series of mod-
ules of increasing size, design principles that the modules have in common may
be extracted from them. The authors [78], [83] evolved many one and two bit
adders, and by inspection deduced the principle of the ripple adder. Although
knowledge of this principle already exists in the domain, they went on to argue
that evolution discovered and made use of it with no prior knowledge or explicit
bias. Since the design principle could be extracted a comparison of one- and two-
bit adders that had evolved to use the principle, they asserted that evolution could
be used as a method of design principle discovery.

More recent work in this area has concentrated on developing an automatic
method of principle detection [76, 77]. Having successfully evolved two- and
three-bit multipliers that are much more compact than those of traditional
design, the authors have integrated a data mining procedure to search for design
principles [43]. The learning algorithm used for the data mining process is an
instance-based learning technique called Case Based Reasoning [84], (Chapter 8).
We shall argue in our discussion on scalability in Section 3.4 that by modeling
biological development we might be able to allow evolution to automatically
encapsulate such design principles without the need to resort to other learning
techniques and to use evolution itself to select for design principles that are inher-
ently evolvable.

3.1.3 Complex Design Technologies

In Section 2, we noted that there are complex design spaces for which it has
not been possible to develop formal methods to partition and decompose the
design space, and that evolutionary algorithms offer an alternative approach to
the use of a human expert. An example of this kind of design space is that of ana-
logue circuit design.

One traditional technique of simplifying an analogue design space is to fix the
topology of the circuit to a design with well-known characteristics and to modify
only parameters relating to the components within the design. A good deal of
work using evolutionary algorithms in analogue circuit design takes this
approach, and can be considered to have more in common with evolutionary
optimization than evolutionary circuit design [3]; [88]. However, as the field of
evolvable hardware has developed, researchers have begun to allow evolution to
explore analogue circuit topologies. For instance, Grimbleby developed a hybrid
genetic algorithm/numerical search method that used the genetic algorithm to
search topologies and a numerical design optimization method to select parame-
ter values for the evolved topologies [23]. Additionally, Koza et al. and Lohn and

Evolving Hardware 401



Columbano have both developed evolutionary circuit design methods that
explore both topology and component parameters [67]; [50]. These two methods
are of particular interest to us since they do not use a fixed mapping of genotype
to phenotype. The benefits of using such an approach, and details of these two
examples in particular, are discussed at length in Section 3.4.

With the advantages of evolutionary design in mind, Gallagher has recently
advocated a return to the development of analogue computers [16], which today
have been almost completely replaced by their digital counterparts. He distin-
guished two classes of analogue computers. The first is direct computers, which
are designed to reproduce the behavior of a physical system directly. The example
he gave was of a serial RLC circuit. This can be considered as directly modeling
a damped harmonic oscillator, where inductance is equivalent to mass, capaci-
tance is equivalent to the inverse of spring elasticity, and resistance is equivalent
to frictional damping. Indirect analogue computers simply implement complex
mathematical functions using building blocks that embody simple mathematical
functions, such as adders and integrators. Gallagher suggests that the demise of
the analogue computer is mostly due to a combination of the difficulty in dis-
covering direct implementations of required computations and the difficulty in
constructing accurate indirect models due to compound errors in component pre-
cision. He went on to point out that intrinsic evolution actually discovers direct
implementations, since the circuit is designed purely to replicate a specified behav-
ior rather than to perform a mathematical function, and that for applications
where size and power are vital, evolving direct analogue models should be con-
sidered as a serious alternative to digital models of analogue computations.

An impressive example of evolution’s ability to manipulate interactions that
are too complex for human designers to fathom is that of antenna design. We
have already mentioned in Section 2 that evolution is capable of discovering an
array of highly unconventional, irregular antenna designs. Early work in this field
used simulation; however, Linden [60] went a step further. He intrinsically evolved
an array of wires connected with reed switches, which are mechanical switches
that are closed by an induced magnetic field, controllable from a computer. The
antennas that he evolved made use of the complex electromechanical coupling
between wire segments that resulted from the fields of the reed switches. Human
designers would be unable to exploit such complex nonlinear physical interac-
tions in a controlled manner.

3.1.4 New technologies

In Section 2, we briefly discussed that evolutionary design is likely to be a use-
ful tool for new circuit design technologies for which no domain knowledge exists.
Thompson [119] suggested that until a model of a new technology is derived, only
a blind search technique such as evolution can be of use to design circuits in it.
He first noted that as we move towards nanoscale circuitry, we cannot continue
to suppress quantum effects so that our macroscopic models fit; rather, we must
make use of them. He then described a system of this third class. The system
consisted of an array of quantum dots between which electrons could only
pass by quantum mechanical tunnelling. The task was to evolve a NOR gate by

402 Timothy G. W. Gordon and Peter J. Bentley



modifying effectively only the size, shape, and position of the dots. Thus, evolved
circuits would rely on tunnelling effects to perform a logical function. (The task
was carried out in simulation, but the concept is unaffected.) The evolved circuit
used a property called stochastic resonance in which the thermal energy of the
electrons allows stochastic transmission of a signal. This is an innovative prop-
erty never before considered for the design of electronic circuits, be they single-
electron or not. That evolution discovered this property demonstrates its ability
to blindly design in the absence of any useful design rules.

There are also hopes to exploit quantum effects in another way: through quan-
tum computing. Quantum computers do not process bits. Instead, they process
qbits, which exist in a superposition of states. This allows n coupled qubits to rep-
resent a superposition of 2n states, and operators acting upon the qubits operate
on the superposition of states in parallel. This means that, as the number of
superposed bits the operators operate upon increases, the processing power of the
device increases exponentially with respect to traditional computing devices.
Once quantum circuits are developed that can operate on superpositions of even
tens of bits, they are likely to have enormous computing power. Theory has
pointed to a number of rudimentary quantum gates that could be used to develop
quantum circuits, although practice suggests that the number of interconnected
gates is likely to become a limiting factor in their design. This realization has led
a number of researchers to begin searching for innovative parsimonious sets of
quantum gates using evolutionary algorithms [71]; [111].

Several researchers have also suggested that the field should be designing new
technologies to suit evolutionary algorithms rather than the reverse. Miller and
Downing have noted that all of today’s electronic components have been designed
specifically for top-down design methodologies and that researchers in hardware
evolution have been “abusing” these components [75]. They argue that biological
evolution is clearly capable of evolving extremely complex structure by exploiting
the physics of the surrounding environment, and so we should be looking for sub-
strates that exhibit rich, complex internal interactions and must be reconfig-
urable, ideally by small applied voltages. They suggest that substances that exist
in a state on the edge of disorder would be good candidates, as they would exhibit
the rich interactions necessary while being able to quickly relax to a homogeneous
quiescent state. The Candidates they have suggested include liquid crystals, elec-
troactive polymers, and voltage-controlled colloids.

Amorphous computers have also recently been suggested as a substrate
amenable to evolution. Amorphous computers are essentially large collection of
simple, wireless units that perform computations. These units are unreliable, not
geometrically aligned, and can only communicate locally, but they are likely to be
relatively easy to synthesize in extremely large arrays, as compared with other
future technologies. However, no computational paradigm exists that can take
advantage of their massively distributed function. Future nanoscale devices are
also likely to have an amorphous structure, as Miller and Downing have pointed
out [75]; hence, this could be a major issue for upcoming computational devices.
Haddow and van Remortel have suggested that, by combining the principles of
biological development and evolvable hardware, it may be possible to realize
designs for amorphous computers [28].

Evolving Hardware 403



3.2 Generalization

In the section above, we have discussed what we believe to be the primary
motivation for work on evolvable hardware, namely, its ability to create innova-
tive hardware. In this and the next section, we discuss the two greatest hurdles to
evolvable hardware’s viability for general real-world applications. The first of
these is the difficulty of generalization.

Inductive learners such as evolutionary algorithms infer hypotheses from
observed training examples of some kind. In the case of evolvable hardware, we
test prospective circuits by exposing them to different conditions, most commonly
a range of input signals, and observing the circuit outputs in order to evaluate fit-
ness. If it is infeasible for all possible training examples to be observed by the
learner, then the learner generalizes beyond the cases it has observed. Modern
real-world circuits can process hundreds of input signals, and to observe each
possible combination of these just once, even at millions of training cases a sec-
ond, would take longer than the age of the universe. For sequential circuits, the
number of training cases is infinite. And as we shall see later in this section,
unseen signal inputs are but one (admittedly important) example of unseen oper-
ating conditions that we might hope a circuit to generalize across. Clearly, the
ability to generalize is vital to the long-term future of evolvable hardware.

Two approaches to applying bias towards generalization can be found in the
literature:
1. Introduce domain knowledge about the structure of circuits that exhibit the

required generalization characteristics, perhaps in the form of a heuristic.
2. Introduce knowledge about the behavior of circuits that exhibit the required

generalization characteristics, and rely on evolution to learn about the struc-
ture of circuits that exhibit the required behavior in addition to the primary
task.
We now explore work on generalization, first by considering the special case

of generalization across unseen input signal cases.

3.2.1 Generalization Across Input Vectors

Several researchers have explored input generalization under the framework of
pattern recognition, a familiar problem in the area of generalization and therefore
well suited to the study of this problem. As we mentioned in Section 2, many sys-
tems have been developed that demonstrate that evolvable hardware can general-
ize to unseen test cases for real-world pattern recognition data, such as image and
signal classification [34]; [90] and image and signal noise filtering [100]; [131]. Yao
and Higuchi have implied that the success of evolvable hardware in problems like
these relies in some way on the use of a hard bias towards feed-forward networks
of nonlinear processing units, likening their function to ANNs [132]. This bias is
an example of case 1 above. Iwata et al. successfully managed to improve upon
the generalization abilities of this kind of system by applying additional knowl-
edge, again in the style of case 1 above [42]. They introduced a heuristic commonly
used in the machine learning literature to improve generalization. The heuristic
emerges from the application of the Minimum Description Length (MDL) princi-
ple to the discovery of maximum a posteriori hypotheses in Bayesian settings, and

404 Timothy G. W. Gordon and Peter J. Bentley



biases the search towards small circuits. For details of this interpretation of
MDL, see Mitchell, [84] Chapter 6).

Miller and Thomson investigated the generalization abilities of a system
evolving two- and three-bit multipliers with respect to the size of the input train-
ing sets [80, 81] and were far less successful. The task was to evolve a functional
circuit from a subset of the truth table. They found that if evolution was pre-
sented with a subset of training cases throughout the entire evolutionary run, it
was not able to produce general solutions. This finding suggests that in the setting
of this problem and algorithm there was no implicit bias towards generality, even
though they again enforced a hard representational bias towards feed-forward
networks. They also reported that even when evolution was provided with a new
set of training cases randomly drawn from the truth table every generation, gen-
eral solutions were still not found, suggesting that evolution had little memory in
the context of this problem.

Miller and Thomson also investigated the evolution of square root functions
[80, 81]. In these cases, they discovered that some acceptable solutions were gen-
erated when evolution was limited to an incomplete training set. These cases
occurred when the missing training cases tested low-order bits, which contributed
less to the fitness. This outcome seems to answer the puzzle as to why their earlier
experiments failed to generalize, as we shall now explain with reference to another
experiment.

Imamura, Foster, and Krings also considered generalization in Miller’s multi-
plier problems [40] and concurred that evolving fully correct circuits to many
problems was extremely difficult without access to a full training set. They
pointed out that the problem was exacerbated in functions where each test vector
contained equal amounts of information relevant to the problem, such as the case
of the three-bit multiplier studied by Miller and Thomson. However they sug-
gested that in cases where the data contained a large amount of “don’t care” val-
ues, evolvable hardware could be successful using a smaller test vector. Real-world
pattern classification data contain redundant information, which explains why
they succeeded where the multiplier problem failed. Indeed, since many input sets
exhibit this property, it seems reasonable to assume that for any real-world prob-
lem some level of redundancy is likely to exist, although the problem of how to
select test vectors remains. Immamura, Foster, and Krings suggested an adap-
tive approach of allowing the evolving system to search for useful subsets of test
vectors.

3.2.2 Generalizing Across Operating Environments Though Representation

Just as it is unrealistic for the algorithm to train from every conceivable circuit
input, in most cases it is unrealistic to train under every conceivable operating
environment. Operating environments might include a range of technologies or
platforms on which the designed circuit should operate, as well as a range of con-
ditions to which the embodied circuit may be subjected.

Traditional designers usually manage such generalization by imposing hard
biases on the nature of the circuit. These biases are again representational
abstractions that encode domain knowledge known to produce behavior common
across all necessary operating environments. The abstractions are then mirrored

Evolving Hardware 405



on the physical hardware through some constraint on the hardware’s behaviour.
A circuit that behaves correctly in all necessary conditions should then follow. For
example, a gate-level digital design abstraction requires that the physical gates of
the target technology behave as perfect logic operators. In most technologies,
these gates are represented by transistors—physical devices that behave like high-
gain amplifiers. Timing constraints and operating environment constraints speci-
fied by the manufacturer of the physical device are imposed on the real hardware.
This ensures that, when an abstract computation takes place, the voltages of the
transistors within each logic gate have reached saturation, and any transient
behavior generated before saturation has dissipated. From this point forward, the
outputs can be treated as logical values. In synchronous systems, these constraints
are usually imposed with respect to a clock. The manufacturer will then guaran-
tee that for a range of operating conditions, the device will behave as it appeared
to within the design abstraction. The design is then portable across a range of
devices and operating conditions.

Evolutionary circuit design often takes a similar approach to the traditional
design process by applying design abstractions used by traditional designers.
Many circuits have been evolved at levels of abstractions that would limit the
search to circuits with good generalization characteristics. However, the only case
we are familiar with where representational design abstractions have been
imposed specifically to ensure good generalization is that of Stoica and colleagues
[109], where a very high level of generalization was required. The experiment
involved evolving transistor level circuits, and a representational bias was
imposed that prevented input signals from connecting to transistor gates rather
than to source or drain inputs, thus improving the loading characteristics of the
evolved circuits. (The experiment is discussed in more detail in Section 3.3.3.)

3.2.3 Generalization Across Operating Environments by Inference from
Examples

In cases where no knowledge is available about the structure of solutions that
generalize across all operating environments, the only solution is for evolution to
infer this information from examples.

Early work with intrinsically evolved circuits by Thompson focused on design
innovation through relaxation of constraints [115, 116, 117]. Thompson success-
fully evolved a circuit to distinguish between two frequencies, using a Xilinx
XC6200 FPGA. However, he then went on to note the lack of robustness to envi-
ronmental conditions such as temperature, electronic surroundings, and power
supply that may occur. He also noted that the design was not portable when
moved not only to a different FPGA, but also to a different area of the same
FPGA. Similar results have been reported by Masner et al. [73]. Thompson went
on to explore how solutions that generalized well across a range of operating
environments could be evolved [18]. He took a previously evolved FPGA circuit
that discriminated between two tones. He then specified a number of parameters
for an operational envelope which, when varied, affected the performance of this
circuit: temperature, power supply, fabrication variations, packaging, electronic
surroundings, output load, and circuit position on the FPGA. The final popula-
tion from the previous experiment was then allowed to evolve further, this time on

406 Timothy G. W. Gordon and Peter J. Bentley



five different FPGAs maintained at the limits of environmental conditions speci-
fied by the operational envelope parameters. Although there was no guarantee
that the circuit would generalize to behave robustly under all environmental con-
ditions within the envelope, Thompson found a level of robustness evolved in
four out of five cases. Hence, it appears that the biases he had introduced into
the evolutionary algorithm were sufficient to promote good operating-condition
generalization characteristics for the evolution of the 6200 architecture.

In a similar vein, Stoica et al. [106] explored the operation of circuits in
extreme temperatures. Their initial experiment involved testing both traditionally
designed circuits and circuits evolved under standard conditions (multipliers,
Gaussian curve generators, and logic gates) to see whether they degrade or fail at
extreme temperatures. This was primarily an experiment in evolutionary fault
recovery, and they demonstrated that all circuits could regain functionality when
evolved under extreme conditions. However, it is interesting to note that a popu-
lation of 50 circuits re-evolved for 200 generations in this manner often exhibited
degraded performance under standard conditions, whereas before they had func-
tioned perfectly. This finding suggests that generalization qualities are easily lost
if a consistent bias towards them is not asserted during evolution.

A problem closely related to Thompson’s exploration of portability is the
portability of extrinsically evolved analogue circuits to physical devices. Analogue
circuit simulators tend to simulate circuit behavior very closely, and so it might be
expected that extrinsically evolved circuits would generalize well to the real cir-
cuit. However, this does not happen in practice. One issue is that some behaviors
that simulate according to the physics programmed into the simulator may not be
feasible in the chosen implementation technology. A common example is that
simulators fail to prevent the simulation of extremely high currents, and so evo-
lution is free to take advantage of them in its design. Koza et al. have evolved
many circuits extrinsically at an analogue abstraction using the Berkeley SPICE
simulator [50], but have found that these circuits are practically infeasible because
they rely on extremely high currents. Additionally, analogue simulators use very
precise operating conditions. The circuits of Koza et al. are evolved to operate
at 27°C, and so there is no explicit bias towards generalization across a range of
temperatures.

When evolving networks of transistors intrinsically, Stoica et al. have come
across the reverse problem: circuits evolved intrinsically may operate as expected
under the conditions prevailing when they were evolved, but may not operate
acceptably in software [105]. Their solution to the problem was to evaluate some
circuits of each generation intrinsically, and some extrinsically. This they termed
mixtrinsic evolution [107]. They also suggested that another use of mixtrinsic evo-
lution would be to reward solutions that operate differently in simulation than
when instantiated in a physical circuit. This would encourage innovative behavior
not captured by simulation. They later developed a method [25] to include several
different software models, based on various different processes, analysis tests, and
timing resolutions.

The issues of portability discussed above have only dealt with portability
between simulation and PLDs. An issue of extreme importance for evolutionary
circuit design is whether designs evolved either extrinsically on PLDs or intrinsi-
cally are portable to custom application-specific integrated circuits (ASICs),

Evolving Hardware 407



which cannot be used during mixtrinsic evolution. Until recently, this question
had been left unanswered, but Stoica et. al [109] evolved transistor-level gates
using a combination of comprehensive fitness testing on each individual and mix-
trinsic testing across the population. Comprehensive tests included transient
analyses at different frequencies, testing a number of loads. Mixtrinsic tests were
SPICE analysis on several process models and a range of voltages and tempera-
tures. Additionally, a representational bias was imposed to improve loading
characteristics, as mentioned in Section 3.3.2. Tests that were carried out mix-
trinsically during evolution were carried out in full on the final evolved solutions,
and revealed that some but not all of the circuits performed robustly across all
tests. All circuits exposed to the full range of validation were successfully vali-
dated in silicon, showing that with careful validation procedures, portability of
evolved designs to ASIC technologies is possible.

The concept of the ability of circuits to function under various environmental
conditions can be extended to include the capacity of circuits to operate in the
presence of faults. This was first investigated by Thompson [115, 116, 117]. He
evolved a DSM-based robot controller problem (discussed in Section 3.2.1) in the
presence of single-stuck-at (SSA) faults in the RAM used to hold a lookup table
of state transitions for the state machine. Rather than testing each candidate solu-
tion exhaustively across all sets of possible faults, he aimed to test only the fault
that caused the most degradation in each controller. He recognized that the pop-
ulation was likely to be made up of individuals of various designs, and hence the
highest degradation of performance was unlikely to be caused by the same fault
in the RAM. To circumvent this problem, at each generation he averaged the
RAM bits across the DSMs of the entire population to give what he termed a con-
sensus individual. Faults were only introduced once a good solution was found,
and then the population was tracked to see how it performed. He found that solu-
tions that were tolerant to most SSA faults existing in the initial population of
evolved solutions, for reasons discussed in Section 3.3.4, but as evolution pro-
ceeded in the presence of faults, tolerance was lost as the algorithm concen-
trated on tolerating the single worst fault until eventually solutions tolerant to
any single fault were discovered.

Canham and Tyrell extended this work to more complex faults that commonly
develop in FPGA architectures [8]. They emulated a Xilinx 6200 series architec-
ture on a Xilinx Virtex FPGA and introduced simulated SSA faults in the logic
of the configurable logic blocks (CLBs), and short circuit faults between the
inputs and outputs of the CLBs during evolution. The resultant circuits were
compared against a set of control circuits that were evolved in the absence of
faults and found a large increase in fault tolerance that could not be explained
purely by “junk” faults occurring in unused areas of the FPGA.

Hartmann et al. have evolved fault-tolerant circuits using nonperfect digital
gates called messy gates [30]. Various levels of noise were injected into digital gate
models simulated using SPICE, and digital circuits were evolved. The circuits are
manipulated by evolution at the gate level, but the evaluation of circuits was car-
ried out using SPICE. The authors discovered that adders and multipliers could
be evolved under high levels of noise. They postulated that the noise smoothed
the fitness landscape as highly fit circuits that depended on each gate to perform
function were no longer present in the search space.

408 Timothy G. W. Gordon and Peter J. Bentley



3.2.4 Inherent Generalization

Another fascinating model for fault tolerance is that the biases of the evolu-
tionary algorithm have an inherent tendency to generate solutions that generalize
across certain conditions. Thereby, evolved circuits would exhibit robustness to
changes in those particular conditions “for free.”

Thompson has also postulated that evolved circuits may be inherently robust
to some types of fault. He observed that an evolutionary algorithm will by nature
be drawn to optima surrounded by areas of high fitness, and suggested that as
a result, a single bit mutation from such an optimum will also tend to also have a
high fitness. He then conducted experiments on an artificial NK landscape to
demonstrate this. For details of this type of landscape, see work by Kauffman and
Levin [47]. He then proposed that such an effect could have beneficial engineer-
ing consequences if a mutation were to cause a change in the circuit that is simi-
lar to a fault—namely, that the evolved system is likely to be inherently robust to
such faults. He went on to highlight this by using the evolution of the DSM robot
controller described in Section 3.3.3 as an example. Each bit of the RAM that
encoded the controller’s state machine was directly encoded in the chromosome,
and so mutation of one of these bits had a effect similar to a “single stuck at”
(SSA) fault. Examination of the effect of SSA faults on a previously evolved state
machine revealed that it was quite robust to faults. However, since state machines
for this problem with similar fitness could not be easily generated by any means
other than evolution, statistical tests of the evolved machine’s resilience to faults
could not be carried out.

Following this experiment, Masner et al. [73] carried out studies of the effect
of representational bias on the robustness of evolved sorting networks to a range
of faults. The aim of the work was to explore the relationship between size and
robustness of sorting networks using two representations—tree and linear. They
noted that robustness first increases and then decreases with size, and is therefore
not due purely to the existence of redundant nonfunctional gates in the sorting
networks. They also noted that the linear representation tended to decrease in
robustness with respect to size faster than the tree representation.

Layzell has suggested that robustness of solutions can also be generated at
the level of populations [55]. In particular, he was interested in the ability of
another member of the population to be robust with respect to a fault that
causes the original best solution to fail. This outcome he called populational fault
tolerance (PFT). He went on to demonstrate that PFT is inherent in certain
classes of evolved circuit and to test various hypotheses that could explain its
nature. As with Masner et al., he noted that fault tolerance did not seem to be a
result of redundant units based on the current design. Instead, he showed that
descendants of a previously best and inherently different design were still pres-
ent in redundant genes in the members of the population. It was these individu-
als that provided PFT. He demonstrated that this situation did not result from
the presence of a diverse range of distinct solutions in the final population when
he repeated the experiment using a single hillclimber to evolve solutions and then
generated 50 single-bit mutants of this single individual. These individuals pre-
sented a similar tolerance to fault, confirming that the fault tolerance was inher-
ent to the incremental nature of evolutionary processes in general: the entire

Evolving Hardware 409



population contained remnants of inherently different solutions that had been
explored earlier.

This fact suggests that PFT is somewhat of a misnomer, since one might
expect it to refer to tolerance owing to the nature of a population-based search.
Tyrrell et al. have explored what might be called “true” populational fault toler-
ance [127]. Unlike Layzell’s work, population diversity was encouraged by evolv-
ing oscillators using a population of 16 hillclimbers that did not interact with
each other. This setup ensured that the evolved solutions did not share a common
evolutionary history, so any fault tolerance observed could not be a result of the
effect proposed by Layzell above. When faults were introduced to the oscilla-
tors that caused the best member of the population to fail, another member
of the population often retained relatively high fitness. This demonstrates that
population diversity can also play a role in evolved fault tolerance.

3.3 Performance and Evolvability

A good deal of research in the field of evolvable hardware is devoted to the
following:

● improving the quality of solutions that evolution discovers for a given problem

● improving the scalability of evolution to larger and/or more complex problems

● improving the speed with which evolution finds acceptable solutions

These ideas are highly interrelated since they all aim to improve the perform-
ance of the evolutionary search in order to achieve slightly different goals.

3.3.1 Representations

Selection of a good representation is crucial to the performance of an evolu-
tionary algorithm. As discussed in Section 2, the representation of an evolution-
ary algorithm defines how solution space is mapped onto search space. This
process affects the performance of the algorithm as it delimits the solutions pres-
ent in the search space, thereby fixing the density of acceptable solutions in the
search space. Many researchers, particularly in the early days of evolvable hard-
ware, believed that performance could be improved by reducing the size of the
search space and increasing the density of good solutions lying within it. This
approach will be discussed in due course. However, representation has a second
effect. In Section 2 we discussed how it partly specifies the order of traversal of
search space, since it sets the distance between any given points in space. Hence,
it changes the nature of the search space. It is becoming increasingly recognized
that having a small-sized space is not as important as having a space that allows
evolution to discover incremental improvements in fitness that will lead it to a
solution [10, 2, 115]. We define a search space that allows this process to occur an
evolvable search space.

Miller and Thomson have explored how changes in circuit geometry affect
the evolvability of a two-bit multiplier [79, 80, 81] and how the functionality-
to-routing ratio affects the evolvability of netlist representations of the SBOX

410 Timothy G. W. Gordon and Peter J. Bentley



problem space [79, 80, 81]. It appears that evolvability is affected profoundly
but erratically by both factors, making it difficult to draw many direct conclu-
sions. Miller and Thomson did note, however, that evolvability was improved by
allowing cells dedicated to routing signals between functional cells. However,
because these studies may be dependent on the problem, the biases imposed by
the specific operators used within the algorithm, and the level of abstraction at
which the experiments were conducted, again it is dangerous to read too much
into this work.

3.3.2 Function Level Evolution

The function-level approach to improving evolvability was proposed by
Murakawa et al. [89] and has since been adopted by many others [124, 99, 123].
Murakawa et al. pointed out that the size of the search space for a binary genetic
algorithm increases at a rate of 2n for every addition n genes, and suggested that
as evolution tackles larger problems, the explosion in search-space size prevents
the algorithm from searching effectively. One solution they proposed was func-
tion-level evolution. Here they suggested that instead of using gate-level repre-
sentations, domain knowledge could be used to select high-level computational
units, such as adders, subtractors, and sine generators, that could be represented
directly in the chromosome. thereby reducing the size of the chromosome neces-
sary to represent an acceptable solution. Although this approach has proved to be
successful for limited problems, there are several issues that indicate it is not a
long-term solution. First is the problem of domain knowledge, which requires an
experienced designer to select suitable function-level units for the problem at
hand. Furthermore, if little or no domain knowledge exists for the problem,
it may not be suitable for a function-level approach. Second, the approach is not
scalable to problems of increasingly greater complexity without introducing more
domain knowledge through the selection of more powerful functions. Third, once
an abstraction has been made through the selection of function-level units, evo-
lution will be limited to search the space of this abstraction, and any innovative
solutions at a lower abstraction will be unattainable. Finally, and perhaps most
importantly, the functional units are selected using domain knowledge from tra-
ditional design processes. As we have discussed throughout this chapter, evolution
performs a bottom-up search rather than a top-down design. In Section 3.4.1, we
pointed out that there is very little domain knowledge about the evolvability
of circuit design spaces, and so even functions selected by experienced designers
may not be of value when attempting to solve a problem using an evolutionary
algorithm.

Indeed, Thompson argued that coarse-grained representations such as those
employed by function-level evolution may reduce the evolvability of a hardware
design space [115, 116, 117], since the addition to or removal from a circuit design
of a complex function is likely to have a more dramatic effect on the overall func-
tion of the circuit than simple function. Thompson makes a strong argument that
traditional evolution has the capability to search larger spaces than those advo-
cated by Murakawa et al. [89]. In particular, he suggests that there may be features
of many hardware design landscapes that allow us to search large spaces beyond

Evolving Hardware 411



the point where the evolving population has converged in fitness. Such a feature,
he suggested, was the neutral network.

3.3.3 Neutral Networks

Neutral networks can be conceived as collections of genotypes with pheno-
types of identical fitness that are arranged in search space so as to make pathways
or networks that can be navigated by evolution through the application of its
genetic operators. It has been suggested that genetic drift along such networks can
allow evolution to escape local optima that they would otherwise be anchored to
[39]. The idea of neutral mutations has been recognized in the field of evolution-
ary biology for some time but has only in recent years been used as a paradigm
for search in evolutionary computation. Harvey suggested that taking full advan-
tage of neutral networks would require a redesign of evolutionary algorithms,
and in light of this he proposed the Species Adaptation Genetic Algorithm
(SAGA) [31], which advocates incremental changes in genotype length and a
much greater emphasis on mutation than is common for genetic algorithms.
Thompson, however, managed to prove his point using only a fixed-length genetic
algorithm with a SAGA-style mutation rate to search an incredibly large circuit
design space (21800) for good solutions. This he succeeded in doing, and when the
algorithm was stopped owing to time constraints, fitness was still increasing even
though the population had converged long before [32]. Analysis of the evolution-
ary process did indeed reveal that a converged population had drifted along neu-
tral networks to more fruitful areas of the search space. He attributed much of
this behavior to the increased mutation rate, a change to the static procedural
mapping of the algorithm. He went on to speculate that neutral networks might
be a feature of a great deal of design spaces, including many hardware design
spaces.

Vassiliev and Miller have explored neutrality in the three-bit multiplier logic
netlist space. Their work [128, 129] suggests that neutral changes at the start of an
evolutionary run occur because of high redundancy in the genotype. As the run
continues and fitness becomes higher, redundancy is reduced. However, the num-
ber of neutral changes does not drop as quickly, suggesting that selection pro-
motes neutral changes in order to search the design space. They then went on to
show that when neutral mutations were forbidden, the evolvability of the land-
scape was reduced. They have also proposed that the search for innovation may
be assisted by using current designs as a starting point for evolution, and pro-
posed that a neutral bridge could be used to lead from conventional design space
to areas beyond [128, 129].

Much of the work on neutrality uses evolutionary strategies as opposed to the
more traditional genetic algorithm. Evolutionary strategies do not use the
crossover operator, and because of this, their use in studies of neutral mutations,
the driving force of evolution in the neutral network paradigm, simplifies analysis.

3.3.4 Incremental Learning

Following the function-level approach, Torresen proposed another idea based
on evolving more complex components to improve scalability. Inspired by results

412 Timothy G. W. Gordon and Peter J. Bentley



from the use of automatically defined functions in genetic programming, and rec-
ognizing that an incremental, bottom-up process might improve scalability, he
suggested that evolution could be handed the task of evolving higher-level func-
tions. He also suggested that the process could be repeated incrementally so as to
produce a complex solution based on a series of modules that had been iteratively
encapsulated into larger ones. Thus he dubbed the approach increased complexity
evolution. However, he still needed a mechanism to modularize the problem into
less complex subtasks that would each present a more evolvable landscape than
that of the entire task.

He suggested that the complexity of the problem could be subdivided by a tra-
ditional functional decomposition, and demonstrated the process with a pattern
recognition task where a number of character images were to be classified accord-
ing to character. Each output of the circuit corresponded to an individual char-
acter and was to be set high only if the pattern under test corresponded to that
character. He manually decomposed the problem into a set of circuits where each
would be evolved to detect only a single character. His results showed that there
was a significant increase in evolutionary performance when decomposing the
problem in this way. Unfortunately, his demonstration implicitly included domain
knowledge by applying the idea of top-down decomposition to a problem that is
amenable to such an approach. Additionally, he also stopped short of demon-
strating the benefits such an approach could bring to scalability, since he did not
present a demonstration of evolution at a higher level of abstraction using the
evolved circuits as primitives. Finally, the opportunity for an incrementally evolved
system to innovate is curtailed by this approach, in this case by the imposition of
a traditional top-down design that was implicitly imposed. Although this method
does not fundamentally solve the problem of scalability it may be useful when
knowledge is available as to how a problem might be decomposed. For example,
Hounsell and Arslan [37] decomposed a three-bit multiplier problem by output
pins in this manner. In this case, they automatically integrated the individual cir-
cuits, which were evolved extrinsically, using standard logic minimization tech-
niques, thereby automating the technique and addressing to some extent the issue
of parsimony that Torresen had not touched upon. Kazadi et al. [48] have
extended the idea further by removing the requirement of combining evolved cir-
cuits using traditional minimization techniques, thereby increasing the opportuni-
ties for innovative circuit design. They achieved this by first evolving the correct
behavior for a single output and then selecting a single parsimonious solution and
encapsulating it as a module. The module was then used as a primitive for another
stage of evolution in which correct behavior for an additional output was required.
The process was iterated until correct behavior for all outputs was observed.
Although this method can automate the generation of a complete circuit, it is still
relies on decomposition by output producing evolvable subproblems.

Lohn et al. have compared a number of incremental-type systems. They com-
pared three dynamic fitness functions against a static one [68]. The dynamic fit-
ness functions increased in difficulty during an evolutionary run. One had a fixed
increase in difficulty, based on domain knowledge; one had a simple adaptive
increase based on the best fitness within the population; and one put the level of
difficulty under genetic control by coevolving the problem and the solution. The
results showed that the coevolutionary system performed best on an amplifier

Evolving Hardware 413



design problem, but the static system performed best of all. When discussing
potential reasons as to why the incremental systems showed poorer perform-
ance, Lohn et al. recognized that the discontinuity in the fitness landscapes result-
ing from the adaptive nature of the fitness functions might have reduced the
evolvability of the systems.

3.3.5 Dynamic Representations

Another proposal from ETL to improve the speed of evolution was to use a
variable length representation, with the aim of reducing the size of the search
space necessary for a problem. Applied to a pattern recognition problem, per-
formance was improved over an algorithm that did not use variable-length repre-
sentations, in terms of both solution parsimony and efficacy [44].

A similar approach was taken by Zebulum in an experiment to evolve Boolean
functions using a chromosome of product terms that were summed by the fitness
function [139]. However, the search order of representation space differed from
the ETL experiments. Inspired by the observation that complex organisms have
evolved from simpler ones, the population was seeded with short chromosomes.
This approach assumes a correlation between complex behavior and complex
structure. As we discussed earlier, Thompson has demonstrated that this is not
necessarily true, since complexity in behavior can arise from interactions of a sim-
ple system with a complex environment [120]. However, the simplicity of the
simulation used to evaluate circuit designs in this example may mean that in this
case the assumption holds. A new operator was introduced to increase chromo-
some length, under the control of a fixed parameter. Hence a simple pressure to
move from short representations to long ones was set. It was found that a low rate
of increase allowed fully functional but more parsimonious solutions to be found
over a larger rate.

In both these examples, each gene in the representation was mapped directly
to a Boolean function, and the representation space was searched by adding and
removing genes guided by evolution in the first case, and by adding genes guided
by a simple heuristic in the second case. In both cases, only the size of the space
searched was changeable, rather than any arrangement of the order; hence, the
evolvability of the space remained unaltered.

3.3.6 Development

The use of evolution itself to explore representation space as a meta-search
in addition to the search of design space is an attractive idea. This leaves the
question of how to do so such that the search of representations achieves
the following:

● it allows evolution to explore innovative design spaces;

● it allows evolution to explore design spaces of varying evolvability, not
just size.

We have already explained that evolution searches design space from the bot-
tom up, and that this is unlike approaches imposed by traditional top-down

414 Timothy G. W. Gordon and Peter J. Bentley



design, allowing evolution to explore innovative areas of design space. We have
also already mentioned how we have little understanding of how to make such
searches more evolvable.

One approach we can take is to turn to nature to gain some insight into evolv-
ability. The proof that bottom-up evolutionary design can be highly evolvable is
all around us in the form of extremely complex biological organisms. However,
Dawkins has noted that that the organisms that evolved early in evolutionary his-
tory have since then evolved the least [10], since most simple organisms present
today are virtually unchanged since their appearance in the fossil record, whereas
organisms that have evolved in more modern times have continued to evolve
increasingly complex structure. This led Dawkins to suggest that biological evo-
lution has over time discovered evolvable mechanisms that it has used to generate
increasingly complex organisms: there has been an evolution of evolvability. This
has led us to believe that we should look to differences between the mechanisms
that simple and higher organisms employ to map from genotype to phenotype for
sources of evolvability. A striking feature of higher organisms is their modularity.
The period of evolutionary history in which organisms first made use of complex
modular structures, the Cambrian period, heralded the appearance of Metazoan
organisms and was marked by an explosion of evolution [49]. This would suggest
that the idea of decomposing a problem into modules to improve evolvability is a
good one. The mechanisms of problem decomposition previously used to evolve
hardware designs relied on top-down human design abstractions. The mechanism
by which all Metazoan organisms map genotype to phenotype is quite different.
It is the process of development. Development provides a mechanism for evolu-
tionary control over a bottom-up modularization process. It allows evolution to
make use of any innovative design features it discovers at lower abstractions and
to encapsulate them for reuse at a higher level of abstraction.

Development maps genotype to phenotype in an indirect process. It provides
a series of instructions describing how to construct an organism [4]. It is also a
generative process. It uses abstraction and iteration to manage the flow of con-
trol within the series of instructions [36]. In this sense, it can be likened to a tra-
ditional declarative computer program. Developmental systems that employ
these ideas in an abstract sense have been explored for a number of years in the
context of ANN design. They directly evolve programs that explicitly describe
how a system should develop. The language in which the programs are
described employ fixed, explicit mechanisms for abstraction and reuse. Such
systems have been labeled as explicit developmental systems by Bentley and
Kumar [4]. One such system is cellular encoding [24]. More recently, the same
method has been used by Koza et al. to evolve analogue circuits [50]. The basic
technique is to evolve trees of developmental steps using genetic programming
(GP). Each developmental step, encoded as a GP node, explicitly codes for a
phenotype modification. A fixed “embryonic” phenotype is “grown” by apply-
ing a tree of rules to it. Koza used automatically defined functions (ADFs) to
explicitly provide modularity, and automatically defined copies (ADCs) to pro-
vide iteration. Lohn and Columbano have used a similar approach, but with a
linear mapping representation that is applied to an embryonic circuit in an
unfolding manner, rather than a circuit-modifying one [67]. The representa-
tional power is limited, although some but not all of these limitations have more

Evolving Hardware 415



recently been removed by introducing new operators [6]. Although both systems
have managed to evolve innovative designs, only Koza has demonstrated exam-
ples of modularization and reuse in his solutions, and these have been limited
to a few examples that do not produce modularization and reuse on the order
of that seen in biological organisms. This result might suggest that there are
other features of biological development important to evolvability that are not
captured by implementing such abstract ideas of modularization, reuse, and
growth alone. To benefit from using a developmental genotype–phenotype
mapping, the process by which biological development achieves these features
should be modeled more closely.

Biological development describes the transformation of a single-celled
embryo into a complex adult organism. The entire process is by no means com-
pletely understood. It encapsulates a huge array of interactions between genes,
their products, and the environment, from microscopic to macroscopic, some of
seemingly minor importance, some ubiquitous to all stages of development. One
mechanism that has a hand in all stages of development is DNA transcription.
Transcription regulates the rate of gene expression through the presence of pro-
teins called transcription factors, which either increase (activators) or decrease
(inhibitors) the transcription rate of a particular gene. All transcription factors
are proteins that are generated by the expression of other genes. Thus a dynamic,
autocatalytic network of gene products specifies which genes are expressed. These
networks are called gene regulatory networks (GRNs) [103]. Such networks may
be arranged as modules, controlled by a master control gene [58]. When activated,
the master control gene causes a cascade of activity throughout a GRN module
and generates a complex feature in a phenotype.

Evolution is able to manage the flow of control for the developmental pro-
gram over time by manipulating gene products involved in GRNs. However,
another mechanism is required to communicate flow of control over space. To
achieve this, biology makes use of two processes: growth and induction. Growth
occurs through cellular division; thus, regulatory substances within an ancestor
cell can be distributed to all the cell’s descendents as they spread through space.
Development can control this process, for instance, by constraining the location
of a regulatory substance within a cell such that, after cell cleavage, it is present
only in one daughter cell. Such regulatory substances are known as cytoplasmic
determinants. Induction is quite different. Here a cell encodes regulatory infor-
mation as a chemical signal, which is transmitted to nearby cells. A variety of
inductive signal types have been identified [103] that pass information over vari-
ous localities and at various rates.

Evolutionary design systems that model these processes are termed implicit by
Bentley and Kumar [4]. Flow of control in implicit systems is commonly modeled
by successively rewriting a symbolic description of a simple object according to a
set of rewriting rules. The map between genotype and phenotype is specified by a
fixed start symbol for the rule rewriting process, and the grammar is evolved. One
type of system that models both transcription and growth are L-Systems. These
have been explored in the context of circuit design by Haddow and Tufte [27]. The
L-System they used was context free; hence, the rules were rewritten such that
there was no communication between adjacent structures. Hence, no concept of
induction was modeled. Miller has explored a similar growth-based system that

416 Timothy G. W. Gordon and Peter J. Bentley



incorporated a limited amount of context [82]. The phenotype consists of a sin-
gle embryonic cell. The chromosome encodes a set of functions to determine the
inputs and function of the cell and whether it should divide to produce two
daughter cells. At each developmental timestep, the functions are executed in all
current cells, and the process iterates. The arguments of shared functions are the
positions of the inputs, current function, and location of that cell. Functions were
used to determine the connections and function in the next step of development.
Hence a form of communication is captured by the model through the labels of
each cell’s current neighbours affecting the current cell’s next state. However, the
communication between cells (and hence the model of induction) is present in a
highly abstract and limited sense, and the role of induction in the development of
the circuit cannot be separated from the role of growth.

3.3.7 An Example of Developmental Evolutionary Circuit Design

The recent work of Gordon [20] provides an alternative approach. With the
eventual goal of evolving complex, functioning circuits, an exploratory system
based on the three principles of being generative, implicit, and context-driven was
designed. It was decided that a rule-based system could satisfy all three criteria.
Like biological organisms, the phenotype is composed of “cells”, but unlike bio-
logical organisms, the cells in our model are laid out on a two-dimensional grid,
mirroring the medium of electronic circuits. This layout has the advantage of
being easily mapped to a circuit design for a programmable logic device such as a
Field Programmable Gate Array (FPGA), and so was in keeping with our aim of
developing a system with as little computational overhead as possible. To update
the entire individual for a single developmental timestep, the set of rules that
make up the chromosome is tested against the “chemical environment” that is
modeled in each of these cells. For each cell, only the rules that match that cell’s
environment are activated. If the environment differs between cells, it is possible
for different rules to be activated in each cell, which leads to their environments
being altered in different ways. In this way, different chemical environments can
be maintained between cells. By modeling a cell’s context with only transcription
factors (proteins that activate genes) and ignoring all other chemistry present in
biological cells, we were able to keep our model as simple as possible yet encap-
sulate the key features that provide a generative, implicit, context-driven process.

Transcription factor proteins were modeled as binary state variables. Each
gene was modeled as a rule. The precondition of the rule specified which proteins
must be present (activators) and which must be absent (inhibitors) in order for
that particular gene to activate. The postcondition of the rule defines the protein
that is generated if the rule is activated. An example rule is shown in Figure 12.4.

For a rule like this to be activated, the proteins in the environment must match
the pattern of proteins specified in the rule precondition. There are five bits in the
rule precondition for each protein in the model. The final three bits define the
protein concentration that the operator will act upon. Hence a rule can specify
concentration values to range from 0 to 7. The first two bits of the protein con-
dition specify the operator—not equal to (00), less than or equal to (01), greater
than or equal to (10), or equal to (11). The specific protein to be tested is deter-
mined by the locus of these bits. A set of these rules makes up the chromosome

Evolving Hardware 417



and defines how the proteins interact over time. At each timestep in the develop-
mental process, the environment is inspected to determine which proteins are
present, and then each rule is inspected to determine whether the environment
matches the rule. If it does, the rule is activated; the protein defined in the rule’s
postcondition is generated and goes on to make up part of the protein environ-
ment of the following timestep.

Context is a key feature of our model—cells must be able to affect their neigh-
bor’s environment. In our model, this is achieved through the interaction of pro-
teins. Each cell inspects its neighbors to determine what proteins they are
generating. The protein concentration detected by a cell is determined thus: for
each protein, the cell sums the total number of neighbors that are generating that
protein. If the cell itself is also generating that protein, it adds an additional 3
concentration points to the total. Thus the maximum concentration can be 7
points, since as 4 are contributed by the neighbors and 3 by the cell itself. To sim-
ulate this process, the cell model for our exploratory system contains a protein
detector and a protein generator in order to record the proteins that are present
in the cell and the proteins that are detected by the cell, respectively. To summa-
rize, a complete developmental timestep for a cell proceeded thus:

1. For each protein in the model, the cell’s protein detector sends a query to
each of its von Neumann neighbors (i.e., the four neighbors to the north,
south, east, and west on a 2D grid) to determine if they are generating that
protein. It also queries its own generator, and sums the results from the
neighbors and itself (with an additional bias towards itself) to give a
detected concentration for that protein.

2. The rule set is tested against the pattern of proteins detected by the detec-
tor in step 1. As each rule with a precondition matching the cell’s current
pattern of detected proteins is activated, the cell’s protein generator is
updated to represent the protein specified in the rule postcondition.

These two steps are then repeated for a number of cycles, as shown in
Figure 12.5, allowing the pattern of proteins formed across the global array of
cells to change until a stable state or cycle of states is reached, or until develop-
ment is halted after a predetermined number of timesteps. Gordon provides Full
details [20].

The system described above so far models the process of forming patterns of
gene products. What remains is for a mechanism to be introduced by which the
patterns of gene products generate a circuit design. Each cell in our cellular array
is mapped directly to a configurable logic block (CLB) on a Xilinx Virtex FPGA,
and the activity of the genes in each cell are linked to alterations in the functional
components in the CLB. This means that in addition to proteins, the models of

418 Timothy G. W. Gordon and Peter J. Bentley

then Generate BIf A ≠ 0 and 3 and 7 and D 4

Protein: BA

00 011011000 100011 111

D

01

CB =

C

≥ <

Figure 12.4. An example of a rule



our cells also contain functional components that map directly to functional
components in a CLB. In order to keep the initial model simple, we added as
few components as possible to our cell model. Each cell has four input wires that
could be driven by its local neighbors, two 4-input lookup tables (LUTs), and an
output wire from each LUT. The LUTs map directly to two of the four LUTs in
a Virtex CLB, and the input and output wires map directly to manually selected
single lines between the CLBs. For details of the Virtex architecture and how this
mapping was made, see the work of Gordon and Bertley [21].

To allow these functional components to be altered by gene activity, we intro-
duced new postconditions to the rules. These coded for an alteration to the logic
in a CLB. Over the course of development, the activities of these circuit-altering
postconditions were recorded by activity counters – one counter in each cell for
each circuit-altering postcondition—and once development was complete, the
activity counters were inspected in order to determine what alterations should be
made to a predefined template circuit on the Virtex. Gordon and Bertley give
details of this process [21].

Numerous experiments have been carried out on this model and variations of
it [19]. The results showed the importance of good intercellular communication
to improve development’s ability to generate and maintain a range of patterns.
The work has shown that the computational power of this developmental model
is sufficient to allow the learning of patterns that map to fully functional adder
circuits [20]. This is an important step towards tackling real-world problems with
development.

3.4 Platform Research

We have now reviewed most current research into evolvable hardware. We have
seen that many researchers believe that working at low levels of abstraction can
have advantages. We have also seen that mechanisms to explore evolvability and
generalization are being actively investigated. What we have not considered is the
availability of platforms for low-abstraction hardware evolution.

Evolving Hardware 419

Functional Components

Present

Not Present

Present

Present

Protein Detector

?

?

?

?

?

Protein Generator

A:

E:

D:

C:

B:

If (A ∨ !B ∨ C) -> D
If (C ∨ D) -> D

If (A ∨ !B ∨ C) -> E

Functional Components

?

?

?

?

?

Protein Detector

?

?

?

?

?

Protein Generator

Not Present

1. The cell detects proteins by

querying neighboring protein

generators at timestep t.

2. The presence of proteins in the

detectors fires any rules with matching

preconditions

3. The generators for tim
estep t +1

are updated

4. And the cycle
continues

A:

E:

D:

C:

B:

Functional Components

Present

Not Present

Present

Present

Not Present

Protein Detector

Not Present

Present

Present

Not Present

Not Present

Protein Generator

A:

E:

D:

C:

B:

Figure 12.5. A developmental timestep highlighting the protein interaction model with a cell



In this section, we cover the platforms that have been reported in the evolvable
hardware literature. Some are commercially available, and some have been devel-
oped by researchers. Commercial devices have not been developed with evolvable
hardware as a primary goal, and so most struggle to compete with dedicated
evolvable hardware on performance, versatility, and ease of use for our purposes.
However, they do have advantages of availability and cost (although some that
were used for early research are now no longer available), and so many researchers
have explored their use for evolvable hardware.

3.4.1 Criteria for successful evolutionary platforms

Thompson [115] has listed a number of criteria for intrinsic circuit evolution
platforms. These are discussed below:

Reconfigurable an unlimited number of times. Many field programmable
devices are designed to be programmed only once. Others are designed to be pro-
grammed a small number of times, but repeated configuration can eventually
cause damage. Evolutionary experiments can require millions of evaluations, and
so devices for intrinsic experiments should be able to be reconfigured infinitely.

Fast and / or partial reconfiguration. If millions of evaluations are needed, the
evaluation process should be fast. Modern programmable devices have millions of
configurable transistors and consequently have large configuration bitstreams.
This can mean that downloading the configuration becomes the bottleneck of the
evolutionary process. The brute force solution to this problem is to use devices
with high bandwidth configuration ports. Another solution is to evaluate many
individuals at once, as proposed by Higuchi, Iba, and Manderick, among others
[33]. Batch evaluation limits the type of evolutionary algorithm to those with
large populations, ruling out the use of steady-state genetic algorithms or low-
population evolutionary strategies. A more elegant solution is that of partial
reconfiguration, where only the changes from the current configuration need to
be uploaded. This yields similar bandwidth use with no constraints on the learn-
ing algorithm.

Indestructibility or validity checking. In conventional CMOS technologies, a
wire driven from two sources can result a short circuit if one drives the wire to a
different voltage level than another. The high currents generated from such an
event are extremely undesirable, as they can damage the device, and so should be
prevented by hard constraints, rather than the softer ones advocated so far. Some
hardware platforms are designed around an architecture with which contention is
impossible. For those that are not, there are two options—either an abstract
architecture can be imposed on top of the real hardware, or circuits can be tested
for contention before they are synthesized, and evaluated by an alternative means
if such a condition is detected.

Fine-grain reconfigurability. In order to allow evolution the ability to innovate,
evolution must be able to manipulate candidate circuits at a low level of abstrac-
tion. Hence a good platform needs fine-grain control over the evolving platform.

420 Timothy G. W. Gordon and Peter J. Bentley



Thompson also points out the distinction between fine-grain architectures and
fine-grain reconfigurability—namely, that although a device’s architecture may be
based on repeated large units, if these can be reconfigured at a finer level, then
this criterion will be met.

Flexible I/O. The method of supplying input and retrieving output from an
evolved circuit can affect the feasibility of successful evolution, so a platform that
allows experimentation with this is useful.

Low cost. This is of particular importance when the motive behind using evo-
lution is to lower costs through design automation.

Observability. In order to analyze how evolved circuits work, their internal sig-
nals need to be probed. However, when working with low-design abstractions, it
may be impossible to avert the potential of signal probes to change the behavior
of the circuit, and the probed signal architectures should be chosen with this as a
consideration.

3.4.2 Platforms

Bearing these criteria in mind, the platforms that have been used or proposed
for use for evolvable hardware experiments are now considered briefly. These can
be classified into three groups: commercial digital, commercial analogue, and
research platforms. They are tabulated below.

Evolving Hardware 421

Commercial Analogue Platforms
Zetex TRAC [14]: Based around 2 pipelines of 10 op-amps + programmable capacitors,
resistors. Linear and nonlinear functions successfully evolved. Large-grained
reconfigurability and limited topology limit worth for evolution.

Anadigm FPAA(Inc. 2003): Up to 4 reconfigurable blocks with programmable
interconnect. CABs contain 2 op-amps, capacitor banks, serial approximation register.
Large-grained reconfigurability limits worth for evolution. No reports on use for evolvable
hardware.

Lattice ispPAC [92]: Designed for filtering applications. Based on programmable
amplifiers. Limited reconfigurability (~10,000x) limits suitability for evolvable hardware.

Motorola MPAA020 [136]: 20 cells containing an op. amp, comparator, transistors,
capacitors, and SRAM. A range of circuits has been evolved. Much of the bitstream is
proprietary. Geared towards circuits based around the op. amp. No longer available.

Commercial Digital Platforms
Xilinx 6200 [115, 116, 117, 50, 121]: Developed for dynamic reconfig. apps. Fast and
infinite reconfig., fully or partially. Homogenous fine-grained architecture of MUXes. All
configurations valid. Good I/O. Expensive, no longer available.

Xilinx XC4000 [57]: Low cost, infinite but slow reconfig. SRAM LUT based architecture.
Damaged by invalid configurations. Parts of bitstream proprietary and undisclosed.
Reconfigurable at resource level using Xilinx JBits software. No longer available.



4 SUMMARY

The problems of electronic circuit design are increasing as demand for
improvements increases. In this review, we have introduced a promising new type
of solution to these difficulties: evolvable hardware. This emerging field exists at
the intersection of electronic engineering, computer science, and biology.

The benefits brought about by evolvable hardware are particularly suited to
a number of applications, including the design of low-cost hardware, poorly
specified problems, creation of adaptive systems, fault-tolerant systems, and
innovation.

The chapter has also reviewed and analyzed current research trends in evolvable
hardware in depth. In particular, the research focusing on innovation, evolvability,
and platforms have been described, and a recent example of a developmental evo-
lutionary electronics system designed by the authors has been provided.

Evolvable hardware is still a young field. It does not have all the answers to the
problems of circuit design, and there are still many difficulties to overcome.
Nevertheless, these new ideas may be one of the brightest and best hopes for the
future of electronics.

422 Timothy G. W. Gordon and Peter J. Bentley

Xilinx Virtex/II/II Pro [35, 56]: Medium cost. SRAM LUT based architecture. Can be
reconfigured infinitely and quickly, fully and partially. Can be damaged by random
configurations. Some of the bitstream is proprietary and undisclosed, but most hardware
resources can be reconfigured using Xilinx JBits software. Virtex II provides embedded
multipliers, Virtex II Pro provides embedded CPU core. Widely available.

Research Platforms
FPTA [105, 53, 13]: Reconfigurable at transistor level, additionally supporting capacitors
and multiple I/O points. Programmable voltages control resistances of connecting switches
for use as additional transistors. Some versions allow variable channel height and width.
FPTA2 provides 8 × 8 array of FPTA cells Fits criteria for evolvable hardware well.

Embryonic Arrays [113, 126]: Bio-inspired fault tolerant FPGA architecture.
Programmable cells usually based on MUXtrees. New POEtic tissue designed to support
hierachical logical genotype, developmental and phenotype layers. Interesting architecture
for developmental hardware evolution.

Palmo [29]: PWM-based signaling rather than true analogue. Based around array of
integrators. All configurations valid.

Evolvable Motherboard [54]: Array of analogue switches, connected to six interchangeable
evolvable units. Evolution of gates, amplifiers, and oscillators demonstrated using bipolar
transistors as evolvable unit. Good I/O. Board-based architecture is not suitable for real-
world problems due to size, cost, and number of evolvable units.

FIPSOC [86]: Complete evolutionary system aimed at mixed signal environments.
Analogue and digital units. CPU and memory to encode evolutionary algorithm.
Analogue units based around amplifiers. Digital units based on LUTs and flip-flops.
Context-based dynamic reconfiguration suitable for real-time adaptive systems.

PAMA [96]: Fixed analogue MUX array allowing interconnection of interchangeable
evolvable units. Current version implements a 32 16:1 bidirectional low on-resistance
MUX/deMUX allowing for random configurations.



ACKNOWLEDGMENTS

The authors would like to thank Dr. Peter Rounce for his insights and advice.

REFERENCES

[1] V. Aggarwal (2003): Evolving sinusoidal oscillators using genetic algorithms.
2003 NASA/DoD Conference on Evolvable Hardware, Chicago, IL, USA,
IEEE Comput. Soc., Los Alamitos, CA, USA.

[2] L. Altenberg, (1995): The Schema Theorem and Price’s Theorem.
Foundations of Genetic Algorithms 3. D. Whitley and M. D. Vose. San
Mateo, CA, U.S.A., Morgan Kaufmann: 23–49.

[3] T. Arslan and D. H. Horrocks (1995): The Design of Analogue and Digital
Filters Using Genetic Algorithms. 15th SARAGA Colloquium on Digital
and Analogue Filters and Filtering Systems, London, U.K.

[4] P. J. Bentley and S. Kumar (1999): Three Ways to Grow Designs:
A Comparison of Embryogenies for an Evolutionary Design Problem.
Proceeding of the Genetic and Evolutionary Computation Conference,
Orlando, FL, U.S.A.

[5] J. A. Biles (1994): GenJam: A Genetic Algorithm for Generating Jazz Solos.
Proceedings of the 1994 International Computer Music Conference, San
Francisco, CA, U.S.A., International Computer Music Association.

[6] J. P. B., Botelho, L. B. Sa, et al. (2003): An experiment on nonlinear syn-
thesis using evolutionary techniques based only on CMOS transistors. 2003
NASA/DoD Conference on Evolvable Hardware, Chicago, IL, USA, IEEE
Comput. Soc., Los Alamitos, CA, USA.

[7] D. W. Bradley and A. M. Tyrrell (2001): The architecture for a hardware
immune system. Proceedings Third NASA/DoD Workshop on Evolvable
Hardware. EH 2001. 12–14 July 2001, Long Beach, CA, USA, IEEE
Comput. Soc., Los Alamitos, CA, USA.

[8] R. O. Canham and A. M. Tyrrell (2002): Evolved Fault Tolerance in
Evolvable Hardware. 2002 World Congress on Computational Intelligence,
Honolulu, HI, U.S.A., IEEE, Piscataway, NJ, USA.

[9] E., Damiani and V. Liberali, et al. (2000): Dynamic Optimisation of Non-
linear Feed-Forward Circuits. 3rd International Conference on Evolvable
Systems, Edinburgh, U.K.

[10] R. Dawkins, (1989): The evolution of evolvability. Proceedings of Artificial
Life: The Quest for a New Creation, Santa Fe, U.S.A., Addison-Wesley.

[11] J. F. M., do Amaral, J. L. M. do Amaral, et al. (2002): Towards Evolvable
Analog Fuzzy Logic Controllers. 2002 NASA/DoD Conference on Evolvable
Hardware, Alexandria, VA, U.S.A., IEEE Press.

[12] M. Dorigo, and G. Di Caro (1999): The Ant Colony Optimization Meta-
heuristic. New Ideas in Optimization. D. Corne, M. Dorigo and F. Glover.
London, UK, McGraw-Hill: 11–32.

[13] I., Ferguson, A. Stoica, et al. (2002): An Evolvable Hardware Platform
based on DSP and FPTA. 2002 Genetic and Evolutionary Computation
Conference, Memlo Park, CA, U.S.A., AAAI Press.

Evolving Hardware 423



[14] S. J. Flockton and K. Sheehan (1999): A system for intrinsic evolution of
linear and non-linear filters. Proceedings of the First NASA/DoD Workshop
on Evolvable Hardware. 19–21 July 1999, Pasadena, CA, USA, IEEE
Comput. Soc., Los Alamitos, CA, USA.

[15] A. Fukunaga and A. Stechert (1998): Evolving Nonlinear Predictive
Models for Lossless Image Compression with Genetic Programming. Third
Annual Genetic Programming Conference, Madison, WI, U.S.A.

[16] J. C. Gallagher, (2003): The once and future analog alternative: evolvable
hardware and analog computation. 2003 NASA/DoD Conference on
Evolvable Hardware, Chicago, IL, USA, IEEE Comput. Soc., Los
Alamitos, CA, USA.

[17] M. Garvie and A. Thompson (2003): Evolution of Self-diagnosing
Hardware. 5th International Conference on Evolvable Systems, Trondheim,
Norway, Springer-Verlag.

[18] N., Göckel, R. Drechsler, et al. (1997): A Multi-Layer Detailed Routing
Approach based on Evolutionary Algorithms. Proceedings of the IEEE
International Conference on Evolutionary Computation, Indianapolis, IN,
U.S.A.

[19] D. E. Goldberg (1989): Genetic algorithms in search, optimization, and
machine learning. Reading, Mass.; Harlow, Addison-Wesley.

[20] T. G. W. Gordon (2003): Exploring Models of Development for
Evolutionary Circuit Design. 2003 Congress on Evolutionary Computation,
Canberra, Australia.

[21] T. G. W. Gordon and P. J. Bentley (2002): Towards Development in
Evolvable Hardware. 2002 NASA/DoD Conference on Evolvable Hardware,
Washington D.C., U..S.A.

[22] G. W. Greenwood and X. Song (2002): How to Evolve Safe Control
Strategies. 2002 NASA/DoD Conference on Evolvable Hardware,
Alexandria, VA, U.S.A., IEEE Press.

[23] J. B. Grimbleby (2000): Automatic Analogue Circuit Synthesis Using
Genetic Algorithms. IEE Proceedings on Circuits Devices and Systems
147(6): 319–323.

[24] F. Gruau (1994): Neural Network Synthesis Using Cellular Encoding and
the Genetic Algorithm. Laboratoire de l’Informatique du Parallilisme. Lyon,
Ecole Normale Supirieure de Lyon: 151.

[25] X., Guo, A. Stoica, et al. (2003): Development of consistent equivalent
models by mixed-mode search. IASTED International Conference on
Modeling and Simulation, Palm Springs, California, U.S.A.

[26] D. A. Gwaltney and M. I. Ferguson (2003): Intrinsic hardware evolution
for the design and reconfiguration of analog speed controllers for a DC
Motor. 2003 NASA/DoD Conference on Evolvable Hardware, Chicago, IL,
USA, IEEE Comput. Soc., Los Alamitos, CA, USA.

[27] P. C., Haddow, G. Tufte, et al. (2001): Shrinking the Genotype: L-systems
for EHW? The 4th International Conference on Evolvable Systems: From
Biology to Hardware, Tokyo, Japan.

[28] P. C. Haddow and P. van-Remortel (2001): From here to there: future
robust EHW technologies for large digital designs. Proceedings Third

424 Timothy G. W. Gordon and Peter J. Bentley



NASA/DoD Workshop on Evolvable Hardware, Long Beach, CA, USA,
IEEE Comput. Soc., Los Alamitos, CA, USA.

[29] A., Hamilton, K. Papathanasiou, et al. (1998): Palmo: Field Programmable
Analogue and Mixed-signal VLSI for Evolvable Hardware. 2nd International
Conference on Evolvable Systems, Lausanne, Switzerland, Springer-Verlag,
Berlin, Germany.

[30] M., Hartmann, P. Haddow, et al. (2002): Evolving robust digital designs.
2002 NASA/DoD Conference on Evolvable Hardware. 15–18 July 2002,
Alexandria, VA, USA, IEEE Comput. Soc., Los Alamitos, CA, USA.

[31] I. Harvey, (1991): Species Adaptation Genetic Algorithms: The basis for a
continuing SAGA. 1st European Conference on Artificial Life, Paris, France.

[32] I. Harvey and A. Thompson (1997): Through the labyrinth, evolution finds
a way: A silicon ridge. 1st International Conference on Evolvable Systems,
Tsukuba, Japan, Springer-Verlag, Berlin, Germany.

[33] T., Higuchi, H. Iba, et al. (1994): Evolvable Hardware. Massively Parallel
Artifical Intelligence. Cambridge, MA, U.S.A., MIT Press: 398-421.

[34] T., Higuchi, M. Iwata, et al. (1996): Evolvable hardware and its application
to pattern recognition and fault-tolerant systems. Proceedings of Towards
Evolvable Hardware: An International Workshop. 2–3 Oct. 1995, Lausanne,
Switzerland, Springer-Verlag, Berlin, Germany.

[35] G., Hollingworth, S. Smith, et al. (2000): The Intrinsic Evolution of Virtex
Devices Through Internet Reconfigurable Logic. Proceedings of the Third
International Conference on Evolvable Systems, Edinburgh, U.K.

[36] G. Hornby (2003): Generative Representations for Evolutionary Design
Automation. Department of Computer Science. Waltham, MA, U.S.A.,
Brandeis University.

[37] B. I. Hounsell and T. Arslan (2000): A novel genetic algorithm for the auto-
mated design of performance driven digital circuits. 2000 Congress on
Evolutionary Computation, La Jolla, CA, USA, IEEE, Piscataway, NJ, USA.

[38] B. L. Hounsell and T. Arslan (2001): Evolutionary design and adaptation
of digital filters within an embedded fault tolerant hardware platform.
Proceedings Third NASA/DoD Workshop on Evolvable Hardware. EH 2001.
12–14 July 2001, Long Beach, CA, USA, IEEE Comput. Soc., Los
Alamitos, CA, USA.

[39] M. A., Huynen, P. F. Stadler, et al. (1996): Smoothness within ruggedness:
The role of neutrality in adaptation. Proceedings of the National Academy
of Science 93.

[40] K., Imamura, J. A. Foster, et al. (2000): The test vector problem and limi-
tations to evolving digital circuits. 2nd NASA/DoD Workshop on Evolvable
Hardware, Palo Alto, CA, U.S.A., IEEE Comput. Soc., Los Alamitos, CA,
USA.

[41] A. Inc. (2003): AN120E04 FPAA Data Sheet, http://www.anadigm.com.
2004.

[42] M., Iwata, I. Kajitani, et al. (1996): A pattern recognition system using
evolvable hardware. 4th International Conference on Parallel Problem
Solving from Nature PPSN IV, Berlin, Germany, Springer-Verlag, Berlin,
Germany.

Evolving Hardware 425



[43] D., Job, V. Shankararaman, et al. (1999): Hybrid AI Techniques for Software
Design. Proceedings of the 11th International Conference on Software
Engineering and Knowledge Engineering, Kaiserslautern, Germany.

[44] I., Kajitani, T. Hoshino, et al. (1996): Variable length chromosome GA for
evolvable hardware. 3rd IEEE International Conference on Evolutionary
Computation, Nagoya, Japan, IEEE, New York, NY, USA.

[45] I., Kajitani, T. Hoshino, et al. (1999): An Evolvable Hardware Chip and
Its Application as a Multi-Function Prosthetic Hand Controller. 16th
National Conference on Artificial Intelligence, Orlando, FL, U.S.A., AAAI
Press.

[46] T., Kalganova, J. F. Miller, et al. (1998): Some aspects of an evolvable hard-
ware approach for multiple-valued combinational circuit design. 2nd
International Conference on Evolvable Systems, Lausanne, Switzerland,
Springer-Verlag, Berlin, Germany.

[47] S. Kauffman and S. Levin (1987): Towards a General Theory of Adaptive
Walks on Rugged Landscapes. Journal of Theoretical Biology. 128: 11-45.

[48] S., Kazadi, Y. Qi, et al. (2001): Insufficiency of piecewise evolution. 3rd
NASA/DoD Workshop on Evolvable Hardware, Long Beach, CA, USA,
IEEE Comput. Soc., Los Alamitos, CA, USA.

[49] M. Kirschner and J. Gerhart (1998): Evolvability. Proceedings of the
National Acadamy of Science 95(8): 420–8427.

[50] J., Koza, F. H. I. Bennett, et al. (1999): Genetic Programming III. San
Francisco, California, U.S.A., Morgan-Kauffmann.

[51] J. R., Koza, M. A. Keane, et al. (2000): Automatic creation of human-com-
petitive programs and controllers by means of genetic programming.
Genetic Programming and Evolvable Machines 1(1-2): 121–64.

[52] W. B. Langdon, (1997): Scheduling Maintenance of Electrical Power
Transmission. Artificial Intelligence Techniques in Power Systems. K. Warwick
and A. O. Ekwue. London, IEE Press: 220-237.

[53] J., Langeheine, J. Becker, et al. (2001): A CMOS FPTA chip for intrinsic
hardware evolution of analog electronic circuits. Proceedings Third
NASA/DoD Workshop on Evolvable Hardware. EH 2001. 12–14 July 2001,
Long Beach, CA, USA, IEEE Comput. Soc., Los Alamitos, CA, USA.

[54] P. Layzell (1998): A new research tool for intrinsic hardware evolution. 2nd
International Conference on Evolvable Systems, Lausanne, Switzerland,
Springer-Verlag, Berlin, Germany.

[55] P. Layzell and A. Thompson (2000): Understanding Inherent Qualities of
Evolvaed Circuits: Evolutionary History as a Predictor of Fault Tolerance.
3rd International Conference on Evolvable Systems, Edinburgh, U.K.,
Springer-Verlag.

[56] D. Levi (2000): HereBoy: a fast evolutionary algorithm. The Second
NASA/DoD Workshop on Evolvable Hardware., Palo Alto, CA, USA, IEEE
Comput. Soc., Los Alamitos, CA, USA.

[57] D. Levi and S. A. Guccione (1999): GeneticFPGA: evolving stable circuits
on mainstream FPGA devices. 1st NASA/DoD Workshop on Evolvable
Hardware, Pasadena, CA, U.S.A., IEEE Comput. Soc., Los Alamitos, CA,
USA.

426 Timothy G. W. Gordon and Peter J. Bentley



[58] E. B. Lewis (1992): Clusters of master control genes regulate the develop-
ment of higher organisms. Journal of the American Medical Association
267: 1524–1531.

[59] J. H. Li and M. H. Lim (2003): Evolvable Fuzzy System for ATM Cell
Scheduing. 5th International Conference on Evolvable Systems, Trondheim,
Norway, Springer-Verlag.

[60] D. S. Linden (2001): A system for evolving antennas in-situ. Proceedings
Third NASA/DoD Workshop on Evolvable Hardware. EH 2001. 12–14 July
2001, Long Beach, CA, USA, IEEE Comput. Soc., Los Alamitos, CA,
USA.

[61] D. S. Linden (2002): An evolvable antenna system for optimizing signal
strength in-situ. IEEE Antennas and Propagation Society International
Symposium, vol.1, 16–21 June 2002, San Antonio, TX, USA, IEEE,
Piscataway, NJ, USA.

[62] D. S. Linden (2002): Optimizing signal strength in-situ using an evolvable
antenna system. 2002 NASA/DoD Conference on Evolvable Hardware.
15–18 July 2002, Alexandria, VA, USA, IEEE Comput. Soc., Los Alamitos,
CA, USA.

[63] D. S. Linden and E. E. Altshuler (1999): Evolving wire antennas using
genetic algorithms: a review. Proceedings of the First NASA/DoD Workshop
on Evolvable Hardware. 19–21 July 1999, Pasadena, CA, USA, IEEE
Comput. Soc., Los Alamitos, CA, USA.

[64] A. Lindenmayer (1968): Mathematical models for cellular interactions in
development I Filaments with one-sided inputs. Journal of Theoretical
Biology 18: 280–289.

[65] W., Liu, M. Murakawa, et al. (1997): ATM cell scheduling by function level
evolvable hardware. 1st International Conference on Evolvable Systems,
Tsukuba, Japan, Springer-Verlag, Berlin, Germany.

[66] J., Lohn, G. Larchev, et al. (2003): A Genetic Representation for
Evolutionary Fault Recovery in Virtex FPGAs. 5th International
Conference on Evolvable Systems, Trondheim, Norway, Springer-Verlag.

[67] J. D. Lohn and S. P. Colombano (1998): Automated analog circuit synthe-
sis using a linear representation. 2nd International Conference on Evolvable
Systems, Lausanne, Switzerland, Springer-Verlag, Berlin, Germany.

[68] J. D., Lohn, G. L. Haith, et al. (1999): A comparison of dynamic fitness
schedules for evolutionary design of amplifiers. 1st NASA/DoD Workshop
on Evolvable Hardware, Pasadena, CA, USA, IEEE Comput. Soc., Los
Alamitos, CA, USA.

[69] J. D., Lohn, D. S. Linden, et al. (2003): Evolutionary Design of an X-Band
Antenna for NASA’s Space Technology 5 Mission. 2003 NASA/DoD
Conference on Evolvable Hardware, Chicago, IL.

[70] S. J. Louis (2003): Learning for evolutionary design. 2003 NASA/DoD
Conference on Evolvable Hardware, Chicago, IL, USA, IEEE Comput. Soc.,
Los Alamitos, CA, USA.

[71] M., Lukac, M. A. Perkowski, et al. (2003): Evolutionary Approach to
Quantum and Reversible Circuits Synthesis. Artificial Intelligence Review
20(3-4): 361–417.

Evolving Hardware 427



[72] N. J. Macias and L. J. K. Durbeck (2002): Self-assembling circuits with
autonomous fault handling. 2002 NASA/DoD Conference on Evolvable
Hardware. 15–18 July 2002, Alexandria, VA, USA, IEEE Comput. Soc.,
Los Alamitos, CA, USA.

[73] J., Masner, J. Cavalieri, et al. (1999): Representation and robustness for
evolved sorting networks. 1st NASA/DoD Workshop on Evolvable Hardware,
Pasadena, CA, U.S.A., IEEE Comput. Soc., Los Alamitos, CA, USA.

[74] P. Mazumder and E. M. Rudnick (1999): Genetic Algorithms for VLSI
Design, Layout and Test Automation. Upper Saddle River, NJ, U.S.A.,
Prentice-Hall.

[75] J. F. Miller and K. Downing (2002): Evolution in materio: looking beyond
the silicon box. 2002 NASA/DoD Conference on Evolvable Hardware. 15–18
July 2002, Alexandria, VA, USA, IEEE Comput. Soc., Los Alamitos, CA,
USA.

[76] J. F., Miller, D. Job, et al. (2000): Principles in the Evolutionary Design of
Digital Circuits -Part I. Genetic Programming and Evolvable Machines
1(1/2): 7–35.

[77] J. F., Miller, D. Job, et al. (2000): Principles in the Evolutionary Design of
Digital Circuits -Part II. Genetic Programming and Evolvable Machines 1(3):
259–288.

[78] J. F., Miller, T. Kalganova, et al. (1999): The Genetic Algorithm as a
Discovery Engine: Strange Circuits and New Principles. Proceedings of the
AISB Symposium on Creative Evolutionary Systems, Edinburgh, U.K.

[79] J. F. Miller and P. Thomson (1998): Aspects of Digital Evolution:
Evolvability and Architecture. 5th International Conference on Parallel
Problem Solving from Nature, Amsterdam, The Netherlands, Springer-
Verlag.

[80] J. F. Miller and P. Thomson (1998): Aspects of digital evolution: geometry
and learning. Proceedings of Second International Conference on Evolvable
Systems: From Biology to Hardware. (ICES 98). 23–25 Sept. 1998,
Lausanne, Switzerland, Springer-Verlag, Berlin, Germany.

[81] J. F. Miller and P. Thomson (1998): Evolving Digital Electronic Circuits for
Real-Valued Function Generation using a Genetic Algorithm. 3rd Annual
Conference on Genetic Programming, San Francisco, CA, U.S.A,.

[82] J. F. Miller and P. Thomson (2003): A Developmental Method for Growing
Graphs and Circuits. 5th International Conference on Evolvable Systems,
Trondheim, Norway, Springer-Verlag.

[83] J. F., Miller, P. Thomson, et al. (1997): Designing electronic circuits using
evolutionary algorithms. Arithmetic circuits: a case study. Applications of
Computer Systems. Proceedings of the Fourth International Conference.
13–14 Nov. 1997, Szczecin, Poland, Wydwnictwo i Drukarnia Inst. Inf.
Polytech. Szczecinskiej, Szezecin, Poland.

[84] T. M. Mitchell (1997): Machine Learning. London, McGraw-Hill.
[85] G. E. Moore (1965): Cramming More Components Onto Integrated

Circuits. Electronics 38(8): 114–117.
[86] J. M., Moreno, J. Madrenas, et al. (1998): Feasible, evolutionary and self-

repairing hardware by means of the dynamic reconfiguration capabilities of

428 Timothy G. W. Gordon and Peter J. Bentley



the FIPSOC devices. 2nd International Conference on Evolvable Systems,
Lausanne, Switzerland, Springer-Verlag, Berlin, Germany.

[87] M., Murakawa, T. Adachi, et al. (2002): An AI-calibrated IF filter: a yield
enhancement method with area and power dissipation reductions. 2002
IEEE Custom Integrated Circuits Conference, Singapore.

[88] M. Murakawa, S. Yoshizawa, et al. (1998): Analogue EHW chip for inter-
mediate frequency filters. Proceedings of Second International Conference
on Evolvable Systems: From Biology to Hardware. (ICES 98). 23–25 Sept.
1998, Lausanne, Switzerland, Springer-Verlag, Berlin, Germany.

[89] M. Murakawa, S. Yoshizawa, et al. (1996): Hardware evolution at function
level. 5th Conference on Parallel Problem Solving from Nature, Berlin,
Germany, Springer-Verlag, Berlin, Germany.

[90] M. Murakawa, S. Yoshizawa, et al. (1999): The GRD chip: Genetic recon-
figuration of DSPs for neural network processing. IEEE Transactions on
Computers 48(6): 628–639.

[91] J. Plante, H. Shaw, et al. (2003): Overview of Field Programmable Analog
Arrays as Enabling Technology for Evolvable Hardware for High
Reliability Systems. 2003 NASA/DoD Conference on Evolvable Hardware,
Chicago, IL, U.S.A., IEEE Press.

[92] E. Ramsden (2001): The ispPAC family of reconfigurable analog circuits.
3rd NASA/DoD Workshop on Evolvable Hardware, Long Beach, CA, USA,
IEEE Comput. Soc., Los Alamitos, CA, USA.

[93] D. E. Rumelhart, B. Widrow, et al. (1994): The Basic Ideas in Neural
Networks. Communications of the ACM 37(3): 87–92.

[94] H. Sakanashi, M. Iwata, et al. (2001): A Lossless Compression Method for
Halftone Images using Evolvable Hardware. 4th International Conference
on Evolvable Systems, Tokyo, Japan, Springer-Verlag.

[95] M. Salami, M. Murakawa, et al. (1996): Data compression based on evolv-
able hardware. 1st International Conference on Evolvable Systems from
Biology to Hardware, Tsukuba, Japan, Springer-Verlag, Berlin, Germany.

[96] C. C. Santini, R. Zebulum, et al. (2001): PAMA-programmable analog mul-
tiplexer array. 3rd NASA/DoD Workshop on Evolvable Hardware, Long
Beach, CA, USA, IEEE Comput. Soc., Los Alamitos, CA, USA.

[97] Sechen (1988): VLSI Placement and Global Routing Using Simulated
Annealing. Boston, MA, U.S.A, Kluwer Academic Publishers.

[98] L. A. Segel and I. Cohen, Eds. (2001): Design Principles for the Immune
System and Other Distributed Autonomous Systems. Santa Fe Institute
Studies in the Sciences of Complexity. New York, Oxford University Press.

[99] L. Sekanina (2002): Evolution of digital circuits operating as image filters
in dynamically changing environment. 8th International Conference on Soft
Computing, Brno, CZ.

[100] L. Sekanina (2003): Easily Testable Image Operators: The Class of Circuits
Where Evolution Beats Engineers. 2003 NASA/DoD Conference on
Evolvable Hardware, Chicago, IL, U.S.A., IEEE Press.

[101] L. Sekanina (2003): Towards Evolvable IP Cores for FPGAs. 2003
NASA/Dod Conference on Evolvable Systems, Chicago, IL, U.S.A., IEEE
Press.

Evolving Hardware 429



[102] H. T. Sinohara, M. A. C. Pacheco, et al. (2001): Repair of analog circuits:
extrinsic and intrinsic evolutionary techniques. Proceedings Third
NASA/DoD Workshop on Evolvable Hardware. EH 2001. 12–14 July 2001,
Long Beach, CA, USA, IEEE Comput. Soc., Los Alamitos, CA, USA.

[103] J. M. W. Slack (1991): From Egg to Embryo. Cambridge, Cambridge
University Press.

[104] A. Stoica, A. Fukunaga, et al. (1998): Evolvable hardware for space appli-
cations. Second International Conference on Evolvable Systems: From
Biology to Hardware. (ICES 98). 23–25 Sept. 1998, Lausanne, Switzerland,
Springer-Verlag, Berlin, Germany.

[105] A. Stoica, D. Keymeulen, et al. (1999): Evolutionary experiments with a
fine-grained reconfigurable architecture for analog and digital CMOS cir-
cuits. Proceedings of the First NASA/DoD Workshop on Evolvable
Hardware. 19–21 July 1999, Pasadena, CA, USA, IEEE Comput. Soc., Los
Alamitos, CA, USA.

[106] A. Stoica, D. Keymeulen, et al. (2001): Evolvable hardware solutions for
extreme temperature electronics. 3rd NASA/DoD Workshop on Evolvable
Hardware., Long Beach, CA, USA, IEEE Comput. Soc., Los Alamitos,
CA, USA.

[107] A. Stoica, R. Zebulum, et al. (2000): Mixtrinsic Evolution. 3rd International
Conference on Evolvable Systems, Edinburgh, U.K.

[108] A. Stoica, R. Zebulum, et al. (2002): On polymorphic circuits and their
design using evolutionary algorithms. 20th IASTED International
Multiconference on Applied Informatics, Innsbruck, Austria, ACTA Press,
Anaheim, CA, USA.

[109] A. Stoica, R. S. Zebulum, et al. (2003): Silicon validation of evolution-
designed circuits. 2003 NASA/DoD Conference on Evolvable Hardware,
Chicago, IL, USA, IEEE Comput. Soc., Los Alamitos, CA, USA.

[110] S. Sundaralingam and K. C. Sharman (1998): Evolving Complex Adaptive
IIR Structures. 9th European Signal Processing Conference, Rhodes, Greece.

[111] A. J. Surkan and A. Khuskivadze (2002): Evolution of quantum computer
algorithms from reversible operators. 2002 NASA/DoD Conference on
Evolvable Hardware. Alexandria, VA, U.S.A., IEEE Comput. Soc., Los
Alamitos, CA, USA.

[112] E. Takahashi, Y. Kasai, et al. (2003): A Post-Silicon Clock Timing
Adjustment Using Genetic Algorithms. 2003 Symposium on VLSI circuits,
IEEE Press.

[113] G. Tempesti, D. Mange, et al. (2002): The BioWall: an electronic tissue for
prototyping bio-inspired systems. 2002 NASA/DoD Conference on
Evolvable Hardware, Alexandria, VA, U.S.A., IEEE Comput. Soc., Los
Alamitos, CA, USA.

[114] A. Thompson (1995): Evolving electronic robot controllers that exploit
hardware resources. Advances in Artificial Life. Third European Conference
on Artificial Life. Proceedings. 4–6 June 1995, Granada, Spain, Springer-
Verlag, Berlin, Germany.

[115] A. Thompson (1996): An Evolved Circuit, Intrinsic in Silicon, Entwined with
Physics. 1st International Conference on Evolvable Systems, Springer-Verlag.

430 Timothy G. W. Gordon and Peter J. Bentley



[116] A. Thompson (1996): Hardware Evolution. Brighton, U.K., University of
Sussex.

[117] A. Thompson (1996): Silicon Evolution. Proceedings of the 1st Annual
Conference on Genetic Programming, Stanford, CA, U.S.A.

[118] A. Thompson (1998): On the automatic design of robust electronics
through artificial evolution. Proceedings of Second International Conference
on Evolvable Systems: From Biology to Hardware. (ICES 98). 23–25 Sept.
1998, Lausanne, Switzerland, Springer-Verlag, Berlin, Germany.

[119] A. Thompson (2002): Notes on design through artificial evolution:
Opportunities and algorithms. Adaptive computing in design and manufac-
ture 5(1): 17–26.

[120] A. Thompson, I. Harvey, et al. (1996): Unconstrained Evolution and Hard
Consequences. Towards Evolvable Hardware: The Evolutionary Engineering
Approach. E. Sanchez and M. Tomassini. Berlin, Germany, Springer-
Verlag. 1062: 136–165.

[121] A. Thompson and P. Layzell (2000): Evolution of Robustness in an
Electronics Design. Proceedings of the 3rd International Conference on
Evolvable Systems: From Biology to Hardware, Edinburgh, U.K.

[122] A. Thompson and C. Wasshuber (2000): Evolutionary design of single
electron systems. Proceedings. The Second NASA/DoD Workshop on
Evolvable Hardware. 13–15 July 2000, Palo Alto, CA, USA, IEEE Comput.
Soc., Los Alamitos, CA, USA.

[123] R. Thomson and T. Arslan (2003): The evolutionary design and synthesis
of non-linear digital VLSI systems. 2003 NASA/DoD Conference on
Evolvable Hardware, Chicago, IL, USA, IEEE Comput. Soc., Los
Alamitos, CA, USA.

[124] J. Torresen (2000): Possibilities and limitations of applying evolvable hard-
ware to real-world applications. Proceedings of FPL 2000. 10th
International Conference on Field Programmable Logic and Applications.
27–30 Aug. 2000, Villach, Austria, Springer-Verlag, Berlin, Germany.

[125] G. Tufte and P. C. Haddow (2000): Evolving an adaptive digital filter.
Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.
13–15 July 2000, Palo Alto, CA, USA, IEEE Comput. Soc., Los Alamitos,
CA, USA.

[126] A. Tyrrell, E. Sanchez, et al. (2003): POEtic Tissue: An Integrated
Architecture for Bio-inspired Hardware. 5th International Conference on
Evolvable Systems, Trondheim, Norway.

[127] A. M. Tyrrell, G. Hollingworth, et al. (2001): Evolutionary strategies and
intrinsic fault tolerance. 3rd NASA/DoD Workshop on Evolvable Hardware.
EH 2001, Long Beach, CA, USA, IEEE Comput. Soc., Los Alamitos, CA,
USA.

[128] V. Vassilev and J. F. Miller (2000): The Advantages of Landscape Neutrality
in Digital Circuit Evolution. Proceedings of the 3rd International
Conference on Evolvable Systems: From Biology to Hardware, Edinburgh,
U.K.

[129] V. Vassilev and J. F. Miller (2000): Embedding Landscape Neutrality To
Build a Bridge from the Conventional to a More Efficient Three-bit

Evolving Hardware 431



Multiplier Circuit. Genetic and Evolutionary Computation Conference, Las
Vegas, NV, U.S.A.

[130] S. Vigander (2001): Evolutionary Fault Repair of Electronics in Space
Applications. Trondheim, Norway, Norwegian University Sci. Tech.

[131] K. A. Vinger and J. Torresen (2003): Implementing evolution of FIR-filters
efficiently in an FPGA. 2003 NASA/DoD Conference on Evolvable
Hardware, Chicago, IL, USA, IEEE Comput. Soc., Los Alamitos, CA,
USA.

[132] X. Yao and T. Higuchi (1997): Promises and challenges of evolvable hard-
ware. 1st International Conference on Evolvable Systems: From Biology to
Hardware, Tsukuba, Japan, Springer-Verlag, Berlin, Germany.

[133] J. S. Yih and P. Mazumder (1990): A Neural Network Design for Circuit
Partitioning. IEEE Transactions on Computer Aided Design 9(10): 1265–1271.

[134] R. S. Zebulum, M. Aurélio Pacheo, et al. (1997): Increasing Length
Genotypes in Evolutionary Electronics. 7th International Conference on
Genetic Algorithms, East Lansing, MI, U.S.A.

[135] R. S. Zebulum, D. Keymeulen, et al. (2003): Experimental results in evolu-
tionary fault-recovery for field programmable analog devices. 2003
NASA/DoD Conference on Evolvable Hardware, Chicago, IL, USA, IEEE
Comput. Soc., Los Alamitos, CA, USA.

[136] R. S. Zebulum, M. A. Pacheco, et al. (1998): Analog circuits evolution in
extrinsic and intrinsic modes. 2nd International Conference on Evolvable
Systems, Lausanne, Switzerland, Springer-Verlag, Berlin, Germany.

432 Timothy G. W. Gordon and Peter J. Bentley




