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Abstract
This chapter introduces morphware as the basis of a second machine par-

adigm, which mainly has been introduced by the discipline of embedded sys-
tem design, targeting the system on chip (SoC). But more recently SoC design
is adopting more and more computer science (CS) mentality and also needs
the services of computer science (CS) professionals. CS is going to include the
morphware paradigm in its intellectual infrastructure. The time has come
to bridge the traditional hardware–software chasm. A dichotomy of two
machine paradigms is the road map to upgrade CS curricula by evolution,
rather than by revolution. This chapter mainly introduces morphware platforms
as well as their models and architectures.

1 INTRODUCTION

Morphware [1] [2] is the new computing paradigm, the alternative RAM-based
general-purpose computing platform model. The traditional hardware–software
chasm distinguishes software running on programmable computing engines
(microprocessors) driven by instruction streams scanned from RAM, as well as
application-specific fixed hardware like accelerators that are not programmable
after fabrication. The operations of such accelerators are primarily driven by data
streams. Such accelerators are needed because of the microprocessor’s perform-
ance limits caused by the sequential nature of its operation—by the von Neumann
bottleneck.

John von Neumann’s key achievement has been the simple common model
called the von Neumann machine paradigm ([3, 4], von Neumann has not invented
the computer). His model provides excellent guidance in CS education and also
narrows the almost infinite design space. However, the contemporary common
model of computing systems is the cooperation of the (micro)processor and its
accelerator(s), including an interface between both (Figure 11.1). This model



holds not only for embedded systems but also for the PC needing accelerators
not only for running its own display. Accelerators are a kind of slaves. The oper-
ating system and other software are running on the microprocessor, which is
the host and master of the accelerators. The host may send parameters (for
example, mode select, start, stop, reset, etc.) and receive interrupts and some
result data.

The host operation is instruction–stream driven. The instruction stream is man-
aged by the program counter inside the host processor. The accelerator usually has
no program counter; its operations are data–stream driven (see data stream inter-
face in Figure 11.1). Not only in terms of efficiency, this model especially makes
sense for data-intensive applications, where multiple data streams are interfaced to
the accelerator Figure 11.1. Only a few very sophisticated architectures are diffi-
cult to map onto this model. In the case of computation–intensive applications
with very low data traffic to/from the accelerator, a single data stream generated
by the host may be sufficient. This model (for details, see the next section and
Section 3.1 ff. is as simple as the host’s von Neumann (vN) model, which is also
important for educational purposes (for details, see also Section 3.1).

By the way, data–stream–driven computing (or flowware–based computing: this
term will be defined later) had already been used implicitly by the first program-
mers. In a von–Neumann–based, instruction–stream–driven environment, the
less efficient detour over the application control-structures has been the only
viable solution. However, by avoiding the (vN) bottleneck, a data–stream–driven
environment permits much more direct and efficient solutions. For more detailed
explanations, see Section 11.3.

vN processor programming is supported by compilers, whereas traditional
accelerator development has been and is done with electronic design automation
(EDA), tools [5]—for acronyms, see Figure 11.2.

More recently, however, such accelerator design has been affected by the sec-
ond design crisis (Figure 11.1b). Compared with microprocessor design, the SoC
design productivity in terms of gates per day is slower by a factor of about 10−4

[6]. Another symptom of increasing design implementation problems and the sil-
icon technology crisis has been the drastically decreasing number of wafer starts
for newer technology fabrication (Figure 11.3a) and the still decreasing low num-
ber of application-specific IC design starts (Figure 11.3c). Another major cost fac-
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Figure 11.1. The common model of computer systems. (a) Embedded microprocessor model;
(b) impact of the second design crisis.



tor of the application-specific silicon, needed for accelerators, is increasing mask
cost (Figure 11.3b), driven by growing wafer size and the growing number of
masks needed. ASIC stands for mask–configurable gate arrays and similar
methodologies [7] that need fewer masks than full custom ICs requiring the full
mask set of the fabrication process [8].

1.1 Morphware

Illustrated by Makimoto’s wave model [9, 10], the advent of morphware is the
most important revolution in silicon application since the introduction of the
microprocessor [11]. Emerging in the 1980s and now having moved from a niche
market to mainstream, this third class of platforms now fills the gap between
vN–type procedural compute engines and application–specific hardware. It is
morphware, the fastest growing segment of the semiconductor market. (for termi-
nology, see also Figure 11.5). The most important benefit of morphware is the
opportunity to replace hardwired accelerators by RAM–based reconfigurable
accelerators so that application–specific silicon can be mostly avoided, as is well-
known from running software on the vN–type microprocessor. This will be
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AM anti-machine (DS machine) ISP instruction stream processor
AMP data stream (AM) processor LSI Large Scale ICs
ASIC application-specific IC LUT Look-Up Table
asMB autosequencing Memory Bank MCGA Mask-Configurable Gate Array
BIST Built-In Self-Test MPGA (see MCGA)
CFB Configurable Function Block MSI Medium Scale ICs
CLB Configurable Logic Block MW Morphware
COTS commodity off the shelf PC Personal Computer
CPU “central” processing unit: DPU PS Personal Supercomputer

(with instruction sequencer) pSoC programmable SoC
cSoC configurable SoC rDPU reconfigurable DPU
CW Configware rDPA reconfigurable DPA
DAC Design Automation Conference RA reconfigurable array
DPA data path array (DPU array) RAM random access memory
DS data stream rAMP reconfigurable AMP
DPU data path unit (without sequencer) RC reconfigurable computing
ecDPU emulation-capable DPU rGA reconfigurable gate array
EM evolutionary methods RL reconfigurable logic
EDA electronic design automation RTR run-time reconfiguration
EH evolvable morphware (“evolvable SoC (an entire) System on a Chip

hardware”) SSI Small Scale ICs
FPGA field-programmable gate array SW Software
FRGA field-reconfigurable gate array System C C dialect f.Hw/Sw co–design
FW Flowware UML Unified Modeling Language
GNU GNU’s Not Unix (consortium) Verilog a popular C-like HDL
HDL Hardware Description Language VHDL VHSIC Design Language 

an HDL)
HPC High-Performance Computing
HW Hardware VHSIC Very High Speed ICs
IC integrated circuit VLSI Very Large Scale ICs
IP intellectual property vN von Neumann

Figure 11.2. Acronyms



explained in the following paragraphs. The very high and still increasing number
of morphware–based design starts (Figure 11.3c) demonstrates the benefit of
using replacement morphware platforms instead of ASICs, where the backlog of
design starts over morphware has exceeded a factor of more than 10 and is grow-
ing further.

Morphware is structurally programmable hardware, where the interconnect
between logic blocks and/or functional blocks, as well as the active functions of
such blocks, can be altered individually by downloading configware, down to the
configuration memory (configuration RAM) of a morphware chip (also compare
Figure 11.6e). So we need two kinds of input sources: Traditional software for
programming instruction streams, and configware for structural reconfiguration
of morphware.
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Figure 11.3. The second design crisis (silicon crisis). a) Decreasing number of wafer starts, b)
growing number of morphware-based design starts [13] vs. declining number of ASIC design
starts [13]; demonstrating that morphware already has reached mainstream status; c) increasing
mask set cost and total NRE cost; d) providing the road map on the way out of the silicon
crisis.

von Neumann’s key achievement is the simple common model called the
von Neumann machine paradigm.



Before going into more detail, we should take a first step in clarifying the termi-
nology around reconfigurability [12]. To highlight the key issues in distinguishing
the classical vN paradigm from morphware, we should define the term reconfig-
urable, because reconfiguration in general has many different meanings. In com-
puting sciences, the terms programmable refer to the time domain, where
programming means instruction scheduling (Figure 11.4a). The term configurable
introduces the space domain, where configuration means the setup of structures and
preadjustment of logic blocks or function blocks (Figure 11.4b). Reconfiguration
means, that a platform can be configured several times for different structures
(Figure 11.4c), whereas Mask–Configurable Gate Arrays (see Section 2) can be con-
figured only once. Configuration or reconfiguration usually is impossible during run
time. But dynamically reconfigurable (Figure 11.4d) means that partial reconfigura-
tion may happen at run time. A warning to educators: Dynamically reconfigurable
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Configurable: Type of flexible computaions, whereas only one or a few
Istructions per processing element are loded and the
execution is performed in the dimensions of space and time
(-> Area) concurrently

Programmable: Type of flexible computations, wherein a sequence of
Instruction is loaded and executed in the time dimension
by using one or several processing elements

Reconfigurable: General term, which expresses the Features of a
hardware architecture in to be configured more
than once (-> Technology dependent)

Dynamically Reconfigurable:

Type of reconfiguration, that realizes modifications of
configurations during run-time of the system.
This is also called run-time reconfiguration (RTR), on-the-fly
recofiguration or,in-circuit reconfiguration

(a)

(b)

(c)
(d)

Figure 11.4. Contributions to terminology [12]: Programmable vs. (re)configurable.
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Figure 11.5. Terminology.



or self–reconfigurable systems are more bug prone than others and are more dif-
ficult to explain and to understand.

By introducing morphware, we obtain a new general model of embedded com-
puters (Figure 11.7a): The accelerator has become reconfigurable. It has been
changed from hardware (Figure 11.1a) to morphware. As mentioned previously,
accelerator operation is usually data–stream–based. Because of its non–von
Neumann machine principles, an accelerator has no von Neumann bottleneck and
may be interfaced to a larger number of data streams (Figure 11.23c, d). With a
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morphware accelerator (Figure 11.7a), the host may also use the host/accelerator
interface to organize the reconfiguration process (this will be explained later). Also,
mixed–type accelerators are possible (Figure 11.7b): Hardware and morphware.
However, a few architectures include morphware directly inside the vN micro-
processor. Here the morphware is used for flexible instruction set extensions [14, 15],
a modern version of the vN model only, where morphware is connected to the
processor bus (Figure 11.8a). Also most network processors use instruction set
extensions [16]. This situation is different from the common model shown in Figure
11.7, where morphware is just connected to the host’s memory bus (Figure 11.8b).

1.2 Two RAM-based machine paradigms

We now have two different RAM–based input source paradigms: One for
scheduling (programming) the instruction streams, to be scanned from RAM pro-
gram memory during run time by sequences of instruction fetches, and the other for
configuring structures by downloading configware code to the configuration RAM
before run time. Downloading configware code is a kind of pseudo–instruction
fetch (but here not at run time) where, however, such “instructions” or expressions
may be much more powerful than microprocessor instructions. The configuration
RAM is often called hidden RAM, because it is not nicely concentrated into a
matrix, as in typical RAM components sold by IC vendors. Physically, the indi-
vidual memory cells in a morphware device are located close to the switch point
or connect point they are controlling (see the flip–flops FF in Figure 11.10c and
d). Also, the addressing method used by morphware for downloading reconfigu-
ration code is often different from that of classical RAM.

It was recognized rather early that morphware had introduced a fundamentally
new machine paradigm. Field–reconfigurable Custom Computing Machines
(FCCM) [17], the name of an annual conference series, is an indication. A major
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Data–stream–driven computing had already been used implicitly by the
first programmers.
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Figure 11.8. Alternative morphware applications. a) von Neumann processor with morphware-
based instruction set extension; b) von Neumann host with morphware–based coprocessor.



number of experimental computing machines of this kind have been implemented,
mostly from academia (for a survey covering the years 1995 and earlier, see [18]).

As mentioned earlier, the use of commodity off–the–shelf (COTS) morphware
for acceleration can avoid the very costly need for application–specific silicon.
Both kinds of platforms support rapid downloading of patches, upgrades, or even
new applications down to the RAM program memory, even via the Internet. The
consequence is a change of the business model for accelerators. Personalization
before fabrication, typical of hardwired accelerators, can be replaced by the busi-
ness model of the microprocessor, using personalization after fabrication—at the
customer’s site.

It is very important to distinguish, that the personalization source for vN micro-
processors is software, and for morphware it is configware. Because of the growing
importance of configware we currently observe a growing configware industry—a
kind of emerging competitor to the software industry. Morphware has become an
essential and indispensable ingredient in SoC (System on a Chip) design and
beyond. Morphware meanwhile is used practically everywhere, so this chapter has
no room for a survey to mention all uses. A good reading source is the volumes of
proceedings (published by Springer in its LNCS series [19]) of Field–Programmable
Logic [20], the annual international conference on Field–Programmable Logic and
its applications, and the largest conference in this area.

2 FINE-GRAIN MORPHWARE

Since their introduction in 1984, Field–Reconfigurable Gate Arrays (FRGAs,
often also called FPGAs), or reconfigurable Gate Arrays (rGAs) have become the
most popular implementation media for digital circuits. For a reading source on
the role of rGAs (providing 148 references), see [21]. The very high and increas-
ing number of design starts on FRGAs demonstrates that the mask–configurable
ASICs were already the losers years ago (Figure 11.3c). The technology-driven
progress of FRGAs (for key issues, see [22]) is much faster than that of micro-
processors. FRGAs with 50 mio system gates are coming soon [23]. It is well
known that the growth rate of the integration density of microprocessors is much
slower than Moore’s law. However, because of the high degree of layout regular-
ity, the integration density of FRGAs is moving at the same speed as Moore’s law
[9]. But because of the high percentage of wiring area, the transistor density of
FRGAs is memory behind by two orders of magnitude [9]. However, the number
of transistors per chip on FRGAs had surpassed that of microprocessors already
by the early 1990s and is now higher by two orders of magnitude [9].

2.1 The Role of rGAs

We may distinguish two classes of morphware: Fine-grain reconfigurable mor-
phware, and coarse–grain reconfigurable morphware. Reconfigurability of fine
granularity means that the functional blocks have a datapath width of about one
bit. This means that programming, at a low abstraction level, is logic design.
Practically all products on the market are FPGAs (field–programmable gate
arrays, better called FRGAs or rGAs: ((field–)reconfigurable gate arrays),
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although some vendors prefer different terms as kinds of brand names, like, for
instance, Programmable Logic Device (PLD), or reconfigurable logic device LD.
Morphware platforms and their applications have undergone a long sequence of
transitions. First, FPGAs appeared as cheap replacements for MPGAs (or
MCGAs: Mask-Configurable Gate Arrays). Even today, FRGAs are the reason
for the shrinking ASIC markets (Figure 11.3c), since for FPGAs no application-
specific silicon is needed—a dominating cost factor in low production volume
products. (ASIC fabrication cost is much lower—only a few specific masks are
needed than that of other integrated circuits.) Later, the area proceeded into a
new model of computing possible with FRGAs. The next step was making use of
the possibility for debugging or modifications during the last day or week, which
also led to its adoption by the rapid prototyping community which also has led to
the introduction of ASIC emulators faster than simulators. The next step is direct
incircuit execution for debugging and patching at the last minute.

From a terminology point of view, the historic acronyms FPGA and FPL are
a bad choice, because programming, i.e., scheduling, is a procedural issue in the
time domain. The term PLD is also a bad choice and should be replaced by rLD.
A program determines a time sequence of executions. In fact, the FP in FPGA
and in FPL (the acronym for field–programmable), actually means field reconfig-
urable, which is a structural issue in the space domain: configuration in space. For
a clearly consistent terminology, it would be better to use FRGA (field–reconfig-
urable gate array) or rGA instead of FPGA. Throughout this chapter the term
rGA or FRGA will be used instead of FPGA. For terminology, see Figure 11.2,
Figure 11.5, and Sections 2.5 and 4.1.

The most important architectural classes of rGAs are (see [24]) island archi-
tecture (Xilinx), hierarchical architecture (Altera), and row–based architecture
(Actel). A more historic architecture is mesh–connected, sometimes also called sea
of gates (introduced by Algotronix) [25]. A simple example of Configurable Logic
Block block diagram is shown in Figure 11.6. Its functional principles by multi-
plexer implementation are shown in Figure 11.9a and b, where in CMOS technol-
ogy, only 12 transistors are needed for the fully decoded multiplexer (Figure 11.9c).
The island architecture is illustrated in Figure 11.10a. Figure 11.10b show details
of switch boxes and connect boxes. Figure 11.10c shows the circuit diagram of a
cross point in a switch box, and, Figure 11.10d shows the same from within a con-
nect box. The thick wire in Figure 11.10b illustrates how these interconnect
resources are configured to connect a pin of one CLB with a pin of another CLB.
The total configuration of all wires of an application is organized by a placement
and routing software. Sometimes more interconnect resources are needed than are
available, so for some CLB not all pins can be reached. Due to such routing con-
gestion, it may happen that a percentage of CLBs cannot be used.

2.2 Commercially available FRGAs

A wide variety of fine-grain morphware products is available from a number
of vendors, such as the market leader Xilinx [26], the second largest vendor Altera
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[27], and many others. A variety of evaluation boards and prototyping boards is
also offered. COTS (commodity off the shelf) boards for FRGA–based develop-
ments are available from Alpha Data, Anapolis, Celoxica, Hunt, Nallatech, and
others, to support a broad range of in–house developments. As process geome-
tries have shrunk into the deep–submicron region, the logic capacity of FRGAs
has greatly increased, making FRGAs a viable implementation alternative for
larger and larger designs. FRGAs are available in many different sizes and prices
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per piece, ranging from 10 US–dollars to FRGAs with many more than a million
usable gates for more than 1000 US–dollars. Xilinx has preannounced FRGAs
with 50 mio system gates around 2005 [23]. Modern FRGAs support mapping
entire systems onto the chip by offering on board all components needed, such as
several memory banks for user data; one or several microprocessors like ARM,
PowerPC, MIPS, or others; a major number of communication interfaces (WAN,
LAN, BoardAN, ChipAN etc.) supporting contemporary standards; up to sev-
eral GHz bandwidth; JTAG boundary scan circuitry to support testing; some-
times even multipliers

Also, FRGAs featuring low power dissipation [28] or better radiation toler-
ance (for aerospace applications) are offered. Several major automotive corpora-
tions have contracts with FRGA vendors to develop morphware optimized for
this branch of industry. Some commercially available FRGAs also support par-
tial columnwise reconfiguration so that different talks may reside in the array and
may be swapped individually. This setup may also support dynamic reconfigura-
tion (RTR: run–time reconfiguration), where some tasks may be in the execution
state, while at the same time other tasks are being reloaded. Dynamic reconfigu-
ration, however, tends to be tricky and difficult to understand and to debug. But
static reconfiguration is straightforward and easier to understand. Because
reconfiguration is slow multi–context morphware has also been discussed, but is
not yet available commercially. Multicontext morphware features several alter-
native internal reconfiguration memory banks, for example two or four banks, so
that reconfiguration can be replaced by an ultrafast context switch to another
memory bank.

2.3 Applications

Morphware is used practically everywhere, so this section can mention only a
few examples. Most early FRGA applications have been rapid prototyping [25,
29, 30], rather than directly implementing products on morphware platforms.
Rapid prototyping and ASIC emulation are still important for the development of
hardwired integrated circuits. Since, in IC design, flow simulation may take days
or even weeks, a remedy has been ASIC emulation, using huge emulation
machines called ASIC emulators.

Earlier such machines included racks full of boards equipped with masses of
FRGAs of the low density available at that time. Through acquisitions the three
major EDA vendors now offer ASIC emulators, along with compilers: Cadence
has acquired Quickturn, Synopsys has acquired IKOS, and Mentor Graphics has
bought Celaro, also offering such service over the Internet. Another R&D scene
and market segment calls itself Rapid Prototyping, where for smaller designs less
complex emulation boards are used, such as Logic emulation PWB (based on the
Xilinx Virtex FRGA series, which can emulate up to 3 million gates), and the
DN3000k10 ASIC Emulator from the Dini Group.
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Another morphware application area is scientific high–performance comput-
ing (HPC) where often the desired performance is hard to attain through “tradi-
tional” high–performance computing. For instance, the gravitating n-body
problem is one of the grand challenges of theoretical physics and astrophysics [31,
32]. Hydrodynamic problems fall into the same category, where often numerical
modeling can be used only on the fastest available specialized hardware.

Analytical solutions exist for only a limited number of highly simplified cases.
For example interpretation of dense centers of galactic nuclei, observed with the
Hubble Space Telescope, by uniting the hydrodynamic and the gravitational
approach within one numerical scheme. The maximum particle number was limited
until recently to about 105 even on the largest supercomputers. For astrophysics, the
situation improved thanks to the GRAPE special purpose computer [33]. To
improve flexibility, a hybrid solution has been introduced with AHA-GRAPE,
which includes auxiliary morphware [31]. Other morphware–based machines such
as, WINE II, MDGRAPE [34], and MDM (Modular Dynamics Machine) [35–37]
are also used for modeling and simulation in molecular dynamics [31, 33, 38].

Because of the availability of high–density FRGAs, the scenario has drasti-
cally changed. The trend is to deliver the FRGA–based solution directly to the
customer, at least for lower production volumes. Not only microcontrollers or
simple logic circuits are easy to transfer onto a FRGA platform; practically every-
thing can migrate onto morphware. A single FRGA type may replace a variety of
IC types. Design and debugging turn–around times can be reduced from several
months to weeks or days. Patches or upgrades may take only days, hours, or even
minutes, and may even be carried out at the customer’s site or remotely over the
Internet or wireless communication, which means a change of the business
model—an important benefit for innovative efforts in remote diagnosis and other
customer services.

A future application of emulation may serve to solve the long–term microchip
spare-part problem in areas such as industrial equipment, military, aerospace,
automotive, etc., with product lifetimes up to several decades [39]. The increasing
spare-part demand stems from the increasing number of embedded systems, the
limited lifetime of microchip fabrication lines (mostly less than 7–10 years), and
the decreasing lifetime of unused microchips. When a modern car with several
dozen embedded microchips needs electronic spare–parts 10 or 15 years later, the
microchip fab line no longer exists, and a major percentage (or all) of the parts
kept in spare–parts storehouses have faded away. The hope of keeping an old fab
line alive that could deliver long–lasting robust products at low NRE cost seems
to be an illusion. Retro emulation might be the only viable solution, where reverse
engineered products are emulated on FRGAs, since application–specific silicon
will not be affordable due to low microchip production volumes in these areas and
rapidly increasing mask cost.

Fortunately now, with FRGAs, a new kind of IC platform is available so that
we can switch from hardware to morphware, which can be “rewired” at run time.
Because of their general–purpose properties, FRGAs are a suitable platform for
reverse engineering of required but unavailable spare parts. Morphware is the
fastest growing segment of the IC market [Dataquest]. Also for industries such
as the automotive, aerospace, military, or industrial electronics such a common
morphware platform would be a promising route to avoid very high mask costs,
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to reduce the number of IC types needed, to accelerate IC time to market, and to
solve long–term spare–part supply problems by retro emulation.

The new business model of morphware brings a new dimension to digital sys-
tem development and has a strong impact on SoC design (System–on–Chip).
Performance by parallelism is only one part of the story. The time has come to
fully exploit morphware flexibility to support very short turn–around time for
real–time, in–system debugging, profiling, verification, tuning, field maintenance,
and field upgrades. One of the consequences of the new business model is the
adoption of a computer science mentality for developing all kinds of electronics
products, where patches and upgrades are carried out at the customer’s site
(Figure 11.11), or even via the internet using Run–Time Reconfiguration (RTR).
This approach is also an important remedy to the current embedded system
design crisis, caused by skyrocketing design cost coinciding with decreasing
product lifetime, by providing product longevity (Figure 11.1b).

2.4 Application Development support

Morphware is the fastest growing segment of the integrated circuit (IC) mar-
ket, currently relying on a growing large user base of HDL–savvy designers.
A number of books are available that give an introduction to application devel-
opment using FRGAs [29, 41–45]. Not only is the configware industry rapidly
growing, offering IP cores [46] and libraries for morphware platforms but also a
rapidly growing branch of the EDA industry offers tools and design environ-
ments to support configware development. Complete design flows from HDL
sources such as VHDL [47] are offered by Mentor Graphics [48], Synplicity [49],
Celoxica [50], and others. A key issue is the integration of IP cores into the design
flow. At DAC [51], a task force has been set up to solve standards problems.
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There are also design flows [52, 53] from Matlab sources [54], and a tool to
generate HDL description from Unified Modeling Language has been reported
[55]. An emerging trend is going to input sources of higher abstraction levels like
the languages Handel–C by Celoxia, Precision–C from Mentor Graphics,
SystemC [56, 57], a C dialect [58] by Synopsys [59] targeting HW/CW/SW co-
design. Matlab indicates a tendency to go to even higher abstraction level of
mathematical formulas. The emerging use of term rewriting systems (TRS) for
design is another indication of this trend [60–63].

Also, a wide variety of vendors are offering tools not covering the entire
design flow, such as those for debugging, timing estimation [64], simulation, ver-
ification, placement and routing, and other tasks, as well as soft IP cores.
Examples include the CoreConnectBus (Xilinx), Parameterizes Processor
(Xilinx), IPbus interface (Xilinx), embedded software development tools (Wind
River, GNU, and others), Integrated Bus Analyzer (Xilinx), board support pack-
age for interface software (Xilinx), and over 40 processor IP models (Xilinx), [23].
Still a research area is morphware operating systems, to load and coordinate mul-
tiple tasks to be resident in a single FRGA. PACT has this sort of an OS for its
XPP coarse–grain reconfigurable array (see Section 3), which can be partly recon-
figured rapidly in parallel while neighboring reconfigurable data path units
(rDPUs) are still processing data. Reconfiguration is triggered externally or even
by special event signals originating within the array, enabling self–reconfiguring
designs [65]. In general, there is still room for new tools and design flows offering
improved quality and designer productivity. Key issues for the performance of
FRGAs implemented in deep–submicron processes are the following three fac-
tors: the quality of the CAD tools used to map circuits into the FRGA, the qual-
ity of the FRGA architecture, and the electrical (i.e., transistor–level) design of
the FRGA. In order to investigate the quality of different FRGA architectures,
we need EDA tools capable of automatically implementing circuits in each
FRGA architecture of interest.

19.2.5 Education

Education is an important area of application development support because
it prevents a shortage of qualified professionals. In morphware application, the
lack of algorithmic cleverness is one of the urgent educational problems. For
instance, how can we implement a high–performance application for low-power
dissipation on 100 datapath units running at 200 MHz, rather than on one proces-
sor running at 20 GHz? An example is the migration of an application from a
very fast digital signal processor to a low power implementation on FRGA, yield-
ing speedup factors between 5 and 22 [66]. The transformation of the algorithm
from the software domain to fine–grain morphware required an enormous effort
by the student-in-charge of this project, because such algorithmic cleverness is
not yet taught within typical curricula.
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CS education is becoming more and more important for embedded system
development, because SoC design has rapidly adopted CS mentality [67]. The
amount of program code implemented for embedded systems doubles every
10 months and will reach 90% of all codes being written by the year 2010 [68].
Currently, a typical CS graduate with von–Neumann–only mentality does not
have the skills needed for HW/CW/SW partitioning decisions nor the algorithmic
cleverness needed to migrate an application from software onto an FRGA. The
failure to teach the important skills, needed to map applications onto morphware
in our CS curricula will cause a major disaster. Our current graduates are not
qualified for the IT labor market of the near future [72].

Terminology is a key issue. It is very important to maintain a clear and consis-
tent terminology. Sloppy terminology is a severe problem that torpedoes diffusion,
education, and efforts to bridge communication gaps between disciplines. Too
many experts using their own nonconsensus terminology are creating massive
confusion: their colleagues often do not know what they are really talking about.

I have had my own frustrating experiences with contradictory terminology
when teaching VHDL and Verilog in the same course [73]. Students have been
confused by most of the terminology because, for almost each important term in
this area, there have been usually three different definitions: 1) what the student
associates with the term when hearing it for the first time, 2) how the term is used
by VHDL experts, and 3) how it is used by Verilog experts.

Terminology should be tightly linked with common models. In both hardware
and software, the design space has almost infinite size. Not only students get lost
in this space without any guidance by models that narrow the design space.
A machine paradigm is needed. The von Neumann paradigm has been highly suc-
cessful for 50 years; but now because of the dominance of morphware we need a
new, second, machine paradigm that can be used as a general model for guidance
due to: (1) Its well–defined terminology, and (2) its simplicity: the anti–machine
paradigm (see Section 3.6). The term reconfigurable has too many different mean-
ings in too many different areas, including everyday life. For this reason the term
morphware is often much better. Because terminology is so domain specific, you
can guess a person’s field by his or her use of terminology. When somebody asso-
ciates blacksmith with hardware, you know this person is an IT professional.
When somebody associates downloading drivers or other software into the RAM
of a von Neumann machine with reconfiguration, you know that this person is not
familiar with morphware and its environment.

2.6 Innovative Applications

Terms like evolvable hardware (EH) or in fact, evolvable morphware (EM),
Darwinistic Methods for system design, or biologically inspired system design
point to a newer research area stimulated by the availability of fine-grain mor-
phware. Also, retro emulation is an innovative application. It is an efficient way
of re–engineering unavailable electronics parts for replacement to solve the long-
term microchip spare-part problem in areas such as industrial equipment, mili-
tary, aerospace, automotive, etc., with product lifetimes up to several decades. But
in the future, reverse engineering can be avoided, it the implementation of all IC
architectures are FRGA based from the beginning.
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FRGAs may be good platforms to achieve fault tolerance by self–healing
mechanisms [74, 75]. Partial rerouting can circumvent wires or CLBs found to be
faulty. A NASA single–chip spacecraft has been discussed (breaking many para-
digms in spacecraft design [76]), which is based on a high–density FRGA, does
not need an operating system, and uses fault tolerance to reduce the need for radi-
ation hardening. Currently available commercial FRGA architectures insuffi-
ciently support such rearrangements at run time. More research is required to
obtain better architectural support [74, 77].

Another interesting area deals with soft CPUs, also called FRGA CPUs, i.e.,
microprocessors implemented by mapping their logic circuits onto an FRGA.
Examples are the MicroBlaze, a 32–bit Harvard architecture from Xilinx [78],
Altera’s Nios processor [27], the ESA SPARC LEON open source core [79, 80],
the LEON2 processor [81], which is a synthesizable VHDL model of a 32-bit
processor compliant with the SPARC V8 architecture, and the Dragonfly 8-bit
core [78]. Of course, soft processors run about a factor of 3 to 5 times slower than
their hardwired versions. By the way, designing soft CPUs is a popular subject of
lab courses offered by a large number of universities.

2.7 Scalability and Relocatability

Relocation, even dynamically at run time, of configware macros is subject of
the new area of configware operating systems [69–71]. Some FRGAs are so large
that more than 100 soft CPUs can be mapped onto such a single chip. Will future
giga–FRGAs permit the mapping of practically everything, including large
rDPAs, onto a single morphware chip? This leads to the question of FRGA scal-
ability. For instruction set processors, the von Neumann bottleneck guarantees
full relocatability of code. Within very large FRGAs, however, relocatability
might be limited by routing congestion (Figure 11.12a). But Structured
Configware Design (a design philosophy derived from structured VLSI design
[82]) is a promising approach to solve the relocatability problem (Figure 11.12b),
so that FRGAs may be universal as microprocessors.

3 COARSE-GRAIN MORPHWARE

In contrast to fine-grain morphware using CLBs of smallest datapath width
(~1 bit), coarse-grain morphware uses rDPUs (reconfigurable Data Path Units)
with wide data paths, e.g., 32 bits wide. Instead of FRGAs, we have rDPAs
(reconfigurable DPU Arrays). As an example, Figure 11.13 shows the result of
mapping an image-processing application (SNN filter) onto a primarily mesh-
based KressArray [83] with 160 rDPUs of 32-bit path width. This array is inter-
faced to 10 data streams: nine input streams and one output stream. Figure 11.14
shows some details of the XPU (xtreme processing unit), a commercially available
rDPA from PACT AG [84–87]. Figure 11.15 illustrates the differences in the exe-
cution mechanisms. At vN execution (Figure 11.15a), exactly one operation is
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carried out per clock cycle. Intermediate results are stored in registers. For migra-
tion of such an algorithm from vN to an rDPA like PACT XPP (Figure 11.15b),
a subsequence is mapped from time to space and executed in parallel on the array.

As soon as this operation is completed, the next chunk of parallelized code is exe-
cuted. Intermediate results may be communicated by a buffer (see Figure 11.15b).

Usually an rDPA is a pipe network, not a multiprocessor or multicomputer
network, since DPUs do not show a program counter (for details, see later sec-
tions of this chapter). Coarse–grain morphware has been a research area for more
than a decade (for a survey, see [88, 89]). Since it plays an important role in wire-
less communication [90, 91], software–defined radio [92], and multimedia process-
ing, not only performance but also MIPS / mW are key issues. Figure 11.16 shows
that FRGAs just fill the efficiency gap and the flexibility gap between hardwired
platforms and instruction set processors. Coarse-grain arrays, however, almost
attain the efficiency of hardwired platforms (Figure 11.16), when mesh-based
architectures using wiring by abutment are used so that no separate routing areas
are needed [9]. Also, configuration memory being an order of magnitude smaller
than that of FRGAs, contributes to this area/power efficiency [9].
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Breaking away from the current mindset requires more than traditional
technology development and infusion. It requires managerial commitment to
a long-term plan to explore new thinking [96].
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3.1 Pipe Networks and Flowware

We have to distinguish between two different domains of programming in
time: Instruction scheduling and data scheduling. The programming code for von
Neumann–like devices is an instruction schedule, compiled from software
(Figure 11.17b). The programming code for resources like systolic arrays and
other DPA (arrays of DPUs) is a data schedule, which can be compiled from
flowware defining, which data item has to appear at which port at which time.
Such data schedules manage the flow of data streams. This is illustrated in
Figure 11.7a, showing a typical data stream notation introduced with systolic
arrays more than 20 years ago.

The first flowware–based paradigm, the systolic array, got stuck in a niche
for a long time (throughout the 1980s and beyond) because of the wrong syn-
thesis method—until the supersystolic array made it viable for morphware. This
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will be explained later. A systolic array [93–95] is a pipe network. The term sys-
tolic reminds us of the multiple data streams clocked into and out of such a pipe
network and of its similarity to the heart and the bloodstreams entering and
leaving it. Its DPUs never have instruction sequencers. The mode of DPU oper-
ation is transport triggered by data items. If synchronization is done by hand-
shake instead of clocking, a systolic array may be also called a wavefront array.

The traditional systolic array could be used only for applications with strictly
regular data dependencies, because array synthesis methods used linear projec-
tions or algebraic methods resembling linear projections. Such synthesis methods
yield only strictly uniform arrays with linear pipes. The Data Path Synthesis
System (DPSS) [83], however, uses simulated annealing (the mapper in Figure
11.17c), which removes the traditional application limitations, enabling the syn-
thesis of supersystolic arrays featuring and also any kind of nonuniform arrays
with any freeform pipes, such as zigzag, spiral, completely irregular, and many
others. Due to this drastically improved flexibility, reconfigurable arrays (rDPAs)
also make sense. The KressArray Xplorer, including a mapper, has been imple-
mented as a design space explorer to optimize rDPU and rDPA architectures
[97–99]. For more details on Xplorer, see Section Figure 3.4.
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3.2 Data streams and flowware languages

More recently, data–stream–based computing has been popularized by a num-
ber of academic projects, such as SCCC [100], SCORE [101, 102], ASPRC [103],
BEE [104, 105], KressArray [97, 98], and more [106]). The specifications of
data streams can be expressed by flowware language. Data streams are created by
executing flowware code on auto–sequencing memory modules (asM). Figure 11.19
a shows a distributed memory array of such asM modules driving data streams
from/to the rDPA surrounded by the asMs. All enabling architectural resources for
flowware execution are available [107, 108, 110, 111]. The new R&D discipline of
application–specific distributed memory architectures [107] has arrived just in time
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to provide a methodology of architectural resources for processing flowware. Two
alternative memory implementation methodologies are available [107, 112, 113],
either specialized memory architectures using synthesized address generators (e.g.,
APT by IMEC [107]) or flexible memory architectures using programmable
general–purpose address generators [109, 114]. Performance and power efficiency
are supported especially by sequencers, which do not need memory cycles even for
complex address computations [107], having been used also for the smart memory
interface of an early antimachine architecture [114, 115].

Flowware may also be described by higher–level flowware languages [116],
which are similar to high level software languages like C (Figure 11.21). Both lan-
guages have jumps, loops, and nested loops. The main differences between soft-
ware and flowware is that, flowware semantics is based on one or several data
counters, whereas software refers to only a single program counter. Because of
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multiple data counters, flowware also features parallel loops, which are not sup-
ported by software languages. Flowware is much simpler because it does not need
to express data manipulation.

For good morphware application development support, an integrated synthesis
system is useful that efficiently supports configware / flowware codesign, such as,
for instance, DPSS [83] (Figure 11.19b), so that the user does not need to care about
the configware / flowware interaction. A well–designed dual–paradigm language
covering both [116] the flowware paradigm and the configware paradigm, and sup-
porting the communication between both segments, would be useful for designer
productivity. Examples for multiple–scope languages are already existing hardware
languages like VHDL [47] or Verilog [43], which support the co–description of
hardware and software constructs and also alleviate the handling of hardware /
software communication. The strong trend within EDA toward higher abstraction
levels, heralded by new languages like System–C [56–58] and others, opens a path
toward integrated codesign frameworks coordinating all three paradigms covering
hardware, morphware, software, configware, and flowware.
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flowware–based paradigm, got stuck in a niche for a long time—until the
super–systolic array made it viable for morphware.



The flowware–based common model of data–stream–based computing may
be used for both hardware and morphware. There is, in principle, no difference,
whether DPAs are hardwired or reconfigurable (rDPAs). The only important dif-
ference is the binding time of placement and routing before fabrication (hard-
ware) or after fabrication (morphware: Compare Figure 11.27).

3.3 Coarse-Grain Arrays

Because the number of CFBs is by orders of magnitude smaller than that of
CLBs in FRGAs, mapping takes only minutes or less instead of hours. Since com-
putational data paths have regular structure potential, full custom designs of recon-
figurable datapath units (rDPUs) are drastically more area–efficient, Coarse–grained
architectures provide operator–level CFBs and very area–efficient datapath routing
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switches. A major benefit is massive reduction of configuration memory and con-
figuration time, and drastic complexity reduction of the P&R (placement and rout-
ing) problem. Several architectures will be briefly outlined (for details, see [88]).

Primarily mesh–based architectures arrange their PEs mainly as a rectangular
2-D array with horizontal and vertical connections that support rich communi-
cation resources for efficient parallelism and encourage nearest neighbor links
between adjacent PEs. Typically, longer lines are also added with different lengths
for connections over distances larger than one. The KressArray [83] is primarily a
mesh of rDPUs physically connected through wiring by abutment. MATRIX
[117] is a multigranular array of 8–bit CFBs (basic with vN microprocessor core)
Reconfigurable Architecture Workstation (RAW) [118] provides a 4–by–4 array
RISC multiprocessor architecture of NN–connected 32–bit modified MIPS
R2000 microprocessors. The (Dynamically Reconfigurable Architecture for Mobile
Systems (DReAM) Array [119]) is for next–generation wireless communication.

Some RAs are based on one or several linear arrays, like (Reconfigurable
Pipelined Datapath) (RaPiD) [120] and PipeRench [121]. Architectures using
crossbars include (Programmable Arithmetic Device for DSP) PADDI, which
uses a central reduced crossbar (difficult to rout) and a two level hierarchy of seg-
mentable buses; PADDI–1 [122, 123], and PADDI–2 [124]. The Pleiades
Architecture [66] is a kind of generalized low–power PADDI–3.

3.4 Compilation Techniques

The first step in introducing morphware–oriented compilation techniques in
application development for embedded systems is the replacement of EDA
(Figure 11.7a and b) by compilation also for the morphware part (Figure 11.18a
and b). This step of evolution should be accompanied by a clean model that has
been introduced in the course of history. Partly in synchrony with Tsugio
Makimoto’s Wave model [9, 10], Nick Tredennick summarizes the history of sili-
con application [125] in three phases (Figure 11.22a–c): Hardwired components
like SSI, MSI, and LSI circuits which cannot be programmed; have fixed resources;
and fixed algorithms (Figure 11.22a). The introduction of the microprocessor
changes this set up to fixed resources but variable algorithms (Figure 11.22b). We
need only one programming source: Software (Figure 22e). The advent of mor-
phware has made both resources and algorithms variable (Figure 11.22c). We
need two programming sources: Configware to program the resources, and flowware
to program the data streams running through the resources (Figure 11.22f). An
early implementation is the DPSS (Figure 11.17c, see also Section 3.1).

3.5 Cocompilation

Separate compilation of software and configware (Figure 11.18a and b) gives
only limited support to reach the goal of good designer productivity. Especially
to introduce software / configware / flowware codesign to CS professionals and CS
curricula, we need cocompilation techniques to support application development
at high abstraction levels. Figure 11.17c shows the typical structure of a software
/ configware partitioning / cocompiler (Figure 11.17c), where the configware part
(DPSS in Figure 11.19b) includes both a configware code generator and a flowware
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code generator. CoDe–X was an early implementation of a compiler of this kind,
which was a partitioning cocompiler (Figure 11.19b and c), accepting C language
input (pointers are not supported), which partitions source input to run on a sym-
biosis of a host and a rDPA [126–128]. This partitioner (Figure 11.19c) was based
on the identification of usability of loop transformations [129–134]. This parti-
tioner was implemented via simulated annealing. An additional analyzer / profiler
(Figure 11.19c) was used for further optimization. Figure 11.19b shows the
flowware / configware compiler (a version of the DPSS) as explained above, which
was used as a subsystem inside the CoDe–X co–compiler. Figure 11.20a gives
some DPSS details. ALE–X is an intermediate form derived from the C language.

Language 
category Software languages Flowware languages
Sequencing Read next instruction, goto Read next data item, goto (data 

managed by (instruction address), jump address), jump (to data address),
(to instruction address), data loop, nesting, parallel loops,
instruction loop, nesting, no escapes, data stream branching
parallel loops, escapes,
instruction stream branching

Data manipulation Yes Not needed
State register Program counter Single or multiple data counter(s)
Instruction fetch Memory cycle overhead No overhead
Address Massive memory cycle overhead Drastically reduced overhead

computation

A newer version of DPSS includes KressArray Xplorer (Figure 11.20a), a
design space explorer to optimize KressArray DPU and rDPA architectures [98,
99]. As shown in Figure 11.20a mapping based on architecture description one
yields a different array configuration than that based on architecture description
two. Figure 11.20b illustrates the high flexibility of the KressArray family concept
accepted by Xplorer. Path width and mode of each nearest neighbor connection
can be individually selected. Also, a wide variety of second–level of back bus inter-
connect resources are available (not shown in the figure) featuring highly parallel
buses or bus segments. Other design space explorers include DSEs (Design Space
Explorers, survey: [88]), which use automatic guidance systems or design assistants
to give advice during the hardware (and morphware) design flow, e.g., by DPE
(Design Planning Environment) [136]; Clio [137] (both for VLSI); and DIA (for
ASICs) [138]. Platform Space Explorers (PSEs) are used to find an optimum vN
processor array, as with DSE [139], Intelligent Concurrent Object-oriented
Synthesis (ICOS) [140], and DSE for Multimedia Processors (DSEMMP) [141].

3.6 A Dichotomy of Two Machine Paradigms

Traditionally hardware experts have been needed for morphware application
development (Figure 11.7a, compare Section 2.4). Because of the rapid growth of
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It is time to bridge the hardware / software chasm. We need a Mead-&-
Conway–like edu rush [135].
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instruction stream branching
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goto (data address),
jump (to data address),
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Data manipu-
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State register Program counter
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Memory cycle overhead No overhead
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Massive memory cycle
overhead

Drastically reduced overhead 

Figure 11.21. Software languages versus flowware languages.
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the amount of code to be implemented for embedded systems [68], CS graduates
are now also needed to handle the amount of work to be done. This expansion is
hardly possible without moving to higher abstraction levels. Because it focuses on
the design space, as the von Neumann paradigm does for software a second
machine paradigm is needed as a simple guideline to implement flowware (and
configware). This antimachine paradigm is summarized in Figure 11.23b–d. In
contrast to the von Neumann paradigm (Figure 11.23a), the sequencer (data
counter) has moved to the memory (as part of asM, an auto–sequencing memory
bank), while the DPU of the antimachine has no sequencer (Figure 11.23b). The
anti machine paradigm [141] also supports multiple data streams by multiple
asMs providing multiple data counters (Figure 11.23c, d). That’s why the antima-
chine has no von Neumann bottleneck. It does not need caches because of mul-
tiple data streams. Caches do not help because new data mostly have new values.
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The enabling technologies for the antimachine architecture implementations are
available [107, 108, 110–114, 142–144]. Figure 11.26a shows details of an antima-
chine mapped onto a KressArray, and Figure 11.26b shows the details mapped
onto a PACT XPP array. The antimachine paradigm is useful for both mor-
phware-based machines and hardwired machines ([145], etc.). The antimachine
should not replace von Neumann: We need both machine paradigms. We need
morphware to strengthen the declining vN paradigm.

The antimachine is not a dataflow machine [146] because it had been established
by an old (now obsolete) research area that focused on an arbitration–driven
machine, which checks, for each operator, whether all operands are available. In
case of a reject, this operator can be resubmitted later. Such a machine operation
is indeterministic, and for an algorithm, the total order of execution cannot be pre-
dicted. The execution of the vN machine and of the antimachine, however, is
deterministic. However, the dataflow languages that have come along with this
indeterministic paradigm [147] could also be useful sources for the antimachine.

4 THE IMPACT OF MORPHWARE 
ON COMPUTING SCIENCES

As labeled in Figure 11.24(3) the growth rate of algorithmic complexity [148]
is higher than that of Moore’s law (1), while the growth rate of microprocessor
integration density (2) is far behind Moore’s law. The improvement of computa-
tional efficiency in terms of mA needed per MIPS (5) has slowed down and is mov-
ing towards saturation. The performance requirements for wireless communication
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(4) are rising by huge steps from device generation to device generation. Also, a
number of other application areas such as multimedia or scientific computing
(Section 2.3) suffer from a similar growth of requirements. Traditional HPC
needs too much power: about 100W per gigaFLOPS [55]. Forth coming micro-
processor generations promise only marginal performance improvements (Figure
11.25). A highly promising alternative is the microprocessor interfaced to a suit-
able coarse-grain array (Figure 11.17d), maybe for converting a PC into a PS (per-
sonal supercomputer). But such a PS will be accepted by the market only when it
is accompanied by a good cocompiler (Figure 11.19b and c), the feasibility of
which has been demonstrated [126–128].

The future of the microprocessor is no longer very promising: only marginal
improvements can be expected for performance area efficiency (Figure 11.25).
Power dissipation is becoming worse, generation by generation. The intel Itanium
2 on 130 nm technology with 410 million transistors dissipates 130 Watts at 1.3
Volts operating voltage [91] compared with 130 Watts at 1.6 Volts for the first
Itanium. Traditional HPC (High Performance Computing) using such or similar
microprocessors needs about 100W per gigaFLOPS [55]. Pipelined execution
units within vN machines yield only marginal benefit for the price of sophisti-
cated speculative scheduling strategies. Multithreading needs substantial over-
head for any kind of multiplexing [149]. All these bad signs get added to the old
limitations like the vN bottleneck [9, 147, 150–154]. Because of the increasing
weakness of the microprocessor, we need a new computing paradigm as an aux-
iliary resource to cooperate with the microprocessor (Figure 11.16b). Morphware
has arrived just in time. The future acceptance of the stand-alone operation of
morphware is not very likely. Adding an rDPA and a good cocompiler to a micro-
processor (Figure 11.17d) enables the PC to become a PS (personal super-
computer).
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SoC design rapidly adopts a CS mentality [67]. The amount of program code
implemented for embedded systems doubles every 10 months and will reach 90%
of all codes being written by the year 2010 [68]. Currently, a typical CS graduate with
von–Neumann–only mentality does not have the skills needed for HW / CW / SW
partitioning decisions, nor the algorithmic cleverness needed to transfer an appli-
cation from software onto an FRGA. There is a trend to convey the codesign of
embedded computing systems from the domain of hardware expertise over to CS
methodologies. To cope with this challenge to CS curricula, the new antimachine
paradigm and new compilation methods are needed.

The hardware/software chasm in professional practice and in education is
causing damage amounting to billions of EURO each year worldwide. It is the
main reason for the productivity gap in embedded system design. Meanwhile, it is
widely accepted that morphware is a new computing paradigm. Morphware pro-
vides the enabling fundamentals to cope with this crisis. It is time to bridge the hard-
ware/software chasm. We need a Mead–&–Conway–like rush [135]. We are already
on the way. Scientific computing is using more and more Morphware. The inter-
national HPC conference IPDPS is coming along with the rapidly growing
Reconfigurable Architectures Workshop (RAW [155, 156]). The number of atten-
dees from HPC coming to conferences like FPL [20] and RAW is rapidly increas-
ing. Special interest groups of professional organizations are changing their
scope, e.g., PARS [32, 157–159].

There is sufficient evidence that morphware is breaking through as a new com-
puting paradigm. Breaking away from the current mindset requires more than
traditional technology development and infusion. It requires managerial com-
mitment to a long-term plan to explore new thinking [96]. Morphware has just
achieved its breakthrough as a second class of RAM–based programmable data
processing platforms—a counterpart of the RAM–based von Neumann para-
digm. Morphware combines very high flexibility and programmability with the
performance and efficiency of hardwired accelerators.

4.1 Reconfigurable Computing versus Parallel Processing

A comprehensive treatment of important issues in parallel computing is pro-
vided by The Sourcebook for Parallel Computing [150], a key reference giving a
thorough introduction to parallel applications, software technologies, enabling
technologies, and algorithms. Classical parallelism by concurrent computing has
a number of disadvantages over parallelism by antimachines having no von
Neumann bottleneck, as is discussed elsewhere [105, 114, 151, 152]. In parallel
computing, unfortunately, the scaling of application performance often cannot
match the peak speed the resource platforms seem to provide, and the program-
ming burden for these machines remains heavy. The applications must be pro-
grammed to exploit parallelism in the most efficient way possible. Today, the
responsibility for achieving the vision of scalable parallelism remains in the
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Static reconfiguration is straightforward and easy to understand. But
dynamic reconfiguration tends to be tricky and difficult to understand and to
debug.



hands of the application. Amdahl’s Law explains just one of several reasons for
inefficient resource utilization [153]. vN–type processor chips are almost all mem-
ory, because the architecture is wrong [105]. Here the metric for what is a good
solution has been wrong all along [105].

Reconfigurable versus parallel computing is also a very important issue for
terminology—to avoid confusion. At the circuit level, all transistors look the
same. So the question is how to distinguish switching within a reconfiguration
fabric from other switching activities in an IC. The antimachine model introduced
in section 3.6 is a good guideline for definition of the term reconfigurable.
Switching during run time of instruction–stream–based operations, such as,
addressing the register file is no reconfiguration. Switching inside a memory
address decoder is also not reconfiguration. What about microprogramming? Is it
reconfiguration? A microprogrammable instruction-set processor can be modeled
by the nested machine model, showing that a microinstruction stream is also an
instruction stream [149]. This means that running microcode is not reconfigura-
tion—it is execution of a micro instruction stream. The following definitions
will help us to avoid confusion. An important difference between reconfigurable
computing and concurrent computing is determined by the binding time (Figure
11.27). Another important criterion is whether the code semantics is structural or
procedural.

● The routing of data, addresses, and instructions during run time is not
reconfiguration.

● Loading an instruction–stream–driven device to the program memory is not
reconfiguration. It is procedural–style programming (instruction scheduling).

● Changing before their run time the effective structure of data paths and
other resources: is definitely reconfiguration.

● Depending on the method used, dynamic reconfiguration (RTR) may be a
hybrid, where parts of the system are running to manage the reconfigura-
tion of other parts. (This chapter has already mentioned that RTR is quite
a difficult subject.)

Within reconfigurable computing systems, the “instruction fetch” (i.e., setup
of all computational resources and of all related communication paths) happens
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before run time (Figure 11.27). We call this reconfiguration because it changes the
effective structure of data paths and similar resources. Within concurrent com-
puting systems, however, the instruction fetch and setup of all related communi-
cation paths happens during run time (Figure 11.27), which we do not call
reconfiguration. The main difference with respect to performance is the amount of
switching activity at run time, which is low for reconfigurable systems and high
for instruction–stream–driven parallel computing. Depending on the application
and the architecture, massively parallel concurrent systems may suffer heavily
from communication congestion at run time. Because run time is more precious
than compilation time, this migration of switching activities over to compile time
or leading time is a welcome performance property of the morphware para-
digm. Unfortunately, the distinction between parallel and reconfigurable com-
puting is blurred by some projects labeled “reconfigurable” but that, in fact, deal
with classical parallel computing on a single chip.

4.2 New Taxonomy Needed

We now live in a time exhibiting a shortage of analysts writing good and com-
prehensive surveys. What is currently missing and should soon be the subject of
research is an all–embracing taxonomy of architectures and algorithms covering
both areas, classical parallel computing and supercomputing, as well as reconfig-
urable computing. We need a taxonomy of architectures providing guidance in
designing modern high–performance computing systems using resources from
both areas, or to decide which area’s resources provide the more promising alter-
natives. We also need all–embracing taxonomy algorithms to support the migra-
tion of applications or parts of applications from one area to another, for
instance, from a vN platform to fine-grain morphware, or to coarse–grain mor-
phware, or to mixed platforms. Such a taxonomy of algorithms should also sur-
vey the amount of interconnect resources needed by vN to morphware migration.
Depending on the algorithm class, the interconnect requirements may show
extremely wide variety. Some kinds of algorithms may be very easy to convert
into pipelines, whereas others, for instance the parallelized Viterbi algorithm, may
require enormously complex interconnect structures. A new taxonomy should be
developed rapidly that supports the algorithmic cleverness needed for a good
morphware–based designer productivity and for retrieving high–quality design
solutions.

We should not hesitate to reform CS and CSE curricula in order to prevent
disqualification in the job market in the near future. Introductory undergraduate
programming lab courses should not support the development of a procedural-
only mindset. Such courses should rather be a guide to the world of embedded
systems, requiring algorithmic cleverness for partitioning an application prob-
lem into cooperating software, flowware, and configware blocks. The exercises of
such courses should feature varieties of tasks, including several subtasks of dif-
ferent nature, such as, (1) software implementation of the problem, (2) flowware
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implementation of the problem, and (3) partitioning the problem into (3a) a soft-
ware part, (3b) a flowware part, and (3c) development of the interface needed for
its dual-paradigm coimplementation.

5 CONCLUSIONS

Morphware has become an essential and indispensable ingredient in SoC
(System on a Chip) design and beyond. Already HDLs like VHDL (which is an
Ada dialect), Verilog (a C dialect), and others are languages of higher abstraction
levels and should be taught also to CS students.

The hardware/software chasm in professional practice and in education causes
damage amounting to billions of EURO each year worldwide. It is the main rea-
son for the productivity gap in embedded system design. Meanwhile, it is widely
accepted that morphware is a new computing paradigm. Morphware provides the
enabling fundamentals to cope with this crisis.

But most current work on reconfigurable systems is specialized and is not
motivated by long-term aspects—wearing blinders that limit the view to par-
ticular applications, architectures, or tools. The long–term view, however,
shows a heavy impact of reconfigurable computing upon the intellectual infra-
structures of CS and CSE. This chapter has drafted a road map for upgrading
CS and CSE curricula and for bridging the gap between a procedural and a
structural mentality. The impact of morphware on CS will help to achieve this
by evolution, rather than by revolution. You all should be evangelists for the
diffusion of the visions needed to take this road and move out of the current
crisis.
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