

HANDBOOK OF NATURE-INSPIRED
AND INNOVATIVE COMPUTING

Integrating Classical Models with
Emerging Technologies

HANDBOOK OF NATURE-INSPIRED
AND INNOVATIVE COMPUTING

Integrating Classical Models with
Emerging Technologies

Edited by

Albert Y. Zomaya
The University of Sydney, Australia

Library of Congress Control Number: 2005933256

Handbook of Nature-Inspired and Innovative Computing:
Integrating Classical Models with Emerging Technologies
Edited by Albert Y. Zomaya

ISBN-10: 0-387-40532-1 e-ISBN-10: 0-387-27705-6
ISBN-13: 978-0387-40532-2 e-ISBN-13: 978-0387-27705-9

Printed on acid-free paper.

© 2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer soft-
ware, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 10942543

springeronline.com

To my family for their help,
support, and patience.

Albert Zomaya

Table of Contents

Contributors ix

Preface xiii

Acknowledgements xv

Section I: Models
Chapter 1: Changing Challenges for Collaborative Algorithmics 1

Arnold L. Rosenberg

Chapter 2: ARM++: A Hybrid Association Rule Mining Algorithm 45
Zahir Tari and Wensheng Wu

Chapter 3: Multiset Rule-Based Programming Paradigm
for Soft-Computing in Complex Systems 77
E.V. Krishnamurthy and Vikram Krishnamurthy

Chapter 4: Evolutionary Paradigms 111
Franciszek Seredynski

Chapter 5: Artificial Neural Networks 147
Javid Taheri and Albert Y. Zomaya

Chapter 6: Swarm Intelligence 187
James Kennedy

Chapter 7: Fuzzy Logic 221
Javid Taheri and Albert Y. Zomaya

Chapter 8: Quantum Computing 253
J. Eisert and M.M. Wolf

Section II: Enabling Technologies
Chapter 9: Computer Architecture 287

Joshua J. Yi and David J. Lilja

Chapter 10: A Glance at VLSI Optical Interconnects:
From the Abstract Modelings of the 1980s
to Today’s MEMS Implements 315
Mary M. Eshaghian-Wilner and Lili Hai

Chapter 11: Morphware and Configware 343
Reiner Hartenstein

Chapter 12: Evolving Hardware 387
Timothy G.W. Gordon and Peter J. Bentley

Chapter 13: Implementing Neural Models in Silicon 433
Leslie S. Smith

Chapter 14: Molecular and Nanoscale Computing and Technology 477
Mary M. Eshaghian-WIlner, Amar H. Flood, Alex Khitun,
J. Fraser Stoddart and Kang Wang

Chapter 15: Trends in High-Performance Computing 511
Jack Dongarra

Chapter 16: Cluster Computing: High-Performance, High-Availability and
High-Throughput Processing on a Network of Computers 521
Chee Shin Yeo, Rajkumar Buyya, Hossein Pourreza, Rasit
Eskicioglu, Peter Graham and Frank Sommers

Chapter 17: Web Service Computing: Overview and Directions 553
Boualem Benatallah, Olivier Perrin, Fethi A. Rabhi
and Claude Godart

Chapter 18: Predicting Grid Resource Performance Online 575
Rich Wolski, Graziano Obertelli, Matthew Allen,
Daniel Nurm and John Brevik

Section III: Application Domains
Chapter 19: Pervasive Computing: Enabling Technologies

and Challenges 613
Mohan Kumar and Sajal K. Das

Chapter 20: Information Display 633
Peter Eades, Seokhee Hong, Keith Nesbitt
and Masahiro Takatsuka

Chapter 21: Bioinformatics 657
Srinivas Aluru

Chapter 22: Noise in Foreign Exchange Markets 697
George G. Szpiro

Index 711

viii Table of Contents

Editor in Chief
Albert Y. Zomaya
Advanced Networks Research Group
School of Information Technology
The University of Sydney
NSW 2006, Australia

Advisory Board
David Bader
University of New Mexico
Albuquerque, NM 87131, USA

Richard Brent
Oxford University
Oxford OX1 3QD, UK

Jack Dongarra
University of Tennessee
Knoxville, TN 37996
and
Oak Ridge National Laboratory
Oak Ridge, TN 37831, USA

Mary Eshaghian-Wilner
Dept of Electrical Engineering
University of California, Los Angeles
Los Angeles, CA 90095, USA

Gerard Milburn
University of Queensland
St Lucia, QLD 4072, Australia

Franciszek Seredynski
Institute of Computer Science
Polish Academy of Sciences
Ordona 21, 01-237 Warsaw, Poland

Authors/Co-authors of Chapters
Matthew Allen
Computer Science Dept
University of California, Santa

Barbara
Santa Barbara, CA 93106, USA

Srinivas Aluru
Iowa State University
Ames, IA 50011, USA

Boualem Benatallah
School of Computer Science

and Engineering
The University of New South

Wales
Sydney, NSW 2052, Australia

Peter J. Bentley
University College London
London WC1E 6BT, UK

John Brevik
Computer Science Dept
University of California, Santa

Barbara
Santa Barbara, CA 93106, USA

Rajkumar Buyya
Grid Computing and Distributed
Systems Laboratory and NICTA

Victoria Laboratory
Dept of Computer Science and

Software Engineering
The University of Melbourne
Victoria 3010, Australia

CONTRIBUTORS

Sajal K. Das
Center for Research in Wireless

Mobility and Networking
(CReWMaN)

The University of Texas, Arlington
Arlington, TX 76019, USA

Jack Dongarra
University of Tennessee
Knoxville, TN 37996

and Oak Ridge National Laboratory
Oak Ridge, TN 37831, USA

Peter Eades
National ICT Australia
Australian Technology Park
Eveleigh NSW, Australia

Jens Eisert
Universität Potsdam
Am Neuen Palais 10
14469 Potsdam, Germany
and
Imperial College London
Prince Consort Road
SW7 2BW London, UK

Mary M. Eshaghian-Wilner
Dept of Electrical Engineering
University of California, Los Angeles
Los Angeles, CA 90095, USA

Rasit Eskicioglu
Parallel and Distributed Systems

Laboratory
Dept of Computer Sciences
The University of Manitoba
Winniepeg, MB R3T 2N2, Canada

Amar H. Flood
Dept of Chemistry
University of California, Los Angeles
Los Angeles, CA 90095, USA

Claude Godart
INRIA-LORIA
F-54506 Vandeuvre-lès-Nancy
Cedex, France

Timothy G. W. Gordon
University College London
London WC1E 6BT, UK

Peter Graham
Parallel and Distributed Systems

Laboratory
Dept of Computer Sciences
The University of Manitoba
Winniepeg, MB R3T 2N2, Canada

Lili Hai
State University of New York
College at Old Westbury
Old Westbury, NY 11568–0210, USA

Reiner Hartenstein
TU Kaiserslautern
Kaiserslautern, Germany

Seokhee Hong
National ICT Australia
Australian Technology Park
Eveleigh NSW, Australia

Jim Kennedy
Bureau of Labor Statistics
Washington, DC 20212, USA

Alex Khitun
Dept of Electrical Engineering
University of California,

Los Angeles
Los Angeles, CA 90095, USA

E. V. Krishnamurthy
Computer Sciences Laboratory
Australian National University,

Canberra
ACT 0200, Australia

Vikram Krishnamurthy
Dept of Electrical and Computer
Engineering
University of British Columbia
Vancouver, V6T 1Z4, Canada

Mohan Kumar
Center for Research in Wireless

Mobility and Networking
(CReWMaN)

The University of Texas,
Arlington

Arlington, TX 76019, USA

x Contributors

Contributors xi

David J. Lilja
Dept of Electrical and Computer

Engineering
University of Minnesota
200 Union Street SE
Minneapolis, MN 55455, USA

Keith Nesbitt
Charles Sturt University
School of Information Technology

Panorama Ave
Bathurst 2795, Australia

Daniel Nurmi
Computer Science Dept
University of California, Santa

Barbara
Santa Barbara, CA 93106, USA

Graziano Obertelli
Computer Science Dept
University of California, Santa

Barbara
Santa Barbara, CA 93106, USA

Olivier Perrin
INRIA-LORIA
F-54506 Vandeuvre-lès-Nancy
Cedex, France

Hossein Pourreza
Parallel and Distributed Systems

Laboratory
Dept of Computer Sciences
The University of Manitoba
Winniepeg, MB R3T 2N2, Canada

Fethi A. Rabhi
School of Information Systems,

Technology and Management
The University of New South Wales
Sydney, NSW 2052, Australia

Arnold L. Rosenberg
Dept of Computer Science
University of Massachusetts Amherst
Amherst, MA 01003, USA

Franciszek Seredynski
Institute of Computer Science
Polish Academy of Sciences
Ordona 21, 01-237 Warsaw, Poland

Leslie Smith
Dept of Computing Science and

Mathematics
University of Stirling
Stirling FK9 4LA, Scotland

Frank Sommers
Autospaces, LLC
895 S. Norton Avenue
Los Angeles, CA 90005, USA

J. Fraser Stoddart
Dept of Chemistry
University of California,

Los Angeles
Los Angeles, CA 90095, USA

George G. Szpiro
P.O.Box 6278, Jerusalem, Israel

Javid Taheri
Advanced Networks Research Group
School of Information Technology
The University of Sydney
NSW 2006, Australia

Masahiro Takatsuka
The University of Sydney
School of Information Technology
NSW 2006, Australia

Zahir Tari
Royal Melbourne Institute of

Technology
School of Computer Science
Melbourne, Victoria 3001, Australia

Kang Wang
Dept of Electrical Engineering
University of California, Los Angeles
Los Angeles, CA 90095, USA

M.M. Wolf
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching, Germany

Rich Wolski
Computer Science Dept
University of California, Santa

Barbara
Santa Barbara, CA 93106, USA

Chee Shin Yeo
Grid Computing and Distributed

Systems Laboratory and NICTA
Victoria Laboratory

Dept of Computer Science and
Software Engineering

The University of Melbourne
Victoria 3010, Australia

Joshua J. Yi
Freescale Semiconductor Inc,
7700 West Parmer Lane
Austin, TX 78729, USA

Albert Y. Zomaya
Advanced Networks Research

Group
School of Information Technology
The University of Sydney
NSW 2006, Australia

xii Contributors

PREFACE

The proliferation of computing devices in every aspect of our lives increases
the demand for better understanding of emerging computing paradigms. For the
last fifty years most, if not all, computers in the world have been built based on
the von Neumann model, which in turn was inspired by the theoretical model
proposed by Alan Turing early in the twentieth century. A Turing machine is the
most famous theoretical model of computation (A. Turing, On Computable
Numbers, with an Application to the Entscheidungsproblem, Proc. London Math.
Soc. (ser. 2), 42, pp. 230–265, 1936. Corrections appeared in: ibid., 43 (1937),
pp. 544–546.) that can be used to study a wide range of algorithms.

The von Neumann model has been used to build computers with great success.
It has also been extended to the development of the early supercomputers and we
can also see its influence on the design of some of the high performance com-
puters of today. However, the principles espoused by the von Neumann model are
not adequate for solving many of the problems that have great theoretical and
practical importance. In general, a von Neumann model is required to execute a
precise algorithm that can manipulate accurate data. In many problems such con-
ditions cannot be met. For example, in many cases accurate data are not available
or a “fixed” or “static” algorithm cannot capture the complexity of the problem
under study.

Therefore, The Handbook of Nature-Inspired and Innovative Computing:
Integrating Classical Models with Emerging Technologies seeks to provide an
opportunity for researchers to explore the new computational paradigms and
their impact on computing in the new millennium. The handbook is quite timely
since the field of computing as a whole is undergoing many changes. Vast litera-
ture exists today on such new paradigms and their implications for a wide range
of applications -a number of studies have reported on the success of such tech-
niques in solving difficult problems in all key areas of computing.

The book is intended to be a Virtual Get Together of several researchers that
one could invite to attend a conference on `futurism’ dealing with the theme of
Computing in the 21st Century. Of course, the list of topics that is explored here
is by no means exhaustive but most of the conclusions provided can be extended
to other research fields that are not covered here. There was a decision to limit
the number of chapters while providing more pages for contributed authors to
express their ideas, so that the handbook remains manageable within a single
volume.

It is also hoped that the topics covered will get readers to think of the impli-
cations of such new ideas for developments in their own fields. Further, the
enabling technologies and application areas are to be understood very broadly
and include, but are not limited to, the areas included in the handbook.

The handbook endeavors to strike a balance between theoretical and practical
coverage of a range of innovative computing paradigms and applications. The
handbook is organized into three main sections: (I) Models, (II) Enabling
Technologies and (III) Application Domains; and the titles of the different chap-
ters are self-explanatory to what is covered. The handbook is intended to be a
repository of paradigms, technologies, and applications that target the different
facets of the process of computing.

The book brings together a combination of chapters that normally don’t
appear in the same space in the wide literature, such as bioinformatics, molecular
computing, optics, quantum computing, and others. However, these new para-
digms are changing the face of computing as we know it and they will be influ-
encing and radically revolutionizing traditional computational paradigms. So,
this volume catches the wave at the right time by allowing the contributors to
explore with great freedom and elaborate on how their respective fields are con-
tributing to re-shaping the field of computing.

The twenty-two chapters were carefully selected to provide a wide scope with
minimal overlap between the chapters so as to reduce duplications. Each contrib-
utor was asked to cover review material as well as current developments. In addi-
tion, the choice of authors was made so as to select authors who are leaders in the
respective disciplines.

xiv Preface

ACKNOWLEDGEMENTS

First and foremost we would like to thank and acknowledge the contributors to
this volume for their support and patience, and the reviewers for their useful
comments and suggestions that helped in improving the earlier outline of the
handbook and presentation of the material. Also, I should extend my deepest
thanks to Wayne Wheeler and his staff at Springer (USA) for their collaboration,
guidance, and most importantly, patience in finalizing this handbook. Finally,
I would like to acknowledge the efforts of the team from Springer’s production
department for their extensive efforts during the many phases of this project and
the timely fashion in which the book was produced.

Albert Y. Zomaya

Chapter 1

CHANGING CHALLENGES FOR
COLLABORATIVE ALGORITHMICS
Arnold L. Rosenberg
University of Massachusetts at Amherst

Abstract
Technological advances and economic considerations have led to a wide

variety of modalities of collaborative computing: the use of multiple comput-
ing agents to solve individual computational problems. Each new modality
creates new challenges for the algorithm designer. Older “parallel” algorith-
mic devices no longer work on the newer computing platforms (at least in
their original forms) and/or do not address critical problems engendered by
the new platforms’ characteristics. In this chapter, the field of collaborative
algorithmics is divided into four epochs, representing (one view of) the major
evolutionary eras of collaborative computing platforms. The changing chal-
lenges encountered in devising algorithms for each epoch are discussed, and
some notable sophisticated responses to the challenges are described.

1 INTRODUCTION

Collaborative computing is a regime of computation in which multiple agents
are enlisted in the solution of a single computational problem. Until roughly one
decade ago, it was fair to refer to collaborative computing as parallel computing.
Developments engendered by both economic considerations and technological
advances make the older rubric both inaccurate and misleading, as the multi-
processors of the past have been joined by clusters—independent computers inter-
connected by a local-area network (LAN)—and by various modalities of Internet
computing—loose confederations of computing agents of differing levels of com-
mitment to the common computing enterprise. The agents in the newer collabo-
rative computing milieux often do their computing at their own times and in their
own locales—definitely not “in parallel.”

Every major technological advance in all areas of computing creates signifi-
cant new scheduling challenges even while enabling new levels of computational

efficiency (measured in time and/or space and/or cost). This chapter presents one
algorithmicist’s view of the paradigm-challenges milestones in the evolution
of collaborative computing platforms and of the algorithmic challenges each
change in paradigm has engendered. The chapter is organized around a some-
what eccentric view of the evolution of collaborative computing technology
through four “epochs,” each distinguished by the challenges one faced when
devising algorithms for the associated computing platforms.

1. In the epoch of shared-memory multiprocessors:
● One had to cope with partitioning one’s computational job into dis-

joint subjobs that could proceed in parallel on an assemblage of identi-
cal processors. One had to try to keep all processors fruitfully busy as
much of the time as possible. (The qualifier “fruitfully” indicates
that the processors are actually working on the problem to be solved,
rather than on, say, bookkeeping that could be avoided with a bit more
cleverness.)

● Communication between processors was effected through shared vari-
ables, so one had to coordinate access to these variables. In particular,
one had to avoid the potential races when two (or more) processors
simultaneously vied for access to a single memory module, especially
when some access was for the purpose of writing to the same shared
variable.

● Since all processors were identical, one had, in many situations, to craft
protocols that gave processors separate identities—the process of so-
called symmetry breaking or leader election. (This was typically neces-
sary when one processor had to take a coordinating role in an
algorithm.)

2. The epoch of message-passing multiprocessors added to the technology of
the preceding epoch a user-accessible interconnection network—of
known structure—across which the identical processors of one’s parallel
computer communicated. On the one hand, one could now build much
larger aggregations of processors than one could before. On the other
hand:
● One now had to worry about coordinating the routing and transmission

of messages across the network, in order to select short paths for mes-
sages, while avoiding congestion in the network.

● One had to organize one’s computation to tolerate the often-consider-
able delays caused by the point-to-point latency of the network and the
effects of network bandwidth and congestion.

● Since many of the popular interconnection networks were highly sym-
metric, the problem of symmetry breaking persisted in this epoch. Since
communication was now over a network, new algorithmic avenues were
needed to achieve symmetry breaking.

● Since the structure of the interconnection network underlying one’s
multiprocessor was known, one could—and was well advised to—allo-
cate substantial attention to network-specific optimizations when
designing algorithms that strove for (near) optimality. (Typically, for
instance, one would strive to exploit locality: the fact that a processor
was closer to some processors than to others.) A corollary of this fact

2 Arnold L. Rosenberg

is that one often needed quite disparate algorithmic strategies for dif-
ferent classes of interconnection networks.

3. The epoch of clusters—also known as networks of workstations (NOWs, for
short)—introduced two new variables into the mix, even while rendering
many sophisticated multiprocessor-based algorithmic tools obsolete. In
Section 3, we outline some algorithmic approaches to the following new
challenges.
● The computing agents in a cluster—be they pc’s, or multiprocessors, or

the eponymous workstations—are now independent computers that
communicate with each other over a local-area network (LAN). This
means that communication times are larger and that communication pro-
tocols are more ponderous, often requiring tasks such as breaking long
messages into packets, encoding, computing checksums, and explicitly
setting up communications (say, via a hand-shake). Consequently, tasks
must now be coarser grained than with multiprocessors, in order to
amortize the costs of communication. Moreover, the respective compu-
tations of the various computing agents can no longer be tightly coupled,
as they could be in a multiprocessor. Further, in general, network latency
can no longer be “hidden” via the sophisticated techniques developed for
multiprocessors. Finally, one can usually no longer translate knowledge
of network topology into network-specific optimizations.

● The computing agents in the cluster, either by design or chance (such as
being purchased at different times), are now often heterogeneous, dif-
fering in speeds of processors and/or memory systems. This means that
a whole range of algorithmic techniques developed for the earlier
epochs of collaborative computing no longer work—at least in their
original forms [127]. On the positive side, heterogeneity obviates sym-
metry breaking, as processors are now often distinguishable by their
unique combinations of computational resources and speeds.

4. The epoch of Internet computing, in its several guises, has taken the algo-
rithmics of collaborative computing precious near to—but never quite
reaching—that of distributed computing. While Internet computing is still
evolving in often-unpredictable directions, we detail two of its circa-2003
guises in Section 4. Certain characteristics of present-day Internet com-
puting seem certain to persist.
● One now loses several types of predictability that played a significant

background role in the algorithmics of prior epochs.
– Interprocessor communication now takes place over the Internet. In

this environment:
* a message shares the “airwaves” with an unpredictable number

and assemblage of other messages; it may be dropped and resent;
it may be routed over any of myriad paths. All of these factors
make it impossible to predict a message’s transit time.

* a message may be accessible to unknown (and untrusted) sites,
increasing the need for security-enhancing measures.

– The predictability of interactions among collaborating comput-
ing agents that anchored algorithm development in all prior epochs
no longer obtains, due to the fact that remote agents are typically not

Changing Challenges for Collaborative Algorithmics 3

dedicated to the collaborative task. Even the modalities of Internet
computing in which remote computing agents promise to complete
computational tasks that are assigned to them typically do not guar-
antee when. Moreover, even the guarantee of eventual computation is
not present in all modalities of Internet computing: in some modalities
remote agents cannot be relied upon ever to complete assigned tasks.

● In several modalities of Internet computing, computation is now unre-
liable in two senses:
– The computing agent assigned a task may, without announcement,

“resign from” the aggregation, abandoning the task. (This is the
extreme form of temporal unpredictability just alluded to.)

– Since remote agents are unknown and anonymous in some modal-
ities, the computing agent assigned a task may maliciously return
fallacious results. This latter threat introduces the need for computa-
tion-related security measures (e.g., result-checking and agent moni-
toring) for the first time to collaborative computing. This problem is
discussed in a news article at 〈http://www.wired.com/news/technology/
0,1282,41838,00.html〉.

In succeeding sections, we expand on the preceding discussion, defining the
collaborative computing platforms more carefully and discussing the resulting
challenges in more detail. Due to a number of excellent widely accessible sources
that discuss and analyze the epochs of multiprocessors, both shared-memory and
message-passing, our discussion of the first two of our epochs, in Section 2, will
be rather brief. Our discussion of the epochs of cluster computing (in Section 3)
and Internet computing (in Section 4) will be both broader and deeper. In each
case, we describe the subject computing platforms in some detail and describe a
variety of sophisticated responses to the algorithmic challenges of that epoch.
Our goal is to highlight studies that attempt to develop algorithmic strategies that
respond in novel ways to the challenges of an epoch. Even with this goal in mind,
the reader should be forewarned that

● her guide has an eccentric view of the field, which may differ from the views
of many other collaborative algorithmicists;

● some of the still-evolving collaborative computing platforms we describe will
soon disappear, or at least morph into possibly unrecognizable forms;

● some of the “sophisticated responses” we discuss will never find application
beyond the specific studies they occur in.

This said, I hope that this survey, with all of its limitations, will convince the
reader of the wonderful research opportunities that await her “just on the other
side” of the systems and applications literature devoted to emerging collaborative
computing technologies.

2 THE EPOCHS OF MULTIPROCESSORS

The quick tour of the world of multiprocessors in this section is intended to
convey a sense of what stimulated much of the algorithmic work on collaborative

4 Arnold L. Rosenberg

computing on this computing platform. The following books and surveys pro-
vide an excellent detailed treatment of many subjects that we only touch upon
and even more topics that are beyond the scope of this chapter: [5, 45, 50, 80,
93, 97, 134].

2.1 Multiprocessor Platforms

As technology allowed circuits to shrink, starting in the 1970s, it became fea-
sible to design and fabricate computers that had many processors. Indeed, a few
theorists had anticipated these advances in the 1960s [79]. The first attempts at
designing such multiprocessors envisioned them as straightforward extensions
of the familiar von Neumann architecture, in which a processor box—now pop-
ulated with many processors—interacted with a single memory box; processors
would coordinate and communicate with each other via shared variables. The
resulting shared-memory multiprocessors were easy to think about, both for
computer architects and computer theorists [61]. Yet using such multiproces-
sors effectively turned out to present numerous challenges, exemplified by the
following:

● Where/how does one identify the parallelism in one’s computational problem?
This question persists to this day, feasible answers changing with evolving
technology. Since there are approaches to this question that often do not
appear in the standard references, we shall discuss the problem briefly in
Section 2.2.

● How does one keep all available processors fruitfully occupied—the problem
of load balancing? One finds sophisticated multiprocessor-based approaches
to this problem in primary sources such as [58, 111, 123, 138].

● How does one coordinate access to shared data by the several processors of a
multiprocessor (especially, a shared-memory multiprocessor)? The difficulty
of this problem increases with the number of processors. One significant
approach to sharing data requires establishing order among a multiprocessor’s
indistinguishable processors by selecting “leaders” and “subleaders,” etc. How
does one efficiently pick a “leader” among indistinguishable processors—
the problem of symmetry breaking? One finds sophisticated solutions to this
problem in primary sources such as [8, 46, 107, 108].

A variety of technological factors suggest that shared memory is likely a bet-
ter idea as an abstraction than as a physical actuality. This fact led to the devel-
opment of distributed shared memory multiprocessors, in which each processor
had its own memory module, and access to remote data was through an inter-
connection network. Once one had processors communicating over an intercon-
nection network, it was a small step from the distributed shared memory
abstraction to explicit message-passing, i.e., to having processors communicate
with each other directly rather than through shared variables. In one sense, the
introduction of interconnection networks to parallel architectures was liberating:
one could now (at least in principle) envision multiprocessors with many thou-
sands of processors. On the other hand, the explicit algorithmic use of networks
gave rise to a new set of challenges:

Changing Challenges for Collaborative Algorithmics 5

● How can one route large numbers of messages within a network without engen-
dering congestion (“hot spots”) that renders communication insufferably slow?
This is one of the few algorithmic challenges in parallel computing that has an
acknowledged champion. The two-phase randomized routing strategy devel-
oped in [150, 154] provably works well in a large range of interconnection net-
works (including the popular butterfly and hypercube networks) and
empirically works well in many others.

● Can one exploit the new phenomenon—locality—that allows certain pairs of
processors to intercommunicate faster than others? The fact that locality can
be exploited to algorithmic advantage is illustrated in [1, 101]. The phenome-
non of locality in parallel algorithmics is discussed in [124, 156].

● How can one cope with the situation in which the structure of one’s compu-
tational problem—as exposed by the graph of data dependencies—is incom-
patible with the structure of the interconnection network underlying the
multiprocessor that one has access to? This is another topic not treated fully
in the references, so we discuss it briefly in Section 2.2.

● How can one organize one’s computation so that one accomplishes valuable
work while awaiting responses from messages, either from the memory sub-
system (memory accesses) or from other processors? A number of innovative
and effective responses to variants of this problem appear in the literature; see,
e.g., [10, 36, 66].

In addition to the preceding challenges, one now also faced the largely unan-
ticipated, insuperable problem that one’s interconnection network may not
“scale.” Beginning in 1986, a series of papers demonstrated that the physical
realizations of large instances of the most popular interconnection networks
could not provide performance consistent with idealized analyses of those net-
works [31, 155, 156, 157]. A word about this problem is in order, since the phe-
nomenon it represents influences so much of the development of parallel
architectures. We live in a three-dimensional world: areas and volumes in space
grow polynomially fast when distances are measured in units of length. This
physical polynomial growth notwithstanding, for many of the algorithmically
attractive interconnection networks—hypercubes, butterfly networks, and de
Bruijn networks, to name just three—the number of nodes (read: “processors”)
grows exponentially when distances are measured in number of interprocessor
links. This means, in short, that the interprocessor links of these networks must
grow in length as the networks grow in number of processors. Analyses that pre-
dict performance in number of traversed links do not reflect the effect of link-
length on actual performance. Indeed, the analysis in [31] suggests—on the
preceding grounds—that only the polynomially growing meshlike networks
can supply in practice efficiency commensurate with idealized theoretical
analyses.1

6 Arnold L. Rosenberg

1Figure 1.1 depicts the four mentioned networks. See [93, 134] for definitions and discussions of
these and related networks. Additional sources such as [4, 21, 90] illustrate the algorithmic use
of such networks.

We now discuss briefly a few of the challenges that confronted algorithmicists
during the epochs of multiprocessors. We concentrate on topics that are not
treated extensively in books and surveys, as well as on topics that retain their rel-
evance beyond these epochs.

2.2 Algorithmic Challenges and Responses

Finding Parallelism. The seminal study [37] was the first to systematically
distinguish between the inherently sequential portion of a computation and the
parallelizable portion. The analysis in that source led to Brent’s Scheduling
Principle, which states, in simplest form, that the time for a computation on
a p-processor computer need be no greater than t + n/p, where t is the time for
the inherently sequential portion of the computation and n is the total num-
ber of operations that must be performed. While the study illustrates how to
achieve the bound of the Principle for a class of arithmetic computations, it
leaves open the challenge of discovering the parallelism in general computa-
tions. Two major approaches to this challenge appear in the literature and are
discussed here.

Parallelizing computations via clustering/partitioning. Two related major
approaches have been developed for scheduling computations on parallel com-
puting platforms, when the computation’s intertask dependencies are represented
by a computation-dag—a directed acyclic graph, each of whose arcs (x → y) beto-
kens the dependence of task y on task x; sources never appear on the right-hand
side of an arc; sinks never appear on the left-hand side.

The first such approach is to cluster a computation-dag’s tasks into “blocks”
whose tasks are so tightly coupled that one would want to allocate each block to
a single processor to obviate any communication when executing these tasks.
A number of efficient heuristics have been developed to effect such clustering for
general computation-dags [67, 83, 103, 139]. Such heuristics typically base their
clustering on some easily computed characteristic of the dag, such as its critical

Changing Challenges for Collaborative Algorithmics 7

1,0

2,0

0,1

1,1

2,1

0,2

1,2

2,2

0,0 0,3

1,3

2,3

3,0 3,1 3,2 3,3

000

001

100

010 101

011

110

111

0001

0101

0011

0111

0010

0110

1011

1111

1001

1101

0100

0000 1010

1110

1000

1100

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Level

0

1

2

0

Figure 1.1. Four interconnection networks. Row 1: the 4 ¥ 4 mesh and the 3-dimensional de Bruijn
network; row 2: the 4-dimensional boolean hypercube and the 3-level butterfly network (note the
two copies of level 0)

path—the most resource-consuming source-to-sink path, including both compu-
tation time and volume of intertask data—or its dominant sequence—a source-to-
sink path, possibly augmented with dummy arcs, that accounts for the entire
makespan of the computation. Several experimental studies compare these
heuristics in a variety of settings [54, 68], and systems have been developed to
exploit such clustering in devising schedules [43, 140, 162]. Numerous algorithmic
studies have demonstrated analytically the provable effectiveness of this approach
for special scheduling classes of computation-dags [65, 117].

Dual to the preceding clustering heuristics is the process of clustering by graph
separation. Here one seeks to partition a computation-dag into subdags by “cut-
ting” arcs that interconnect loosely coupled blocks of tasks. When the tasks in
each block are mapped to a single processor, the small numbers of arcs intercon-
necting pairs of blocks lead to relatively small—hence, inexpensive—interproces-
sor communications. This approach has been studied extensively in the
parallel-algorithms literature with regard to myriad applications, ranging from
circuit layout to numerical computations to nonserial dynamic programming.
A small sampler of the literature on specific applications appears in [28, 55, 64,
99, 106]; heuristics for accomplishing efficient graph partitioning (especially into
roughly equal-size subdags) appear in [40, 60, 82]; further sample applications,
together with a survey of the literature on algorithms for finding graph separa-
tors, appears in [134].

Parallelizing using dataflow techniques. A quite different approach to finding
parallelism in computations builds on the flow of data in the computation. This
approach originated with the VLSI revolution fomented by Mead and Conway
[105], which encouraged computer scientists to apply their tools and insights to
the problem of designing computers. Notable among the novel ideas emerging
from this influx was the notion of systolic array—a dataflow-driven special-pur-
pose parallel (co)processor [86, 87]. A major impetus for the development of this
area was the discovery, in [109, 120], that for certain classes of computations—
including, e.g., those specifiable via nested for-loops—such machines could be
designed “automatically.” This area soon developed a life of its own as a tech-
nique for finding parallelism in computations, as well as for designing special-pur-
pose parallel machines. There is now an extensive literature on the use of systolic
design principles for a broad range of specific computations [38, 39, 89, 91, 122],
as well as for large general classes of computations that are delimited by the struc-
ture of their flow of data [49, 75, 109, 112, 120, 121].

Mismatches between network and job structure. Parallel efficiency in multi-
processors often demands using algorithms that accommodate the structure of
one’s computation to that of the host multiprocessor’s network. This was noticed
by systems builders [71] as well as algorithms designers [93, 149]. The reader can
appreciate the importance of so tuning one’s algorithm by perusing the following
studies of the operation of sorting: [30, 52, 52, 74, 77, 92, 125, 141, 148]. The
overall groundrules in these studies are constant: one is striving to minimize the
worst-case number of comparisons when sorting n numbers; only the underlying
interconnection network changes. We now briefly describe two broadly applicable
approaches to addressing potential mismatches with the host network.

8 Arnold L. Rosenberg

Network emulations. The theory of network emulations focuses on the prob-
lem of making one computation-graph—the host—“act like” or “look like”
another—the guest. In both of the scenarios that motivate this endeavor, the host
H represents an existing interconnection network. In one scenario, the guest G is
a directed graph that represents the intertask dependencies of a computation. In
the other scenario, the guest G is an undirected graph that represents an ideal
interconnection network that would be a congenial host for one’s computation. In
both scenarios, computational efficiency would clearly be enhanced if H sl inter-
connection structure matched G sl —or could be made to appear to.

Almost all approaches to network emulation build on the theory of graph
embeddings, which was first proposed as a general computational tool in [126].
An embedding 〈a, r〉 of the graph G = (,)V EG G into the graph H = (,)V EH H con-
sists of a one-to-one map a : V VG H" , together with a mapping of EG into paths
in H such that, for each edge (,)u u EG! , the path r(u, u) connects nodes a(u) and
a(u) in H . The two main measures of the quality of the embedding 〈a, r〉 are the
dilation, which is the length of the longest path of H that is the image, under r,
of some edge of G ; and the congestion, which is the maximum, over all edges e of
H , of the number of r-paths in which edge e occurs. In other words, it is the max-
imum number of edges of G that are routed across e by the embedding.

It is easy to use an embedding of a network G into a network H to translate
an algorithm designed for G into a computationally equivalent algorithm for H .
Basically: the mapping a identifies which node of H is to emulate which node of
G ; the mapping r identifies the routes in H that are used to simulate internode
message-passing in G . This sketch suggests why the quantitative side of network-
emulations-via-embeddings focuses on dilation and congestion as the main meas-
ures of the quality of an embedding. A moment’s reflection suggests that, when
one uses an embedding 〈a, r〉 of a graph G into a graph H as the basis for an
emulation of G by H , any algorithm that is designed for G is slowed down by a
factor O(congestion × dilation) when run on H . One can sometimes easily orches-
trate communications to improve this factor to O(congestion + dilation); cf. [13].
Remarkably, one can always improve the slowdown to O(congestion + dilation):
a nonconstructive proof of this fact appears in [94], and, even more remarkably,
a constructive proof and efficient algorithm appear in [95].

There are myriad studies of embedding-based emulations with specific guest
and host graphs. An extensive literature follows up one of the earliest studies, [6],
which embeds rectangular meshes into square ones, a problem having nonobvi-
ous algorithmic consequences [18]. The algorithmic attractiveness of the boolean
hypercube mentioned in Section 2.1 is attested to not only by countless specific
algorithms [93] but also by several studies that show the hypercube to be a con-
genial host for a wide variety of graph families that are themselves algorithmi-
cally attractive. Citing just two examples: (1) One finds in [24, 161] two quite
distinct efficient embeddings of complete trees—and hence, of the ramified com-
putations they represent—into hypercubes. Surprisingly, such embeddings exist
also for trees that are not complete [98, 158] and/or that grow dynamically [27, 96].
(2) One finds in [70] efficient embeddings of butterflylike networks—hence, of the
convolutional computations they represent—into hypercubes. A number of
related algorithm-motivated embeddings into hypercubes appear in [72]. The
mesh-of-trees network, shown in [93] to be an efficient host for many parallel

Changing Challenges for Collaborative Algorithmics 9

computations, is embedded into hypercubes in [57] and into the de Bruijn net-
work in [142]. The emulations in [11, 12] attempt to exploit the algorithmic attrac-
tiveness of the hypercube, despite its earlier-mentioned physical intractability.
The study in [13], unusual for its algebraic underpinnings, was motivated by
the (then-) unexplained fact—observed, e.g., in [149]—that algorithms designed
for the butterfly network run equally fast on the de Bruijn network. An intimate
algebraic connection discovered in [13] between these networks—the de Bruijn
network is a quotient of the butterfly—led to an embedding of the de Bruijn
network into the hypercube that had exponentially smaller dilation than any
competitors known at that time.

The embeddings discussed thus far exploit structural properties that are peculiar
to the target guest and host graphs. When such enabling properties are hard to find,
a strategy pioneered in [25] can sometimes produce efficient embeddings. This source
crafts efficient embeddings based on the ease of recursively decomposing a guest
graph G into subgraphs. The insight underlying this embedding-via-decomposition
strategy is that recursive bisection—the repeated decomposition of a graph into like-
sized subgraphs by “cutting” edges—affords one a representation of G as a binary-
tree-like structure.2 The root of this structure is the graph G ; the root’s two children
are the two subgraphs of G—call them G0 and G1—that the first bisection partitions
G into. Recursively, the two children of node Gx of the tree-like structure (where x
is a binary string) are the two subgraphs of Gx—call them Gx0 and Gx1—that the
bisection partitions Gx into. The technique of [25] transforms an (efficient) embed-
ding of this “decomposition tree” into a host graph H into an (efficient) embedding
of G into H , whose dilation (and, often, congestion) can be bounded using a stan-
dard measure of the ease of recursively bisecting G . A very few studies extend
and/or improve the technique of [25]; see, e.g., [78, 114].

When networks G and H are incompatible—i.e., there is no efficient embed-
ding of G into H —graph embeddings cannot lead directly to efficient emula-
tions. A technique developed in [84] can sometimes overcome this shortcoming
and produce efficient network emulations. The technique has H emulate G by
alternating the following two phases:

Computation phase. Use an embedding-based approach to emulate G piecewise
for short periods of time (whose durations are determined via analysis).

Coordination phase. Periodically (frequency is determined via analysis) coor-
dinate the piecewise embedding-based emulations to ensure that all pieces have
fresh information about the state of the emulated computation.

This strategy will produce efficient emulations if one makes enough progress
during the computation phase to amortize the cost of the coordination phase.
Several examples in [84] demonstrate the value of this strategy: each presents a
phased emulation of a network G by a network H that incurs only constant-fac-
tor slowdown, while any embedding-based emulation of G by H incurs slow-
down that depends on the sizes of G and H .

We mention one final, unique use of embedding-based emulations. In [115], a
suite of embedding-based algorithms is developed in order to endow a multi-
processor with a capability that would be prohibitively expensive to supply in hard-

10 Arnold L. Rosenberg

2See [134] for a comprehensive treatment of the theory of graph decomposition, as well as of
this embedding technique.

ware. The gauge of a multiprocessor is the common width of its CPU and memory
bus. A multiprocessor can be multigauged if, under program control, it can dynam-
ically change its (apparent) gauge. (Prior studies had determined the algorithmic
value of multigauging, as well as its prohibitive expense [53, 143].) Using an embed-
ding-based approach that is detailed in [114], the algorithms of [115] efficiently
endow a multiprocessor architecture with a multigauging capability.

The use of parameterized models. A truly revolutionary approach to the prob-
lem of matching computation structure to network structure was proposed in
[153], the birthplace of the bulk-synchronous parallel (BSP) programming para-
digm. The central thesis in [153] is that, by appropriately reorganizing one’s com-
putation, one can obtain almost all of the benefits of message-passing parallel
computation while ignoring all aspects of the underlying interconnection net-
work’s structure, save its end-to-end latency. The needed reorganization is a form
of task-clustering: one organizes one’s computation into a sequence of computa-
tional “supersteps”—during which processors compute locally, with no inter-
communication—punctuated by communication “supersteps”—during which
processors synchronize with one another (whence the term bulk-synchronous) and
perform a stylized intercommunication in which each processor sends h messages
to h others. (The choice of h depends on the network’s latency.) It is shown that a
combination of artful message routing—say, using the congestion-avoiding tech-
nique of [154]—and latency-hiding techniques—notably, the method of parallel
slack that has the host parallel computer emulate a computer with more proces-
sors—allows this algorithmic paradigm to achieve results within a constant fac-
tor of the parallel speedup available via network-sensitive algorithm design.
A number of studies, such as [69, 104], have demonstrated the viability of this
approach for a variety of classes of computations.

The focus on network latency and number of processors as the sole architectural
parameters that are relevant to efficient parallel computation limits the range of
architectural platforms that can enjoy the full benefits of the BSP model. In
response, the authors of [51] have crafted a model that carries on the spirit of BSP
but that incorporates two further parameters related to interprocessor communica-
tion. The resulting LogP model accounts for latency (the “L” in “LogP”), overhead
(the “o,”)—the cost of setting up a communication, gap (the “g,”)—the minimum
interval between successive communications by a processor, and processor number
(the “P”). Experiments described in [51] validate the predictive value of the LogP
model in multiprocessors, at least for computations involving only short inter-
processor messages. The model is extended in [7], to allow long, but equal-length,
messages. One finds in [29] an interesting study of the efficiency of parallel algo-
rithms developed under the BSP and LogP models.

3 CLUSTERS/NETWORKS OF WORKSTATIONS

3.1 The Platform

Many sources eloquently argue the technological and economic inevitability
of an increasingly common modality of collaborative computing—the use of a

Changing Challenges for Collaborative Algorithmics 11

cluster (or, equally commonly, a network) of computers to cooperate in the solu-
tion of a computational problem; see [9, 119]. Note that while one typically talks
about a network of workstations (a NOW, for short), the constituent computers
in a NOW may well be pc’s or multiprocessors; the algorithmic challenges change
quantitatively but not qualitatively depending on the architectural sophistication
of the “workstations.” The computers in a NOW intercommunicate via a LAN—
local area network—whose detailed structure is typically neither known to nor
accessible by the programmer.

3.2 Some Challenges

Some of the challenges encountered when devising algorithms for NOWs differ
only quantitatively from those encountered with multiprocessors. For instance:

● The typically high latencies of LANs (compared to interconnection net-
works), coupled with the relatively heavyweight protocols needed for robust
communication, demand coarse-grained tasks in order to amortize the costs
of communication.

Some new challenges arise from the ineffectiveness in NOWs of certain multi-
processor-based algorithmic strategies. For instance:

● The algorithm designer typically cannot exploit the structure of the LAN
underlying a NOW.

● The higher costs of communication, coupled with the loose coordination of a
NOW’s workstations, render the (relatively) simple latency-hiding techniques of
multiprocessors ineffective in clusters.

Finally, some algorithmic challenges arise in the world of collaborative com-
puting for the first time in clusters. For instance:

● The constituent workstations of a NOW may differ in processor and/or mem-
ory speeds; i.e., the NOW may be heterogeneous (be an HNOW).

All of the issues raised here make parameterized models such as those dis-
cussed at the end of Section 2.2 an indispensable tool to the designers of algo-
rithms for (H)NOWs. The challenge is to craft models that are at once faithful
enough to ensure algorithmic efficiency on real NOWs and simple enough to be
analytically tractable. The latter goal is particularly elusive in the presence of het-
erogeneity. Consequently, much of the focus in this section is on models that have
been used successfully to study several approaches to computing in (H)NOWs.

3.3 Some Sophisticated Responses

Since the constituent workstations of a NOW are at best loosely coupled,
and since interworkstation communication is typically rather costly in a NOW,
the major strategies for using NOWs in collaborative computations center
around three loosely coordinated scheduling mechanisms—workstealing, cycle-
stealing, and worksharing—that, respectively, form the foci of the following three
subsections.

12 Arnold L. Rosenberg

3.3.1 Cluster computing via workstealing

Workstealing is a modality of cluster computing wherein an idle workstation
seeks work from a busy one. This allocation of responsibility for finding work has
the benefit that idle workstations, not busy ones, do the unproductive chore of
searching for work. The most comprehensive study of workstealing is the series
of papers [32]–[35], which schedule computations in a multiprocessor or in a
(homogeneous) NOW. These sources develop their approach to workstealing
from the level of programming abstraction through algorithm design and analy-
sis through implementation as a working system (called Cilk [32]). As will be
detailed imminently, these sources use a strict form of multithreading as a mech-
anism for subdividing a computation into chunks (specifically, threads of unit-
time tasks) that are suitable for sharing among collaborating workstations. The
strength and elegance of the results in these sources has led to a number of other
noteworthy studies of multithreaded computations, including [1, 14, 59]. A very
abstract study of workstealing, which allows one to assess the impact of changes
in algorithmic strategy easily, appears in [110], which we describe a bit later.

A. Case study [34]: From an algorithmic perspective, the main paper in the
series about Cilk and its algorithmic underpinnings is [34], which presents and
analyzes a (randomized) mechanism for scheduling “well-structured” multi-
threaded computations, achieving both time and space complexity that are within
constant factors of optimal.

Within the model of [34], a thread is a collection of unit-time tasks, linearly
ordered by dependencies; graph-theoretically, a thread is, thus, a linear computa-
tion-dag. A multithreaded computation is a set of threads that are interconnected
in a stylized way. There is a root thread. Recursively, any task of any thread T may
have k ≥ 0 spawn-arcs to the initial tasks of k threads that are children of T.
If thread T ′ is a child of thread T via a spawn-arc from task t of T, then the last
task of T ′ has a continue-arc to some task t′ of T that is a successor of task t.
Both the spawn-arcs and continue-arcs individually thus give the computation the
structure of a tree-dag (see Figure 1.2). All of the arcs of a multithreaded com-
putation represent data dependencies that must be honored when executing the
computation. A multithreaded computation is strict if all data-dependencies for
the tasks of a thread T go to an ancestor of thread T in the thread-tree; the com-
putation is fully strict if all dependencies in fact go to T ’s parent in the tree. Easily,

Changing Challenges for Collaborative Algorithmics 13

t

t’
T’

T

s’

s

T"
u’ v’

uv

Figure 1.2. An exemplary multithreaded computation. Thread T¢ (resp., T¢¢) is a child of thread
T, via the spawn-arc from task t to task t¢ (resp., from task s to task s¢) and the continue-arc from
task u¢ to task u (resp., from task u¢ to task u)

any multithreaded computation can be made fully strict by altering the depend-
ency structure; this restructuring may affect the available parallelism in the com-
putation but will not compromise its correctness. The study in [34] focuses on
scheduling fully strict multithreaded computations.

In the computing platform envisioned in [34], a multithreaded computation is
stored in shared memory. Each individual thread T has a block of memory (called
an activation frame), within the local memory of the workstation that “owns” T,
that is dedicated to the computation of T ’s tasks. Space is measured in terms of
activation frames.

Time is measured in [34] as a function of the number of workstations that are
collaborating in the target computation. Tp is the minimum computation time
when there are p collaborating workstations; therefore, T1 is the total amount of
work in the computation. T∞ is dag-depth of the computation, i.e., the length
of the longest source-to-sink path in the associated computation-dag; this is the
“inherently sequential” part of the computation. Analogously, Sp is the minimum
space requirement for the target computation, S1 being the “activation depth” of
the computation.

Within the preceding model, the main contribution of [34] is a provably effi-
cient randomized workstealing algorithm, Procedure Worksteal (see Figure 1.3),
which executes the fully strict multithreaded computation rooted at thread T. In
the Procedure, each workstation maintains a ready deque of threads that are eli-
gible for execution; these deques are accessible by all workstations. Each deque
has a bottom and a top; threads can be inserted at the bottom and removed from
either end. A workstation uses its ready deque as a procedure stack, pushing and
popping from the bottom. Threads that are “stolen” by other workstations are
removed from the top of the deque. It is shown in [34] that Procedure Worksteal
is close to optimal in both time and space complexity.

● For any fully strict multithreaded computation, Procedure Worksteal, when run
on a p-workstation NOW, uses space ≤ S1p.

14 Arnold L. Rosenberg

Normal execution. A workstation P seeking work removes (pops) the thread at the bottom of its
ready deque—call it thread T—and begins executing T ’s tasks seriatim.

A stalled thread is enabled. If executing one of T ’s tasks enables a stalled thread T ′, then the
now-ready thread T ′ is pushed onto the bottom of P’s ready deque. (A thread stalls when
the next task to be executed must await data from a task that belongs to another thread.)
/*Because of full strictness: thread T ′ must be thread T ’s parent; thread T ’s deque must be
empty when T ′ is inserted.*/

A new thread is spawned. If the task of thread T that is currently being executed spawns a child
thread T ′, then thread T is pushed onto the bottom of P’s ready deque, and P begins to
work on thread T ′.

A thread completes or stalls. If thread T completes or stalls, then P checks its ready deque.
Nonempty ready deque. If its deque is not empty, then P pops the bottommost thread and

starts working on it.
Empty ready deque. If its deque is empty, then P initiates workstealing. It chooses a work-

station P′ uniformly at random, “steals” the topmost thread in P′’s ready deque, and
starts working on that thread. If P′’s ready deque is empty, then P chooses another
random “victim.”

Figure 1.3. Procedure Worksteal(T) executes the multithreaded computation rooted at thread T

● Let Procedure Worksteal execute a multithreaded computation on a p-worksta-
tion NOW. If the computation has dag-depth T∞ and work T1, then the expected
running time, including scheduling overhead, is O(T1/p + T∞). This is clearly
within a constant factor of optimal.

B. Case study [110]: The study in [34] follows the traditional algorithmic par-
adigm. An algorithm is described in complete detail, down to the design of its
underlying data structures. The performance/behavior of the algorithm is then
analyzed in a setting appropriate to the genre of the algorithm. For instance, since
Procedure Worksteal is a randomized algorithm, its performance is analyzed in
[34] under the assumption that its input multithreaded computation is selected
uniformly at random from the ensemble of such computations. In contrast to the
preceding approach, the study in [110] describes an algorithm abstractly, via its
state space and state-transition function. The performance/behavior of the algo-
rithm is then analyzed by positing a process for generating the inputs that trigger
state changes. We illustrate this change of worldview by describing Procedure
Worksteal and its analysis in the framework of [110] in some detail. We then
briefly summarize some of the other notable results in that source.

In the setting of [110], when a computer (such as a homogeneous NOW) is
used as a workstealing system, its workstations execute tasks that are generated
dynamically via a Poisson process of rate λ < 1. Tasks require computation time
that is distributed exponentially with mean 1; these times are not known to work-
stations. Tasks are scheduled in a First-Come-First-Served fashion, with tasks
awaiting execution residing in a FIFO queue. The load of a workstation P at time
t is the number of tasks in P’s queue at that time. At certain times (characterized
by the algorithm being analyzed), a workstation P′ can steal a task from another
workstation P. When that happens, a task at the output end of P’s queue (if there
is one) instantaneously migrates to the input end of P′’s queue. Formally, a work-
stealing system is represented by a sequence of variables that yield snapshots
of the state of the system as a function of the time t. Say that the NOW being
analyzed has n constituent workstations.

● nl (t) is the number of workstations that have load l.

● () ()m t n tl i
i

l
def

0=

! is the number of workstations that have load ≥ l.

● () ()/p t n t nl l
def

is the fraction of workstations of load l.

● () () ()/s t p t m t nl i l
i l

def =
3

=

! is the fraction of workstations of load ≥ l.

The state of a workstealing system at time t is the infinite-dimensional vector
() (), (), (),s t s t s t s tdef

0 1 2 fG H.

The goal in [110] is to analyze the limiting behavior, as n → ∞, of n-workstation
workstealing systems under a variety of randomized workstealing algorithms. The
mathematical tools that characterize the study are enabled by two features of the
model we have described thus far. (1) Under the assumption of Poisson arrivals and
exponential service times, the entire workstealing system is Markovian: its next
state, ()s t 1+ , depends only on its present state, ()s t , not on any earlier history.
(2) The fact that a workstealing system changes state instantaneously allows one to

Changing Challenges for Collaborative Algorithmics 15

view time as a continuous variable, thereby enabling the use of differentials rather
than differences when analyzing changes in the variables that characterize a sys-
tem’s state.

We enhance legibility henceforth by omitting the time variable t when it
is clear from context. Note that s 10 / and that the sl are nonincreasing, since sl–1
− sl = pl. The systems analyzed in [110] also have liml→∞ sl = 0.

We introduce the general process of characterizing a system’s (limiting) per-
formance by focusing momentarily on a system in which no workstealing takes
place. Let us represent by dt a small interval of time, in which only one event (a task
arrival or departure) takes place at a workstation. The model of task arrivals (via a
Poisson process with rate λ) means that the expected change in the variable ml
due to task arrivals is λ(ml–1 − ml) dt. By similar reasoning, the expected change
in ml due to task departures—recall that there is no stealing going on—is just
(ml − ml+1)dt. It follows that the expected net behavior of the system over short
intervals is

() (),t
m

m m m md
d l

l l l l1 1= - - -m - +

or, equivalently (by eliminating the ubiquitous factor of n, the size of the NOW),

() ()t
s

s s s sd
d l

l l l l1 1= - - -m - + (3.1)

This last characterization of state changes illustrates the changes’ independ-
ence from the aggregate number of workstations, depending instead only on the
densities of workstations with various loads. The technical implications of this
fact are discussed in some detail in [110], with appropriate pointers to the under-
lying mathematical texts.

In order to analyze the performance of Procedure Worksteal within the cur-
rent model, one must consider how the Procedure’s various actions are perceived
by the workstations of the subject workstealing system. First, under the
Procedure, a workstation P that completes its last task seeks to steal a task from
a randomly chosen fellow workstation, P′, succeeding with probability s2 (the
probability that P′ has at least two tasks). Hence, P now perceives completion of
its final task as emptying its queue only with probability 1 − s2. Mathematically,
we thus have the following modified first equation of system (3.1):

() ()()t
s

s s s s sd
d

11
0 1 1 2 2= - - - -m (3.2)

For l > 1, sl now decreases whenever a workstation with load l either completes
a task or has a task stolen from it. The rate at which workstations steal tasks is
just s1 − s2, i.e., the rate at which workstations complete their final tasks. We thus
complete our modification of system (3.1) as follows:

> , () ()()l t
s

s s s s s sFor d
d

1 1l
l l l l1 1 1 2= - - - + -m - + (3.3)

The limiting behavior of the workstealing system is characterized by seek-
ing the fixed point of system (3.2, 3.3), i.e., the state s for which every dsl /dt = 0.

Denoting the sought fixed point by , , ,0 1 2 f=G Hr r r r , we have

● p0 = 1, because s0 = 1 for all t;

● p1 = λ, because

16 Arnold L. Rosenberg

– tasks complete at rate s1 n, the number of busy workstations;
– tasks arrive at rate λn; and
– at the fixed point, tasks arrive and complete at the same rate;

● from (3.2) and the fact that ds1/dt = 0 at the fixed point,

;2
1 1 2 3

2

2

=
+ - + -

r
m m m

● from (3.3) and the fact that dsl/dt = 0 at the fixed point, by induction,

> , .lFor 2
1l

l

2

2

2=
+ -

r
m r
m r

-

e o
The message of the preceding analysis becomes clear only when one performs

the same exercise with the system (3.1), which characterizes a “workstealing sys-
tem” in which there is no workstealing. For that system, one finds that pl = λl,
indicating that, in the limiting state, tasks are being completed at rate λ. Under
the workstealing regimen of Procedure Worksteal, we still have the pl, for l > 2,

decreasing geometrically, but now the damping ratio is < .
1 2+ -m r

m m In other

words, workstealing under the Procedure has the same effect as increasing the
service rate of tasks in the workstealing system!

Simulation experiments in [110] help one evaluate the paper’s abstract treat-
ment. The experiments indicate that, even with n = 128 workstations, the model’s
predictions are quite accurate, at least for smaller arrival rates. Moreover, the
quality of these predictions improve with larger n and smaller arrival rates.

The study in [110] goes on to consider several variations on the basic theme of
workstealing, including precluding

(1) stealing work from workstations whose queues are almost empty; and
(2) stealing work when load gets below a (positive) threshold. Additionally,

one finds in [110] refined analyses and more complex models for work-
stealing systems.

3.3.2 Cluster computing via cycle-stealing

Cycle-stealing, the use by one workstation of idle computing cycles of another,
views the world through the other end of the computing telescope from work-
stealing. The basic observation that motivates cycle-stealing is that the worksta-
tions in clusters tend to be idle much of the time—due, say, to a user’s pausing for
deliberation or for a telephone call, etc.—and that the resulting idle cycles can
fruitfully be “stolen” by busy workstations [100, 145]. Although cycle-stealing
ostensibly puts the burden of finding available computing cycles on the busy
workstations (the criticisms leveled against cycle-stealing by advocates of work-
stealing), the just-cited sources indicate that this burden can often be offloaded
onto a central resource, or at least onto a workstation’s operating system (rather
than its application program).

The literature contains relatively few rigorously analyzed scheduling algo-
rithms for cycle-stealing in (H)NOWs. Among the few such studies, [16] and the
series [26, 128, 129, 131] view cycle-stealing as an adversarial enterprise, in
which the cycle-stealer attempts to accomplish as much work as possible on the

Changing Challenges for Collaborative Algorithmics 17

“borrowed” workstation before its owner returns—which event results in the
cycle-stealer’s job being killed!

A. Case study [16]: One finds in [16] a randomized cycle-stealing strategy that,
with high probability, succeeds within a logarithmic factor of optimal work pro-
duction. The underlying formal setting is as follows.

● All of the n workstations that are candidates as cycle donors are equally pow-
erful computationally; i.e., the subject NOW is homogeneous.

● The cycle-stealer has a job that requires d steps of computation on any of
these candidate donors.

● At least one of the candidate donors will be idle for a period of D ≥ 3d log n
time units (= steps).

Within this setting, the following simple randomized strategy provably steals
cycles successfully, with high probability.
Phase 1. At each step, the cycle-stealer checks the availability of all n worksta-

tions in turn: first P1, then P2, and so on.
Phase 2. If, when checking workstation Pi, the cycle-stealer finds that it was idle

at the last time unit, s/he flips a coin and assigns the job to Pi with probabil-
ity (1/d)n3x/D−2, where x is the number of time units for which Pi has been idle.
The provable success of this strategy is expressed as follows.

● With probability ≥ 1 − O ((d log n)/D + 1/n), the preceding randomized strat-
egy will allow the cycle-stealer to get his/her job done.

It is claimed in [16] that same basic strategy will actually allow the cycle-stealer
to get log n d-step jobs done with the same probability.

B. Case study [131]: In [26, 128, 129, 131], cycle-stealing is viewed as a game
against a malicious adversary who seeks to interrupt the borrowed workstation in
order to kill all work in progress and thereby minimize the amount of work pro-
duced during a cycle-stealing opportunity. (In these studies, cycles are stolen from
one workstation at a time, so the enterprise is unaffected by the presence or
absence of heterogeneity.) Clearly, cycle-stealing within the described adversarial
model can accomplish productive work only if the metaphorical “malicious
adversary” is somehow restrained from just interrupting every period when the
cycle-donor is doing work for the cycle-stealer, thereby killing all work done by
the donor. The restraint studied in the Known-Risk model of [26, 128, 131] resides
in two assumptions: (1) we know the instantaneous probability that the cycle-
donor has not been reclaimed by its owner; (2) the life function Q that exposes this
probabilistic information— ()tQ is the probability that the donor has not been
reclaimed by its owner by time t—is “smooth.” The formal setting is as follows.

● The cycle-stealer, A, has a large bag of mutually independent tasks of equal
sizes (which measure the cost of describing each task) and complexities (which
measure the cost of computing each task).

● Each pair of communications—in which A sends work to the donor, B, and B
returns the results of that work to A—incurs a fixed cost c. This cost is kept
independent of the marginal per-task cost of communicating between A and
B by incorporating the latter cost into the time for computing a task.

18 Arnold L. Rosenberg

● B is dedicated to A’s work during the cycle-stealing opportunity, so its com-
putation time is known exactly.

● Time is measured in work-units (rather than wall-clock time); one unit of work
is the time it takes for
– workstation A to transmit a single task to workstation B (this is the mar-

ginal transmission time for the task: the (fixed) setup time for each com-
munication—during which many tasks will typically be transmitted—is
accounted for by the parameter c);

– workstation B to execute that task; and
– workstation B to return its results for that task to workstation A.

Within this setting, a cycle-stealing opportunity is a sequence of episodes dur-
ing which workstation A has access to workstation B, punctuated by interrupts
caused by the return of B’s owner. When scheduling an opportunity, the vulnera-
bility of A to interrupts, with their attendant loss of work in progress on B, is
decreased by partitioning each episode into periods, each beginning with A send-
ing work to B and ending either with an interrupt or with B returning the
results of that work. A’s discretionary power thus resides solely in deciding how
much work to send in each period, so an (episode-) schedule is simply a
sequence of positive period-lengths: S = t0, t1, A length-t period in an

episode accomplishes (,)maxt c t c0def6 - units of work if it is not
interrupted and 0 units of work if it is interrupted. Thus, the episode scheduled

by S accomplishes ()t ci
i

k

1

1

6
=

-

! units of work when it is interrupted during period k.

Focus on a cycle-stealing episode whose lifespan (def its maximum possible
duration) is L time units. As noted earlier, we are assuming that we know the risk
of B’s being reclaimed, via a decreasing life function,

()t rdef
Q Q (B has not been interrupted by time t),

which satisfies (1) ()0 1=Q (to indicate B’s availability at the start of the
episode); and (2) ()L 0=Q (to indicate that the interrupt will have occurred by
time L). The earlier assertion that life functions must be “smooth” is embod-
ied in the formal requirement that Q be differentiable in the interval (0, L).
The goal is to maximize the expected work production from an episode gov-
erned by the life function Q, i.e., to find a schedule S whose expected work
production,

EXP-WORK(;) () (),S t c P Ti
i

L

i
def

0
6Q

=

! (3.4)

is maximum, over all schedules for Q . In summation (3.4): each Ti is the partial
sum

.T t t ti i
def

0 2 f+ + +

The presence of positive subtraction, 6, in (3.4) makes analyses of life func-
tions difficult technically. Fortunately, one can avoid this difficulty for all but the
last term of the summation. Say that a schedule is productive if each period—
save possibly the last—has length > c. The following is proved in [26] and, in the
following strict form, in [128].

Changing Challenges for Collaborative Algorithmics 19

● One can effectively3 replace any schedule S for life function Q by a productive
schedule St such that EXP-WORK (;S Pt) ≥ EXP-WORK(;S P).

One finds in [131] a proof that the following characterization of optimal
schedules allows one to compute such schedules effectively.

● The productive schedule , , ,S t t tm0 1 1f= - is optimal for the differentiable life
function Q if, and only if, for each period-index k ≥ 0, save the last, period-length
tk is given by4

() (, () () ()).P T P T t c P T0maxk k k k1 1 1= + -- - -l (3.5)

Since the explicit computation of schedules from system (3.5) can be compu-
tationally inefficient, relying on general function optimization techniques, the fol-
lowing simplifying initial conditions are presented in [131] for certain simple life
functions.

● When P is convex (resp., concave),5 the initial period-length t0 is bounded above
and below as follows, with the parameter y = 1 (resp., y = 1/2):

()
()

()
()

.c
P t
cP t c t c

P t
cP t

c4 2 2 4

2

0

0
0

2

0

0# #- + - +
}l l

3.3.3 Cluster computing via worksharing

Whereas workstealing and cycle-stealing involve a transaction between two
workstations in an (H)NOW, worksharing typically involves many workstations
working cooperatively. The qualifier cooperatively distinguishes the enterprise of
worksharing from the passive cooperation of the work donor in workstealing and
the grudging cooperation of the cycle donor in cycle-stealing.

In this section, we describe three studies of worksharing, namely, the study in
[2], one of four problems studied in [20], and the most general HNOW model of
[17]. (We deal with these sources in the indicated order to emphasize relevant sim-
ilarities and differences.) These sources differ markedly in their models of the
HNOW in which worksharing occurs, the characteristics of the work that is being
shared, and the way in which worksharing is orchestrated. Indeed, part of our
motivation in highlighting these three studies is to illustrate how apparently
minor changes in model—of the computing platform or the workload—can lead
to major changes in the algorithmics required to solve the worksharing problem
(nearly) optimally. (Since the model of [20] is described at a high level in that
paper, we have speculatively interpreted the architectural antecedents of the
model’s features for the purposes of enabling the comparison in this section.)

All three of these studies focus on some variant of the following scenario.
A master workstation P0 has a large bag of mutually independent tasks of equal
sizes and complexities. P0 has the opportunity to employ the computing power of

20 Arnold L. Rosenberg

3The qualifier effectively means that the proof is constructive.
4As usual, f ′ denotes the first derivative of the univariate function f.
5The life function P is concave (resp., convex) if its derivative Pl never vanishes at a point x
where () >P x 0, and is everywhere nonincreasing (resp., everywhere nondecreasing).

an HNOW N comprising workstations P1, P2, . . ., Pn. P0 transmits work to each
of N sl workstations, and each workstation (eventually) sends results back to P0.
Throughout the worksharing process, N sl workstations are dedicated to P0’s
workload. Some of the major differences among the models of the three sources
are highlighted in Table 1.1. The “N/A” (“Not Applicable”) entries in the table
reflect the fact that only short messages (single tasks) are transmitted in [17]. The
goal of all three sources is to allocate and schedule work optimally, within the
context of the following problems:

The HNOW-Utilization Problem. P0 seeks to reach a “steady-state” in which the
average amount of work accomplished per time unit is maximized.

The HNOW-Exploitation Problem. P0 has access to N for a prespecified fixed
period of time (the lifespan) and seeks to accomplish as much work as pos-
sible during this period.

The HNOW-Rental Problem. P0 seeks to complete a prespecified fixed amount
of work on N during as short a period as possible.

The study in [17] concentrates on the HNOW-Utilization Problem. The studies
of [2, 20] concentrate on the HNOW-Exploitation Problem, but this concentration
is just for expository convenience, since the HNOW-Exploitation and -Rental
Problems are computationally equivalent within the models of [2, 20]; i.e., an opti-
mal solution to either can be converted to an optimal solution to the other.

A. Case study [2]: This study employs a rather detailed architectural model for
the HNOW N , the HiHCoHP model of [41], which characterizes each worksta-
tion Pi of N via the parameters in Table 1.2. A word about message packaging
and unpackaging is in order.

● In many actual HNOW architectures, the packaging (p) and unpackaging (r)
rates are (roughly) equal. One would lose little accuracy, then, by equating them.

● Since (un) packaging a message requires a fixed, known computation, the (com-
mon) ratio ri/pi is a measure of the granularity of the tasks in the workload.

● When message encoding/decoding is not needed (e.g., in an HNOW of
trusted workstations), message (un)packaging is likely a lightweight opera-
tion; when encoding/decoding is needed, the time for message (un)packaging
can be significant.

In summary, within the HiHCoHP model, a p-packet message from workstation
Pi to workstation Pj takes an aggregate of () ()pi j+ - + +v m x r r xr time units.

Changing Challenges for Collaborative Algorithmics 21

Table 1.1. Comparing the models of [2], [20], and [17].
Model Feature [2] [20] [17]
Does each communication incur a substantial “setup” Yes No No

overhead?
Is complex message (un)packaging allowed/accounted for? Yes No N/A
Can a workstation send and receive messages simultaneously? No No Yes
Is the HNOW N sl network pipelineable? (A “Yes” allows

savings by transmitting several tasks or results at a time, with Yes Yes N/A
only one “setup.”)

Does P0 allocate multiple tasks at a time? Yes Yes No
Are N sl workstations allowed to redistribute tasks? No No Yes
Are tasks “partitionable?” (A “Yes” allows the allocation of Yes No No

fractional tasks.)

The computational protocols considered in [2] for solving the HNOW-
Exploitation Problem build on single paired interactions between P0 and each
workstation Pi of N : P0 sends work to Pi; Pi does the work; Pi sends results to P0.
The total interaction between P0 and the single workstation Pi is orchestrated as
shown in Figure 1.4. This interaction is extrapolated into a full-blown workshar-
ing protocol via a pair of ordinal-indexing schemes for N sl workstations in order
to supplement the model’s power-related indexing described in the
“Computation” entry of Table 1.2. The startup indexing specifies the order in
which P0 transmits work to N sl workstations; for this purpose, we label the work-
stations Ps1

, Ps2
, . . .,Psn

to indicate that Psi
receives work—hence, begins work-

ing—before Psi+1 does. The finishing indexing specifies the order in which N sl
workstations return their work results to P0; for this purpose, we label the work-
stations Pf1

, Pf2
, . . ., Pfn

to indicate that Pfi
ceases working—hence, transmits its

results—before Pf i+1
does. Figure 1.5 depicts a multiworkstation protocol. If we

let wi denote the amount of work allocated to workstation Pi, for i = 1, 2, . . ., n,
then the goal is to find a protocol (of the type described) that maximizes the over-
all work production W w w wn1 2 g= + + + .

Importantly, when one allows work allocations to be fractional, the work pro-
duction of a protocol of the form we have been discussing can be specified in

22 Arnold L. Rosenberg

Table 1.2. A summary of the HiHCoHP model.
Computation-related parameters for N sl workstations
Computation Each Pi needs ri work units to compute a task.

By convention: .1n1 2 g# # # /t t t
Message-(un)packaging Each Pi needs:

i i n
def

r t r time units per packet to package a message
for transmission

(e.g., break into packets, compute checksums, encode);

i i n
defr tr time units per packet to unpackage a received
message.

Communication-related parameters for N sl network
Communication setup Two workstations require s time units to set up a

communication (say, via a handshake).
Network latency The first packet of a message traverses N sl

network in l time units.
Network transit time Subsequent packets traverse N sl network in

t time units.

P0 transmits

work

Pi transmits

results

P0 unpacks

results

Pi unpacks

work

Pi does

work

in
network

in
network

Pi prepares

results for P0

P0 prepares

work for Pi

in P0

in Pi in P0

π0 wi πi wi πi δ wiρi wiτ(wi - 1)σ σλ τ(δwi - 1)λ

setup

in
P0 , Pi
and

network

in
P0 , Pi
and

network

P0 Pi

setup

Pi P0

π0 δ wi

Figure 1.4. The timeline for P0’s use of a single “rented” workstation Pi (not to scale)

a computationally tractable, perspicuous way. If we enhance legibility via the
abbreviations of Table 1.3, the work production of the protocol (,)P R U
that is specified by the startup indexing Σ = 〈 s1, s2, . . ., s n 〉 and finishing index-
ing Φ = 〈 f1, f2, . . ., fn 〉 over a lifespan of duration L is given by the following sys-
tem of linear equations:

()
()

()
()

,
B

B
B

B

B
B

B
B

B

w
w

w
w

L c
L c

L c
L c

VC
VC

VC

FC
FC

FC
FC

2
2

2
2

,

,

,

,

,

,

,

,

,n

n

n

n

n

n

n n

n n

n

n

n

n

1 1

2 1

1 1

1

1 2

2 2

1 2

2

1

2

1

1

2

1

1

2

1

$h h

g

g

g

g

g

h h h

+

+

+

=

- +

- +

- +

- +

t
t

t
- - - - -

J

L

K
K
K
K
K
KK

J

L

K
K
K
K
K
KK

J

L

K
K
K
K
K
KK

N

P

O
O
O
O
O
OO

N

P

O
O
O
O
O
OO

N

P

O
O
O
O
O
OO

(3.6)

where

● SBi is the set of startup indices of workstations that start before Pi ;

● FAi is the set of finishing indices of workstations that finish after Pi ;

● ;c SB FAi i i
def

+ and

● B

if

if

if

otherwise

SB and FA

SB and FA

SB and FA

j j

j j

j j

0

,i j

i i

i i

i i

0

0

! !

! !

! !
=

+ +

+

r x xd

r x

xd

Y

Y

Z

[

\

]
]]

]
]]

Changing Challenges for Collaborative Algorithmics 23

Table 1.3. Some useful abbreviations
Abbrev. Quantity Meaning
xu t(1 + d) Two-way transmission rate

iru i i+r r d Two-way message-packaging rate for Pi
FC (s + l − t) Fixed overhead for an interworkstation

communication
VCi i0 + +r x ru u Variable communication overhead rate for Pi

Receive

Receive

Receive

PreparePrepare Prepare
Transmit

Transmit

Transmit

Transmit

Transmit
ComputeCompute

Compute

Compute

Compute

Compute

Transmit

Prepare

Prepare

Prepare

σ λ − τ+
τ ws

2

σ λ − τ+
τ ws

2

σ λ − τ+
τ ws

3

λ − τ+
τ δ wf

1

λ − τ+
τ δ wf

2

λ − τ+
τ δ wf

3

σ

σ

Lifespan L

P0
W0 W0 (Total compute time)

Ps
1

Ps
2

Ps
3

Pf
1

Pf
2

Pf
3

π0 ws
1

π0 ws
2

π0 ws
3

πs
1

ws
1

πs
2

ws
2

πs
3

ws
3

ρs
1

ws
1

ρs
2

ws
2

ρs
3

ws
3

ρf
3

wf
3

ρf
1

wf
1

ρf
2

wf
2

πf
1

δ wf
1

πf
2

δ wf
2

πf
3

δ wf
3

π

σ

Figure 1.5. The timeline (not to scale) for 3 “rented” workstations, indicating each workstation’s
lifespan. Note that each Pi’s lifespan is partitioned in the figure between its incarnations as some
Psa

and some Pfb
.

The nonsingularity of the coefficient matrix in (3.6) indicates that the work
production of protocol P (,R U) is, indeed, specified completely by the indexings
Σ and Φ.

Of particular significance in [2] are the FIFO worksharing protocols, which
are defined by the relation Σ = Φ. For such protocols, system (3.6) simplifies to

()
()

()
()

w
w

w

w

L n
L n

L n
L n

VC
VC

VC

FC
FC

FC
FC

1
1

1
1

s s

s s

s s

s

s

s

s

0

0

0

0

0 n n

i

n

n

1 1

2 2 2

1

$h h

g

g

g

g

g

h h h

+

+

+

+

+

+

+ +

- +

- +

- +

- +

t
r x

r x
r x

xd
t

r x
r x

xd
xd

xd
t

-

J

L

K
K
K
K
K
KK

J

L

K
K
K
K
K
K

J

L

K
K
K
K
K
KK

N

P

O
O
O
O
O
OO

N

P

O
O
O
O
O
O

N

P

O
O
O
O
O
OO

(3.7)

It is proved in [2] that, surprisingly,

● All FIFO protocols produce the same amount of work in L time units, no matter
what their startup indexing. This work production is obtained by solving system
(3.7).

FIFO protocols solve the HNOW-Exploitation Problem asymptotically opti-
mally [2]:

● For all sufficiently long lifespans L, a FIFO protocol produces at least as much
work in L time units as any protocol P (,R U).

It is worth noting that having to schedule the transmission of results, in addi-
tion to inputs, is the source of much of the complication encountered in proving
the preceding result.

B. Case study [20]: As noted earlier, the communication model in [20] is spec-
ified at a high level of abstraction. In an effort to compare that model with the
HiHCoHP model, we have cast the former model within the framework of the lat-
ter, in a way that is consistent with the algorithmic setting and results of [20]. One
largely cosmetic difference between the two models is that all speeds are measured
in absolute (wall-clock) units in [20], in contrast to the relative work units in [2].
More substantively, the communication model of [20] can be obtained from the
HiHCoHP model via the following simplifications.

● There is no cost assessed for setting up a communication (the HiHCoHP cost s).
Importantly, the absence of this cost removes any disincentive to replacing a sin-
gle long message by a sequence of shorter ones.

● Certain costs in the HiHCoHP model are deemed negligible and hence ignor-
able:
the per-packet transit rate (t) in a pipelined network, and
the per-packet packaging (the pi) and unpackaging (the ir) costs.

These assumptions implicitly assert that the tasks in one’s bag are very coarse,
especially if message-(un) packaging includes en/decoding.

These simplifications imply that, within the model of [20],

● The heterogeneity of the HNOW N is manifest only in the differing compu-
tation rates of ’N s workstations.

24 Arnold L. Rosenberg

● In a pipelined network, the distribution of work to and the collection of results
from each of ’N s workstation take fixed constant time. Specifically, P0 sends
work at a cost of t()

com
work time units per transmission and receives results at a cost

of t()
com
results time units per transmission.

Within this model, [20] derives efficient optimal or near-optimal schedules for
the four variants of the HNOW-Exploitation Problem that correspond to the four
paired answers to the questions: “Do tasks produce nontrivial-size results?” “Is

’N s network pipelined?” For those variants that are NP-Hard, near-optimality is
the most that one can expect to achieve efficiently—and this is what [20] achieves.

The Pipelined HNOW-Exploitation Problem—which is the only version we
discuss—is formulated in [20] as an integer optimization problem. (Tasks are
atomic, in contrast to [2].) One allocates an integral number—call it ai—of tasks
to each workstation Pi via a protocol that has the essential structure depicted in
Figure 1.5, altered to accommodate the simplified communication model. One
then solves the following optimization problem.

Find: A startup indexing: Σ = 〈 s1, s2,. . ., sn 〉
A finishing indexing: Φ = 〈 f1, f2,. . ., fn 〉
An allocation of tasks: Each Pi gets ai tasks

That maximizes: ai
i

n

1=

! (the number of tasks computed)

Subject to the constraint: All work gets done within the lifespan; formally,

()[].i n s t a t f t L1 () ()
i i i icom

work
com
results$ $ $6 # # #+ + (3.8)

Not surprisingly, the (decision version of the) preceding optimization problem
is NP-Complete and hence, likely computationally intractable. This fact is proved
in [20] via reduction from a variant of the Numerical 3-D Matching Problem.
Stated formally,

● Finding an optimal solution to the HNOW-Exploitation Problem within the
model of [20] is NP-complete in the strong sense.6

Those familiar with discrete optimization problems would tend to expect a
Hardness result here because this formulation of the HNOW-Exploitation
Problem requires finding a maximum “paired-matching” in an edge-weighted ver-
sion of the tripartite graph depicted in Figure 1.6. A “paired-matching” is one
that uses both of the permutations Σ and Φ in a coordinated fashion in order to
determine the ai. The matching gives us the startup and finishing orders of ’N s
workstations. Specifically, the edge connecting the left-hand instance of node i
with node Pj (resp., the edge connecting the right-hand instance of node k with
node Pj) is in the matching when sj = i (resp., fj = k). In order to ensure that an
optimal solution to the HNOW-Exploitation Problem is within our search space,
we have to accommodate the possibility that sj = i and fj = k, for every distinct
triple of integers i, j, k ∈ {1, 2,. . ., n}. In order to ensure that a maximum match-
ing in the graph of Figure 1.6 yields this optimal solution, we weight the edges of
the graph in accordance with constraint (3.8), which contains both si and fi. If we

Changing Challenges for Collaborative Algorithmics 25

6The strong form of NP-completenes measures the sizes of integers by their magnitudes rather
than the lengths of their numerals.

let w(u, v) denote the weight on the edge from node u to node v in the graph, then,
for each 1 ≤ i ≤ n, the optimal weighting must end up with

(,) (,) .s P P f t
L s t f t() ()

i i i i
i

i icom
work

com
results$ $

+ =
- -

~ ~
S

T
SS

W

X
WW

While the desired weighting would lead to an optimal solution, it also leads to
NP-Hardness. We avoid this complexity by relinquishing our demand for an opti-
mal solution. A simple approach to ensuring reasonable complexity is to decou-
ple the matchings derived for the left-hand and right-hand sides of the graph of
Figure 1.6, which is tantamount to ignoring the interactions between Σ and Φ
when seeking work allocations. We achieve the desired decoupling via the follow-
ing edge-weighting:

(,)
/

(,)
/

.i P t
L i t

P k t
L k t

and
2 2() ()

j
j

j
j

com
work

com
results$ $

=
-

=
-

~ ~
S

T
SS

S

T
SS

W

X
WW

W

X
WW

We then find independent left-hand and right-hand maximum matchings,
each within time O(n5/2). It is shown in [20] that the solution produced by this
decoupled matching problem deviates from the true optimal solution by only an
additive discrepancy of ≤ n.

● There is an O(n5/2)-time work-allocation algorithm whose solution (within the
model of [20]) to the HNOW-Exploitation Problem in an n-workstation
HNOW is (additively) within n of optimal.

C. Case study [17]: The framework of this study is quite different from that of
[2, 20], since it focuses on the HNOW-Utilization Problem rather than the HNOW-
Exploitation Problem. In common with the latter sources, a master workstation

26 Arnold L. Rosenberg

Figure 1.6. An abstraction of the HNOW-Exploitation Problem within the model of [20]

Pn

.
.

.

.
.

.

.
.

.

nn

P2

P1

2

1

2

1

Weighted with work allocations

Startup
Order Wkstations

Finishing
Order

enlists the computational resources of an HNOW N in computing a bag of tasks
that are equal in both size and complexity. Here, however, the master workstation
is a member—call it Pm—of the HNOW N . Moreover, here the bag of tasks is
massive, and there is no a priori limit to the duration of the worksharing enterprise.
Additionally, the form of worksharing considered is different from and, in some
ways, more ambitious than in [2, 20]. Now, Pm allocates one task at a time, and
workstations may redistribute these work allocations (one task at a time) at will,
along direct communication links between selected pairs of workstations. Finally,
in contrast to the HNOW-Exploitation Problem, one wants here to have the
worksharing regimen reach an optimal “steady state,” in which the average aggre-
gate number of tasks computed per time-step is maximized. We describe here
only the most general of the scheduling results in [17], which places no a priori
restriction on which pairs of workstations can communicate directly with each
other.

As in the HiHCoHP model, each workstation Pi of [17] has a computation rate
ri (cf. Table 1.2) which indicates the amount of time Pi takes to compute one task—
but the indices here do not reflect relative speeds. Every pair of workstations, Pi
and Pj, has an associated cost cij of transmitting a single task (with all material nec-
essary for its computation) between Pi and Pj, in either direction. To simplify the
development, the cost associated with a task is “double-ended,” in the sense that it
includes the cost of transmitting both that task and (at a later time) the results from
that task. If Pi and Pj can communicate directly with one another—for short, are
neighbors—then cij is finite; if they cannot, then, by convention, cij = ∞. The com-
munication model in [17] is thus closer to that of [131] than to that of [2], for in the
latter, the possible differences between packaging and unpackaging times may ren-
der communication costs asymmetric. Several regimens are considered in [17] con-
cerning what processes may occur in parallel. We focus here only on their “base
model,” in which a workstation can simultaneously receive a task (or a result) from
one neighbor, send a task (or a result) to one (possibly different) neighbor, and
process some task (that it already has). In summation, if workstation Pi sends a
task to workstation Pj at time-step t, then, until time t + cij :

● Pj cannot start executing this task nor initiate another receive operation;

● Pi cannot initiate another send operation.

Within the preceding model, the goal of the study—optimal steady-state per-
formance—is formalized as follows. For each 1 ≤ i ≤ n, let n(i) be the set of indices
of workstation Pi’s neighbors. During a snapshot depicting one unit of activity by
the HNOW N :

● ki is the fraction of time during which Pi is computing;

● sij is the fraction of time during which Pi is sending to neighbor Pj ;

● rij is the fraction of time during which Pi is receiving from neighbor Pj .

The quantity ki/ri is the throughput of workstation Pi during the isolated
time unit. To wit, Pi is capable of computing 1/ri tasks in one time unit; in the
snapshot, only the fraction ki of that time unit is spent computing. The goal is to
maximize the quantity

Changing Challenges for Collaborative Algorithmics 27

Throughput-rate ,
k

i

i

i

n

1

def
t

=

! (3.9)

subject to the following seven sets of constraints imposed by the model.
1. for all i: 0 ≤ ki ≤ 1

for all i, j ∈ n(i): 0 ≤ sij ≤ 1
for all i, j ∈ n(i): 0 ≤ rij ≤ 1
These reflect the fact that ki, sij, and rij are proper fractions.

2. for all i, j ∈ n(i): sij = rji
Each Pj receives whatever each neighbor Pi sends it.

3. for all i: Σj∈n(i) sij ≤ 1
for all i: Σj∈n(i) rij ≤ 1
These reflect the single-port communication regimen.

4. for all i, j ∈ n(i): sij + rji ≤ 1
Even though a link is bidirectional, its bandwidth can never be
exceeded. (Multiply the inequality by the bandwidth 1/cij to clarify the
constraint.)

5. for all i ≠ m: c
r k

c
s

()() ij

ij

i

i
ij

ij

j n ij n i
= +t

!!

!!
A conservation law: For every Pi except the master Pm—which starts out
with “infinitely many” tasks—the number of tasks that Pi receives
should equal the number that it computes, plus the number that it relays
to other Pj.

6. for all j ∈ n(m): rmj = 0
Since Pm is saturated with tasks ab initio, there can be no advantage to
sending it additional tasks.

7. km / 1
The model allows Pm to compute without interruption.

The preceding formulation of the goal affords one an efficient alogorithm for
optimally solving the HNOW-Utilization Problem on the HNOW N [17].

● The optimization problem (3.9), augmented with the seven sets of constraints,
comprises a linear program whose solution yields the optimal solution for the
HNOW-Utilization Problem on the HNOW N .

● This linear program finds this schedule in a time polynomial in the size of N , as
measured by the number of workstations and the number of direct interworksta-
tion links.

Significant related studies. One finds in [3] a model that captures the same
features as does HiHCoHP but without allowing for workstation heterogene-
ity. Through use of this model, it is proved that the FIFO Protocol pro-
vides optimal solutions for the HNOW-Exploitation Problem in homogeneous
NOWs.

We remarked earlier that one finds in [20] four variants of the HNOW-
Exploitation Problem, not just the one variant we have described. In all four vari-
ants, the master workstation sends an allocation of equal-size, equal-complexity
tasks to all workstations of the “exploited” HNOW N and receives the results of
those tasks; all tasks are assumed to produce the same amount of data as results;
all communication is single ported. Two families of worksharing protocols are

28 Arnold L. Rosenberg

considered, one of which has work distributed and results collected in the stag-
gered manner depicted in Figure 1.5, and the other of which has work distributed
via a scatter operation and results collected via a gather operation.

The HNOW-Rental Problem is studied in [163], under a model in which tasks
produce no output and communication can overlap with computation, even on
the same workstation. Worksharing proceeds by having the master workstation
transmit equal-size chunks of work to the rented HNOW’s workstations at a fre-
quency determined by an analysis of the workstations’ powers. A near-optimal
algorithm is derived within this setting.

One finds in [22, 23, 42] and sources cited therein a model that is simpler than
those discussed thus far. These sources employ a very abstract model that sup-
presses many of the costs accounted for in the other cited studies.

Employing a rather different approach to worksharing, the study in [15] con-
siders how to allocate a single compute-intensive task within an HNOW N . The
decision about which workstation(s) will receive the task is made based on an
“auction.” The master workstation determines which aggregation of N sl work-
stations will—according to the source’s cost model—yield the best performance
on the auctioned task.

Finally, one finds in [56] a largely experimental study of worksharing in
HNOWs whose workstations share resources in a nondedicated manner. As in
a Computational Grid (see Section 4.1), the workstations of [56] timeshare
their cycles with partners’ work, rather than dedicating cycles to that work.
As in [15], work is allocated among the HNOW’s workstations based on antic-
ipated performance on that work; in contrast to [15], “anticipated perform-
ance” is explicitly determined empirically; all workstations simultaneously and
continuously monitor the anticipated performance of their fellow HNOW
members.

4 INTERNET COMPUTING

Advancing technology has rendered the Internet a viable medium for collabo-
rative computing, via mechanisms such as Grid computing (GC, for short) and
Web-based computing (WC, for short). Our interest in these modalities of
Internet computing resides in their (not uncommon) use for computing a mas-
sive collection of (usually compute-intensive) tasks that reside at a “master” com-
puting site. When so used, the master site views its collaborators as remotely
situated “volunteers” who must be supplied with work in a manner that enhances
the completion of the massive job.

4.1 The Platform(s)

Computational Grids. A GC project presupposes the formation of a
Computational Grid—a consortium of computing sites that contract to share
resources [62, 63]. From time to time, a Grid computing site will send a task to a
companion Grid site that has agreed to share its computing cycles. When this
companion site returns the result of its current task, it becomes eligible for fur-
ther worksharing.

Changing Challenges for Collaborative Algorithmics 29

Web-based computing. In a WC project, a volunteer registers with the master
site and receives a task to compute. When a volunteer completes its current task,
it revisits the master site to return the results of that task and to receive a new
task. Interesting WC projects include [85, 159], which perform astronomical cal-
culations; [137], which performs security-motivated number-theoretic calcula-
tions; and [76, 116, 160], which perform medical and biological computations.
Such sites benefit from Internet computing either because of the sheer volume of
their workloads or because of the computational complexity of their individual
tasks.

4.2 Some Challenges

The endeavor of using the Internet for collaborative computing gives rise to
two algorithmic challenges that are not encountered in environments in which the
computing agents are more tightly coupled. We term these challenges temporal
and factual unpredictability.

Temporal unpredictability. Remote computing agents in an Internet computing
project—be it a WC or GC project—typically tender no guarantee of when the
results from an allocated task will be returned to the master site. Indeed, in a WC
project, that site typically has no guarantee that a volunteer will ever return
results. This lack of a time guarantee is an annoyance when the tasks composing
the collaborative workload are mutually independent—i.e., form a bag of tasks—
but at least one never runs out of tasks that are eligible for allocation. (Of course,
if all tasks must eventually be executed—which is not the case with several WC
projects—then this annoyance must trigger some action, such as reallocation, by
the master site.) However, when the tasks in the workload have interdependencies
that constrain their order of execution, this temporal unpredictability can lead to
a form of gridlock wherein no new tasks can be allocated for an indeterminate
period, pending the execution of already allocated tasks. Although safety devices
such as deadline-triggered reallocation of tasks address this danger, they do not
eliminate it, since the backup remote participant assigned a given task may be as
dilatory as the primary one. A major challenge is how to orchestrate the alloca-
tion of tasks in a way that minimizes the likelihood of this form of gridlock.

Factual unpredictability. The volunteers who participate in a WC project typi-
cally need not authenticate their alleged identities. In many such projects, the
sheer number of participants would render the use of costly trusted authentica-
tion mechanisms impracticable. This fact renders all interchanges with—and
information from—volunteers totally insecure. As noted in Section 1, this situa-
tion apparently creates an irresistible temptation for hackers, who plague many
WC projects, greatly increasing the overhead for these projects. For this reason,
one might suggest using WC only for security-insensitive applications (relating,
say, to processing astronomical data [85, 159]) where erroneous or even mischie-
vously or maliciously false results are not likely to have dire consequences.
However, many of the most important applications of WC involve very sensitive
applications, such as security-related [137] or health-related [76, 116] ones.
Indeed, for many applications that generate truly massive numbers of identical

30 Arnold L. Rosenberg

tasks, Web-based computing is one of the only imaginable ways to assemble mas-
sive computing power at manageable cost. The challenge is to coordinate the vol-
unteers in a WC project in a way that minimizes potential disruptions by hackers,
while not excessively slowing down the progress of legitimate participants.

4.3 Some Sophisticated Responses

There have thus far been few rigorously analyzed algorithmic studies of com-
puting on the Internet, via either WC or GC. One significant such study is [17],
which studies worksharing in Grids. By rescaling model parameters, this study
applies also to worksharing in HNOWs, which is the context in which we discuss
it (Section 3.3.3.C). We have opted to reserve this section for studies that address
problems unique to Internet computing.

4.3.1 Scheduling to cope with temporal unreliability

A. Case study [133, 136]: These sources craft and study a model that abstracts
the process of scheduling computation-dags for either GC or WC. The goal of the
model is to allow one to avoid the gridlock encountered when a computation
stalls because all tasks that are eligible for execution have been allocated but not
yet returned. The model is inspired by the many pebble games on dags that have
been shown, over several decades, to yield elegant formal analogues of a variety
of problems related to scheduling the task-nodes of computation-dags [47, 73, 118].
Such games use tokens called pebbles to model the progress of a computation on a
dag: the placement or removal of the various available types of pebbles—which is
constrained by the dependencies modeled by the dag’s arcs—represents the chang-
ing (computational) status of the dag’s task-nodes. The Internet-Computing (IC, for
short) Pebble Game on a computation-dag G involves one player S, the Server, and
an indeterminate number of players C1, C2, . . ., the Clients. The Server has access
to unlimited supplies of three types of pebbles: ELIGIBLE-BUT-UNALLOCATED (EBU,
for short) pebbles, ELIGIBLE-AND-ALLOCATED (EAA, for short) pebbles, and EXE-
CUTED (XEQ, for short) pebbles. The Game’s moves reflect the successive stages in
the life-cycle of a node in a computation-dag, from eligibility for execution
through actual execution. Figure 1.7 presents the rules of the IC Pebble Game.
The reader should note how the moves of the Game expose the danger of a play’s
being stalled indefinitely by dilatory Clients.

There is little that one can do to forestall the chances of gridlock when play-
ing the IC Pebble Game, absent some constraint on the actions of the Clients.
Without some constraint, a malicious adversary (read: unfortunate behavior by
Clients) could confound any attempt to guarantee the availability of a node con-
taining an EBU pebble—by imposing a pessimal order on the execution of allo-
cated tasks. The constraint imposed by the study in [133, 136] is the assumption
that tasks are executed in the same order as they are allocated. (Since many GC
and WC master sites monitor the state of remote participants, this assumption is
not totally fanciful.) With this assumption in place, these studies attempt to opti-
mize the quality of a play of the IC Pebble Game on a dag G by maximizing, at
all steps t, the aggregate number of EBU pebbles on ’G s nodes, as a function of the
number of EAA and XEQ pebbles on ’G s nodes.

Changing Challenges for Collaborative Algorithmics 31

The computation-dags studied in [133, 136] are the four depicted in Figure 1.8:
the (infinite) evolving mesh-dag, reduction-oriented versions of mesh-dags and
tree-dags, and the FFT-dag [48]. It is shown in [133] (for evolving 2-dimensional
mesh-dags) and in [136] (for the other dags in Figure 1.8) that a schedule for the
dags in Figure 1.8 is optimal if, and only if, it allocates nodes in a parent-oriented
fashion—i.e., it executes all parents of each node in consecutive steps. This gen-
eral result translates to the following dag-specific instances.

32 Arnold L. Rosenberg

● At any step of the game, S may place an EBU pebble on any unpebbled source
node of G . /* Unexecuted source nodes are always eligible for execution, hav-
ing no parents whose prior execution they depend on.*/

● Say that Client C i approaches S requesting a task. If Ci has previously been
allocated a task that it has not completed, then Ci’s request is ignored; other-
wise, the following occurs.

– If at least one node of G contains an EBU pebble, then S gives Ci the task
corresponding to one such node and replaces that node’s pebble with an
EAA pebble.

– If no node of G contains an EBU pebble, then Ci is told to withdraw its
request, and this move is a no-op.

● When a Client returns (the results from) a task-node, S replaces that task-
node’s EAA pebble by an XEQ pebble. S then places an EBU pebble on each
unpebbled node of G , all of whose parents contain XEQ pebbles.

● S’s goal is to allocate nodes in such a way that every node v of G eventually
contains an XEQ pebble.
/*This modest goal is necessitated by the possibility that G is infinite.*/

Figure 1.7. The rules of the IC Pebble Game

1,0

2,0

3,0 2,1

0,0

1,1

0,1

1,2

0,2

0,3

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

0100 10 11

101100

1

10111010

001000

0000 0001

0

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

0

1

2

3

1,0

2,0

3,0

4,0

2,1

3,1

0,0

1,1

2,2

0,1

1,2

0,2

0,3

1,3 0,4

Level

λ

Figure 1.8. Clockwise from upper left: the evolving (2-dimensional) mesh-dag, a (binary) reduc-
tion-tree dag, the 5-level (2-dimensional) reduction-mesh dag, the 4-level FFT-dag

● The strategy of executing nodes of evolving mesh-dags along successive levels of
the dag—level k comprises all nodes · x, y Ò such that x + y = k—is optimal for
2-dimensional mesh-dags. (It is shown in [133] that this strategy is within a con-
stant factor of optimal for mesh-dags of higher (fixed) dimensionalities.)

The proof for 2-dimensional mesh-dags is immediate from the following
observation. No two eligible nodes can reside in the same row or the same column
of the mesh-dag at any step of the IC Pebble Game; moreover, all “ancestors” of
each EBU node must contain XEQ pebbles. Hence, when there are n EBU nodes on

the dag, there must be at least ()n
2 XEQ nodes “supporting” them. The

argument for higher dimensionalities is similar in strategy but significantly more
complex.

● For reduction-oriented mesh-dags, a schedule is optimal if it executes nodes
along successive levels of the dag.

● For reduction-oriented tree-dags and for the FFT-dag, a schedule is optimal if
“sibling” nodes—nodes that share a parent—are always executed in consecutive
steps.

For reduction-mesh dags, the optimality condition follows from the fact that
the aggregate number of EBU nodes on the dag at any step of the IC Pebble Game
is bounded above by (one plus) the smallest index of a level of the dag that con-
tains a pebble at step t; one therefore wants this index to shrink as slowly as pos-
sible. For the other dags, the aggregate number of EBU nodes on the dag at a step
of the IC Pebble Game is bounded above by a quantity depending on the struc-
ture of the dag and the number of XEQ nodes at that step, minus the number of
nodes that contain XEQ pebbles while their siblings don’t.

Significant progress is made in [102] toward developing techniques for craft-
ing optimal schedules for a broad range of computation-dags, by abstracting and
generalizing the scheduling principles underlying the case studies in [133, 136].

4.3.2 Scheduling to cope with factual unreliability

There is substantial work going on in the secure-computing community that
is aimed at identifying attempts to compromise collaborative computing proj-
ects; see, e.g., [144] and sources cited therein. We know, however, of only one
study aimed at possibly eliminating hackers from a WC project once they are
identified.

A. Case study [132]: This source studies an unusual facet of the security
problem in WC. It develops a computationally lightweight scheme for keeping
track of which volunteers in a WC project computed which tasks. Much of the
scheme employs familiar algorithmic techniques involving search trees for point-
and range-queries. The unique aspect of the scheme is a strategy that assigns
positive-integer indices to

1. the set of all tasks at the master site,
2. all volunteers (who are allowed to arrive and depart dynamically), and
3. the set of tasks reserved for each volunteer v

Changing Challenges for Collaborative Algorithmics 33

and that interrelates the resulting three sets of indices. The interrelation mecha-
nism is a task-allocation function (TAF, for short), i.e., a pairing function j that
maps the set N × N of pairs of positive integers one-to-one, onto the set N of pos-
itive integers; symbolically, j: N × N) N. Each copy of the set N plays the role
of one of the indicated sets of indices. The potential practicality of such a scheme
demands that the functions j, j−1, and j (u, t + 1) − j (u, t) all be easily computed;
to wit, the “master” site must compute

● j (v, t) to determine the index in the overall workload of the tth task in vol-
unteer v’s workload;

● j−1 (t) to determine which volunteer, v, was assigned task t, and what index
task t has in v’s workload; and

● j (v, t +1) − j (v,t) to determine which task to allocate to volunteer v when s/he
returns the results of his/her task t.

In a quest for computational ease, the primary focus in [132] is on TAFs that
are additive (are ATAFs, for short). An ATAF assigns each volunteer v a base
task-index Bv and a stride Sv; it then uses the formula

j (v,t) = Bv + (t − 1) Sv

to determine the workload task-index of the tth task assigned to volunteer v.
From a system perspective, ATAFs have the benefit that a volunteer’s stride
need be computed only when s/he first registers at the website, and can be stored
for subsequent appearances.

The main results of [132] determine how to assign base task-indices and strides
to volunteers efficiently, both in terms of computing these indices and in terms of
having the indices grow as slowly as possible, as functions of the volunteer-index
v. The slow growth of Bv and Sv is argued in [132] to facilitate management of
the memory in which the tasks are stored. Toward this end, a procedure for

34 Arnold L. Rosenberg

Procedure ATAF-Constructor (j) (see Figure 1.9) builds on the preceding result
to construct ATAFs efficiently.

Step 1. Partition the set of volunteer-task-indices into groups whose sizes are
powers of 2 (with any desired mix of equal-size and distinct-size groups).
Order the groups linearly in some (arbitrary) way.
/*We can now talk unambiguously about group 0 (whose members share
group-index g = 0), group 1 (whose members share group-index g = 1), and
so on.*/

Step 2. Assign each group a distinct copy of the set Ø, via a copy-index k(g)
expressed as a function of the group-index g.
/*We can now talk unambiguously about group g’s copy Øk(g) of the odd
integers.*/

Step 3. Allocate group g’s copy Øk(g) to its members via the (c = k(g)) instance of
the cited property of the odd integers, using the multiplier 2g as a signature
to distinguish group g’s copy of the set Ø from all other groups’ copies.

Figure 1.9. Procedure ATAF-Constructor(j), which constructs an ATAF j

contructing ATAFs is presented, based on the following well-known property of
the set Ø of positive odd integers; see [113].

● For any positive integer c, every odd integer can be written in precisely one of the
2c-1 forms: 2cn + 1, 2cn + 3, 2cn + 5, . . ., 2cn + (2c - 1), for some nonnegative
integer n.

An explicit expression for the ATAFs of Procedure ATAF-Constructor.
If we denote the 2k(g) rows of group g as xg,1, xg,2, . . ., xg, 2k(g), then for all
i ∈ {1, 2, . . ., k(g)},

(,) [() ()].modx y y x2 2 1 2 1 2,
()

,
()

g i
g k g

g i
k g1 1def - + +{ + +

Figure 1.10 illustrates the construction via a sampler of argument-result val-
ues from three sample ATAFs. The first two exemplified ATAFs, j<1> and j<3>,
stress ease of computation; the third, j# (x,y), stresses slowly growing strides.

ACKNOWLEDGMENTS

The research of the author was supported in part by NSF Grant CCR-00-73401.
Thanks are due many colleagues who helped in varied ways: by commenting on the
text, by pointing out references, and by giving permission to have their work sum-
marized here. I hesitate to enumerate them for fear of inadvertently forgetting
some. Let me, therefore, merely assure them of my sincere gratitude.

REFERENCES

[1] U. Acar, G.E. Blelloch, R.D. Blumofe (2002): The data locality of work
stealing. Theory of Computing Systs. 35, 321–347.

Changing Challenges for Collaborative Algorithmics 35

j <1> (x, y)

j <3> (x, y)

57344
114688

73728
147456

…
…

j <#> (x, y)

〈x, g 〉
〈14, 13 〉
〈15, 14 〉

〈x, g 〉
〈14, 13 〉
〈15, 3 〉

〈x, g 〉
〈28, 4 〉
〈29, 4 〉

〈28, 6 〉
〈29, 7 〉

8192

24 88
104

960
1152

152
168

1472
2176

216
232

1984
3200

280
296

2496
4224

40

448

400
432

912
944

1424
1456

1936
1968

2448
2480

128

16384
24576
49152

40960
81920

…
…

…
…

…
…

… … … … … …

j <1> (x, y) 2x − 1 [2(y − 1) + (2x − 1 mod 2)]def

j <3> (x, y) 2[(x − 1)/4] [8(y − 1) + (2x − 1 mod 8)]def

j <#> (x, y) 2[log x] (21+[log x] (y − 1) + (2x + 1 mod 21+[log x]))def

Figure 1.10.

[2] M. Adler, Y. Gong, A.L. Rosenberg (2003): Optimal sharing of bags of
tasks in heterogeneous clusters. 15th ACM Symp. on Parallelism in
Algorithms and Architectures (SPAA '03), 1–10.

[3] J. Agrawal and H.V. Jagadish (1988): Partitioning techniques for large-
grained parallelism. IEEE Trans. Computers 37, 1627–1634.

[4] W. Aiello, S.N. Bhatt, F.R.K. Chung, A.L. Rosenberg, R.K. Sitaraman
(2001): Augmented ring networks. IEEE Trans. Parallel and Distr. Systs. 12,
598–609.

[5] S. Akl (1989): The Design and Analysis of Parallel Algorithms. Prentice-Hall,
Englewood Cliffs, NJ.

[6] R. Aleliunas and A.L. Rosenberg (1982): On embedding rectangular grids
in square grids. IEEE Trans. Comput., C-31, 907–913.

[7] A. Alexandrov, M.I. Ionescu, K.E. Schauser, C. Scheiman (1997): LogGP:
incorporating long messages into the LogP model for parallel computation.
J. Parallel Distr. Comput. 44, 71–79.

[8] R.J. Anderson and G.L. Miller (1990): A simple randomized parallel algo-
rithm for list-ranking. Inform. Proc. Lett. 10.

[9] T.E. Anderson, D.E. Culler, D.A. Patterson, and the HNOW Team (1995):
A case for NOW (networks of workstations). IEEE Micro 15, 54–64.

[10] M. Andrews, F.T. Leighton, P.T. Metaxas, L. Zhang (1996): Improved
methods for hiding latency in high bandwidth networks. 8th ACM Symp. on
Parallel Algorithms and Architectures, pp. 52–61.

[11] F.S. Annexstein (1991): SIMD-emulations of hypercubes and related net-
works by linear and ring-connected processor arrays. 3rd IEEE Symp. on
Parallel and Distributed Processing, pp. 656–659.

[12] F.S. Annexstein (1994): Embedding hypercubes and related networks into
mesh-connected processor arrays. J. Parallel Distr. Comput. 23, 72–79.

[13] F.S. Annexstein, M. Baumslag, A.L. Rosenberg (1990): Group action
graphs and parallel architectures. SIAM J. Comput. 19, 544–569.

[14] N.S. Arora, R.D. Blumofe, C.G. Plaxton (2001): Thread scheduling for
multiprogrammed multiprocessors. Theory of Computing Syst. 34, 115–144.

[15] M.J. Atallah, C.L. Black, D.C. Marinescu, H.J. Siegel, T.L. Casavant
(1992): Models and algorithms for coscheduling compute-intensive tasks
on a network of workstations. J. Parallel Distr. Comput. 16, 319–327.

[16] B. Awerbuch, Y. Azar, A. Fiat, F.T. Leighton (1996): Making commitments
in the face of uncertainty: how to pick a winner almost every time. 28th
ACM Symp. on Theory of Computing, pp. 519–530.

[17] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, Y. Robert
(2003): Scheduling strategies for master-slave tasking on heterogeneous
processor grids. IEEE Trans. Parallel and Distr. Syst. 15, 319–330.

[18] A. Bar-Noy and D. Peleg (1991): Square meshes are not always optimal.
IEEE Trans. Comput. 40, 196–204.

[19] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, Y. Robert (2002):
Bandwidth-centric allocation of independent tasks on heterogeneous plat-
forms. Int. Parallel Distr. Processing Symp. (IPDPS’02).

[20] O. Beaumont, A. Legrand, Y. Robert (2003): The master-slave paradigm
with heterogeneous processors. IEEE Trans. Parallel Distr. Syst. 14,
897–908.

36 Arnold L. Rosenberg

[21] J.-C. Bermond and C. Peyrat (1989): The de Bruijn and Kautz networks: a
competitor for the hypercube? In Hypercube and Distributed Computers (F.
Andre and J.P. Verjus, eds.), North-Holland, Amsterdam, pp. 279–293.

[22] V. Bharadwaj, D. Ghose, V. Mani (1994): Optimal sequencing and arrange-
ment in distributed single-level tree networks. IEEE Trans. Parallel Distr.
Syst. 5, 968–976.

[23] V. Bharadwaj, D. Ghose, V. Mani (1995): Multi-installment load distribu-
tion in tree networks with delays. IEEE Trans. Aerospace Electron. Syst. 31,
555–567.

[24] S.N. Bhatt, F.R.K. Chung, F.T. Leighton, A.L. Rosenberg (1992): Efficient
embeddings of trees in hypercubes. SIAM J. Comput. 21, 151–162.

[25] S.N. Bhatt, F.R.K. Chung, J.-W. Hong, F.T. Leighton, B. Obrenić, A.L.
Rosenberg, E.J. Schwabe (1996): Optimal emulations by butterfly-like net-
works. J. ACM 43, 293–330.

[26] S.N. Bhatt, F.R.K. Chung, F.T. Leighton, A.L. Rosenberg (1997): On opti-
mal strategies for cycle-stealing in networks of workstations. IEEE Trans.
Comput. 46, 545–557.

[27] S.N. Bhatt, D.S. Greenberg, F.T. Leighton, P. Liu (1999): Tight bounds for
on-line tree embeddings. SIAM J. Comput. 29, 474–491.

[28] S.N. Bhatt and F.T. Leighton (1984): A framework for solving VLSI graph
layout problems. J. Comput. Syst. Sci. 28, 300–343.

[29] G. Bilardi, K.T. Herley, A. Pietracaprina, G. Pucci, P. Spirakis (1999):
Algorithmica 24, 405–422.

[30] G. Bilardi and A. Nicolau (1989): Adaptive bitonic sorting: An optimal algo-
rithm for shared memory machines. SIAM J. Comput. 18, 216–228.

[31] G. Bilardi and F.P. Preparata (1995): Horizons of parallel computation.
J. Parallel Distr. Comput. 27, 172–182.

[32] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall,
Y. Zhou (1995): Cilk: an efficient multithreaded runtime system. 5th ACM
SIGPLAN Symp. on Principles and Practices of Parallel Programming
(PPoPP’95).

[33] R.D. Blumofe and C.E. Leiserson (1998): Space-efficient scheduling of
multithreaded computations. SIAM J. Comput. 27, 202–229.

[34] R.D. Blumofe and C.E. Leiserson (1999): Scheduling multithreaded com-
putations by work stealing. J. ACM 46, 720–748.

[35] R.D. Blumofe and D.S. Park (1994): Scheduling large-scale parallel com-
putations on networks of workstations. 3rd Int. Symp. on High-Performance
Distributed Computing, pp. 96–105.

[36] B. Boothe and A.G. Ranade (1992): Improved multithreading techniques
for hiding communication latency in multiprocessors. 19th Int. Symp. on
Computer Architecture.

[37] R.P. Brent (1974): The parallel evaluation of general arithmetic expressions.
J. ACM 21, 201–206.

[38] R.P. Brent and H.T. Kung (1984): Systolic VLSI arrays for polynomial gcd
computation. IEEE Trans. Comp., C-33, 731–737.

[39] R.P. Brent, H.T. Kung, F.T. Luk (1983): Some linear-time algorithms for
systolic arrays. In Information Processing 83 (R.E.A. Mason, ed.), North-
Holland, Amsterdam, pp. 865–876.

Changing Challenges for Collaborative Algorithmics 37

[40] T.N. Bui, S. Chaudhuri, F.T. Leighton, M. Sipser (1987): Graph bisection
algorithms with good average case behavior. Combinatorica 7, 171–191.

[41] F. Cappello, P. Fraigniaud, B. Mans, A.L. Rosenberg (2005): An algorith-
mic model for heterogenous clusters: Rationale and experience. Intl. J.
Foundation of Computer Science 16, 195–216.

[42] Y.C. Cheng and T.G. Robertazzi (1990): Distributed computation for tree
networks with communication delays. IEEE Trans. Aerospace Electron.
Syst. 26, 511–516.

[43] S. Chingchit, M. Kumar, L.N. Bhuyan (1999): A flexible clustering and
scheduling scheme for efficient parallel computation. 13th IEEE Int.
Parallel Processing Symp., pp. 500–505.

[44] W. Cirne and K. Marzullo (1999): The Computational Co-op: gathering
clusters into a metacomputer. 13th Int. Parallel Processing Symp.,
pp. 160–166.

[45] M. Cole (1989): Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press, Cambridge, Mass.

[46] R. Cole and U. Vishkin (1986): Deterministic coin tossing with applica-
tions to optimal parallel list ranking. Inform. Contr. 70, 32–53.

[47] S.A. Cook (1974): An observation on time-storage tradeoff. J. Comp. Syst.
Sci. 9, 308–316.

[48] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein (1999): Introduction to
Algorithms (2nd edition). MIT Press, Cambridge, Mass.

[49] M. Cosnard and M. Tchuente (1988): Designing systolic algorithms by top-
down analysis. 3rd Int. Conf. on Supercomputing.

[50] M. Cosnard and D. Trystram (1995): Parallel Algorithms and Architectures.
International Thompson Computer Press.

[51] D.E. Culler, R.M. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos,
R. Subramonian, T. von Eicken (1996): LogP: towards a realistic model of
parallel computation. C. ACM 39, 78–85.

[52] R. Cypher and C.G. Plaxton (1993): Deterministic sorting in nearly loga-
rithmic time on the hypercube and related computers. J. Comput. Syst. Sci.
47, 501–548.

[53] T.D. deRose, L. Snyder, C. Yang (1987): Near-optimal speedup of graphics
algorithms using multigauge parallel computers. Int. Conf. on Parallel
Processing, 289–294.

[54] M.D. Dikaiakos, K. Steiglitz, A. Rogers (1994): A comparison of tech-
niques for mapping parallel algorithms to message-passing multiprocessors.
6th IEEE Symp. on Parallel and Distributed Processing, pp. 434–442.

[55] K. Diks, H.N. Djidjev, O. Sykora, I. Vrt̆o (1993): Edge separators of planar
and outerplanar graphs with applications. J. Algorithms 14, 258–279.

[56] X. Du and X. Zhang (1997): Coordinating parallel processes on networks
of workstations. J. Parallel Distr. Comput. 46, 125–135.

[57] K. Efe (1991): Embedding mesh of trees into the hypercube. J. Parallel
Distr. Comput. 11, 222–230.

[58] R. Elsässer, B. Monien, R. Preis (2002): Diffusion schemes for load balanc-
ing on heterogeneous networks. Theory of Computing Syst. 35, 305–320.

[59] P. Fatourou and P. Spirakis (2000): Efficient scheduling of strict multi-
threaded computations. Theory of Computing Syst. 33, 173–232.

38 Arnold L. Rosenberg

[60] C.M. Fiduccia and R.M. Mattheyses (1982): A linear-time heuristic for
improving network partitions. 19th ACM-IEEE Design Automation Conf.,
pp. 175–181.

[61] S. Fortune and J. Wyllie (1978): Parallelism in random access machines.
10th ACM Symp. on Theory of Computing, pp. 114–118.

[62] I. Foster and C. Kesselman (eds.) (1999): The Grid: Blueprint for a New
Computing Infrastructure. Morgan-Kaufmann.

[63] I. Foster, C. Kesselman, S. Tuecke (2001): The anatomy of the Grid:
enabling scalable virtual organizations. Intl. J. Supercomput. Appl.

[64] D. Gannon (1980): A note on pipelining a mesh-connected multiprocessor
for finite element problems by nested dissection. Intl. Conf. on Parallel
Processing, pp. 197–204.

[65] L.-X. Gao, A.L. Rosenberg, R.K. Sitaraman (1999): Optimal clustering of
tree-sweep computations for high-latency parallel environments. IEEE
Trans. Parallel Distr. Syst. 10, 813–824.

[66] V. Garg and D.E. Schimmel (1998): Hiding communication latency in data
parallel applications. 12th IEEE Int. Parallel Processing Symp., pp. 18–25.

[67] A. Gerasoulis, S. Venugopal, T. Yang (1990): Clustering task graphs for
message passing architectures. ACM Int. Conf. on Supercomputing, pp.
447–456.

[68] A. Gerasoulis and T. Yang (1992): A comparison of clustering heuristics for
scheduling dags on multiprocessors. J. Parallel Distr. Comput. 16, 276–291.

[69] M.W. Goudreau, K. Lang, S.B. Rao, T. Suel, T. Tsantilas (1999): Portable
and efficient parallel computing using the BSP model. IEEE Trans.
Comput. 48, 670–689.

[70] D.S. Greenberg, L.S. Heath and A.L. Rosenberg (1990): Optimal embed-
dings of butterfly-like graphs in the hypercube. Math. Syst. Theory 23,
61–77.

[71] V.C. Hamacher and H. Jiang (1994): Comparison of mesh and hierarchical
networks for multiprocessors. Intl. Conf. on Parallel Processing, I:67–71.

[72] C.-T. Ho and S.L. Johnsson (1986): Graph embeddings for maximum
bandwidth utilization in hypercubes. Intl. Conf. Vector and Parallel
Computing.

[73] J.-W. Hong and H.T. Kung (1981): I/O complexity: the red-blue pebble
game. 13th ACM Symp. on Theory of Computing, pp. 326–333.

[74] Y. Hong and T. Payne (1989): Parallel sorting in a ring network of proces-
sors. IEEE Trans. Comput. 38, 458–464.

[75] O.H. Ibarra and S.T. Sohn (1990): On mapping systolic algorithms onto the
hypercube. IEEE Trans. Parallel Distr. Syst. 1, 238–249.

[76] The Intel Philanthropic Peer-to-Peer program. 〈www.intel.com/cure〉.
[77] C. Kaklamanis and D. Krizanc (1992): Optimal sorting on mesh-connected

processor arrays. 4th ACM Symp. on Parallel Algorithms and Architectures,
pp. 50–59.

[78] C. Kaklamanis, D. Krizanc, S.B. Rao (1997): New graph decompositions
with applications to emulations. Theory of Computing Syst. 30, 39–49.

[79] R.M. Karp and R.E. Miller (1966): Properties of a model for parallel com-
putations: determinacy, termination, queueing. SIAM J. Appl. Math. 14,
1390–1411.

Changing Challenges for Collaborative Algorithmics 39

[80] R.M. Karp and V. Ramachandran (1990): A survey of parallel algorithms
for sharedmemory machines. In Handbook of Theoretical Computer
Science, vol. A (J. van Leeuwen, ed.). Elsevier Science, Amsterdam,
pp. 869–941.

[81] R.M. Karp, A. Sahay, E. Santos, K.E. Schauser (1993): Optimal broadcast
and summation in the logP model. 5th ACM Symp. on Parallel Algorithms
and Architectures, pp. 142–153.

[82] B.W. Kernighan and S. Lin (1970): An efficient heuristic procedure for par-
titioning graphs. Bell Syst. Technol. J. 49, 291–307.

[83] S.J. Kim and J.C. Browne (1988): A general approach to mapping of paral-
lel computations upon multiprocessor architectures. Int. Conf. on Parallel
Processing, III:1–8.

[84] R. Koch, F.T. Leighton, B.M. Maggs, S.B. Rao, A.L. Rosenberg,
E.J. Schwabe (1997): Work-preserving emulations of fixed-connection net-
works. J. ACM 44, 104–147.

[85] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, M. Lebofsky (2000):
SETI@home: massively distributed computing for SETI. In Computing in
Science and Engineering (P.F. Dubois, ed.). IEEE Computer Soc. Press, Los
Alamitos, CA.

[86] H.T. Kung (1985): Systolic arrays. In McGraw-Hill 1985 Yearbook of
Science and Technology.

[87] H.T. Kung and C.E. Leiserson (1980): Systolic arrays (for VLSI). In
C. Mead and L. Conway, Introduction to VLSI Systems, Chapter 8.
Addison-Wesley, Reading, MA.

[88] H.T. Kung and W.T. Lin (1983): An algebra for VLSI algorithm design.
Conf. on Elliptic Problem Solvers, Monterey, CA.

[89] H.T. Kung and R.L. Picard (1984): One-dimensional systolic arrays for
multidimensional convolution and resampling. In VLSI for Pattern
Recognition and Image Processing, Springer-Verlag, Berlin, pp. 9–24.

[90] C. Lam, H. Jiang, V.C. Hamacher (1995): Design and analysis of hierar-
chical ring networks for shared-memory multiprocessors. Intl. Conf. on
Parallel Processing, I:46–50.

[91] H.W. Lang, M. Schimmler, H. Schmeck, H. Schroeder (1985): Systolic sort-
ing on a mesh-connected network. IEEE Trans. Comput., C-34, 652–658.

[92] F.T. Leighton (1985): Tight bounds on the complexity of parallel sorting.
IEEE Trans. Comput., C-34, 344–354.

[93] F.T. Leighton (1992): Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes. Morgan Kaufmann, San Mateo, CA.

[94] F.T. Leighton, B.M. Maggs, S.B. Rao (1994): Packet routing and job-
shop scheduling in O(congestion + dilation) steps. Combinatorica 14,
167–186.

[95] F.T. Leighton, B.M. Maggs, A.W. Richa (1999): Fast algorithms for find-
ing O(congestion + dilation) packet routing schedules. Combinatorica 19,
375–401.

[96] F.T. Leighton, M.J. Newman, A.G. Ranade, E.J. Schwabe (1992): Dynamic
tree embeddings in butterflies and hypercubes. SIAM J. Comput. 21, 639–654.

[97] G. Lerman and L. Rudolph (1993): Parallel Evolution of Parallel
Processors. Plenum Press, New York.

40 Arnold L. Rosenberg

[98] K. Li and J. Dorband (1999): Asymptotically optimal probabilistic embed-
ding algorithms for supporting tree structured computations in hypercubes.
7th Symp. on Frontiers of Massively Parallel Computation.

[99] R.J. Lipton and R.E. Tarjan (1980): Applications of a planar separator the-
orem. SIAM J. Comput. 9, 615–627.

[100] M. Litzkow, M. Livny, M.W. Mutka (1988): Condor – A hunter of idle
workstations. 8th Int. Conf. Distr. Computing Syst., pp. 104–111.

[101] B.M. Maggs, F. Meyer auf der Heide, B. Vöcking, M. Westermann
(1997): Exploiting locality for data management in systems of limited
bandwidth. 38th IEEE Symp. on Foundations of Computer Science,
pp. 284–293.

[102] G. Malewicz, A.L. Rosenberg M. Yurkewych (2006): Toward a theory for
scheduling dags in Internet-based computing. IEEE Trans. Computers, to
appear.

[103] D.W. Matula and L.L. Beck (1983): Smallest-last ordering and clustering
and graph coloring algorithms. J. ACM 30, 417–427.

[104] W.F. McColl and A. Tiskin (1999): Memory-efficient matrix computations
in the BSP model. Algorithmica 24, 287–297.

[105] C. Mead and L. Conway (1980): Introduction to VLSI Systems. Addison-
Wesley, Reading, MA.

[106] G.L. Miller, V. Ramachandran, E. Kaltofen (1988): Efficient parallel eval-
uation of straightline code and arithmetic circuits. SIAM J. Comput. 17,
687–695.

[107] G.L. Miller and J.H. Reif (1989): Parallel tree contraction, Part 1: funda-
mentals. In Randomness and Computation, vol. 5 (S. Micali, ed.), JAI Press,
Greenwich, CT, 47–72.

[108] G.L. Miller and J.H. Reif (1991): Parallel tree contraction, Part 2: further
applications. SIAM J. Comput. 20, 1128–1147.

[109] W.L. Miranker and A. Winkler (1984): Spacetime representations of com-
putational structures. Computing 32, 93–114.

[110] M. Mitzenmacher (1998): Analyses of load stealing models based on dif-
ferential equations. 10th ACM Symp. on Parallel Algorithms and
Architectures, pp. 212–221.

[111] M. Mitzenmacher (1999): On the analysis of randomized load balancing
schemes. Theory of Computing Syst. 32, 361–386.

[112] J.F. Myoupo (1992): Synthesizing linear systolic arrays for dynamic pro-
gramming problems. Parallel Proc. Lett. 2, 97–110.

[113] I. Niven and H.S. Zuckerman (1980): An Introduction to the Theory of
Numbers (4th ed.). J. Wiley & Sons, New York.

[114] B. Obrenić (1994): An approach to emulating separable graphs. Math. Syst.
Theory 27, 41–63.

[115] B. Obrenić, M.C. Herbordt, A.L. Rosenberg, C.C. Weems (1999): Using
emulations to enhance the performance of parallel architectures. IEEE
Trans. Parallel Distr. Syst. 10, 1067–1081.

[116] The Olson Laboratory Fight AIDS@Home project. 〈www.fightaid
sathome. org〉.

[117] C.H. Papadimitriou and M. Yannakakis (1990): Towards an architecture-
independent analysis of parallel algorithms. SIAM J. Comput. 19, 322–328.

Changing Challenges for Collaborative Algorithmics 41

[118] M.S. Paterson, C.E. Hewitt (1970): Comparative schematology. Project
MAC Conf. on Concurrent Systems and Parallel Computation, ACM Press,
pp. 119–127.

[119] G.F. Pfister (1995): In Search of Clusters. Prentice-Hall.
[120] P. Quinton (1984): Automatic synthesis of systolic arrays from uniform

recurrence equations. 11th IEEE Intl. Symp. on Computer Architecture, pp.
208–214.

[121] P. Quinton (1988): Mapping recurrences on parallel architectures. 3rd Int.
Conf. on Supercomputing.

[122] P. Quinton, B. Joinnault, P. Gachet (1986): A new matrix multiplication sys-
tolic array. Parallel Algorithms and Architectures (M. Cosnard et al., eds.)
North-Holland, Amsterdam, pp. 259–268.

[123] M.O. Rabin (1989): Efficient dispersal of information for security, load bal-
ancing, and fault tolerance. J. ACM 36, 335–348.

[124] A.G. Ranade (1993): A framework for analyzing locality and portability
issues in parallel computing. In Parallel Architectures and Their Efficient
Use: The 1st Heinz-Nixdorf Symp., Paderborn, Germany (F. Meyer auf
der Heide, B. Monien, A.L. Rosenberg, eds.) Lecture Notes in Computer
Science 678, Springer-Verlag, Berlin, pp. 185–194.

[125] J.H. Reif and L.G. Valiant (1987): A logarithmic time sort for linear net-
works. J. ACM 34, 60–76.

[126] A.L. Rosenberg (1981): Issues in the study of graph embeddings. In Graph-
Theoretic Concepts in Computer Science: Proc. Int. Wkshp. WG80 (H.
Noltemeier, ed.) Lecture Notes in Computer Science 100, Springer-Verlag,
Berlin, pp. 150–176.

[127] A.L. Rosenberg (1994): Needed: a theoretical basis for heterogeneous par-
allel computing. In Developing a Computer Science Agenda for High-
Performance Computing (U. Vishkin, ed.) ACM Press, New York, pp.
137–142.

[128] A.L. Rosenberg (1999): Guidelines for data-parallel cycle-stealing in net-
works of workstations, I: on maximizing expected output. J. Parallel Distr.
Comput. 59, 31–53.

[129] A.L. Rosenberg (2000): Guidelines for data-parallel cycle-stealing in net-
works of workstations, II: on maximizing guaranteed output. Int. J.
Foundations Comput. Sci. 11, 183–204.

[130] A.L. Rosenberg (2001): On sharing bags of tasks in heterogeneous net-
works of workstations: greedier is not better. 3rd IEEE Int. Conf. on Cluster
Computing (Cluster’01), pp. 124–131.

[131] A.L. Rosenberg (2002): Optimal schedules for cycle-stealing in a network of
workstations with a bag-of-tasks workload. IEEE Trans. Parallel Distr.
Syst. 13, 179–191.

[132] A.L. Rosenberg (2003): Accountable Web-computing. IEEE Trans. Parallel
Distr. Syst. 14, 97–106.

[133] A.L. Rosenberg (2004): On scheduling mesh-structured computations on
the Internet. IEEE Trans. Comput. 53, 1176–1186.

[134] A.L. Rosenberg and L.S. Heath (2001): Graph Separators, with
Applications. Kluwer Academic/Plenum Publishers, New York.

42 Arnold L. Rosenberg

[135] A.L. Rosenberg and I.H. Sudborough (1983): Bandwidth and pebbling.
Computing 31, 115–139.

[136] A.L. Rosenberg and M. Yurkewych (2005): Guidelines for scheduling some
common computation-dags for Internet-based computing. IEEE Trans.
Comput. 54, 428–438.

[137] The RSA Factoring by Web Project. 〈http://www.npac.syr.edu/factoring〉
(with Foreword by A. Lenstra). Northeast Parallel Architecture Center.

[138] L. Rudolph, M. Slivkin, E. Upfal (1991): A simple load balancing scheme
for task allocation in parallel machines. 3rd ACM Symp. on Parallel
Algorithms and Architectures, pp. 237–244.

[139] V. Sarkar (1989): Partitioning and Scheduling Parallel Programs for
Multiprocessors. MIT Press, Cambridge, MA.

[140] V. Sarkar and J. Hennessy (1986): Compile-time partitioning and schedul-
ing of parallel programs. SIGPLAN Notices 21(7) 17–26.

[141] C.P. Schnorr and A. Shamir (1986): An optimal sorting algorithm for mesh
connected computers. 18th ACM Symp. on Theory of Computing, pp. 255–263.

[142] E.J. Schwabe (1992): Embedding meshes of trees into de Bruijn graphs.
Inform. Proc. Lett. 43, 237–240.

[143] L. Snyder (1985): An inquiry into the benefits of multigauge parallel com-
putation. Intl. Conf. on Parallel Processing, pp. 488–492.

[144] D. Szada, B. Lawson, J. Owen (2003): Hardening functions for large-scale
distributed computing. IEEE Security and Privacy Conf.

[145] M.M. Theimer and K.A. Lantz (1989): Finding idle machines in a work-
station-based distributed environment. IEEE Trans. Software Eng. 15,
1444–1458.

[146] C.D. Thompson (1979): Area-time complexity for VLSI. 11th ACM Symp.
on Theory of Computing, pp. 81–88.

[147] C.D. Thompson (1980): A Complexity Theory for VLSI. Ph.D. Thesis, CMU.
[148] C.D. Thompson and H.T. Kung (1977): Sorting on a mesh-connected par-

allel computer. C. ACM 20.
[149] J.D. Ullman (1984): Computational Aspects of VLSI. Computer Science

Press, Rockville, MD.
[150] L.G. Valiant (1983): Optimality of a two-phase strategy for routing in

interconnection networks. IEEE Trans. Comput., C-32, 861–863.
[151] L.G. Valiant (1989): Bulk-synchronous parallel computers. In Parallel

Processing and Artificial Intelligence (M. Reeve and S.E. Zenith, eds.) J.
Wiley and Sons, New York, pp. 15–22.

[152] L.G. Valiant (1990): General purpose parallel architectures. In Handbook of
Theoretical Computer Science (J. van Leeuwen, ed.). Elsevier Science,
Amsterdam, pp. 943–972.

[153] L.G. Valiant (1990): A bridging model for parallel computation. C. ACM
33, 103–111.

[154] L.G. Valiant and G.J. Brebner (1981): Universal schemes for parallel com-
putation. 13th ACM Symp. on Theory of Computing, pp. 263–277.

[155] P.M.B. Vitanyi (1986): Nonsequential computation and laws of nature. VLSI
Algorithms and Architectures (Aegean Wkshp. on Computing), Lecture
Notes in Computer Science 227, Springer-Verlag, Berlin, pp. 108–120.

Changing Challenges for Collaborative Algorithmics 43

[156] P.M.B. Vitanyi (1988): Locality, communication and interconnect length in
multicomputers. SIAM J. Comput. 17, 659–672.

[157] P.M.B. Vitanyi (1988): A modest proposal for communication costs in mul-
ticomputers. In Concurrent Computations: Algorithms, Architecture, and
Technology (S.K. Tewksbury, B.W. Dickinson, S.C. Schwartz, eds.). Plenum
Press, New York, pp. 203–216.

[158] A.S. Wagner (1989): Embedding arbitrary binary trees in a hypercube.
J. Parallel Distr. Comput. 7, 503–520.

[159] C. Weth, U. Kraus, J. Freuer, M. Ruder, R. Dannecker, P. Schneider, M.
Konold, H. Ruder (2000): XPulsar@home—schools help scientists.
Typescript, University of Tübingen.

[160] S.W. White and D.C. Torney (1993): Use of a workstation cluster for the
physical mapping of chromosomes. SIAM NEWS, March, 1993, pp. 14–17.

[161] A.Y. Wu (1985): Embedding of tree networks into hypercubes. J. Parallel
Distr. Comput. 2, 238–249.

[162] T. Yang and A. Gerasoulis (1992): PYRROS: static task scheduling and
code generation for message passing multiprocessors. 6th ACM Conf. on
Supercomputing, pp. 428–437.

[163] Y. Yang and H. Casanova (2003): UMR: A multi-round algorithm for
scheduling divisible workloads. 17th Int. Parallel and Distributed Processing
Symp. (IPDPS’03).

44 Arnold L. Rosenberg

Chapter 2

ARM++: A HYBRID ASSOCIATION
RULE MINING ALGORITHM
Zahir Tari and Wensheng Wu
Royal Melbourne Institute of Technology

Abstract
Most of the approaches for association rule mining focus on the perform-

ance of the discovery of the frequent itemsets. They are based on the algo-
rithms that require the transformation of data from one representation to
another, and therefore excessively use resources and incur heavy CPU over-
head. This chapter proposes a hybrid algorithm that is resource efficient and
provides better performance. It characterizes the trade-offs among data rep-
resentation, computation, I/O, and heuristics. The proposed algorithm uses an
array-based item storage for the candidate and frequent itemsets. In addition,
we propose a comparison algorithm (CmpApr) that compares candidate item-
sets with a transaction, a filtering algorithm (FilterApr) that reduces the num-
ber of comparison operations required to find frequent itemsets. The hybrid
algorithm (ARM++) integrates filtering methods within the Partition algo-
rithm [7]. Performance analyses from our implementation indicate that
ARM++ has better performance and scales linearly.

1 BACKGROUND

We are living in an information age that is overwhelmed by enormous amount
of data and information. Data mining within the database community, also
known as knowledge discovery by the AI community, is the science of automated
extraction of useful information or hidden patterns from large databases. Data
mining is a new, multidisciplinary field ranging across database technology, sta-
tistics, artificial intelligence, machine learning, etc. It normally processes data that
have already been collected, such as records of all transactions in a bank, and
does not involve the data collection strategy itself.

Data mining is not concerned with a small set of data, as these can be well
handled by classical statistical analysis techniques. Data mining focuses on new

problems that may arise with large data repositories, such as finding a target
within a massive dataset in a short time, finding hidden (i.e. not explicit) rela-
tionships amongst a huge volume of information within data repositories (e.g.,
analysis of emails to detect terrorist threats). Such relationships found through
the use of data mining techniques are called models or patterns. Descriptive mod-
els characterize the general properties of the data in the database, while predictive
models perform inferences on the current data for predictions. One typical finan-
cial application using data mining is the profiling of customer behavior. A bank
keeps transaction records of its customers and can use data mining technology to
cluster customers into levels of high credit risk, medium credit risk, and trust,
which may help them to advertise suitable new products and bank loan approval.

There are many data mining tasks and algorithms. These are often classified
into four components [11]:

● Models (pattern structures): these model the underlying structures in a data-
base.

● Score functions: the role is to decide how well the developed model fits with
the data.

● Optimization and search methods: these relate to the optimization of the score
function and searching over many models and structures.

● Data management strategies: These deal with efficient access and use of data
during the search/optimization.

Data mining systems are categorized as follows [12]:

● Classification according to the types of databases to be mined: object-oriented
databases, object-relational databases, spatial database, temporal databases
and time-series databases, text databases and multimedia databases, heteroge-
neous databases and legacy databases, and the World Wide Web.

● Classification according to the types of knowledge to be mined: characteriza-
tion, discrimination, association, classification, clustering, outlier analysis,
and evolution analysis.

● Classification according to the types of techniques utilized: machine learning,
statistics, pattern recognition, visualization, trees, networks and rules, etc.

● Classification according to the types of applications: finance, telecommunica-
tions, DNA, stock markets, etc.

2 MOTIVATION

This chapter focuses on a specific area of data mining, namely, mining of
association or relationships between data items. The problem of mining associa-
tion rules was introduced in [1] and can be defined as follows. Given a set of trans-
actions, where each transaction is a set of items, an association rule is an
expression of the form X ⇒ Y, where X and Y are sets of items. There are two
measurements of an association rule; confidence and support. The confidence of a

46 Zahir Tari and Wensheng Wu

rule represents the percentage of transactions that contain Y out of those that
contain X. The support of a rule is the percentage of transactions that contain
both X and Y. The problem of mining association rules becomes then a two-step
process [1–3]. The first step consists of finding all sets of items (called itemsets)
that have transaction support above minimum support. The support for an item-
set is the number of transactions that contain the itemset. Itemsets with minimum
support are called frequent itemsets, and otherwise small itemsets. The second
step uses the frequent itemsets to generate the desired rules. For a given frequent
itemset Y = {I1, I2,....,Ik}, k ≥ 2, it generates all rules that use items from the set
{I 1,I2,...,Ik}. The antecedent of each of these rules will be a subset X of Y, and
the consequent will be the itemset Y-X. If the confidence, i.e., the ratio of the sup-
port of Y divided by the support of X, is greater than a confidence factor c, it is
an association rule; otherwise, it is not.

Because the number of candidate itemsets and that of transactions are both
very large, all the frequent itemsets can be found only in an iterative way, where
the itemset with k items is defined as a k-itemset. In this way, iteration means each
frequent k-itemset is generated in an increasing order of k. To obtain better per-
formance, different algorithms and data structures have been designed [1-7] to
reduce the number of iterations, the number of candidate itemsets, the number of
transactions in each iteration, the number of items in each transaction, and the
method of comparison between candidate itemsets and transactions to accelerate
the identification of a candidate itemset in a transaction. In particular, a lot of
work on the efficiency of association rule mining was done in the context of the
following approaches: Apriori [2], AprioriTid [2], and Partition [7]. These
approaches aim to reduce the execution time by applying heuristics and trans-
forming the data into different representations. However, the transformation of
the data from the original form to another will require extra resources and CPU
time. On one hand, the required resources are not guaranteed to be available. For
example, there might not be enough disk space to hold the transformed data for
Partition. This results in the failure of the execution. On the other hand, the time
savings from the new data representation might not be able to compensate for the
time spent on the transformation. This depends somewhat on the characteristics
of the data. To our knowledge, none of the existing algorithms performs as well
as others with all the simulation data of different characteristics.

In this chapter, we propose three algorithms, namely, CmpApr, FilterApr, and
ARM++, that aim to improve the performance of association rule mining algo-
rithms at difference stages of the construction of the frequent itemsets. After an
evaluation of the performance of the existing algorithms, as shown in Section 5,
our findings is that ARM++ provides a better performance. This gain in perform-
ance is mainly related to the fact that ARM++ applies new heuristics in the early
stage of association rule mining and changes the data structure when the trans-
formation is beneficial and the resources are available in the late stage. In the early
stage, to improve the performance of the existing algorithms, e.g., Apriori [2], we
come up with two heuristics: (1) a new comparison method, which is implemented
in CmpApr; and (2) the inherent relations between the data items used to reduce
the comparison of unnecessary items, which is implemented in FilterApr.

After a detailed analysis of these two heuristics, we realized that the second
heuristic reduces the number of comparisons to such an extent that the original

ARM++: A Hybrid Association Rule Mining Algorithm 47

beneficial comparison method in CmpApr has a negative impact on the execution
time in FilterApr. Based upon the fact that FilterApr is much faster than CmpApr,
we choose FilterApr as the algorithm for the early stage of the algorithm. In the
late stage of the algorithm, we use the existing Partition [7]. However, we start the
conversion of the data only when the estimated transformed data can be held in
the memory, thereby minimizing the possible overhead of data I/O operation and
extra requirement of disk space.

This chapter is organized as follows. Section 3 reviews some of the major
approaches for association rule mining. Section 4 is dedicated to the implementa-
tion of the array-based data structure (ArrayApr). In Section 5 we describe in
detail the three different algorithms, that is, CmprApr, FilterApr, and ARM++.
Section 6 provides a detailed analysis of the performance of our algorithms, and
finally future extensions of these algorithms are given in Section 7.

3 RELATED WORK

The discovery of frequent itemsets and the construction of association rules
are two sub-problems of association rule mining. Our focus here is on the fre-
quent itemset searching of the first sub-problem. The three major data represen-
tations used by existing algorithms to store the database are item-lists,
candidate-lists, and TID-lists. We describe them and discuss the impact of these
data representations on the performance of the algorithms that use them.

3.1 Existing Approaches

AIS [1]
The problem of association rules was first introduced in [1] along with an

algorithm that was later called AIS [2]. To find frequent sets, AIS creates can-
didates “on-the-fly” while it reads the database. Several passes are necessary,
and during one pass, the entire database is read, one transaction after the
other. Adding items to sets that were found to be frequent in previous passes
creates a candidate. Such sets are called frontier sets. The candidate that is cre-
ated by adding an item to a frontier set F is called a 1-extension of F because
one item was added to F. To avoid duplicate candidates, only items that are
larger than the largest item in F are considered for 1-extensions. To avoid gen-
erating candidates that do not even occur in the database, AIS does not build
1-extensions on blind faith, but only when they are encountered while reading
the database.

Associated with every candidate, a counter is maintained to keep track of the
frequency of the candidate in the database. When a candidate is first created, this
counter is set to 1, and when the candidate is found subsequently in other trans-
actions, this counter is incremented. After a complete pass through all transac-
tions, the counts are examined, and candidates that meet the minimum support
requirement become the new frontier sets. This is a simplification because deter-
mination of which expansions to include as candidates becomes trickier in the
presence of k-extensions and support estimation. For k-extensions, for example,
only maximal frequent sets become frontier sets [1].

48 Zahir Tari and Wensheng Wu

Unfortunately, the AIS candidate generation strategy creates a large number
of candidates, and sophisticated pruning techniques are necessary to decide
whether an extension should be included in the candidate set. The methods
include a technique called pruning function optimization and estimating support
for a prospective candidate based on relative frequencies of its subsets. Pruning
functions use the fact that a sum of carefully chosen weights per item can rule out
certain sets as candidates without actually counting them. An example is the total
transaction price. If fewer transactions than the fraction required for minimum
support exceed a price threshold, then sets that are more expensive cannot possi-
bly be frequent. These decisions can be fairly costly; moreover, they have to
be made repeatedly for many subsets for each transaction. If an unlikely candi-
date set is rejected, this decision has to be made for every transaction the set
appears in.

SETM (Set Oriented Mining)
The SETM algorithm [5] uses only standard database operations to find fre-

quent sets. For this reason, it uses its own data representation to store every item-
set supported by a transaction along with the transaction’s ID (TID). SETM
repeatedly modifies the entire database to perform candidate generation, support
counting, and remove infrequent sets.

SETM has a few advantages over AIS because it creates fewer candidates.
However, the problem with the SETM algorithm is that candidates are repli-
cated for every transaction in which they occur, which results in huge sizes of
intermediate results. Moreover, the itemsets have to be stored explicitly, i.e., by
listing their items in ascending order. Using candidate IDs would save space, but
then the join could not be carried out as an SQL operation. What is even worse
is that these huge relations have to be sorted twice to generate the next larger
frequent sets.

Apriori, AprioriTid, and AprioriHybrid Algorithms [2–4,6–8]
The vast number of candidates in AIS caused its authors to design a new can-

didate generation strategy called apriori-gen as part of the algorithms Apriori and
AprioriTid [2]. Apriori-gen has been so successful in reducing the number of can-
didates that it has been used in every algorithm proposed since it was published
[3,4, 6–8]. The underlying principle, based on the a priori property, is to generate
only those candidates for which all subsets have been previously determined to be
frequent. In particular, a (k+1)-candidate will be accepted only if all its k-subsets
are frequent. Upon reading a transaction T in the counting phase of pass k,
Apriori has to determine all the k-candidates supported by T and increment the
support counters associated with these candidates.

The major problem for Apriori is that it always has to read the entire database
in every pass, although many items and many transactions are no longer needed
in later passes of the algorithm. In particular, the items that are not frequent and
the transactions that contain fewer items than the current candidates are not nec-
essary. Removing them would obviate the expensive effort to try to count sets that
cannot possibly be candidates.

The shortcoming of Apriori, that it could not remove unwanted parts of the
database during later passes, has led to the design of AprioriTid [2], which uses a

ARM++: A Hybrid Association Rule Mining Algorithm 49

different data representation than the item-lists used by Apriori. AprioriTid can be
considered an optimised version of SETM that does not rely on standard data-
base operations and uses apriori-gen for faster candidate generation. Therefore,
comparing Apriori and AprioriTid is more interesting because they both gener-
ate the same number of candidates and differ mainly in their underlying data
representation.

While Apriori avoids swapping data to disk, it does not weed out useless
items in later passes and hence wastes time on futile attempts to count support
of sets involving these items. AprioriTid, on the other hand, prunes the data set
as described in the previous section and as a result outruns Apriori in later
passes. Unfortunately, in the second iteration, as a consequence of the candi-
date-list representation, the data usually do not fit in memory, so swapping is
necessary.

Partition [7]
While all the algorithms presented so far are more or less variations of the

same scheme, the Partition algorithm takes a different approach. Partition tries to
address two major shortcomings of previous algorithms. The first problem with
the previous algorithms is that the number of passes over the database is not
known beforehand, regardless of which representation is used. Therefore, the
number of I/O operations is not known and is likely to be very large. AprioriTid
tries to circumvent this problem by buffering the database, but then the database
size is limited by the size of main memory. The second problem lies with pruning
the database in the later passes, i.e., removing unnecessary parts of the data. AIS
and Apriori fail to optimize the Item-lists structure. Candidate-lists do permit
pruning the database, but they cause problems because of their unpredictably
large intermediate results in the early passes.

The approach taken in Partition [7] to solve the first problem (unpredictably
large I/O-cost) is to divide the database into equally sized horizontal Partitions.
An algorithm to determine the frequent sets is run on each subset of transactions
independently, producing a set of local frequent itemsets for each partition. The
partition size is chosen such that an entire partition can reside in memory. Hence,
only one read is necessary for this step, and all passes access only the buffered
data. To address the second problem (failure to reduce the database size in later
passes), Partition uses a new “TID-list” data representation both to determine the
frequent itemsets for each partition and to count the global supports during
the counting phase. TID-lists invert the candidate-list representation by associat-
ing with each itemset X a list of all the TIDs for those transactions that sup-
port the set. The TID-lists for a k-candidate can be computed easily by
intersecting the TID-lists of two of its (k-1)-subsets. All TID-lists are sorted so
that this intersection can be computed efficiently with a merge-join, which only
requires traversing the two lists once.

Like candidate-lists, TID-lists change in every pass and may have to be
swapped to disk if there is not enough memory available to store them. Again, the
size of intermediate results can be larger than the original data size, and this fig-
ure is not known. The reason is the same as that for candidate-lists, with the dif-
ference that in Partition, TIDs are replicated for every candidate set instead of
replicating candidate identifiers for every transaction.

50 Zahir Tari and Wensheng Wu

3.2 The ARM++ Approach

If we need to select an algorithm for later iterations of the frequent itemset
discovery, which algorithm should we choose? Both AprioriTid and Partition out-
perform Apriori in the later iterations mainly due to their underlying data struc-
tures. All three algorithms generate the same number of candidates and frequent
itemsets. For Partition, if a k-frequent itemset is in a transaction t, to make this
count, it needs only one comparison of the TID-lists of the two (k-1) frequent
subsets. In contrast, AprioriTid needs two comparisons to detect the existence
of two subsets of the k-frequent itemset, in addition to the overhead of the
access to the two subsets through the auxiliary data structure. If the data for
both algorithms are kept in memory, Partition beats AprioriTid in terms of per-
formance. With the increasing number of iterations, the gap of the number of
comparisons between Partition and Apriori gets wider.

In this chapter, we propose three new algorithms, varying in the comparison
methods, transaction filtering, and transaction transformation. The underlying
data structure is described in ArrayApr, which stores candidate and frequent
itemsets with the proposed array-based data representation rather than the com-
monly used hash-tree representation [2-4,6–7]. ARM++ is a hybrid algorithm.
It is a combination of FilterApr and Partition [7], where FilterApr is used in the
early passes (FilterApr phase) and Partition in the subsequent passes (Partition
phase). The pivot point is, whenever the estimated TID-list of Partition can be
held in memory, we switch from FilterApr to Partition. A brief overview of these
algorithms is shown in Table 2.1, and their interdependencies are described in
Figure 2.1:

ARM++: A Hybrid Association Rule Mining Algorithm 51

Table 2.1. An Overview of the Proposed Algorithms
Itemset Data Comparison Original
Representation Representation Method Algorithm New Algorithms
Array Item-list Itemset vs. Trans ArrayApr CmpApr
Array Item-list Sub-trans vs. Itemset ArrayApr FilterApr
Array Item-list Sub-trans vs. Itemset FilterApr ARM++

TID-list Merge-Join Partition

ARM++(Hybrid)

TID-list
Partition[7]

Item-list

CmpApr (Candidate comparison)

FilterAPr (Transaction Filtering)

O
Integration

Performance

ArrayApr

Figure 2.1. Algorithm Evolution Diagram

● CmpApr employs a new comparison method, candidate comparison, which
compares candidate itemsets against a transaction instead of comparing sub-
sets of the transaction with the itemsets. The new array-based data represen-
tation of candidate itemsets provides fast access to the items of the itemsets
for the new comparison method.

● FilterApr harnesses the power of our new transaction filtering, which sharply
reduces the number of comparison operations required to find the frequent
itemsets among the candidates.

● ARM++ integrates FilterApr with Partition. This new hybrid algorithm
is the last of our series of optimizations. This new hybrid algorithm aims to
make the best use of the available resources, i.e., the memory and secondary
storage, to achieve the minimum execution time.

4 ARRAYAPR DATA STRUCTURE

In this section, we first introduce the array-based itemset storage and later
show its application in the generation of the candidate and frequent itemsets
(Figure 2.2). In contrast to Apriori, which uses a tree to store the candidates
(that have to be tested against a transaction) in order to reduce the number of
comparisons, ArrayApr uses the hash function to reach the candidates that are
supported by the transaction. Then we explore the functions of the hash-tree
during the counting phase and see how they are implemented with the array
structure. We have used the data generation technique proposed in [2] to meas-
ure the performance of ArrayApr. Results of such evaluation are presented in
Section 5.

4.1 Arrays: Itemset-counter Table, Hash Table,
and Sibling Table

In ArrayApr, as in Apriori, itemsets are stored separately. However, they are
stored in different structures. Our array structure contains three tables: a Hash
table, an Itemset-counter table, and a Sibling table. The hash table is part of a
hash function, which, given an itemset, can calculate that itemset’s mapping
address in the Itemset-counter table. After comparing the itemset with its coun-
terpart in the Itemset-counter, we know whether it exists in the itemset-counter
table. The sibling table stores the clustering information of itemsets in a
bitmap representation. For an itemset in the Itemset-counter table, if the next
one in the table is its sibling, its corresponding bit in Sibling Table is “1”; other-
wise, it is “0.”

For example, {1, 4, 5, 6}, {1, 4, 5, 7}, {1, 4, 5, 9}, and {1, 4, 6, 9} are candi-
date 4-itemsets. The layout of their storage is shown in Figure 2.2a. After scan-
ning through the database and counting their supports, we assume all are
frequent. We copy from the candidate array structure all the frequent itemsets and
their clustering information into the frequent Itemset-counter table and the fre-
quent Sibling table, respectively. Then we initialize the hash table based on the
itemsets in the Itemset-counter table. After the creation of the frequent itemset

52 Zahir Tari and Wensheng Wu

array structure, we delete the candidate array structure. The layout of the frequent
4-itemsets is depicted in Figure 2.2b.

The next step is to generate 5-candidates. We scan through the Sibling table
of frequent 4-itemsets. If there are siblings, we invoke apriori-gen to create the
5-candidates. Instead of generating all the 5-candidates and then detecting their
candidacy, immediately after we generate a candidate, we check its candidacy.

ARM++: A Hybrid Association Rule Mining Algorithm 53

1 4 5 6 7

4

3

.

.

.

1

.

.

.

^

.

.

.

1

0

0

0

.

.

.

Itemset -Counter Table

1

5

3

2

.

.

.

.

.

.

^

1 4 5 6 670

1 4 5 7 354

1 4 5 9 500

1 4 6 7 315

1 4 6 9 293

.

.

1 5 6 7 293

1 5 6 9 314
.

.

4 5 6 7 297

1 4 5 6 7 0

1 4 5 6 9 0

1 4 5 7 9 0

1 4 6 9 11 0

4 5 6 9 200

.

1

1

0

1

0

.

.

1

0

.

.
1

0

Itemset -Counter Table

1

4

2

.

.

.

3

^

1 4 5 6 1

1 4 5 7 1

1 4 5 9 0

1 4 6 7 1

1 4 6 9 0

.

.

1

1

0

1

0

.

.

Itemset - Counter Table

(a) Candidate 4-itemsets

(b) Frequent 4-itemsets

(c) Candidate 5-itemsets

1 4 5 6

1 6 7 8

Hash Table Sibling Table

Hash Table

Hash Table

Sibling Table

Sibling Table

Figure 2.2. Array-based storage of itemsets

In our example, {1, 4, 5, 6}, {1, 4, 5, 7}, and {1, 4, 5, 9} are siblings. First, {1, 4,
5, 6, 7} is created in Phase I of apriori-gen. In Phase II, {1, 4, 6, 7}, {1, 5, 6, 7},
and {4, 5, 6, 7} are checked against the frequent Itemset-counter table
through the frequent hash table for their existence. We assume all are frequent.
The 5-candidate {1, 4, 5, 6, 7} is inserted into the new candidate Itemset-counter
table, with its counter and sibling bit initialized to zero. Then we generate another
potential 5-candidate {1, 4, 5, 6, 9} in Phase I of apriori-gen. In Phase II, {1, 4, 6,
9}, {1, 5, 6, 9}, and {4, 5, 6, 9} are checked against the frequent array structure.
We know {1, 4, 6, 9} is there. We assume the other two are both frequent. Hence,
{1, 4, 5, 6, 9} is appended to the new candidate Itemset-counter table, with its
counter and sibling initialized to zero. Because {1, 4, 5, 6, 9} is an immediate sib-
ling of {1, 4, 5, 6, 7}, the bit corresponding to {1, 4, 5, 6, 7} is set to “1” in the
new candidate Sibling table. The last step is the processing of {1, 4, 5, 7, 9}.
We assume it is also a candidate. It is appended to the new candidate array struc-
ture, with its counter and sibling bit reset. After the creation of the candidate
array structure, the frequent Itemset-counter table is reserved for the rule discov-
ery, while the frequent Hash table and frequent Sibling table are deleted. The
candidate 5-itemsets are shown in Figure 2.2c.

4.2 Counting

So far, we have discussed the generation of frequent and candidate itemsets
with the array structure. Next, we investigate the functions of the hash-tree in the
counting phase and see how the array structure can provide the same functional-
ity. We use the example shown in Figure 2.3 to illustrate the functions of the hash
tree in the phase of counting. Internal nodes of such a tree are implemented as
hash tables to allow fast selection of the next node. To reach the leaf for a set,
start with the root and hash on the first item of the set. Reaching the next inter-
nal node, hash on the second item and so on until a leaf is found.

Consider now the transaction T = {1, 4, 5, 6, 7}. Apriori needs to iden-
tify whether the combinatorial subsets with 4 items of T are candidates. The
set of subsets SS of T is {s1, s2, s3, s4}, where s1={1, 4, 5, 6}, s2={1, 4, 5, 7},
s3={1, 4, 6, 7}, and s4={4, 5, 6, 7}. Assume that all are candidates. So there are
four candidates, c1, c2, c3, and c4, where c1=s1, c2=s2, c3=s3, and c4=s4.

Assume further that c1 and c2 are stored in a leaf node LN1. Inside LN1, there
is another candidate, {1, 4, 5, 9}, which also has the prefix {1, 4, 5} but is not
supported by T. Similarly, c3 is stored in a leaf node LN2 along with another

54 Zahir Tari and Wensheng Wu

3
2

5
33 54

{3}
{4}
{5}
{6}

{5}
{6}

{4}
{5}
{6}

{4,5}

{4,6}

{5,6}

{5,6}

1

2

{6}

4

{4}
{5}
{6}

{6}{5}
{6}

4

Figure 2.3. Hash tree structure for candidates

candidate {1, 4, 6, 9}. And c4 is stored in a leaf node LN3 with another candidate
{4, 5, 6, 9}.

In order to identify the candidacy of the first two subsets, s1 and s2, Apriori
reaches LN1 from the root by traversing first the edge labeled with item 1, then the
one with item 4, and last the one with item 5. The edge selections are implemented
as the hash-table loop-ups. Apriori tests items 1, 4, and 5 once to reach the leaf.
Then it checks all the candidates in the leaf to determine whether they are sup-
ported by T. The first three items (1, 4, and 5) do not have to be considered any
more, but for all the larger items i in a candidate set, we have to check whether
i ∈ T. Here, the sets of the larger items are stored as item-lists, while the transac-
tion is in the form of a bitmap. In our example, after reaching LN1, we need one
comparison to identify a candidate. So after another three comparisons, s1 and s2
are found to be candidates, the counters of c1 and c2 are increased by 1 separately,
while there is no match for {1, 4, 5, 9}. For s3, after reaching LN2, we need another
two comparisons. Also, we need another six comparisons for s4 after reaching LN3.
In Figure 2.4, the paths to locate sets {1, 4, 5, 6}, {1, 4, 5, 7}, {1, 4, 6, 7}, and
{4, 5, 6, 7} are marked with bold arrows. The associated items are in bold.

The above example demonstrates three functions of the hash tree in Apriori:

● Store the candidate/frequent itemsets: c1, c2, c3, and c4 are stored in the hash
tree.

● Identify the status of a set of items, i.e., whether it is a candidate/frequent
itemset: s1, s2, s3, and s4 are candidates.

● Further, if an itemset is a candidate, locate the position of the candidate and
its counter. The counters of c1, c2, c3, and c4 are found and incremented.

In contrast to Apriori, we employ the Itemset-counter array to store the item-
sets, along with the auxiliary Hash table and Sibling table to achieve the same
functionality provided by the hash-tree:

● All the frequent itemsets and candidate itemsets are stored in the Array
structure.

● For any given set of items, if it is a candidate/frequent itemset, the hash func-
tion maps it to a bucket within its hash table that points to an itemset in the

ARM++: A Hybrid Association Rule Mining Algorithm 55

1 4 11 … 697

LN1
{ 6}, 1
{ 7}, 1
{ 9}, 0

Root: Hash Table

Interior Nodes: Hash Tables

Leaf Node: Itemlist & counter

Transaction Bitmap:

LN2
{ 7}, 1
{ 9}, 0

LN3
{5, 6, 7}, 1
{5, 6, 9}, 0

4 201 697

5 6 697

0 1 0 0 1 1 1 1 0 0 0…0

Figure 2.4. Apriori Hash Tree storage for itemsets

Itemset-counter table. The given itemset and the one in the table are the same,
e.g., {1, 4, 5, 6} in Figure 2.2a. Otherwise, the hash function maps it to an
empty bucket within its hash Table, e.g., {1, 6, 7, 8} in Figure 2.2a.

● Because both the itemset and its counter are stored together in the Itemset-
counter table, once the itemset is located, the counter can be incremented quickly.

Let us use the same example as that for Apriori, T = {1, 4, 5, 6, 7} to illustrate
how the Array structure works. When comparing the transaction against the can-
didate itemset, instead of initializing a bitmap for each transaction, we generate
clusters of possible candidate itemsets. For SS = {s1, s2, s3, s4 ⎪ s1={1, 4, 5, 6},
s2={1, 4, 5, 7}, s3={1, 4, 6, 7}, s4={4, 5, 6, 7}}, there are three clusters: cluster1
= {1, 4, 5, 6, [7]}, cluster2 = {1, 4, 6, 7}, and cluster3 = {4, 5, 6, 7}. Because in a
cluster, all the itemsets are the same except for their last items, we need only store
item 7 instead of {1, 4, 5, 7} in cluster1. Then we compare each cluster with the
candidate itemsets. For cluster1, the hash function leads s1 to its corresponding
position in the Itemset-counter table with four comparisons. The counter of the
itemset increases by 1. Next, for s2=[7], there are two ways to check its candidacy.
If the sibling chain is short, say, less than 4, we compare item 7 with the last item
of the next itemset along the sibling chain until these items match, or until 7 is
less than the last item of the next itemset along the chain. If the chain is long, for
all the itemsets in the cluster, the hash function generates their addresses in
the Itemset-counter table all at once, so we can check directly their existence in the
Itemset-counter table. Because both the candidate itemsets and the itemsets in
the clusters are stored in ascending order, the two methods generate the same results.

In our example, the sibling chain is three itemsets long, less than 4. Hence, on
the fifth comparison, we compare 7 with the last item of {1, 4, 5, 7}. They match,
so the counter of the next itemset increases by 1. Because there is nothing left in
cluster1, we move on to cluster2. The hash function maps subset {1, 4, 6, 7} to its
corresponding entry in the Itemset-counter table. With four comparisons, we
match the subset with the itemset and increase the counter by 1. In the same man-
ner, with four comparisons, we locate and increase the counter of {4, 5, 6, 7}.

5 ARM++: A HYBRID ALGORITHM
FOR ASSOCIATION RULES

This section presents three new algorithms, which vary in their comparison
methods, transaction filtering, and transaction transformation. As in ArrayApr,
the candidate and frequent itemsets in all the new algorithms are stored with the
new array-based data representation rather than the common hash-tree represen-
tation [2,3,4,6,7].

5.1 Methods of Comparison: CmpApr

For a transaction and a set of candidate itemsets, there are two ways to com-
pare them. Existing Apriori-based algorithms [2,6] only compare the transaction
against the candidate itemset by hashing the items in the transaction against the
hash-tree. Up to now, all our discussions have been based upon this method,

56 Zahir Tari and Wensheng Wu

namely, subset comparison. For example, in ArrayApr, in the kth iteration, given a
transaction, for all subsets that are k-candidates, k comparisons are needed to
determine the candidacy of each subset. However, for the subsets that are not
candidates, the comparison stops after the first mismatch between the candidate
and the subset, so the number of comparisons might be less than k for each sub-
set. In this example, we assume that six comparisons are needed to determine the
candidacy of a subset in the sixth iteration, no matter whether it turns out to be
a candidate or not. With a transaction of 20 items, for the subset comparison
method, ignoring the overhead of hashing, the number of item comparisons is

() * ,6 232 5606
20 = .

However, there is another comparison method, namely, candidate comparison.
It compares the candidate itemsets against the transaction. The transaction is ini-
tialized in a bitmap. We assume that the number of comparisons between a k-can-
didate and the transaction is k, though it might be less if the candidate is not
supported by the transaction. We continue with the previous example. If there are
8,192 candidates in the 6th iteration, the number of item comparisons is 8,192 * 6
= 49,152. In this case, it is obvious that candidate comparison performs better
than its counterpart. Also, the candidate comparison method does not have the
hashing overhead. The description of candidate_compare() routine is given in
Function 1 (see below).

Nevertheless, candidate comparison does not guarantee a smaller number of
comparisons. For the same transaction, in the third iteration with 28,000 candi-
dates, the subset comparison generates () * ,3 3 4203

20 = comparisons, while candi-
date comparison requires 28,000 *3 = 84,000 comparisons.

Candidate_compare
1) m=1
2) while m <= ⎜Ck⎜ % ⎜Ck⎜ is the number of candidates in Ck%
3) if all items i in cm ∈ T % cm is the mth candidate in Ck%
4) cm.count ++
5) m++
6) while cm is sibling of cm-1 % skip the first k-1 items of the

sibling candidates %
7) if kth item in cm ∈ T
8) cm.count++
9) end-if

10) m++
11) end-while
12) else % skip all the sibling candidates %
13) m++ % because none is supported by T %
14) while cm is sibling of cm-1
15) m++
16) end-while
17) end-if
18) end-while
end.

Function 1: Candidate_compare

ARM++: A Hybrid Association Rule Mining Algorithm 57

In our candidate comparison method, the comparison of sibling candidates
within a cluster can be accelerated in the same fashion as described in subsection
2.2. After we find that a sibling candidate is supported by a transaction, its sib-
lings only need to check whether or not their last items are in the transaction
bitmap. This process is implemented in steps 6-11 of Function 1. Similarly, in
steps 14–16, once we find that a candidate is not supported, all the comparisons
of its siblings with the transaction are skipped. The candidate comparison bene-
fits from our array structure, since, when we compare the items in a candidate
with a transaction, all the items are stored adjacently.

Our new algorithm, CmpApr, is described in Algorithm 1 (see below). It is based
upon both the subset comparison (step 8–11) and the candidate comparison (step 6).
From the above example, we can see that in the early iterations, when we have a large
number of candidates and a comparatively small number of subsets in a transaction,
the subset comparison method is better. In the later iterations, when we have a small
number of candidates and comparatively large number of subsets in a transaction,
the candidate comparison method is preferable. Fortunately, when we start to
process a transaction, we know the number of items in the transaction, the length of
candidates, and the number of candidates. For a transaction with ⎜T ⎜ items in the kth

iteration, we can precalculate the number of subsets, (⎜T ⎜
k). If it is smaller than the

number of candidates, we select the traditional subset comparison method; other-
wise, we use our candidate comparison method. Preference is given to the latter when
the number of subsets equals the number of candidates, because the overhead of the
hashing function is larger than that of the initialization of the transaction into a
bitmap. The condition statement of step 5 incorporates the above selection criteria.

CmpApr
1) L0 = Ø, k = 1
2) C1 = { {i} ⎜ i ∈ I }
3) while (Ck ≠ Ø) do

% count support %
4) forall transactions T ∈ D
5) if (estCmp(⎜T ⎜, k) > = ⎜Ck ⎜) % In CmpApr, estCmp(⎜T ⎜, k) = (⎜T ⎜

k)%
6) candidate_compare(Ck, T)
7) else

% ArrayApr body: subset comparison %
8) Ct = subset(Ck, T)
9) forall c ∈ Ct

10) c.count ++
11) end-forall
12) end-if
13) end-forall
14) Lk = {c ∈ Ck ⎜ c.count ≥ n * smin}
15) Ck+1 = generate_candidates(Lk)
16) k++
17) end-while
18) return L Lk

k
='

end.
Algorithm 1 CmpApr

58 Zahir Tari and Wensheng Wu

5.2 Online Transformation: FilterApr

This subsection describes the FilterApr algorithm, which is used for the subset
comparison. This algorithm introduces two layers of filtering. The first is called
transaction transformation, which occurs while the transactions are being read;
the other is called subset transformation, which happens during the subset gener-
ation from transactions.

Within an iteration, if an item in a transaction is not part of the frequent item-
sets supported by the transaction, it is useless since it contributes nothing to the
generation of frequent itemsets; otherwise, it is useful. Processing the data with-
out the useless items is vitally important. As mentioned earlier, AprioriTid and
Partition outperform Apriori in the later iterations in that their underlying data
structures, itemset-list and TID-list, store only the useful data. During the count-
ing phase, both algorithms save the overhead of computation associated with
items of no interest, whilst Apriori cannot efficiently trim the item-list structure
and has to process the subsets containing useless items. Because FilterApr reads
and then drops the useless items before checking the candidacy of the subsets
of the transactions, the number of the comparisons in FilterApr is much less
than that in ArrayApr, though the filtering in FilterApr is not as efficient as the
built-in pruning of the useless items in itemset-list and TID-list.

5.2.1 Transaction Transformation

The essence of transaction transformation is to screen out useless items before
the real processing. We achieve this by building a set of transaction filers derived
from the candidate itemsets.

The items in a transaction that do not appear in any of the supporting frequent
itemsets in the kth iteration can be dropped in the kth iteration. However, we have
a problem in applying this property to practice. Before we finish the kth iteration,
we don’t know which candidate is frequent. A workable and less stringent property
is that the items in a transaction that do not appear in any of the candidate item-
sets in the kth iteration can be removed. Before the start of the kth iteration, we
can build an item filter with only those items that appear in the k-candidates. The
filter is implemented as a bitmap. In the kth iteration, all items that do not belong
to the filter will be discarded; only items that exist in it will be processed.

For example, suppose we have only four candidate itemsets {1, 4, 5, 6}, {1, 4,
5, 7}, {1, 4, 5, 9}, and {1, 4, 6, 9} in the fourth iteration. A transaction T = {2, 3,
4, 5, 6, 7, 9, 10}, with item filter, will be trimmed down to {4, 5, 6, 7, 9}. However,
if we investigate the above example more carefully, we find there is no item 1 in
the transaction, whereas item 1 is the very first item of all the candidate itemsets.
This means that none of the itemsets is supported by the transaction. Therefore,
without item 1, all the items in T are useless. Our example shows that the set of
possible candidate items at a particular position of all candidate itemsets can
determine the potential usefulness of an item in a transaction.

We call all the possible items at a position j of the candidate k-itemsets the
necessary candidate items of position j, denoted by Ij, where,

Ij = {ij⎜ ij is the jth item of c ∩ c∈Ck}.

ARM++: A Hybrid Association Rule Mining Algorithm 59

In our example, the necessary candidate items of position 1, I1, is {1}, I2 is {4},
I3 is {5, 6}, and I4 is {6, 7, 9}.

In order to use the necessary candidate items to filter the transactions, let us
consider the procedure of the generation of the subsets of a transaction. In the
kth iteration, from the start of a transaction T, the first item t1 in T can only be
the first item of a subset. For t1 to be useful, the subset or one of the subsets, in
which t1 is the first item, must be a candidate. Hence, the first useful item t1 must
belong to I1, i.e., t1 ∈ I1. The second transaction item t2 can be either the first or
the second item of a subset. For t2 to be useful, the subset or one of the subsets,
in which t2 is the either the first item or the second item, must be a candidate.
Hence, the second useful item t2 must belong to either I1 or I2, i.e., t2 ∈ I1 ∪ I2.
Hence, for the useful mth item in transaction T, tm, we have

tm ∈
m

1
jI' , where m < k.

The useful kth item and the useful items after it in a transaction have to appear
in our item filter. Hence, we have

tn ∈
k

1
jI' , where n ≥ k ∩ n ≤ ⎜T ⎜.

If we look from the other side of the same transaction TR, that is, from the
end going backwards, the last useful item of a transaction, tR

1, can only be the
last item of some of the candidate itemsets, i.e., tR

1 ∈ Ik. The second-to-last use-
ful item of a transaction, tR

2, can be either the last or the second-to-last of some
of the candidate itemsets, i.e., tR

2 ∈ Ik ∪ Ik-1. Hence, for the mth-to-last useful item
in the transaction, tR

m, we have

tR
m ∈

k

k m 1- +

jI' , where m < k.

The kth-to-last useful item and the useful items before it in a transaction have
to appear in our item filter. Hence, we have

tR
n ∈

k

1

jI' , where n ≥ k ∩ n ≤ ⎜TR⎜.

Based upon our analysis of the subset generation from the transaction, we can
derive the possible transaction items at position j of a transaction from the neces-
sary candidate items. The formal definition is in Figure 2.5. A graphical repre-
sentation is shown in Figure 2.6.

We define transaction_transform() in Function 2, as shown below. Forward
possible transaction items are used in steps 1–9, the item filter is used in steps
11–19, and backward possible transaction items are used in steps 20–28. Before

60 Zahir Tari and Wensheng Wu

Forward possible transaction items: , (, ,...,)T Ij m k1 2 1m

m

1
= = -'

Item filter: ,T Ijk

k

1
='

Backward possible transaction items: , (, ,...,)T Ij m k1 2 1R
m

k

k m 1

= = -
- +

'
Figure 2.5. Transaction Transformation Filters

the start of the kth iteration, we can generate the possible transaction item filters
from the candidate itemsets in the form of a bitmap. When we read a transaction,
we apply the possible transaction item filters by invoking transaction_transform()
to remove the useless items from the transaction. After the invocation, if the
length of the transformed transaction is not less than k, we continue to count
its support; otherwise, the transaction is discarded, since it will not support any
k-candidates. This process is implemented in step 30.

Transaction_transform
1) m=1, j =1 % Phase I: Forward possible transaction items %
2) while (m<k ∩ j< ⎜T ⎜) % transaction T %
3) if (tj∈Tm) % useful item %
4) m++, j++
5) else % useless, discarded %
6) mark tj to be discarded
7) j++
8) end-if
9) end-while

10) if (m is k ∩ j < ⎜T ⎜) % k potentially useful items, items not
transformed %

11) while (j ≤ ⎜T ⎜) % Phase II: Item filter %
12) if (tj∈Tk)
13) m++, j++
14) else
15) mark tj to be discarded
16) j++
17) end-if
18) end-while
19) adjust T to remove discarded item

20) m=1, j=⎜ T⎜ % Phase III: Backward possible transaction
items %

21) while (m<k ∩ j≥0)
22) if (tj∈TR

m) % useful item %
23) m++, j−−
24) else % useless, discarded %
25) mark tj to be discarded

ARM++: A Hybrid Association Rule Mining Algorithm 61

item filter

forward possible
transaction items

backward possible
transaction items

Ik

candidate items

t R
2

t R
1

candidate items

transaction size

I2
t2

t3

I1

I2

I1
Ik−1

Ik

Ik−1

|T R||T R|-K +11 2 3 K-1 K

Figure 2.6. Possible Transaction Items

26) j−−
27) end-if
28) end-while
29) end-if
30) adjust T to remove discarded item
31) return T
end.

Function 2: Transaction_transform

Transaction transformation works on the transactions based upon the possi-
ble transaction items, which are generated from necessary candidate items accord-
ing to the relationship between the items at a particular position in the
transaction and the items at a particular position in the candidate itemsets.

5.2.2 Subset Transformation

Transaction transformation finishes before the generation of the subset.
The next layer of filtering, subset transformation, works on the subsets generated
from the transactions to reduce the combinatorial subset space for the support
counting. We discover the inter-item relationships between the adjacent items of
the candidate itemsets and use these heuristics to avoid the generation of useless
subsets, which turn out to be small itemsets.

In the previous example, with only four candidates at the fourth iteration,
namely, {1, 4, 5, 6}, {1, 4, 5, 7}, {1, 4, 5, 9}, and {1, 4, 6, 9}, and a transaction
T = {1, 4, 5, 6, 7, 9}, the transaction transformation cannot trim T any more. The
subsets generated from T with four items are

s1 = {1, 4, 5, 6}, s2 = {1, 4, 5, 7}, s3 = {1, 4, 5, 9}, s4 = {1, 4, 6, 7},
s5 = {1, 4, 6, 9}, s6 = {1, 5, 6, 7}, s7 = {1, 5, 6, 9}, s8 = {1, 6, 7, 9}.

From the candidate itemsets, we know that after the first item, 1, the only pos-
sible second item is 4. So only those subsets with the second item as 4 are gener-
ated. We have s1, s2, s3, s4, and s5 left. After the second item 4, the possible third
items are 5 or 6. The remaining five subsets have no problems. After the third item
5, the possible fourth items are 6, 7, or 9. s1, s2, and s3 survive the test. After
another third item, 6, the only possible fourth item is 9. s4 is discarded and s5 is
generated. In the example, after our possible subset item test, subset s4, s6, s7, and
s8 are discarded “on-the-fly” instead of being passed on to the hashing function
to check their candidacy.

The heuristics behind the usage of inter-item relationships are these: when we
generate a subset from the first item to the last, the set of (j+1)th possible subset items
can be limited based upon the known jth item. In the example shown above, without
the knowledge of the third item, we can only use the set of necessary candidate
items at position 4, i.e., I4 = {6, 7, 9}. We cannot filter any item. Once we know that
the third item is 6, the fourth possible subset item is 9, so we can filter out s4.

In order to save the inter-item relationship, we apply the module-2n (n ≥ 0)
operation on the item at the (j−1)th (j > 1) position of a candidate itemset. If the
result is i, we add the jth item of the candidate to the ith set of possible subset

62 Zahir Tari and Wensheng Wu

items. Actually, we split Ij, the sets of the necessary candidate items at the jth posi-
tion, into 2n sets of possible subset items (PSI). We denote the ith set of possible
subset items at position j by PSIji. There is an exception for I1: it will not be
divided, since there are no items before the first. The number, 2n, into which the
possible subset items split the necessary candidate items is called the splitting fac-
tor. For fast detection, we select the splitting factor as a number to the power of 2.

In the kth iteration, similar to the k possible transaction item filters created for
the transaction transformation, we build k*2n possible subset item filters, which
are also in the form of a bitmap. The possible subset item filters of our previous
example, with the splitting factor of 2, are shown in Figure 2.7. The dashed lines
mark the module operations on the items.

The splitting factor is a measurement of how thoroughly PSIs represent the
inter-item relationships among the candidate itemsets. With a splitting factor of
1, PSIs reduce to the possible candidate itemsets. The larger the splitting factor,
the more fully PSIs represent the inter-item relationship, and the better they
screen out useless subsets. However, the memory requirement of PSIs increases
linearly with the splitting factor. The trade-off of the space-and-time problem of
the splitting factor is further investigated with experimental results in subsection
6.2. Subset transformation is based upon the set of PSIs and is described below
as Function 3. For each subset, subset_transform marks its usefulness.

Subset_Transform
1) set c useful
2) m=2 % start from the second item %
3) while (m ≤ k)
4) previous = cm-1 MOD 2n % calculate which set of PSI %
5) if cm in PSIm, previous % subset item in the Possible Subset Items %
6) m++ % check next subset item %
7) else
8) set c useless
9) break % skip to next subset %

10) end-if
11) end-while
end.

Function 3: Subset_Transform

ARM++: A Hybrid Association Rule Mining Algorithm 63

1 0 0 0 0 0 0 0 0…0

 0 0 0 1 0 0 0 0 0…0

1 0 0 0 0 0 0 0 0…0

 0 0 0 1 0 0 0 0 0…0

I1 = {1}

I2 = {4}

I3 = {5,6}

I4 = {6,7,9}

1

4

65

PSI20
PSI21

PSI31

PSI41

PSI30

PSI40

 0 0 0 0 1 1 0 0 0…0

 0 0 0 0 0 1 1 0 1…0

 0 0 0 0 0 0 0 0 0…0

 0 0 0 0 0 1 1 0 1…0

 0 0 0 0 0 0 0 0 0…0

 0 0 0 0 1 1 0 0 0…0

 0 0 0 0 0 0 0 0 1…0

Necessary Candidate Items (I) Possible Subset Itemsets (PSI)

Figure 2.7. Possible Subset Items

To integrate transaction transformation and subset transformation, we come
up with a new routine, filterCount(). It applies the transaction transformation in
step 3 and the subset transformation in step 8, as defined in Function 4. Firstly,
the transaction transformation reduces the number of items in the transactions to
be processed in the counting phase. Secondly, the subset transformation reduces
the number of subsets to be detected for candidacy.

filterCount()
1) forall transactions T ∈ D
2) % Transaction transformation %
3) T = transaction_transform(T)
4) if ⎜T ⎜≥ k
5) Ct = subset(Ck, T)
6) forall c ∈ Ct
7) % Subset Transformation %
8) subset_transform(c)
9) if c is useful

10) c.count ++
11) end-if
12) end-forall
13) end-if
14) end-forall
end.

Function 4: filterCount()

To end this section, we propose a new algorithm, FilterApr, as shown
in Algorithm 2 below. It uses filterCount() in step 4 to find all the frequent
itemsets.

FilterApr
1) L0 = Ø, k = 1
2) C1 = { {i} ⎜ i ∈ I } % all 1-itemsets %
3) while (Ck ≠ Ø) do
4) filterCount()
5) Lk = {c ∈ Ck ⎜c.count ≥ n * smin}
6) Ck+1 = apriori_gen(Lk)
7) k++
8) end-while
9) return L Lk

k
='

end.
Algorithm 2: FilterApr

5.3 ARM++: A Fast Algorithm

In this section, we combine FilterApr with Partition [7] to propose a new algo-
rithm, ARM++, as defined in Algorithm 3. It is a hybrid of FilterApr in the early
passes (FilterApr phase) and Partition in the subsequent passes (Partition phase).

64 Zahir Tari and Wensheng Wu

The pivot point is that whenever the estimated TID-list of Partition can be held
in memory, we switch from FilterApr to Partition.

5.3.1 Implementation of ARM++: Partition Phase

Being similar to Partition, in steps 24–31 of the partition phase, ARM++
works with the TID-list representation. The count for a candidate is deter-
mined immediately after it has been generated from two frequent sets. To com-
pute the count, the TID-lists of the two frequent sets are joined using a
merge-join.

One minor difference between ARM++ of the partition phase and Partition is
that ARM++ uses the same Array structure to store frequent sets and the same
candidate generation technique as those in ArrayApr. Use of the same data struc-
ture and the candidate generation code further simplifies the comparison between
TID-lists and item-lists, because our results are not obscured by different storage
and candidate generation procedures.

5.3.2 No Partitioning of data

The very reason Partition divides the data into several parts is that it cannot
keep all the TID-lists in memory, especially in the early iterations. With the itera-
tion number increasing, the number of candidates decreases sharply. Also, with
the length of the candidate itemsets increasing, they are less likely to be supported
by transactions. Hence, in the later iterations, it is possible to cache all the TID-
lists in memory if it is not possible in the early iterations.

When the size of the TID-lists exceeds the amount of free memory, the data
that cannot be held in memory will be swapped onto the disk by the virtual mem-
ory system. This process is not only time-consuming but also not always possible.
Given a large database that occupies nearly all the disk space, there might not be
enough space for the swapping area. For example, with our 79.6 MB simulation
data containing only 1,000,000 transactions, for support as low as 0.25%, with an
average transaction size as long as 20 and an average itemset length of 6, in the
third iteration, there are 12,933 frequent itemsets. The minimum length of the
TID-lists is 2,500, and each TID takes 4 bytes. Hence, we need a minimum of 123
MB to store the TID-lists before the start of the third iteration. With physical
memory of 64 MB, and free disk space of 64 MB, my computer cannot run
Partition, since there is not enough space to store the data in the format of a TID-
list. After eight or more iterations, the memory requirement to store the TID-lists
of the candidate itemsets drops to no more than 25 MB, so one partition is
enough. In this case, my computer can run Partition from the eighth iteration.

Based upon the above analysis, with large databases on the disk, it is likely
that we do not have enough free space to store the intermediate TID-lists. So we
implement ARM++ as a hybrid of FilterApr and Partition. In the early iterations,
before the TID-lists can be held in memory in step 6, we adopt FilterApr. Once
we can start Partition without splitting the data, we transform the data from item-
list format into TID-list in steps 9–22 and switch to Partition. In the
partition phase, ARM++ has only one partition, so the whole TID-list is held
in memory; there is no extra disk space needed to store the intermediate TID-list,

ARM++: A Hybrid Association Rule Mining Algorithm 65

as in the case of multiple partitioning. Another advantage is that we can test the
performance of the TID-list data structure against that of the item-list in the later
iterations without the impact of partitioning.

ARM++
1) L0 = Ø, k = 1
2) C1 = { {i} ⎪ i ∈ I }
3) transformed-to-TID = false
4) while (Ck ≠ Ø) do

5) if(Ce emin

C
k

k 1e e+

k
! > available mem) % the estimated size TID-lists vs.

avail. mem.%
6) filterCount()
7) else

% transfer from item-list to TID-list %
8) if NOT transformed-to-TID
9) forall transactions T ∈ D

10) T = transaction_transform(T)
11) if ⎪T⎪ ≥ k
12) Ct = subset(Ck, T)
13) forall c ∈ Ct
14) subset_transform(c)
15) if c is useful
16) c.count ++
17) T(c) + = T.id % add transaction id to tid-list %
18) end-if
19) end-forall
20) end-if
21) end-forall
22) transformed-to-TID = true
23) else

% Partition Phase%
24) forall candidates c of size k
25) T(c) = generate_TID_list(c)
26) if (⎪T (c)⎪≥n*Smin)
27) Lk = Lk U{c}
28) else
29) drop_candidate(c)
30) end-if
31) end-forall
32) end-if
33) Lk = {c ∈ Ck ⎪ c.count ≥ n* smin}
34) Ck+1 = apriori_gen(Lk)
35) k++
36) end-while
37) return L Lk

k
='

end.
Algorithm 3: ARM++

66 Zahir Tari and Wensheng Wu

5.3.3 Estimation of the size of intermediate TID-list data

When we implement the above strategy, we need to determine the size of the
TID-lists of all (k+1)-candidates before the start of the (k+1)th iteration. We can
calculate the potential maximum size of the data when we use apriori-gen to gen-
erate the k+1 candidates.

After the kth scan, we already know the support of each k-frequent itemset.
Based upon the first property of a priori, the support of any k+1 frequent item-
set is equal to or less than that of its child k-frequent itemset with the smallest
support. In Partition, the support for a candidate is generated at the same time the
candidate is generated. If the count is no less than the minimum support, the can-
didate becomes a frequent itemset; otherwise, it is discarded. The length of the
TID-list of a frequent/candidate itemset ck+1 is actually its support. Hence, the
maximum possible length of the TID-list of the candidate, ⎪ck+1⎪max, is the mini-
mum of all the supports of the k− containing frequent itemsets of the candidate,
i.e., ⎪ck+1⎪max = mink⎪Ck⎪, where ck ⊂ ck+1. For example, given four 3-frequent
itemsets {3 169 377}, {3 169 555}, {3 337 555}, and {169 337 555} with their sup-
ports, i.e., 326, 327, 333, and 310, respectively, the support of {3 169 377 555}
cannot exceed 310.

Before the start of the (k+1)th iteration, we have gathered all the supports for
k-frequent itemsets. In step 34, when we derive k+1 candidates from k-frequents,
for each generated candidate, we can calculate the maximum possible length of its
TID-list, ⎪ck+1⎪max= mink ⎪Ck⎪. The sum of such lengths associated with all

candidates, Ce emin

C
k

k 1e e+

k
! , is the estimation of the size of the TID-list

data of the (k+1)th iteration. In step 5, if the sum is equal to or less than the
size of the free memory, we know if we start to transform the data from item-
list to TID-list in the k+1 iteration, we do not need to swap the resulting data.
In this case, while we count the supports of the candidates in the k+1 iteration
using modified FilterApr in steps 9–22, if a transaction includes some candi-
dates, we save the ID of the transaction into the TID-list buffers associated
with the candidates. After the k+1 iteration, we enter the partition phase of
ARM++.

5.3.4 Combining 1-itemsets and 2-itemsets counting

Let us consider the performance of the TID-list and item-list. It is in the later
iterations that the savings on the computation of irrelevant items give Partition an
edge over FilterApr. However, in the second iteration, FilterApr outperforms
Partition. Consider a database of m = 1,000 items, all of which we assume to be
frequent, when the support is very low. This means that all 2-combinations of
those items, m*(m-1)/2, at the level of 500,000 candidates have to be evaluated by
Partition in pass 2. Assume further that there are 10,000,000 transactions with an
average of 20 items. The average length of a TID-list for a 1-itemset is therefore
10,000,000*20/1,000 = 200,000 TIDs. One merge-join to count a candidate
requires as many comparisons as there are items in the longer list; thus, 500,000
* 200,000 = 1011 comparisons are necessary during pass 2. This figure is usually

ARM++: A Hybrid Association Rule Mining Algorithm 67

even larger because the lists that are longer than average cause more comparisons
than assumed here. We can estimate the number of hash operations performed by
FilterApr. In iteration 2, with so large a number of candidate itemsets, FilterApr
would use subset comparison based upon the Array structure. Again, we assume
that all items are frequent. The approximation of the comparison is (2

20)*
10,000,000 = 3.8* 109.

As shown in the above example, in the second iteration, both the Apriori
and Partition require a large number of comparisons to locate the candidate item-
sets. We can optimize the counting in the second iteration by counting the support
for 2-candidates directly, saving all the comparison overheads. Further, the direct
counting can be done in the first scan of the database. We can combine the 1-item-
set and 2-itemset counting in the first iteration, saving the I/O cost of one scan of
the data. The performance results of all the above algorithms, ArrayApr, CmpApr,
FilterApr, and ARM++, in Section 5 are generated with this optimization.

6 PERFORMANCE ANALYSIS

This section illustrates the performance of the proposed algorithms. In par-
ticular, we demonstrate the effects of online transformation of transactions,
which significantly reduce the CPU overhead in the early iterations. Also, we pres-
ent the efficiency of TID-lists in the later iterations whenever the resources
needed for execution are available. We evaluate the algorithms with two different
methods. The first is based upon the execution time of different algorithms listed
in Figures 2.8, 2.9, and 2.10. It gives preference to the actual execution time of the
different parts of the algorithms. However, the implementation tools and under-
lying execution environment also have direct impact on the execution time. This
makes the comparison result of algorithms tested on different platforms obscured
by factors other than the algorithms themselves. The second method is based
upon the number of integer comparisons involved in the algorithm of the fre-
quent itemset discovery, as specified in Table 2.2. Because it is independent of the
implementation tools and testing platform, this method genuinely reflects the effi-
ciency of the algorithm.

All our algorithms use the a priori [2] optimization to reduce the number of
candidate itemsets. In addition, CmpApr adopts different comparison methods to
reduce the number of comparisons. FilterApr reduces the combinatorial search
space by cutting the number of items in the transactions as well as the number of
subsets of the transactions. In the early iterations, FilterApr outperforms

68 Zahir Tari and Wensheng Wu

Table 2.2. Number of comparisons to determine the candidacy of itemsets
Algorithm No. Subset No. Candidate No. TID Total Time

Comparisons Comparisons Comparisons (Sec.)
ArrayApr 3,735,752,027 0 0 3,735,752,027 20,952.00
CmpApr 518,788,343 1,924,005,176 0 2,442,793,519 1,856.92
FilterApr 191,467,720 0 0 191,467,720 174.66
ARM++ 85,722,627 0 17,432,961 103,155,588 108.42
Item-list 137,343,148 0 0 137,343,148 N/A
ideal

Partition, which might require too much space to hold the intermediate result,
thereby making it impossible to execute. However, Partition [7] needs only one
comparison to determine the existence of a candidate itemset in a transaction,
while FilterApr needs n comparisons in the nth iteration. That is the reason why
Partition outperforms FilterApr in later iterations. As a compromise of FilterApr
and Partition, ARM++ also considers the availability of resources. It executes
FilterApr in the early iterations when resources are not enough for Partition. Then
it shifts to Partition whenever the resources are available for execution.

ARM++: A Hybrid Association Rule Mining Algorithm 69

Execution Time: T5I2D100K

Execution Time: T10I4D100K

Execution Time: TI012D100K

0
7654321 7654321

0.5

1

1.5

2

2.5

3

Minimum Support

Minimum Support

Minimum Support

ArrayApr

CmpApr

ArrayApr

CmpApr

ArrayApr

CmpApr

ArrayApr

CmpApr

ArrayApr

CmpApr

ArrayApr

CmpApr

0

2

4

6

8

10

12

14

16

T
im

e
(s

ec
)

T
im

e
(s

ec
)

T
im

e
(s

ec
)

Execution Time: T202D100K

Execution Time: T2016D100KExecution Time: T2014D100K

76543217654321

Minimum Support

76543217654321

Minimum SupportMinimum Support

T
im

e
(s

ec
)

T
im

e
(s

ec
)

0

50

100

150

200

250

300

350

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

0

5000

10000

15000

20000

25000

18(a) 18(b)

18(c) 18(d)

18(e) 18(f)

Figure 2.8.

6.1 Compare Candidate Comparison
and Subset Comparison

In this section, we compare the performance of ArrayApr and that of
CmpApr. ArrayApr is our implementation of the a priori optimization on the can-
didate itemsets stored in the array structure. Its performance shows the effect
of a priori without any other heuristics. In addition to the subset comparison
used in ArrayApr, CmpApr selectively uses candidate comparison to reduce the
number of comparisons and thus reduces the overall computation time.

70 Zahir Tari and Wensheng Wu

Execution Time: T5I2D100K Execution Times: T1012D100K

0

0.5

1

1.5

2

2.5

3

Minimum Support

CmpApr

FilterApr

CmpApr

FilterApr

CmpApr

FilterApr

CmpApr

FilterApr

0

2

4

6

8

10

12

14

T
im

e
(s

ec
)

T
im

e
(s

ec
)

T
im

e
(s

ec
)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

T
im

e
(s

ec
)

T
im

e
(s

ec
)

0

50

100

150

200

250

300

350

400

450

0
20
40
60
80

100
120
140
160
180
200

0

50

100

150

200

250

19(a)

19(c)

19(e) 19(f)

19(d)

19(b)

7654321

Minimum Support
7654321

Minimum Support

7654321

Minimum Support
7654321

Minimum Support
7654321

Minimum Support

7654321

Execution Time: TI014D100K

Execution Times: T2014D100K Execution Times: T2016D100K

Execution Times: T2012D100K

CmpApr

FilterApr

CmpApr

FilterApr

Figure 2.9. Execution times for CmpApr and FilterApr

Execution time. Figure 2.8 shows the execution time for the six synthetic
datasets of 100,000 transactions given in Table 2.3 for decreasing values of mini-
mum support. In the figure, as well as in Figures 2.9 and 2.10, the values of 1, 2,
3, 4, 5, 6, and 7 on the X-axis represent the minimum support threshold of 2%,
1.5%, 1%, 0.75%, 0.5%, 0.33%, and 0.25%, respectively. As value on the X-axis
increases from 1 to 7, the minimum support drops from 2% to 0.25%, and the exe-
cution times of the algorithms increase. This is because with the decrease of the
minimum support, the total numbers of candidate itemsets and of frequent item-
sets increase, both of which take more time to generate. Moreover, if we compare
Figure 2.8(a) through Figure 2.8(f), we find that as the average length of transac-
tions increases, the execution time increases. Further, for the same average length

ARM++: A Hybrid Association Rule Mining Algorithm 71

Execution Time: T5I2D100K Execution Time: T1012D100K

0
7654321

0.5

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1

1.5

2

2.5

Minimum Support

7654321

Minimum Support

7654321

Minimum Support

T
im

e
(S

ec
)

T
im

e
(S

ec
)

FilterApr

ARM++

FilterApr

ARM++

FilterApr

ARM++

FilterApr

ARM++

FilterApr

ARM++

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

7654321
Minimum Support

7654321
Minimum Support

0

20

40

60

80

100

120

T
im

e
(s

ec
)

T
im

e
(s

ec
)

0.00

50.00

100.00

150.00

200.00

20(a)

20(c) 20(d)

20(e) 20(f)

20(b)

Execution Time: T1014D100K

Execution Time: T1014D100K Execution Time: T1014D100K

7654321

Minimum Support

T
im

e
(S

ec
) FilterApr

ARM++

0.00

20.00

40.00

60.00

80.00

100.00

Execution Time: T2012D100K

Figure 2.10. Execution times for FilterApr and ARM++

of transactions, with the increase of the average length of itemsets, the execution
time also increases. Both these outcomes result from the increase of the numbers
of frequent itemsets and of candidate itemsets.

With a small average length of transactions, small average length of itemsets,
and high minimum support rate, the numbers of candidate itemsets and of fre-
quent itemsets are much less than those with large average length of transaction,
large average length of itemsets, and low minimum support rate. We can see that
the “easiest” dataset is T5I2D100K at the highest support setting of 2%, while the
“hardest” is T20I6D100K at the lowest support setting (0.25%).

It is with the hard dataset that the effect of reduction of the algorithm search
space can show up. With the easy dataset, the gain in the reduction of the num-
ber of candidate and frequent itemsets is so small that it might not offset the extra
complexity introduced. As to the performance comparison of ArrayApr and
CmpApr, for example, the execution times of CmpApr on T5I2D100K are slightly
longer than those of ArrayApr with all settings of minimum support. With
T10I2D100K, the speed gain of CmpApr over ArrayApr is marginal. It is with the
hardest dataset that the true efficiency of CmpApr is fully represented. Therefore,
in the following discussion, we will focus on the performance of the algorithms
on the hardest dataset, both in terms of the time and the number of comparisons
that occurred.

As shown in Figure 2.8(f), the improvement in execution times for the hardest
dataset is quite significant. The execution time improves from 20,952 seconds to
1,856.92 seconds. Since both ArrayApr and CmpApr use the same candidate item-
set generation technique and process the same transactions, the latter mainly ben-
efits from the candidate comparison method. Subset comparisons are much more
expensive than candidate comparison because of the overhead of hashing func-

72 Zahir Tari and Wensheng Wu

Table 2.3. Synthetic Data Sets
Name ⎪T⎪ ⎪I⎪ ⎪D⎪ Data Size(corr=0.5, c=0.5)
T5.I2.100K 5 2 100,000 2.33 MB
T10.I2.100K 10 2 100,000 4.19 MB
T10.I4.100K 10 4 100,000 4.23 MB
T20.I2.100K 20 2 100,000 7.99 MB
T20.I4.100K 20 4 100,000 7.97 MB
T20.I6.100K 20 6 100,000 7.97 MB
T5.I2.500K 5 2 500,000 11.6 MB
T10.I2.500K 10 2 500,000 20.9 MB
T10.I4.500K 10 4 500,000 21.1 MB
T20.I2.500K 20 2 500,000 39.9 MB
T20.I4.500K 20 4 500,000 39.8 MB
T20.I6.500K 20 6 500,000 39.8 MB
T5.I2.1M 5 2 1,000,000 23.3 MB
T10.I2.1M 10 2 1,000,000 41.9 MB
T10.I4.1M 10 4 1,000,000 42.3 MB
T20.I2.1M 20 2 1,000,000 79.9 MB
T20.I4.1M 20 4 1,000,000 79.7 MB
T20.I6.1M 20 6 1,000,000 79.6 MB
T10.I4.2M 10 4 2,000,000 84.6 MB
T10.I4.5M 10 4 5,000,000 211 MB
T10.I4.10M 10 4 10,000,000 423 MB

tions. Before each subset comparison, the position of the subset has to be calcu-
lated based upon the content of the subset. The longer the subset, the higher the
overhead of hashing. Though special optimization has been implemented on the
hashing calculation, it is still very expensive, considering the fact that it is required
for each subset. In contrast, for candidate comparison, the candidates are stored
in the array structure sequentially. The comparisons are conducted in the order
of the candidate itemset, so there is no extra cost in determining the positions of
candidate itemsets.

6.2 Transform Transactions and Subsets

This subsection compares the performance of CmpApr and that of FilterApr.
CmpApr uses a different comparison method to reduce the number of item com-
parisons as well as the cost of each comparison, while FilterApr reduces both the
number of items in the transactions and the subsets of transactions.

Execution time. Figure 2.9 shows the execution times of both CmpApr and
FilterApr. With all the data sets, FilterApr outperforms CmpApr. Especially for
the hardest data set, the execution time drops significantly from 1,856.92 seconds
to 174.66 seconds. Since FilterApr only uses the comparatively slower subset com-
parison, the improvement is mainly due to the significant reduction in the num-
ber of subsets of transactions. There is overhead associated with the transaction
transformation, which processes data at the speed of 1 MB/second. We derive this
number by subtracting the sequential input throughput with transformation of
about 4 MB/second from the measured raw sequential of about 5 MB/second.
Compared with the time saved, this optimization is very effective. One good fea-
ture about subset filtering is that the longer the subset, the more information
about the interrelationship between the adjacent items, the more powerful the
transaction transformation, and the more significant the reduction on the execu-
tion time.

Number of comparisons. In subset comparison, for each subset of a transac-
tion, we need to determine whether it is a candidate or not. The subsets of a
transaction are generated combinatorially from the items of the transaction.
Transaction transformation reduces the number of subsets by filtering out the
useless items and the unnecessary subsets generated from the retained items.
In Table 2.2, the total number of item comparisons of FilterApr is 7.84% of that
of CmpApr, and execution time of FilterApr is 9.4% of that of CmpApr. We can
see that the filters increase the hit-ratio by removing over 92% of futile item
comparisons.

6.3 Integrate FilterApr and Partition

Here we compare the performance of FilterApr and that of ARM++. Because
FilterApr and ARM++ share the same algorithm in the early iterations, actually
we compare the performance of FilterApr and the Partition phase of ARM++ in
the later iterations. Although FilterApr has employed several new optimizations
to improve its performance, in the later iteration, the TID-list underlying ARM++

ARM++: A Hybrid Association Rule Mining Algorithm 73

beats the item-structure behind FilterApr. In the kth iteration, to compute a count
for a candidate itemset, ARM++ needs only one comparison of the TIDs of its
two sub-itemsets, while FilterApr needs o(k) comparisons, i.e., the comparisons of
the k items of the subset with the items in one or multiple hash buckets. Recall
itemset-list also needs o(k) comparisons. Inherently, the TID-list is the best
among the three possible structures in later iterations. However, the size of the
TID-list is in proportion to the number of the transactions in the database. For
data with the same support for the same number of frequent itemsets, the length
of TID-lists of the database with 10,000,000 transactions would be 100 times
those of the database with 100,000 transactions. In contrast, FilterApr needs no
extra memory to hold the database. It works on the original database, and the
processing can be accelerated with the help of filters.

Execution time. Figure 2.11 shows the execution times of both FilterApr and
ARM++. For the hardest data set, the execution time drops from 174.66 seconds
down to 108.42 seconds. As discussed above, the improvement is due to the adop-
tion of Partition in the later iterations of execution. Similar to the subset com-
parison, there is hashing overhead associated with the TID comparison.
Therefore, TID comparison is much quicker than the candidate comparison.
However, in ARM++, there is an overhead to transform the data from the item-
structure to the TID-structure when switching from FilterApr to Partition. As to
the memory requirement, the filters in FilterApr requires less than 104 KB mem-
ory. When ARM++ switching to the Partition phase, we use all the available 64
MB of memory to store the intermediate TID-lists.

Number of comparisons. In Table 2.2, for ARM++, there is a new column, No.
TID Comparisons, to summarize the number of item comparisons based upon the
TID-lists. The total number of item comparisons of ARM++ is 53.88% of that of
FilterApr, and the execution time of ARM++ is 62.07% of that of FilterApr. We
can see that the adoption of the TID-list increases the hit-ratio by removing over
46% of the unnecessary item comparisons.

In the first column, we list an Item-list Ideal algorithm, which represents the
perfect algorithm based upon item-structure where none of the item comparisons
is related to any small itemsets. Actually, the total number of item compar-
isons of ARM++ is only 75% of that of the Item-list Ideal algorithm. This demon-
strates that the underlying TID-list data structure can provide a more efficient
comparison method than the item-structure in the later iterations.

74 Zahir Tari and Wensheng Wu

0

0.5

1

1.5

2

2.5

100 500 1000 2000 5000 10000
Number of transactions (in '000s)

0.25

0.75

Figure 2.11. Number of transactions scale-up: ARM++

Scalability. Figure 2.11 shows the scalability of the ARM++ when the num-
ber of transactions scales up. The number of transactions ranges from 100 K,
500 K, 1 M, 2 M, 5 M, up to 10 M. The minimum supports of the experiments
are set to 0.25% and 0.75%. ARM++ scales linearly with the increasing number of
transactions.

6 CONCLUSIONS

Based upon our study of association rule mining, we have proposed a sequen-
tial algorithm, ARM++, which achieves better performance with the available
resources and displays near-linear scale-up behavior. We believe that ARM++ is
the first attempt to integrate different algorithms based upon the available
resources. In the early iterations, it requires fewer resources than Partition, and in
the late iterations, it performs faster than FilterApr. In our analysis of different
algorithms, we compare both their execution times and the number of compar-
isons involved. The execution of different algorithms at different stages is per-
formance oriented and resource based. The flexibility of the approach enables us
to integrate the latest research result in the association rule mining and related
field.

Unfortunately, the utilization of computer power was limited to a single machine
due to the sequential nature of our algorithm, so our future work will consist of
extending the proposed algorithms in a context of heterogeneous environments.
Several algorithms have been proposed [3,4,6] that aim to reduce execution time by
running on multiple machines and minimizing costly intercommunication.
However, all these algorithms are designed for parallel machines or homogeneous
network environments, where the performance of each node or machine is the same
or similar and the connection is reliable and fast. In a heterogeneous network envi-
ronment, the power of each machines varies, and the throughput of network con-
nection between different machine varies. Because usually there are multiple jobs
running at the same time, the local resources, i.e., CPU, memory, disk, and com-
munication resources, change over time. The challenge is to maximize performance
while using minimum resources.

ACKNOWLEDGMENT

This project is supported by the ARC (Australian Research Council) Linkage-
project LP0347217 (titled “Designing a Scalable and Robust Infrastructure for
Highly Dynamic Web Services”) and SUN Microsystems.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami (1993): Mining Association Rules
between Sets of Items in Large Databases. Proc. SIGMOD International
Conference on Management of Data, Washington, DC, pp. 207–216.

ARM++: A Hybrid Association Rule Mining Algorithm 75

[2] R. Agrawal and R. Srikant (1994): Fast Algorithms for Mining Association
Rules. Proc. Very Large Database International Conference, Santiago,
pp. 487–498.

[3] R. Agrawal and J.C. Shafer (1996): Parallel Mining of Association Rules:
Design, Implementation and Experience. Research Report RJ10004, IBM
Almaden Research Center, San Jose.

[4] D. W. Cheung, V. T. Ng, A. W. Fu, and Y. Fu (1996): Efficient Mining of
Association Rules in Distributed Databases. IEEE Trans. Knowledge Data
Eng. 8(6), 911–921.

[5] M. Houtsma, and Arun Swami (1995): Set-Oriented Mining for Association
Rules in Relational Databases. IEEE Int. Conf. on Data Engineering
pp. 25–33.

[6] J.S. Park, M-S Chen, and P. S. Yu (1995): An Effective Hash-Based
Algorithm for Mining Association Rules. Proc. SIGMOD Int. Conf.
Management of Data, pp. 175–186.

[7] A. Savasere, E. Omiecinski, and S. Navathe (1995): An Efficient Algorithm
for Mining Association Rules in Large Databases. Proc. Very Large
Database Int. Conf., Zurich, pp. 432–444.

[8] R. Srikant and R. Agrawal (1996): Mining Quantitative Association Rules
in Large Relational Tables. Proc. SIGMOD Int. Con. on Management of
Data, Montreal, pp. 1–12.

[9] http://www. almaden.ibm.com/cs/quest/syndata.html
[10] R. Srikant and R. Agrawal: Mining Quantitative Association Rules in

Large Relational Tables. SIGMOD 96, Montreal, pp. 1–12.
[11] D. Hand, H. Mannila, and P. Smyth (2001): Principles of Data Mining.

MIT Press, Cambridge, MA.
[12] J. Han and M. Kamber (2001): Data Mining—Concepts and Techniques.

Academic Press, New York.

76 Zahir Tari and Wensheng Wu

Chapter 3

MULTISET RULE-BASED PROGRAMMING
PARADIGM FOR SOFT-COMPUTING IN
COMPLEX SYSTEMS
E. V. Krishnamurthy
Australian National University
and
Vikram Krishnamurthy*
University of British Columbia

Abstract
This chapter describes a rule-based multiset distributed programming par-

adigm as a unifying theme for conventional as well as soft and innovative com-
puting, e.g., Markov Chain Monte Carlo (MCMC)-based Bayesian inference;
biological, chemical, DNA, dynamical, genetic, immuno-, and membrane
computation; and nature-inspired, self-organized criticality and active
walker (swarm and ant intelligence) models. The computations are inter-
preted as the outcome arising out of deterministic, nondeterministic, or sto-
chastic interaction among elements in a multiset object space that includes
the environment. These interactions are like chemical reactions, and the evo-
lution of the multiset can mimic biological evolution. Since the reaction rules
are inherently parallel, any number of actions can be performed coopera-
tively or competitively among the subsets of elements so that the elements
evolve toward an equilibrium or an emergent state. Practical realization of
this paradigm is achieved through a coordination programming language
using Multiset and transactions. This paradigm permits carrying out parts or
all of the computations independently in a distributed manner on distinct
processors and is eminently suitable for cluster and grid computing. Some
important applications of this paradigm are described.

* Research was supported by the National Sciences and Engineering Research Council
(NSERC) Canada.

1 INTRODUCTION

Most systems we observe in nature are complex dynamical systems that con-
sist of a large number of degrees of freedom. Further, they may contain several
inhomogeneous subsystems that are spatially and temporally structured on dif-
ferent scales and characterized by their own dynamics and interacting with each
other in a complex manner. Such complex systems often exhibit collective
(“Emergence”) behavior that is difficult to model deterministically, based entirely
on the properties of the individual subsystems. Probabilistic models such as sto-
chastic dynamical systems provide an efficient methodology for modeling such
complex systems by capturing the average behavior of the system at different spa-
tial and temporal scales. Despite the relative simplicity of a probabilistic model
(in terms of the number of degrees of freedom) compared with a deterministic
model, the dynamics of the resulting stochastic system are often highly nonlinear,
implying that it is not possible to obtain analytical expressions for the distribu-
tions or statistics such as mean and variance. Thus we need to resort to Monte
Carlo simulation-based methods to compute estimates of the distribution and
statistics. These Monte Carlo estimators are based on the strong law of large
numbers, which under suitable regularity conditions (e.g., geometric ergodicity of
the dynamical system) states that the arithmetic mean of the simulated random
samples converges strongly (with probability one) to the true statistic. This simu-
lation-based approach for computing estimates of the distribution and statistics
of a stochastic dynamical system can be viewed as “soft computation,” since
unlike conventional computation, where exactness is our goal, we allow here for
the possibility of error and randomness. Soft computation needs to be supported
by a suitable choice of a datastructure and an associated programming paradigm.
It is the object of this chapter to describe a unifying programming paradigm for
carrying out soft computation in complex systems.

A programming paradigm is a class of programs that solve different problems
while having the same control structure [6, 7, 70]. This permits us to write a generic
program—called a program shell—that implements the common control structure.
The program includes a few unspecified data types and procedures that vary from
one application to another. We can then devise a parallel application program by
substituting the types and procedures needed for a specific application.

In this chapter we describe a unified multiset programming paradigm (UMPP)
that constitutes a unifying theme for several widely used computational schemes.
These include all conventional algorithms, Markov chain Monte Carlo (MCMC)
[26], Particle filters [27], evolutionary algorithms, such as classifier systems, proba-
bilistic bucket brigade learning [19], genetic algorithms [8, 12, 29, 30, 32, 61, 62],
genetic programming [42], membrane computing [74], immunocomputing [33], Self-
organized criticality [10], and active walker models (ants with scent or multiwalker-
paradigm, where each walker can influence the other through a shared landscape),
also called Stigmergy [9, 11, 18, 23, 24, 38, 39, 60, 56, 40] stochastic marked point
processes [78, 81], random graph models [15, 25], biomimicry [72], and DNA com-
puting [2, 58]. Also it is applicable to nonequilibrium systems interacting with sur-
roundings [63, 76] using feedback mechanisms involving catalytic reactions—as,
for example, the production of ATP (adenosine triphosphate) from ATP. These
lead to the necessity for the open-world hypothesis (rather than the closed-world

78 E. V. Krishnamurthy and Vikram Krishnamurthy

assumption used in logic) to discover newer unknown possibilities, e.g., self-organ-
ization and active walks (swarm intelligence: see [11, 23, 39, 56]).

1.1 Structure of Unified Multiset Programming Paradigm
(UMPP)

The UMPP proposed in this chapter consists of the following features [65, 37,
41, 80] that mimic evolutionary behavior in a biological system and innovative
aspects of other nonclassical computational schemes [85]:
1. One or more object spaces that contain elements whose information is structured

in an appropriate way to suit the problem at hand (e.g., the genomic library).
2. A set of interaction rules that prescribes the context for the applicability of the

rules to the elements of an object space. Each rule consists of a left-hand side
(a pattern or property or attribute) of named objects and the conditions under
which they interact, and a right-hand side that describes the actions to be per-
formed on the elements of the object space, if the rule becomes applicable,
based on some deterministic or probabilistic criteria. For example, techniques
in the lock-key paradigm [20, 21] abstracted from shape matching in molecular
biology form the basis for molecular computing. The lock-key paradigm arises
from the notions of complementarity and the union of opposites that pervade
the entire science and natural philosophy. It is based on the recognition of an
object (molecule) through complementary shape matching.

3. A control strategy that specifies the manner in which the elements of the object
space will be chosen and interaction rules will be applied, the kinetics of the
rule-interference (inhibition, activation, diffusion, chemotaxis), and a way of
resolving conflicts that may arise when several rules match at once. This is anal-
ogous to the selection strategy (possibly stochastic) in a biological system.

4. A mechanism to evaluate the elements of the object space in order to deter-
mine the effectiveness of rule application (e.g., evaluating fitness for survival
in a biological system).
Thus, UMPP provides a stochastic framework of generate and test for a wide

range of problems [92, 62]. Also, the system structure of UMPP, consisting of
components and their interaction, is supported by contemporary software archi-
tecture design [5].

1.2 Computational Features of UMPP

The UMPP has the following computational features:
1. Interaction-based: The computations are interpreted as the outcome of inter-

acting elements of the object space that produce new elements (or the same
elements with modified attributes) according to specific rules. Hence, the
intrinsic (genotype) and acquired properties due to interaction (phenotype)
can both be incorporated in the object space. Since the interaction rules are
inherently parallel, any number of actions can be performed cooperatively or
competitively among the subsets of elements so that the new elements evolve
toward an equilibrium or unstable or chaotic state. Such an evolution may
retain certain invariant properties of the attributes of the elements.

Multiset Rule-Based Programming Paradigm 79

2. Content-based activation of rules: The next set of rules to be invoked is deter-
mined solely by the contents of the object space, as in the context of chemical
reactions. This feature is very powerful, since it provides for automating the
discovery of solutions, as in genetic programming [42].

3. Pattern matching: Search takes place to bind the variables in such a way as to
satisfy the left-hand side of the rule. It is this characteristic of pattern (or
attribute) matching that gives the rule-based paradigm its distinctive capabili-
ties for innovative computing [36, 85, 91].

4. Simplicity of implementation: The implementation involves three basic tasks:
a. Searching for elements of the object space satisfying the interaction condi-

tion
b. Carrying out the action to these elements, ensuring that certain invariants

hold before and after the actions
c. Evaluation of the new elements in the object space for the required termi-

nation or equilibrium or self-organized criticality or emergent states
5. Suitable for deterministic, nondeterministic, and probabilistic evolutionary

modes: The object space mentioned above is analogous to phase space in
dynamical systems. It permits the introduction of a probabilistic formulation
in rule applications. As each element of the ensemble changes over time, its
phase point is carried into a new phase point. The evolution of the resulting
probability cloud (e.g., probability mass function associated with the discrete
phase points) in phase space corresponds to a distributed probabilistic com-
putation. Thus this paradigm is suitable for deterministic exact computation
when the initial conditions are exactly specified and the evolution is governed
by a deterministic system. It is also suitable for approximate probabilistic com-
putation when the initial conditions and interactions are not complete and not
well specified. The probabilistic computation mode is useful when one wants
to derive macroscopic or bulk properties of matter from the rules governing a
large number of objects, as in a statistical mechanical system interacting with
an environment.

6. Choice of objects and actions: We can use strings, arrays, sets, trees
and graphs, multisets, tuples, molecules, particles, and even points as the basic
elements of computation and perform suitable actions on them by defining a
suitable topology, geometry, or metric space. Accordingly, this approach is
widely applicable to several innovative computing approaches.
The rest of this chapter is organized as follows. In Sections 2 and 3, general

properties and those of rule-based paradigms are developed. In Section 4, we use
these properties to give a complete description of the UMPP. In Section 5, exam-
ples are given that are completely modeled by UMPP. These are, respectively,
Markov Chain Monte Carlo methods, Classifier/Bucket Brigade systems, Genetic
Algorithms, Genetic Programming, Oscillatory Chemical Reactions, Swarm and
Ant-Colony techniques, and Conrad’s Lock-Key Paradigm, membrane and
immunocomputing, and quantum field theory. In Section 6, UMPP is interpreted
in terms of relational databases. Section 7 explains the molecular DNA compu-
tation using multiset datastructure. Section 8 presents some simulation examples
of adaptive learning algorithm for Nernst potential, and adaptive spreading code
optimization in wireless CDMA systems. Section 9 contains some concluding
remarks.

80 E. V. Krishnamurthy and Vikram Krishnamurthy

2 DEFINITIONS AND FORMALIZATION

We define the following terms:

System. A system is a set of objects together with relationships between
objects and their attributes.

Environment. For a given system, the environment is the set of all objects, a
change in whose attributes affects the system, and also those objects whose attrib-
utes are changed by the behavior of the system.

Specification. We also define a specification of a deterministic computation as
a description that, when executed, would transform the given input object space
into a desired output object space satisfying the prescribed attributes.

The main feature of the general rule-based paradigm is the specification of the
program:

G(R, A)(M) = If there exists elements a, b, c, . . . in an object space M such
that an interaction rule R (a, b, c, . . .) involving elements a, b, c is applicable,
then G(R, A)((M-{a, b, c,. . }) + A(a, b, c,. . .)); else M.

Here M denotes the initial object space. This is a multiset or a bag in which a
member can have multiple occurrences [14]. The sign “−” denotes the removal (anni-
hilation) of the interacted elements; it is the multiset difference. The sign “+” denotes
the insertion (or creation) of new elements after the action A; this is multiset union.
Note that R is a condition text (or an interaction condition that is a boolean) that
determines when some of the elements of the object space M can interact. The func-
tion A is the action text that describes the result of this interaction.

The function R can be interpreted as the query evaluation function in a data-
base M, and the function A can be interpreted as the updating function for a set
of database instances. Hence, if one or several interaction conditions hold for sev-
eral nondisjoint subsets at the same time, the choice made among them can be
nondeterministic. This leads to competitive parallelism. However, if the interac-
tion condition holds for several disjoint subsets of elements in the database at the
same time, the actions can take place independently and simultaneously. This
leads to cooperative parallelism.

Deterministic Iterative Computation. This paradigm is a deterministic iterative
dynamic computation consisting of applications of rules that consume the inter-
acting elements of the object space and produce new or modified elements in the
multiset. This is essentially Dijkstra’s Guarded Command Program [45]. It is well
known that the Guarded Command approach serves as a universal distributed
programming paradigm for all conventional algorithms with deterministic or non-
deterministic components [70]. So we will not elaborate on this aspect any further.

Termination. To achieve termination of rule application, the interaction con-
ditions R have to be designed so that the elements in the object space can interact
only if they are in opposition to the required termination condition. When all the
elements meet the termination condition, the rules are not applicable and the
computation halts, leaving the object space in an equilibrium state (or a fixed
point of the iterative dynamics).

Multiset Rule-Based Programming Paradigm 81

Nontermination, instability and irreversibility. These cases arise when the rules
continue to fire indefinitely. Then the object space can be in a nonequilibrium
state. It is also possible that the evolution of the system is chaotic.

As an example, consider the rule-based iterative deterministic dynamical system:

For X(0) in the range [−1,1],
if X(i) ≥ 0 then G(X(i+1)) = −2X(i) +1 ;
else G(x(i+1)) = 2X(i)+1

The two rules for X(i) ≥ 0 and X(i) < 0 are mutually exclusive and do not com-
pete. This generates a chaotic dynamical system that is unstable and has a dense
orbit in the interval [−1,1] [17, 56].

3 TYPES OF RULE-BASED SYSTEMS

Several types of rule-based systems are used in computer science [31, 41, 65, 80]:
1. Monotonic. Here the application of one rule does not prevent or interfere

with the application of another rule that could have also been applied at the
time when the first rule was selected.

2. Nonmonotonic. Here the application of one rule interferes with the applica-
tion of another rule.

3. Partially commutative. If the application of a particular sequence of rules
transforms the system from state 1 to state 2, then any interleaved set of rules
in the sequence would equally well create the same transformation from state
1 to state 2.

4. Commutative. A system that is both monotonic and partially commutative is
called commutative.
Commutative systems are useful for problems in which changes occur but can

be reversed and the order in which operations occur is not critical. Non-partially
commutative production systems are useful when irreversible changes occur; here
the order is important.

The implementation of a production system operates in three-phase cycles:
matching, selecting, and execution. The cycle halts when the elements of the data-
base satisfy a termination condition. The task of match phase is similar to query
matching—that is, unification of the rules with the database. This phase returns
a conflict set that satisfies the conditions of different rules. In the select phase, we
select those compatible rules after conflict resolution. In the execution phase, all
selected rules are fired and actions are implemented.

Parallelism can be achieved in the matching and execution phases as follows:
In the matching phase, we can

1. Match in parallel several partitions of the rule set
2. Match several partitions of the object space

In the execution phase, we can
1. Execute several rule actions on the object space elements if these are inde-

pendent (interrule actions)
2. Execute several instantiations of the same rule simultaneously (intrarule

actions)

82 E. V. Krishnamurthy and Vikram Krishnamurthy

3.1 Kinetics of the Multiset Rule-based Systems

In order to speed up the use of UMPP, we need to consider how to permit
multiple rule execution concurrently. This offers the possibility of carrying out
parts or all of computations in parallel on distinct processors or performing mul-
tiple simulations simultaneously in a grid or cluster computing environment.
Such possibilities would require the analysis of how the rules interfere with each
other. There are three ways in which the rules can interfere [35, 37, 41, 55, 43, 45].
We call these interference rules Turing’s kinetic rules, as they are similar to
those enunciated by Turing [88] to describe the development of shape, form, and
pattern in organisms (chemical morphogenesis rules: see [69]).
1. Enabling dependence (ED). Rule i and rule j are called enable dependent if the

application (or firing) of rule i updates (writes, or W) the elements of the object
space, and creates the required precondition that is read (R) by rule j and causes
it to fire. As a special case, the update can be either insertion (W+) or deletion
(W−) of elements, and the precondition of rule j to fire is respectively the pres-
ence (R+) or absence (R) of those identical elements. (In parallel programming,
these WR, W+R+, W−R− types of dependencies are called dataflow dependence).

2. Inhibit dependence (ID). Rule i and rule j are called inhibit dependent if the
application (or firing) of rule i updates (W) the elements of the object space,
and disables the required precondition that is read (R) by rule j and prevents
it from firing. As a particular case, the updates can be either insertion (W+) or
deletion (W−) of elements, and the precondition of rule j to fire can be respec-
tively the absence (R−) or presence (R+) of those elements. The WR, W+R−,
or W− R+ types of dependencies are called inhibit dependencies.

3. Opposition dependence (OD). Rule i and rule j are said to be opposition depend-
ent if the following situation holds. Rule i updates (W) or deletes (W−) or adds
(W+) elements, while rule j respectively overwrites (W) or simply adds (W+) or
deletes (W) the same elements. (In parallel programming, this WW type of
dependence is called data-output dependence).
The rules are called compatible if they are not inhibit dependent (ID) and not

opposition dependent (OD). The communication among the objects takes place
through ED and ID. Note that a rule can enable (be autocatalytic) or inhibit itself.

We can relate the parallelism in production rules with vector, pipeline, and
data parallelism thus:
1. Vector parallelism. If all the rules are compatible, then we can apply all the

rules simultaneously, e.g., a vector addition.
2. Pipeline parallelism. Here multiple rules are fired in parallel and passing data

in a pipeline fashion, e.g., multienzyme reactions, where at each membrane an
“imprisoned” enzyme performs a given operation and then sends it on to the
next stage [76].

3. Data parallelism. Multiple instantiations of the same rule are fired in parallel
based on distinct data, e.g., forming matrix products.
The rule-based paradigm can be supported by a database transaction process-

ing system if we identify the condition text with a database query evaluation func-
tion (to find those elements or subsets of elements of the database satisfying
particular conditions) and the action text with the updating operation in the
database. Such identification relates the rule-based programming style and the

Multiset Rule-Based Programming Paradigm 83

database transactional programming style [59]. When one or more reaction con-
ditions hold for several disjoint subsets at the same time, the query or Read (R)
operation and the update (W) operation can take place concurrently. This paral-
lelism corresponds to cooperative parallelism.

If, however, one or more conditions hold for nondisjoint subsets of the data-
base, then a transaction is chosen among the alternatives either nondeterministi-
cally or probabilistically, as dictated by a random number generator. The actions
on the chosen subset are executed atomically and committed. In other words, the
chosen subset undergoes an asynchronous atomic update. This ensures that the
process of matching and the follow-up actions satisfy the four important proper-
ties called ACID properties [49]: Atomicity (indivisibility and either all or no
actions carried out), Consistency (before and after the execution of a transac-
tion), Isolation (no interference among the actions), and Durability (no failure).
Once all the actions are carried out and committed, the next set of conditions is
considered. As a result of the actions followed by commitment, we derive a new
database; this may satisfy new conditions of the text, and the actions are repeated
by initiating a new set of transactions. This set of transformations halts when
there are no more transactions executable or the database does not undergo a
change for two consecutive steps, indicating a new consistent state of the data-
base. Such a scheme would correspond to competitive parallelism.

The implementation of a rule based-system for mathematical problems requires
that the application of the rules eventually terminates. Termination for a rule set is
guaranteed if rule processing always reaches a stable state in which none of the rules
will be enabled to react. However, note that rule processing does not terminate if
rules provide new conditions to fire indefinitely—that is, if actions of Ri create the
right conditions for Rj to fire. This would correspond to cyclic computations and
could lead to circularity or a deadlock situation.

3.2 Closed-World Assumption and Closed Systems

In conventional computer programming, we usually choose a commutative
production system that is sure to lead us to termination of the program corre-
sponding to a fixed point. This is achieved by choosing the positive world of facts
in which any fact that is not present (or cannot be derived from other assertions)
is assumed to be false. This assumption is called the Closed World Assumption
(CWA; [31]). It is an important assumption used in database design that is based
on first-order logic. The Gamma paradigm described by Banatre and Me’tayer [6]
is based on the closed-world assumption and corresponds to a commutative pro-
duction system; here we do not check for facts that are not present or derivable.
If CWA does not hold, we have a nonmonotonic system. CWA is valid only in
first-order logic or for Horn clauses in second-order logic [31].

First-order logic has the three important properties:
1. Completeness. It is complete with respect to the domain of interest. That is,

all facts needed to solve a problem are present in the system or can be derived
from the given rules.

2. Consistency. All axioms are contradiction free.
3. Monotonicity. The only way it can change is that new facts can be added as

they become available.

84 E. V. Krishnamurthy and Vikram Krishnamurthy

If these new facts are consistent with all other facts that have been asserted,
then nothing ever will be retracted from the set of facts that are known to be true.

Formal reasoning requires the CWA to specify what can be produced from the
rules. This means that a formal system, no matter how well constructed, will not
be able to model the changes in a nonstationary world. Therefore, if any of the
above properties are not satisfied, conventional first-order logic cannot be applied
and we need to use nonmonotonic logic.

Classical dynamics (also called rational mechanics) uses the laws of reasoning
based on CWA and a monotonic production rule system. Given a well-defined
initial state, we can precisely compute the evolutionary trajectory in the phase
space and a well-defined final state of the system. This is because such a system
is characterized by a deterministic set of equations (or rules) of motion, we have
complete knowledge about the system, and no other unknown fact exists. Hence
it is a closed system that is reversible or invariant under the transformation of a
positive to negative time coordinate. Such a closed system does not usually inter-
act with the environment and there is no energy or mass exchange outside the sys-
tem [76].

CWA assumes that anything that is not necessarily true should be assumed to
be false. It has two limitations:
1. It only operates on individual predicates and not on interactions among them.
2. It assumes that all the predicates have their instances listed. This is true per-

haps in the database context but not otherwise. But, in general, we cannot
completely describe all predicates, and the assumption that the world is closed
is not valid—we must assume that the world is open.
Nonmonotonic systems [1] can contain empirical statements and plausible set

of rules that make the system open.

3.3 Open Systems

An open system, unlike a closed system, is characterized by a system interact-
ing with an environment. Its evolution is not governed by a deterministic set of
equations of motion, and we are usually concerned about the average behavior of
the system as it evolves. For the open system, we need to introduce probabilities
due to the following reasons:
1. Ignorance of the relevant variables and functions involved in the rules to rep-

resent a given problem domain.
2. Inadequacy of the rules to model a given system and its environment, since we

do not know whether an object belongs to a system or whether it belongs to
an environment or how to subdivide the objects to establish a dichotomy of
sets of related objects into a system and an associated environment.

3. The introduction of a probabilistic approach permits us to take into account
all possible sequences of events into the future, from the most to the least
probable.
Open systems interact with the environment accompanied by an exchange of

energy, entropy, and matter. These systems are characterized by a nonmonotonic
production system in which we need to discover new rules that may violate old
rules. Examples of such systems are thermodynamical and nonequilibrium sys-
tems, including chaotic and self-organized critical systems; and non-Markovian

Multiset Rule-Based Programming Paradigm 85

active-walker models, where the system and the environment interact with each
other. Such systems need probabilistic modes of computation to account for
ignorance of some relevant variables or functions and inadequacy of the rule sets
due to interaction with the environment. This computation is imprecise, reflect-
ing the average behavior of the system [66].

As described in [71] and [47], closed systems with no dissipation of energy
have zero metric entropy, while open systems are dissipative and have a positive
metric entropy. Thus we have two major classes of systems or machines, ordi-
nary (O) and dissipative (P), which are based on metric entropy as described
below:

Ordinary or Zero Metric Entropy Machines (O)
These are completely structured, deterministic, exact behavior (or algorith-

mic) machines.
This class contains the machines in Chomskiian hierarchy [43]:

1. Finite State machines: obey regular grammar or type 3 grammar;
2. Push down-stack machines: obey context-free grammar or type 2 grammar;
3. Linear bounded automata: obey context-sensitive or type 1 grammars;
4. Turing Machines that halt: obey an unrestricted or type 0 grammar, and
5. Exactly integrable Hamiltonian flow machines.

Such machines are, in principle, information lossless; their outputs contain all
the required information as dictated by the programs. Further, the fixed point of
a terminating Turing computation is an analogue of an attractor or equilibrium
point in an integrable Hamiltonian system.

Positive Metric Entropy Machines (P)
The Lyapunov exponent of a dynamical system is a measure of the sensitivity

of the state of the system to its initial conditions. A nonlinear dynamical system
with an attractor that has a positive Lyapunov exponent exhibits chaotic behav-
ior—the attractor is exponentially sensitive to the initial condition of the system.
Such systems are analogues of a problem that stands at the border of com-
putability and noncomputability, where we do not know whether the computa-
tion halts or reaches a fixed point. To be at the edge of computability is analogous
to entering a route to chaos in dynamics. Thus chaos in dynamical systems and
noncomputability can be considered as parallels in their respective domains.
Undecidable (nonterminating) partially recursive schemes also exhibit chaoslike
behavior, such as lack of predictability and decidability! In fact, it is suspected
that deterministic chaos corresponds to Godel’s undecidability.

Nonintegrable positive entropy machines exhibit various degrees of irregular
dynamics:
1. Ergodicity. Here the set of points in phase space behave in such a way that the

time-average along a trajectory equals the ensemble average over the phase
space. Although the trajectories wander around the whole phase space, two
neighboring initial points can remain fully correlated over the entire time of
evolution. Ergodicity in a dynamical system is a result of nonintegrable per-
turbation in an integrable system [57]. The term ergodicity in dynamical sys-
tems means statistical homogeneity. This means the trajectory starting from
any initial state can access all other states in the phase space.

86 E. V. Krishnamurthy and Vikram Krishnamurthy

2. Mixing. The initial points in the phase space can spread out to cover the space
in time but at a rate weaker than the exponential (e.g., inverse power of time).

3. Bernoullicity, K-flow, or chaos. The trajectories cover the phase space in such
a way that the initially neighboring points separate exponentially and the cor-
relation between two initially neighboring points decays with time exponen-
tially. It is with this class of irregular motion that we define classical chaos.
These trajectories lie on the border and beyond the Turing computable region;
that is, they belong to partial recursive schemes leading to undecidability.

4. Nonequilibrium systems. These systems exhibit emergent behavior, such as
chemical and biological machines and living systems.
Each of the above properties implies all the properties above, e.g., within a

chaotic region the trajectories are ergodic on the attractor and wander around the
desired periodic orbit. Classical motion is chaotic if the flow of the trajectories in
a given region of phase space has positive Lyapunov exponents that measure the
rate of exponential separation between two neighboring points in the phase
space. Chaos indicates hypersensitivity on the initial conditions. Also, the system
becomes inseparable (metric transitivity), and the periodic points are dense. That
is, the whole dynamical system is not simply a sum of parts; it functions as a
whole, leading to what is known as emergence. Also, strange attractors with frac-
tal dimensions govern such dynamic systems!

Thus, to simulate open systems, we need to combine zero and positive entropy
machines to carry out computation and also provide environmental interaction.
This can be achieved by the introduction of entropy through random choices.

The introduction of positive entropy through the injection of either chaotic-
ity (deterministic randomness) or stochasticity (statistical randomness) has sev-
eral advantages [44, 46, 50, 67]:
1. It provides ergodicity of search orbits. This has the property that every point

in the set of accessible states is approached arbitrarily closely during the iter-
ation. This property ensures that searching is done through all possible states
of the solution space, since there is a finite probability that an individual can
reach any point in problem space with one jump.

2. It provides solution discovery capabilities (as in genetic programming) due to
embedded randomness [82]. This property arises due to the fact that chaotic
orbits are dense and have a positive Lyapunov exponent, two initially close
orbits can separate exponentially from each other.

3. It cuts down the average running time of an otherwise worst–case running
time-algorithm. We pay for this gain by producing an output that has an error
with a small probability. Accordingly, we cannot claim that the solutions
would always exist, and even if they exist, they are exact.

4. It can solve problems of high complexity by facilitating cross-fertilization
across discipline; e.g., genetics (genetic algorithms), thermodynamics (simu-
lated annealing), statistical mechanics (particle transport), and complex sys-
tems (active-walker, self-organization, and percolation models).

5. Also, stochastic mechanisms plays a vital role in many physical processes
involving motion of particles: e.g., mechanisms such as diffusion, aimless drift
of particles, convection, annihilation of particles from the population, and
creation of particles. These mechanisms change the local density of the popu-
lation. Numerous physical and social systems behave in this manner.

Multiset Rule-Based Programming Paradigm 87

Remarks

1. It is possible that quasi-ergodic behavior arises, resulting in the entrapment
of the orbit in isolated regions. This behavior can be avoided by using per-
turbations to the chaotic orbit that are highly sensitive to initial conditions or
by using more than one Markov chain, with the initial states reasonably
apart.

2. Prigogine [76] suggests the use of nonunitary transformations, called star-
Hermitean operators, to extend the capabilities of computational systems to
reflect average behavior. That is, the tools of both equilibrium and nonequi-
librium quantum statistical mechanics are needed to create open systems.

3.4 Simulating Open Systems

A way to simulate a mixture of the zero and positive entropy machines is by
choosing the mode of application and the action set of a rule-based program
to be either deterministic, nondeterministic, probabilistic, or fuzzy. Rule appli-
cation policy in a production system can be modified by
1. Assigning probabilities/fuzziness for applying the rule
2. Assigning strength to each rule by using a measure of its past success
3. Introducing a support for each rule by using a measure of its likely relevance

to the current situation.
The above three factors provide for competition and cooperation among the

different rules. In particular, the probabilistic rule system can lead to emergence
and self-organized criticality. Thus, the capabilities of class O machines can be
enlarged by simulating special features of class P machines—using nondetermin-
ism, randomness, approximation, probabilities, equilibrium statistical mechanical
(e.g., simulated annealing), and nonequilibrium statistical mechanical (e.g.,
genetic algorithms and the Ant algorithm) approaches.

We will describe in Section 4 how the probabilistic rule-based paradigm can
simulate the open system.

4 THE STOCHASTIC RULE-BASED PARADIGM

In every closed logical, physical, chemical, or biosystem, certain properties (or
attributes) do not change (are conserved) or remain invariant when the system
evolves over time, moving from one state to another. Such attributes are called
invariants and play an important role in the specification of the system. A deter-
ministic rule-based paradigm in a closed system ensures that when an interaction
triggers an action, certain specified invariants always hold before and after the
actions. However, in open systems—such as complex systems, which consist of a
large number of simple elements interacting with each other and the environ-
ment—new properties such as self–organized criticality and the active walk sys-
tem can emerge [56]. Such systems are dissipative, do not necessarily satisfy
predetermined invariant conditions (such as conservation of certain specific
properties), and need to use probabilistic rule selection and modification. Here,
the probabilistic rule paradigm plays an important role [83].

88 E. V. Krishnamurthy and Vikram Krishnamurthy

In Section 3 we discussed the necessity for the introduction of probabilistic
variant of the production rule paradigm for nonmonotonic or open systems. This
paradigm is obtained by introducing probabilities for selection when one or more
reaction conditions hold for several nondisjoint subsets at the same time. In this
case, the choice made among these subsets is determined by a random number
generator that selects the ith possible subset with a probability p(i) to perform the
required actions, thus providing for probabilistic competition among the different
choices. This results in the Unified rule-based Multiset Programming Paradigm
(UMPP) and is defined by the function

PG (R(p(i), A) (M) = if there exists elements a, b, c,. . . belonging to an object
space M (a multiset) such that R(a, b, c,. . .), then G(R,A)((M-{a, b, c,.. }) +
A(a, b, c,..)), else M,

where each of the possible number of subsets i that satisfy the conditions R is
chosen with a probability p(i) and the corresponding text of action A is imple-
mented. Note that the sum of p(i) equals 1. Also, when p(i) is not specified, the
choice can be deterministic or nondeterministic. Thus UMPP can contain within
itself the deterministic, nondeterministic, and probabilistic components.

The UMPP is useful in many ways:
1. It can be used to realize evolutionary algorithms such as classifier systems,

probabilistic, bucket brigade learning, the genetic algorithms [8, 12, 29, 30, 32,
61], self-organized criticality, and active walker models—ants with scent or
multiwalker-paradigm, where each walker can influence the other through a
shared landscape based on nondeterministic or probabilistic action [11, 23, 56].

2. The multiset datastructure used in UMPP is suitable to describe physical
events. It can represent pointlike variables in physics (time, space, velocity, or
other quantity) or discreteness of events intrinsic to the physical processes
(intrinsic point processes) or arising out of observations (observational point
processes) [64, 78, 81]. Also it can represent iterative dynamical systems,
including cellular automata [36, 91] and evolving networks [25].

3. It can support the design of a wide variety of programs to seek answers to
questions such as:
a. Which is the most likely state that a system will reach if supplied with a

given input sequence?
b. What is the average survival time of a population that is subject to repro-

duction and death of its members?
c. How long does it to take to learn a particular concept?
d. Can a system reach self-organized criticality?
e. Can a system become chaotic?

4.1 Properties of UMPP

The nondeterministic as well as probabilistic computations are organized in
two phases [44]:
Phase 1: Guessing or tossing (random choice)
Phase 2: Evaluation and verification of the validity of the result

These two phases work interactively. Thus nondeterministic and probabilistic
computations are no more than guess-check and toss-check actions. In the guessing

Multiset Rule-Based Programming Paradigm 89

or tossing phase, we apply certain reaction rules probabilistically to individual
elements satisfying the required conditions and perform the required actions.
In the verification phase, we evaluate either the individual elements of the data-
base or a selected subset or the whole database using some acceptance criteria.

As mentioned in Section 2, the deterministic and nondeterministic UMPP
programs are based on two-valued logic, and they terminate when the interac-
tion conditions (guards) are false [45]. But to determine the speed of conver-
gence and termination of the probabilistic UMPP paradigm, we need to use
probabilistic arguments. In practice, to detect a fixed point (or equilibrium), we
need to use some acceptance criteria, and at the end of each trial evaluate an
individual element or a selected subset or the whole object space, to decide
whether to repeat the trial or to halt. That is, the evaluation of the object space
can take place at different levels of granularity depending upon the problem
domain. Also, the acceptance criteria may be chosen dependent on or independ-
ent of the number of previous trials, and the choice of probabilities can remain
static or can vary dynamically with each trial. Thus, depending upon the evalu-
ation granularity, acceptance criteria, and the manner in which the probability
assignments are made, we can devise various strategies. We will give examples of
these in Section 5.

4.2 Iterative Dynamics of UMPP

In Section 2 we described the deterministic iterative scheme that can either
lead to a fixed point for closed systems or exhibit aperiodic and chaotic behavior
or self-organization when applied to open systems. In the stochastic approach, we
need to deal with stochastic difference or differential equations. For search and
optimization problems, one could use either chaoticity or stochasticity in iterative
schemes to create ergodicity. While it is still not known whether chaoticity or sto-
chasticity is superior in computational performance, the stochastic method seems
to be more easily amenable for proof techniques and seems to be more robust
under dynamic noise. This is a major research area currently [17]. Since UMPP
can deal with deterministic, nondeterministic (deterministic random and chaotic-
ity), and stochasticity, it permits simulating a variety of schemes, namely, piece-
wise deterministic, piecewise stochastic, and nondeterministic systems
encountered in time-varying systems, and point processes that have a variety of
applications [78, 64, 81].

UMPP provides a suitable model for understanding a large class of evolu-
tionary events. Such a model is applicable to very wide areas in biological and
social systems that are characterized by different kinds of attractors belonging to
four classes, called Wolfram classes [91]:
1. Evolution to a fixed homogeneous state in living systems (limit points in

dynamical systems) corresponding to fixed points in programming
2. Evolution to simple separated periodic structures in living systems (or limit

cycles in dynamical systems) corresponding to competitive cycles of deadlock
or livelock in concurrent computation

3. Evolution to chaotic behavior, yielding aperiodic patterns in living systems
(strange attractors in dynamical systems) that have no correspondence in com-
puter science

90 E. V. Krishnamurthy and Vikram Krishnamurthy

4. Evolution to complex patterns of localized structures in living systems, which
have no analog in dynamical systems or in computer science.
In addition, phase transitions can arise between the various classes. For exam-

ple, between periodic and chaotic behavior there is a phase transition. While the
periodic and chaotic regions are governed by rules, the transition region is not
governed by any rules. Thus one proceeds through a complexity hierarchy from
simple to complex upto the transition region and beyond that complex to simple
dynamics. The phase transition therefore separates the space of computation into
an ordered and a disordered regime, which can be thought to correspond with
halting and nonhalting computations. The transients grow very rapidly in the
vicinity of a transition between ordered and disordered dynamics. Dynamics in
the vicinity of the phase transition gives rise to a critical slowing down, and the
various complexity classes (constant, linear, polynomial, exponential) are
encountered. Critical slowing down of a system appears like the exponential
slowdown in computing the solution of an intractable or nonpolynomial time-
solution problem.

Phase transition-like phenomenon arises in a wide variety of algorithms and
heuristics used for search problems in the NP class or beyond [96] and in random
graph models [15]. Although simulation is a poor substitute, there seems to be no
other way to guess the threshold of certain properties like phase transition in
complex systems. However, no satisfactory conclusions have been arrived at so far
to distinguish NP-complete problems or many other similar properties from the
phase transition point of view.

5 REALIZATION OF UMPP AND EXAMPLES

Practical realization of the UMPP can be achieved through a coordination
programming language using Multiset and transactions; the design details will be
published elsewhere.

5.1 Markov Chain Monte-Carlo and Randomized Grid
Bayesian Inference

The Markov Chain Monte Carlo (MCMC) methods [79], which include sim-
ulated annealing, data augmentation, and Metropolis Hastings-type algo-
rithms, are used to construct the a posteriori probability density function of a
random dynamical system. The UMPP proposed in Section 4 can realize such
MCMC methods as follows: the first condition text (say, R /pi) prescribes the
nature of random variable (i.e., probability distribution function) to be used for
the selection of the elements of the database and also a set of deterministic cri-
teria for the acceptance or rejection of the elements. The corresponding action
text (A) implements these conditions and accepts or rejects the elements as and
when they are randomly generated (on the fly). Following the rejection of ele-
ments, the second condition text (say, R* /p*i) prescribes a probabilistic criterion
to accept (or reject) some of the earlier rejected elements; the corresponding
action text A* implements these conditions. The condition text R* /p*i is
then varied as a function of the current number of trials and a parameter called

Multiset Rule-Based Programming Paradigm 91

temperature [61]. The effect of this variation is such that the probability of
accepting a new solution that is worse than the current solution decreases with
the degree of the deterioration of the solution, and more significantly with the
run time of the method.

More recently, a recursive (real-time) MCMC algorithm called a particle filter
[27], has been developed. This algorithm iteratively updates the currently available
set of particles into a new set of particles so that the empirical probability distri-
bution of the particles closely follow the true distribution. That is, the simulated
evolution of the particles mimics the real system. This algorithm is based on ran-
domized grids for propagating the conditional density of the state of a dynami-
cal system given noisy observations. Then sequential importance sampling,
together with the Bayes rule, is used to update the weights of the grid points from
a priori distribution to a posteriori distribution. In order to avoid degeneracy
problems, a random resampling method is used to eliminate low-probability
points in the grid. This step mimics evolution in the sense that it eliminates most
poorly adapted species (selective extinction or death). It is clear that these steps
can be completely captured by the UMPP. In MCMC methods, the granularity of
the evaluation takes place at the elemental level, and hence these methods permit
on-the-fly acceptance of elements, thereby providing high concurrency in the
implementation.

The use of Multiset facilitates the realization of the Multiple Particle Filter
approach recently described by Yuen and MacDonald [94]. It can be computa-
tionally advantageous by splitting a multidimensional problem into multiple low-
dimensional ones if there is sufficient degree of independence among the
components in the estimation problem.

5.2 Classifier / bucket-Brigade systems

The classifier system [8, 12, 29, 30, 32, 61] is a parallel rule-based production
system based on two-valued logic. Each classifier can be regarded as a separate
instruction that takes messages as input and produces messages as output. As in
a production system, there is a match cycle, where each rule is matched against
the state of the short-term memory containing a message list M. If its precon-
ditions are satisfied by at least one message, then the classifier is activated, and
an execute cycle carries out the required actions and posts an external message.
All external communications are via the message list. Thus all internal control
and external communication reside in the same data structure. The classifier sys-
tem can therefore be realized by the rule-based model, if the messages are rep-
resented by a database of appropriate type. When the classifier system is used
deterministically, it iterates for a fixed number of times or until the message list
does not change for two successive atomic steps. It has been shown in Forrest
[29] that
1. any finite function can be computed by some classifier system in a single

match-and-execute step, with an arbitrary amount of parallelism, by distribut-
ing the representation of the function over enough number of processors, and

2. a classifier system can be made to behave completely sequentially.
These two properties permit the classifier system to behave with maximal par-

allelism or completely sequentially. Thus a classifier system offers a flexible for-

92 E. V. Krishnamurthy and Vikram Krishnamurthy

malism that permits optimization of the three parameters, namely, the number of
processors (classifiers), the length of computation, and the amount of inter-
processor communication.

In the Bucket-Brigade system (BBS) [8, 12, 29, 30, 32, 34], the classifier system
is generalized by introducing two factors, called the strength and the activation of
each rule based on its relevance and support from other rules.
1. Strength of the individual rule. The strength of each rule is based on its success.
2. Support and relevance of the rule. Each rule is evaluated by its likely relevance

to the current situation and support from other rules.
Here, the first rule reflects the success of the individual rule, while the second

rule reflects the performance of the collection of the different rules acting as a
whole, by evaluating the relevance of each individual and providing support for
its activity.

These two factors, namely, the strength and the support, provide for competi-
tion and cooperation among the different rules. When a posted message matches
a rule, each classifier makes a bid proportional to its strength; hence, highly fit
rules are given preference. The bid made by an activated classifier is then propor-
tionately divided and sent as a reward to other classifiers earlier responsible for
activating it. Thus if a rule is instrumental in permitting other rules to fire favor-
ably, it receives payoff and hence its strength will be increased; otherwise, its
strength is decreased due to bidding. In the steady state, the strength remains
invariant. BBS is useful to construct a database whose attributes are not known
in advance but are adaptive or evolving probabilistically. The UMPP can realize
the BBS, if the probabilities pi are replaced by strengths and at the end of each
atomic update, the actions are evaluated and the strengths are reassigned depend-
ing upon downstream and upstream payoff.

The ant algorithm and swarm intelligence use an approach similar to BBS (see
subsection 5.7 below).

5.3 Genetic Algorithm

The genetic algorithm goes a step further than the BBS: after selecting the
most successful rules, these rules are combined by selecting pairs and performing
crossover and mutation. The crossover may be thought of as a combination of
independent rules, while the mutation may be thought of as an error in input or
an approximation.

The genetic algorithm [8, 12, 29, 30, 32, 68, 13, 62, 84, 83, 90] chooses an ini-
tial population of objects called chromosomes, represented by a multiset M of
binary strings with a length of m bits. Then it performs on M three different prob-
abilistic operations that mimic the operations found in nature, namely, selective
reproduction, crossover, and mutation. These operations can therefore be repre-
sented in the UMPP using four transactions:
Transaction 1 evaluates the given generation for assigning the selection probabil-

ities q to initiate the actions for the creation of a new generation.
Transaction 2 performs reproduction; its condition text enables us to select prob-

abilistically those strings that are fit, and its action text replaces the original
multiset with the fittest strings.

Multiset Rule-Based Programming Paradigm 93

Transaction 3 performs crossover; its condition text picks up any two elements
and the crossover site; the corresponding action text performs crossover and
returns the two offspring back to the multiset.

Transaction 4 performs mutation; its condition text gives the probabilistic condi-
tions to select a string as well as the site for mutation; the action text performs
mutation and returns the string back to the multiset. This sequence of trans-
actions is then repeated until the multiset is stable or does not undergo a
change.
If the reproduction, crossover, and mutation are performed sequentially, one

after another, then the UMPP is given by the composition of the four transac-
tions applied to M. We can introduce concurrency among the three transactions
2, 3, and 4, subject to the constraint that they act on different strings. Such a
genetic algorithm is called an elitist model, where the parents and offspring
together can undergo selective reproduction, crossover, and mutation [32, 61, 84].

Note that the evaluation transaction cannot be interleaved with others. In
implementing the paradigm, therefore, we must decide how to interleave tasks
of different types and size (granularity). This problem is called multilevel atom-
icity. It is possible to interleave the simulated annealing algorithm with the
genetic algorithm; the accepted elements in the annealing algorithm can
undergo selection, mutation, and crossover or other new operations listed in
Michalewicz [61].

The correspondence between the genetic algorithm and UMPP is summarized
below:

Genetic Algorithm UMPP
Generation Iteration of the multiset
String Elements
Crossover, Mutation Interaction
Selection Deterministic, Probabilistic Choice
Evaluation Pattern matching, Evaluation
Fitness Test
Population Fitness Global test of the multiset
Family fitness Local test of sets of varying granularity
History Computational history

5.4 Genetic Programming

Koza’s [42] genetic programming can be ably supported and implemented with
the very general multiset data structure by a proper choice of the features
described in the Introduction, namely, the choice initial object spaces, set of reac-
tion rules and their probabilities, the self-activation of the rules, the control strat-
egy, and the termination condition for evaluating the fitness of elements.

5.5. Evolutionary Optimization

In nature, highly specialized complex structures emerge when their most inef-
ficient elements are selectively driven to extinction. Evolution progresses by
selecting against the few most poorly adapted species, rather than by expressly
breeding those species best adapted to the environment. The experimental

94 E. V. Krishnamurthy and Vikram Krishnamurthy

approach by Boettcher and Percus [10] uses the extremal optimization (EO)
processes in which the least fit variables are progressively eliminated [35]. The EO
process uses a different strategy in comparison to simulated annealing. In simu-
lated annealing, the system is forced to equilibrium dynamics by accepting or
rejecting local changes. EO, however, takes the system to a far-from-equilibrium
position, and persistent selection against the worst fitness (i.e., selective extinction
or death) leads to a near-optimal solution. Also, EO differs from the genetic algo-
rithm (GA); whereas GA keeps track of entire gene pools of states from which to
select and breed an improved generation of solutions, EO operates only with local
updates on a single copy of the system, with improvements achieved instead by
elimination of the bad. EO also differs from the greedy strategy, which aims at
improving the solution at each step and as a result falls into a local optimum. EO,
however, can fluctuate between good and bad solutions and can enable us to cross
barriers and approach new regions in configuration space. Note that EO can be
simulated using UMPP.

5.6 Oscillatory Chemical Reactions

We mentioned in Section 3 that the rule processing does not terminate if and
only if rules provide new conditions to fire indefinitely—that is, actions of a rule
Ri create the right conditions for another rule Rj to fire. This leads to circularity
in definition or a deadlock. Usually in computer science we do not want this sit-
uation to happen, as it leads to a wasteful consumption of resources and insta-
bility. However, such a cyclic system occurs commonly in biology and seems to
form the basis of all living systems. For example, the energy-rich molecule adeno-
sine triphosphate (ATP) is produced through a succession of reactions in the gly-
colytic (sugar-splitting) cycle that involves ATP at the start. To produce ATP, we
need ATP. These reactions correspond to catalytic reactions that arise in non-
equilibrium systems, where a set of reactants produce a set of products that react
with some of the reactants and continue reacting indefinitely as an oscillatory
reaction. These reactions, for example, can be of the form in which one of the ini-
tial reactants A and another reactant X produce Y, and Y produces Z, and Z pro-
duces X. Such reactions have rates that are determined by the concentration of
the reactants and the products. Such oscillatory systems are called nonequilibrium
systems or the Brusselator model [76, 86, 87] and can be realized using UMPP.

The Brusselator model consists of the four production rules:

(1) A → X; (2) BX → YD; (3) XXY → XXX; (4) X → E

Thus this model is a multiset M = {A, B, X, Y, E} and a set of reaction rules
R defined above among the elements. Note that an element can undergo self-
mutation on its own (autolysis) or due to interaction with the environment, e.g.,
in the rules for

A → X or X → E.

We can also incorporate the rate of reaction within each rule, which can be
either deterministic or probabilistic. By varying the reaction rates or rates of
application of rules to the system, the number of elements X and Y can diverge,
become unstable, oscillate, or converge.

Multiset Rule-Based Programming Paradigm 95

For example, a simple simulation shows that the relative frequencies of appli-
cation of rule (1) and rule (2) can produce varying kinds of effects in the popula-
tion (numbers) of X and Y.

5.7 Swarm and Ant Colony Paradigm

A swarm (consisting of birds, ants, cellular automata) is a population of inter-
acting elements that is able to optimize some global objective through coopera-
tive search of space. Interactions that are relatively local are often emphasized
[39, 11, 24, 60, 56]. There is a general stochastic tendency in a swarm for individ-
uals to move toward a center of mass in the population on critical dimensions,
resulting in convergence to an optimum. In real number space, the parameters of
a function space can be conceptualized as a point. Here, individual elements in
the multiset are points in space, and change over time is represented as move-
ment of points, representing particles with velocities, and the system dynamics is
formulated in UMPP using the following rules:
1. Stepping rule. The state of each individual element is updated in many dimen-

sions, in parallel, so that the new state reflects each element’s previous best
success, e.g., the position and momentum (velocity) of each particle.

2. Landscaping rule. Each element is assigned a new best value of its state that
depends on its past best value and a suitable function of the best values of its
interacting neighbors, with a suitably defined neighborhood topology and
geometry.

Remark: The above two rules are similar to the strength and support of rules
used in BBS in subsection 5.2 above. The first rule reflects the betterment of the
individual, while the second rule reflects the betterment of the collection of
the individuals in the neighborhood as a whole by evaluating the relevance
of each individual and providing support for its activity.

All elements in the multiset or selected chunks are updated using rules (1) and
(2). These two rules permit us to model Markovian random walks, which are
independent of the past history of the walk and non-Markovian random walks,
which are dependent upon past history—such as self-avoiding, self-repelling,
and active random-walker models. This can result in a swarm (a self-organizing
system) whose global nonlinear dynamics emerges from local rules due to sto-
chasticity or chaoticity introduced by the parameter variation. In nonlinear
dynamics, the beautiful property of superposition (namely, the linear combina-
tions of solutions are also solutions and such solutions form a linear vector
space) is lost. As a result, there is no general solution. Also, analytic solutions are
rare and nonexistent; solutions may exhibit singularities not present in the equa-
tions of motion, and these may be sensitive to initial conditions. Further, inter-
esting new properties may show up: low-dimensional attractors, bifurcations, and
chaos. Accordingly, various kinds of attractors (as described in Section 4.2) can
arise that result in fractal dimensions, presenting a swarmlike, flocklike appear-
ances depending upon the Jacobian of the mapping [57]. Thus, in nonlinear
dynamics, integration (solving differential equations) and finding attractors are
the key issues.

96 E. V. Krishnamurthy and Vikram Krishnamurthy

5.8 Conrad’s Lock–Key Paradigm

Conrad and Zauner [20, 21, 22, 95] suggest the lock–key paradigm as the basis
for molecular computing. This paradigm arises from the notions of complemen-
tarity and the union of opposites that pervade the entire science and natural phi-
losophy. The lock–key paradigm is based on the recognition of an object
(molecule) through complementary shape matching. This assumes the existence
of a suitably defined “complement” among pairs of objects. Such a complement
can be defined for molecular structures at three levels [16]:
1. Primary level. Here we refer to purely syntactic attributes, as in the

Watson–Crick complement of a sequence (got by interchanging purines and
pyrimidines: A (Adenine) for T (Thymine) and conversely, and G (Guanine)
for C (Cytosine) and conversely; or

2. Secondary level. Here we refer to the structure that describes local internal
arrangements (alpha helices and beta sheets); or

3. Tertiary level. Here we deal with the 3-D configuration of the structure,
namely, the geometric and topological features that are complementary.
To simulate the lock–key paradigm at the above three levels, we need to have a

database of elements with complementary attributes, much as in a relational data-
base. However (unlike in a database), here the query and retrieval take place through
molecular reaction when a pair matches (at the primary, secondary, or tertiary level
according to a specified rule), followed by the required actions (e.g., chemoreceptors
for gustation and olfaction). The rule system can be explicit as in a production sys-
tem or can be implicit as in a dynamical system, where energy minimization brings
the required elements into physical contact to self-assemble and generate the
required actions. Thus the complementarity paradigm is applicable to both the com-
putational and dynamical systems. It is also useful in synthetic biology [89, 48].

5.9 Membrane and Immunocomputing

The basic datastructure used in membrane [74] and biomolecular immuno-
computing [33] are multisets with a priority relation among rules, and the rules
are applied in a conditional manner. UMPP provides all these features.

5.10 Quantum Field Theoretical Computations

In the “occupation number formalism” used in Quantum Field theoretical
computation [75], states are characterized by a specification of how many parti-
cles there are in each of a complete set of single-particle states [51]. The occupa-
tion number notation is a multiset datastructure or a bag that has repetitive
elements in a set [70]. The repeated elements correspond to indistinguishable
objects in the same state. For example, the shell notation for atoms:

(1s)2, (2s)2 (2p)1 meaning that two electrons are in state 1s, two are in state 2s,
and one is in the state 2p. This can be written in the multiset notation as
{1s.2,2s.2,2p.1}.

Thus, the occupation number formalism in quantum physical computations
can be implemented in UMPP. Also, UMPP can simulate the evolution of states

Multiset Rule-Based Programming Paradigm 97

of quantum systems with arbitrarily many particles described by vectors in the
Fock space by appropriate choice of rules and actions that satisfy the desired
invariant properties.

Quasi-particles are entities in quantum field theory. These consist of a main
particle surrounded by a cloud of associated particles that are in certain definite
relationship to the main particle. Thus a quasi-particle provides for a collective
operation, and hence it simplifies the analysis of the evolution of a system
through its propagation. This is the main reason for the use of quasi-particles in
physics, as well as in the mutiset parallel computational paradigm. Thus quasi
particles behave like user-defined objects that encapsulate data and procedures
that can be mobile, e.g., agents in distributed systems.

6 RELATIONAL DATABASE MODEL
AND LOCK–KEY PARADIGM

The lock–key paradigm is closely related to rule-based programming and the
relational database model. The relational database model consists of one or more
relations, each expressed as a set of tuples, often expressed as a table. Each row of
this table represents one of the tuples, and each column represents one of the
component positions of all the tuples. The tuples are also called attributes.

The following properties [41] of relational database programming make it suit-
able for biosystems:
1. Entire relations are accepted as inputs, and conceptually complete relations

are delivered as results.
2. The contents of relations change as a function of time.
3. The relations are always finite, unlike in ordinary computing, where we deal

with infinite relations.
4. Individual elements in tuples are always simple ground constants with no vari-

ables or complex structures.
Among the many operators of relational algebra, the most important one,

which we need for computation with molecular biosystems, is a variant of the join
operation. The join operation accepts two relations and joins them along the
columns if the attribute names and domains are common to both. Thus it builds
up relationships among the relations. However, we still have ground constants as
elements of tuples, limiting the expressive power of the relational algebra to that
of the first-order logic. When the join condition involves only comparing equal-
ity, it is called equijoin. Thus when equijoin is performed, we will have one or more
pairs of attributes with identical values. In order to remove the superfluous ele-
ments, a new operation called natural join is used in relational databases. It is basi-
cally an equijoin operation followed by the removal of superfluous elements.

In the lock–key or complementarity paradigm, we indeed need a modification
of natural join in which the attributes are not equal but are complementary: after
the operation the result is a single tuple. We call this new operation conjoin to
indicate that two objects are united into one, after the natural join of their com-
plementary attributes. The conjoin of two relations R and S, denoted by R<>S,
is formed by taking each tuple r from R and each tuple s from S and comparing
them. If the component of r for Ai equals the complement of the component of

98 E. V. Krishnamurthy and Vikram Krishnamurthy

s for Bj, then we form one tuple from r and s; otherwise, no tuple is formed. This
requires a lock–key matching of attribute values that are mutually complemen-
tary. While forming the tuple from r and s, we take the components of r followed
by the components of s, but indicating the match. Note that the conjoin opera-
tion is no more expensive than the natural join, since we look for complementary
features in each defined attribute. Using conjoin, we can realize the three types of
complementary paradigms—primary, secondary or tertiary—with well-defined
attributes. Note that the conjoin operation need not necessarily result in a unique
tuple, since matching may not be unique.

6.1 Algorithm Conjoin

Consider conjoining relations R with attributes {A,B} and relation S with
attributes {B*,C}, where B* is a suitably defined complement of B. The algorithm
for conjoin, based on a nested “for” loop, is as follows:

for each tuple r in R do
for each tuple s in S do

if r and s are complements on their B and B* attributes
then

conjoin the tuple matching r and s on attributes A, B, B*, and C
The above algorithm would take O(rs) time, since we need to pair all the

tuples.

6.2 Conjoin and Self-Assembly

In nature, the conjoin is a fundamental operation carried out by RNA poly-
merase, the enzyme that synthesizes a complementary RNA copy of one or more
genes of a DNA molecule. The RNA serves to direct the synthesis of the proteins
encoded by those genes. The polymerase essentially carries out a “for” loop; in
each cycle, it takes a small molecule (one of the four nucleotide pyrophosphates,
ATP, GTP, CTP, or TTP, whose base is complementary to the base about to be
copied on the DNA strand) from the surrounding solution, forms a covalent
bond between the nucleotide part of the small molecule and the existing uncom-
pleted RNA strand, and releases the pyrophosphate part into the surrounding
solution as a free pyrophosphate molecule (PP). The enzyme then shifts forward
one notch along the DNA in order to copy the next nucleotide and repeats. The
proofreading of DNA replication and repairing damage requires a similar “for”
loop. Conrad [20] proposes a jigsaw puzzle model for self-assembly based on
the lock–key paradigm and the energy minimization criteria. In this model,
energy plays an important role in directing the computation, unlike the models
(such as Turing machine) used in computer science.

7 MOLECULAR DNA COMPUTATION

The DNA molecular computation scheme introduced by Adelman [2] [16, 58,
77, 54, 28] models the actual instance of a problem rather than providing a uni-
versal approach to computation. It provides for a fine-grained parallelism based

Multiset Rule-Based Programming Paradigm 99

on the free-energy minimization (annealing) associated with the self-assembly
properties of DNA sequences. That is, the physical structure of the machine is
specific so as to cater to the need for solving a single problem instance [96].

The actual computation proceeds in three phases:
Phase 1. Encoding phase: Here the input is encoded into a multiset whose ele-

ments are DNA sequences and their Watson–Crick complements (WCC) so
that the required conditions R for the chemical reactions A driven by chemi-
cal free-energy minimisation are feasible.

Phase 2. Action (chemical reaction) phase: The encoded molecules chemically
react with each other autonomously to form supermolecular complexes (new
elements of the multiset) through the association of WCC sequences. Each of
the complexes denotes a partial solution to the problem.

Phase 3. Solution selection and termination: The complexes are selected and
tested for the existence of the solution or as to whether they satisfy the termi-
nation condition of the solution expected.
The above three phases are the basic steps in UMPP. Note that the updating

action A (Phase 2) in the conditional in G(R,A)(M), namely: if there exists ele-
ments a,b,c, . . , . . . belonging to a multiset M such that R(a,b,c,. . .), then

G(R,A)((M−{a,b,c, . . }) + A(a,b,c, . . .)), else M

is implemented autonomously by the free-energy minimization. However,
Phase 3 requires a test for the solution through external physicochemical means,
such as polymerase reaction, gel electrophoresis, and hybridization probing.

7.1 Molecular multiset data structure

Adelman’s approach uses the biological–chemical reaction in DNA molecules
to solve the Hamilton Path Problem (HPP)–[2, 73]: Given a graph G, is there a
path through the graph that visits every node in the graph exactly once? This is a
proverbially hard problem for which no polynomial time solutions are as yet
known.

The data structure chosen is a chemical graph whose vertices are uniquely
labeled by a short even-member sequence of DNA consisting of nucleotides A,
G, C, or T. This sequence is called oligonuleotide and is a single-stranded DNA
molecule. Each edge is an ordered pair of nodes (i,j). Such an edge is denoted
by the oligonuleotide that combines the righthalf of the DNA sequence (R(i))
representing the vertex i and the left -half of the sequence (L(j)) representing the
vertex j.

To join any two edges (i,j) and (j,k), a chemical reaction known as ligation is
used. This consists in tying two edges together by using a WCC oligonuleotide of
j (in which A is replaced by T and conversely, and C is replaced by G and con-
versely). Thus the fusing of two edges denoted by the ordered triplet (i,j,k) is rep-
resented by the fused double-stranded DNA sequence R(i),L(j),R(j), L(k), in
which the middle part L(j) R(j) is ligated to WCC (j) = L(j*) R(j*). This double-
stranded sequence is denoted by

{R(i), (L(j) & L(j*)), (R(j) & R(j*)), L(k)}, where “&” denotes an elementwise
nucleotide fusing operation that can be looked upon as conjoin operation earlier
described in a relational database context .

100 E. V. Krishnamurthy and Vikram Krishnamurthy

Adeleman’s algorithm consists of three basic tasks:
1. Using molecules to represent elements of multiset
2. Self-assembly of elements of the multiset satisfying the reaction condition
3. Checking for termination conditions

The above tasks are implemented by Adelman to find the Hamilton path using
the following four steps:
1. Synthesize a random path in the graph
2. Retain only those paths that satisfy the condition specified for the beginning

and ending vertices of the path.
3. Keep only those paths that contain exactly n different vertices
4. Check for termination by looking for only those paths that go through all the

vertices at least once.

7.2 Molecular Chemical Transactions

Adelman uses different types of chemical and physico–chemical operations
(these may be called genetic engineering operations): copy, paste, amplification,
extraction, identification zero-test, sum, for which we use the computer science
term transaction meaning that these need to have four important
properties called ACID properties [49, 95]: Atomicity (indivisibility and either
all or no actions carried out), Consistency (before and after the execution of a
transaction), Isolation (no interference among the actions), and Durability (no
failure).
1. Copy/ replicate. This synthesizes a large number of copies of any single-

stranded DNA. That is, it creates a large number of copies of the elements of
a multiset M.

2. Paste or create double strands. This produces a combination of elements of
multisets, resulting in a multiset containing new elements that can be ordered
sequences containing WCC fused subsequences. Such a fusion creates double
strands. This set of elements can be represented by a parallel elementwise
operation on subsequences, denoted by “&”. This operation is chemically
achieved through self-assembly by free-energy minimization.

3. Selective amplify. This operation is different from “copy” in that it is a higher-
level or macro-copy operation that replicates any selected element (single- or
double-stranded DNA) whose attributes are specified. This operation is exter-
nally achieved either through cloning or through the more efficient poly-
merase reaction (PCR). This is analogous to the selective reproduction
strategy widely used in the genetic algorithms.

4. Extraction. This operation extracts sequences of specified lengths. It is carried
out using the physicochemical operation known as gel electrophoresis. This
operation is similar to the message pattern matching used in classifier and pro-
duction systems. Also, it is similar to the selection or projection operation used
in the theory of recursive functions to select the k elements among n ordered
elements.

5. Identification. This operation selects those sequences of specified lengths that
contain specified subsequences. Using hybridization probes of subsequences
that are complementary to the selected subsequence, individual vertices are
identified.

Multiset Rule-Based Programming Paradigm 101

6. Zero test. this operation determines whether or not there is a DNA strand.
This is a fundamental operation required in the recursive functions.

7. Sum or merge. Given two multisets M and N, the sum denoted by M+N is the
multiset where each element has a multiplicity that is a sum of its multiplicity
in M and N.
In DNA computing, knowledge is represented by omission of negative facts.

Propositions that are not given are assumed to be false; that is, we use the Closed
world assumption (CWA), in which only positive facts are stated. As mentioned
earlier, CWA is valid only for Horn clauses; that is, if there are non-Horn clauses,
we cannot make the closed-world assumption [31]. For nonequilibrium systems
interacting with their surroundings through an entropy flow, this assumption is
invalid [76]. Most such systems use feedback mechanisms involving catalytic reac-
tions, as, for example, production of ATP (adenosine triphosphate) from ATP.
Such reactions arise from far-from-equilibrium conditions. These lead to the
necessity for the Open-world hypothesis, which leads to newer phenomena such as
self-organization and active walks (swarm intelligence) [11, 23, 39, 56].

Finally, we observe that we can combine neural and molecular computing.
The genetic code may be looked upon as a string of spin variables undergoing
dynamical development in the course of reproduction. Analogous to Hopfield’s
spin-glass approach for neural nets, Anderson and others have formulated a
model for the evolution of organisms using a fitness landscape. Kuhn’s model
uses the concept of RNA replication and autocatalysis driven by temperature
cycling [38]. A population of organisms (strings of + or − spins S(i)) is encour-
aged to conjugate randomly in pairs during a cooling cycle, and if two shorter
strings (RNA polymers) are conjugated end to end on a third longer one, they
are allowed to bond to each other, giving a long single RNA polymer. The
strings are then subjected to a heating cycle, where they separate and also
encounter a fitness function that can be identified by a spin-glass Hamiltonian
and that serves as a criterion for survival into the next conjugation. The fitness
landscape is a spin-glass function. The use of autocatalysis seems to extend the
power of first-order logic to overcome the limitations of the closed-world
assumption.

8 DISCRETE ADAPTIVE STOCHASTIC
OPTIMIZATION

Searching and exploration form the basis for many types of data analysis,
adaptive learning, and pattern classification problems. Adaptive systems need to
use some form of search operation to explore a feature space that describes all
possible configurations of the system. Usually we are interested in “optimal” or
“near optimal” configurations defined with respect to a specific problem
domain. Such problem domains are usually high dimensional with no single
optimal solution and are multimodal, i.e., they can have many local and global
optimal solutions.

In general, finding the global maximum and minimum of multimodal prob-
lems with high dimensions and conflicting constraints turnsout to be exponential
in complexity, and usually the problems are NP-complete or even NP-hard [46].

102 E. V. Krishnamurthy and Vikram Krishnamurthy

Therefore, conventional search techniques are inefficient. We need to use a prob-
abilistic approach that is adaptable to the particular problem domain so that the
search space can be sampled to yield near-optimal solutions with a high proba-
bility. Any such adaptive (learning) search methods are characterized by taking
the following aspects into account:
1. How are solutions (parameters, hypotheses) represented? What data structures

are used?
2. What search operators are used in moving from one configuration to the next?

How is the adaptive step defined?
3. What type of search is conducted by applying the search operators iteratively?

How is the search space explored and exploited?
4. Is the adaptive system supervised (interactive) or unsupervised (noninterac-

tive)?
5. How can problem-specific knowledge be incorporated into the adaptive learn-

ing algorithm?

8.1 Example

Consider the following discrete stochastic optimization problem. Let
Θ = {1,2,. . . ,S} denote a finite set and consider the following problem: Compute

q* = minq∈Θ E{Xn(q)},

where E denotes mathematical expectation and, for any fixed q ∈ Θ, {Xn (q)}
denotes a sequence of independent and identically distributed (iid) random vari-
ables that can be generated for any choice of q∈Θ. If the density function of Xn
(q) is not known, then it is not possible to analytically evaluate the above expec-
tation, and hence q*. In such a case, one needs to resort to simulation-based sto-
chastic approximation to compute the optimal solution q*.

A brute-force approach of computing the optimal solution to the problem
involves exhaustive enumeration over all Θ and proceeds as follows: For each q ∈
Θ, generate a large number N of random samples X1 (q), X2 (q),. . . XN(q). Then
compute an estimate of E{Xn (q)} using the sample average (arithmetic mean)

GN (q) = (X1 (q) + X2(q) + . . . + X N(q)/N.

By Kolmogorov’s strong law of large numbers (which is one of the most fun-
damental consequences of the ergodic theorem for iid processes), GN (q) →
E{Xn(q)} with probability one as N → ∞. This and the finiteness of Θ imply that

arg maxq ∈Θ GN (q) → arg maxq∈ Θ E{Xn (q)} as N → ∞.

However, the above brute-force procedure is extremely inefficient—evaluating
GN (q) at values q ∈ Θ with q ≠ q* is wasted effort, since it contributes nothing
towards evaluating GN (q*). What is required is an intelligent dynamic scheduling
(search) scheme that decides at each time instant which value of q to evaluate
next, given the current estimates, in order to converge to the maximum q* with
minimum effort.

There are several different classes of methods that can be used to solve the
above discrete stochastic optimization problem [3, 52]. When the feasible set Θ is
small (usually 2 to 20 elements), statistical ranking and selection methods and

Multiset Rule-Based Programming Paradigm 103

multiple comparison methods can be used to locate the optimal solution.
However, for large Θ, the computational complexity of these methods becomes
prohibitive. The above problem can also be viewed as a multiarmed bandit prob-
lem, which is a special kind of infinite-horizon Markov decision process with an
“indexable” optimal policy. However, as mentioned in Andradottir [4], multi-
armed bandit solutions and learning automata procedures often tend to be con-
servative because they are designed to spend as much time as possible at the
optimum solution.

8.2 Stochastic Approximation Algorithm

In recent years a number of discrete stochastic approximation algorithms have
been proposed. Several of these algorithms [3], including simulated annealing-type
procedures and stochastic ruler, fall into the category of random search. Here we
present a globally convergent discrete stochastic approximation algorithm based
on the random search procedures in Andradottir [3]. The basic idea is to generate
a homogeneous Markov chain, taking values in Θ that spend more time at the
global optimum than at any other element of Θ. This generation consists of the
following UMPP steps:

Step 0: Initialization. At time n=0, select starting point q0 ∈ Θ randomly with
uniform probability. Set D0 = eq0, where ei denotes the S-dimensional unit vector
with 1 in the ith position and zeros elsewhere. Set the initial solution estimate

x0 0=it .

Step 1: Sampling. At time n, sample un ∈ Θ − {qn} with uniform distribution.

Step 2: Evaluation and acceptance.
Evaluate the random sample costs Xn (qn) and Xn (un).
If Xn (qn) > Xn (un), then set qn + 1 = qn; else set qn + 1 = un.

Step 3: Update duration time vector at time n+1 as Dn+1 = Dn + eq n

Step 4: Update estimate of maximum at time n as nit = arg maxi ∈ {1,2,. . ., S} Dn+1 (i)
Set n → n + 1 and go to Step 1.
Then, as proved in Andradottir [3], under suitable conditions (e.g., if the den-

sity function with respect to which the expected value is defined above is sym-
metric), the estimate nit generated by the above random search stochastic
approximation algorithm converges with probability one to the global optimum
q*. It is also shown in Andradottir [3] that the algorithm is attracted to the global
optimum, i.e., the algorithm spends more time at the global optimum than at any
other candidate value. That is, for sufficiently large n, the duration time vector Dn
has its maximum element at q*.

8.3 Applications

The above discrete stochastic approximation algorithm has several applications.
For example, in Krishnamurthy and Chung (2003), it is used to learn the behavior

104 E. V. Krishnamurthy and Vikram Krishnamurthy

of an ion channel (large protein molecule) in a nerve cell membrane to estimate the
Nernst potential efficiently. In Krishnamurthy, Wang and Yin [53], a recursive ver-
sion of the algorithm is used to optimize the spreading code of a CDMA spread
spectrum transmitter over a fading wireless channel. More recently, in Yin,
Krishnamurthy and Ion [93], an adaptive version of the above algorithm is pre-
sented that can track a slowly time-varying global optimum. For a weak conver-
gence analysis and complexity aspects of this adaptive algorithm, [93, 52].

9 CONCLUSION

This chapter presents a unified rule-based multiset programming paradigm
(UMPP) as a general model and unifying theme for conventional and soft-com-
puting. The introduction of probabilistic choices in a multiset chemical reaction
model provides a soft-computational model to study evolutionary biological,
chemical, and physical systems based on intermittent feedback from the environ-
ment. Unlike conventional computation, where exactness is our goal, in soft com-
putation, we allow the possibility of error and randomness to model features that
are inherent in problems arising in nature. The paradigm described here provides
a new programming environment based on a distributed architecture for classifier,
bucket brigade, genetic, and molecular algorithms as well as ant-algorithms,
swarm intelligence, membrane and bio-immunology computing, multiple-particle
filtering, adaptive stochastic optimization and self-organized criticality. This par-
adigm is well suited for cluster and grid computing.

REFERENCES

[1] A.N. Abdallah (1995): The Logic of Partial Information, Springer Verlag,
New York.

[2] L.M. Adelman (1994): Molecular computation of solutions to combinator-
ial problems, Science, 266, 1021–1024.

[3] S. Andradottir (1996): A global search method for discrete stochastic opti-
mization, SIAM Journal of Optimization, 6, 2(1), 513–530.

[4] S. Andradottir (1999): Accelerating the convergence of random search
methods for discrete stochastic optimization, ACM Transactions on
Modelling and Computer Simulation, 9, 4(1), 349–380.

[5] R. Backhouse and J. Gibbons (2003): Generic Programming, Lecture Notes
in Computer Science, Vol. 2793, Springer Verlag, New York.

[6] J.-P. Banatre, D.L. Me’tayer (1990): The Gamma model and its discipline of
programming, Science of Computer Programming, 15, 55–77.

[7] J.-P, Banatre, D.L. Me’tayer (1993): Programming by Multiset transforma-
tion, Comm. ACM, 36, 98–111.

[8] R.K. Belew, S. Forrest (1988): Learning and programming in classifier sys-
tems, Machine Learning 3, 193–223.

[9] T. Blackwell and J. Branke (2004): Multi-swarm optimization in dynamic
environments, Lecture Notes in Computer Science, Vol. 3005, pp. 489–500,
Springer Verlag, New York.

Multiset Rule-Based Programming Paradigm 105

[10] S. Boettcher, and A. Percus (2000): Nature’s way of optimizing, Artificial
Intelligence, 119, 275–286.

[11] E. Bonabeau, M. Dorigo and G. Theraulaz (1999): Swarm Intelligence: From
Natural to Artificial Systems, Oxford University Press, U.K.

[12] L.K. Booker, D.E. Goldberg, J.H. Holland (1986): Classifier systems and
Genetic Algorithms, Artificial Intelligence, 40, 235–282.

[13] J. Branke, H.C. Andersen and H. Schmeck (1996). Global selection meth-
ods for massively parallel computers, in Evolutionary Computing, T.C.
Fogarty, ed., Lecture Notes in Computer Science, 1143, 175–188, Springer
Verlag, New York.

[14] C.S. Calude, et al., (2001): Multiset processing, Lecture Notes in Computer
Science, Vol. 2235, Springer Verlag, New York.

[15] C. Cannings and D.D. Penman (2003): Models of Random graphs and their
applications, Handbook of Statistics, C.R. Rao, ed., 21, 51-91, North
Holland, Amsterdam.

[16] N. Campbell (1996): Biology, Benjamin/Cummings, New York.
[17] K.S. Chan, and H. Tong (2002): Chaos: A Statistical Perspective, Springer,

New York.
[18] S. Chu, et al., (2003): Parallel ant colony systems, Lecture Notes In Artificial

Intelligence, 2871, 279–284, Springer Verlag, New York.
[19] C.A.C. Coello, D.A. Van Veldhuizen, G.B. Lemont (2002): Evolutionary

Algorithm for Solving Multi-objective Problem, Kluwer, New York.
[20] M. Conrad (1992): Molecular computing paradigms, Computer, 25, 6–68.
[21] M. Conrad, K.-P. Zauner (1997): Molecular computing: From conforma-

tional pattern recognition to complex processing networks, in
Bioinformatics, Lecture Notes in Computer Science 1278, 1–10, Springer
Verlag, New York.

[22] M. Conrad, K-P Zauner (1998): DNA as a vehicle for the self-assembly
model of computing, Biosystems, 45, 59–66.

[23] M. Dorigo, G.D. Caro and M. Sampels (2002): Ant algorithms, Lecture
Notes in Computer Science, Vol. 2463, Springer Verlag, New York.

[24] M. Dorigo, and T. Stutzle (2004): Ant Colony Optimization, M.I.T. Press,
Cambridge, Mass.

[25] S.N. Dorogovtsev, and J.F.F. Mendes, (2003): Evolution of Networks, Oxford
University Press, Oxford.

[26] A. Doucet et al., (2000): Sequential Monte-Carlo Methods in Practice,
Springer, New York.

[27] A. Doucet, N. Gordon, V. Krishnamurthy, (2001): Particle filters for state
estimation of jump Markov linear systems, IEEE Trans. Signal Processing,
49, 613–624.

[28] J.L. Fernandez-Villacanas, J.M. Fatah, S. Amin (1998): Computing with evolv-
ing proteins, Parallel and Distributed Processing, J. Rolim, ed. Lecture Notes in
Computer Science, Vol. 1388, Springer Verlag, New York, pp. 207–215.

[29] S. Forrest (1991a): Parallelism and Programming in Classifier Systems,
Morgan Kauffman, San Mateo, California.

[30] S. Forrest (1991b): Emergent Computation, M.I.T Press, Cambridge, Mass.
[31] M.H. Genesereth, N. Nilsson, (1987): Logical Foundations of Artificial

Intelligence, Morgan Kaufmann, Los Altos, California.

106 E. V. Krishnamurthy and Vikram Krishnamurthy

[32] D.E. Goldberg, (1989): Genetic Algorithms in Search, Optimisation and
Machine Learning, Addison Wesley, Reading, Mass.

[33] L. Goncharova, et al., (2003): Biomolecular immunocomputing, Lecture Notes
in Computer Science, 2787, 102-110, Springer Verlag, New York.

[34] J.J. Grefenstett, (1988): Credit assignment in rule discovery systems based on
genetic algorithms, Machine Learning, 3, 225–245.

[35] J.H. Holland, et al., (1987): Induction, M.I.T. Press, Cambridge, Mass.
[36] A. Ilachinski, (2002): Cellular Automata, World Scientific, Singapore.
[37] T. Ishida (1991): Parallel, distributed and multiagent production systems,

Lecture Notes in Computer Science, 890, Springer Verlag, New York.
[38] S.A. Kauffman (1993): The Origins of Order, Oxford University Press,

Oxford.
[39] J. Kennedy and R.C. Eberhart, (2001). Swarm Intelligence, Morgan

Kauffman, London.
[40] P. Kevin MacKeown (1997): Stochastic Simulation in Physics, Springer,

New York.
[41] P.M Kogge, (1991): The Architecture of Symbolic Computers, McGraw Hill,

New York.
[42] J.R. Koza, (1994): Genetic Programming II, M.I.T. Press, Cambridge,

Mass.
[43] E.V. Krishnamurthy, (1985): Introductory Theory of Computer Science,

Springer Verlag, New York.
[44] E.V. Krishnamurthy (1986): Solving problems by random trials, Science and

computers, (A volume dedicated to Nicholas Metropolis), G.C. Rota, ed.,
Advances in Mathematics, 10, 61-81, Academic Press, New York.

[45] E.V. Krishnamurthy, (1989): Parallel Processing, Addison Wesley, Reading,
Mass.

[46] E.V. Krishnamurthy (1996): Complexity issues in parallel and distributed
computing, in Handbook of Parallel and Distributed Computing, Chapter 4,
A. Zomaya, ed., McGraw Hill, New York.

[47] E.V. Krishnamurthy, (2003): Algorithmic entropy, phase transitions, and
smart systems, Lecture Notes in Computer Science, 2659, 333–342, Springer
Verlag, New York.

[48] E.V. Krishnamurthy, (2004): Rule-based Multiset Programming Paradigm,
Applications to Synthetic Biology, Third Workshop on Non-Silicon
Computation, (NSC-3), Munich, in 31st International Symposium on
Computer Architecture, Munich, June 2004.

[49] E.V. Krishnamurthy, V.K. Murthy, (1992): Transaction Processing Systems,
Prentice Hall, Sydney.

[50] V. Krishnamurthy, and E.V. Krishnamurthy, (1999): Rule-based Programming
Paradigm: A formal basis for biological, chemical and physical computation,
Biosystems, 49, 205–228.

[51] E.V. Krishnamurthy, and V. Krishnamurthy (2001): Quantum field theory
and computational paradigms, International Journal of Modern Physics,
12C, 1179–1201.

[52] V. Krishnamurthy, and S.H. Chung (2003): Adaptive learning algorithms for
Nernst potential and I-V curves in nerve cell membrane ion channels modelled
as hidden Markov models, IEEE Transactions NanoBioScience, 2(4), 266–278.

Multiset Rule-Based Programming Paradigm 107

[53] V. Krishnamurthy, X. Wang, G. Yin (2004): Adaptive Spreading Code
Optimization and Adaptation in CDMA via Discrete Stochastic
Approximation, IEEE Transactions Information Theory, 50(9), 1927–1949.

[54] I. M. Kulic (1998): Evaluating polynomials on the molecular level—a novel
approach to molecular computers, Biosystems, 45, 45–57.

[55] S. Kuo, D. Moldovan, (1992): The state of the art in parallel production sys-
tems, J. Parallel and Distributed Computing, 15, 1–26.

[56] L. Lam (1998): Nonlinear Physics for Beginners, World Scientific, Singapore.
[57] A.J. Lichtenberg and M.A. Liberman, (1983): Regular and Stochastic

Motion, Springer Verlag, New York.
[58] R.J. Lipton (1995): DNA solution to hard computational problems, Science,

268, 542-545.
[59] W. Ma,, E.V. Krishnamurthy and V.K. Murthy (1995): Multran—A coordina-

tion programming language using multiset and transactions, Proc. Neural,
Parallel and Scientific Computing, 1, 301-304, Dynamic Publishers, Inc., U.S.A.

[60] N. Meuleau and M. Dorigo, (2002): Ant colony optimization and stochastic
gradient descent, Artificial Life, 8, 103–121.

[61] Z. Michalewicz (1992): Genetic Algorithms + Data Structures = Evolution
Programs, Springer Verlag, New York.

[62] Z. Michalewicz and D.B. Fogel (2000): How to Solve It: Modern Heuristics,
Springer Verlag, New York. (1992,

[63] D. Midgley (2003): Systems Thinking, Vols. 1–4, Sage Publications, London.
[64] R.K. Milne (2001): Point processes and some related processes, Handbook of

Statistics, 19, 599–641, C.R.Rao, ed., North Holland, Amsterdam.
[65] D.P. Miranker (1991), TREAT: A New Efficient Match Algorithm for AI

Production Systems, Pitman, London.
[66] B. Misra, I. Prigogine and M. Courbage (1979), From deterministic dynam-

ics to probabilistic descriptions, Physica, 98A, 1–26.
[67] R. Motwane and P. Raghavan (1995), Randomized Algorithms, Cambridge

University Press, Cambridge.
[68] H. Muehlenbein (1991), Evolution in time and space-the parallel genetic

algorithm, in Foundations of Genetic algorithms, Rawlins, G., ed., Morgan
Kaufmann, San Mateo, California, 316–337.

[69] J.D. Murray (2003): Mathematical Biology, Springer, New York.
[70] V.K. Murthy and E.V. Krishnamurthy (1995): Probabilistic Parallel

Programming based on multiset transformation, Future Generation Computer
Systems, 11, 283–295.

[71] V.K. Murthy and E.V. Krishnamurthy, (2003): Entropy and Smart systems,
International Journal of Smart Engineering Systems, 5, 481-499.

[72] K.M. Pacino (2002): Biomimicry of bacterial foraging for distributed opti-
mization and control, IEEE Control magazine, 22(3), 52-68.

[73] C.H. Papadimitriou (1985): Computational Complexity, Addison Wesley,
Reading, Mass.

[74] G. Paun (2003): Membrane computing, Lecture Notes in Computer Science,
FCT 2003, 2751, 284–295, Springer Verlag, New York.

[75] D. Petrina, Ya., (1995): Mathematical Foundations of Quantum Statistical
Mechanics, Kluwer Academic Publishers, London.

[76] I. Prigogine (1980): From Being to Becoming, W.H. Freeman, San Fransisco.

108 E. V. Krishnamurthy and Vikram Krishnamurthy

[77] N.G. Rambidi (1997): Biomolecular computer: roots and promises,
Biosystems, 44, 1–15.

[78] R.D. Reiss (1993): A Course on Point processes, Springer Verlag, New York.
[79] C.P. Robert and G. Casella (1999) Monte Carlo Statistical Methods, Springer

Verlag.
[80] E. Rich, K. Knight (1991): Artificial Intelligence, McGraw Hill, New York.
[81] J.D. Scargle and G.J. Babu (2003), Point processes in astronomy, Handbook of

Statistics, C.R. Rao, ed., 21, 795–825, North Holland, Amsterdam.
[82] R.J. Solomonoff (1995): The discovery of algorithmic probability: A guide

for the programming of true creativity, Lecture Notes in Computer Science,
904, 1–22.

[83] J.C. Spall (2003): Introduction to Stochastic Search and Optimization, Wiley-
Interscience, New York.

[84] W.M. Spears, and K.A. De Jong (1993): An overview of evolutionary com-
putation, Machine Learning ECLML-93, Lecture Notes in Computer
Science, 667, 442-459, Springer Verlag, New York.

[85] S. Stepney, J.A. Clark et al., (2003): Artificial Immune System and the grand
challenges for non-classical computation, Lecture Notes in Computer
Science, 2787, 204–216, Springer Verlag, New York.

[86] D. Straub (1997): Alternative Mathematical Theory of Nonequilibrium
Phenomena, Academic Press, New York.

[87] Y. Suzuki, et al., (2001): Artificial Life applications of a class of P systems:
Abstract rewriting systems on Multisets, Lecture Notes in Computer Science,
2235, 299–346, Springer Verlag, New York.

[88] A.M. Turing (1952): The chemical basis for morphogenesis, Phil. Trans. Roy.
Soc. London, 237, 37–79.

[89] W. Wayt Gibbs (2004): Synthetic life, Scientific American, 290(5), 48–55.
[90] D. Whitley T. Starkweather (1990): Genitor: a distributed Genetic algorithm,

J. Experimental and Theoretical Artificial Intelligence, 2, 184–214.
[91] S. Wolfram (2002): A New Kind of Science, Wolfram Media Inc.,

Champaign, Ill.
[92] X. Yao, (2003): The evolution of evolutionary computation, Lecture Notes

in Artificial Intelligence, 2773, 19–20, Springer Verlag, New York.
[93] G. Yin, V. Krishnamurthy and C. Ion (2004): Regime Switching Stochastic

Approximation Algorithms with application to adaptive discrete stochastic
optimization, SIAM Journal of Optimization, 14(4), 1187–1215.

[94] D.C.K. Yuen and B.A. MacDonald (2004): Theoretical considerations of
multiple particle filters for simultaneous localization and map-building,
Lecture Notes in Computer Science, 3213, 203–209.

[95] K.-P. Zauner, M. Conrad (1996): Parallel computing with DNA: toward the
Anti-Universal Machine, Proc. PPSN-IV, Lecture Notes in Computer
Science, 1141, Springer Verlag, New York.

[96] W. Zhang and R. Korf (1996): A study of complexity transitions on the asym-
metric travelling salesman problem, Artificial Intelligence, 81, 223–239.

Multiset Rule-Based Programming Paradigm 109

Chapter 4

EVOLUTIONARY PARADIGMS
Franciszek Seredynski
Polish-Japanese Institute of Information Technology and Polish
Academy of Sciences

Abstract
In recent years, evolutionary computation (EC) techniques have became

one of the most popular heuristic search methods successively applied to solve
complex research and real-life problems. This chapter presents an overview of
the field of EC. Main concepts of biological evolution and some biological
paradigms are shown, their influence on EC is discussed, and a general com-
putational scheme currently used in EC is presented. The best recognized
classes of EC algorithms are described, such as Evolution Strategies, Genetic
Algorithms, Genetic Programming, Evolutionary Programming, and Learning
Classifier Systems. However, the main emphasise is on the class of Genetic
Algorithms (GAs). Mechanisms of controlling evolutionary process in GAs
are discussed, the most known variants of GAs are presented, and current
issues of development of GAs are considered.

1 EVOLUTION, LEARNING, AND EVOLUTIONARY
COMPUTATION

1.1 Lamarckian Evolution

In the nineteenth century, several theories of biological evolution were pro-
posed and three of them are used today to different degrees in evolutionary com-
puting (EC). These are (e.g., [31,85,102]) Lamarckian evolution, Darwinian
evolution (Darwin, 1859), and the theory proposed by Baldwin known as the
Baldwin effect (Baldwin, 1896). Some other concepts introduced later, such as
species, niches, or coevolution of species, are also used in EC.

One of the first concepts of evolution was the one proposed by J. B. Lamarck.
He suggested that the experience of organisms during their lifetime—their ability
of adaptation—may directly influence evolution over many generations. This

meant that traits such as the development of some organs (or the degeneration of
others) across individuals’ lifetimes to make activity more efficient, or learned
behaviors such as how to avoid preditors, could be passed on to offspring by
inheritance alone, and the offspring would not need to learn these traits. He
believed that after some number of generations, this process could lead to the
emergence of new species.

Using the notion of the phenotype as the observed characteristics of an organ-
ism and the notion of the genotype as the actual genetic structure of the organism,
one can see Lamarckian evolution as a mapping from the phenotype to the geno-
type, where environment and individual experience directly change the individual
genetical makeup. While today Lamarckian evolution is not an accepted model of
biological evolution, some research in the field of EC used this model and shown
that the search process may converge to a local optimum [131] or that it can some-
times improve (e.g. [1,54]) the effectiveness of an evolutionary algorithm.

1.2 Darwinian Evolution

Today the best known evolutionary algorithms (EAs) are loosely based on
simulated Darwinian evolution. Darwin’s theory pointed out two main factors of
an evolutionary process: natural selection and genetic variation. Natural selection,
which is today briefly described as the principle of survival of the fittest, states
that the individuals whose variations are better adapted to the environment have
a greater probability of surviving and reproducing, and selection is the mecha-
nism that reduces the number of less-adapted individuals. Shortly after the pub-
lication of Darwin’s theory, Gregor Mendel discovered the genetic basis of
inheritance, and later some scientists like Hugo de Vries developed the concept of
genetic mutations. Research from genetics shows that genes determine individual
characteristics and only genes are transmitted thorough generations. The genetic
material of the organisms is the result only of a continual variation of individu-
als, with possible influences from environmental conditions.

In contrast to Lamarckian evolution, the driving force of Darwinian evolu-
tion is a mapping from the genotype to the phenotype. This means that the envi-
ronment and genetic information determine characteristics of individuals. Today
the EC community interprets Darwinian evolution as a life-cycle of some organ-
isms, as presented in Figure 4.1.

It is assumed that a population P(t) = {x1
t, . . ., xn

t} consisting of n individ-
uals of the same species begins its life-cycle in generation t, called also an iter-
ation t. The individuals live in some environment where they get food, struggle
with illnesses, and avoid predators. At the end of their lifetime, the fitness of
each individual in the population is evaluated, and this fitness is the basis to
apply in some way the principle of natural selection, which gives a higher
chance of survival to more fit individuals. Next, for those members of the pop-
ulation that survived, genetic mechanisms are applied to reproduce them by
creating new individuals (offspring, children) that inherit features of their par-
ents. As a last step of the life-cycle of the current population, it is assumed that
new members of the population replace partially or fully the old members, and
they are considered as members of a new population that begins a new life-
cycle, termed generation t + 1.

112 Franciszek Seredynski

1.3 Baldwin Effect

Baldwin suggested the idea that individual learning can change the course of
evolution. The individual learning does not affect directly the genetic code of the
individual, but individuals with increased learning capabilities may have higher
probabilities to survive, which may result in an increasing number of their off-
spring. If, e.g., a new predator appears [85] in the environment of some species,
individuals capable of learning to avoid the predator will be favored. As the pro-
portion of such individuals in the population grows, the population will be able
to support a more diverse gene pool, allowing the evolutionary process to adapt
more rapidly. This may in turn enable the standard evolutionary process to more
quickly evolve a genetic trait to avoid the predator. This mechanism is called the
Baldwin effect. Some results of applying the Baldwin effect in EC show [131] that
the search process converges to the global optimum, while the search process
without learning converges to local optimum. Also, positive effects of the appli-
cation of the Baldwin effect were observed in experiments with evolving neural
networks [57] and in modeling immune systems [96].

1.4 Species and Niches

The concepts of species and niches existing in biology and ecology, respec-
tively, has been recently recognized by EC community (see section 3.3) to create

Evolutionary Paradigms 113

natural
selection

genetic
mechanisms

generation t+1

generation t

population P(t)

population P(t+1)

evaluation

Figure 4.1. Darwinian evolution as a life-cycle of a population of individuals

new EAs. While the process of emerging species is not fully understood, there
is some agreement concerning the main principles of the development of species
[31]. Biological species are recognized more by their phenotypic differences
than by genetic criteria. It is assumed that interbreeding may happen only
between individuals of the same species. New traits in the population may be a
result only of such processes as reproduction, mutation, gene flow, and genetic
drift, which are realized on genes pool of the same species. It is believed that traits
favored by the mechanism of natural selection may lead to the appearance of new
species.

Members of the same species occupy an ecological region called a niche. The
ecological niche is associated with a survival strategy of the species, the environ-
ment in which the species’ relations to food and enemies are established.

1.5 Coevolution

The prevailing number of EAs is based on simulations of the life-cycle of a
population of a single species. The open new area of EC are EAs based on a par-
adigm of coevolution of different species (see section 3.5). Coevolution can be
defined [31] as a change in the genetic composition of one or more species in
response to a genetic change in another, which happens during the evolutionary
process as the result of interactions between different species. Different species
can occupy different niches or share the same niches. They may compete for one
or more resources. In the outcomes of coevolution, different forms of coexis-
tence between species can be observed.

When coexistence has the form of competition between different species, the
presence of each species is associated with reducing the growth of another species.
Some kind of equilibrium between species can appear. When the relation between
two species is based on exploitation, then the presence of one species stimulates
the growth of the second species, while this second species inhibits the grow of the
first. This form of coexistence is based on interaction between species having a
character of either a predator–prey interaction, resulting in the extinction of one
species, or a host–parasite interaction, leading to two coevolving species where
extinction does not take place. Most of the predator–prey forms of interaction
are based on the original model of Lotka and Voltera [75,127].

If the last form of coexistence, cooperation, takes place between species, then
the presence of each species stimulates the growth of the other species.

1.6 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are search, optimization, and learning tech-
niques based on the Darwinian concept of natural evolution and biology. Today
there are several well-established streams of EAs: Evolutionary Strategies (ESs),
Genetic Algorithms (GAs), Genetic Programming (GP), Evolutionary Programming
(EP) and Learning Classifier Systems (LCSs) [11,35,55,71,82,90,139,137,90]. A com-
mon accepted term referring to this type of computation is evolutionary computa-
tion (EC). Despite the differences between these streams, which will be shown
later, they all use the basic notions and mechanisms of evolution and biology,
such as (1) a population of individuals, (2) the fitness of an individual, (3) the

114 Franciszek Seredynski

birth/death cycle of individuals, (4) inheritance, and (5) reproduction, varia-
tion, and selection/competition.

Figure 4.2 shows a general computational scheme for EAs. The scheme can
also be presented with the use of the following pseudocode:
0. Construct a representation (an individual of a population) of a solution for a

given problem;
t ← 0

1. Randomly create an initial population P(t) of individuals
2. Evaluate fitness of all individuals in P(t)
3. If a termination condition is satisfied then go to Step 5 else go to Step 4
4. Apply selection and genetic operators in P(t);

4′. Optionally: apply competition mechanisms;
4′′. Optionally: apply local search algorithms;
t ← t + 1; go to Step 2;

5. Optionally: If restart then go to Step 6, else go to Step 7
6. t ← 0;

Generate modified initial population P(t); go to Step 2
7. Consider the best individual from P(t) as a solution of the problem.

Evolutionary Paradigms 115

Start

randomly generate an initial
population P(t) of individuals

t 0

evaluate fitness of
all individuals in P(t)

is termination
condition
satisfied?

t t+1

solution of the problem

Stop

apply
competition
mechanisms

apply
selection and

genetic operators

potencial solution
of the problem

coding
individual

N

Y

restart?

N

Generate modified
initial population P(t)

t 0
Y

apply
local search
algorithms

1

2

3
6 4

4''

4''

7

5

0

the best individual from P(t)

Figure 4.2. Computational scheme of an evolutionary algorithm

Steps 4′, 4′′, 5, and 6 are not used in classical versions of EAs. As a termina-
tion condition, a predefined number of generations of simulated evolutionary
process is usually used, or some more complex stopping criteria can be applied,
like, e.g., “stop if the fitness of the best individual in the population has not
increased during the predefined number of generations.”

The main differences between the streams of EAs lie in Steps 0 and 4 of the
computational scheme of EAs. Let us consider the issue of a representation [107]
of a solution of a problem to be solved (Step 0 in the computational scheme of
ES). For this purpose, it is useful to consider two separate spaces (e.g., [9]): a solu-
tion space and a search space (see Figure 4.3). If we want, e.g., to design a car
with specific features, then we can imagine a space of solutions of the problem
(see Figure 4.3, left) as a set of potential solutions. A single actual solution is a
collection of parameters of a desired construction and is called a phenotype.
Some EAs search for a solution directly in a solution space, i.e., in the space of
phenotypes. However, some other EAs search a solution indirectly in a search
space, which is constructed by mapping to it objects from the solution space. A
genotype is an object of the search space and represents a coded version of
parameters of a corresponding phenotype from the solution space. Figure 4.3
(right) shows an example of a search space of genotypes used in GAs. A binary
string is a representation of a genotype. Values of a single gene called alleles code
parameters of searched solutions. A collection of genes is called a chromosome.
Evolving individuals from the search space requires mapping genotypes into
space of phenotypes to read correctly an actual quality of a solution.

ESs differs also in Step 4, where selection and genetic operators are applied.
The differences are in the type of operator, the means of their construction, and
the order of their application.

2 EVOLUTION STRATEGIES

Evolution Strategies (ESs) were independently developed by Rechenberg and
Schwefel in the early 1960s in Germany as a method to solve practical optimiza-

116 Franciszek Seredynski

010110

010011 111000

101011

001101

Mappings

Solution space Search space

Phenotypes Genotypes

Figure 4.3. Solution space (phenotypes) and search space (genotypes)

tion problems in engineering. For continuous optimization problems, ES directly
processes a real-valued n-dimensional vector x that is associated with the
extremum of a function F(x) : Rn → R. It means that there is no process of cod-
ing (see Figure 4.2) of potential solutions (phenotypes in a solution space) to a
problem into individuals of a population (genotypes in a search space) and that
ES directly operates on phenotypes (see Figure 4.3).

A number of ESs have been developed (see, e.g., [61,104,113,90,10]). All of
them are described using a specific notation, and in particular the following nota-
tion of parameters is used: m—the size of parent population, l—the size of off-
spring population, r—the size of family (parents) (1 ≤ r ≤ m). An individual v is a
pair of float-valued vectors v = (x, s), where x = (x1, x2, . . . ,xn) is a point in a solu-
tion space, and s = (s1, s2, . . . ,sn) is a vector of standard deviations. The earli-
est ES was based on a population consisting of one individual only, and was
referred to as (1 + 1) -ES.

2.1 The (1 + 1) -ES

The (1 + 1) -ES algorithm, also called two-member ES, is based on a simple
mutation-selection scheme. An initial population at generation t = 0 consists of
one parent vt. One offspring is created by an operator of mutation, which adds to
components of the vector xt normally distributed random numbers, i.e.,

(,),x x N 0t t1= + v+ (1)

where N(0, s) is a vector of normally distributed (isotropic Gaussian), inde-
pendent random numbers with a mean of 0 and standard deviations s. An expla-
nation for this operator is the biological observation that offspring are similar to
their parents and that small changes are more likely than larger ones. It is possi-
ble to use other distributions [11] such as nonisotropic Gaussian or other con-
tinuous distributions, two-point distribution in binary search spaces, or “move
operators” for combinatorial optimization problems.

When the population temporarily contains two individuals, the operator of
deterministic selection is applied. The selection operator selects the better of
the two individuals, which then moves to the next generation. The algorithm is
continued until a termination condition is satisfied. One can notice that the
evolution process is based mainly on the mutation operator.

While it can be proved that the algorithm converges to a global optimum when
si = const, the algorithm may get stuck after a certain number of generations.
Rechenberg observed [104] that progress in evolution exists only for a small band-
width (evolution window) of mutation strength. He proposed a statistical infer-
ence method called 1/5-rule to control s during the evolutionary process. The rule
says that f—a quotient of a number of successful mutations (which improved the
fitness of individuals) to the total number of mutations—should be equal to 0.2:
if a current value of f is greater than 0.2, then the standard deviation s associ-
ated with the operator of mutation should be increased, and when f is less than
0.2, the s should be decreased. Recently some other techniques using adaptation
or self-adaptation and based on statistical inference or an evolutionary approach
were proposed (see, e.g., [10,11]) to control s.

Evolutionary Paradigms 117

2.2 The (m + 1) -ES

The algorithm assumes an existing population consisting of m individuals,
where m > 1. Two individuals are selected randomly from the population to cre-
ate one offspring by using an operator of discrete recombination. The offspring
(x, s) has components xi and si, which are randomly copied from parents.
Next, as in (1 + 1)-ES, the operator of mutation is performed on the offspring.
Finally, the operator of deterministic selection is applied, which removes from
the population of the size m + 1 the least fit individual.

2.3 The (m + λ) -ES

The (m + λ)-ES algorithm is a natural extension of the previous one. In the
algorithm, m parents (usually m ≤ λ) produce λ offspring. Offspring are mutated,
but the mutation operator is modified by introducing an additional level, where s
is controlled by the mutation operator, instead of the internal strategy handling s
(e.g., 1/5-rule). If (x, s) is an offspring obtained in the result of the recombination
operator, then the two-level mutation operator converts it into an individual (x′,
s′) in the following way: first, the s component of the individual is modified into
s¢: s¢ = seN(0, Ds), and next the component x of the individual is modified: x¢ = x
+ N(0,s¢), where Ds is a step-size meta-control parameter.

The temporary population of size m + λ is next reduced by deterministic selec-
tion to m best individuals. This kind of selection is called (+) selection. The algo-
rithm can be recommended for the solution of combinatorial and discrete
problems. In such cases, e.g., for the Traveling Salesman Problem (TSP), an indi-
vidual is a permutation list containing a sequence of cities to be visited in prede-
fined order, and permutation operators of mutation similar to those used in GAs
are applied. Note that in all cases considered so far, ES algorithm parents survive
until they are replaced by fittest offspring, and well-adapted individuals may sur-
vive forever. This feature may give rise to some disadvantages of the (m + λ)-ES,
such as, e.g., getting stuck on a problem with an optimum that moves over time.

2.4 The (m, λ) -ES

To avoid disadvantages associated with (m + λ)-ES, a modification of this algo-
rithm known as (m, λ) -ES was proposed. As in the previous algorithm, a m-mem-
ber population of parents produces λ offspring by means of recombination and
mutation. However, the selection operator is applied only to the population of
offspring, reducing it to m parents of the next generation, and this kind of selec-
tion is called (,) selection. While the general computational scheme of ES is as
shown in Figure 4.2, Step 4 of ES is presented in Figure 4.4 and contains a
sequence of operators executed in the following order: recombination, mutation,
and selection.

2.5 ES with Self-adaptation: (1, λ) − s SA − ES

Observation and comparison of behavior of (m + λ) and (m, l) − ES models
show (e.g., [10,11]) that (1) if mutation strength is for some reason constant, then

118 Franciszek Seredynski

(,) strategies lead to a saturation behavior, and (2) if the mutation strength can-
not be scaled down, the (+) strategy is always beneficent. Also, for both models,
the existence of an evolution window was observed, with a value of mutation
that provided evolutionary progress. This leads to the necessity of developing
more general algorithms such as (m ,+l) − ES, where both strategies can be used,
or (m/m, l) − ES with recombination.

In [114], contemporary ESs were proposed. These are referred as (m, k, l, r)
− ES and allow a gradual transition from either (m, l) − ES or (m, l) − ES by
introducing a lifespan parameter k—the upper limit for life span (k ≥ 1), l ≥ m
if k = 1; and r—the number of ancestors for each descendant (1 ≤ r ≤ m). The
(,) and (+) strategies can be used depending on the value of k.

The more general solution for controlling mutation rate and its scalability are
ESs with self-adaptation, such as, e.g., (1, l) − sSA − ES [10,11]. Each individual
in the algorithm includes object parameters and evolvable (endogenous) strategy
parameters. Endogenous strategy parameters control the variation of the individ-
ual’s object parameters by mutation. These are inherited together with the object
parameters.

2.6 Advanced ES Techniques

A number of advanced ES techniques are currently under study [10,11]. The
general (m/r ,+l) − ES algorithm uses the m/r recombination and both (,) and (+)
strategies. The recombination is applied to r (r ≤ m) parents. The r parents (also
called a r–family) produce one offspring. If r < m, then the members of the
r–family are chosen randomly from the set of m parents, and if r = m, then all m
parents are involved in the process of creating a child. The recombination is
applied to the object parameters and can be applied also to endogenous strategy
parameters.

The Meta-ES (or hierarchically organized ES) [m′/r′ ,+ l′ (mi /ri ,+ li)
γ] - ES,

i = 1, 2, . . ., l′, gives a possibility of mixed structural and parameter optimiza-
tion. There are l′ populations in the algorithm, and g (the exogenous strategy
parameter) sets an isolation period time between them. The outer [] − ES (struc-
ture evolution) improves parameters of the inner () − ES (parameter evolution)
populations.

Evolutionary Paradigms 119

mutation

deterministic
selection

recombination

Figure 4.4. Order of selection and genetic operators applied in ESs

Another approach to construct adaptive ES search techniques to control the
variation operators (mutation, recombination) is based on use of statistical infor-
mation. While the 1/5-rule (see, section 2.1) is the simplest example of such a tech-
nique, currently more advanced algorithms are used, such as the Cumulative
Step-size Adaptation (CSA) algorithm or the Covariance Matrix Adaptation
(CMA) algorithm.

3 GENETIC ALGORITHMS

Genetic Algorithms (GAs)[34, 46, 81] were originally developed in the late
1960s at the University of Michigan by John Holland and his team, who con-
ducted their research on robust, adaptive systems. Later, GAs were refined by De
Yong, Goldberg, Michalewicz, and many others. While the computational scheme
of GAs is as shown in Figure 4.2, GAs distinctively differ in Steps 0 and 4 from
the other EAs, in particular from ESs, in the following ways: (1) a search space of
genotypes is used, and a binary string is a representation of a genotype, as shown
in Figure 4.3 (Step 0 in Figure 4.2), and (2) the sequence of selection and genetic
operators is usually, as shown in Figure 4.5, performed in the following order: sto-
chastic selection, crossover (corresponding to operator recombination in ESs), and
mutation (Step 4 in Figure 4.2).

Overviews concerning current issues on GAs can be found in [133, 55, 35].

3.1 Simple Genetic Algorithm

Selection and genetic operators of a Simple Genetic Algorithm (SGA) [46]
have the following properties: (1) proportional selection is used, alternatively
called a selection with a roulette wheel, (2) a single-point crossover is performed
on each chromosome, with a probability pc, and (3) a single-bit mutation is per-
formed with a probability pm. These selection and genetic operators are shown in
Figure 4.6.

120 Franciszek Seredynski

stochastic selection

crossover

mutation

Figure 4.5. Order of selection and genetic operators applied in GAs

The proportional selection operator provides a method of stochastic selection
that selects an individual i (to survive and have a chance for mating) with a prob-
ability

p
f

f
i

jj

n
i

1

=

=
!

(2)

proportional to its fitness fi, where n is the size of the population. Assuming that
there are five individuals in a population with fitness 27, 45, 11, 5, and 32, respec-
tively, one can construct the roulette wheel with five areas (see Figure 4.6a), each
corresponding to a single individual, that are proportional to their probability of
selection. A single spin of the wheel results in a selection of one individual corre-
sponding to the area of the roulette pointed to by a pointer when the wheel stops
spinning. The selection is completed after spinning the wheel five times.

Each individual that passes selection is chosen next, with a probability pc for
mating. A single-point crossover is performed on two parent individuals (see
Figure 4.6b). A random position is chosen in both chromosomes, and two chil-
dren individuals are produced after the exchange of genetic material. The choice
of which parent contributes the bit for a given position of children can be also
determined by an additional string called the crossover mask. For the crossover
shown in Figure 4.6b, the crossover mask is 111100. The 1s and 0s of the
crossover mask define the contribution of bits of parent P1 and parent P2,
respectively, to the child Ch1. The second child uses the same mask but switches
the roles of the two parents.

After crossover, a genetic mutation operator is performed. Each locus of each
chromosome of the population is selected for mutation, with a probability pm.

Evolutionary Paradigms 121

2

1

34

5

0

00

0

111 1

0 00 11 1

11

0 1

1 1 1 100

0 0

0 0 0 0

0 1 0 111

0 1 0 1 10 1 1 10 1

before mutation after mutation

bit to be mutated

0

pointer

crossover point

parents crossover children

(a)

(b)

(c)

Ch2

Ch1

Figure 4.6. Operators of selection, crossover, and mutation used in SGA: (a) roulette wheel
(proportional selection), (b) single-point crossover, (c) single-bit mutation

If mutation takes place, a corresponding bit switches its value either from 0 → 1
(see Figure 4.6c) or from 1 → 0.

SGA has good theoretical foundations [128], but most applications do not use
it. The main problems with SGA are the following: (1) premature convergence to
a local optimum, because of sensitivity of such parameters as population size or
crossover/mutation rate, (2) strong convergence to the wrong solution for the
problems known as deceptive problems [46], and (c) possible poor representation
and poor operators for some problems. For these reasons, a number of extensions
of SGA have been proposed, and for practical applications, customized/hybrid
GAs with domain-dependent representations and operators are frequently
designed.

3.2 Mechanisms to Control Evolutionary Process in GAs

Representations and Encoding
Representation is one of the key issues influencing the performance of EAs

used as optimizers. As mentioned earlier, when the problem of optimization with
EA use is considered, it is useful to consider two spaces: the phenotype space
representing the original definition of the problem and the genotype space rep-
resenting encoded solutions. The purpose of representation is to assign geno-
types to corresponding phenotypes [102, 107], which is often called
genotype–phenotype mapping. This mapping can be done in different ways. It
influences the suitability of applied genetic operators and the performance of
the evolutionary process.

The most common representation applied in GAs is a binary string used, e.g.,
in SGA. In some problems binary encoding is natural, e.g., for the 0-1 knapsack
problem that is very well known in operational research. In such cases there is no
distinction between genotype and phenotype spaces. The same result takes place
when continuous encoding (similar to that used in ESs) with real-valued vectors is
used for function optimization problems. For some discrete nonbinary problems,
e.g., the rotor stacking problem [102], a discrete alphabet of higher cardinality
might be appropriate.

One of the problems that may arise when the standard binary code is used is
that adjacent genotypes may not have adjacent phenotypes. In such cases, the use
of Gray code may be preferable and more effective. Some recent research [132,
133] shows that Gray encoding reduces the number of local optima, which is
important for local search algorithms, and beats binary encoding in many test
problems.

For some, problems (e.g., TSP, flowshop problem, multiprocessor scheduling),
natural encoding is a permutation representation. For these problems, special
crossover operators must be designed because the standard crossover operators
usually fail to preserve the permutation. For other problems, e.g., tree optimiza-
tion problems, a graph can be represented by its characteristic vector.

Incorporating problem-specific knowledge in the representation can increase
[107] the GA performance. This can be done in particular by (1) considering spe-
cific properties of the optimal solutions, e.g., trees and stars, and (2) delivering to
the population solutions that are similar to the optimal solution.

122 Franciszek Seredynski

Currently, analytical models do not exist that describe the influence of repre-
sentation on the performance of EAs, but there are some general recommenda-
tions [107]. Goldberg’s recommendations [46] are based on (1) the principle of
meaningful building blocks and (2) the principle of minimal alphabets, and are ori-
ented on effective processing schemata in GAs. Radcliff [101] suggests that repre-
sentation and operators cannot be considered separately from each other and
makes some recommendations [116] on how to design representation-independ-
ent EAs. According to Palmer [92], (1) encoding should represent all possible phe-
notypes, and all possible individuals should be equally represented in the set of all
possible genotypic individuals, (2) encoding should encode no infeasible solu-
tions, should possesses locality and be adjusted to a set of genetic operators, and
should minimize nonlinearities in fitness functions, and (3) decoding of the phe-
notype from the genotype should be easy.

One of the open issues in current research on representation in GAs concerns
the use of redundant representation (see, e.g., [106]), where the number of geno-
types is larger than the number of phenotypes.

Population Manipulation
Population size and the individual replacement strategy are very sensitive

parameters [102, 55] of GAs. An analysis performed by Goldberg and his col-
leagues [48] suggested a linear dependence of population size on string length.
However, some empirical results (see, e.g., [112]) show that population sizes as
small as 30 are adequate in many cases, e.g., for binary-encoded problems, but for
higher-cardinality alphabets, much larger populations are needed. For a minimum
population size, a principle was suggested in [100] that every point in the search
space should be reachable in the initial population by crossover operation only.
Some reports also show (e.g., [2]) that including in the initial population some
good-quality solution obtained from another metaheuristic can improve the per-
formance of GAs but may also lead to premature convergence to a poor solution.

The most traditional individual replacement strategy used in GAs is a genera-
tional reproduction: a current population is completely replaced by offspring gen-
erated by selection and genetic operators. Such a replacement strategy is used in
SGA and most GAs. De Yong proposed [34] a simple strategy called elitism,
which ensures the survival of the best individual in the population, and the con-
cept of population overlaps, which assumes replacing only a fraction G (generation
gap) of the population in each generation. He also introduced a crowding opera-
tor, which specifies the number of individuals initially selected as candidates to be
replaced by a newly generated offspring. A new offspring replaces the most simi-
lar individual, where the similarity measure can be, e.g., the Hamming distance
between individuals.

The opposite strategy is assumed by steady-state reproduction. In each gener-
ation, only one or two individuals are created, which replace the worst individu-
als. This strategy can be modified [102] in such a way that candidates for
replacement are chosen from those worse than the median. Another modification
of this strategy, useful for optimization in dynamic environments [15], suggests
replacing [125] the oldest instead of the worst individual but not replacing it [122]
when it is currently the best in the population.

Evolutionary Paradigms 123

Selection
The selection operators used in GAs operate on the fitness of individuals. The

mechanism of the roulette wheel used in SGA to implement proportional selection
can be changed by introducing an n-armed spinner (n is the size of the popula-
tion) [102] providing stochastic universal selection, an effective method of imple-
mentating proportional selection. The scaling problem associated with
roulette-wheel selection—i.e., when values of individual fitness in subsequent
generations become less distinguished and selection pressure becomes weaker—
can be solved by a number of algorithms proposed in [46].

Ranking selection does not need scaling and is more efficient. It sorts individ-
uals in each generation according to their decreasing/increasing fitness and
assigns new values of selection probability. Selection probabilities assigned to
ranked individuals can increase linearly or nonlinearly, creating in this way a lin-
ear ranking selection or a nonlinear ranking selection, respectively. A number
of algorithms exist [4, 81] for assigning linear or nonlinear probabilities to ranked
individuals. The algorithms provide a possibility for control of the selection
pressure.

Another effective and simple selection operator is tournament selection.
It requires choosing k individuals from a population (often k = 2), comparing
their fitness, and selecting the most fit as the winner of the tournament. A vari-
ant of tournament selection is called strict tournament, and it has similar prop-
erties to ranking selection. To provide higher selection pressure, yet another
version of tournament selection is used, which is called soft tournament. In this
case, the winner of the selection is accepted with some predefined probability.

In truncation selection, some percentage of the best individuals of a popula-
tion is selected, and parents from this selected subset only are chosen randomly
for mating. A comparison and theoretical analysis of selection schemes can be
found in [13].

Search Operators

Crossover
Two sources of bias exist [102] that can be exploited in GAs by crossover oper-

ators: positional bias and distributional bias. From this point of view, much empir-
ical evidence supports the opinion that one-point crossover is not the best
crossover construction. Two-point crossover and generally multipoint crossover are
logical extensions of the one-point crossover. In the two-point crossover, off-
spring are created by substituting intermediate segments of one parent into the
middle of the second parent string. The intermediate segment is represented in
the crossover mask by a contiguous block of 1s with the borders of the segments
created randomly. For the crossover mask 001110, two-point crossover will create
offspring 110101 and 010010.

The crossover operator that removes any bias is uniform crossover. It combines
bits sampled uniformly from two parents. For the crossover mask with random
string of bits 101100, two identical offspring are created: 110000. When the mask
is created using a Bernoulli distribution, this uniform crossover is referred as UX.

As presented above, crossover operators are suitable for problems with binary
representation. However, for problems with permutation representation, they can

124 Franciszek Seredynski

produce infeasible solutions and therefore cannot be applied. For permutation
problems such as TSP, sequencing, or scheduling, a number of nonlinear
crossover operators have been constructed. Among these, the best known are (1)
PMX (Partially Mapped Crossover), which exchanges a partial segment between
parents, (2) CX (Cycle Crossover), which finds all mapping cycles between par-
ents and next copies elements of the two parents to the offspring in correspon-
ding positions, (3) OX (Order Crossover), which randomly selects several of the
same elements in both parents and next makes exchanges between parents in
those selected positions, (4) HUX crossover, a variant of uniform crossover in
which exactly half the bits are exchanged, (5) the edge recombination crossover,
and others [81]. Recently, the edge assembly crossover [89] was proposed and
applied successfully for solving TSP problem for more than 3000 cities.

Mutation.
Mutation in GAs is usually considered as a secondary genetic operator. The

purpose of mutation is to introduce some randomness into the search and to pre-
vent the optimization process from getting stacked into local optima. Most vari-
ants of GAs apply mutation with a constant low rate, e.g., 0.005. Some research
used higher mutation rates ranging from 0.001 up to 0.01, but it was found that
higher mutation rates may transform the optimization process performed by the
GA into a random search process. The appropriate value of the mutation rate of
the GA for a given optimization problem is an open research issue.

The formula for the near optimal value of the probability of mutation pm for
a set of test functions was found experimentally [112] to be

. ,p
n l
1 7

m = (3)

where n is the population size and l is the length of a chromosome. However, the-
oretical analysis conducted in [87] using the ONEMAX function shows that the
optimal mutation rate for any unimodal binary function is approximated by the
formula

.p n
1

m = (4)

Results of research presented in [7] suggest that the mutation rate should change
dynamically during the evolutionary searching process in the following way:

() () ,p t T
l t2 1

2
m

1= +
-
- - (5)

where t is the current generation and T is the total number of generations. These
results show that the mutation rate probability should change from an initial
value of 1/2 to 1/l. In [91] it was shown that the value of optimal mutation rates
in GAs differs according to whether recombination is used or not. A new muta-
tion operator proposed in [22] and named minimum-allele-reserve-keeper ensures
a minimum amount of each allele in each locus with the least possible amount of
gene inversion. In [33], a nature-based mutation operator called the frame-shift is
proposed.

A number of novel GAs with new mutation operators have been proposed
recently. In [58], a parental mutation GA is proposed in which mutation occurs not
only in offspring but also at the parental level. In [124], a novel genetic algorithm

Evolutionary Paradigms 125

named the Split Search GA was proposed to fully utilize the mutation operator.
Experimental results using this algorithm show that increasing the role of muta-
tion in the evolutionary search may be beneficial.

Competition Mechanisms
A typical competition mechanism that can be applied (see Figure 4.2) is elit-

ism (see section 3.2). It assumes always keeping the best individual in the cur-
rent population to replace the worst individual in the next generation, if the
individual in the next generation is worse that the best one in the previous pop-
ulation. Another competition mechanism is applying truncation selection (see
section 3.2) to the population of parents and children.

Local Search Algorithms
Local search algorithms are based on the idea of iterative improvement of a

current solutions and are often used in GAs. A number of local search algorithms
have been developed. The best known of these are the following:

● next ascent bit-climbing: a flip-list describing the order of flipping of a selected
chromosome is created, and (1) the bit of the chromosome corresponding to
the actual position on the flip-list is flipped, (2) the flip is accepted if the new
string has a higher fitness than before flipping, and (3) after flipping all bits
according to the flip-list, the string with the highest fitness is considered to be
a solution

● steepest ascent bit-climbing: as in the next-ascent algorithm, bits of a chromo-
some are flipped in a predefined sequence; however, after flipping a current bit
according to the flip-list, (1) the remaining sequence of bits is sequentially
flipped; for each new string, fitness is evaluated, and after that the flip is
removed, (2) the bit (from the sequence of flipped bits) that obtained the high-
est fitness of the chromosome is accepted, and (c) the procedure is continued
for the next bit from the flip-list

● random bit-climbing (RBC) [28]: similar to the next-ascent algorithm, but
the flip-list is defined as a permutation of bits’ positions in the chromosome;
permutations are generated until no improving flips are found

● Lamarckian evolution [131] (see section 1.1)

● Baldwin effect [131] (see section 1.3)

● (1+1)-ES [37] (see section 2.1)

● random mutation hill-climbing or random local search [83, 129], which works
like a simple standard evolutionary algorithm (EA), which is mutation based
and works with population size 1 (referred to as (1+1)-EA) but with a differ-
ent mutation operator

● Random Walk with Uniform (or Normal) Distribution [37]

Recently some other local search algorithms have been proposed. These are
(1) the quad search algorithm [130], a specialized form of steepest ascent that
operates on a reduced neighborhood and uses a Gray encoding, (2) consecutive

126 Franciszek Seredynski

exchange [23], a modification of the 2-Opt heuristic combined with tabu search,
and (3) a local search strategy based on the idea of iterative improvement of a
solution via a series of neighbor moves until no improvement can be made [62].

Restart
One method to prevent GAs from prematurely converging to local optima

before discovering a global solution is periodically restarting GA (see Figure 4.2)
according to some restart strategy that can be either static or dynamic [42]. The
restart can be performed with the use of a new seed. When GAs are applied in
dynamic environments [15], the important issue is the content of the initial pop-
ulation of GA after restarting. The new initial randomly created population usu-
ally contains some percent of the population from the previous run.

3.3 Variants of GAs

SGA with elitism.
This is one of the simplest extensions of SGA (see Figure 4.2).

Hybrid GAs
This variant includes a wide range of GAs currently used or proposed that

apply local search algorithms (see section, 3.2 and Figure 4.2).

Genitor [134]: A Steady-State GA
This algorithm uses rank-based selection and a steady-state strategy for repro-

duction. In each generation, only one (or two) individuals are created. Two-point
crossover with reduced surrogates is used to produce a pair of children, and then
one of them is selected randomly for mutation. The offspring displace the worst
individual in the population.

CHC [36]
A fixed population of size 50 is used. Members of the population are paired

randomly, and only parents sufficiently different are mated. As crossover, a reduced
surrogate HUX is used, and no mutation is applied to offspring. Truncation selec-
tion is used and restart is applied, in which a new population is created by using the
best solutions from the previous population with 30% mutation.

GENOCOP [81]
This variant is a GA-based hybridized evolutionary system used in several ver-

sions for solving constrained optimization problems. Real-numbers representation
and a number of crossover and mutation operators are employed.

Breeder GA [88]
Breeder GA is an SGA-style algorithm developed to solve continuous prob-

lems directly, without the need for a discrete genotype. The parameters of the
algorithm that control the evolutionary process are (1) population size, (2) muta-
tion rate, and (3) selection intensity. Mutation is performed at a rate of 1/l (l is
string length), which is claimed to be optimal. A form of truncation selection
used in breeding is applied, namely, the best individual takes place in all matings.

Evolutionary Paradigms 127

GAVaPS [81]
Population size in the algorithm can vary during the evolutionary

process, and it depends on the age of an individual, which is its parameter. An
individual that exceeds its lifetime is eliminated from the population. The value
of lifetime is determined at each generation, and it depends on some population
statistics.

Niching Algorithms
In many applications such as multimodal or multiobjective optimization,

dynamic function optimization, or machine learning, the important issues are
(1) the maintenance of diversity of a population and converging to different solu-
tions, and (2) preventing premature convergence when only one solution is
required. These issues are addressed by niching algorithms. One of the first mech-
anisms introduced to support diversity is crowding [34], which assures that new
individuals replace similar individuals in a population. The mechanism of fitness
sharing [46] forces similar individuals to share their fitness. The mating restriction
mechanism [32] prevent recombination between individuals in different niches.
Deterministic crowding [76] modifies crowding by a mechanism of minimizing the
sum of parent-to-offspring distance. Recently the mechanism of probabilistic
crowding [80] was proposed and a concept of niching pressure was introduced
[115] and used in the context of agent-based EC systems.

Multiobjective Evolutionary Algorithms
Multiobjective Evolutionary Algorithms (MOEAs) are one of the current

trends in developing EAs. An excellent overview of current issues, algorithms,
and existing systems in this area is presented in [24,25].

Evolutionary Optimization in Dynamic Environments
EAs for time-varying environments are the subject of current study within the

area of EC. Different aspects of dynamic optimization problem are discussed in
[15], along with evolutionary concepts to solve these problems.

Parallel GAs
See section 3.4.

Coevolutionary GAs
See section 3.5.

Competent GAs
See section 3.6.

3.4 Parallel GAs

Single-population Master-Slaves Model

The single-population master-slaves model [18,51,61] offers the easiest and sim-
plest way of parallelizing single-population GAs and is presented in Figure 4.7a.
A master-processor runs the GA performing selection and genetic operators.

128 Franciszek Seredynski

The operation of fitness evaluation is parallelized. Due to this parallelization, the
fitness of individuals in the population can be calculated in parallel by slave-
processors, if a corresponding number of processors is available.

Island Model

In the island model, also called the migration or multiple population model
[18,19,119,77,61], a population of GA is divided (see Figure 4.7b) into some
number of subpopulations, called islands or demes, which are located on differ-
ent, usually MIMD-class processors. Each subpopulation is a complete GA and
evolves in parallel, exchanging periodically with other subpopulations the best
individuals. A population structure composed of subpopulations is defined by the
topology of a communication graph, which specifies a neighborhood for each
subpopulation and serves to exchange individuals between neighbor subpopula-
tions. Both the number of subpopulations and the topology of the communica-
tion graph are user-defined parameters.

Evolutionary Paradigms 129

...

...

Master

Slaves

(a)

(d)

...

... ...

...

...

...

(b) (c)

....
root

leave

(e)

so

so so

leave

leave
pc

t
i

m
e

...

...
...

...
...

...
..

...
...

...

...
...

Figure 4.7. Types of parallel GAs: (a) single-population master-slaves model, (b) island model,
(c) diffusion model (cellular GAs, fine-grained parallel GAs), (d) hierarchical parallel GAs,
(e) hierarchical genetic strategy

Each subpopulation runs during some predefined number of generations
called an epoch, in the same way as it is done in the one-population GA. After
each epoch, neighbor subpopulations communicate by exchanging some number
of their best individuals, which migrate and then are assimilated into subpopula-
tions in such a way as to maintain a constant size of the subpopulation. The
island model outperforms the one-population GA, providing a nearly linear
speed-up when parameters of the algorithm are well tuned. Current modifica-
tions of the model introduce a variable subpopulation size of each island, differ-
ent lengths of chromosomes in subpopulations, and asynchronous interactions
between islands.

Diffusion Model

In the diffusion model, also called the neighborhood, fine-grained, or cellular
model [18,119,97,61], each individual from a GA population is placed into a sin-
gle processor, typically of the SIMD class. A neighborhood relation is set
between all individuals by considering each individual as a node of a user-
defined communication graph, which can be linear (see Figure 4.7c) or planar.
Additionally, a local neighborhood of each individual is specified (see dotted
area for the shadowed individual in Figure 4.7c). All selection and genetic oper-
ators are defined locally on such (possibly overlapping) neighborhoods.
Different local mating strategies [50] and different neighborhood sizes and
shapes [109] can be used.

Hierarchical Parallel GAs

Hierarchical parallel GAs are the result of an attempt to integrate the advan-
tages of the master-slaves, island, and diffusion models [18]. In [73], the island
model was combined with the diffusion model to solve the scheduling problem
efficiently, and the idea of such a hierarchical model is presented in Figure 4.7d.
A hierarchical model combining both the island and master-slaves models can be
found in [46].

Hierarchical Genetic Strategy

Recently, in [110], a parallel GA referred as hierarchical genetic strategy has
been proposed. It is a variable-length chromosome multipopulations GA model
with a number of subpopulations changing dynamically in time (see Figure 4.7e).
The algorithm starts from a single population (root) of chromosomes of the same
length. During the evolutionary process, new subpopulations (leaves) can be cre-
ated by using two operators: a prefix comparison operator and a sprouting opera-
tor. The root population can create a new subpopulation by using the sprouting
operator when a promising individual appears, and this will be detected by the
comparison operator. The new subpopulation always contains chromosomes with
increased length and runs in parallel with the root subpopulations. The process of
creating new subpopulations can be continued by both root and leaves subpopu-
lations. The stop criterion of a running subpopulation is a stagnation of evolu-
tionary process in a subpopulation.

130 Franciszek Seredynski

3.5 Coevolutionary GAs

The idea of coevolutionary algorithms comes from the biological observation
that coevolving some number of species, defined as collections of phenotypically
similar individuals, is more realistic than simply evolving a population containing
representatives of one species. So, instead of evolving a population (global or dis-
tributed) of similar individuals representing a global solution, it is more appro-
priate to coevolve subpopulations of individuals representing specific parts of the
global solution. Four coevolutionary algorithms, presented below, depict specific
lines of the research currently conducted in this area.

Coevolutionary Genetic Algorithms

The Coevolutionary GA [93,94], described in the context of the constraint sat-
isfaction problem and the neural network optimization problem, is based on a
predator–prey paradigm [56]. The algorithm operates on two subpopulations: the
main subpopulation P1(), containing individuals x, and an additional subpopula-
tion P2(), containing individuals y coding some constraints, conditions, or simply
test points concerning a solution x. Both or only one subpopulation evolves to
optimize a global function (,)f x y .

A single act of coevolution is based on the independent selection of individu-
als x and y from subpopulations in order to encounter them and evaluate their

(,)f x y . The manner of assigning fitness to the individuals stems from the preda-
tor–prey relation: success of one individual should mean failure of the second
one. During one generation, individuals are confronted a predefined number
times. At the end of the evolution process, the best individual from P1 () is con-
sidered to be a solution of a problem.

Cooperative Coevolutionary Genetic Algorithms

The Cooperative Coevolutionary GA (CCGA) has been proposed [98] in the
context of a function optimization problem and is one of the best-known coevo-
lutionary algorithms. Each of N variables xi of the optimization problem is con-
sidered as a species with its own chromosome structure, and subpopulations for
each variable are created. A global function ()f x is an optimization criterion. To
evaluate the fitness of an individual from a given subpopulation, it is necessary to
communicate with selected individuals from all subpopulations.

In the initial generation (t = 0), individuals from a given subpopulation are
matched with randomly chosen individuals from all other subpopulations. The
fitness of each individual is evaluated, and the best individual in each subpopu-
lation is found. The process of cooperative coevolution starts from the next gener-
ation (t = 1). For this purpose, in each generation a cycle of operations is repeated
in a round-robin fashion. Only one current subpopulation is active in a cycle,
while the other subpopulations are frozen. All individuals from the active sub-
population are matched with the best values of the frozen subpopulations. When
the evolutionary process is completed, a composition of the best individuals from
each subpopulation represents a solution of a problem. The algorithm has been
successfully used in different applications (e.g., [65]).

Evolutionary Paradigms 131

Loosely Coupled Genetic Algorithms

The Loosely Coupled GA (LCGA) [117,119] is a coevolutionary algorithm
exploring a paradigm of competitive coevolution and motivated by noncoopera-
tive models of game theory.

For an optimization problem described by some function (a global criterion)
of N variables, local chromosome structures are defined for each variable, and
local subpopulations are created for each of them. With each subpopulation, a
locally defined function is associated, if possible, that describes relations between
the variable associated with the population and other variables and subpopula-
tions. This relation is described by a communication graph called a graph of inter-
action. While the purpose of each subpopulation is to optimize own local
function under constraints defined by the influence of other local variables, an
optimization of a global criterion is expected as the result of achieving by sub-
populations some equilibrium, equivalent to a Nash equilibrium point in nonco-
operative models of game theory. If local functions are not known, the
subpopulations directly optimize the global criterion.

The LCGA works in such a way that after initialization of subpopulations,
each subpopulation performs in parallel the same set of operations in each gen-
eration. Each individual in a subpopulation is matched with randomly chosen
individuals from subpopulations according to the interaction graph, and its fit-
ness is calculated according to a local (or global) function assigned to a subpop-
ulation. This matching is repeated for each individual a predefined number of
times. Next, standard GA operators are applied locally in subpopulations. The
evolutionary process is continued for a predefined number of generations until
the system achieves the state of equilibrium equivalent to a Nash equilibrium
point.

LCGAs have been applied to solve the multiprocessor mapping and scheduling
problem [118] and the function optimization problem [120].

Coevolutionary Distributed Genetic Algorithm

The Coevolutionary Distributed Genetic Algorithm (CDGA), described [63,79]
in the context of integrated manufacturing planning and scheduling, combines
features of diffusion models with coevolutionary concepts. N coevolving species
with their own genotypes represent partial solutions to a problem, e.g., plans for
a particular component to be manufactured in a machine shop. The quality of
each partial solution can be evaluated by a local function. The challenge is design-
ing an optimal schedule to minimize the total cost of executing, in parallel, a set
of plans represented in a given subpopulation. A global measure of the perform-
ance of a given plan, executed in parallel together with all plans from a popula-
tion, is a global function taking into account a possible conflict in the use of
common resources in the machine shop, and resolved by a local arbitrator.

A population of the CDGA is composed of subpopulations occupying a pre-
defined number of cells arranged in some user-defined topological structure, e.g.,
a toroidal grid. In each cell, there are single representatives (individuals) of each
species and also an individual representing an arbitrator. Only individuals of the
same species from neighborhood subpopulations take part in the breeding.

132 Franciszek Seredynski

Coevolution, i.e., an influence of another species on a given species, is taken into
account by calculating a value of a global function. An offspring that is a result
of breeding in a given local neighborhood replaces an individual in this neigh-
borhood.

3.6 Competent GAs

A theoretical explanation of the work of SGA and a number of its exten-
sions is based on the Holland’s concept of building blocks (BBs) [46]. According
to this concept, to find a global optimum of a problem GA requires identifying
and grouping together partial solutions-schemata (BBs) with above-average
value of fitness. For many hard optimization problems such as permutation
problems, GAs and especially SGA have a problem doing that. These problems
are frequently modeled by designing hard multimodal optimization problems
called deceptive problems (see, e.g., [46,69])—combinations of deceptive sub-
functions that mislead GAs to converge to a global optimum. Related to the
deceptive problems is the linkage problem, which states that no fixed operators
of recombination are able to provide mixing individuals with arbitrary codes to
obtain proper BBs.

One possible solution to deceptive-like problems is to apply problem-specific
coding and operators. A more general approach is to design more flexible and
powerful GAs, which are referred to as competent GAs [47,69]. A number of com-
petent GAs have been developed, and all of them fall into one of two classes [69]:
(1) algorithms (the fast messy GA [49], the gene expression messy GA [5], and the
linkage learning GA [52]) based on evolving the representation of solutions or
adapting recombination operators, and (b) algorithms (the extended compact GA
[53] and the Bayesian optimization algorithm (BOA) [95]) based on extracting
information from a set of promising solutions.

Fast Messy GAs and OmeGA

In messy GAs [47,69], the genes (messy genes) of a chromosome (messy chro-
mosome) are represented by a pair of number (gene locus, gene value). For example,
the chromosome ((2 0)(4 1)(1 1)(3 0)(5 1)) represents the binary string 10011. Messy
chromosomes may have different lengths, and they may be underspecified or over-
specified. As in SGA, selection and genetic operators are used. However, the tradi-
tional crossover is replaced by cut and split operators.

In the fast messy GA (fmGA), two loops—outer and inner—are performed. In
each cycle of the outer loop, three phases of the inner loop are performed. In the
first, initialization phase, a population of individuals containing all possible genic
and allelic combinations is created. In the second phase, called the building-block
filtering phase, the population is filtered in such a way as to contain a high pro-
portion of gene combinations belonging to BBs. In the juxtapositional phase,
tournament selection and genetic operators are applied to form a high-quality
solution.

To apply fmGA for solving permutation problems, the definition of messy
gene is modified: a random key (real random number) instead of a binary digit
(for gene value) is used, and such a extension of the algorithm is called ordering

Evolutionary Paradigms 133

messy GA (OmeGA) [69]. For the TSP with five towns, a possible genotype may
look like ((1, 0.26)(2, 0.22)(3, 0.72)(4, 0.19)(5, 0.20)). After sorting keys, the fol-
lowing phenotype is decoded: ((4, 0.19)(5, 0.20)(2, 0.22) (1, 0.26) (3, 0.72)), which
corresponds to the permutation (4 5 2 1 3). One can easily check that the tradi-
tional single-point crossover operator will always generate feasible offspring when
random key vectors are used.

Gene Expression Messy GA

The overall organization of the gene expression messy GA (gemGA) [5,47] is
similar to that in fmGA, but the representation and the basic mechanism of the
algorithm are different. The gemGA has no variable-length chromosomes and no
under- or overspecification, and genes are stored in regular arrays. As was the
case of fmGA, the main purpose of the gemGA is to determine the linkage groups,
and the most important innovation of the algorithm to do that is the idea of tran-
scription or antimutation. During the one-bit perturbation of each string, the per-
turbations that improve the structure are ignored and perturbations that degrade
the structure are selected as possible linkage group candidates for subsequent
processing.

3.6.3 Linkage Learning GA

In the linkage learning GA (LLGA) [52,47], the main concepts of the organi-
zation and the messy representation of chromosomes are similar to those in
fmGA except that chromosomes have a circular structure. The main innovation of
this messy algorithm is the mechanism called probabilistic expression, which
reorders chromosomes in such a way as to detect important BBs in the encoding.
The extended compact GA [53] is a more efficient version of the LLGA.

3.6.4 Bayesian Optimization Algorithm

The Bayesian optimization algorithm (BOA) [95,47] is a messy GA that iden-
tifies linkage-like data in a population through the construction of Bayesian
networks. Traditional selection operators (truncation and tournament) are
applied to choose a subset of solutions in the population that is used to con-
struct a good Bayesian network modeling that subset. The probabilistic model
corresponding to the structure of the Bayesian network is used next to generate
a new population.

4 GENETIC PROGRAMMING

Genetic Programming (GP) is an evolutionary optimization technique pro-
posed by Koza [70]. The general computational scheme of EA presented in
Figure 4.2 is still valid for GP, but the main differences from other evolutionary
techniques concern (1) a representation of a solution (Step 0), and (2) the order
of selection and genetic operators (Step 4). Solutions are represented by trees (see
Figure 4.8), which provide a flexible way of describing computer programs in

134 Franciszek Seredynski

LISP language, functions, or variable length structures. To represent a tree in GP,
a potential solution of a problem and a set of functions and terminals correspon-
ding to a given problem domain must be provided by a user. For the individuals
represented in Figure 4.8, the set of functions is F = { +, *, log, sin} and the set
of terminals is T = {2.15, 7, x}. Two individuals, parent1 and parent2, represent
the expressions log (x) − sin(2.15 * x) and x2 + 7, respectively. After calculation
of fitness of each individual, selection and genetic operators are applied.
Figure 4.9 shows the order of application of the operators. Members of a new
generation are created either by a selection operator with a probability ps or by a
crossover operator with a probability pc or by a mutation operator with a proba-
bility pm (ps + pc + pm = 1). A crossover operator creates offspring by exchanging
subtrees in parents, as shown in Figure 4.8.

Advanced GP issues concern developing automatically defined functions and
specialized operators such as permutation, editing, or encapsulation [71,72]. One

Evolutionary Paradigms 135

+− −+

x 7log sin

x

*

xx

* 7

x x

log sin

x *

2.15x

Parent 1

Parent 2

Child 1

Child 2

7

2.15

Figure 4.8. Individuals and crossover in GP

choose
operator

Ps

Pc

Pm

i 0

i

crossover mutationselection

Y

i

i i+1

i+1

i<n

Figure 4.9. Order of selection and genetic operators used in GP

of the research issues concerns developing methodologies to reduce the search
space and increase search efficiency. Context-Free Grammar-based GP, or
Constrained GP [66], belongs to some proposed methodologies for automatic
processing of additional constraints. Recently [67], a methodology using auto-
matically adapting GP representation has been proposed. GP techniques have
been recently used to solve problems of classification and pattern recognition,
data mining, forecasting, programming parallel computers and cellular
automata, synthesis of analog circuits, and many others.

5 EVOLUTIONARY PROGRAMMING

Evolutionary Programming (EP) is another evolutionary technique developed
by Fogel and co-workers [38]. It uses finite state machines (FSMs) as a represen-
tation of solutions (see Step 0 in Figure 4.2) in a population of individuals.
Surprisingly, it does not use a crossover operator but only mutation and stochas-
tic selection, as shown in Figure 4.10. In its standard version, m parents create by
Gaussian mutation m offspring, and tournament selection is usually applied. The
basic cycle of EP is similar to (µ + µ) − ES. EP has been used as an approach to
artificial intelligence [40] and to combinatorial optimization problems [39].
Recently [140], in the context of multimodal function optimization, fast EP has
been proposed by introducing a new mutation operator based on Cauchy random
numbers. Currently [41], a meta EP type of EP is used with multiple mutation
operators and is built in to individual parameters to allow self-adaptation.

6 LEARNING CLASSIFIER SYSTEMS

Learning Classifier Systems (LCSs) are a class of rule-based learning
machines in which rules are generated and modified by GA [14,46]. Two
approaches to LCSs are known: the Pittsburgh approach (see, e.g., [3]) and, much
more popular, the Michigan approach. An LCS maintains a population of pro-
duction rules called classifiers. Each rule consists of two parts: a condition part
and an action part. The condition part is built using the ternary alphabet {0, 1,
#}, where the # symbol matches both 0 and 1. If the condition part of a classi-
fier matches the input sent from the environment (defined by an application),
the action part is executed. If more rules match an input from the environment a

136 Franciszek Seredynski

stochastic selection

mutation

Figure 4.10. Order of selection and genetic operators used in EP

conflict resolution algorithm should be performed. Classifiers interacting with
the environment receive rewards and their fitness is updated, usually by use of the
bucket brigade algorithm in classical LCSs. Periodically, GA is applied to pro-
duce new rules, but only a small amount of the population is changed during one
generation.

Classical LCSs [14,46] appeared from the simplification of Holland’s initial
work [59] and have been successfully applied in many areas, in particular for data
mining (e.g., [60]) and complex control problems (e.g., [122]). In their implemen-
tation, a direct reward allocation scheme was used, which was problematic when
applied to complex delayed reward tasks [8]. First strength-based ZCSs [135] and
sometime later an extended classifier system (XCS) [136] were proposed as a solu-
tion to problems encountered in classical strength-based LCSs, and most current
research and development is focused on this class of LCSs (e.g., [17,30,137]).

Figure 4.11 shows a simplified version of XCS. It consists of a number of clas-
sifiers sets: the population set [P] of all classifiers (initially empty); the match set
[M]—the set of classifiers whose conditions match the current environmental
input; and the action set [A]—the set of classifiers whose actions will be send to
the environment. For a classifier, in addition to the condition and action parts
and fitness, some other parameters are specified, such as prediction p, error e, and
fitness F. All these parameters are modified by the system predictions with the use
of learning techniques. The action of a classifier is chosen based on the predicted
payoffs of the matching rules. GA is applied not to the whole population of rules

Evolutionary Paradigms 137

[A]: Action set

Discovery of rules: GA, heuristics

[M]:Match set

[P]: Population set

classifiers

Environment

<10#00> : <left>

<00100> : <back>

<#01##> : <right>
<0#101> : <back>

<10110> : <left>

Input

10100

e.g.

Action

right

Reward

27 19 6

28 12 11

15 06
12 09 27

21 25 8

48

p ε F

Figure 4.11. Concept of XCS learning classifier system

but only to rules from the action set. The wheel roulette or tournament selection
and genetic operators of crossover and mutation are applied. A pair of offspring
is added to the population [P] and replaces two other classifiers from this popu-
lation.

Recently (e.g., [16,45,123]), Anticipatory Learning Classifier Systems (ALCSs)
have emerged in which model-based reinforcement learning is used and, instead
of GAs, heuristics are used for improvement of rules.

7 CONCLUSIONS

In this chapter, an overview of the field of EC has been presented. The main
emphasis has been on genetic algorithms, the most popular class of EC.
However, other important classes of EC were also presented, such as evolution
strategies, genetic programming, evolutionary programming, and learning clas-
sifier systems. The purpose of the overview has been to present the current state
of the field of EC and to discuss the most promising directions of developments
in the field.

The EC is a relatively young research area in which the main stream of
research is oriented toward experimentation. Despite this emerging state of the
field, EC has already proved its potential in solving many theoretical and practi-
cal problems. Techniques of EC have been successfully applied to solve, in par-
ticular, such commercial problems as [29] cellular telephone tower placement,
optical fiber network design, a securities trading system, or process scheduling.

While the theory of EC is still under development, some advances in building
such a theory can be noted [102,128]. The no free lunch theorem [138] shows that
the performance of all search metaheuristics and algorithms averaged over all
possible functions is the same if they satisfy certain conditions. The cumulative
effects of selection, crossover and mutation operators on evolutionary processes
can be studied by designing Markov chain models. Properties of GAs can be rig-
orously proven by the exact dynamical system model, covering in particular the
original schema theorem, and GA dynamics can be approximated by the statisti-
cal mechanics approach. The concept of landscape and some methodologies (e.g.,
Walsh representation) can be used to predict the performance of GA for solving
some problems.

The well-established field of EC serves also as a platform for development of
new population-based search algorithms. Differential evolution (e.g., [99]),
memetic algorithms (e.g., [86]), cultural algorithms [105], or probabilistic incremen-
tal program evolution [108] are examples of such search algorithms that are tightly
coupled with EC. Artificial immune systems (e.g., [31, 64]) and particle swarm opti-
mization (e.g., [12,68]) represent search algorithms that are based on new para-
digms, but their intersection with evolutionary concepts is visible.

REFERENCES

[1] D. Ackley, M. Litman (1994): A case for Lamarckian evolution. In: Langton
C (ed) Artificial Life III, Reading, MA, Addison Wesley.

138 Franciszek Seredynski

[2] R. K. Ahuja, J. B. Orlin (1997): Developing fitter GAs. Inform J. Computing,
9: 251–253.

[3] J. Bacardit, J. M. Garrel (2003): Evolving multiple discretizations with
adaptive intervals for a Pittsburgh rule-based learning classifier system. In:
[21]: 1818–1831.

[4] T. Bäck, D. B. Fogel, Z. Michalewicz (eds) (1997): Handbook of Evolutionary
Computation, IOP Publishing Ltd. and Oxford University Press.

[5] S. Bandyopadhyay, H. Kargupta, G. Wang (1998): Revisiting the GEMGA:
scalable evolutionary optimization through linkage learning. Proc. of the
Fourth Int. Conf. on Evolutionary Computation: pp. 603–608.

[6] W. Banzhaf, et al. (eds) Proc. of the Genetic and Evolutionary Computation
Conference GECCO’99, Morgan Kaufmann Publishers.

[7] T. Bäck, M. Schütz (1996): Intelligent mutation rate control in canonical
genetic algorithms. In: Ras Z W, Michalewicz M (eds) Foundations of
Intelligent Systems, Springer, LNAI 1079: 158-167.

[8] A. Barry (2003): Limits in long path learning with XCS. In: [21]: 1832–1843.
[9] P. J. Bentley, D. W. Corne (eds.)(2002): Creative Evolutionary Systems,

Morgan Kaufmann.
[10] H. Beyer -G (2001): The theory of evolution strategies, Natural Computing

Series, Springer, Heidelberg.
[11] H. Beyer -G (2003): Introduction to evolution strategies. In: [44]: 384–426.
[12] T. M. Blackwell (2003): Swarms in dynamic environments. In [20]: 1–12.
[13] T. Blickle, L. Thiele (1996): A comparison of selection schemes used in evo-

lutionary algorithms. Evolutionary Computation, 4: 361–394.
[14] L. B. Booker, D. E. Goldberg, J. H. Holland (1989): Classifier systems and

genetic algorithms. Artificial Intelligence 40: 235–282.
[15] J. Branke (2002): Evolutionary Optimization in Dynamic Environments,

Kluwer Academic Publishers.
[16] M. V. Butz (2002): Biasing exploration in an anticipatory learning classifier

system. In: Lanzi et al. (eds) Advances in Learning Classifier Systems,
LNAI 2321, Springer: 3–22.

[17] M. V. Butz, K. Sastry, D. E. Goldberg (2003): Tournament selection: stable
fitness pressure in XCS. In: [21]: 1857–1869.

[18] E. Cantu-Paz (2003): Parallel genetic algorithms. In: [44]: 241–257.
[19] E. Cantu-Paz (1999): Topologies, migration rates, and multi-population

parallel genetic algorithms. In: [6]: 91–98.
[20] E. Cantu-Paz et al. (eds) (2003): Genetic and Evolutionary Computation-

GECCO 2003, Part I, LNCS 2723, Springer.
[21] E. Cantu-Paz et al. (eds) (2003): Genetic and Evolutionary Computation-

GECCO 2003, Part II, LNCS 2724, Springer.
[22] Z. S. H. Chan, H. W. Ngan, A. B. Rad (1999): Minimum-allele-reserve-

keeper (MARK): a fast and effective mutation scheme for genetic algo-
rithm. In: [6], 1: 106–113.

[23] H. Choe, S-S. Choi, B-R. Moon (2003): A hybrid genetic algorithm for
hexagonal tortoise problem. In: [20]: 850–861.

[24] C. A. Coello Coello (1999): A comprehensive survey of evolutionary-based
multiobjective optimization techniques. Knowledge and Information
Systems 1(3):269–308.

Evolutionary Paradigms 139

[25] C. A. Coello Coello, D. A. Van Veldhuizen, G. B. Lamont (2002):
Evolutionary Algorithms for Solving Multi-objective Problems. Kluwer
Academic.

[26] D. Corn, M. Dorigo, F. Glover (eds) (1999): New Ideas in Optimization.
McGraw-Hill, London, 1999.

[27] Y. Davidor, H-P. Schwefel, R. Manner (eds) (1994): Parallel Problem
Solving from Nature—PPSN III, LNCS 866, Springer.

[28] L. Davis (1991): Bit-climbing, representational bias, and test suite design.
In: L. Booker, R. Belew (eds) Proc. of the 4th Int. Conf. on GAs, Morgan
Kaufmann: 18–23.

[29] L. D. Davis (1999): Commercial applications of evolutionary computation:
some case studies. In: [43]: 38–51.

[30] D. Dawson (2003): Improving performance in size-constrained extended
classifier systems. In: [21]: 1870–1881.

[31] L. N. De Castro, J. Timmis (2002): Artificial Immune Systems: A New
Computational Intelligence Approach, Springer.

[32] K. Deb, D. E. Goldberg (1989): An investigation on niche and species for-
mation in genetic function optimization. In: Schaffer J D et al. (eds) Proc.
of the Third Int. Conf. on Genetic Algorithms. Morgan Kaufmann
Publishers: pp. 42–50.

[33] I. De Falco, A. Iazzetta, E. Tarantino (1999): Towards a simulation of nat-
ural mutation. In: [6], 1: 156–163.

[34] K. De Jong (1975): An Analysis of the Behavior of a Class of Genetic
Adaptive Systems. Doctoral dissertation, University of Michigan, Ann
Arbor, Michigan.

[35] K. De Jong (2003): Evolutionary computation: a unified approach. In: [44]:
644–652.

[36] L. J. Eshelman (1991): The CHC adaptive search algorithm: how to
have safe search when engaging in nontraditional genetic recombination.
In: G. J. E. Rawlins (ed) Foundations of Genetic Algorithms, Morgan
Kaufmann, San Mateo, CA: 265–283.

[37] F. P. Espinoza, B. S. Minsker, D. E. Goldberg (2003): Performance evalua-
tion and population reduction for a self adaptive hybrid genetic algorithm
(SAHGA). In: [20]: 922–933.

[38] L. J. Fogel, A. J. Owens, M. J. Walsh (1966): Artificial Intelligence Through
Simulated Evolution. John Wiley, Chichister, UK.

[39] D. B. Fogel (1993): Applying evolutionary programming to selected travel-
ing salesman problems. Cybern. Syst., 24: 27–36.

[40] D. B. Fogel (1995): Evolutionary Computation. Towards a New Philosophy
of Machine Intelligence, IEEE Press.

[41] G. B. Fogel, K. Chellapilla (1999): Simulated sequencing by hybridization
using evolutionary programming. In: Proc. of the 1999 Congress on
Evolutionary Computation, 1: 463–469.

[42] A. S. Fukunaga (1998): Restart scheduling for genetic algorithms. In:
A. E. Eiben et al.(eds) Parallel Problem Solving from Nature—PPSN V,
Springer, LNCS 1498: 357–366.

[43] GECCO-1999: 1999 Genetic and Evolutionary Computation Conference.
Tutorial Program. Orlando, Florida, July 14, 1999.

140 Franciszek Seredynski

[44] GECCO-2003: 2003 Genetic and Evolutionary Computation Conference.
Tutorial Program. Chicago, Illinois, July 13, 2003.

[45] P. Gerard, O. Sigaud (2003): Designing efficient exploration with MACS:
modules and function approximation. In: [21]: 1882–1893.

[46] D. E. Goldberg (1989): Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, Reading, Massachusets.

[47] D. E. Goldberg (2002): The Design of Innovation. Lessons from and for
Competent Genetic Algorithms. Kluwer Academic Publishers, Boston/
Dordrecht/London.

[48] D. E. Goldberg, K. Deb, J. H. Clark (1992): Genetic algorithms, noise and
the sizing of population. Complex Systems, 6: 333–362.

[49] D. E. Goldberg, K. Deb, H. Kargupta, G. Harik (1993): Rapid, accurate
optimization of difficult problems using fast messy genetic algorithms.
Proc. of the Fifth Int. Conf. on Genetic Algorithms: 56–64.

[50] M. Gorges-Schleuter (1992): Comparison of local mating strategies in mas-
sively parallel genetic algorithms. In: [78]: 553–562.

[51] J. Grefenstette (1997): Efficient implementation of algorithms. In: [4]:
E2.1:1–E2.1:6.

[52] G. R. Harik (1997): Learning gene linkage to efficiently solve problems
of bounded difficulty using genetic algorithms. Unpublished doctoral dis-
sertation, University of Michigan, Ann Arbor, also IlliGAL Report
No. 97005.

[53] G. R. Harik (1999): Linkage Learning via Probabilistic Modeling in the
ECGA. IlliGAL Report No. 99010, Urbana, IL, University of Illinois at
Urbana-Champaign.

[54] W. Hart , R. Belew (1995): Optimization with genetic algorithm hybrids
that use local search. In: R. Below and M. Mitchell (eds.) Adaptive
Individuals in Evolving Populations: Models and Algorithms, Reading,
MA, Addison Wesley.

[55] R. Heckendorn (2003): An introduction to genetic algorithms: theory and
practice. In: [44]: 225–240.

[56] W. D. Hillis (1992): Co-evolving parasites improve simulated evolution as
an optimization procedure. In: C. G. Langton et al. (eds) Artificial Life II.
Addison-Wesley.

[57] G. E. Hinton, S. J. Nowlan (1987): How learning can guide evolution.
Complex Systems, 1: 495–502.

[58] T. P. Hoehn, C. C. Pettey (1999): Parental and cyclic-rate mutation in
genetic algorithms: an initial investigation. In: [6], 1: 297–304.

[59] J. H. Holland (1985): Properties of the bucket brigade algorithm. In:
J. J. Grefenstette (ed) Proc. of the 1st Int. Conf. on Genetic Algorithms and
Their Applications: 1–7.

[60] J. H. Holmes (1996): A genetics-based machine learning approach to
knowledge discovery in clinical data. J. American Medical Informatics
Association Supplement.

[61] F. Hoffmeister, T. Bäck (1992): Genetic Algorithms and Evolution
Strategies: Similarities and Differences. Technical Report No SYS-1/92,
University of Dortmund.

Evolutionary Paradigms 141

[62] G. Huang , A. Lim (2003): Designing a hybrid genetic algorithm for the lin-
ear ordering problem. In: [20]: 1053–1064.

[63] P. Husbands (1994): Distributed coevolutionary genetic algorithms for
multi-criteria and multi-constraint optimization. In: T. C. Fogarty (ed)
Evolutionary Computing, LNCS 865, Springer: 150–165.

[64] IEEE Trans. on Evolutionary Computation (2002). Special issue on artifi-
cial immune systems, 6, 3(1).

[65] A. Iorio, X. Li (2002): Parameter control within a co-operative co-evolutionary
genetic algorithm. In: M. Guervos et al. (eds) Proc. of the Seventh Conf. on
Parallel Problem Solving from Nature (PPSN VII), Springer: pp. 247–256.

[66] C. Z. Janikow (1996): A methodology for processing problem constraints in
genetic programming. Computers and Mathematics with Applications,
vol. 32, No 8: 97–113.

[67] C. Z. Janikow, R. A. Deshpande (2003): Adaptation of representation in GP.
In: C. H. Dagli et al. (eds) Smart Engineering System Design, 13: 45–50.

[68] J. Kennedy, R. C. Eberhart (1999): The particle swarm: social adaptation in
information-processing systems. In: [26]: 379–387.

[69] D. Knjazew (2002): OmeGA. A Competent Genetic Algorithm for Solving
Permutation and Scheduling Problems. Kluwer Academic Publishers,
Boston/Dordrecht/London.

[70] J. R. Koza (1992): Genetic programming: on the programming of comput-
ers by natural selection. MIT Press, Cambridge, MA.

[71] J. R .Koza (2003): Introduction to genetic programming. In: [44]: 1–34.
[72] W. B. Langdon , R. Poli (2003): Foundations of genetic programming. In:

[44]: 53–105.
[73] S. -C. Lin, E. D. Goodman, W. F. Punch, III (1997): Investigating parallel

genetic algorithms on job shop scheduling problems. In: Evolutionary
Programming VI, LNCS 1213, Springer: 383–393.

[74] J. Lis, A. E. Eiben (1996): A multi-sexual genetic algorithm for multiobjec-
tive optimization. In: T. Fukuda, T. Furuhashi (eds) Proc. of the 1996 Int.
Conf. on Evolutionary Computation. IEEE: 59–64.

[75] A. J. Lotka (1925), Elements of Physical Biology, Williams and Wilkins,
Baltimore.

[76] S. W. Mahfoud (1992): Crowding and preselection revisited. In: [78]: 27–36.
[77] W. N. Martin, J. Lienig, J. P. Cohoon (1997): Island (migration) models: evo-

lutionary algorithms based on punctuated equlibria. In: [4]: C6.3:1–C6.3:16.
[78] R. Männer, B. Manderick (eds) (1992): Parallel Problem Solving from

Nature, 2. North-Holland.
[79] M. McIlhagga , P. Husbands, R. Ives (1996): A comparison of optimization

techniques for integrating manufacturing, planning and scheduling. In:
[126]: 604–613.

[80] O. J. Mengshoel, D. E. Goldberg (1999): Probabilistic crowding: determin-
istic crowding with probabilistic replacement. In: [6]: 409–416.

[81] Z. Michalewicz (1996): Genetic Algorithms + Data Structures = Evolution
Programs, Springer-Verlag, Berlin.

[82] Z. Michalewicz (1995): Evolutionary computation: an overview. In:
J. Komorowski (eds) Proc. of the 8th Scandinavian Conf. on Artificial
Intelligence. IOS Press, 28: 322–337.

142 Franciszek Seredynski

[83] M. Mitchell, J. H. Holland, S. Forrest (1994): When will a genetic algorithm
outperform hill climbing. In: J. D. Cowan et al. (eds) Advances in Neural
Information Processing Systems, vol. 6, Morgan Kaufmann: 51–58.

[84] M. Mitchel (1996): An Introduction to Genetic Algorithms. The MIT
Press, Cambridge Massachusetts.

[85] T. M. Mitchell (1997): Machine Learning. McGraw-Hill.
[86] P. Moscato (1999): Memetic algorithms: a short introduction. In: [26]: 219–244.
[87] H. Mühlenbein (1992): How genetic algorithms really work I. Mutation

and hillclimbing. In: [78]: 15–25.
[88] H. Mühlenbein, D. Schlierkamp-Voosen (1994): The science of breeding

and its application to the breeder genetic algorithm. Evolutionary
Computation, 1: 335–360.

[89] Y. Nagata, S. Kobayashi (1997): Edge assembly crossover: a high-power
genetic algorithm for the traveling salesman problem. In: T. Bäck (ed) Proc.
of 7th Int. Conf. on Genetic Algorithms, Morgan Kaufmann, San Francisco,
CA: 450–457.

[90] V. Nissen, J. Biethahn (1995): An introduction to evolutionary algorithms.
In: J. Biethahn and V. Nissen (eds) Evolutionary Algorithms in Management
Applications, Springer: 3–97.

[91] G. Ochoa, I. Harvey, H. Buxton (1999): On recombination and optimal
mutation rates. In: [6], 1: 488–496.

[92] C. C. Palmer (1994): An Approach to a Problem in Network Design using
Genetic Algorithms. Unpublished Ph.D. thesis, Polytechnic University,
Troy, NY.

[93] J. Paredis (1994): Co-evolutionary constraint satisfaction. In: [27]: 46–55.
[94] J. Paredis (1996): Coevolutionary life-time learning. In: [126]: 72–80.
[95] M. Pelikan, D. E. Goldberg, E. Cantu-Paz (1999): BOA: The Bayesian opti-

mization algorithm. In: [6]: 525–532.
[96] A. S. Perelson, R. Hightower, S. Forrest (1996): Evolution and somatic

learning in V-Region genes. Research in Immunology, 147: 202–208.
[97] C. C. Pettey (1997): Diffusion (cellular) models. In: [4]: C6.4:1–C6.4:6.
[98] M. A. Potter, K. A. De Yong (1994): A cooperative coevolutionary approach

to function optimization. In: [27]: 249–257.
[99] K. V. Price (1999) An introduction to differential evolution. In: [26]: 79–108.

[100] C. R. Reeves (ed) (1993): Modern Heuristics Techniques for Combinatorial
Problems. Blackwell Scientific, Oxford, UK.

[101] N. Radcliffe (1992), Non-linear genetic representations. In: [78]: 259–268.
[102] C. R. Reeves, J. E. Rowe (2003): Genetic Algorithms: Principle and

Perspectives: A Guide to GA Theory. Kluwer Academic Publishers.
[103] S. Ronald (1997): Robust encoding in genetic algorithms: a survey of encod-

ing issues. In: Proc. of the Forth Int. Conf. on Evolutionary Computation,
Piscataway, NJ, IEEE: 43–48.

[104] I. Rechenberg (1994): Evolutionsstrategie. Frommann-Holzboog Verlag,
Stuttgart.

[105] R. G. Reynolds (1999): Cultural algorithms: theory and applications. In:
[26]: 367–377.

[106] F. Rothlauf (2003): Population sizing for the redundant trivial voting map-
ping. In: [21]: 1307–1319.

Evolutionary Paradigms 143

[107] F. Rothlauf (2003): Representations for genetic and evolutionary algo-
rithms. In: [44]: 203–224.

[108] R. Salustowicz, J. Schmidhuber (1999): From probabilities to programs
with probabilistic incremental program evolution. In: [26]: 433–450.

[109] J. Sarma, K. A. De Jong (1996): An analysis of the effects of neighborhood
size and shape on local selection algorithms. In: [126]: 236–244.

[110] R. Schaefer, J. Kolodziej (2003): Genetic search reinforced by the popula-
tion hierarchy. In: K. A. De Jong, R. Poli, J. E. Rove (eds) Foundations of
Genetic Algorithms 7, Morgan Kaufmann: 383–399.

[111] J. D. Schaffer (ed)(1989): Proc. of 3rd Int. Conf. on Genetic Algorithms,
Morgan-Kaufmann, San Mateo, CA.

[112] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, R. Das (1989): A study of
control parameters affecting online performance of genetic algorithms for
function optimization. In: [111]: 51–60.

[113] H -P. Schwefel (1995): Evolution and Optimum Seeking, Wiley, New York.
[114] H -P. Schwefel, C. Rudolph (1995): Contemporary evolution strategies. In:

Third Int. Conf. on Artificial Life, LNCS 929, Springer Verlag: 893–907.
[115] R. E. Smith, C. Bonacina (2003): Mating restriction and niching pressure:

results from agents and implications for general EC. In: [21]: 1382–1393.
[116] D. Surry, N. Radcliffe (1996): Formal Algorithms + Formal Representations

= Search Strategies. In: [126].
[117] F. Seredynski (1994): Loosely coupled distributed genetic algorithms. In:

[27]: 514–523.
[118] F. Seredynski (1997): Competitive coevolutionary multi-agent systems: the

application to mapping and scheduling problems. Journal of Parallel and
Distributed Computing, 47: 39–57.

[119] F. Seredynski (1998): New trends in parallel and distributed evolutionary
computing. Fundamenta Informaticae 35, IOS Press: 211–230.

[120] F. Seredynski, A. Y. Zomaya, P. Bouvry (2003): Function Optimization
with Coevolutionary Algorithms. In: M. A. Klopotek et al. (eds) Intelligent
Information Processing and Web Mining, Advances in Soft Computing,
Springer: 13–22.

[121] R. E. Smith, B. A. Dike, R. K. Mehra, B. Ravichandran, A. El-Fallah
(1999): Classifier systems in combat: two-sided learning of maneuvers for
advanced fighter aircraft. In: Computer Methods in Applied Mechanics
and Engineering, Elsevier.

[122] J. E. Smiths, F. Vavak (1999): Replacement strategies in steady state genetic
algorithms: dynamic environments. Journal of Computing and Information
Technology, 7(1): 49–59.

[123] W. Stolzmann (2003): Anticipatory classifier systems. In: [44]: 493–517.
[124] R. Tsang, P. Lajbcygier (2002): Optimizing technical trading strategies

with split search genetic algorithms. In: S.-H. Chen (ed) Evolutionary
Computation in Economic and Finance. Physica-Verlag, Heildeiberg, New
York: 333–358.

[125] F. Vavak, T. C. Fogarty, K. Jukes (1996): A genetic algorithm with variable
range of local search for tracking changing environments. In: [126].

[126] H -M. Voight et al. (eds) (1996): Parallel Problem Solving from Nature-
PPSN IV, Springer, LNCS 1411.

144 Franciszek Seredynski

[127] V. Volterra (1926): Variazoni e Fluttuazioni Del Numero D’individui in
Specie Animali Conviventi. Memorie della R. Accaddemia Nazionale dei
Lincei, 2: 31–113.

[128] M. D. Vose (1999): The Simple Genetic Algorithm. MIT Press.
[129] I. Wegener, W. Carsten (2003): On the optimization of monotone poly-

nomials by the (1 + 1) EA and randomized local search. In: [20]:
622–633.

[130] D. Whitley, D. Garrett, J -P. Watson (2003): Quad search and hybrid genetic
algorithms. In: [21]: 1469–1480.

[131] D. Whitley, V. S. Gordon, K. Mathias (1994): Lamarckian evolution, the
Baldwin effect and function optimization. In: [27]: 6–15.

[132] D. Whitley (1999): A free lunch proof for Grey versus binary encoding. In:
[6]: 726–733.

[133] D. Whitley (2003): Evaluating search algorithms. In: [44]: 132–147.
[134] D. Whitley (1989): The GENITOR algorithm and selection pressure: why

rank-based allocation of reproductive trials is best. In: [111]: 116–121.
[135] S. W. Wilson (1994): ZCS: A zeroth level classifier system. Evolutionary

Computation 2(1): 1–18.
[136] S. W. Wilson (1995): Classifier fitness based on accuracy. Evolutionary

Computation 3: 149–175.
[137] S. W. Wilson (2003): Structure and Function of the XCS classifier system.

In: [44]: 547–555.
[138] D. H. Wolpert, W. G. Macready (1997): No free lunch theorems for opti-

mization. IEEE Trans. on Evolutionary Computation, 1: 67–82.
[139] X. Yao (1996): An overview of evolutionary computation. Chinese Journal

of Advanced Software Research, 3, 1:(1) 12–29.
[140] X. Yao (1999): Evolutionary programming made faster. IEEE Trans. on

Evolutionary Computation, 3, 2(1): 82–102.

Evolutionary Paradigms 145

Chapter 5

ARTIFICIAL NEURAL NETWORKS
Javid Taheri and Albert Y. Zomaya
The University of Sydney

Artificial Neural Networks have been one of the most active areas of
research in computer science during the last fifty years, with periods of intense
activity interrupted by episodes of hiatus [1]. The premise for the evolution of
the theory of artificial neural networks stems from the basic neurological struc-
ture of living organisms. Cells are the most important constituent of these life
forms. These cells are connected by synapses, which are the links that carry mes-
sages between cells. In fact, by using synapses to carry the pulses, cells can acti-
vate each other with different threshold values to form a decision or memorize
an event.

Inspired by this simplistic vision of how messages are transferred between
cells, scientists invented a new computational approach, which became popu-
larly known as Artificial Neural Networks (or Neural Networks for short), and
used it extensively to target a wide range of problems in many application
areas. Although the shape or configurations of different neural networks may
look different at the first glance, the networks themselves are almost similar in
structure.

A neural network consists of cells and links. Cells are the computational part
of the network that perform reasoning and generate activation signals for other
cells, while links connect the different cells and enable messages to flow among
cells. Each link is usually a one-directional connection with a weight that affects
the carried message in a certain way. This means that a link receives a value (mes-
sage) from an input cell, multiplies it by a given weight, and then passes it to the
output cell.

In its simplest form, a cell can have three states (of activation), namely, +1
(TRUE), 0, and −1 (FALSE), to represent three states: activation, unknown, and
deactivation. Figure 5.1 shows a simple network with two inputs and one output.
Table 5.1 gives the output for all possible inputs in such a network. As can be
seen, this network simply separates the sample space into two completely indi-
vidual subspaces.

1 A GENERIC NEURAL NETWORK

Figure 5.1 shows a simple instant of a neural network. Cells (or neurons) can
have more sophisticated structure that can handle complex problems. These neu-
rons can be linear or nonlinear functions with or without biases. Figure 5.2 shows
two simple neurons that can have biased and unbiased states.

148 Javid Taheri and Albert Y. Zomaya

Σ

+1

y = sgn(x1 − x2)

x1

Input Layer Neuron Output Layer

x2
−1

sgn()

Figure 5.1. A neural network with two inputs and one output

Table 5.1 Truth table of the network in Figure 5.1
x −1 0 +1

y
−1 0 −1 −1
0 1 0 −1

+1 1 1 0

f (.)
w

yx

Input Layer Neuron Output Layer

y = f(wx)(a)

w
x f (.) y

b

1

y = f(wx + b)

Output LayerNeuronInput Layer

(b)

Σ

Figure 5.2. (a) Unbiased and (b) biased structures of a neural network

1.1 Single-Layer Perceptron

The single-layer perceptron is one of the simplest classes of neural net-
works [1]. The general overview of this network is shown in Figure 5.3, where
the network has n inputs and generates only one output. The input of the func-
tion f (.) is actually a linear combination of the network’s inputs. In this case,
W is a vector of neuron weights, X is the input vector, and y is the only output
of the network. These inputs are defined as follows:

y = f (W . X + b)
W = (w1 w2 ... wn)
X = (x1 x2 ... xn)T

The above-mentioned basic structure can be extended to produce networks
with more than one output. In this case, each output has its own weights and is
completely uncorrelated to the other outputs. Figure 5.4 shows such a network,
with the following formulas:

.()Y F W X B= +

W

w
w

w

w w

w

,

,

,

, ,

,m

n

m n

1 1

2 1

1

1 2 1

f

f

f

=

R

T

S
S
S
S
S

V

X

W
W
W
W
W

X = (x1 x2 ... xn)
T

Y = (y1 y2 ... ym)T

B = (b1 b2 ... bm)T

() (() () ... ())F f f fm
T

1 2$ $ $ $=

where
n: number of inputs
m: number of outputs
W: weighing matrix
X: input vector
Y: output vector

()F $: array of output functions

Artificial Neural Networks 149

w2

f (.)

w1

y

x1

xn wn

x2

1

b

NeuronInput Layer Output Layer

Σ

Figure 5.3. A single-output (single-layer) perceptron

2 MULTILAYER PERCEPTRON

A multilayer perceptron can be simply constructed by concatenating several
single-layer perceptron networks. Figure 5.5 shows the basic structure of such a
network, which has the following parameters [1]:

150 Javid Taheri and Albert Y. Zomaya

w1
1,1

w2
1,1 w p

1,1z 1
1 z 2

1

z 2
2

z 2
m2

z m1

z 1
2

f 1
 2(.)

f 1
 1(.) f 2

 1(.) f p
 1 (.)

f p
 2 (.)f 2

 2 (.)

f p
mp

(.)

z p
1

z p
2

f 1
 m1

(.) f 2
 m2

(.)

b1
1 b2

1

b1
2

b1
m1w1

m1,n1

w2
m2,n2

x1

x2

xn

1

Output
Layer

Layer-1Input
Layer

1

1

1

1

1

1

1

1

y1

y2

ym

Layer-2 Layer-p

b p
1

b p
2

z p
mp

b p
mp

w p
mp,

b 2
2

np

S SS

S S S

SSS

Figure 5.5. The basic structure of a multilayer neural network

f1(.)

f2(.)

fm(.)

w1,1

w1,2

x1

b1

y1

y2

ym

b2

bm

xn

x2

wm,n

wm−1,n

1

Output LayerLayer - 1Input Layer

1

1

Figure 5.4. A multioutput single-layer perceptron

X: input vector
Y: output vector
n: number of inputs
m: number of outputs
p: total number of layers in the network

while
mi: number of outputs for the ith layer
ni: number of inputs for the ith layer

Note that in this network, every internal layer of the network can have its
own number of inputs and outputs only by considering the concatenation rule,
i.e. ni = mi−1. The output of the first layer is calculated as follows:

()Z F W X B1 1 1 1$= +

W

w
w

w

w w

w

,

,

,

, ,

,m

n

m n

1

1 1
1

2 1
1

1
1

1 2
1

1
1

1
1 1

f

f

f

=

R

T

S
S
S
S
SS

V

X

W
W
W
W
WW

X = (x1 x2 ... xn)
T

B1 = (b1
1 b2

1 ... bm1

1)T

Z1 = (z1
1 z2

1 ... zm1

1)T

F1()$ = (f1
1()$ f2

1()$... fm1

1 ()$)T

As a result, the output of the second layer would be

Z 2 = F 2 (W 2
˙ Z1 + B2)

W

w
w

w

w w

w

,

,

,

, ,

,m

n

m m

2

1 1
2

2 1
2

1
2

1 2
2

1
2

2
2 2 1

f

f

f

=

R

T

S
S
S
S
SS

V

X

W
W
W
W
WW

B2 = (b1
2 b2

2 ... bm 2

2)T

Z2 = (z1
2 z2

2 ... zm2

2)T

() () () ... ()F f f fm

T
2

1
2

2
2

2

2
$ $ $ $= c m
Finally, the last-layer formulation can be given as

Y = Zp = Fp(Wp . Zp−1 + Bp)

W

w
w

w

w w

w

,

,

,

, ,

,

p

p

p

m
p

p
n

p

m m
p

1 1

2 1

1

1 2 1

p p1 1

f

f

f

=

-

R

T

S
S
S
S
SS

V

X

W
W
W
W
WW

Bp = (b1
p b2

p ... bm p

p)T

Artificial Neural Networks 151

Zp = (z1
p z2

p ... zmp

p)T

() () () ... ()F f f fp p p
m

p
T

1 2 p
$ $ $ $= c m
Note that, in such networks, the complexity of the network rises quickly based

on the number of layers. Practically experienced, each multilayer perceptron can
be evaluated by a single-layer perceptron with a comparatively huge number of
nodes.

2.1 Function Representation

Two of the most popular uses of neural networks is to represent (or approxi-
mate) functions and model systems. Basically, a neural network would be used to
imitate the behavior of a function by generating relatively similar outputs in com-
parison with the real system (or function) over the same range of inputs.

2.1.1 Boolean Functions

Neural networks were first used to model simple Boolean functions. For exam-
ple, Figure 5.6 shows how a neural network can be used to model an AND oper-
ator, while Figure 5.7 gives the truth table. Note that “1” stands for “TRUE” while
“−1” represents a “FALSE” value. The network in Figure 5.6 actually simulates a
linear (function) separator, which simply divides the decision space into two parts.

2.1.2 Real-Value Functions

In real-value functions, the network weights must be set so that the network
can generate continues outputs of a real system. The generated network is also
intended to act as an extrapolator that can generate output data for inputs that
are different from the training set.

To clarify this, assume that the data set given in Table 5.2 is produced by a real-
world phenomenon (or system). The idea here is for a neural network (Figure 5.8)
to regenerate the same data and also be able to produce other values for sets of
unforeseen inputs (i.e., extrapolate). Figure 5.9 shows graphically the output of
both the system and the neural model.

152 Javid Taheri and Albert Y. Zomaya

1.4

1.4

y

x1

x2

1

−0.7

Output LayerNeuron Input Layer

Σ sgn()

Figure 5.6. A neural network that implements the logical AND operator

Artificial Neural Networks 153

x2

x1

x1

x2

−1

−1

−1

−1 −1

−1

−1

+1

+1

+1

+1+1

Figure 5.7. Representation for the network in Figure 5.6

Table 5.2. Truth table for an instance of a real value function
X1 −3 0 3

X2

−3 0.97 0.43 −3.49
0 1.85 0.28 −1.18
3 4.26 1.0 −1.36

0.3

0.4

y

x1

x2

1

−0.7

Output LayerNeuronInput Layer

Σ

Figure 5.8. A neural network that implements a simple real function

3 LEARNING SINGLE-LAYER MODELS

The main, and most important, application of all neural networks is their abil-
ity to model a process or learn a behavior of a system. Toward this end, several
algorithms have been proposed to train the adjustable parameters of a network
(i.e., W). Basically, training a neural network to adjust the Ws is categorized into
two different classes: supervised and unsupervised [2–6].

3.1 Supervised Learning

The main purpose of supervised learning is to “teach” a network to copy the
behavior of a system or a function. In this case, there is always a need to have a
“training” data set. The network topology and the algorithm with which the net-
work is trained are highly interrelated. In general, a topology of the network is
chosen first and then an appropriate training algorithm is used to tune the
weights (W) [7, 8].

3.1.1. Perceptron Learning

As mentioned earlier, the perceptron is the most basic form of neural net-
works. Essentially, this network tries to classify input data by mapping it onto a

154 Javid Taheri and Albert Y. Zomaya

−4

−6
−4
−2
0
2
4
6

−2

−2
−4 −4

−5−5

00

5
5

−2

0

2

4

4
2

0 0
2

4

6

(a)

(b)

Figure 5.9. The real values (a) and its corresponding neural model (b)

plane (Figures 5.3 and 5.4). In this approach, to simplify the algorithm, suppose
that the network’s input is restricted to {+ 1,0, − 1}, while the output can be {+ 1,
−1}. The aim of the algorithm is to find an appropriate set of weights, W, by sam-
pling a training set, T, that will capture the mapping that associates each input to
an output, i.e.,

W = (w0 w1 . . . wn)
T = {(R1, S1), (R2, S2), . . . , (RL, SL)}

where n is the number of inputs, Ri is the ith input datum, Si′ represents the appro-
priate output for the ith pattern, and L is the size of the training data set. Note
that, for the above vector W, wn is used to adjust the bias in the values of the
weights. Perceptron Learning can be summarized as follows:
Step 1: Set all elements of the weighting vector to zero, i.e., W = (0 0 . . . 0).
Step 2: Select the training pattern randomly, the kth datum.
Step 3: IF the current W hasn’t been classified correctly, i.e., W.Rk ≠ Sk, THEN

modify the weighing vector as follows: W ← W + Rk Sk.
Step 4: Repeat steps 1–3 until all data are classified correctly.

The following example is used to demonstrate how this network func-
tions. Assume a network with two inputs and one output used to classify the
data of Table 5.3. The different iterations that the network will undergo are as
follows:

Iteration Current W Choice OK ? Action
1 <0 0 0> T5 NO W=W−T5
2 <−2 3 −1> T6 YES
3 <−2 3 −1> T4 YES
4 <−2 3 −1> T2 YES
5 <−2 3 −1> T1 NO W=W+T1
6 <0 3 0> T2 YES
7 <0 3 0> T1 NO W=W+T1

<2 3 1> Works for all training data; algorithm terminates.

In this case, the final answer would be W = [2 3 1]. Figure 5.10 shows the net-
work after it converges to the previous answer, while Figure 5.11 graphically
shows the output of the network.

Artificial Neural Networks 155

2

3

y

x1

x2

1

1

Output LayerNeuronInput Layer

Σ sgn()

Figure 5.10. A perceptron neural network for the data in Table 5.3

3.2 Linear Auto-Associative Learning

An auto-associative network is another type of network that has some type
of memory. In this network, the input and output nodes are basically the
same. Hence, when a datum enters the network, it passes through the nodes and
converges to the closest memorized datum, which was previously stored in the

156 Javid Taheri and Albert Y. Zomaya

Table 5.3. A sample training set for a perceptron
Name Input Output

X1 X2 Y
T1 2 0 1
T2 1 2 1
T3 3 4 1
T4 −3 −2 −1
T5 2 −3 −1
T6 −1 −1 −1

−5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−4 −3 −2 −1 0 1 2 3 4 5

+

+

+

Figure 5.11. The output of the network of Figure 5.10

1

5 2

4 3

Figure 5.12. A sample linear auto-associative network with five nodes

network during the training process [1]. Figure 5.12 shows an instance of such
network with five nodes.

It is worth noting that the weighing matrix of such network is not symmetri-
cal. That is, wi,j, which relate node i to node j, may have different values than wj, i.
The main key of designing such a network is in the training data set. In this
case, the assumption is to have orthogonal or approximately orthogonal training
data, i.e.,

,T T
i j

i j

0

1i j

!
.

=
G H *

where Ti is the ith training data and . is the inner product of two vectors. Based
on the above, the weight matrix for this network is calculated as follows, where 7
stands for outer product of two vectors:

W T Ti i
i

N

1
7=

=

!
As can be seen, the main advantage of this network is in its one-shot learning

process, accomplished by considering orthogonal data. Note that, even if the
input data are not orthogonal in the first place, they can be transferred to a new
space by a simple transfer function.

To demonstrate the use of this network, assume the three-node network of
Figure 5.13. In this network, the inputs and outputs of the network are basically
same. Also, assume that the data in Table 5.4 need to be stored in the network.

In this case, the training data set is approximately orthogonal, i.e.,

〈 T1, T1 〉 = 0.9902
〈 T2, T2 〉 = 1.0025
〈 T1, T2 〉 = − 0.0066

Artificial Neural Networks 157

Table 5.4. Training data for a sample auto associate network
T1 <−0.29 0.90 0.31>
T2 <0.94 0.33 −0.1>

1

3 2

Figure 5.13. An auto-associative network with three nodes

Therefore, the weight matrix would be calculated as follows:

.
.
.

.
.
.

.
.
.

.

.
.

.

.
.

.

.
.

.

.
.

.

.

.

.
.
.

W T T T T

0 0841
0 2610
0 0899

0 2610
0 8100
0 2790

0 0899
0 2790
0 0961

0 8836
0 3102
0 0940

0 3102
0 1089
0 0330

0 0940
0 0330

0 0100

0 9677
0 0492
0 1839

0 0492
0 9189
0 2460

0 1839
0 2460
0 1061

1 1 2 27 7= + =

-

-

- -

+

- -

-

-

=

-

-

R

T

S
S
SS

R

T

S
S
SS

R

T

S
S
SS

V

X

W
W
WW

V

X

W
W
WW

V

X

W
W
WW

To show how the above network functions, assume that the following data,
which are not part of the training data set, are fed into the network: T = < 0.8
0.5 0.33 >. Figure 5.14 shows how this network converges to an output.
Figures 5.14a and 5.14b show the � T − T1� and � T − T2 � cases, respectively.

3.2.1 Iterative Learning

Iterative learning is another approach that can be used to train a network. In
this case, the network’s weights are modified smoothly, in contrast to the one-shot
learning algorithms. In general, network weights are set to some arbitrary values
first, and then training data are fed to the network. In this case, in each training
cycle, network weights are modified smoothly. Then the training process pro-
ceeds until it achieves an acceptable level of acceptance for the network. However,
the training data could be selected sequentially or randomly in each training
cycle [9–11].

158 Javid Taheri and Albert Y. Zomaya

0
0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 30 40 50453525

0
1.1

1.2

1.3

1.4

1.5

5 10 15 20 30 40 50453525

(a)

(b)

Figure 5.14. Convergence of the network in Figure 5.13 for the new data set

3.2.2 Hopfield’s Model

A Hopfield neural network is another example of an auto-associative network
[1, 12–14]. There are two main differences between this network and the previ-
ously described auto-associative network. In this network, self-connection is not
allowed, i.e., wi,i = 0 for all nodes. Also, inputs and outputs are either 0 or 1. This
means that the node activation is recomputed after each cycle of convergence as
follows:

()S w u t,i i j j
j

N

1
$=

=

! (1)

’
<

u
if S

if S

1 0

0 0j
i

i

$
= * (2)

After feeding a datum into the network, in each convergence cycle, the nodes
are selected by a uniform random function, the inputs are used to calculate (1),
and then (2) follows to generate the output. This procedure is continued until the
network converges.

The proof of convergence for this network uses the notion of energy. This
means that an energy value is assigned to each state of the network, and through
the different iterations of the algorithm, the overall energy is decreased until it
reaches a steady state. To show the workings of this network, one can train this
network to learn the data set given in Table 5.5. In this case, the weights matrix
would be as follows:

W T T

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1

1
1

1
1

1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

3
1
1
1

1
3
1
1

1
1
3
3

1
1
3
3

0
1
1
1

1
0
1
1

1
1
0
3

1
1
3
0

i i
i

N

1

"

7= = +
-

-

-

-

-

-

-

-

+
-

-

-

- - -

=
-

-

- -

-

-

- -

=

!

R

T

S
S
S
S
S

R

T

S
S
S
S
S

R

T

S
S
S
S
S

R

T

S
S
S
S
S

R

T

S
S
S
S
S

V

X

W
W
W
W
W

V

X

W
W
W
W
W

V

X

W
W
W
W
W

V

X

W
W
W
W
W

V

X

W
W
W
W
W

Now, suppose that the following input is applied to the network:

T

1
1
1
1

=

-

-

-

R

T

S
S
S
S
S

V

X

W
W
W
W
W

Artificial Neural Networks 159

Table 5.5. Training data for a Hopfield neural network
T1 <1 1 1 1>
T2 <−1 −1 1 1>
T3 <1 −1 −1 −1>

In this case, the network output would be

W T T

3
3
1
1

1
1
1
1

3"$ /=
-

-

-

-

-

-

R

T

S
S
S
S
S

R

T

S
S
S
S
S

V

X

W
W
W
W
W

V

X

W
W
W
W
W

Note that, in this case, the network convergence occurs in only one cycle,
although it may need more iteration for other inputs.

3.2.3 Mean Square Error (MSE) Algorithms

MSE algorithms emerged as an answer to the deficiencies experienced by
using perceptrons and other simple networks [1, 15]. One of the most important
reasons is the inseparability of training data. If the data used to train the network
are naturally inseparable, the training algorithm never terminates (Figure 5.15).

The other reason for using this technique is to converge to a better solution.
In perceptron learning, the training process terminates right after finding the first
answer, regardless of its quality (i.e., sensitivity of the answer). Figure 5.16 shows
an example of such a case. Note that, although the answer found by the percep-
tron algorithm is correct (Figure 5.16a), the answer in (Figure 5.16b) is more
robust. Finally, another reason for using MSE algorithms, which is crucial for
most neural network algorithms, is speed of convergence.

The MSE algorithm attempts to modify the network weights based on the
overall error of all data. In this case, assume that network input and output data
are represented by Ti, Ri for i = 1...N, respectively. Now the MSE error is defined
as follows:

E N W T R1
i i

i

N 2

1
$= -

=

!_ i

160 Javid Taheri and Albert Y. Zomaya

−3
−3

−2

−1

0

1

2

3

−2 −1 0 1 2 3
Figure 5.15. An example of an inseparable training data set

Note that the stated error is the summation of all individual errors for all the
training data. In spite of all the advantages of this training technique, there are
several disadvantages. For example, the network might not be able to correctly
classify the data if they are widely spread apart (Figure 5.17). The other disad-
vantage is that speed of convergence may completely vary from one set of data to
another.

3.2.4 The Widow-Hoff Rule or LMS Algorithm

In the widow-Hoff algorithm, the network weights are modified after each iter-
ation [1, 16]. A training datum is selected randomly, and then the network weights

Artificial Neural Networks 161

−3
−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

−2 −1 10 2 3 −3 −2 −1 10 2 3
(a) (b)

Figure 5.16. Two classification answers for sample data

3210−1−2−3
−3

−2

−1

0

1

2

3

Figure 5.17. An example of a training data set with spread-out members

are modified based on the corresponding error. This procedure continues until it
converges to the answer. For a randomly selected kth entry in the training data, the
error is calculated as follows:

e = (W ˙ Tk − Rk)
2

Now the gradient vector of this error would be

W W WN0 1
d

2
2

2
2 f

2
2e e e e

= G H

Hence,

()W W T R T2
j

k k k$ $
2
2e

= -

Based on the Widow-Hoff algorithm, the weights should be modified oppo-
site to the direction of the gradient. As a result, the final update formula for the
weighting matrix W would be

W ′ = W − r ˙ (W ˙ Tk − Rk) ˙ Tk

Note that r is known as the learning rate and absorbs the multiplier of
value 2.

3.4 Unsupervised Learning

Unsupervised learning networks attempt to cluster input data without the
need for the traditional “learn by example” technique that is commonly used
for neural networks. Note that clustering applications tend to be the most pop-
ular type of applications for which these networks are normally used. The
most popular networks in this class are K-means, Kohonen, ART1, and ART2
[17-21].

3.4.1 K-Means Clustering

K-means clustering is the simplest technique used for classifying data. In this
technique, a network with a predefined number of clusters is considered, and then
each datum is assigned to one of these clusters. This process continues until all
data are checked and classified properly. The following algorithm shows how this
algorithm is implemented.
Step 1: Consider a network with K clusters.
Step 2: Assign all data to one of the above clusters, with respect to the distance

from the center of the cluster and each datum.
Step 3: Modify the center of the assigned cluster.
Step 4: Check all data in the network to ensure proper classification.
Step 5: If a datum has to be moved from one cluster to another one, then update

the center of both clusters.
Step 6: Repeat steps 4 and 5 until no datum is wrongly classified.

Figure 5.18 shows an example of such a network when applied for data clas-
sification with correct and incorrect numbers of clusters. As can be seen, if
the number of clusters is properly guessed, then this algorithm can be very
effective.

162 Javid Taheri and Albert Y. Zomaya

3.4.2 Kohonen Clustering

The Kohoner classification method clusters input data based on a topological
representation of the data. The outputs of the network are arranged so that each
output has some neighbors. Thus, during the learning process, not only one out-
put but a group of close outputs are modified to classify the data. To clarify the
situation, assume that a network is supposed to learn how a set of data is to be
distributed in a two-dimensional representation (Figure 5.19).

In this case, each point is a potential output with a predefined neighborhood
margin. For example, the cell marked X and eight of its neighbors are given.
Therefore, whenever this cell gets selected for an update, all its neighbors are
included in the process too. The main principle behind this approach for classify-
ing input data is analogous to principles of biology. In a mammalian brain, all
vision, auditory, and tactile sensors are mapped into a number of cell sheets.
Therefore, if one of the cells is activated, all cells close to it will be affected, but
with different intensity levels.

Now assume that a training data set, Ti for i = 1...N, is available and that the
network must classify it based on a similarity measure. The main idea here is for

Artificial Neural Networks 163

(a) (b)

Figure 5.18. Results of applying a k-means clusterer with (a) appropriate and (b) inappropriate
numbers of clusters

X

Figure 5.19. Output topology of a sample Kohonen network

the network to assign at least one of its output weights to fire for a particular
training datum. To achieve this, for each training datum, the closest output is
found, and then the corresponding weights are modified in order to get the min-
imum possible Euclidean distance, i.e. to minimize � Tk − Wm,n �. Another consid-
eration during this training process is the learning rate of the algorithm. In
general, at the outset, the network is trained with a fast learning rate, while in the
final stages of the training process, the training data hardly change the network
weights. The following procedure explains the details of this classifier:

Step 1: Define the algorithm step size ()t L
t1 1

= -
-t c m, where L is the predefined

number of iterations.
Step 2: Generate a grid network with the dimension of the input data.
Step 3: Assign all network weights to random data.
Step 4: Select a random training data, Tk.
Step 5: Find the closest output of the network to Tk, and let this be Om,n.
Step 6: Modify Om,n and its neighboring weights, with a predefined margin, as fol-

lows: Wx,y = Wx,y + r(t)˙(Tk − Wx,y).
Step 7: Set t ← t + 1 and repeat steps 4–7 until t = L.

Figure 5.20 shows the random data that need to be classified, while
Figure 5.21 shows the end result for a number of iterations.

3.4.3 ART1

This neural classifier, known as Adaptive Resonance Theory or ART, deals
with digital inputs (Ti ∈ {0,1}). In this network, each “1” in the input vector rep-
resents information, while a “0” entry is considered noise or unwanted informa-
tion. In ART, there is no predefined number of classes before the start of
classification; in fact, the classes are generated during the classification process.

Moreover, each class prototype may include the characteristics of more than
a training datum. The basic principle of such a network relies on the similarity
factor for data classification. In summary, every time a datum is assigned to a
cluster, firstly, the nearest class with this datum is found, and then, if the similar-

164 Javid Taheri and Albert Y. Zomaya

−1
−1

−0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Figure 5.20. Training data set for a Kohonen network

ity of this datum to the class prototype is more than a predefined value, known
as a vigilance factor, the datum is assigned to this class and the class prototype is
modified to have more similarity with the new data entry [1, 22, 23].

The procedure below shows how this algorithm is implemented. However, the
following points need to be noted First.

1. �X � is the number of 1s in the vector X.
2. X ˙ Y is the number of common 1s between the vectors X and Y.
3. X ∩ Y is the bitwise AND operator applied on vectors X and Y.

Step 1: Let b be a small number, n be the dimension of the input data, and r be
the vigilance factor (0 ≤ r < 1).

Step 2: Start with no class prototype.
Step 3: Select a training datum by random, Tk.
Step 4: Find the nearest unchecked class prototype, Ci, to this datum by

minimizing
C

C T

i

i k$

+b
.

Step 5: Test whether Ci is sufficiently close to Tk by verifying

>
C

C T T

i

i k k$

+ +b b t
.

Step 6: If Ci is not similar enough, then assign a new class prototype and go to
step 3.

Artificial Neural Networks 165

−0.5 −0.8 −0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.4 −0.2 0.2 0.4 0.6 0.80
−0.5

0

0.5

1

1.5

0

(a) (b)

(c) (d)

0.5

w (i,1) w (i,1)

weight Vectors weight Vectors

weight Vectors

w
(i,

2)

w
(i,

2)

−0.8 −0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.4 −0.2 0.2 0.4 0.6 0.80

w (i,1)

−0.8 −0.6 −0.4 −0.2 0.2 0.4 0.6 0.80

0

w (i,1)

weight Vectors

w
(i ,

2)

−0.6

−0.4

−0.2

0.2

0.4

0.6

w
(i ,

2)

1 1.5

Figure 5.21. Classification results for the Kohonen network after (a) 0, (b) 10, (c) 20, and (d)
30 iterations

Step 7: If it is sufficiently similar, check the vigilance factor:

T
C T

k

i k$
$ t

Step 8: If the vigilance factor is exceeded, then modify the class prototype by
Ci = C i ∩ Tk and go to step 3.

Step 9: If the vigilance factor is not exceeded, then find another unchecked class
prototype (step 4).

Step 10: Repeat steps 3–9 until none of the training data causes any change in
class prototypes.

3.4.4 ART2

ART2 is a variation of ART1, with the following differences:
1. Data are considered continuous and not binary.
2. The input data are processed before passing them to the network. Actually,

the input data are normalized, and then all elements of the result vector
that are below a predefined value are set to zero and the vector is normal-
ized again. The process is used for noise cancellation.

3. When a class prototype is found for a datum, the class prototype vector is
moved fractionally toward the selected datum. As a result, contrary to the
operation of ART1, the weights are moved smoothly toward a new datum.
The main reason for such a modification is to “memorize” previously
learnt rules.

The following algorithm demonstrates the working of ART2:
Step 1: Let; n be the dimension of the input data; a be a positive small number

given by / ;n1#a m be the normalized factor such that < < / ;n0 1m and r
be the vigilance factor (0 ≤ r < 1).

Step 2: Process all the training data for k = 1 ˙ N as follows:
Normalize Tk.

Set all elements of Tk to 0 if they all are less or equal to l.
Normalize Tk again.

Step 3: Start with no class prototype.
Step 4: Select a training datum randomly, Tk.
Step 5: Find the nearest unchecked class prototype, Ci, to this datum by mini-

mizing Ci ˙ Tk.

Step 6: Test whether Ci is sufficiently close to Tk by verifying C T Ti k j
k

j
$ $$ a ! .

Step 7: If Ci is not similar enough, then assign a new class prototype and go to
step 4.

Step 8: If it is sufficiently similar, check the vigilance factor: Ci ˙ Tk ≥ r.
Step 9: If the vigilance factor is exceeded, then modify the class prototype by

()
()

C
C T
C T

1
1

i
k

k

$ $

$ $
=

- +

- +

b b

b b
and go to step 4.

Step 10: If the vigilance factor is not exceeded, then try to find another unchecked
class prototype (step 5).

Step 11: Repeat steps 3–9 until none of the training data causes any change in
class prototypes.

166 Javid Taheri and Albert Y. Zomaya

3.5 Learning in Multiple-Layer Models

As mentioned earlier, multilayer neural networks consist of several con-
catenated single-layer networks [1, 24–26]. The inner layers, known as hidden
layers, may have different number of inputs and outputs. Because of this added
complexity, the training process becomes more involved. This section presents
two of the most popular multilayer neural networks.

3.6 Back-Propagation Algorithm

The back-propagation algorithm is one of the most powerful and reliable
techniques that can be used to adjust network weights. The main principle of this
approach is to use the gradient information of a cost function to modify the net-
work’s weights.

However, the use of such an approach to train multilayer networks is a little
different from applying it to single-layer networks. In general, multilayer net-
works are much harder to train than single-layer ones. In fact, convergence of
such networks is much slower and very error sensitive.

In this approach, an input is presented to the network and allowed to “for-
ward” propagate through the network. The output is calculated, and then the
output is compared with a “desired” output (from the training set) and an error
is calculated. This error is then propagated “backward” into the network, and the
different weights are updated accordingly. To simplify the description of this
algorithm, consider a network with a single hidden layer (and two layers of
weights), as shown in Figure 5.22. In relation to this network, the following def-
initions apply. Of course, the same definitions can be easily extended to larger
networks.

Ti,Ri for i = 1...L: The training set of input and outputs, respectively.
N,S,M: The size of the input, hidden, and output layers, respectively.
W1: Network weights from the input layer to the hidden layer.
W2: Network weights from the hidden layer to the output layer.
X,Z,Y: Input and output of the hidden layer and the network output, respec-

tively.
F1(˙): Array of network functions for the hidden layer.
F2(˙): Array of network functions for the output layer.
These definitions lead to the following formulas:

Z = F 1(W 1
˙X)

W

w
w

w

w w

w

,

,

,

, ,

,s

n

s n

1

1 1
1

2 1
1

1
1

1 2
1

1
1

1
f

f

f

=

R

T

S
S
S
S
SS

V

X

W
W
W
W
WW

X = (x1 x2 ... xn)
T

Z = (z1 z2 ... zs)
T

F1 (˙) = (f1
1(˙) f2

1(˙) ... fs
1(˙))

T

Artificial Neural Networks 167

Y = F 2 (W 2
˙Z)

W

w
w

w

w w

w

,

,

,

, ,

,m

s

m s

2

1 1
2

2 1
2

1
2

1 2
2

1
2

2
f

f

f

=

R

T

S
S
S
S
SS

V

X

W
W
W
W
WW

F 2(˙) = (f1
2(˙) f2

2(˙) ... fm
2(˙))

T

Now assume that the cost function for this optimization process is defined as

E L R Y2
1 () ()

j
k

j
k

j

M

k

L 2

11
= -

==

!! a k
where Yj

(k) and Rj
(k) are the actual and desired outputs of the network, respec-

tively. In this case, k represents the kth training datum and j is the jth
output.

In this case, the following formulas represent the details:

Y f w Z f net

Z f w x f net

2

1

()
,

() ()

()
,

() ()

j
k

j j s s
k

s

S

j j
k

s
k

s s i i
k

i

N

s s
k

2 2

1

2

1 1

1

1

$

$

/

/

=

=

=

=

!

!

f a
f a

p k
p k

168 Javid Taheri and Albert Y. Zomaya

x1

x2

xn

f 1
1(⋅) f 2

1(⋅)

f 2
2(⋅)

w1
1,1

w 2
1,1

z1

z2

zs

y1

y2

ym

f 1
2(⋅)

∑

∑

∑ ∑

∑

∑

f 2
m

(⋅)

w 1
n,s

w 2
s,m

f1
m1

(⋅)

Input Layer Layer-1 Layer-2 Output Layer

Figure 5.22. A two-layer neural network

Now, the main cost function can be rewritten as follows:

E L R f w f w x2
1 ()

, ,
()

j
k

j j s s
s

S

s i i
k

i

N

j

M

k

L
2 2 1

1

1

1

2

11
$ $= -

= ===

! !!!
J

L
KK

J

L

K
K f N

P
OO

N

P

O
Op

Based on the gradient algorithm, with the assumption that all functions in the
network are derivable, the following would apply for the output layer:

w
E

L R Y
w

Y

L R Y
net

f net

w

net

L Z

1

1
2

2

1

,

() ()

,

()

() ()
()

()

,

()

() ()

f g
f
k

f
k

k

L

f g

f
k

f
k

f
k

k

L

f
k

f f
k

f g

f
k

f

k
g
k

k

L

2
1

2

1

2

2

2
1

$

2
2

2

2

2

2

2

2

= - -

= - -

= - m

=

=

=

!

!

!

a

a a
k

k k

where

() ()R Y f net() () () . ()k
f
k

f
k

f f
k

2
2

f
= -m

The gradient formulas for the hidden layer would be as follows:

w
E

L Z
E

w

Z

L R Y
net

f net
w

w

Z

L w
net

f net
X

L X

1

1

1

1

,
()

,

()

() ()
()

()

,
,

()

()
, ()

()

()

() ()

f g f
k

f g

f
k

k

L

j
k

j
k

j

M

k

L

j
k

j
k

j f
f g

j
k

k
j f

f
k

f
k

g
k

j

M

k

L

k
g
k

k

L

1 1
1

11

2

2
1

2
2

1

11

1
1

j

f

$ $

$

2
2

2
2

2

2

2

2

2

2

2

2

=

= - -

= -

=-

m

m

=

==

==

=

!

!!

!!

!

a a

a
k k

k

where

f net w() ()
,

()k
f f

k
j f

k

j

M

1
1 2

2
1

f j
$=m m

=

!o a k
To summarize the above technique, the back-propagation algorithm for a two-

layer network can be derived as follows:
Step 1: Create a network with a predefined number of nodes in the hidden layer,

and random weights for all links.
Step 2: Select a kth entry consisting of an input and desired output.
Step 3: Compute net1i

(k) and Zi
(k) for i = 1... S:

, ()net w X Z f net1 1()
,

() () ()
i
k

r i r
k

i
k

i i
k

r

N
1 1

1
$= = =

=

!
followed by net2j

(k) and Yj
(k) for j = 1...M:

, ()net w Z Y f net2 2()
,

() () ()
i
k

i j i
k

j
k

j j
k

i

2 2

1
$= = =

=

!
Step 4: Computer l1i

(k) and l2 j (k) for i = 1 ... S and j = 1...M:

Artificial Neural Networks 169

R Y f net2() () () . ()k
J
k

J
k

j j
k

2
2

j
= -m a ak k

.f net w1() . ()
,

()k
i i

k
i j

k

j

M

1
1 2

2
1

i j
=m m

=

!a k
Step 5: Calculate the gradient over the input batch:

w
E

w
E Z

, ,

() ()

i j i j

k
i
k

2 2 2 j
$

2
2

2
2

= + m

w
E

w
E X

, ,

() ()

i j i j

k
i
k

1 1 1j
$

2
2

2
2

= + m

Step 6: Repeat steps 2–5 for all training data.
Step 7: Update the network weights as follows:

() ()w new w old L w
E

, ,
,

i j i j
i j

1 1
1!

2
2

-
n

() ()w new w old L w
E

, ,
,

i j i j
i j

2 2
2!

2
2

-
n

Step 8: Repeat steps 2–7 until a predefined accuracy measure is reached for the
network.

3.7 Radial Basis Functions

The Radial Basis Function (RBF) neural network is another popular multi-
layer neural network [27–31]. The RBF network consists of two layers, one hid-
den layer and one output layer. In this network, the hidden layer is implemented
by radial activation functions while the output layer is simply a weighted sum of
the hidden-layer outputs.

The RBF neural network is able to model complex mappings, which percep-
tron neural networks can only accomplish by means of multiple hidden layers.
The outstanding characteristics of such a network makes it applicable for a vari-
ety of applications, such as function interpolation [32, 33], chaotic time series
modeling [34, 35], system identification [36–38], control systems [39, 40], channel
equalization [41–43], speech recognition [44, 45], image restoration [46, 47],
motion estimation [48], pattern classification [49], and data fusion [50].

3.7.1 Network Topology

The main topology of this network is as shown in Figure 5.23. Many functions
were introduced for possible use in the hidden layer; however, radial functions
(Gaussian) remain the most effective to use for data or pattern classification. The
Gaussian functions are defined as follows:

() () ()X X Xexpj j
T

j j
1= - - -n nU C-9 C

where j = 1,2, . . . , L, L represents the number of nodes in the hidden layer, X is
the input vector, mj and Gj are the mean vector and covariance matrix of the jth

Gaussian function, respectively. In some approaches, a polynomial term is

170 Javid Taheri and Albert Y. Zomaya

appended to the above expression, while in others the functions are normalized to
the sum of all Gaussian components as in the Gaussian mixture estimation.
Geometrically, a radial basis function in this network represents a bump in the
N-dimensional space where N is the number of entries (input vector size). In this
case, the mj represents the location of this bump in the space and Γj models its
shape. The output layer of this network is a linear combination of the hidden
layer outputs, as follows:

() ()Y X X,k i k i
i

L

1
$= m U

=

!
where L is the number of outputs of the hidden layer, Yk is the kth output, and
li, k is a linear factor (connection weight) from the ith hidden layer output to the
kth network output. In the classification application, the actual output of the
network is usually limited by a sigmoid function to be between 0 and 1:

()exp
Z

Y X1
1

k
k

=
+ -7 A

3.7.2 Training Algorithms

Because of the nonlinear behavior of this network, the training procedure of
the RBF network (as in multilayer networks) is approached in a completely dif-
ferent manner from that of single-layer networks. In this network, the aim is to
find the center and variance factor of all hidden-layer Gaussian functions as well
as the optimal weights for the linear output layer. In this case, the following cost
function is usually considered to be the main network objective:

Artificial Neural Networks 171

x1 y1

y2

ym

x2

xn

Φ1(⋅)

Φ2(⋅)

Φp(⋅)

λ1,1

λ1,2

λp,m

∑

∑

∑

Input Layer Hidden-Layer Output-Layer

Figure 5.23. The basic structure of an RBF network

() ()Min Y T R Y T Ri i

T

i i
i

N

0
$- -

=

! df np7 7A A
where N is the number of inputs in the training data set, Y(X) is the output of the
network for input X, and 〈Tk, Rk〉 is the kth training data pair. So the actual out-
put of the network is a combination of a nonlinear computation followed by a
linear operation. Therefore, finding an optimal set of weights for hidden layers
and output layer parameters is hardly achievable.

In this case, several approaches were used to find the optimal set of weights;
however, none of these can provide any guarantees that optimality can be
achieved. For example, many approaches suggest that the hidden-layer parame-
ters are set randomly and that the training procedure is just carried on for the out-
put linear components. In contrast, in some other cases, the radial basis functions
are homogenously distributed over the sample space before the output linear
weights are found. However, the back-propagation algorithm seems to be the
most suitable approach for training such a network.

Note that, in this approach, numerous iterations might be needed to converge
to a suitable answer, so the probability of getting stuck in local minima during
training process is unavoidable. To solve this problem, several algorithms were
suggested that use another classification technique, such as K-means [51], to
guess the initial location of the radial functions in the space. However, the fol-
lowing approach is mentioned as one of the simplest but most powerful
approaches to tune these sensitive weights. The main idea of this technique is sim-
ilar to that of Kohonen’s training routine. In this method, the parameters of the
radial basis functions are set randomly, and for each training datum, the closest
radial basis function in the hidden layer is selected and modified. The following
algorithm shows the details:
Step 1: Generate an RBF neural network with a predefined number of Gaussian

functions in the hidden layer, namely, L functions.
Step 2: Set the center of these Gaussian functions randomly, and, set their vari-

ance using a predefined fixed value.
Step 3: Select a random datum from the training data, Tk.
Step 4: Find the closest center of these Gaussian function with reference to the

following criterion: ,Min Tk j
< <j P1

; ;- n` j where mj is the center of the jth Gaussian
function, m*.

Step 5: Modify the center of the closest function as m* = m* + g (Tk − m*), where
g is an arbitrary small positive value as the learning rate.

Step 6: Repeat Steps 3–5 until all radial functions are almost fixed in space.
Step 7: Calculate the output-layer linear weights by Least Mean Squares or any

other optimization routine.
Note that, during step 3–5, when the centers of the radial functions are calcu-

lated, some radial functions might get close to each other during the process,
while others will never be affected. Therefore, an RBF neural network with an
excessive number of radial functions is usually generated first; then, after the
result generated by steps 3–5 is examined, the optimal number of radial functions
is guessed and the training algorithm is restarted. Figure 5.24 shows an RBF net-
work with two radial functions in the hidden layer that managed to learn the
behavior of a given data set.

172 Javid Taheri and Albert Y. Zomaya

4 LEARNING VECTOR QUANTIZATION

The Learning Vector Quantization (LVQ) network is another popular classifi-
cation technique that can be used for data clustering [52–54]. In this technique, a
two-layer network topology is used to classify the data, which can be used in
either supervised or unsupervised training.

In the supervised mode, a training data set is used to adjust the network
parameters (Figure 5.25). The first layer of this network follows the “winner-
takes-all” routine, while the second layer is linear. Basically, in the winner-takes-
all topology, the input vector is fed to the layer, and based on the layer outputs,
only one of the outputs is set to “1” and the rest to “0.” The basic topology
of this layer is usually the distance between network weights and the input
datum. This process is followed by a comparator to evaluate the outputs of dif-
ferent nodes and to emphasize the largest element by setting it to “1” and the
others to “0.”

4.1 Learning Algorithm

Because of the nonlinear nature of the first layer, the training of such a net-
work requires certain considerations. The back-propagation and other learning
methods that try to adjust network parameters by using gradient information of
the cost function cannot be readily applied here. However, a similar formulation
is used here with some modifications.

The main idea of the LVQ algorithm is based on a simple rule. A number of
hidden nodes with random weights are set as the first layer to build subclasses,
and then some of these subclasses are merged together to make up the final net-
work output. In this case, the final classes are assumed to have approximately
equal number of subclasses (Figure 5.26).

The other key element of this technique is the use of fixed subclass assign-
ments during the whole process of training. In fact, the second-layer weight
matrix is set only once, and the training process modifies the parameters of the

Artificial Neural Networks 173

21.81.61.41.21

(a) (b)
0.80.60.40.20

−0.4

−0.2

0.2

0.4

0.6

0.8

1

1.2

0

21.81.61.41.210.80.60.40.20
−0.4

−0.2

0.2

0.4

0.6

0.8

1

1.2

0

Figure 5.24. (a) A typical data set for an RBF neural network (b) corresponding network output
after training

174 Javid Taheri and Albert Y. Zomaya

x1 y1

y2

ym

x2

W
in

ne
r-

T
ak

es
-A

ll

xn

D1(⋅)

D2(⋅)

DL(⋅)

Input Layer Output LayerHidden-Layer

Figure 5.25. Basic structure of a LVQ network

Winner-Takes-All

Subclass-1

Subclass-2

Subclass-3 Subclass-5

Class-1 Class-2

Input

Subclass-4

Figure 5.26. Subclass association of an LVQ network

first layer only. Based on this classification technique, the weight matrix of the
output layer has only a “1” entry in each column, to distinguish the final class,
and several 1s in each row to assign several subclasses to a class. Now each train-
ing data entry is fed into the network, and its corresponding output is calculated,
based on the current network parameters. In this case, the parameters of the
nodes in the first layer that won (or lost) the competition are slightly moved
toward (or away from) this datum if the network correctly (incorrectly) classifies
this entry.

The following algorithm describes the overall procedure and the 〈Tk, Rk〉 rep-
resents the kth training entry (input, output).
Step 1: Set random weights for all L nodes in the first layer.
Step 2: Assign different subclasses to the same class randomly and homogenously,

because these weight won’t be changed during the training process.
Step 3: Select a random training datum, Tk.
Step 4: Find the neuron in the first layer that is closest to this input, i*.
Step 5: Calculate the final output answer for the input vector.
Step 6: If the network output is the same as the desired value, Rk, then adjust the

weights of the i* nodes of the first layer as follows: wi. ← wi. + l(Tk − wi.).

Step 7: If the network output is not the same as the desired value,
Rk, then adjust the weights of the i* nodes of the first layer as follows:
wi. ← wi. − l(Tk − wi.).

Step 8: Repeat steps 3–7 until all data are correctly classified.
Note that l is the learning rate, which can be set to a constant or modified

during the training process.
To clarify this procedure, assume that the training data set is as follows:

, , , ,T R
0
0

1
0

0
1

1
1

1
0

0
0

1
1

0
1

=G H = = = = = = = =G G G G G G G G* 4
Also, assume that the weights matrix of the first and second layer is set as fol-

lows:
.
.
.
.

.

.

.

.

W Wand

0 1
0 2
0 3
0 2

0 2
0 3
0 1
0 2

1
0

1
0

0
1

0
1

1 2= =

R

T

S
S
S
S
S

=
V

X

W
W
W
W
W

G

Now, suppose the second training datum is selected to train the network.
Therefore, the output of the first layer would be

()

[.
[.
[.
[.

.] [

.] [

.] [

.] [

]
]
]
]

.

.

.

.

A compete1

0 1
0 2
0 3
0 2

0 2 0
0 3 0
0 1 0
0 2 0

1
1
1
1

0 8062
0 7280
0 9487
0 8246

0
0
1
0

=

-

-

-

-

=

R

T

S
S
S
S
SS

R

T

S
S
S
S
S

R

T

S
S
S
S
S

V

X

W
W
W
W
WW

V

X

W
W
W
W
W

V

X

W
W
W
W
W

and the output of the network would be

Artificial Neural Networks 175

() ()A W A R2 1
1
0

1
0

0
1

0
1

0
0
1
0

0
1

1
1

2
2$ $!= = = =

R

T

S
S
S
S
S

= = =
V

X

W
W
W
W
W

G G G

Note that the network output is different from the desired output. Therefore,
the weighing vector of the second node of the first layer is modified as follows:

.

.
.

.

.
.
.

w
0 3
0 1

0 2
1
1

0 3
0 1

0 16
0 083 $= - - =

-

J

L
KK

N

P
OO= = = >G G G H

The final weight matrix for the first layer would be

.
.
.
.

.
.
.
.

W

0 1
0 16
0 3
0 2

0 2
0 08
0 1
0 2

1
!

-

R

T

S
S
S
S
S

V

X

W
W
W
W
W

This procedure should be continued until all the data have been correctly
classified.

5 NEURAL NETWORK APPLICATIONS

This section briefly reviews a number of application areas in which neural net-
works have been used effectively. This is by no means an exhaustive list of appli-
cations.

5.1 EXPERT SYSTEMS

One popular application is the use of neural networks as expert systems.
Several definitions have been presented to clearly distinguish this kind of systems
from other approaches [55–57]. Generally, an expert system is defined as a system
than can imitate the action of a human being for a given process. This definition
does not restrict the design of such systems by traditional Artificial Intelligence
approaches. Therefore, a variety of such systems can be built by using Fuzzy
Logic, Neural Networks, and Neuro-Fuzzy techniques. In most of these systems,
there is always a knowledge-based component that holds information about the
behavior of the system as simple rules followed by operators (usually in Fuzzy
Systems) or a large database collected from the system performance that a neural
network can be trained to emulate (Figure 5.27).

5.2 NEURAL CONTROLLERS

Neural controllers are a specific class of expert systems that deal with the
process of regulating a liner or nonlinear system (Figure 5.28). There are two
methods to train such system, namely, supervised and unsupervised. In the super-

176 Javid Taheri and Albert Y. Zomaya

vised approach, another controller usually exists, and the neural controller is
trained to imitate its behavior. In this case, the neural controller is connect in par-
allel to the other controller, and during the process, by sampling inputs and out-
puts, the network is trained to generate similar outputs for similar inputs of the
real controller. This process is known as online training. In contrast, in the case of
offline training, a database of the real-controller inputs and outputs can be
employed to train the network [58-60].

6 DECISION MAKERS

In the specific class of decision makers, which can also be viewed as an
expert system, a neural network is used to make critical decisions in unexpected
situations. One such application is popular in financial markets such as stock
market applications. One of the main characteristics of such systems that dis-
tinguish them from simple expert systems is their stability. In fact, these systems
must be able to produce acceptable output for untrained situations. Therefore,
a sufficiently rich data set must be used for the training process [61–63] (see
Figure 5.29).

Artificial Neural Networks 177

Knowledge-based
IF-THEN rules
Database

Inputs Outputs

Expert System

Fuzzy System

Neural Network

Neuro-Fuzzy

Figure 5.27. A generic expert system

Controller

Feedback

System

Neural Controller

Input Output

Figure 5.28. A neural network controller

7 ROBOT PATH PLANNING

Another complex scenario in which neural networks have been used with some
promise is that of robot path planning. In this case, the robot tries to navigate its
way to reach a target location. The situation can be made more complicated by
adding obstacles in the environment or even other mobile robots. Normally, this
situation is modeled as an optimization problem in which some cost function is
minimized (e.g., minimize the distance that the robot needs to travel) while satis-
fying certain constraints (e.g., no collisions) [64–66] (see Figures 5.30 and 5.31).

8 ADAPTIVE NOISE CANCELLATION

Neural networks have been used very effectively to filter noise. In this case, the
target signal (in the training set) is the nonnoisy signal that the input should be

178 Javid Taheri and Albert Y. Zomaya

109876543210 109876543210
−2

−1.5

−1

−0.5

0

0.5

1

−2

−1.5

−1

−0.5

0

0.5

1

+
+

+ ++
+

+
+

+ + +
+

+

++

(a) (b)

Figure 5.29. (a) Sample data and (b) network output after training

S

T

Figure 5.30. An optimal path for a sample robot work space

generating. The network must learn how to imitate the noise and in the process
manage to neutralize it. Many approaches have been introduced in the literature
over the years, and some of these have been deployed in real environments
[67–69]. An example is provided in Figures 5.32 and 5.33.

9 CONCLUSION

In this chapter, a general overview of artificial neural networks has been pre-
sented. These networks vary in their sophistication from the very simple to
the more complex. As a result, their training techniques vary as well as their
capabilities and suitability for certain applications. Neural networks have

Artificial Neural Networks 179

S

T

Input and Target Signals

Input
Target

Time
1

−3

−2

−1

0

1

3

2

1.5 2.5 3.52 3

Figure 5.32. Input and target signals for a noise-cancellation neural network

Figure 5.31. A robot work space with deep U-traps

attracted a lot of interest over the last few decades, and it is expected they will be
an active area of research for years to come. Undoubtedly, more robust neural
techniques will be introduced in the future that could benefit a wide range of
complex applications.

REFERENCES

[1] S. I. Gallant (1993): Neural Network Learning and Expert Systems, MIT
Press.

[2] N.B. Karayiannis and A.N. Venetsanopoulos, (1993) Efficient learning
algorithms for neural networks (ELEANNE), IEEE Transactions on
Systems, Man and Cybernetics, 23(5), 1372–1383.

[3] M.H. Hassoun and D.W. Clark (1988): An adaptive attentive learning
algorithm for single-layer neural networks, in Proceedings of the IEEE
International Conference on Neural Networks, 1, 431–440.

[4] M.E. Ulug (1994): A single layer fast learning fuzzy controller/filter: Neural
Networks, in Proceedings of the IEEE World Congress on Computational
Intelligence, 3, 1662–1667.

[5] N.B. Karayiannis and A.N. Venetsanopoulos (1992): Fast learning algo-
rithms for neural networks, IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, 39(7), 453–474.

[6] T. Hrycej (1991): Back to single-layer learning principles, in Proceedings
of the International Joint Conference on Neural Networks, Seattle, 2, 945.

[7] M.J. Healy (1991): A logical architecture for supervised learning: Neural
Networks, in Proceedings of the IEEE International Joint Conference on
Neural Networks, 1, 190–195.

[8] R.D. Brandt and L. Feng (1996): Supervised learning in neural networks
without feedback network, in Proceedings of the IEEE International
Symposium on Intelligent Control, pp. 86–90.

180 Javid Taheri and Albert Y. Zomaya

1
−4

−3

−2

−1

0

1

2

3

4
Output
Target

Error

1.5
(a) (b)

2 2.5 3 3.5 1 1.5
−1.5

−1

−0.5

−0

0.5

1

2

1.5

2.5

2 2.5 3 3.5

Figure 5.33. Final performance and error signal of the noise-cancellation neural network

[9] Y. Gong and P. Yan (1995): Neural network based iterative learning con-
troller for robot manipulators, in Proceedings of the IEEE International
Conference on Robotics and Automation, 1, 569–574.

[10] S. Park and T. Han (2000): Iterative inversion of fuzzified neural networks,
IEEE Transactions on Fuzzy Systems, 8(3), 266–280.

[11] X. Zhan, K. Zhao, S. Wu, M. Wang, and H. Hu (1997): Iterative learning
control for nonlinear systems based on neural networks, in Proceedings of
the IEEE International Conference on Intelligent Processing Systems, 1,
517–520.

[12] C.J. Chen, A.L. Haque, and J.Y. Cheung (1992): An efficient simulation
model of the Hopfield neural networks, in Proceedings of the International
Joint Conference on Neural Networks, 1, 471–475.

[13] G. Galan-Marin and J. Munoz-Perez (2001): Design and analysis of maxi-
mum Hopfield networks, IEEE Transactions on Neural Networks, 12 (2),
329–339.

[14] N.M. Nasrabadi and W. Li (1991): Object recognition by a Hopfield neural
network, IEEE Transactions on Systems, Man and Cybernetics, 21 (6),
1523–1535.

[15] J. Xu, X. Zhang, and Y. Li (2001): Kernel MSE algorithm: a unified frame-
work for KFD, LS-SVM and KRR, in Proceedings of the International
Joint Conference on Neural Networks, 2, 1486–1491.

[16] T. Hayasaka, N. Toda, S. Usui, and K. Hagiwara (1996): On the least
square error and prediction square error of function representation with
discrete variable basis, in Proceedings of the Workshop on Neural Networks
for Signal Processing, 6, 72–81. IEEE Signal Processing Society.

[17] D.-C. Park (2000): Centroid neural network for unsupervised competitive
learning, IEEE Transactions on Neural Networks, 11(2), 520–528.

[18] W. Pedrycz and J. Waletzky (1997): Neural-network front ends in unsuper-
vised learning, IEEE Transactions on Neural Networks, 8(2), 390–401.

[19] D.-C. Park (1997): Development of a neural network algorithm for unsu-
pervised competitive learning, in Proceedings of the International
Conference on Neural Networks, 3, 1989–1993.

[20] K.-R. Hsieh and W.-T. Chen (1993): A neural network model which com-
bines unsupervised and supervised learning, IEEE Transactions on Neural
Networks, 4 (2), 357–360.

[21] A.L. Dajani, M. Kamel, and M.I. Elmastry (1990): Single layer potential
function neural network for unsupervised learning, in Proceedings of the
International Joint Conference on Neural Networks, 2, 273–278.

[22] M. Georgiopoulos, G.L. Heileman, and J. Huang (1991): Properties of
learning in ART1, in Proceedings of the IEEE International Joint
Conference on Neural Networks, 3, 2671–2676.

[23] G.L. Heileman, M. Georgiopoulos, and J. Hwang (1994): A survey of
learning results for ART1 networks, in the Proceedings of the IEEE
International Conference on Neural Networks, IEEE World Congress on
Computational Intelligence, 2, 1222–1225.

[24] J. Song and M.H. Hassoun (1990): Learning with hidden targets, in the
Proceedings of the International Joint Conference on Neural Networks, 3, 93–98.

Artificial Neural Networks 181

[25] H.K. Kwan (1991): Multilayer feedbackward neural networks, in
Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing, 2, 1145–1148.

[26] J.F. Shepanski (1988): Fast learning in artificial neural systems: multilayer
perceptron training using optimal estimation, in Proceedings of the IEEE
International Conference on Neural Networks, 1, 465–472.

[27] N.B. Karayiannis and M.M. Randolph-Gips (2003): On the construction
and training of reformulated radial basis function neural networks, IEEE
Transactions on Neural Networks, 14 (4), 835–846.

[28] J.A. Leonard and M.A. Kramer (1991): Radial basis function networks for
classifying process faults, IEEE Control Systems Magazine, 11(3), 31–38.

[29] R. Li, G. Lebby, and S. Baghavan (2002): Performance evaluation of
Gaussian radial basis function network classifiers, SoutheastCon, 2002,
Proceedings IEEE, pp. 355–358.

[30] F. Heimes and B. van Heuveln (1998): The normalized radial basis function
neural network, in Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics, 2, 1609–1614.

[31] R.J. Craddock and K. Warwick (1996): Multi-layer radial basis function
networks. An extension to the radial basis function, in the Proceedings of
the IEEE International Conference on Neural Networks, 2, 700–705.

[32] J.C. Carr, W.R. Fright and R.K. Beatson (1997): Surface interpolation with
radial basis functions for medical imaging, IEEE Transactions on Medical
Imaging, 16(1), 96–107.

[33] M.A. Romyaldy Jr. (2000): Observations and guidelines on interpolation
with radial basis function network for one dimensional approximation
problem, in the Proceedings of the 26th Annual Conference of the IEEE
Industrial Electronics Society, 3, 2129–2134.

[34] H. Leung, T. Lo, and S. Wang, (2001): Prediction of noisy chaotic time
series using an optimal radial basis function neural network, IEEE
Transactions on Neural Networks, 12(5), 1163–1172.

[35] R. Katayama, Y. Kajitani, K. Kuwata, and Y. Nishida (1993): Self gen-
erating radial basis function as neuro-fuzzy model and its application
to nonlinear prediction of chaotic time series, in a Proceedings of
the Second IEEE International Conference on Fuzzy Systems,
pp. 407–414.

[36] K. Warwick and R. Craddock (1996): An introduction to radial basis func-
tions for system identification. A comparison with other neural network
methods, in the Proceedings of the 35th IEEE Decision and Control
Conference, 1, 464–469.

[37] Y. Lu, N. Sundararajan and P. Saratchandran (1996): Adaptive nonlinear
system identification using minimal radial basis function neural networks,
in Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing, 6, 3521–3524.

[38] S. Tan, J. Hao, and J. Vandewalle (1995): A new learning algorithm for RBF
neural networks with applications to nonlinear system identification, in
Proceedings of the IEEE International Symposium on Circuits and Systems,
3, 1708–1711.

182 Javid Taheri and Albert Y. Zomaya

[39] T. Ibayashi, T. Hoya, and Y. Ishida (2002): A model-following adaptive
controller using radial basis function networks, in Proceedings of the
International Conference on Control Applications, 2, 820–824.

[40] P.K. Dash, S. Mishra and G. Panda (2000): A radial basis function neural
network controller for UPFC, IEEE Transactions on Power Systems, 15(4),
1293–1299.

[41] J. Deng, S. Narasimhan, and P. Saratchandran (2002): Communication
channel equalization using complex-valued minimal radial basis function
neural networks, IEEE Transactions on Neural Networks, 13(3), 687–696.

[42] J. Lee, C.D. Beach, and N. Tepedelenlioglu (1996): Channel equalization
using radial basis function network, in Proceedings of the IEEE
International Conference on Neural Networks, 4, 1924–1928.

[43] J. Lee, C.D. Beach, and N. Tepedelenlioglu (1996): Channel equalization
using radial basis function network, in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing, 3,
1719–1722.

[44] R. Sankar and N.S. Sethi (1997): Robust speech recognition techniques
using a radial basis function neural network for mobile applications, in
Proceedings of IEEE Southeastcon, pp. 87–91.

[45] H. Ney (1991): Speech recognition in a neural network framework: dis-
criminative training of Gaussian models and mixture densities as radial
basis functions, in Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, 1, 573–576.

[46] I. Cha and S.A. Kassam (1994): Nonlinear image restoration by radial basis
function networks, in Proceedings of the IEEE International Conference on
Image Processing, 2, 580–584.

[47] I. Cha and S.A. Kassam (1996): Nonlinear color image restoration using
extended radial basis function networks, in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing, 6,
3402–3405.

[48] A.G. Bors and I. Pitas (1998): Optical flow estimation and moving object
segmentation based on median radial basis function network, IEEE
Transactions on Image Processing, 7 (5), 693–702.

[49] D. Gao and G. Yang (2002): Adaptive RBF neural networks for pattern
classifications, in Proceedings of the International Joint Conference on
Neural Networks, 1, 846–851.

[50] C. Fan, Z. Jin, J. Zhang, and W. Tian (2002): Application of multisensor
data fusion based on RBF neural networks for fault diagnosis of SAMS, in
Proceedings of the 7th International Conference on Control, Automation,
Robotics and Vision, 3, 1557–1562.

[51] J.T. Tou and R.C. Gonzalez (1974), Pattern Recognition, Reading, MA,
Addison-Wesley.

[52] Z.-P. Lo, Y. Yu, and B. Bavarian (1992): Derivation of learning vector
quantization algorithms, in Proceedings of the International Joint
Conference on Neural Networks, 3, 561–566.

[53] P. Burrascano (1991): Learning vector quantization for the probabilistic neu-
ral network, IEEE Transactions on Neural Networks, 2(4), 458–461.

Artificial Neural Networks 183

[54] N.B. Karayiannis and M.M. Randolph-Gips (2003): Soft learning vector
quantization and clustering algorithms based on non-Euclidean norms:
multinorm algorithms, IEEE Transactions on Neural Networks, 14(1),
89–102.

[55] L. Medsker (1994): Design and development of hybrid neural network and
expert systems, in Proceedings of the IEEE International Conference on
Neural Networks, IEEE World Congress on Computational Intelligence, 3,
1470–1474.

[56] M.S. Kurzyn (1993): Expert systems and neural networks: a comparison,
Artificial Neural Networks and Expert Systems, in Proceedings of the First
International Two-Stream Conference on Neural Networks, New Zealand,
pp. 222–223.

[57] A.V. Hudli, M.J. Palakal and M.J. Zoran (1991): A neural network based
expert system model, in Proceedings of the Third International Conference
on Tools for Artificial Intelligence, pp. 145–149.

[58] W.-Y. Wang, C.-Y. Cheng and Y.-G. Leu (2004): An online GA-based out-
put-feedback direct adaptive fuzzy-neural controller for uncertain nonlin-
ear systems, in IEEE Transactions on Systems, Man and Cybernetics, Part
B, 34(1), 334–345.

[59] Y. Zhang, P.-Y. Peng and Z.-P. Jiang (2000): Stable neural controller design
for unknown nonlinear systems using backstepping, IEEE Transactions on
Neural Networks, 11(6), 1347–1360.

[60] A.L. Nelson, E. Grant and G. Lee (2003): Developing evolutionary neural
controllers for teams of mobile robots playing a complex game, in
Proceedings of the IEEE International Conference on Information Reuse and
Integration, pp. 212–218.

[61] L. Rothrock (1992): Modeling human perceptual decision-making using an
artificial neural network, in Proceedings of the International Joint
Conference on Neural Networks, 2, 448–452.

[62] S. Mukhopadhyay and H. Wang (1999): Distributed decomposition archi-
tectures for neural decision-makers, in Proceedings of the 38th IEEE
Conference on Decision and Control, 3, 2635–2640.

[63] G. Rogova, P. Scott, and C. Lolett (2002): Distributed reinforcement learn-
ing for sequential decision making, in Proceedings of the Fifth
International Conference on Information Fusion, 2, 1263–1268.

[64] J. Taheri and N. Sadati, (2003): Fully modular online controller for robot
navigation in static and dynamic environments, in Proceedings of the 2003
IEEE International Symposium on Computational Intelligence in Robotics
and Automation, 1, 163–168.

[65] N. Sadati and J. Taheri (2002): Genetic algorithm in robot path planning
problem in crisp and fuzzified environments, in Proceedings of the IEEE
International Conference on Industrial Technology, 1, 175–180.

[66] N. Sadati and J. Taheri (2002): Solving robot motion planning problem
using Hopfield neural network in a fuzzified environment, in Proceedings of
IEEE International Conference on Fuzzy Systems, 2, 1144–1149.

[67] R. Bambang (2002): Active noise cancellation using recurrent radial basis
function neural networks, in Proceedings of the Asia-Pacific Conference on
Circuits and Systems, 2, 231–236.

184 Javid Taheri and Albert Y. Zomaya

[68] C.K. Chen and T.-D. Chiueh (1996): Multilayer perceptron neural net-
works for active noise cancellation, in Proceedings of the IEEE
International Symposium on Circuits and Systems, 3, 523–526.

[69] L. Tao and H.K. Kwan (1999): A neural network method for adaptive noise
cancellation, circuits and systems, in Proceedings of the IEEE International
Symposium on Circuits and Systems, 5, 567–570.

Artificial Neural Networks 185

Chapter 6

SWARM INTELLIGENCE
James Kennedy
Bureau of Labor Statistics

Swarm intelligence refers to a kind of problem-solving ability that emerges in
the interactions of simple information-processing units. The concept of a swarm
suggests multiplicity, stochasticity, randomness, and messiness, and the concept
of intelligence suggests that the problem-solving method is somehow successful.
The information-processing units that compose a swarm can be animate, mechan-
ical, computational, or mathematical; they can be insects, birds, or human beings;
they can be array elements, robots, or standalone workstations; they can be real
or imaginary. Their coupling can have a wide range of characteristics, but there
must be interaction among the units. Given the diversity of paradigms that call
themselves swarm intelligence, this chapter will focus on the particular approach
known as particle swarm optimization.

1 PARTICLE SWARMS

The particle swarm algorithm is based on a certain insight regarding human
behavior and cognition. The insight is simple, as is the algorithm that follows
from it. Simply put: people learn to make sense of the world by talking with other
people about it. This not-very-technical observation enables us to design a family
of computer algorithms that encode some population of individuals who propose
solutions to a problem, and then are able to refine those solutions by interacting
with their “peers,” picking up suggestions from their neighbors, and adjusting
their own patterns of variables.

Over time, in one of these programs, individuals begin to find good problem solu-
tions, even when the problem is very difficult—for instance, when it is multimodal,
nonlinear, noisy, or nondifferentiable. This technique has been used for binary prob-
lems, multiobjective problems, dynamic problems that keep changing, and many
other tough kinds of problems. It has been used for a variety of engineering problems,

from the maintenance of electrical grids to the classification of physiological variables
in early diagnosis of disease.

As will be seen, there have been, over the past decade, many variations in the
particle swarm algorithm. Some versions are almost unrecognizable, and some
variations are extremely minor tweaks that enhance performance significantly.
The following sections will introduce the canonical form of the algorithm and
some common variations, and then discuss some ongoing research on different
problem domains and different lines of alteration of the algorithm.

1.1 General Characteristics

Every known version of the particle swarm algorithm has certain characteris-
tics. First, every version employs a population of particles. The number of these is
typically far less than in the usual evolutionary algorithm; most researchers use
twenty to fifty particles in a population.

Second, every particle swarm has some sort of topology describing the inter-
connections among the particles. The “traditional” topologies, which are becoming
somewhat antiquated in light of current research but are still widely used, are call
gbest and lbest. The gbest topology (or sociometry, since it is often considered to be
like a kind of social network) can be thought as a fully interconnected population;
that is, every member of the population can be influenced by every other one. In
the standard particle swarm, this means that particles are affected by the individ-
ual that has found the best problem solution so far—the very best one in the pop-
ulation. Thus, though gbest contains the greatest possible number of connections
between pairs of population members, in practice it really only means keeping
track of the best solution found. The lbest sociometry is a ring lattice, where every
particle is connected to the particles on either side of it in the population array.
As will be seen, the advantage of this structure is that subpopulations can con-
verge independently on diverse optima in the problem space. Thus the lbest topol-
ogy, while typically slower to converge on an optimum, is also less susceptible to
the allure of local optima; its search is slower and more thorough than gbest’s.
Thousands of other topologies have been tested, as will be described below.

A third characteristic of every particle swarm is some choice of a change rule.
The particle moves through the search space, selecting a point at time t that is
dependent on its position at t−1, its previous successes, and the previous successes
of its neighbors. There is a “standard” formula for determining the next step, but
this has evolved over time, and some researchers even have tried replacing the for-
mula with a kind of random number generator. It may seem that the particle
swarm is typified by the trajectories of the particles through the search space,
but this view is only correct if the concept of “trajectory” is stretched to include
random search around a center.

Evolutionary search is often described in terms of two phases, called explo-
ration and exploitation [28]. The search algorithm first searches the environment
for good regions, and then, having found a good region of the search space, looks
for the best point in that region. In the particle swarm, however, step-size—the
range of investigation of a particle in the search space—is scaled to consensus in
the neighborhood; if a particle and its neighbors have had success in a particular
area, then that area will be searched, but if some neighbors are still investigating

188 James Kennedy

other regions of the problem space, the particle will still tend to explore widely.
Concepts such as exploration versus exploitation seem to assume certain charac-
teristics of the search space—for instance, that it contains subdivisions that are
locally monotonic. The particle swarm’s assumptions are more flexible; a well-
designed particle swarm can search multiple regions of the space simultaneously,
and particles can switch flexibly from one locally optimal region to another.

A fourth characteristic of all known particle swarms is what may loosely be
termed the interaction rule. A particle considers its successes and some other parti-
cles’ successes in determining the next point to test in the search space. How this
point is chosen, though, may follow any of a number of possible rules, and the list
of rules is growing as researchers push the limits of what is known in this young field.

1.1.1 The Canonical Algorithm

This section will present the most common form of particle swarm algorithm
as it currently exists, and discuss some of its features.

1.1.2 Constants and Initialization

There is no law that says that particles must be initialized randomly through
the problem space, but that is the general practice, given that there is no special
knowledge about a better way to do it. Three variables need to be initialized, most
importantly the positions of the particles, represented algebraically as xi , and
their velocities vi . If the researcher chooses to initialize vi to a vector of zeroes,
then pi should be different from xi in order to make the particles move; but more
frequently, p xi i= for the first iteration, and nonzero velocity values propel the
particle through the search space in some randomly chosen direction.

Xmax is simply a constant that defines the range of the search space. It may
vary on each dimension, but is simplified here as a single constant, as many test
functions treat variables identically. The constant Vmax has a history that will be
described below. It may be used to constrain search during the iterative phase of
the algorithm, but it is a heuristic device only; in the canonical version, Vmax
simply serves to initialize particle velocities in-bounds.

The “acceleration constants” phi1 and phi2 and the “constriction coefficient”
chi (j1, j2, and χ) are the result of analysis by Maurice Clerc, described below.
The value of chi is derived from the sum of the two phi constants by a formula,
and phi1 and phi2 are set to sum to 4.1, just because it works.

1.1.3 Neighborhood Best

In the canonical particle swarm, each particle is influenced by its best neigh-
bor. The set of particles to which a particle i is topologically connected is called
i’s neighborhood. The neighborhood may be the entire population or some subset
of it. Normally the algorithm loops through the neighborhood, comparing the
best function results found so far (pbest[k]), and assigns the index of the best par-
ticle to the variable g. Note that not all versions of the particle swarm use the
best neighbor; some use an average of all neighbors’ previous successes, but these
versions are relatively new and not standard.

Swarm Intelligence 189

1.1.4 Selecting a Point to Test

The particles oscillate around a point defined as a stochastic average between
the individual particle’s previous best and the best neighbor’s previous best. This
oscillation is the result of a formula that adjusts the particle’s velocity at each
time-step. As the particle gets farther from the mean, the velocity becomes smaller
until it reverses direction and the particle goes the other way.

As the two terms added to v[i][d] are weighted by uniformly distributed ran-
dom numbers, the pattern is not cyclic; it gets its characteristic amplitude and
wavelength from the value of phi, but does not strictly adhere to a periodic pat-
tern. But this source of irregularity is not the most important source of variation
in the particle’s trajectory. More importantly, the particle may find a new point in
the search space that is better than its previous best. Further, some member of its
neighborhood might find a better point. In this case, it may be that the “best
neighbor” at time t is different from that at t−1, or it may simply be that the same

190 James Kennedy

Table 6.1. Pseudocode representation of the canonical particle swarm algorithm.
Xmax ← range of search space
Vmax ← proportional to range of search space
phi = 4.1
chi = 0.792

Initialize
for i = 1 to number of particles

for j = 1 to number of problem dimensions
x[i][d] = uniform rand() in Xmax // position of particle i on dimension d
v[i][d] = uniform rand() in ± Vmax
p[i][d] = x[i][d] // for start

pbest[i] = eval(p[i]) // arbitrary for initialization
if pbest[i] < pbest[gbest] then gbest = i

Iterate
for i = 1 to number of particles

g = index of neighbor with best pbest[i]

//Select point to test
for j=1 to dimension

v[i][d] = chi × (v[i][j] + rand()× phi1 × (p[i][d] − x[i][d]) + rand()× phi2 × (p[g][d] − x[i][d]))
for j = 1 to dimension

x[i][d] = x[i][d] + v[i][d]

// Evaluate new point
eval = eval(x[i])

// If it's better than best so far
if eval < pbest[i] then do

pbest[i] = eval
for j = 1 to dimension

p[i][j] = x[i][j]
if pbest[i] < pbest[gbest] then gbest = i

Until termination criterion is met

neighbor has found a better point, so that p[g][d] has changed, even though g has
not. These improvements, of course, guide the progress of the algorithm and are
central to its ability to optimize complex functions. The result, though, is an
aperiodicity of the particles’ trajectories that is very hard to comprehend: this
messy, complicated, ever-evolving, highly interactive process is what we call
swarm intelligence.

The amplitude of the oscillation turns out to be a very important feature of
the particle swarm search strategy. It can be seen to have two components. First,
as seen above, the formula, even in its deterministic form, produces a wave that
searches back and forth. But more importantly, and more difficult to grasp, the
difference between the individual’s previous best p[i][d] and the neighborhood
best p[g][d] wanders constantly as a result of the random coefficients applied to
each variable. The random coefficients vary between 0.0 and 1.0, meaning that, if
a coefficient equals zero, that variable (p[i][d] or p[g][d]) will have no effect.
If both coefficients are near zero, the velocity will retain its previous value, and if
both are near 1.0, the velocity may be greatly modified. The particle may move
into a region on the next step that is bounded by a sort of hyperrectangle,
bounded by the current position plus the t−1 velocity in the corner where all the
random numbers equal zero, and the current position plus the t−1 velocity plus
the differences between the current position and both previous bests, multiplied
by their acceleration constants j1 and j2, when the random numbers equal 1.0.

The size of this hyperrectangle is defined by the difference, on each dimension,
between p[i][d] and p[g][d]. The meaningful implication of this is that the range
of the search is modulated by the difference between particles’ previous best
points – what we call consensus. When a particle and its neighbor have found suc-
cess in the same region of the search space, they “agree” on where to look for even
better points. The degree of consensus scales the extent of the search.

In sum, the particle selects points in the search space based on a kind of oscil-
latory trajectory that carries it back and forth around the region defined by where
it has had success before, and where its neighbors have found good solutions.

1.1.5 The Evaluation

The particle swarm searches for the minimum or maximum of a function, and
evaluates the entire function all at once. In a sense this resembles the measure-
ment of fitness in evolutionary computation methods. Importantly, this approach
is distinguished from the variable-by-variable type of evaluation seen in cogni-
tivistic – i.e., traditional artificial intelligence – approaches to problem solving
in computer programs. It is not possible to assign credit to variables in terms of
their contribution to the evaluation of an entire pattern, nor does it turn out to
be necessary.

1.2 The Sociocognitive Metaphor

Traditional AI grew up together with cognitive psychology, as a reaction to the
behaviorism that prevailed in psychology in the middle of the twentieth century.
The behaviorists had essentially blocked any study of mental phenomena in the
universities, so the “cognitive revolution” began with a commonsense approach,

Swarm Intelligence 191

looking at the thinking processes of the individual as an isolated unit. That point
of view is consistent with the experience of thinking; that is, our thoughts seem like
a private monologue or story, occurring in our own phenomenological worlds.

Social psychologists, though, were forming another perspective on cognition.
Many studies showed that individuals’ beliefs, memories, attitudes, and thought
processes were heavily influenced by those around them. As early as 1936, Sherif
[67] was showing how reported perceptions were shaped by norms; Asch’s [5]
famous conformity experiments showed how behavior could be shaped by the
influence of others; Crutchfield [19] and Deutsch and Gerard [21] further focused
in on factors affecting the social influence of groups on individuals. At the same
time, persuasion researchers from Hovland [36] to Cialdini (e.g., [13]) were noting
that the choices people make are directly and irrefutably affected by their social
atmosphere.

An important study by Nisbett and Wilson [55] showed that people are often
unaware of their own cognitive processes, and are unable to report verbally how
their own minds arrived at a conclusion – many self-reported cognitive processes
are better described as “rationalizations” than “descriptions” of cognitive
processes. Note that early AI was largely based on self-reported processes [54]; as
such, it is clear that there will be room for improvement over the heuristic algo-
rithms employed in traditional artificial intelligence paradigms.

Fundamental to the particle swarm algorithm is a view of cognition as a social
process. The internal monologue of thought is easily seen as an imagined conver-
sation between the thinker and some other – the other may be another person,
another instance of the self, or, it seems possible, the self may perceive itself as
the listener as another imagined individual produces the monologue. In any case,
Levine, Resnick, and Higgins [50] noted that, “Outside the laboratory and the
school, cognition is almost always collaborative” (p. 599). According to them,
intersubjectivity, a shared understanding of the task and context, is required for
coordinated cognitive activity, and they proposed research in a new field they call
sociocognition, which comprises the integration of social interaction and cogni-
tion. Their statement was adamant: “Although some might claim that the brain
as the physical site of mental processing requires that we treat cognition as a fun-
damentally individual and even private activity, we are prepared to argue that all
mental activity – from perceptual recognition to memory to problem solving –
involves either representations of other people or the use of artifacts and cultural
forms that have a social history” (p. 604).

Consider, for example, the topic of false memory, for instance as researched by
Elizabeth Loftus [51]. Loftus has shown repeatedly that memories created by sug-
gestion are indistinguishable from “real” memories, that is, memories generated
by the individual’s first-hand perception of a situation. This research supports the
view of memory as a social construction. Decades of work by Albert Bandura [8]
has consistently shown the numerous and important ways that human cognition
is a function of social learning; Bandura focuses on observational learning,
mostly, where the individual sees how someone else has solved a problem, and
imitates that. Likewise, Latané’s social impact theory research [56] shows an indi-
vidual’s attitudes and beliefs to be a simple function of the strength, immediacy,
and number of others who hold that attitude or belief. Very recent research by
Wegner [72] shows that even “conscious will” is largely illusory.

192 James Kennedy

The starting-point then for understanding the metaphor underlying this prob-
lem-solving technique is to understand that human intelligence itself operates
through interaction among individuals. Our conscious experience of thinking is
not a good scientific description of cognition. It appears that a better descrip-
tion would focus less on internal, private processes, and more on interpersonal
dynamics.

Cognitive dissonance theory [30; 31] portrays the mind as a set of cognitive
elements related to one another in complex logical and affective ways. The indi-
vidual is motivated to find and maintain consistency among the elements; for
instance, it is uncomfortable to hold two beliefs that logically contradict one
another, or to find oneself in agreement with someone one doesn’t like. In the cur-
rent view, “dissonance” is the result of a cognitive evaluation function, where a
vector of cognitive elements and their interrelationships is input, and a single
measure of goodness is produced. Thinking, then, is seen to be a process of opti-
mization, of constant searching for ways to arrange and rearrange beliefs
and attitudes so as to produce the most consistent – least dissonant – pattern.
One important aspect of this process is that people simply talk to one another,
and observe one another, and learn from one another how to make sense of a
confusing world.

Particle swarms are most typically used by engineers and others who apply
mathematics to difficult tasks. These innovators need a method that works, some-
thing that can solve hard problems with a minimum of tweaking. The two per-
spectives on the algorithm, the sociocognitive perspective and the engineering
perspective, constantly interact symbiotically to produce new developments in the
field—new ways to make the algorithm work better, faster, and more efficiently.
The metaphor of interacting human minds is a rich one for improving the para-
digm. For instance, we may ask:

● Is human social interaction best conceived as averaging between two points of
view?

● Are individuals influenced equally by everyone they know? And, if not, how
are the differences best summarized in a computer algorithm?

● Is influence reciprocal between individuals?

● Are individuals affected by other individuals, or by statistical norms of their
group?

. . . and so on. Thinking about these kinds of questions sometimes results in new
variations of the algorithm, oftentimes with improved optimization results. The
social–psychological and applied-mathematical facets of the algorithm benefit
mutually from one another.

1.3 Origins of the Present-Day Canonical Particle Swarm

This section describes some steps in the development of the algorithm since
its initial discovery in 1994. A subsequent section will describe some current
research frontiers, and finally, some speculation about future directions will be
offered.

Swarm Intelligence 193

1.3.1 Social Psychology and Genetic Algorithms

The seeds of the particle swarm were planted when the present author worked
with Bibb Latané and his colleagues at the University of North Carolina, creat-
ing computer simulations of social systems using the Warsaw Simulation System
[56]. These simulations, which were supported by decades of human-subjects
research by Latané on social impact theory, were based on cellular automata [74];
a population was coded as a grid of individuals who interacted with one another
according to rules programmed by the researcher. The outstanding finding of
that research was that simple local interaction rules, similar to what Latané
had derived from his experimentation and observational research with human
subjects, could result in consistent and meaningful large-scale patterns of belief,
attitude, and behavior in the society.

In 1992, the present author began meeting with a computational intelligence
brown-bag lunchtime group, comprising mostly engineers and computer scien-
tists (including Russ Eberhart), at a research institute that shall remain nameless.
In those lively discussions it became apparent that the social dynamics simulated
in the Psychology Department at Chapel Hill had much in common with the
dynamics simulated in evolutionary computation. Populations of individuals
interacted, the population changed over time, and global order emerged from
local behavior.

The most important difference had to do with the presence of something
called “a problem.” The evolutionary algorithms were being used to find the
optima of complicated mathematical functions, whereas the social simulations
simply iterated to an equilibrium state. But it seemed obvious that social systems
do solve problems; the state of human knowledge, for instance, does improve over
time. What would happen if the states of the individuals in the social simulations
were evaluated on the basis of some measure of goodness, similar to cognitive
dissonance?

There are important differences between evolutionary and social–psychologi-
cal processes. One of the biggest philosophical differences has to do with selec-
tion. Evolutionary methods find increasingly better problem solutions by killing
off worse-performing members of the population and letting better ones repro-
duce; each iteration represents a “generation” in the history of the population.
Societies, though, retain individuals over iterations; an iteration is simply a unit
of time. Individuals are seen as changing over time, rather than being replaced.

The fundamental principle of evolution is competition for survival.
Individuals who are allowed to survive may reproduce. Mutation, crossover,
and/or other operators may affect the offspring, and as the fittest of each gener-
ation is allowed to survive and reproduce, the quality of the population, typically,
improves over time.

The fundamental principle of the particle swarm is cooperation and sharing
of knowledge. Every individual participates in the population’s improvement as
both teacher and learner. Over time, due to a kind of ratchet effect [69], the pat-
terns of variables improve. Individuals that communicate with one another tend
to gravitate into the same regions of the problem space, as better-performing indi-
viduals influence lesser ones. Depending on the population topology and other
factors, the individuals may cluster around diverse local optima, or they may all

194 James Kennedy

end up in the same region. When local optima have been well searched, it is quite
probable that the particles are clustered around the global optimum, or at least an
excellent local one.

1.3.2 Flocking and Schooling

The first particle swarm program was written by modifying a bird-flocking
simulation. Two disparate groups of researchers in the 1980s [64; 33] had derived
very similar models of the dynamics of bird flocks. Reynolds, working from a
computer-graphics perspective (e.g., he wanted to be able to portray realistic bird-
flock animations on a computer screen), concluded that bird flocking could be
simulated using three rules:

● Separation: steer to avoid colliding with local flockmates

● Alignment: try to move in the same average direction as local flockmates

● Cohesion: steer to move toward the perceived center of the local flock

Heppner, a biologist, made three-dimensional movies of bird flocks, and care-
fully studied the dynamics of their choreography. His model, though it was devel-
oped independently of Reynolds’, contained essentially the same three rules, plus
a fourth: attraction to a roost. His flocks eventually settled down.

The present author had been experimenting with these flocking models, and
added one more feature, with surprising results [45]. Inspired by Heppner’s
“attraction to a roost,” “cornfield vector” was added, which in the first program
was simply a two-dimensional point on the plane of the computer monitor. This
point was considered to simulate some food on the ground; birds flying past
might see the food, or some sign of the presence of food, and most importantly,
birds flying past could see that other birds seemed to be zeroing in on some tar-
get. Thus, members of the flock were attracted toward positions that other mem-
bers of the flock had found to be relatively near to food.

The first experiments were shocking. The flock immediately converged on the
point on the screen, as if sucked in by a vacuum cleaner.

That first algorithm worked as follows: each bird

● evaluated its distance from the cornfield

● identified some “neighbors” who were nearby on the display plane

● identified which of its neighbors had come closest to the target point, and
where that had happened (note that the location of the point was not known,
but only the distance from it)

● if its position was to the right of (above) its own previous best point, then it
moved some random amount to the left (down), else it moved a random
amount to the right (upward)

● if its position was to the right of (above) the best neighbor’s best point, it
moved a random amount to the left (down), otherwise right (upward)

The success of the food-searching program prompted the second set of exper-
iments, conducted the same day. The evaluation of distance from an arbitrary

Swarm Intelligence 195

point on the screen was replaced by an XOR feedforward neural network. A net-
work was defined with two input nodes, three hidden nodes, and one output,
requiring nine connection weights and four biases. Thus optimizing the weights
(including biases) meant searching through a thirteen-dimensional space. Weights
were initialized with random values, and the program ran iteratively. For testing
purposes, two of the weights were graphed on the screen, meaning that the entire
flock could be watched as a display of swarming particles (at this time, the algo-
rithm was yet unnamed). The code for evaluating the network was cut from some
public-domain source code and pasted into the program where the evaluation of
distances to the cornfield vector had been.

Again, the flock had no difficulty finding an optimal matrix of weights. The
plotted points zoomed immediately, it seemed, with no hesitation, toward a con-
figuration that resulted in squared error in the network very near zero.

At this point, I sent some code to Russ Eberhart, who compiled it and agreed
that this new algorithm did seem to successfully optimize the weights in the net-
work. He and I have worked together on the paradigm ever since.

1.3.3 The Evolution of the Paradigm

We made several changes to the paradigm almost immediately. First, since the
task of identifying neighbors in the search space (a vestige of the flocking simu-
lation) was very expensive computationally, we experimented with topological
neighbors, both gbest and lbest, and found that these worked just as well. The
advantage here was that neighborhoods were constant, and did not have to be
recalculated on every iteration depending on the positions of all the particles in
the search space.

Another important change in the first weeks of experimentation involved
replacing the inequality rule. The very first versions simply said that if a particle’s
current position was greater than the stochastic average of its and its neighbor’s
pbests, it would change by a negative amount, and if it was less than the target it
would change by a positive amount. The new version used the distance, on each
dimension, between the particle’s present position and the stochastic average of
the previous bests:

v[i][j] = v[i][j] +
rand() × (phi1) × (p[i][d] − x[i][d]) +
rand() × (phi2) × (p[g][d] − x[i][d]);

if v[i][d] > Vmax then v[i][d] = Vmax;
else if v[i][d] < -Vmax then v[i][d] = -Vmax;

x[i][d] = x[i][d] + v[i][d];

There was some initial experimentation with the two constants, called above
phi1 and phi2; some experiments found that it was better to have the first one
bigger than the second, and some found it was better to make the second con-
stant bigger. These two constants, randomly weighted, assign weight to the two
“differences,” where the first is an “individual” (sometimes “cognitive”) term,
and the second is an “other” (or “social”) term. Because it did not appear that
one weighting scheme or the other was superior across a range of situations,
and in the interest of parsimony, we decided to make the two constants equal,

196 James Kennedy

and let the random number generator make the decision about which should be
larger.

Now that the two phi constants were established to be equal to one another,
the system still needed to have values defined for them and for Vmax. Numerous
studies were conducted, both published and unpublished, and by convention
most researchers felt that a value of 2.0 worked well for each phi. Values that were
too low tended to allow the particle to wander too far from promising regions of
the search space, and values too high tended to jerk the particle back and forth
unproductively.

Vmax was a different kind of problem. Vmax set a limit for the velocity, which
otherwise was defined by the size of the previous iteration’s velocity and the two
differences. Without Vmax the system simply exploded, for reasons that were ini-
tially not understood. If the velocity was not limited, it would become larger and
larger with each iteration until it exceeded the data type range. With Vmax the
particle’s trajectory became pseudocyclic, oscillating (or maybe “twitching” is a
better word for it) around the average of the previous bests.

When the difference between the individual’s and other’s pbests were large,
Vmax had the effect of slowing the exploratory search by limiting the particle’s
trajectory to “smallish” steps between the two pbests and slightly beyond them.
When the difference between them was small, though, especially when it was
small relative to Vmax, the amplitude of the trajectory was modulated by Vmax,
and the particle was not able to converge in the later stages of search.

What was the right size for this constant? Research with neural networks and
standard testbed problems typically concluded that a value of approximately 4.0
was appropriate. But several papers were published during this time that noted
the inability of the swarm to converge on optima – it is usually desirable for
an optimizer to search in smaller steps as it approaches the peak of an optimal
region. It was clear that something needed to be done about this unsatisfying
situation.

1.3.4 Controlling Explosion and Convergence

The present author presented a paper at the 1998 Evolutionary Programming
conference (Kennedy, [40]), which plotted the trajectories of some one-dimen-
sional deterministic particles, where the previous bests were combined and did
not change with time. In other words, these simplified particles followed the rule:

v = v + (phi) × (p − x)
x = x + v

These graphs showed, first of all, that particles without random coefficients
did not explode; their trajectories were very orderly and well-behaved. Second of
all, the trajectories for each value of phi were unique, often presenting the appear-
ance that the particle in discrete time was skipping across underlying waveforms,
which varied with the value of phi. The graphs were presented to the conference
as a kind of puzzle. Why does the system explode when randomness is added?
What is the nature of the underlying wave patterns?

These questions resulted in several avenues of research. In an informal talk to
a workshop at the Congress of Computational Intelligence in Anchorage later

Swarm Intelligence 197

that same year, Doug Hoskins noted that simply varying phi between two values
would cause the velocity to increase out of control. He compared this effect to
pumping a swing, where the change in the coefficient added energy to the system.

Ozcan and Mohan [57, 58] analyzed the simplified particle system and deter-
mined that the particle was “surfing the waves” of underlying sinusoidal pat-
terns. They proposed that particles might be equipped with “sensors” that
determined what kind of search was being conducted; if a particle stayed in a
region too long, for instance, a coefficient could be adapted to enlarge the scope
of search.

At about this time, Shi and Eberhart [24, 23] introduced a convention they
called the “inertia weight,” which depreciated the contribution of the t-1 velocity.
By using an inertia weight less than 1.0, it was possible to control the explosion
of the algorithm. The inertia weight algorithm was implemented as

v[i][j] = W × v[i][j] +
rand()× (phi1) × (p[i][d] − x[i][d]) +
rand()× (phi2) × (p[g][d] − x[i][d]);

x[i][d] = x[i][d] + v[i][d];

where W was the new coefficient in the algorithm. Several values were experi-
mented with; those researchers settled on a method of reducing the value of the
inertia weight, typically from about 0.9 to about 0.4, over the course of the itera-
tions. Though Vmax was no longer necessary for controlling the explosion of the
particles, Eberhart and Shi continued to use it, often setting Vmax = Xmax, in
order to keep the system within the relevant part of the search space.

In France, Maurice Clerc was developing a mathematical analysis of the sys-
tem in order to understand the explosion and convergence properties of the par-
ticle swarm. He reduced the simplified, deterministic, one-dimensional,
single-particle system to an algebraic matrix, by the following steps.

The simplified, deterministic algorithm can be depicted algebraically as

() ()v v p x p x

x x v
t t i i g i

t t t

1 1 2

1 1

7 7= + - + -

= +

{ {+

+ +

And then, by substitution,

,p
p p

y p x

wherei g

t

1 2
1 2=

+
= +

= -

{
{ {

{ { {

Given these transformations, the system can be written as

vt + 1 = vt + j yt
xt + 1 = − vt + (1 − ϕ) yt

which can be represented in matrix form:

P
v
y

M
1
1 1

t
t

t
=

=
- -

{
{

f
f
p

p

198 James Kennedy

The velocity and position of the system are then calculated:

Pt + 1 = M ˙ Pt

or, to generalize:

Pt = Mt
˙ P0

To control explosion, Clerc reasoned, one must ensure that Mt approaches a
limit of zero as time approaches infinity. This is done by ensuring that the eigen-
values of M are less than 1 in module. Clerc accomplished this by application of
a system of “constriction coefficients.”

The simplest and most widely used version is Clerc’s Type 1” constriction:

vt + 1 = c (vt + j1 ⊗ (pi − xi) + j2 ⊗ (pg − xi))
xt + 1 = xt + vt + 1

where the constriction coefficient c is defined as

, [,] > . (. . .k where and usually and
2 4

2 0 1 4 0 1 0 4 1
2

!=
- - -

= =|
{ { {

l { l {

Adding randomness, multidimensionality, and population size brings us back
to the pseudocode example given in Table 6.1, the canonical particle swarm of the
present time. It should be noted that the Type 1” constriction scheme is mathe-
matically equivalent to the inertia-weight model, with appropriate values of coef-
ficients.

1.4 Current Directions in Particle Swarm Research

Research on the particle swarm has fanned out in many different directions.
For this chapter we will touch briefly on some developments and refer the reader
to primary sources. This section will cover several specific problem domains to
which the algorithm has been applied, and a later section will discuss variations
in the algorithm itself.

1.4.1 Multiobjective optimization

It sometimes happens that a problem is defined in terms that require solving
multiple problems simultaneously. Often the solutions to the various problems
conflict with one another, and the best solution is a kind of compromise. The
boundary between the two problems’ solution regions tends to comprise multiple
points; that is, there can be a set of solutions that equally well satisfies the con-
flicting demands. The set of solutions is called a Pareto set.

Optimization discussed to this point has searched for a single best solution to
a problem. In using the particle swarm for multiobjective optimization, however,
most researchers try to find a method where each particle represents a single point
on the Pareto front and the overall solution is distributed across the entire popu-
lation. To this writer, at least, the real problem of multiobjective optimization
with particle swarms is the coordination of individuals. Human societies are full
of reciprocity, roles, and specialization; the ordinary particle swarm has none.
The work of a society may be seen as multiobjective optimization – you need to

Swarm Intelligence 199

heat your house as well as feed the family, as well as maintain transportation, etc.
There are many objectives that must all be met to ensure survival and comfort.
And this multiplicity of objectives is met through role specialization. Similarly,
researchers are currently experimenting with ways for particles to “specialize”
within the context of a multiobjective problem.

Mexican researcher Coello Coello [17, 18] has developed a particle swarm
variation he calls MOPSO, for multiobjective particle swarm optimization.
MOPSO imposes a kind of grid on the search space, and maintains a global
repository of nondominated vectors (e.g., vectors that best meet the optimization
criteria) in each section of the grid. Each hypercube section of the grid is assigned
a fitness that is inversely proportional to the number of points in it; this gives
advantage to sections with fewer particles and helps in finding distributed solu-
tions. Rather than having particles influence one another, solutions stored in the
repository are substituted for the best neighbor; the repository member to influ-
ence a particle is chosen through roulette-wheel selection. Coello Coello reports
that MOPSO performed “competitively” with other algorithms, in terms of the
goodness of solutions found, and was computationally faster than other methods.

Parsopoulos and Vrahatis [59] adapted some techniques from genetic algo-
rithms in order to develop a “multi-swarm” that could optimize multiple objec-
tives simultaneously. The vector-evaluated genetic algorithm (Shaffer, [66])
subdivides the population into sections assigned to each of the objectives.
Parsopoulos and Vrahatis’s vector-evaluated particle swarm optimization
(VEPSO) approach divided the population into two swarms for testing on two-
objective problems. Each swarm was evaluated on one of the criteria, but social
influence came from the best-performing particle in the other swarm.

Hu and Eberhart [37] modified the particle swarm in a different way to get it to
optimize two simultaneous objectives. A different neighborhood was created on
each iteration, using the K neighbors that were nearest in the fitness value space of
the first objective function, where K was the neighborhood size. The neighbor to
influence was then chosen as the one that had done the best so far on the second
objective function. The particle’s previous best, pbest, was only updated when a
multiobjective solution was found that dominated the previous pbest.

Hu and Eberhart [37] note that there is no well-established measure for per-
formance on multiobjective problems. Nevertheless, they report good results with
their particle swarm on a set of standard problems from the literature.

In sum, several groups of researchers are approaching the multiobjective opti-
mization case from different angles, slowly converging on a set of procedures for
solving these knotty problems with particle swarms. These approaches necessi-
tate some thinking about how the particles can interact with one another in order
to blanket the solution space; each particle must find its appropriate role in the
solution set.

The metaphor of human sociocognition should supply researchers with plenty
of ideas for this interesting challenge. How do people coordinate their activities?
Human social influence is something more than imitation – what are the factors
that influence people to behave differently from one another, yet in concert?
Consideration of these questions might result in simple yet effective advances in
particle swarm theory.

200 James Kennedy

1.4.2 Dynamic Problems

An obvious weakness with the particle swarm approach is its dependence on
past successes as indicators of the locations of possible future successes. When
the problem holds still, this can be sufficient, but many problems, especially in the
real world, are constantly changing. Thus a particular type of difficult situation
exists when the optima move around the parameter space.

In one of the earliest studies of this problem, Carlisle and Dozier [10] period-
ically replaced the previous best vector pi with the current position xi , essentially
“forgetting” past successes. They tested this modification using a dynamic version
of the sphere function () () ,f x g xj j

2= -! which is a simple measure of the dis-
tance from a particle’s current position to the optimum g , which was moved
around the parameter space. Carlisle and Dozier tested two conditions, one in
which the previous best was reset at regular intervals, and one where the previous
best was reset when the particle detected that the optimum had moved some spec-
ified distance from its previous position. They also manipulated the speed with
which the optimum moved.

In the no-reset control condition, the “full model” particle swarm was able to
optimize well when the target moved slowly, but suffered when it moved fast.
(A “social-only” version, using

v[i][j] = W × v[i][j] + rand()× (phi2) × (p[g][d] − x[i][d])

also performed quite well in all tests.) Resetting more frequently resulted in
the population performing better when the target was moving fast, but worse
when it moved slowly; resetting less frequently had the opposite result. Resetting
when a criterion had been breached also resulted in improvement, but nothing
better than what was found using the simpler technique. In a later paper [11],
these researchers took the approach of posting a “sentry” particle, which evalu-
ated changes in the objective function in order to tell the swarm when to make
adjustments.

Eberhart and Shi [25, 26] had similar ideas. After every 100 iterations, they
reset the population using a technique similar to Carlisle and Dozier’s, setting
the “previous best” to the evaluation of the current position. They compared
their results to previous work with evolutionary algorithms by Angeline [2] and
Bäck [6] and found that error in tracking the optimum with the particle swarm
was “several orders of magnitude less than that obtained by either Angeline or
Bäck.” Besides the three-dimensional sphere functions that the other authors
had tested, Eberhart and Shi looked at higher dimensions and found that reset-
ting the previous bests was sufficient to track optima in all cases.

Hu and Eberhart [38] reevaluated the best particle to detect changes in the posi-
tion of the optimum. The gbest particle was evaluated using two different tech-
niques. Changed-gbest-value meant that the gbest position was evaluated at every
iteration, and change in its evaluation meant that the evaluation function had
changed. In the fixed-gbest-value method, the gbest, and sometimes the second-
best, particle was monitored; if it did not change for a certain number of iterations,
e.g., if improvement ceased, then it was assumed that the function had changed,
and a response was needed.

Swarm Intelligence 201

The response was to reinitialize part of the population. These researchers
experimented with various proportions, as well as various numbers of iterations
set to wait in the fixed-gbest-value condition before responding. Their results
show that the populations were able to track dynamic optima quite well, espe-
cially when a small percent (10%) of the particles were rerandomized in response
to change.

In sum, results so far are showing the particle swarm to be competitive with
evolutionary computation methods for optimizing dynamically changing func-
tions. Several tricks have been proposed for overcoming the particle swarm’s
reliance on memory for previous successes, which are not relevant if a problem
has changed significantly.

1.5 Binary Particle Swarms

Much of the literature on genetic algorithms is focused on the binary imple-
mentation, probably because that was the focus of Holland’s [35] pioneering
work. At any rate, binary implementations can be useful for encoding discrete
spaces as well as numeric ones—for instance, through noting the presence or
absence of a feature. Thus it would seem useful to be able to run the particle
swarm on binary spaces.

Kennedy and Eberhart [44] proposed a very simple adjustment to the canoni-
cal algorithm of the day (this was before the inertia weight and constriction coef-
ficients had been discovered). The method involves a change in the way velocity
is conceptualized. Whereas in real numbers velocity is a change in position, when
optimizing variables in a discrete space velocity might better be thought of as a
probability threshold.

Thus, where the real-numbered algorithm was given as

v[i][d] = khi × (v[i][j] +
rand()× phi1 × (p[i][d] − x[i][d]) +
rand()× phi2 × (p[g][d] − x[i][d]))

x[i][d] = x[i][d] + v[i][d]

the probability-threshold technique “squashes” v[i][d] into the (0,1) interval, then
generates a random number from a uniform distribution and compares it to the
threshold. If the random number is less than the threshold, the variable x[i][d]
will be assigned the value of 1, and otherwise 0. A common sigmoid function is
used for squashing:

() ()expS x x1
1

=
+ -

Thus the binary algorithm can be written as

v[i][d] = khi × (v[i][j] +
rand()× phi1 × (p[i][d] − x[i][d]) +
rand()× phi2 × (p[g][d] − x[i][d]))

if rand() < S(v[i][d]) then x[i][d] = 1
else x[i][d]=0

Kennedy and Spears [48] compared this algorithm with several varieties of
genetic algorithms (GAs), using Spears’ multimodal random problem generator;

202 James Kennedy

the binary particle swarm was the only algorithm of four that were tested (GA
with mutation and no crossover, GA with crossover and no mutation, GA with
both crossover and mutation, and particle swarm) to find the global optimum on
every single trial. And it found the optimum fastest, except for the simplest con-
dition, with low dimensionality and a small number of local optima, where it was
slightly outperformed by the mutation-only GA (which was the worst in other
conditions).

Agrafiotis and Cedeño [1, 12] used particle swarms to select a set of features
that optimized some chemical criterion. When they wanted K features to be
selected, they modified a particle swarm so that the locations of particles were
treated as probabilities in a roulette wheel. The probabilities were calculated as

p
x

x
ij

ij

ij
= a

a

!
where a is a scaling factor they call selection pressure. Values of a greater than 1.0
lead to a tendency to favor the selection of highly fit features, while values below
1.0 give more approximately the same probability of selection to all features.
These authors used a=2 in their experiments. The xij variables are constrained to
the interval [0,1]. The roulette-wheel selection is performed K times to select K
features.

Agrafiotis and Cedeño found that their particle swarm method performed bet-
ter than simulated annealing in two ways. First, the fitness of the best models
found by particle swarms were better than the best found by simulated annealing;
as the authors comment, “although annealing does converge with greater preci-
sion [less variance in results], it converges to sub-optimal models that are perhaps
more easily accessible in the fitness landscape.” Second, particle swarms produced
a more diverse set of good solutions; the authors explain this outcome by saying
that the particle swarm “casts a wider net over the state space and [,] capitalizing
on the parallel nature of the search,” is able to find disparate solutions.

Other versions of the binary particle swarm have been suggested. Mohan and
Al-kazemi (2001), for instance, have proposed an array of approaches. They call
their binary algorithms DiPSO, for discrete particle swarm optimization. Their
multiphase discrete particle swarm optimization model, called M-DiPSO,
assigned coefficients to the three terms on the right-hand side of the velocity
adjustment, and used a hill-climbing technique to select the next position. In their
reported experiments, they used coefficients of (1, 1, −1) sometimes and (1, −1, 1)
other times, depending in part on the phase of the algorithm. The phase is
switched if some number of iterations (they used five) has gone by without
improvement. In effect, the phase-switching means that sometimes particles are
attracted to one of the two bests, and sometimes are repelled. Thus, by alternat-
ing phases, the system explores more thoroughly.

1.6 Topology and Influence

In the very first particle swarms, every individual was influenced by the very
best performer in the population. Since only the best member of a particle’s neigh-
borhood actually influences it, this was equivalent to a social network where every
individual was connected to every other one. Early experimentation, however,

Swarm Intelligence 203

found advantages with a topology where each individual was connected to its
adjacent neighbors in the population. These two approaches were called gbest (for
“global best”) and lbest (“local best”).

It was noted that the gbest topology had a tendency to converge very quickly
on good problem solutions but had a (negative) tendency to fail to find the best
region of the search space. Lbest, on the other hand, was slower but explored
more fully, and typically ended up at a better optimum. The simple explanation
is that the local-influence topology buffers and slows the flow of information so
that individuals can search collaboratively with their neighbors in one region
of the search space while other particles search in other regions.

Kennedy [41] experimented with some alternative social-network structures
and found that varying the topology had a big effect on results. A paper by Watts
and Strogatz [71] had shown that changing a small number of random links in a
social network could drastically shorten the mean distance between nodes with-
out affecting the degree of clustering, defined as the proportion of nodes’ neigh-
bors that were neighbors of one another.

Kennedy’s 1999 paper arranged the particle swarm population of twenty par-
ticles into various configurations and then modified the configurations, or
“sociometries,” by randomly varying one connection. The sociometries used were
classical ones [9], including

● the wheel, where one population member was connected to all the others, with
no other connections in the population

● the ring, equivalent to lbest or a ring lattice, where all individuals were con-
nected with their immediate neighbors

● the star, equivalent to gbest, with all individuals connected to all others,
and

● random edges, with every individual randomly connected to two others

The small-world manipulations were not especially effective in that study, as
the populations were really too small for that phenomenon to show itself. The dif-
ferences between the various topologies, however, were quite noticeable, and fur-
ther research explored that aspect of the algorithm more thoroughly.

It is useful to think for a minute about how information spreads in a particle
swarm population. When a particle i finds a relatively good problem solution, it
still may not be the best thing found in j’s neighborhood (i and j being linked),
and so j will not be affected by i’s discovery. Eventually, though, if i has actually
found a good region of the search space, its performance will improve as it
explores that area, until it does become the best in j’s neighborhood. Then j will
be attracted to search the region between (and beyond) them, and may eventually
find that i has indeed found a higher peak in the fitness landscape. In this case, j’s
performance will improve, its “previous best” will be in i’s region, and j’s other
neighbors will be attracted to that region. It is perhaps overly facile to simply say
that information has “spread” from i to j’s neighbors.

Kennedy and Mendes [46] tested several thousand random graphs, sociome-
tries that were optimized to meet some criteria, including average degree or num-
ber of links per individual, variance of degree (high or low), clustering, and

204 James Kennedy

variance in clustering. They used two distinct measures of a particle swarm’s
problem-solving ability. The first, “performance,” is the best function result
obtained after some number of iterations. In order to compare across functions,
these results were standardized, that is, they were transformed to give a mean of
0.0 and standard deviation of 1.0; results could then be averaged across problems.
The second measure, called “proportion,” was the proportion of trials in which a
particular version of the algorithm met criteria from the literature that indicate
that the global optimum has been found. For instance, in a multimodal problem
there may be many local optima, the peaks of which will be relatively good
results, but there is, in the test suite used in this research, only one globally best
solution.

Kennedy and Mendes found that different topologies were successful depend-
ing on which measure was used. For instance, when looking at performance – best
function result at 1,000 iterations – the best swarms comprised sociometries with
high degree; that is, each individual had many connections to others. But the best
swarms by proportion – the ability to find the global optimum – were mostly of
moderate degree. The best by this measure had a degree of five (mean degrees of
3, 5, and 10 were tested in that study).

Kennedy and Mendes [47] included another modification of the particle
swarm, which they called the fully informed particle swarm (FIPS). Recall that
Clerc analyzed a particle swarm of one particle, where the two terms added to the
velocity were collapsed into one. He concluded that the coefficient j should equal
4.1, with a χ constriction factor of approximately 0.7298, calculated from the
formula given above. Since two terms are added to the velocity in a real particle
swarm, i.e., the term representing the particle’s own previous best and that repre-
senting the neighborhood best, the j coefficient was divided by two, with half
being assigned to each term.

Kennedy and Mendes noted that there was no reason the coefficient should
not be subdivided even further. Thus they modified the particle swarm
by adjusting the velocity using information drawn from all the neighbors,
not just the best one. So where the canonical particle swarm can be depicted
algebraically as

(,) () (,) ()v v U p x U p x

x x v

0 0i i i i g i

i i i

1 2!

!

7 7+ - + -

+

| { {` j

the FIPS algorithm is given as

(,) ()
v v N

U p x

x x v

0 ()
i i

i

nbr n i

n

N

i i i

1

i

!

!

7
+

-

+

|
{

=

!
J

L
KK

N

P
OO

where nbr(n) is the particle’s nth neighbor.
The FIPS algorithm does not perform very well at all with the gbest topology,

or in fact with any with high degree in the population topology. With lbest, how-
ever, or with topologies where particles have very few (e.g., three) neighbors, FIPS
performs better than the canonical particle swarm as measured by both perform-
ance and proportion in a suite of standard test functions.

Swarm Intelligence 205

Sociometry, then, was found to be a more important factor in a FIPS swarm
than in one where information was taken only from the best neighbor. It seems
intuitively obvious that information from many neighbors may include conflicts,
since these neighbors may have found success in different regions of the search
space; thus the averaged information is likely to be unhelpful. In versions using
the best neighbor only, though, a bigger neighborhood is more likely to contain
better information, as a bigger net is likely to catch a bigger fish. All in all, the
FIPS particle swarm with appropriate sociometry outperformed the canonical
version on all the testbed problems.

It is interesting to go back to the sociocognitive metaphor here for understand-
ing and for new ideas. Ideas sweep through a population, one person to another, with
“better” ideas – ones that explain the most with the least inconsistency – prevailing.
But the variables that affect social influence are very complex. Theorists such as
Latané focus on high-level factors, while others look “inside the head” at cognitive
factors; one traditional social-psychological view looks at qualities of the message
source, the message itself, and the recipient of the message [61].

In designing a particle swarm, then, it is not immediately obvious how one
should code the interactions of individual particles. It is certainly reasonable to
assume that people tend to accept information from experts and authorities, that
is, people who seem to have achieved some success, but it is also reasonable to say
that people accept information from people they know well, and that people
accept information that fits well with their previous views. The interpersonal flow
of information still does not have a well-fitted, comprehensive theory specific
enough to be implemented in a computer program. Still, it seems that the parti-
cle swarm algorithm can and will be improved by integrating more of what is
known about human social behavior. It is expected that the nature of the interac-
tions of the particles will undergo important changes in years to come.

1.7 Gaussian Particle Swarms

The velocity-adjustment formula is arbitrary. It is entirely possible that a dif-
ferent formula could be used to move the particles back and forth around the
average of their own successes and good points found by their neighbors. A few
researchers have tampered with the formula, but not very much.

Kennedy [43] conducted an experiment to discover the distribution of the
points that are searched by the canonical particle swarm. The individual and
neighborhood bests were defined as constants, −10 and +10 in that study, and the
formula was iterated a million times to produce a histogram. The histogram
revealed that the algorithm searches a bell-shaped region centered halfway
between the two best points, and extending significantly beyond them. (This last
effect is often referred to as “overflying” the best points.) The distribution
appeared to be a typical gaussian bell curve.

This result should not be surprising when one considers that the points are
chosen by averaging pairs of random numbers. The central limit theorem would
predict that the means would be normally distributed. This point was also noted
by Secrest and Lamont [65] as well as Higashi and Iba [34].

Kennedy modified the algorithm by substituting a gaussian random number
generator for the velocity change formula, using the midpoint between p[i][d] and

206 James Kennedy

p[g][d] on each dimension as the mean of the distribution, and their difference as
the standard deviation. Thus the resulting algorithm can be algebraically
described as

,x G
p p

p p2i
i g

i g!
+

-
J

L
KK

N

P
OO

where G(mean, s.d.) is a gaussian random number generator.
Other versions were tested, for instance by using the mean of all neighbors, à

la FIPS, for pg in the gaussian formula just given. Some versions selected random
neighbors from the population, some used the population best, and some used
an “interaction probability” (IP) threshold of 0.50; this meant that a vector ele-
ment was only changed if a probability test was passed. Half the time, then,
x[i][d]=p[i][d].

The best performing version in that study was the random-neighbor, IP=0.50
version, though other versions were quite competitive. There did not seem to
be any significant performance difference between the gaussian versions and the
canonical algorithm with velocity.

It would seem, then, that the door is open for experimentation with new for-
mulas for moving the particle. What is the best strategy for exploring a wide vari-
ety of problem spaces? The adjustment of velocity by traditional terms based on
the differences may not be the best approach.

1.8 Particle Swarms and Evolutionary Computation

A reader familiar with evolutionary computation will have noted that the
gaussian perturbation suggested here is similar to that employed in evolutionary
programming and especially evolution strategies. Evolutionary programming
does not employ crossover or recombination, but only mutation, which is usually
gaussian or Cauchy distributed. Evolution strategies (ESs), however, do typically
feature interaction between population members, which is called recombination
and is considered metaphorically to resemble the mixing of phenotypes in sexual
reproduction.

In fact, intermediate recombination in ES is very similar to the interactions of
individuals in gaussian particle swarms. Parents are selected, similar to the indi-
vidual particle and its best neighbor, and averages are calculated for each vector
element. These means are then perturbed through gaussian mutation with a stan-
dard deviation that is evolved, in ES, as a vector of “strategy parameters” along
with the object parameters that are being optimized [7].

This adaptation of strategy parameters in ES means that optimization of an
n-dimensional problem requires at least a 2n-dimensional vector to be adapted
iteratively, as there is a standard-deviation variable for every function parame-
ter. Why isn’t this necessary in the particle swarm? The answer is that the stan-
dard deviation of the “mutation” in the particle swarm is determined by the
distance between the individual and its source of social influence. This is
true whether the velocity formula is used, or gaussian randomness: the adapta-
tion is inherent.

One other evolutionary computation paradigm uses consensus to determine
step-size, and that is differential evolution (DE) [62]. In DE, a vector drawn from

Swarm Intelligence 207

a population is modified by some values that are derived from the differences
between two other vectors that are randomly drawn from the population. Thus,
as in the particle swarm, the variance of change, or step-size, is determined by the
size of differences among population members.

In both ES and DE, problem solutions that will interact with one another are
chosen at random. The particle swarm, however, has a topological structure such
that each problem solution has a subset of the population with which it will share
information. (This is arguable in the gbest versions.) Some ES researchers have
experimented with fixed topologies [73], but what can this possibly mean in a sim-
ulation of evolution? It would seem to mean that two parents have two children,
who then mate with one another and have two children, who then mate with one
another and so on. If the neighborhood size exceeds two, then the incest is some-
what less intense, as siblings will only mate occasionally. But it is certainly not like
anything in nature.

Thus we discover a chasm between the evolutionary methods and the ones we
are calling social, which has to do with the persistence of the individual over time.
Darwinisan evolution, at least as it is implemented in computer programs, func-
tions through selection, differential reproduction probabilities depending on fit-
ness. The social models (here we can include the ant swarms, cultural algorithm
[63], and some of the fixed-topology ES versions just mentioned), on the other
hand, feature the survival of individuals from one “generation” (the word is not
appropriate here, and is used to make that point) to the next.

Evolution introduces a bias toward better problem solutions by allowing only
the fitter population members to reproduce. The parents are, at least potentially,
replaced at each turn, leaving offspring that are altered copies of themselves. The
particle swarm implements a positive bias by a process that may be properly
called learning; that is, the states of individuals are changed by their experiences,
which include interactions with one another.

It can be argued that particle swarms instantiate a kind of selection, if one
considers the previous bests, e.g., pi , as the parent individual, and the current
location xi as something like an offspring [4, 43]. Each iteration then presents an
occasion for competition between the parent and the child, and if the child is bet-
ter it kills the parent and takes its place. This view calls to mind (1+1)-ES, where
a candidate solution is mutated, and if the descendant is better than the parent,
then the descendent becomes the ancestor for the next generation.

But first – is this evolution at all? Selection cannot be taken to have occurred
in every situation where a better exemplar is chosen over a lesser one, for instance
(1+1)-ES.

Philosophically central to this issue is the question of what makes up an
individual. We can imagine, for instance, a kind of biological kingdom where an
orgasm gave its own life to its offspring and perished at the moment the torch
was passed. In this case, observers would almost certainly develop a vocabulary
that allowed them to track the vital “spirit” as it passed from generation to
generation. In other words, if A transferred its life-force to B, and at the
moment B accepted it A lost it, then B would probably be named A-Junior, or
A-the-ninetieth, or something to indicate that the spirit of A was in this partic-
ular organism. The life-force passed through the generations would be consid-
ered “the individual,” and the organism inhabited by it at the moment would be

208 James Kennedy

some other kind of transient thing. The lack of such a concept seems to be
what is missing in attempts to explain the particle swarm, and certain kinds
of ES, as evolutionary processes. It is the concept that in describing an individ-
ual’s sense of continuity from moment to moment, from day to day, is called self
or ego.

The various EC paradigms have a tendency to blend together, being separated
as much by sociological boundaries as technical differences. One method uses
tournament selection, another uses roulette-wheel selection, by tradition as much
as by necessity. Yet though there is much overlap, and much that can be learned
by one paradigm from another, there are also some hard differences. I am argu-
ing here that the use of selection distinguishes an evolutionary group of algo-
rithms from another group in which individuals survive over iterations. I am also
suggesting, gently, that some processes that have been labeled “evolutionary” are
not. For instance, it seems very inelegant to try to explain how selection is at work
when one parent gives birth to one offspring at a time and eventually perishes
when it is replaced by its own child.

It seems more appropriate, in these cases, to view population members as per-
sistent individuals that change over time – that learn. These are two different
kinds of methods for biasing a population’s performance toward improvement:
reproduction allowing only for the fittest members of the population, versus
change or learning in individuals over time. These two methods can be combined
in an application, as Angeline showed in 1998, where he added selection to a par-
ticle swarm and found that performance was improved. But they are not varia-
tions on the same thing.

The “social” family of algorithms relies on the interactions between individu-
als, which in EC is called crossover or recombination. For instance, several
researchers have written “cognition-only” particle swarm programs, where the
last, social, term of the velocity adjustment was simply omitted. These versions
are uniformly terrible at finding any optimum unless they are initialized near it
and there is a clear monotonic gradient. It is the influence of neighbors that
forces a particle to explore the space more widely when there is diversity in the
population, and more narrowly when there is agreement. It is social influence that
tells the particle where to look, and tells it how big its steps should be through the
space. And the sociometric structure of the population helps determine how
quickly it will converge on an optimum, as opposed to maintaining searches of
diverse regions. In sum, the interactions among individuals are crucial to the
“social” family of algorithms.

Why isn’t crossover, for instance, a qualifying characteristic for membership in
the “social” group? That is because social creatures don’t die as soon as they
socialize. Oh, we could find some kind of black-widow analogy, but we would be
stretching it. The behaviors of truly social organisms are changed through their
interactions with their conspeciates; this behavior change is called learning, and
when behaviors are learned from others, it is called social learning [8].

1.9 Memes

It would appear that, in discussing the evolution of cognitive patterns in a
population, we must be talking about the same thing that people who talk about

Swarm Intelligence 209

memes are talking about. Memes [28] are patterns, perhaps ideas, snatches of
music, behavioral patterns, that seem to spread through a population, as if tak-
ing on a life of their own.

The evolutionary nature of memes seems self-evident, which should of course
be a sign that something is wrong.

I imagine that a meme is like a schema in Holland’s analysis of the behavior
of genetic algorithms. On a ten-dimensional binary genetic representation, say,
1001010011, it may be that one subset of bits, say the 101 starting at the fourth
site, confers some important fitness value and comprises some kind of logically
interrelated genetic pattern.

In this case, then, the entire bitstring 1001010011 must be considered to be the
cognitive state of some individual. As the meme spreads through the population,
more and more individuals will find their fourth, fifth, and sixth mental slots
filled with the meme-pattern 101. This appears to be the only way that a meme
could be represented.

This view is fine for a static snapshot of the population. We see that some indi-
viduals contain or embody the meme, and others don’t. Theoretically, what we
expect to see in our simulation is some dynamic representation of the adoption of
the meme by new population members (and eventually its replacement by some
other meme).

But let us imagine that this population is modeled by a genetic algorithm (GA)
of some sort. We have an immediate problem, which is that population members
have to die. Whether we implement crossover or mutation, or both, we are
expected to kill off the less fit members of the population and replace them with
a new generation. Because the GA works by selection, it is necessary that only a
subset produce offspring, and that the offspring replace the ancestors. It is simply
not going to be possible to model the spread of memes in a population using a
genetic algorithm.

Richard Dawkins [28] invented the concept of memes, or at least introduced
the term to our vocabulary. So it is noteworthy that his innovative EC program,
“Biomorphs,” represents a kind of asexual evolution that utterly fails to mimic
the supposed behavior of memes. A single Biomorph on the screen is selected,
and clicked, and then a new generation of Biomorphs appears, all of which are
descended from the one that was clicked on in the previous generation. They are
all slightly mutated forms of the original, and the rest of the previous generation
has disappeared, died, gone forever.

It does not seem reasonable to believe that memes are “evolutionary” at all, in
any Darwinian sense. The evolution of ideas belongs to the second class of para-
digms, the social methods. It is not hard at all to model memetic evolution, for
instance, in a particle swarm, where individuals are manifest as vectors of vari-
ables, which can even be binary variables; in this case, the meme can be portrayed
as a pattern in the vector, say 101 starting in the fourth site on a ten-dimensional
bitstring. The spread of the meme is seen in changes in the states of population
members, with the particular meme 101 moving through the social network from
individual to individual as it is adopted by new population members.

This modeling is possible because individuals maintain their identities over
time, and learn by changing. While a meme may be a distinct and easily identifi-
able pattern of behavior, it does not have a life of its own; it does not leap from

210 James Kennedy

person to person like a virus (which memes are frequently compared to), infect-
ing one mind after the other. No, the active agent is the individual, the teenage
kid who adopts the behavior. Just as a language has no existence independent of
its speakers – even writing is only a pattern of marks to someone can’t read it –
so the phenomena known as memes only have their existence in the states of those
who participate in them, own them, use them, adopt them, provide habitation for
them.

2 EXTERIORIZING THE PARTICLE SWARM

The particle swarm algorithm is only a recipe for solving problems, and does
not need to be run in a computer program. At least two implementations demon-
strate that some parts of the program can be run in the real world.

A major pharmaceutical company needed a medium for growing bacteria [16];
this involved finding an optimal mixture of ingredients for the particular organ-
ism. In order to solve this problem, Cockshott and Hartman mixed up some
batches with random amounts of each ingredient, introduced the organism to it,
and waited for it to grow. After some period of time, they measured the amount
of the organism that had grown in each mixture, and, using that measure as an
“evaluation function,” calculated proportions of the ingredients, from the parti-
cle swarm formulas, to try in the next round of trials. In their research, time-steps
were weeks long, and measurement occurred outside the computer, but the parti-
cle swarm recipe was followed literally.

Cockshott and Hartman report that the optimized ingredient mix they even-
tually derived was over twice as good as a mix found using traditional methods.
Also, interestingly, the mix discovered through the particle swarm process was
very different from other mixes that had been found; it lay outside what had been
considered the “feasible” regions of the search space.

Kennedy [42] wrote a program that extended the particle population to
include a human being. A user interface displayed a “problem,” which was to find
the desired pattern of squares on a grid similar to a checkerboard. Underlying the
problem was an NK landscape function, which could be adjusted to make the
problems more or less hard; the landscape could be monotonic, which would
allow a simple greedy strategy of flipping colors one at a time, or local optima
could be introduced. The user in the “exteriorized particle swarm” was also
shown his own previous best pattern, as well as the best pattern so far found by a
population of particles.

While no carefully designed experiment was conducted, informal testing indi-
cated that the presence of the humans, who were allowed to use any cognitive
strategy they wished, did not improve the performance of the swarm. Further, the
global optimum was found at least as often by a computational particle as by a
human one.

These instances show the particle swarm to be more than a type of computer
program; it is a way of doing things. The algorithm is derived from observations
of human behaviors, and can be turned around and used as a process for guiding
human behavior, for instance for getting “out of the box,” finding solutions to
problems that have proven intractable.

Swarm Intelligence 211

2.1 The Future of the Particle Swarm

There is something satisfying in thinking about the particle swarm paradigm
itself as a big particle swarm. The method originated in the integration of bird-
flocking, neural networks, social psychology, evolutionary computation, and
other diverse subjects, and continues to evolve through the blending of existing
particle swarm theory with new topics and situations. In the particle swarm tra-
dition, much of the work has been reported and discussed at conferences and
symposia, and much of the research has been collaborative, as researchers explore
their own ideas and adopt the ideas of their colleagues. This section will specu-
late on the future of particle swarms in terms of applications, tweaks, and theory.

2.1.1 Applications

The particle swarm is most often used as a tool for engineers, and its applica-
tions cover an extremely wide domain. As it is a method for optimizing vectors of
variables, and many engineering problems require exactly that; as it is a fast and
efficient method for problem-solving, with a minimum of parameters to adjust;
and as it is very easy to code and maintain, and is unpatented and otherwise free
of burden, the paradigm is used in many applications.

The most common use of particle swarms is in optimizing the weights in feed-
forward neural networks. These networks are often used for the analysis of com-
plex, e.g., nonlinear, data. Since the problem space of the neural net typically
contains many local optima, gradient descent approaches such as backpropaga-
tion of error are sometimes inadequate; the solution is highly dependent on the
starting point.

Eberhart and Shi [24] extended the use of the particle swarm beyond the
weight matrix, letting it optimize the structure of the network as well. Since each
node in the standard feedforward network has a sigmoid transfer function, by
using the function

()
output

e1
1

i k input=
+ $-

Eberhart and Shi optimized the exponent coefficient k, which is the slope of
the function, along with the network weights. This parameter was allowed to take
on negative as well as positive values. If k became very small, the node could be
eliminated. Thus, it is possible, using this method, to generate a network structure
along with the weights.

Particle swarms have been used on problems in domains as diverse as reactive
power and voltage control by a Japanese electric utility [76], diagnosis of human
tremor [22], and multiple-beam antenna arrays [32]. Ujjin and Bentley [70] used
particle swarm optimization in a worldwide web “recommender system,” which
helps users navigate through Internet entertainment and shopping sites. Xiao
et al. [75] used the algorithm for clustering genes.

It is not possible to imagine the range of future applications of the particle
swarm. Any problem that has multiple variables is a candidate for analysis with
this approach.

212 James Kennedy

2.1.2 Tweaks

The particle swarm algorithm has been modified in many ways, some of them
fundamental and some trivial. For instance, the Vmax constant, which was nec-
essary in versions without inertia or constriction factors, is now optional; some
researchers still set a value for Vmax just to keep the particles from going “out-
side the solar system” [27]. Eberhart and his colleagues, for instance, commonly
set Vmax equal to the range of the problem space. The inertia weight has under-
gone numerous adjustments: sometimes it decreases over time, and sometimes it
is given a random value within a range. The constants that weight the two terms
adjusting the velocity are usually equal, but not always, and sometimes larger or
smaller values are used for them. Sometimes the velocity is modified by one term
instead of two, sometimes by more than two.

Clerc’s analysis seems to have shown the best values for some of the system
constants, and contemporary particle swarm researchers usually adhere to his rec-
ommendations [15]. But, as has been seen, even these analytically derived values
are sometimes tweaked.

Individuals in the particle swarm imitate successes: is this a realistic depiction
of human behavior? It is obvious that much more interesting particle trajectories
could be discovered by modeling processes from nature. Sometimes humans rebel
against their groups, especially when these become too restrictive or when indi-
viduals are not attaining satisfaction. Human specialization has already been
mentioned; this topic is especially relevant when discussing multiobjective opti-
mization, where each particle represents a point in the Pareto set, and the pattern
across the population comprises the entire problem solution. Even when a prob-
lem has only one objective, it is important to maintain diversity in the population
in order to prevent stagnation and premature convergence.

The topology of the particle swarm has been modified quite a lot, as well.
Several researchers have experimented with adaptive topologies [14], where
some rules are programmed for pruning connections and adding others. If we
think of all that is known about the complexities of human social networks,
groups, and relationships, we see that there is a vast gold mine of things to try,
ways to organize the population so that knowledge spreads realistically from
person to person. Should links between particles be symmetrical? Should they
be weighted probabilistically or made fuzzy? What are the best topological
structures in general, and are there problem features that correlate with topol-
ogy features? There are very many questions here, to be answered by some
future researchers.

The particle swarm has been hybridized with various evolutionary computa-
tion and other methodologies. Angeline’s incorporation of selection has been
mentioned. Something similar was used by Naka et al. [53]. Zhang and Xie [77]
hybridized the particle swarm with differential evolution, and reported good
results. Parsopoulos and Vrahatis [60] used the nonlinear simplex method to ini-
tialize the particle swarm parameters. Clearly, tricks from other disciplines can be
borrowed and integrated with the basic particle swarm framework. It is expected
that future research in this area will open up new and powerful approaches to
optimization and problem solving.

Swarm Intelligence 213

2.1.3. Theory

The particle swarm is not very well defined. For instance, Zhang and Xie [77]
remark that the gaussian particle swarm is “a variety of evolution strategies.”
Of course, the present viewpoint is that some varieties of evolution strategies
are particle swarms, but, point of view aside, it is clear that evolutionary meth-
ods overlap, and that the theory of particle swarm optimization is still in its
infancy.

Clerc’s remarkable analysis of the single particle’s trajectory moved the field
ahead significantly, and allowed the development of universal parameters that
fit every problem and did not need to be adjusted. The next step is a compara-
ble analysis at a higher level, looking at the whole population’s trajectory
through the search space. Perhaps one of the readers of this chapter will have
an insight that makes such a global analysis possible. The analysis needs to
explain not only the interactions of individual particles but also the global
dynamics of the entire population, and needs to explain how graph-theory
aspects of the population topology interact with convergence properties of the
particles.

A theme of the current chapter is the richness of the metaphor of human
behavior for informing developments in the digital implementations of the
algorithm. The point of this is really that human beings are the most intelli-
gent thing we know. We tend to define intelligence in terms of human behav-
ior, whether intentionally or not. The human mind classifies, remembers,
communicates, reasons, and empathizes better than any computer product
known. And so the question is, what are the qualities of human behavior that
make it so intelligent? The particle swarm approach ventures to guess that
interpersonal interaction is an important part of it, and draws on the sci-
ence of social psychology for inspiration. Programs that solve problems
through interactions of computational entities are a kind of validation of
social-psychological theorizing, and so the metaphor and the engineering tool
inform one another.

What is really needed is a general theory of populations that includes evolu-
tionary algorithms as well as social ones. It appears that a rather small toolbox
can construct a great variety of problem-solving methods. For instance, gauss-
ian perturbation can be seen in evolutionary programming, evolution strategies,
and particle swarms, and the interactions of individuals in particle swarms
greatly resemble crossover or recombination in evolutionary algorithms. But
selection is different from learning. Topological linkage can be seen in particle
swarms and some ES versions, and the type of interaction can be similar in
those paradigms, e.g., gaussian mutation around a midpoint between neighbors
or parents.

And what is essential for a particle swarm? It appears that the velocity for-
mula is arbitrary, and it has been shown that it is not necessary to interact
with the best neighbor. What is left? It appears that the essence of the particle
swarm is a population of individuals that persist over time and learn from one
another. Hopefully the future will provide a comprehensive theory that explains
the variations in methods for such implementations.

214 James Kennedy

REFERENCES

[1] D. K. Agrafiotis and W. Cedeño (2002): Feature selection for structure-activ-
ity correlation using binary particle swarms. Journal of Medicinal Chemistry,
45, 1098–1107.

[2] P. J. Angeline (1997): Tracking Extrema in Dynamic Environments.
Evolutionary Programming, pp. 335–345.

[3] P. Angeline (1998a): Evolutionary optimization versus particle swarm
optimization: Philosophy and performance differences. In V. W. Porto,
N. Saravanan, D. Waagen, and A. E. Eiben, (eds.), Evolutionary
Programming VII, 601, 610. Berlin: Springer.

[4] P. J. Angeline (1998b): Using selection to improve particle swarm optimiza-
tion. IEEE International Conference on Evolutionary Computation,
Anchorage, AK, USA.

[5] S. Asch (1956): Studies of independence and conformity: I. A minority of
one against a unanimous majority. Psychological Monographs, 70 (9).

[6] T. Bäck (1998): On the behavior of evolutionary algorithms in dynamic envi-
ronments. In D. B. Fogel, H.-P. Schwefel, Th. Bäck, and X. Yao (eds.), Proc.
Fifth IEEE Conference on Evolutionary Computation (ICEC’98), Anchorage
AK, pp. 446–451, IEEE Press, Piscataway, NJ.

[7] T. Bäck, F. Hoffmeister, and H. Schwefel (1991): A survey of evolution
strategies. In Lashon B. Belew and Richard K. Booker (eds.), Proc. 4th
International Conference on Genetic Algorithms, pp. 2–9, San Diego, CA,
Morgan Kaufmann.

[8] A. Bandura (1986): Social Foundations of Thought and Action: A Social
Cognitive Theory. Englewood Cliffs, NJ: Prentice-Hall.

[9] A. Bavelas (1950): Communication patterns in task-oriented groups. Journal
of the Acoustical Society of America, 22, 727–730.

[10] A. Carlisle and G. Dozier (2000): Adapting particle swarm optimization to
dynamic environments. Proc. Int. Conf. Artificial Intelligence, 2000, 429–434,
Las Vegas, NV, USA.

[11] A. Carlisle and G. Dozier (2002): Tracking Changing Extrema with
Adaptive Particle Swarm Optimizer. ISSCI, 2002 World Automation
Congress, Orlando, FL, USA, June, 2002.

[12] W. Cedeño and D. K. Agrafiotis (2003): Using particle swarms for the devel-
opment of QSAR models based on k-nearest neighbor and kernel regres-
sion. Journal of Computer-Aided Molecular Design, 17, 255–263.

[13] R. B. Cialdini (1984): Influence: The Psychology of Persuasion. Quill
Publishing.

[14] M. Clerc (1999): The swarm and the queen: Towards a deterministic and
adaptive particle swarm optimization. Congress on Evolutionary
Computation, Washington, D. C., pp. 1951–1957.

[15] M. Clerc and J. Kennedy (2002): The particle swarm: explosion, stability,
and convergence in a multi-dimensional complex space. IEEE Transactions
on Evolutionary Computation, 6, 58–73.

[16] A. B. Cockshott and B. E. Hartman (2001): Improving the fermentation
medium for Echinocandin B production. Part II: Particle swarm optimiza-
tion. Process Biochemistry, 36, 661–669.

Swarm Intelligence 215

[17] C. A. Coello Coello and S. Lechuga (2001): MOPSO: A Proposal for
Multiple Objective Particle Swarm Optimization. Technical Report
EVOCINV-01-2001, Evolutionary Computation Group at CINVESTAV,
Sección de Computación, Departamento de Ingeniería Eléctrica, CINVES-
TAV-IPN, México.

[18] C. A. Coello Coello and M. S. Lechuga (2002): MOPSO: A proposal for
multiple objective particle swarm optimization. IEEE Congress on
Evolutionary Computation, 2002, Honolulu, HI, USA.

[19] R. S. Crutchfield (1955): Conformity and character. American Psychologist,
10, 191–198.

[20] R. Dawkins (1989): The Selfish Gene, 2nd ed. Oxford: Oxford University Press.
[21] M. Deutsch and H. B. Gerard (1955): A study of normative and informa-

tional social influences upon individual judgment. Journal of Abnormal and
Social Psychology, 51, 629–636.

[22] R. C. Eberhart and X. Hu (1999): Human tremor analysis using particle
swarm optimization. Proc. Congress on Evolutionary Computation 1999,
Washington, D. C. 1927–1930. Piscataway, NJ: IEEE Service Center.

[23] R. C. Eberhart and Y. Shi (2000): Comparing inertia weights and constric-
tion factors in particle swarm optimization. Proc. CEC 2000, San Diego,
CA, pp. 84–88.

[24] R. C. Eberhart and Y. Shi (1998): Evolving artificial neural networks. Proc.
1998 Int. Conf. Neural Networks and Brain, Beijing, P. R. C., PL5–PL13.

[25] R. C. Eberhart and Y. Shi (2001a): Tracking and optimizing dynamic sys-
tems with particle swarms. Proc. Congress on Evolutionary Computation
2001, Seoul, Korea. Piscataway, NJ: IEEE Service Center.

[26] R. C. Eberhart and Y. Shi (2001b): Particle swarm optimization: develop-
ments, applications and resources. Proc. Congress on Evolutionary
Computation 2001, Seoul, Korea. Piscataway, NJ: IEEE Service Center.

[27] R. C. Eberhart (2003): Introduction to particle swarm optimization (tuto-
rial). IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA.

[28] A. E. Eiben and C. A. Schippers (1998): On evolutionary exploration and
exploitation. Fundamenta Informaticae. IOS Press.

[29] J. E. Fieldsend and S. Singh (2002): A multi-objective algorithm based upon
particle swarm optimisation, an efficient data structure and turbulence. Proc.
2002 U.K. Workshop on Computational Intelligence (Birmingham, UK, 2–4
Sept. 2002), pp. 37–44.

[30] L. Festinger (1957): A Theory of Cognitive Dissonance. Evanston IL: Row,
Peterson.

[31] L. Festinger (1954/1999): Social communication and cognition: A very pre-
liminary and highly tentative draft. In E. Harmon-Jones and J. Mills (eds.),
Cognitive Dissonance: Progress on a Pivotal Theory in Social Psychology.
Washington D. C.: AP Publishing.

[32] D. Gies and Y. Rahmat-Samii (2003): Reconfigurable array design using par-
allel particle swarm optimization. Proceedings of 2003 IEEE Antennas and
Propagation Symposium (in press).

[33] F. Heppner and U. Grenander (1990): A stochastic nonlinear model for
coordinated bird flocks. In S. Krasner (ed.), The Ubiquity of Chaos.
Washington, D. C.: AAAS Publications.

216 James Kennedy

[34] N. Higashi and H. Iba (2003): Particle swarm optimization with gaussian
mutation. Proc. IEEE Swarm Intelligence Symposium 2003 (SIS 2003),
Indianapolis, IN, USA, pp. 72–79.

[35] J. H. Holland (1975): Adaptation in Natural and Artificial Systems. Ann
Arbor: The University of Michigan Press.

[36] C. Hovland (1982): Communication and Persuasion. New York: Greenwood.
[37] X. Hu and R. C. Eberhart (2002a): Multiobjective optimization using

dynamic neighborhood particle swarm optimization. Proceedings of the
IEEE Congress on Evolutionary Computation (CEC 2002), Honolulu, HI,
USA, pp. 1677–1681.

[38] X. Hu and R. C. Eberhart (2002b): Adaptive particle swarm optimization:
detection and response to dynamic systems. IEEE Congress on Evolutionary
Computation, Honolulu, HI, USA.

[39] X. Hu (2002): Multiobjective optimization using dynamic neighborhood
particle swarm optimization. IEEE Congress on Evolutionary Computation,
Honolulu, HI, USA.

[40] J. Kennedy (1998): The behavior of particles. Evolutionary Programming
VII: Proc. Seventh Annual Conference on Evolutionary Programming, San
Diego, CA, pp. 581–589.

[41] J. Kennedy (1999): Small worlds and mega-minds: effects of neighborhood
topology on particle swarm performance. Proc. Congress on Evolutionary
Computation 1999, pp. 1931–1938. Piscataway, NJ: IEEE Service Center.

[42] J. Kennedy (2000): Human and Computer Learning Together in the
Exteriorized Particle Swarm. Socially Intelligent Agents: The Human in the
Loop, pp. 83–89. Technical Report FS-00-04, AAAI Press.

[43] J. Kennedy (2003): Bare bones particle swarms. Proc. IEEE Swarm
Intelligence Symposium 2003 (SIS 2003), Indianapolis, IN, USA, 80–87.

[44] J. Kennedy and R. C. Eberhart (1997): A discrete binary version of the par-
ticle swarm algorithm. Proc. 1997 Conf. on Systems, Man, and Cybernetics,
4104–4109. Piscataway, NJ: IEEE Service Center.

[45] J. Kennedy and R. C. Eberhart (1995): Particle swarm optimization. Proc.
IEEE Int. Conf. on Neural Networks, 4, 1942–1948. Piscataway, NJ: IEEE
Service Center.

[46] J. Kennedy and R. Mendes (2002): Population structure and particle swarm
performance. IEEE Congress on Evolutionary Computation, Honolulu, HI,
USA.

[47] J. Kennedy and R. Mendes (2003): Neighborhood topologies in fully-
informed and best-of-neighborhood particle swarms. In Proc. 2003 IEEE
SMC Workshop on Soft Computing in Industrial Applications (SMCia03),
Binghamton, NY.

[48] J. Kennedy and W. M. Spears (1998): Matching algorithms to problems: an
experimental test of the particle swarm and some genetic algorithms on the
multimodal problem generator. Proc. Int. Conf. on Evolutionary
Computation, pp. 78–83. Piscataway, NJ: IEEE Service Center.

[49] B. Latané (1981): The psychology of social impact. American Psychologist,
36, 343–356.

[50] J. M. Levine, L. B. Resnick, and E. T. Higgins (1993): Social foundations of
cognition. Annual Review of Psychology, 44, 585–612.

Swarm Intelligence 217

[51] E. F. Loftus and K. Ketcham (1994): The Myth of Repressed Memory:
False Memories and Allegations of Sexual Abuse. New York: St. Martin’s
Press.

[52] C. K. Mohan and B. Al-kazemi (2001): Discrete particle swarm optimiza-
tion. Proc. Workshop on Particle Swarm Optimization. Indianapolis, IN:
Purdue School of Engineering and Technology, IUPUI (in press).

[53] S. Naka, T. Genji, K. Miyazato, and Y. Fukuyama (2002): Hybrid particle
swarm optimization based distribution state estimation using constriction
factor approach. Proc. Joint 1st International Conference on Soft Computing
and Intelligent Systems and 3rd International Symposium on Advanced
Intelligent Systems (SCIS & ISIS).

[54] A. Newell and H. Simon (1963): GPS: A program that simulates human
thought. In Feigenbaum and Feldman. (ed.), Computers and Thought.
McGraw-Hill, New York.

[55] R. E. Nisbett and D. W. Wilson (1977): Telling more than we can know:
Verbal reports on mental processes. Psychological Review, 84, 231–259.

[56] A. Nowak, J. Szamrej, and B. Latané (1990): From private attitude to public
opinion: A dynamic theory of social impact. Psychological Review, 97,
362–376.

[57] E. Ozcan and C. Mohan (1999): Particle swarm optimization: surfing the
waves. Proc. 1999 Congress on Evolutionary Computation, 1939–1944.
Piscataway, NJ: IEEE Service Center.

[58] E. Ozcan and C. K. Mohan (1998): Analysis of a simple particle swarm opti-
mization system. Intelligent Engineering Systems Through Artificial Neural
Networks, 8, 253–258.

[59] K. E. Parsopoulos and M. N. Vrahatis (2002a): Particle swarm optimization
method in multiobjective problems, Proceedings of the 2002 ACM
Symposium on Applied Computing (SAC 2002), pp. 603–607.

[60] K. E. Parsopoulos and M. N. Vrahatis (2002b): Initializing the particle
swarm optimizer using the nonlinear simplex method. In A. Grmela and
N. E. Mastorakis (eds), Advances in Intelligent Systems, Fuzzy Systems,
Evolutionary Computation, pp. 216–221. WSEAS Press.

[61] R. E. Petty and J. T. Cacioppo (1981): Attitudes and persuasion: Classic and
contemporary approaches. Dubuque, IA: Wm. C. Brown.

[62] K. V. Price (1999): An introduction to differential evolution. In D. W. Corne,
M. Dorigo, F. Glover (eds), New Ideas in Optimization. McGraw Hill.

[63] R. G. Reynolds (1994): An introduction to cultural algorithms. Proc. Third
Annual Conference on Evolutionary Programming, pp. 131–139.

[64] C. W. Reynolds (1987): Flocks, herds, and schools: A distributed behavioral
model. Computer Graphics, 21, 25–34.

[65] B. R. Secrest and G. B. Lamont (2003): Visualizing particle swarm optimiza-
tion—gaussian particle swarm optimization. Proc. IEEE Swarm Intelligence
Symposium 2003 (SIS 2003), Indianapolis, IN, USA, pp. 198–204.

[66] J. D. Schaffer (1985): Multiple objective optimization with vector evaluated
genetic algorithms. In Genetic Algorithms and their Applications: Proceedings
of the First International Conference on Genetic Algorithms, pp. 93–100.

[67] M. Sherif (1936): The Psychology Of Social Norms. New York: Harper
Brothers.

218 James Kennedy

[68] Y. Shi and R. C. Eberhart (1998): Parameter selection in particle swarm opti-
mization. Proc. Seventh Annual Conference on Evolutionary Programming, pp.
591–601.

[69] M. Tomasello (1999): The Cultural Origins of Human Cognition.
Cambridge, MA: Harvard University Press.

[70] S. Ujjin and P. J. Bentley (2003): Particle swarm optimization recommender
system. In Proc. IEEE Swarm Intelligence Symposium 2003, Indianapolis,
IN, USA.

[71] D. Watts and S. Strogatz (1998): Collective dynamics of small-world net-
works. Nature, 363:202–204.

[72] D. M. Wegner (2002): The Illusion of Conscious Will. Cambridge, MA: The
MIT Press.

[73] K. Weinert, J. Mehnen, and G. Rudolph (2001): Dynamic Neighborhood
Structures in Parallel Evolution Strategies (Technical Report). Reihe CI
112/01, SFB 531, University of Dortmund.

[74] S. Wolfram (1994): Cellular Automata and Complexity: Collected Papers.
Reading, MA: Addison-Wesley.

[75] X. Xiao, R. Dow, R. C. Eberhart, B. Miled, and R. J. Oppelt (2003): Gene
clustering using self-organizing maps and particle swarm optimization.
Second IEEE International Workshop on High Performance Computational
Biology, Nice, France.

[76] H. Yoshida, Y. Fukuyama, S. Takayama, and Y. Nakanishi (1999): A parti-
cle swarm optimization for reactive power and voltage control in electric
power systems considering voltage security assessment. 1999 IEEE
International Conference on Systems, Man, and Cybernetics, 6, 502.

[77] W. J. Zhang and X. F. Xie (2003): DEPSO: hybrid particle swarm with dif-
ferential evolution operator. IEEE Int. Conf. on Systems, Man & Cybernetics
(SMCC), Washington, D. C. USA.

Swarm Intelligence 219

Chapter 7

FUZZY LOGIC
Javid Taheri and Albert Y. Zomaya
The University of Sydney

The principles of Fuzzy Logic were introduced several decades ago by Lotfi
Zadeh [1]. The thrust of Zadeh’s work was in the realization that decision mak-
ing in the real world is not crisp. Most of the time, decisions are not “binary” in
nature, such as yes/no, black/white, up/down, etc. Events and decisions tend to be
“fuzzy,” and a good example is the case of a glass of water that can be described
as full or empty. Now, if one is to take a sip of water, then the glass is neither
empty nor full, but in between. If the process continues until the glass is empty,
then one can say that the glass has undergone different states from the time it was
full to the time it became empty. It is obvious that the above phenomenon cannot
be described by using binary logic and different rules need to be adopted to
account for the different levels of “fuzziness” that any a decision process can take.

1 FUZZY PRINCIPLES

1.1 Multivalue Algebra

The most important difference between fuzzy and binary representations is
the way a variable is quantized. The binary world uses two values (0 or 1) to rep-
resent each phenomenon, while in the fuzzy world variables are quantized by a
function that takes a smooth shape ranging from 0 to 1 [1, 2].

1.2 Simplicity versus Accuracy

Fuzzy logic attempts to formulate an environment not accurately but in a sim-
ple manner. In modern sciences, especially mathematics and physics, there is an
accurate formulation for every event. On the other hand, if an event cannot be
explained accurately, a decision can be made with a given probability. Fuzzy logic

tends to simplify the process of making a decision, especially in cases where an
exact formula is very difficult to derive or does not exist.

1.3 Probability versus Possibility

To explain the interplay between probability and possibility, let’s return to our
earlier example, the glass of water. If one is to say that this is “a glass containing
water with the probability of 0.5,” it means that the whole glass might contain
water or some other liquid like gasoline. On the other hand, if one uses the expres-
sion that this is “a glass containing water with the possibility of 0.5,” it means that
the liquid is definitely a mixture of water and another unknown liquid. Another
distinguishing factor between these two expressions is the sample spaces they rep-
resent. In probability, the sum of all events that could happen should add up to
1.0, while in the case of possibility, the sum can be smaller or larger than 1.0.

1.4 Fuzzy Sets

A fuzzy set is a fundamental component of a fuzzy system [2]. Traditionally,
a set is a collection of elements or objects that can be of finite or infinite size.
In this case, a given element, x, can be a member of set A, or otherwise. So the
answer to the question “Does x belong to set A?” is either true or false. In con-
trast, each fuzzy set is a set of ordered pairs and is usually defined as follows:

,A x xA= nu u^` hj& 0
where ()xAn u is the membership function and represents the degree of truth or

compatibility of variable x with the set. Figure 7.1 shows a simple fuzzy set with
following definition:

, () , () ()A x x x x1 5A A
2

2
= = + -n n

-
u u u_ `d i j n* 4

1.5 Fuzzy Numbers

A fuzzy number Mu is called positive (negative) if its membership function is
such that [2]

() , < >x x x0 0 0M 6=n u ^ h

222 Javid Taheri and Albert Y. Zomaya

0
0 2 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2

Number

M
em

be
rs

hi
p

V
al

ue

Figure 7.1. Representation of the fuzzy numeral “approximately 5”

1.6 Basic Set-Theoretic Operations

Different logic operations are defined for fuzzy sets and numbers. The basic
logic operations of union, intersection, and complement are usually defined as
follows [2].

1.6.1 Union

The union of two fuzzy sets A Bandu u is

, () , () (), ()maxC A B x x x x xC C A B,= = =n n n nu u u u u u u_ _i i% /
1.6.2 Intersection

The intersection of two fuzzy sets A Bandu u is

, () , () (), ()minD A B x x x x xD D A B+= = =n n n nu u u u u u u_ _i i% /
1.6.3 Complement

The complement of a fuzzy set Au is

, () , () ()A x x x x1A A A= = -n n nu u u u_ i% /
Figure 7.2 shows the results of the above operations on fuzzy sets Au and Bu .

These definition are simple and don’t obey advance set-theoretic operations such
as monotonicity, commutativity, and associativity. To overcome this problem,
several complex definitions have been proposed in the literature [2].

Fuzzy Logic 223

0
0 5

Number Number

NumberNumber

10

0 5 10 0
0

5 10

0 5 10

0.5

1

M
em

sh
ip

 V
al

ue
M

em
sh

ip
 V

al
ue

M
em

sh
ip

 V
al

ue
M

em
sh

ip
 V

al
ue

A B

(a)

0

0.5

1

Intersection A and B

(c)

0

0.5

1

Union A and B

(b)

0.5

1

Complement A

(d)

Figure 7.2. Fuzzy operations. (a) Representation of two fuzzy numbers A and B; (b) union of
A and B; (c) intersection of A and B; (d) complement of A

2 FUZZY SYSTEMS

Figure 7.3 shows a generic fuzzy system. In all fuzzy systems, there are three
main components: Rule Database, Fuzzification, and Defuzzification.

2.1 Fuzzy rules

Fuzzy systems are based on the preliminary information given to the system
as fuzzy rules. These rules, which are written as linguistic commands, are usually
not so precise. In fact, they are written to enable decision to be made in cases
where there is imprecise or no preliminary information about the system under
considerations. The following rules represent instances of generic fuzzy rules:

● IF “Salary is High” then “Tax is High”

● IF “Speed is Low” then “Accident Probability is Low”

● IF “Left Obstacle is Near” and “Front Obstacle is Near” then “Turn Right
Quickly” and “Reduce Speed”

The above rules may have single or multiple antecedents and/or consequences.

2.2 Fuzzification

One of the most important components of every fuzzy system is the fuzzifi-
cation phase, during which the crisp values from a real-world system are managed
so that they can be processed by the fuzzy system [2]. Fuzzy rules, as seen earlier,
are linguistic expressions that need to be further clarified, as in the case of the fol-
lowing rule:

IF “Salary is High” then “Tax is High”

So what does “High” mean? How high does the salary need to be so that it
is considered “High”? Also, what is “High” in the context of how much tax
needs to be paid? The process of defining this kind of information for a fuzzy sys-
tem is known as fuzzification. To achieve this, knowledge-based information is

224 Javid Taheri and Albert Y. Zomaya

RULES

INPUTS OUTPUTS

Inputs
(Fuzzification)

Outputs
(Defuzzification)

Figure 7.3. A generic fuzzy system

categorized into several parts as membership functions or fuzzy sets. Then a label
is assigned to each part. For example, “Salary” could be categorized as shown in
Figure 7.4. Note that membership functions designed to separate the different
classes of salary earnings are overlapped smoothly to reduce the sensitivity of the
fuzzy system.

2.3 Defuzzification

This process attempts to generate a crisp value for each fuzzy output gener-
ated by the fuzzy system. The following methods are the most popular for the
defuzzification process.

2.3.1 Center of Area (COA)

In this case, the crisp value is calculated as the integral of the output fuzzy
number weighted by the value of the membership function, which can be defined
as follows:

()

. ()

u
u du

u u du
COA

C

U

C

U=
n

n

#

#

where ()uCn is the membership function of the fuzzy value.

2.3.2 Center of Sum (COS)

This defuzzification method is a simplified version of COA and is defined as
follows:

()

. ()

u
u du

u u du
COA

C

U

U

C

=
n

n

#

#

Fuzzy Logic 225

0

0.5

1

0.1 0.2 0.3
output variable "Salary"

LowVery-Low Medium High Very High

0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 7.4. Fuzzification of the variable “Salary”

2.3.3 Mean of Maximum (MOM)

The maximum of the fuzzy number is computed, and then the average of both
the maximum and the actual number is the defuzzified version.

2.3.4 Smallest of Maximum (SOM)

The maximum of the fuzzy number is computed, and then the smallest value
is considered as the defuzzified number [2].

2.3.5 Largest of Maximum (LOM)

The maximum of the fuzzy number is computed, and then the largest value
is considered as the defuzzified number [2]. To clarify the above definitions,
Figure 7.5 shows how a fuzzy variable can be defuzzified.

2.4 Mamdani Fuzzy Systems

The Mamdani system is one of the two most famous fuzzy systems and is usu-
ally used for making fuzzy decisions [2–5]. In this system, the input and output
variables are all fuzzified with several membership functions. For example,
assume that a fuzzy system is designed to define the salary of an employee. Also
suppose that the salary of an employee is related to his/her work experience and
education level.

Figure 7.6 provides an overview of the above system. Although the output of
this system is the level of salary, the first step is to fuzzify the input variables with
membership functions. Towards this end, work experience (WrkExp) is fuzzified
by three triangular membership function (Figure 7.7) as Beginner, Intermediate,
or Expert, and the Education level (Edu) is fuzzified by three membership func-
tions (Figure 7.8) as High School Diploma, Bachelor Degree, or Post Graduate
Degree. The output of the system, Salary, is fuzzified by five labels (Figure 7.9) as
Very-Low, Low, Medium, High, and Very-High. Note that, to generalize the con-
troller, all variables are normalized to 1.0.

226 Javid Taheri and Albert Y. Zomaya

0

0.2

0.4

0.6

0.8

1

−10 −8 −6 −4 −2 −0 2 4 6 8 10

Figure 7.5. Different approaches to defuzzify a variable

Table 7.1 lists the rules of this system. To clarify how this fuzzy system com-
putes the salary of an employee, the general data flow of this system is shown in
Figure 7.10, while the general surface view of this system is shown in Figure 7.11.

Note that there are two other logic operations that need to be performed to com-
pute the final fuzzy answer: implication and aggregation. These two operators are
usually defined as AND and OR operators [2]. In this example, the COA is chosen
as the defuzzification method. The Work Experience and Education Level variables
are set to 0.1 and 0.3, respectively. Therefore, the Salary output for these inputs is
0.365. The general Surface View of this controller is presented in Figure 7.11.

Fuzzy Logic 227

Figure 7.6. The general overview of Mamdani’s salary system

0
0

0.5

1

0.1

Beginner Intermediate Expert

0.2 0.3 0.4
input variable "Work-Experience"

0.5 0.6 0.7 0.8 0.9 1

Figure 7.7. Fuzzification of the “Work-Experience” variable

2.5 Sugeno Fuzzy Systems

The Sugeno fuzzy system is another class of fuzzy systems that is usually used
for control system applications [2, 6]. The output of each rule in this system is a
linear, or in some cases a nonlinear, combination of its inputs. The output of the
different rules is augmented to calculate the final output, which is actually the
weighted sum of the rules.

228 Javid Taheri and Albert Y. Zomaya

Figure 7.8. Fuzzification of the “Education” variable

Figure 7.9. Fuzzification of the “Salary” variable

0
0

0.5

1

0.1

High-School Bachelor Post-Graduate

0.2 0.3 0.4
input variable "Education"

0.5 0.6 0.7 0.8 0.9 1

0
0.1 0.2 0.3 0.4

Low Medium High Very-HighVery-Low

0.5 0.6

output variable "Salary"

0.7 0.8 0.9 1

0.5

1

Table 7.1: Fuzzy rules for the system of Figure 7.6
Antecedent Æ Consequence
IF WrkExp is Beginner And Edu is High School Then Salary is Very-Low
IF WrkExp is Beginner And Edu is Bachelor Then Salary is Low
IF WrkExp is Beginner And Edu is Post Graduate Then Salary is Medium
IF WrkExp is Intermediate And Edu is High School Then Salary is Low
IF WrkExp is Intermediate And Edu is Bachelor Then Salary is Medium
IF WrkExp is Intermediate And Edu is Post Graduate Then Salary is High
IF WrkExp is Expert And Edu is High School Then Salary is Medium
IF WrkExp is Expert And Edu is Bachelor Then Salary is High
IF WrkExp is Expert And Edu is Post Graduate Then Salary is Very High

To clarify the above, a Sugeno fuzzy system is designed to solve the salary
problem given previously. Figure 7.12 shows the general overview of the system.
The way the input variables are fuzzified is exactly the same as in Mamdani’s ver-
sion of this controller. The only difference is in defining the output for each fuzzy
rule. In this case, five different formulas are defined to determine the salary cate-
gory. To simplify the problem, these formulas are selected as constant numbers
(although they can be any linear or nonlinear combination of the inputs) labeled
as Very-Low, Low, Medium, High, and Very-High, with the following definitions:

Very-Low = 0.1

Fuzzy Logic 229

Antecedent

Work-Experience = 0.1 Education = 0.3 Salary = 0.365
A

ggregation

Implication

0
9

8

7

6

5

4

3

2

1

1 0 1

0.10.1 11

Consequent

0

0.5

Work-Experience

1

0

0.5

1
0.2

0.4

0.6

0.8

S
al

ar
y

Education

Figure 7.10. A flow diagram for Mamdani’s fuzzy system

Figure 7.11. A surface view of Mamdani’s salary system

Low = 0.25
Medium = 0.5
High = 0.75
Very-High = 1.0

The rules of Table 7.1 are applicable here, with the only difference being how
the output is defined. Figure 7.13 shows a general overview of the rules firing
scheme when the input variables are 0.1 and 0.3 for Work Experience and
Education Level, respectively. In this case, the salary output is 0.232. The general
Surface View of this system is given in Figure 7.14.

2.6 Fuzzy Decision Makers

Fuzzy decision makers are another class of fuzzy systems used for real-world
applications [7-9]. In these systems, a predefined number of simple rules are
embedded into the system, and then the system is allowed to make its own deci-
sions, even in the case of unknown events for which the system was never trained.

To demonstrate the general idea of such systems, assume that one knows how
the system must behave in extreme conditions, as shown in Figure 7.15, which is
drawn for the examples provided in the last two sections to set the amount of
salary for an employee. Then the aim of the whole system is to decide for all con-
ditions inside the plate shown in Figure 7.15, while the rules are actually written
for the known conditions that are marked with spheres (the system is trained for
these points as its rules).

230 Javid Taheri and Albert Y. Zomaya

Salary

Salary

(Sugeno)
f(u)

Education

Work-Experience

Figure 7.12. A general overview of Sugeno’s salary system

2.7 Fuzzy Controller

Fuzzy Controllers are the other type of system employed for systems control
[10–13]. The most famous example of this kind of system is reverse car parking.
This example is one of the Demos of the Matlab® Releases, Version 13, Fuzzy
Toolbox [14]. Figure 7.16 shows the initial conditions of a car to be parked, while
Figure 7.17 shows the trajectory of the car position when the fuzzy controller is
parking the car.

Fuzzy Logic 231

Figure 7.13. A flow diagram of Sugeno’s fuzzy system

Implication

0
9

8

7

6

5

4

3

2

1

Antecedent

Work-Experience = 0.1 Education= 0.3 Salary = 0.232

Consequent

A
ggregation

1 0

0.01 1.09

1

1

1

0.5

Education
0 0

0.5

1

Work-Experience

S
al

ar
y

0.8

0.6

0.4

0.2

Figure 7.14. A surface view of Sugeno’s salary system

2.8 Fuzzy Classifiers

Fuzzy classifiers are other classes of systems with different functionalities.
[16, 17]. The aim here is to cluster objects, for example, in cases of system identi-
fication, time-series prediction, and noise cancellation. For further information,
please refer to the Fuzzy Toolbox of the Matlab®, released version 13 [14].

232 Javid Taheri and Albert Y. Zomaya

Figure 7.15. The rules are composed for the marked areas, although the system is able to make
its decision for all the points

Figure 7.16. The relative positions of a car and the parking spot

3 DATA CLUSTERING ALGORITHMS

Clustering algorithms are used extensively not only to organize and catego-
rize data but also to compress them in order to construct a model [17–24].
Through use of clustering techniques, data are partitioned into several groups
such that the similarity within a group is larger than the similarities with other
groups. These techniques are usually used in conjunction with radial basis func-
tions or fuzzy modeling to determine the initial locations of the radial basis
functions or fuzzy IF – THEN rules. In this case, a similarity function is usually
defined to take two variables and generate a small output for similar inputs
and large numbers for nonsimilar ones. It is important to note that clustering
techniques used for structure identification in neural or fuzzy models are highly
heuristic, and it is possible to find a data set in which none of the clustering
techniques is applicable.

3.1 K-Means Clustering

The K-means algorithm partitions a group of n vectors xj: j = 1,...,n into c
groups Gi:i = 1,...,c, and finds a cluster center in each group such that a cost func-
tion of dissimilarity measure is minimized [19,20]. To achieve this outcome, let’s
assume that

J J x c
,

i k i
k x Gi

c

i

c 2

11 k i

= = -
!==

!!!
J

L
KK

N

P
OO

where J x c
,

i k i
k x G

2

k i

= -
!

! is a cost function within group i.

The partitioned groups are typically defined by a c × n binary membership
matrix U, where the elements uij are 1 if the jth data point xj belongs to group i and
0 otherwise.

Fuzzy Logic 233

Figure 7.17. The trajectory of the car in reverse parking mode

u

x c x c

k i

1

0 otherwise
ij

j i j k

2 2

!

#

=

- -
Z

[

\

]
]]

]
]]

The membership matrix U has the following properties:

1. ,...,u j n1 1ij
i

c

1
6= =

=

!

2. u nij
j

n

i

c

11
=

==

!!

Finally, after every iteration, ci should be updated as follows:

c
G

x G uwhere1
,

i
i

k
k x G

i ij
j

n

1k i

= =
! =

! !
Note that the algorithm is inherently iterative, and no guarantee can be made

that it will converge to an optimum solution. The performance of the K-means
algorithm depends on the initial position of the cluster centers.

3.2 Fuzzy C-Means Clustering

Fuzzy C-means clustering (FCM), also known as fuzzy ISODATA, is a data
clustering algorithm in which each data point belongs to a cluster to a degree
specified by a membership grade [20,21].

FCM partitions a collection of n vectors xj : j = 1,...,n into c fuzzy groups
Gi:i = 1,...,c, and finds a cluster center in each group such that a cost function of
dissimilarity measure is minimized. To accommodate the introduction of fuzzy
partitioning, the membership matrix U is allowed to have elements with values
ranging between 0.0 and 1.0 such that

, ,u j n1 1ij
i

c

1
6 f= =

=

!

The cost function for FCM is then a generalization of

(, , ,...,)J U c c c J u dc i ij
m

ij
j

n

i

c

i

c

1 2
2

111
#= =

===

!!!
where uij is between 0 and 1; ci is the cluster center of fuzzy group i;

d c xij i j= - ; and m ∈[1,∞) is a weighting exponent.
The necessary conditions for the above equation to reach a minimum can be

determined by

(, , ,..., , , ,...,) ()J U c c c u d u 1c n ij
m

ij j ij
i

c

j

n

j

n

i

c

1 2 1 2
2

1
11

#= + -m m m m
=

=
==

!!!!
where lj; j = 1,...,n are the Lagrange multipliers for the n constraints. A solu-

tion of the above problem should lead to the following formulas:

c
u

u x

i

ij
m

j

n

ij
m

j
j

n

1

1
#

=

=

=

!

!

234 Javid Taheri and Albert Y. Zomaya

and

u

d
d

1
ij

kj

ij m

k

c 1

2

1

=

-

=

! f p
As in the previous case, no guarantee ensures that FCM will converge to an

optimum solution. The performance depends on the initial cluster centers.

3.3 Mountain Clustering Method

The mountain clustering method is a relatively simple and effective approach
to approximate estimation of cluster centers on the basis of a density measure
called the mountain function [22, 23]. This method can be used to obtain initial
cluster centers that are required by more sophisticated cluster algorithms such as
fuzzy C-mean. This clustering method involves three major steps. The first step
forms a grid over the data space. The second step entails constructing a mountain
function representing a data density measure:

() expm v
v x

2
i

i

N

2

2

1
= -

-

v=

!
J

L

K
K
K

N

P

O
O
O

where xi is the ith data point and s is an application specific constant. The
mountain function can be viewed as a measure of data density, since it tends to
be higher if more data points are located nearby and lower if fewer data points
are around. The third step involves selecting the cluster centers by sequentially
destructing the mountain function. First, the point in the candidate centers v ∈ V
that has the greatest value for the mountain function is found. This point will be
considered as the first cluster center c1.

Now let

() () () expm v m v m c
v c

2new 1 2
1

= - -
-

b

J

L

K
K

N

P

O
O

After the subtraction operation, the second cluster center is selected as the
point v ∈ V that has the greatest value for the new mountain function. This
process of revising the mountain function and finding the next cluster center con-
tinues until a sufficient number of cluster centers are reached.

Mountain clustering can also be applied to identify the structure of a fuzzy
model. To do this, firstly, a training data set is used to find cluster centers (xi, yi),
and then a zero-order Sugeno fuzzy model is formed in which the ith rule is
expressed as

IF X is close to xi THEN Y is close to yi

Then other tuning methods can be used to tune the rules further.

3.4 Subtracting Clustering

A new approach in fuzzy clustering is subtractive clustering, in which data
points (not grid points) are considered as candidates for cluster centers [24]. With
this method, the computation is simply proportional to the number of data points

Fuzzy Logic 235

and independent of the dimensional of the problem under consideration, since
each data point is potentially a candidate for a cluster center. Then, a density
measure at data point xi is defined as

expD
r

x x

2

i
a

i j

j

n

2

2

1
= -

-

=

!

J

L

K
K
K
KK c

N

P

O
O
O
OOm

where ra is a positive constant. The radius ra defines a neighborhood; data points
outside this radius contribute only slightly to the density measure.

When the density measurement for each data point has been calculated, the
data point with the highest density measure is selected as the first cluster center.
Let xc1

be the point selected, with Dc1
as its density measure. Now the density

measure for each data point xi is revised by the formula

expD D D
r

x x

2

i i c
i c

b

2

21

1

= -
-

-

J

L

K
K
K
KK c

N

P

O
O
O
OOm

where another rb is a positive constant. Note that the constant rb is normally
larger than ra to prevent closely spaced cluster centers. In general, rb = 1.5 ra.

After the density measure for each data point is revised, the next
cluster center xc2

is selected and all the density measures for data points are
revised again. This process is repeated until sufficient cluster centers have been
generated.

Like the mountain clustering algorithm, the subtractive clustering algorithm
can be launched to determine fuzzy rules. For instance, assume that the center for
the ith cluster is ci in an M-dimensional and that the consequent parts are assumed
to have RBFN membership. In this case, the membership function m can be
assigned as

exp
r

x p

2
i

b

i i
2

2; ;
= -

-
n

J

L

K
K
KK `

N

P

O
O
OOj

3.5 Fuzzy Rules Generation

As explained earlier, each fuzzy system consists of three main components:
input variables that must be fuzzified, output variables that must be defuzzified,
and the most important part, namely, the rules database. The rules of a fuzzy sys-
tem are the part of the system that actually relates the outputs to the inputs. It is
obvious that without appropriate rules, the system may function inefficiently.
Although rule generation is the most important part of a fuzzy system, it has
rarely been considered because of its complexity.

Several approaches have been presented to help designers of fuzzy systems
develop their rules in an efficient and concise way. However, most of these
approaches have limited applicability. This section attempts to introduce some

236 Javid Taheri and Albert Y. Zomaya

effective approaches to generate fuzzy rules [25–31]. Further, appropriate fuzzifi-
cation and defuzzification methods are also important because they are corre-
lated with the rules of the system.

3.6 Fuzzy Rules from Fuzzy Knowledge

The first approach employed for generating fuzzy rules is based on the experience
of actual system operators, who usually intuitively know how to control the system.
In this case, the fuzzy designer codes the ideas of an expert user into linguistic
expressions, as seen earlier. The only thing the designer must consider is the consis-
tency of the coding process so as to achieve maximum robustness of the system.

To clarify this situation, suppose a controller must be designed to control
the temperature and flow of a shower using Hot and Cold values as inputs.
In this case, the simplest controller can be that of Figures 7.18 and 7.19. Note that
this system is a simple feedback controller that tries to reduce the difference
between the actual temperature and flow rates and the desired ones (Feedback
Errors).

To achieve this result, temperature and flow errors are both fuzzified by three
triangular membership functions, as shown in Figures 7.20 and 7.21, while the
outputs of the system are represented with three trapezoidal membership func-
tions, as shown in Figure 7.22. Figures 7.23 and 7.24 show the temperature and
flow rate of the system when their desired values are changes with square wave-
forms. Table 7.2 lists the rules for this system. This example is one of the Matlab®

Fuzzy Logic Toolbox Demos [14].

Fuzzy Logic 237

hot water
valve

cold water
valve

Demux

Demux
Fuzzy Logic
Controllerout

To Workspace1 To Workspace

in

Mux2

Mux3

Mux4

Mux

temp

f(u)

f(u)

flow
soope

flow
setpoint

flow
error

temp
error

temp
setpoint

Mux5

Mux

flow rate

Mux

temp
soope

Mux

+

+

−

−

Figure 7.18. General overview of the shower system

238 Javid Taheri and Albert Y. Zomaya

temp

flow

shower

(Mamdani)

cold

hot

Figure 7.19. General overview of Mamdani’s shower fuzzy system

0

0

soft good hard

0.2 0.4 0.6 0.8 1

input variable "flow"

0.5

1

−1 −0.8 −0.6 −0.4 −0.2

Figure 7.20. Fuzzy membership function for the Flow variable

0

0

input variable "temp"

cold good hot

5 10 15 20−20 −15 −10 −5

0.5

1

Figure 7.21. Fuzzy membership function for the Temp variable

3.7 Fuzzy Rules from Fuzzy Patches

Fuzzy patches are actually fuzzy clusters that are generated by a given fuzzy
clustering technique. Then a rule is written for each patch to imitate the behavior
of the system in that condition. These patches can also be used to design a con-
troller. In fact, the controller is designed so that it compensates the behavior of
the system for each one of the patches. Then some other fuzzy rules are added to
the system just to achieve overall stability for the system.

Fuzzy Logic 239

0
0 0.2

output variables "cold"

closeFast closeSlow steady openSlow openFast

0.4 0.6 0.8 1−1 −0.8 −0.6 −0.4 −0.2

0.5

1

Figure 7.22. Fuzzy membership function for the Cold and Hot variables

0
15

20

25

30
Temperature

10 20 30 40 50 60 70 80 90 100

Figure 7.23. Simulation results of the system to follow the temperature curve

3.8 Tuning Fuzzy Rules

Once the general structure of a fuzzy system has been determined, the system
must be tuned to have the best performance. This process is usually performed
by some optimal control routines that tune the parameters of the membership
functions. In some cases, these routines even change the whole structure of the
fuzzification and defuzzification processes [29].

3.9 Tuning Fuzzy Systems Using Gradient Descent Training

In this section, it is assumed that the structure of the fuzzy system is known
and that the aim is to tune the parameters. In this case, a fuzzy system with a
Gaussian membership function and COA defuzzification method is considered:

()

exp

exp

f x
x x

y
x x

i
l

i i
l

i

n

l

M

l

M

i
l

i i
l

i

n

2

11

1

1

2

1

=

-
-

-
-

v

v

==

= =

%!

! %

J

L

K
K

J

L

K
KK

J

L

K
K

J

L

K
KK

N

P

O
O

N

P

O
OO

N

P

O
O

N

P

O
OO

R

T

S
S
SS

R

T

S
S
SS

V

X

W
W
WW

V

X

W
W
WW

where M is the number of rules and , ,y xl
i
l

i
lv are free parameters to be adjusted.

Note that, although the structure of the system is chosen, the whole system has
not been designed yet because of the , ,y xl

i
l

i
lv parameters. To determine these

240 Javid Taheri and Albert Y. Zomaya

0
0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

Flow

Figure 7.24. Simulation results of the system to follow the flow rate signal

Fuzzy Logic 241

T
ab

le
7.

2.
F

uz
zy

 r
ul

es
 fo

r
th

e
sy

st
em

 s
ho

w
n

in
 F

ig
ur

e
7.

18
A

nt
ec

ed
en

t
➔

C
on

se
qu

en
t

IF
T

em
p

is
 C

ol
d

A
nd

F
lo

w
 is

 S
of

t
T

he
n

C
ld

V
lv

 is
 O

pe
nS

lo
w

A
nd

H
ot

V
lv

 is
 O

pe
nF

as
t

IF
T

em
p

is
 C

ol
d

A
nd

F
lo

w
 is

 G
oo

d
T

he
n

C
ld

V
lv

 is
 C

lo
se

Sl
ow

A
nd

H
ot

V
lv

 is
 O

pe
nS

lo
w

IF
T

em
p

is
 C

ol
d

A
nd

F
lo

w
 is

 H
ar

d
T

he
n

C
ld

V
lv

 is
 C

lo
se

F
as

t
A

nd
H

ot
V

lv
 is

 C
lo

se
Sl

ow
IF

T
em

p
is

 G
oo

d
A

nd
F

lo
w

 is
 S

of
t

T
he

n
C

ld
V

lv
 is

 O
pe

nS
lo

w
A

nd
H

ot
V

lv
 is

 O
pe

nS
lo

w
IF

T
em

p
is

 G
oo

d
A

nd
F

lo
w

 is
 G

oo
d

T
he

n
C

ld
V

lv
 is

 S
te

ad
y

A
nd

H
ot

V
lv

 is
 S

te
ad

y
IF

T
em

p
is

 G
oo

d
A

nd
F

lo
w

 is
 H

ar
d

T
he

n
C

ld
V

lv
 is

 C
lo

se
Sl

ow
A

nd
H

ot
V

lv
 is

 C
lo

se
Sl

ow
IF

T
em

p
is

 H
ot

A
nd

F
lo

w
 is

 S
of

t
T

he
n

C
ld

V
lv

 is
 O

pe
nF

as
t

A
nd

H
ot

V
lv

 is
 O

pe
nS

lo
w

IF
T

em
p

is
 H

ot
A

nd
F

lo
w

 is
 G

oo
d

T
he

n
C

ld
V

lv
 is

 O
pe

nS
lo

w
A

nd
H

ot
V

lv
 is

 C
lo

se
Sl

ow
IF

T
em

p
is

 H
ot

A
nd

F
lo

w
 is

 H
ar

d
T

he
n

C
ld

V
lv

 is
 C

lo
se

Sl
ow

A
nd

H
ot

V
lv

 is
 C

lo
se

F
as

t

parameters, it is helpful to represent the fuzzy system f (x) as a feedforward
network—specifically, the mapping from the input x ∈ U ⊂ �n to the output,
f (x) ∈ V ⊂ � .

Now in order to design the parameters by the Gradient Descent Method, the
matching error of the system is assigned as follows:

(())e f x y2
1p p p

0 0
2= -

Considering a minimization problem, the , ,y xl
i
l

i
lv parameters should be

adjusted such that ep is minimized. In this case, using the gradient descent algo-
rithm, the following formulas are used to tune these parameters. yl would be
adjusted as follows:

() ()y q y q
y
e1l l

q

12

2
+ = - a

() ()
y
e f y a

f
y
a f y b z1

l l
l

2

2
2
2

2

2
= - = -

() ()y q y q b
f y

z1l l1
+ = -

-
a

xi
l as follows:

() ()x q x q
x
e1i

l
i
l

i
l

q
2

2
+ = - a

()
x
e f y

z
f

x
z

i
l l

i
l

l

2

2
2

2

2

2
= -

() () (())
()

(())
x q x q b

f y
y q f z

q

x x q
1

2
i
l

i
l

i
l l

i
l

i
p

i
l

0
2+ = -

-
-

-
a

v
and finally si

l as follows:

() ()q q e1i
l

i
l

i
l

q
2
2

+ = -v v a
v

()e f y
z
f z

i
l l

i
l

l

2
2

2

2

2
2

= -
v v

() () (())
()

(())
q q b

f y
y q f z

q

x x q
1

2
i
l

i
l l l

i
l

i
p

i
l

0
2

3+ = -
-

-
-

v v a
v

This algorithm is also called the error back-propagation training algorithm. The
following algorithm is the final procedure that can be used to adjust the parame-
ters of a fuzzy system using the gradient descent technique.

Step 1: Structure determination and initial parameter setting
Choose the fuzzy system in the above form and determine the M. Have

in mind that larger values for M need more computation as well, but bet-
ter accuracy. The initial parameters yl (0), xi

l (0), si
l (0) must be chosen

carefully, too. These initial parameters may be determined according to the
linguistic rules from experts or any other clustering technique.

Step 2: Present input and calculate the output of the fuzzy system

242 Javid Taheri and Albert Y. Zomaya

For a given input–output pair (x0
p, y0

p), p = 1,2,..., the following auxiliary
parameters are calculated, where q is the iteration cycle:

()
()

expz
q

x x ql

i
l

i
p

i
l

i

n
0

2

1
= -

-

v=

%
J

L

K
K

J

L

K
KK

N

P

O
O

N

P

O
OO

b zl

l

M

1
=

=

!

()a y q zl l

l

M

1
=

=

!

f b
a

=

Step 3: Update the parameters
Modify the parameters (),y q 1l

+ (),x q 1i
l

+ si
l (q + 1) based on the

results of Step 2, where y = y0
p.

Step 4: Repeat Steps 2 and 3 with q = q + 1 for a predefined number of itera-
tions, or until the output error of the system � f − y0

p� becomes less than
another predefined value e.

Step 5: Repeat Steps 2 through 4 with p = p + 1, that is, update parameters
using the next input–output pair (x0

p+1, y0
p+1).

Step 6: Repeat the whole training procedure if applicable.
If desirable and feasible, set p = 1 and repeat Steps 2–5 until the designed

fuzzy system is satisfactory. For online control and dynamic system identifi-
cation, this step is not feasible because the input–output pairs are provided
one-by-one in a real-time fashion. However, for pattern recognition prob-
lems where the input–output pairs are provided offline, this step is desirable.

Note that, because of the nature of the above training algorithms, choosing
the initial parameters is crucial to the success of the algorithm. If the initial
parameters are chosen close to the optimal ones, the algorithm has a good chance
of converging to the optimal solution; otherwise, the algorithm may converge to
a nonoptimal solution or even diverge.

Setting the Initial Parameters
The choice of initial parameters is detrimental to the overall quality of the

final solution. In some cases, these parameters can be selected by experts, but in
other occasions this is not possible. So, to solve the above identification problem,
the following method is proposed for setting the initial parameters [29].

An online initial parameter choosing method:

Step 1: Collect the input–output pairs

(x0
k+1, y0

k+1)

where

x0
k+1 = (y(k),...,y(k − n + 1),u(k),...,u(k − m + 1))

for the first

y0
k+1 = y(k + 1)

Fuzzy Logic 243

M points (k = 1,...,M − 1).
Note that the training algorithm is actually started when k = M − 1.
Step 2: Choose the initial parameters

These parameters are chosen as ()y y0l l
0= and ()x x0l

i
l
0= , while si

l(0)
can be

set according to one of the following criteria:
1. Set si

l (0) to a small number

2. Set ()
() ()

, , ,
max min

M

x x
i n m0 1, , , ,

i
l l M i

l

l M i
l

1 0 1 0
f=

-
= +v f f= =

3. Set si
l (0) so that it makes the membership functions uniformly cover the

range of x0i
l from l = 1 to l = M.

The following lemma is a stability proof of the presented technique.

Lemma: For any arbitrary e > 0, there exist s* > 0 such that the fuzzy system

()f xt , with the preceding initial parameters ,y xl
i
l , and si

l = s*, has the property that

() < , , , .f x y k M0 1 1k k
0

1
0

1 fe- = -+ +t

Note that, by using this method, the first M input–output pairs will be prop-
erly matched. Thus, if these first M input–output pairs contain important features
of the unknown system f(x), it is very likely that, after training, the fuzzy identifier
will converge rapidly and determine the unknown parameters of the system.

3.10 Design of Fuzzy Systems Using Recursive Least Squares

The gradient descent algorithm in the previous section tries to minimize the

criterion ((()))e e f x y2
1p p p p

0 0
2= - , which actually accounts for the matching error

of only one input–output pair (x0
p, y0

p). In other words, the training algorithm
updates the parameters to match one input–output pair at a time. In this new
approach, a training algorithm that minimize the summation of the matching
errors for all the input–output pairs up to p is used to adjust the training param-
eters; that is, the objective here is to design a fuzzy system f(x) to minimize the
following cost function:

()J f x yp
j j

j

p

0 0

2

1
= -

=

! ` j
Moreover, the fuzzy system is designed iteration by iteration in a recursive

manner; that is, if fp is the fuzzy system designed to minimize Jp, then fp should
be represented as a function of fp−1. To accomplish this, the recursive least squares
algorithm is used as follows:

Step 1: Suppose that U = [a1, b1] ×...× [an, bn] ⊂ � n. Then, for each [ai, bi],
i = 1,2,...,n, define Ni fuzzy sets as Ai

li, li = 1, 2,..., Ni , which cover [ai, bi]
homogenously.

Step 2: Construct the fuzzy system from the following Nii

n

1=
% fuzzy IF – THEN

rules as follows:

244 Javid Taheri and Albert Y. Zomaya

IF x1 is A1
l1 and ... and xn is An

ln THEN y is Bl1,...,ln

where li = 1, 2,..., Ni , i = 1, 2,..., n, and Bl1,...,ln is any fuzzy set with center at yl ,..., ln1

(which is free to change). In particular, when the fuzzy system with product infer-
ence engine, singleton fuzzifier, and COA defuzzifier is chosen with the following
formula:

()
()

()
f x

x

y x, ,

A ii

n

l

N

l

N

l

N l l
A ii

n

l

N

111

1 11

i
li

n

n

n

i
li

n

n

1

1

1

1
1

f

g
=

n

nf

===

= ==

%!!

! %!

; E
; E

where y , ,l ln1 f are free parameters (that need to be properly chosen).

Step 3: Collect the free parameters y Ninto the, ,l l
ii

n

1
n1 f

=
% -dimensional vec-

tor as follows:

(, , , , , , , ,)y y y y y yN N N N N N N T1 1 1 1 121 1 21 1 1 n n1 1 2 1 2f f f=i f f f f f f

to form f(x) = bT (x) ˙ q, where

() (, , , , , , , ,)b x b b b b b bN N N N N N N T1 1 1 1 121 1 21 1 1 n n1 1 2 1 2f f f= f f f f f f

and

()
()

()
b x

x

x, ,l l

A ii

n

l

N

l

N
i

n

A i

111

1n

i
li

n

n

i
li

1

1

1

f
=

n

nf

===

=

%!!
%

; E
Step 4: Choose the initial parameters q (0) as follows:

If there are linguistic rules from experts whose IF parts agree with the
IF parts of one of the existing rules, then choose ()y 0, ,l ln1 f to be the cen-
ters of the THEN part fuzzy sets in these linguistic rules; otherwise, choose
q (0) arbitrary in the output space V ⊂ � ; or from a clustering algorithm.

Step 4: For p = 1, 2,..., compute the parameter q using the following recursive
least squares algorithm:

q(p) = q (p − 1) + K(p) ˙ [y0
p − bT (x0

p) ˘ q (p − 1)]
K(p) = P(p − 1) ˙ b(x0

p) ˙ [bT (x0
p) ˙ P(p − 1) ˙ b(x0

p) + 1]−1

P(p) = P(p − 1) − P (p − 1) ˙ b (x0
p).

[bT (x0
p) ˙ P(p − 1) ˙ b(x0

p) + 1]−1 bT (x0
p) ˙ P (p − 1)

where q(0) is chosen from Step 4, and P(0) = sI, where s is a large constant.
In this fuzzy system, the parameters y , ,l ln1 f are equal to the corresponding

elements in q (p).

4 DESIGN OF FUZZY SYSTEMS USING CLUSTERING

In this section, the input–output pairs are used to design the rules for the fuzzy
system. Basically, the input–output pairs are grouped into clusters and one rule is
formulated for each cluster [32–37].

Fuzzy Logic 245

4.1 An Adaptive Fuzzy System

Suppose that N input–output pairs (x0
l, y0

l), l = 1, 2,..., N, are given and the
task is to construct a fuzzy system f (x) that can match all the N pairs with a given
accuracy. That is, for any given e > 0, it is required to satisfy � f (x0

l) − y0
l � < e for

all l = 1,2,..., N. In this case, the optimal fuzzy system is considered as

()

exp

exp

f x
x x

y
x x

l

l

N

l
l

N
l

2

0

2

1

01 2

0

2

=

-
-

-
-

v

v

=

=

!

!

J

L

K
K
K

J

L

K
K
K

N

P

O
O
O

N

P

O
O
O

while the membership functions are

() expx
x x

A i

l

2

0

2

i
l = -

-
n

v

J

L

K
K
K

N

P

O
O
O

In this case, the designed optimal fuzzy system will have one rule for one
input–output pair. Therefore, the larger the number of input–output pairs, the
larger the number of rules in the system. To solve this problem, various cluster-
ing techniques can be used to categorize the input–output pairs and, conse-
quently, reduce the number redundant rules.

4.2 Design of Fuzzy System Using Nearest-Neighbor Clustering

Use of the nearest-neighbor technique is one of the most effective ways to
design fuzzy systems [34, 35]. This technique can be summarized as follows:

Step 1: Starting with the first input–output pair (x0
l, y0

l), establish a cluster
center xc

1 at x0
1, and set A1(1) = y0

1, B1(1) = 1. Select a radius r.
Step 2: Suppose that the algorithm is going to assign the kth input–output pair

(x0
k, y0

k), k = 2, 3,..., to a cluster when there are M clusters with centers at

xc
1, xc

2,..., xc
M.

Step 3: Compute the distance of x0
k to those M cluster centers, and then find the

nearest cluster to x0
k, namely, xc

lk. Then:

● If ⎜x0
k − xc

lk ⎜ > r, establish x0
k as a new cluster center xc

M+1 = x0
k, set

AM+ 1 (k) = y0
k, BM + 1 (k) = 1

and keep

Al (k) = Al (k − 1)
for all l = 1, 2,...,M.

Bl(k) = Bl(k− 1)

● If �x0
k − xc

lk� ≤ r, do the following:

246 Javid Taheri and Albert Y. Zomaya

Alk (k) = Alk(k − 1) + y0
k

Blk (k) = Blk (k −1) + 1

and set

Al(k) = Al(k−1)
for all l = 1,2,...,M.

Bl(k) = Bl(k − 1)

Step 3: If x0
k does not establish a new cluster, then the designed fuzzy system

based on the k input–output pairs (x
0
j, y

0
j), j = 1, 2,...,k is

()

()

()

exp

exp

f x

B k
x x

A k
x x

k

l c
l

l

M

l c
l

l

M

2

2

1

2

2

1

=

-
-

-
-

v

v

=

=

!

!

J

L

K
K
K

J

L

K
K
K

N

P

O
O
O

N

P

O
O
O

Step 4: If x0
k establishes a new cluster, then the designed fuzzy system is

()

()

()

exp

exp

f x

B k
x x

A k
x x

k

l c
l

l

M

l c
l

l

M

2

2

1

1

2

2

1

1

=
- -

- -

v

v

=

+

=

+

!

!

J

L

K
K
K

J

L

K
K
K

N

P

O
O
O

N

P

O
O
O

Step 5: Repeat by returning to Step 2 with k = k+1 until the process converges
to a satisfactory solution.

5 FUZZY APPLICATIONS

This section presents two popular applications that demonstrate the potential
of fuzzy logic in solving complex problems [36–38].

6 APPLICATION TO NONLINEAR DYNAMIC
SYSTEM IDENTIFICATION

System identification is a process of determining an appropriate model for a
system based on measurement form sensors [36, 37]. This process is important
because many applications in science and engineering depend on the accurate
modeling of a real-world system. In this section, a fuzzy system is used to approx-
imate the unknown nonlinear components of a dynamic system. Now, consider a
discrete-time nonlinear dynamic system as follows:

y(k+1) = f(y(k),..., y(k − n + 1), u(k),..., u(k − m + 1))

Fuzzy Logic 247

where f is an unknown function that needs to be “identified”, u and y are the
inputs and outputs of the system, respectively, and n and m are positive integers.
Now let ()f xt be the fuzzy system that is supposed to be an approximate of the
real system f.

() ((),..., (), (),..., ())y k f y k y k n u k u k m1 1 1+ = - + - +t

Based on the identification scheme given in Figure 7.25, the aim is to adjust
the parameters of ()f xt such that the output of the identification model ()y k 1+t

converges to the output of the real system ()y k 1+ as k → ∞.
To achieve this outcome, any of the previously presented tuning algorithms

can be used with the following formulation. The input–output pairs in this
problem are (x0

k + 1, y0
k + 1), where

x0
k + 1 = (y(k),..., y(k − n + 1), u(k),..., u(k − m + 1))

y0
k + 1 = y(k + 1) k = 0, 1, 2,...

Now the system parameters are modified iteration by iteration to follow the
real output.

6.1 Fuzzy robot navigator

Robot control is another area that benefited from advances in fuzzy logic
[38]. A fuzzy navigator is designed to control a robot that moves around a room
containing several static obstacles (chairs, tables, etc) and dynamic obstacles
(humans). Now the idea is that a fuzzy navigator will aid the robot to get to any
arbitrary point in the room from any other arbitrary point without colliding with
any static or dynamic obstacle [39].

In summary, the robot is equipped with ultrasonic sensors to detect its sur-
rounding obstacles. These sensors are mounted on the front, left, and right side of
the robot. Three completely individual controllers were designed to seek the goal,
avoid obstacles, and follow edges in the room. Figure 7.26 shows the general
overview of the controller, while Figures 7.27 and 7.28 are two examples of
launching the proposed algorithm in the presence of dynamic and static obstacles.
In these figures, the robot starts from the “S” point to get the target point “T”.

248 Javid Taheri and Albert Y. Zomaya

u

plant f(x)

y

e

ŷ

fuzzy system f̂(x)

Figure 7.25. A fuzzy identification system

Fuzzy Logic 249

Robot Sen-
sors

Goal Seeking

Obstacle
Avoidance

Edge Follower
Control Com-
mands to the

Robot

Behavior Se-
lector

T
S

Figure 7.27. A path generated in the presence of static and dynamic obstacles with a moving
target

Figure 7.26. A fuzzy robot navigator

S

T

Figure 7.28. A path generated in the presence of static and dynamic obstacles

Static obstacles are shown in gray, are dynamic (moving) obstacles are shown in
black. The robot itself is shown as a circle with a tick to show its head angle. Note
that, in Figure 7.27, the target is also a moving point, such as a carriage.

7 CONCLUSION

In this chapter, a general overview of the fuzzy logic has been presented. The
premise of fuzzy logic relies on the fact that decisions in the real world may not
be clear-cut, especially in complex scenarios. Fuzzy logic is a powerful tool that
can be applied to a wide range of applications ranging from fuzzy control to fuzzy
decision makers and fuzzy classifiers.

REFERENCES

[1] B. Kosko (1994): Fuzzy Thinking: The New Science of Fuzzy Logic.
Hyperion, Reprint edition.

[2] H.-J. Zimmermann (2001): Fuzzy Set Theory and its Applications, 4th ed.
Kluwer Academic Publishers.

[3] H. Ying, Y. Ding, S. Li, and S. Shao (1999): Comparison of necessary condi-
tions for typical Takagi-Sugeno and Mamdani fuzzy systems as universal
approximators, IEEE Transactions on Systems, Man and Cybernetics (Part A),
29(5), 508–514.

[4] Y. Ding, H. Ying, and S. Shao (2000): Necessary conditions on minimal
system configuration for general MISO Mamdani fuzzy systems as univer-
sal approximators, IEEE Transactions on Systems, Man and Cybernetics
(Part B), 30(6), 857–864.

[5] P. Liu (2002): Mamdani fuzzy system: universal approximator to a class of
random processes, IEEE Transactions on Fuzzy Systems, 10 (6), 756–766.

[6] K. Tanaka, T. Taniguchi, and H. O. Wang (2000): Generalized Takagi-
Sugeno fuzzy systems: rule reduction and robust control, in Proc. Ninth
IEEE International Conference on Fuzzy Systems, 2, 688–693.

[7] V. Catania, G. Ficili, S. Palazzo, and D. Panno (1995): A fuzzy decision
maker for source traffic control in high speed networks, in Proc.
International Conference on Network Protocols, pp. 136–143.

[8] Q. M. Wu and C. W. de Silva (1993): Automatic adjustment of the cutting
position of a vision-based fish processing machine, in Proc. IEEE Pacific
Rim Conference on Communications, Computers and Signal Processing, 2,
702–705.

[9] H. R. Beom and H. S. Cho (2000): Sonar-based navigation experiments on
a mobile robot in indoor environments, in Proc. IEEE International
Symposium on Intelligent Control, pp. 395–401.

[10] H.M. Tai and S. Shenoi (1994): Robust fuzzy controllers, in Proc. IEEE
International Conference on Systems, Man, and Cybernetics, 1, 85–90.

[11] S. Galichet and L. Foulloy (1995): Fuzzy controllers: synthesis and equiva-
lences, IEEE Transactions on Fuzzy Systems, 3(2), 140–148.

250 Javid Taheri and Albert Y. Zomaya

[12] W. Barra, Jr. (1998): A practical and useful self-learning fuzzy controller, in
Proc. Int. Conf. Control (Control ¢98), Sept. 1-4, 1998, 1, 290–295.

[13] C. W. Tao and J. Taur (1999): Design of fuzzy controllers with adaptive rule
insertion, IEEE Transactions on Systems, Man and Cybernetics (Part B),
29(3), 389–397.

[14] Fuzzy Toolbox, Matlab Released Version 13.
[15] S. Abe (1998): Dynamic cluster generation for a fuzzy classifier with ellip-

soidal regions, IEEE Transactions on Systems, Man and Cybernetics (Part B),
28(6), 869–876.

[16] J. G. Marin-Blazquez and Q. Shen (2002): From approximative to descrip-
tive fuzzy classifiers, IEEE Transactions on Fuzzy Systems, 10(4), 484–497.

[17] O. Takata, S. Miyamoto, and K. Umayahara (2001): Fuzzy clustering of
data with uncertainties using minimum and maximum distances based on
L1 metric, in Proc. Joint 9th IFSA World Congress and 20th NAFIPS
International Conference, 5, 2511–2516.

[18] L.-J. Kau (2003): Adaptive predictor with dynamic fuzzy K-means cluster-
ing for lossless image coding, in Proc. 12th IEEE International Conference
on Fuzzy Systems, 2, 944–949.

[19] N. Watanabe and T. Imaizumi (2001): Fuzzy k-means clustering with crisp
regions, in Proc. 10th IEEE International Conference on Fuzzy Systems, 1,
199–202.

[20] Y. Bo, G. J. Klir, and J. F. Swan-Stone (1995): Evolutionary fuzzy C-means
clustering algorithm, in Proc. Joint Fourth IEEE International Conference
on Fuzzy Systems and the Second International Fuzzy Engineering
Symposium, 4, 2221–2226.

[21] M.-C. Hung and D.-L. Yang (2001): An efficient Fuzzy C-Means clustering
algorithm, in Proc. IEEE International Conference on Data Mining, pp.
225–232.

[22] J. W. Lee, S. H. Son, and S. H. Kwon (2001): Advanced mountain cluster-
ing method, in Proc. Joint 9th IFSA World Congress and 20th NAFIPS, July
1, 275–280.

[23] P. J. Costa Branco, N. Lori, and J. A. Dente (1995): An autonomous
approach to the mountain-clustering method, in Proc. Third International
Symposium on Uncertainty Modeling and Analysis and Annual Conference
of the North American Fuzzy Information Processing Society, pp. 649–654.

[24] W.-Y. Liu, C.-J. Xiao, B.-W. Wang, Y. Shi, and S.-F. Fang (2003): Study on
combining subtractive clustering with fuzzy C-means clustering, in Proc.
Int. Conf. Machine Learning and Cybernetics, 5, 2659–2662.

[25] S. Mitra and Y. Hayashi (2000): Neuro-fuzzy rule generation: survey in soft
computing framework, IEEE Transactions on Neural Networks, 11(3),
748–768.

[26] C.-S. Fahn, K.-T. Lan, and Z.-B. Chern (1999): Fuzzy rules generation
using new evolutionary algorithms combined with multilayer perceptrons,
IEEE Transactions on Industrial Electronics, 46(6), 1103–1113.

[27] T.M. McKinney and N. Kehtarnavaz (1997): Fuzzy rule generation via
multi-scale clustering, in Proc. IEEE International Conference on Systems,
Man, and Cybernetics, 4, 3182–3187.

Fuzzy Logic 251

[28] J. Wang, L. Shen, and J.-F. Chao (1997): An efficient method of fuzzy rules
generation, in Proc. IEEE International Conference on Intelligent Processing
Systems, 1, 295–299.

[29] Y. Shi, M. Mizumoto, N. Yubazaki and M. Otani (1996): A learning algo-
rithm for tuning fuzzy rules based on the gradient descent method, in Proc.
IEEE International Conference on Fuzzy Systems, 1, 55–61.

[30] X. Chang, W. Li, and J. Farrell (2000): A C-means clustering based fuzzy
modeling method, in Proc. Ninth IEEE International Conference on Fuzzy
Systems, 2, 937–940.

[31] M.-S. Chen and R.-J. Liou (1999): An efficient learning method of fuzzy
inference system, in Proc. IEEE International Fuzzy Systems, 2, 634–638.

[32] T.-W. Hung, S.-C. Fang, and H. L. W. Nuttle (1999): An easily implemented
approach to fuzzy system identification, in Proc. 18th International
Conference of the North American Fuzzy Information Processing Society,
pp. 492–496.

[33] Y. Wang and G. Rong (1997): A self-organizing neural-network-based
fuzzy system, in Proc. Fifth International Conference on Artificial Neural
Networks, pp. 106–110.

[34] I. Burham Turksen, B. A. Sproule, and C. A. Naranjo (2001): A k-nearest
neighborhood based fuzzy reasoning schema, in Proc. 10th IEEE
International Conference on Fuzzy Systems, 1, 236–239.

[35] L.-X. Wang (1993): Training of fuzzy logic systems using nearest neighbor-
hood clustering, in Proc. Second IEEE International Conference on Fuzzy
Systems, 1, 13–17.

[36] F. Wan, L.-X. Wang, H.-Y. Zhu, and Y.-X. Sun (2001): Generating persist-
ently exciting inputs for nonlinear dynamic system identification using
fuzzy models, in Proc. IEEE International Conference on Fuzzy Systems, 1,
505–508.

[37] A. Lo Schiavo and A. M. Luciano (2001): Powerful and flexible fuzzy algo-
rithm for nonlinear dynamic system identification, IEEE Transactions on
Fuzzy Systems, 9(6), 828–835.

[38] J. Taheri and N. Sadati (2003): A fully modular online controller for robot
navigation in static and dynamic environments, in Proc. IEEE International
Symposium on Computational Intelligence in Robotics and Automation, 1,
163–168.

252 Javid Taheri and Albert Y. Zomaya

Chapter 8

QUANTUM COMPUTING
J. Eisert1,2 and M.M. Wolf 3

1Imperial College London,
2Universität Potsdam
3Max-Planck-Institut für Quantenoptik

Quantum mechanics is one of the cornerstones of modern physics. It governs
the behavior and the properties of matter in a fundamental way, in particular on
the microscopic scale of atoms and molecules. Hence, what we may call a classi-
cal computer, i.e., those machines on or under the desktops in our offices together
with all their potential descendants, are themselves following the rules of quan-
tum mechanics. However, they are no quantum computers in the sense that all the
inside information processing can perfectly be described within classical informa-
tion theory. In fact, we do not need quantum mechanics in order to explain how
the zeros and ones – the bits – inside a classical computer evolve. The reason for
this is that the architecture of classical computers does not make use of one of
the most fundamental features of quantum mechanics, namely, the possibility of
superpositions. Throughout the entire processing of any program on a classical
computer, each of the involved bits takes on either the value zero or one.
Quantum mechanics, however, would in addition allow superpositions of zeros
on ones, that is, bits – now called qubits (quantum-bits) – that are somehow in the
state zero and one at the same time. Computing devices that exploit this possibil-
ity, and with it all the essential features of quantum mechanics, are called quan-
tum computers [1]. Since they have an additional capability, they are at least as
powerful as classical computers: every problem that can be solved on a classical
computer can be handled by a quantum computer just as well. The converse,
however, is also true, since the dynamics of quantum systems is governed by lin-
ear differential equations, which can in turn be solved (at least approximately) on
a classical computer. Hence, classical and quantum computers could in princi-
ple emulate each other, and quantum computers are thus no hypercomputers.1

1A hypercomputer would be capable of solving problems that cannot be handled by a universal
Turing machine (the paradigm of a classical digital computer). The most famous example of

So why quantum computing? And if there is any reason, why not just simulate
these devices (which do not exist yet anyhow) on a classical computer?

1 WHY QUANTUM COMPUTING?

1.1 Quantum computers reduce the complexity
of certain computational tasks

One reason for quantum computers is that they will solve certain types of
problems faster than any (present or future) classical computer – it seems that the
border between easy and hard problems is different for quantum computers than
it is for their classical counterparts. Here easy means that the time for solving the
problem grows polynomially with the length of the input data (as with the prob-
lem of multiplying two numbers), whereas hard problems are those for which the
required time grows exponentially. Prominent examples for hard problems are the
traveling salesman problem, the graph isomorphism problem, and the problem of
factoring a number into primes.2 To the surprise of all, Peter Shor showed in 1994
that the latter problem could efficiently be solved by a quantum computer in poly-
nomial time [2]. Hence, a problem that is hard for any classical computer becomes
easy for quantum computers.3 Shor’s result gets even more brisance from the fact
that the security of public key encryption, i.e., the security of home banking and
any other information transfer via the Internet, is heavily based on the fact that
factoring is a hard problem.

One might think that the cost for the exponential speedup gained with quan-
tum computers would be an exponential increase in the required accuracy for
all the involved operations. This situation would then be reminiscent of the
drawback of analogue computers. Fortunately, this is not the case, and a con-
stant accuracy is sufficient. However, achieving this “constant” is without doubt
experimentally highly challenging.

1.2 Quantum systems can efficiently simulate
other quantum systems

Nature provides many fascinating collective quantum phenomena such as
superconductivity, magnetism, and Bose–Einstein condensation. Although all

254 J. Eisert and M.M. Wolf

such a problem is the halting problem, which is in modern terminology the task of a universal
crash debugger, which is supposed to spot all bugs leading to crashes or infinite loops for any
program running on a universal Turing machine. As shown by Turing, such a debugger cannot
exist.
2These problems are strongly believed to be hard (the same is, by the way, true for a special
instance of the computer game “Minesweeper”). However, in all cases, there is no proof that a
polynomial-time algorithm cannot exist. The question whether there exists such an algorithm
(for the traveling salesman or the minesweeper problem) is in fact the notorious P NP=

? ques-
tion, for whose solution there is even a prize of 1 million.
3In fact, Shor’s algorithm strikes the strong Church-Turing thesis, which states that every rea-
sonable physical computing device can be simulated on a probabilistic Turing machine with at
most a polynomial overhead.

properties of matter are described and can in principle be determined from the
laws of quantum mechanics, physicists have very often serious difficulties in
understanding them in detail and in predicting them by starting from fundamen-
tal rules and first principles. One reason for these difficulties is that the number of
parameters needed to describe a many-particle quantum system grows exponen-
tially with the number of particles. Hence, comparing a theoretical model for
the behavior of more than, say, thirty particles with experimental reality is not
possible by simulating the theoretical model numerically on a classical computer
without making serious simplifications.

When thinking about this problem of simulating quantum systems on classi-
cal computers, Richard Feynman came to the conclusion in the early 1980s that
such a classical simulation typically suffers from an exponential slowdown,
whereas another quantum system could in principle do the simulation efficiently
with bearable overhead [3].

In this way a quantum computer, operated as a quantum simulator, could
be used as a link between theoretical models formulated on a fundamental level
and experimental observations. Similar to Shor’s algorithm, a quantum simula-
tor would yield an exponential speedup compared with a classical computer.
An important difference between these two applications is, however, that a useful
Shor-algorithm quantum computer would require thousands of qubits, whereas a
few tens of qubits could already be useful for the simulation of quantum systems.
We will resume the idea of a quantum simulator in Sections 6 and 7.

1.3 Moore’s law has physical limits

Apart from the computational power of a quantum computer there is a much
more banal argument for incorporating quantum mechanics into computer sci-
ence: Moore’s law. In 1965 Intel cofounder Gordon Moore observed an expo-
nential growth in the number of transistors per square inch on integrated circuits
and he predicted that this trend would continue [4]. In fact, since then this den-
sity has doubled approximately every 18 months.4 If this trend continues, then
around the year 2020 the components of computers will be at the atomic scale,
where quantum effects are dominant. We thus will inevitably have to cope with
these effects, and we can either try to circumvent and eliminate them as long as
possible and keep on doing classical computing or try at some point to make use
of them and start doing quantum computing.

1.4 Even small quantum circuits may be useful

Besides the quantum computer with its above-mentioned applications, quan-
tum information science yields a couple of other useful applications that might be
easier to realize. The best example is quantum cryptography, which enables one to
transmit information with “the security of nature’s laws” [5]. However, small

Quantum Computing 255

4Actually, not every prediction of the pioneers in computer business was that Farsighted: For
instance, in 1943 Thomas Watson, chairman of IBM, predicted a world market for five com-
puters, and in 1977 Digital Equipment Corp. founder Ken Olson stated that “there is no reason
anyone would want a computer in their home.”

building blocks of a quantum computer, i.e., small quantum circuits, may be use-
ful as well. One potential application, for instance, is in precision measurements,
as in atomic clocks [6, 7], which are important in global positioning systems as
well as in synchronizing networks and distant telescopes. By generating quantum
correlations between the N relevant atoms in the atomic clock, a quantum circuit
could in principle reduce the uncertainty of the clock by a factor of N .

Another application of small quantum circuits is entanglement distillation: in
order to distribute entangled states over large distances, we have to send them
through inevitably noisy channels, thereby losing some of the entanglement.
Fortunately, however, we can in many cases distill a few highly entangled states
out of many weakly entangled ones [8, 9].

2 FROM CLASSICAL TO QUANTUM COMPUTING

Let us now have a closer look at the way a quantum computer works. We will
do so by comparing the concepts of classical computing with the basics of quan-
tum computing. In fact, many classical concepts have very similar quantum coun-
terparts, like bits become qubits, and the logic is still often best explained within
a circuit model [10, 1]. However, there are also crucial differences, which we will
describe below.

2.1 Qubits and quantum parallelism

The elementary information carriers in a quantum computer are the qubits –
quantum bits [11]. In contrast to classical bits, which take on a value of either
zero or one, qubits can be in every superposition of the state vectors �0〉 and �1〉.
This means that the vector �Y 〉 describing the (pure) state of the qubit can be any
linear combination

�Y 〉 = a �0〉 + b�1〉 (1)

of the vectors �0〉 and �1〉 with complex coefficients a and b.5 In the same way, a
system of many qubits can be in a superposition of all classically possible states

�0, 0,...,0〉 + �1, 0,..., 0〉 + ... + �1, 1,...,1〉. (2)

The basis {�0, 0,...,0〉, �0, 1,...,0〉,...,�1, 1,...,1〉} that corresponds to the binary
words of length n in a quantum system of n qubits is called the computational basis.6

Using the superposition of Eq. (2) as an input for an algorithm means somehow
running the computation on all classically possible input states at the same time.
This possibility is called quantum parallelism, and it is certainly one of the reasons
for the computational power of a quantum computer. The mathematical struc-
ture behind the composition of quantum systems is the tensor product.

256 J. Eisert and M.M. Wolf

5The “Dirac notation” �˙〉 is frequently used in quantum mechanics. Eq. (1) could as well be writ-
ten in the standard vector notation, i.e., Y = (a, b) such that �0〉 and �1〉 correspond to the basis
vectors (1, 0) and (0, 1), respectively.
6In finite-dimensional quantum systems such as those we encounter here, the computational
basis spans the Hilbert space associated with the physical system.

Hence, vectors like �0, 0,...,0〉 should be understood as 0 0 0
n

7 7f =
7

. This

implies that the dimension of space characterizing the system grows exponentially
with the number of qubits.

Physically, qubits correspond to effective two-level systems like the ground
state and excited state of an atom, the polarization degree of freedom of light, or
the up- and down-orientation of a spin-1/2 particle (see Section 9). Such a physi-
cal system can be in any pure state that can be represented by a normalized vec-
tor of the above form.7 A pure state of a composite quantum system that is not a
product with respect to all constituents is called an entangled pure state.

2.2 Read-out and probabilistic nature of quantum computers

An important difference between classical and quantum computers is in the
read-out process. In the classical case, there is not much to say: the output is a bit-
string obtained in a deterministic manner, i.e., repeating the computation will lead
to the same output again.8 However, due to the probabilistic nature of quantum
mechanics, the situation is different for a quantum computer. If the output of
the computation is, for instance, the state vector �Y 〉 in Eq. (1), a and b cannot be
determined by a single measurement on a single specimen. In fact, �a�2 and �b�2
are the probabilities for the system to be found in �0〉 and �1〉, respectively. Hence,
the absolute values of these coefficients can be determined by repeating the com-
putation, measuring in the basis �0〉, �1〉, and then counting the relative frequencies.
The actual outcome of every single measurement is thereby completely indeter-
minate. In the same manner, the state of a quantum system consisting of n qubits
can be measured in the computational basis, which means that the outcome cor-
responding to some binary word occurs with the probability given by the square
of the absolute value of the respective coefficient. So, in effect, the probabilistic
nature of the read-out process on the one hand and the possibility of exploiting
quantum parallelism on the other hand are competing aspects when it comes to
comparing the computational power of quantum and classical computers.

2.3 The circuit model

A classical digital computer operates on a string of input bits and returns a
string of output bits. The function in between can be described as a logical circuit

Quantum Computing 257

7States in quantum mechanics, however, can also be mixed, in contrast to pure states, which can
be represented as state vectors. A general and hence mixed quantum state can be represented by
a density operator r. A density operator r is a positive operator, r ≥ 0, which is normalized, tr[r]
= 1. For qubits, the state space, i.e., the set of all possible density matrices representing possible
physical states, can be represented as a unit ball, called the Bloch ball. The extreme points of this
set are the pure states that correspond to state vectors. In the Bloch picture, the pure states are
located on the boundary of the set: the set of all pure states is hence represented by a unit
sphere. The concept of mixed quantum states is required in quantum mechanics to incorporate
classical ignorance about the preparation procedure, or when states of parts of a composite
quantum system are considered.
8Within the circuit model described above, this observation is trivial, since all the elementary
gates are deterministic operations. Note that even probabilistic classical algorithms run essen-
tially on deterministic grounds.

built up out of many elementary logic operations. That is, the whole computation
can be decomposed into an array of smaller operations – gates – acting only on
one or two bits, like the AND, OR, and NOT operation. In fact, these three gates
together with the COPY (or FANOUT) operation form a universal set of gates
into which every well-defined input–output function can be decomposed. The
complexity of an algorithm is then essentially the number of required elementary
gates, resp. its asymptotic growth with the size of the input.

The circuit model for the quantum computer [10, 1] is actually very reminis-
cent of the classical circuit model: of course, we have to replace the input–output
function by a quantum operation mapping quantum states onto quantum states.
It is sufficient to consider only those operations that have the property of being
unitary, which means that the computation is taken to be logically reversible. In
turn, any unitary operation can be decomposed into elementary gates acting only
on one or two qubits. A set of elementary gates that allows for a realization of any
unitary to arbitrary approximation is again referred to as being universal [12, 10].
An important example of a set of universal gates is, in this case, any randomly
chosen one-qubit rotation together with the CNOT (Controlled NOT) operation,
which acts as

, , ,x y x y x7 5 (3)

where 5 means addition modulo 2 [13]. As in the classical case, there are infinitely
many sets of universal gates. Notably also, any generic (i.e., randomly chosen)
two-qubit gate (together with the possibility of switching the leads in order to
swap qubits) is itself a universal set, very much like the NAND gate is for classi-
cal computing [12].9 Notably, any quantum circuit that makes use of a certain
universal set of quantum gates can be simulated by a different quantum cir-
cuit based on another universal set of gates with only polylogarithmic overhead
[16, 17, 1]. A particularly useful single-qubit gate is the Hadamard gate, acting as

() , () .H H0 0 0 1 2 1 1 0 1 27 7= + = - (4)

A phase gate does nothing but multiply one of the basis vectors with a phase,

, ,i0 0 1 17 7 (5)

and a Pauli gate corresponds to one of the three unitary Pauli matrices (see Figure
8.1). The CNOT, the Hadamard, the phase gate, and the Pauli gate are quantum
gates of utmost importance. Given their key status in many quantum algorithms,
one might be tempted to think that with these ingredients alone (together with
measurements of Pauli operators: see below), powerful quantum algorithms may
be constructed that outperform the best-known classical algorithm to a problem.
This intuition is yet not correct: it is the content of the Gottesman-Knill theorem
that any quantum circuit consisting of only these ingredients can be simulated effi-

258 J. Eisert and M.M. Wolf

9Any such generic quantum gate has so-called entangling power [14], in that it may transform a
product state vector into one that can no longer be written as a tensor product. Such quantum
mechanical pure states are called entangled. In the intermediate steps of a quantum algorithm,
the physical state of the system is, in general, highly multiparticle entangled. In turn, the imple-
mentation of quantum gates in distributed quantum computation requires entanglement as a
resource [15].

ciently on a classical computer [1, 18]. The proof of the Gottesman-Knill theo-
rem is deeply rooted in the stabilizer formalism that we will encounter later in the
context of quantum error correction.

One of the crucial differences between classical and quantum circuits is that,
in the quantum case, the COPY operation is not possible. In fact, the linearity of
quantum mechanics forbids a device that copies an unknown quantum state – this
is known as the no-cloning theorem.10 The latter has far-reaching consequences, of
which the most prominent is the possibility of quantum cryptography coining this
“no-go theorem” into an application [5].

2.4 How to program a quantum computer?

The good thing about the classical computer on which this chapter has been
written is that it is programmable. It is a single device capable of performing dif-
ferent operations depending on the program it is given: word processing, alge-
braic transformations, displaying movies, etc. In more abstract terms, a classical
computer is a universal gate array: we can program every possible function with n
input and n output bits by specifying a program of length n2n. That is, a fixed cir-
cuit with n(1 + 2n) input bits can be used in order to compute any function on the
first n bits in the register. Is the same true for quantum computers? Or will these
devices typically be made-to-measure with respect to a single task?

Nielsen and Chuang showed that quantum computers cannot be universal
gate arrays [20]. Even if the program is itself given in form of a quantum state, it
would require a program register of infinite length in order to perform an arbi-
trary (unitary) operation on a finite number of qubits – universality was shown
to be only possible in a probabilistic manner. In this sense, quantum computers
will not be the kind of all-purpose devices that classical computers are. In prac-
tice, however, any finite set of quantum programs can run on a quantum com-
puter with a finite program register. This issue applies, however, to the
programming of a quantum computer with a fixed hardware, which is, needless
to say, still in the remote future as a physical device.

Quantum Computing 259

B

σzA H

(i) (ii) (iii)

Figure 8.1. Representation of (i) a quantum CNOT gate, (ii) a Hadamard gate, and (iii) a Pauli
sz gate. In the CNOT gate, the first qubit, here denoted as A, is typically referred to as control,
the second qubit B as target. The CNOT gate is a quantum version of the XOR gate, made
reversible by retaining the control.

10If one knows that the state vector is either �0〉 or �1〉, then a cloning machine is perfectly con-
sistent with rules of quantum mechanics. However, producing perfect clones of an arbitrary
quantum state as given by Eq. (1) is prohibited, as has been shown by Wootters, Zurek, and
Dieks [19].

2.5 Quantum error correction

When it comes to experimental realizations of quantum computers, we will
have to deal with errors in the operations, and we will have to find a way to pro-
tect the computation against these errors: we have to find a way of doing error
correction. Roughly speaking, error correction in classical computers is essentially
based on two facts:
1. Computing with classical bits itself provides a simple means of error correc-

tion in the form of a lock-in-place mechanism. If, for instance, two bits are real-
ized by two different voltages (as is the case in our computers, as well as in our
brains), then the difference can simply be chosen large enough such that typi-
cal fluctuations are small compared with the threshold separating the two bits.

2. The information can be copied and then stored or processed in a redundant
way. If, for instance, an error occurs in one of three copies of a bit, we can
recover the original information by applying a majority vote. Of course, there
are much more refined versions of this method.
Unfortunately, in quantum computers we cannot use either of these ideas in a

straightforward manner because
1. there is no lock-in-place mechanism, and
2. The no-cloning theorem forbids copying the state of the qubits.

To naively measure the state of the system to find out what error has actually
happened before correcting it does not help, since any such attempt would neces-
sarily disturb the state in an irreversible manner. So at the very beginning of
quantum information science, it was not clear whether or not, under physically
reasonable assumptions, fault-tolerant quantum computing would be possible. It
was obvious from the beginning on, in turn, the goal of suitable quantum error
correction would need to be achieved in some way. Without appropriate error cor-
rection techniques, the promise of the Shor-class quantum computer as a com-
putational device potentially outperforming modern classical computers could
quite certainly not be met.

Fortunately, Steane, Shor, and many other researchers showed that error cor-
rection is nevertheless possible and that the above problems can indeed be over-
come [21–24]. The basic idea is that a logical qubit can be protected by encoding
it in a nonlocal manner into several physical qubits. This amounts to a lossless
encoding in longer code words to make the states robust against the effects of
noise, without the need to actually copy the quantum state under consideration
and introduce redundancy in the literal sense.

3 ELEMENTARY QUANTUM ALGORITHMS

In the same scientific paper in which David Deutsch introduced the notion of
the universal quantum computer, he also presented the first quantum algorithm
[25].11 The problem that this algorithm addresses, later referred to as Deutsch’s
problem, is a very simple one. Yet the Deutsch algorithm already exemplifies the

260 J. Eisert and M.M. Wolf

11Quantum Turing machines were first considered by Benioff [26] and developed by
Deutsch [25].

advantages of a quantum computer through skillfully exploiting quantum paral-
lelism. Like the Deutsch algorithm, all other elementary quantum algorithms in
this section amount to deciding which black box, out of finitely many alternatives,
one has at hand. Such a black box is often also referred to as an oracle. An input
may be given to the oracle, one may read out or use the outcome in later steps of
the quantum algorithm, and the objective is to identify the functioning of the
black box. It is assumed that this oracle operation can be implemented with some
sequence of quantum logic gates. The complexity of the quantum algorithm is
then quantified in terms of the number of queries to the oracle.

3.1 Deutsch algorithm

With the help of this algorithm, it is possible to decide whether a function has
a certain property with a single call of the function, instead of the two calls that
are necessary classically. Let

f : {0, 1} → {0, 1} (6)

be a function that has both a one-bit domain and range. This function can
be either constant or balanced, which means that either () ()f f0 1 05 = or

() ()f f0 1 15 = holds. The problem is to find out with the minimal number of
function calls whether this function f is constant or balanced. In colloquial terms,
the problem under consideration may be described as a procedure to test whether
a coin is fake (has two heads or two tails) or genuine.

Classically, it is obvious that two function calls are required to decide which of
the two allowed cases is realized, or, equivalently, what the value of () ()f f0 15

is. One way to compute the function f on a quantum computer is to transform the
state vector of two qubits according to

, , , () .x y U x y x f x yf7 5= (7)

In this manner, the evaluation can be realized unitarily. The above map is what
is called a standard quantum oracle (as opposed to a minimal quantum oracle [27],
which would be of the form ()x f x7H H). The claim now is that by using such an
oracle, a single function call is sufficient for the evaluation of () ()f f0 15 . In order
to show this, let us assume that we have prepared two qubits in the state with state
vector

() , ,H H 0 17=W (8)

where H denotes the Hadamard gate of Section 2. We now apply the unitary Uf
once to this state, and finally apply another Hadamard gate to the first qubit. The
resulting state vector hence reads as (see Figure 8.2)

Quantum Computing 261

Uƒ1

0

H

H H

Figure 8.2. The circuit of the Deutsch algorithm.

() () , .H U H H1 0 1f7 7=Wl (9)

A short calculation shows that HWl can be evaluated to

() () .f f H0 1 1! 5=H H HWl (10)

The second qubit is in the state corresponding to the vector H 1 , which is of
no relevance to our problem. The state of the first qubit, however, is quite
remarkable: encoded is () ()f f0 15 , and both alternatives are decidable with unit
probability in a measurement in the computational basis, since the two state vec-
tors are orthogonal.12 That is, with a single measurement of the state, and notably,
with a single call of the function f of the first qubit, we can decide whether f is
constant or balanced.

3.2 Deutsch–Jozsa algorithm

The Deutsch algorithm does not yet imply superiority of a quantum computer
as compared with a classical computer, as far as query complexity is concerned.
After all, it merely requires one function call instead of two. The situation is dif-
ferent in the case of the extension of the Deutsch algorithm known as Deutsch-
Jozsa algorithm [29]. Here, the task is again to find out whether a function is
constant or balanced, but f is now a function

f : {0, 1}N → {0, 1}, (11)

where N is some natural number. The function is guaranteed to be either con-
stant, which now means that either f (i) = 0 for all i = 0,..., 2N − 1 or f (i) = 1 for
all i, or balanced. The function is said to be balanced if the image under f takes
the value 1 as many times as it takes the value 0. The property of being balanced
or constant can be said to be a global property of several function values. It is a
promised property of the function, which is why the Deutsch–Jozsa algorithm is
being classified as a promise algorithm. There are only two possible black boxes
available, and the tasks is to find out which one is realized.

It is clear how many times one needs to call the function on a classical com-
puter: the worst-case scenario is that after 2 2N function calls, the answer has
been always 0 or always 1. Hence, 2 2 1N + function calls are required to know
with certainty whether the function is balanced or constant (a result that can be
significantly improved if probabilistic algorithms are allowed for). Quantum
mechanically, again, a single function call is sufficient. Similarly to the above sit-
uation, one may prepare N + 1 qubits in the state with state vector

, , , ,H 0 0 1()N 1 f=W 7 + (12)

and apply to it the unitary Uf as in Eq. (7), acting as an oracle, and apply H 1N 77

to the resulting state, to obtain (see Figure 8.3)

() , , , .H U H 0 0 11 ()N
f

N 17 f=W 7 7 +l (13)

262 J. Eisert and M.M. Wolf

12Note that the algorithm presented here is not quite the same as in the original paper by
Deutsch, which allowed for an inconclusive outcome in the measurement. This deterministic
version of the Deutsch algorithm is due to Cleve, Ekert, Macchiavello, and Mosca [28].

In the last step, one performs a measurement on the first N qubits in the com-
putational basis. In effect, one observes that if the function f is constant, one
obtains the measurement outcome corresponding to � 0, ..., 0〉 with certainty. For
any other output, the function is balanced. So again, the test for the promised
property can be performed with a single query, instead of 2N/2 + 1 classically.13

In the end, the performance of the Deutsch–Jozsa algorithm is quite impres-
sive. If there is any drawback to it, it is that, unfortunately, the algorithm is to
some extent artificial in nature and lacks an actual practical application emerging
in a natural context. The astonishing difference in the number of queries in the
quantum and classical case also disappears if classically probabilistic algorithms
are allowed for: in fact, if we use a probabilistic algorithm, a polynomial number
of queries achieves an exponentially good success probability.

3.3 Simon’s algorithm

Simon’s problem is an instance of an oracle problem that is hard classically,
even for probabilistic algorithms, but tractable for quantum computers [32]. The
task is to find the period p of a certain function f : {0, 1}N → {0, 1}N, which is
promised to be 2-to-1 with f(x) = f(y) if and only if y x p5= . Here, x and y denote

Quantum Computing 263

0

1

0

0

0

UfH

HH

H H

H H

H H

13A number of related problems show very similar features. In the Bernstein–Vazirani algorithm
[30], once again a function f : {0, 1}N → {0, 1} is given, promised to be of the form

f(x) = ax (14)

for a, x ∈ {0, 1}N for some natural number N. ax denotes the standard scalar product ax = a0x0
+ ... + a2N−1 x2N−1. How many measurements are required to find the vector a of zeros and
ones? Classically, one has to perform measurements for all possible arguments, and in the end
solve a

system of linear equations. With the standard oracle , , ()x y x f x y7 5 at hand, in its

quantum version in the Bernstein–Vazirani algorithm, only a single call of the oracle is required.
Although it has been convincingly argued that one does not have to evoke the metaphor of quan-
tum parallelism to interpret the functioning of the quantum computer in the Bernstein–Vazirani
problem – the difference from quantum to classical lies rather in the ability to reverse the action of
a CNOT gate by means of local operations on the control and target qubits – the surprisingly
superior performance of the quantum algorithm to its classical counterpart is self-evident.

Figure 8.3 The circuit of the Deutsch–Jozsa algorithm.

binary words of length N, where 5 now means bitwise addition modulo 2. The
problem can be stated as a decision problem as well, and the goal would then be
to decide whether or not there is a period, i.e., whether f is 2-to-1 or 1-to-1.

Classically the problem is hard, since the probability of having found two
identical elements x and y after 2N/4 queries is still less than 2−N/2. Simon’s quan-
tum solution is the following: start with a state vector ()H 0 0N N7 7

and run the
oracle once, yielding the state vector 2−N/2 ∑x �x〉� f (x)〉. Then measure the second
register.14 If the measurement outcome is f(x0), then the state vector of the first
register will be

().x x p
2

1
0 0 5+ (15)

Application of a Hadamard gate to each of the N remaining qubits leads to

() () y
2

1 1 1()/
()

N
x y x p y

y1 2
0 0- + -$ 5 $

+ ! a k (16)

() .y
2

1 1()/N
x y

p y1 2 0
0= - $

$- =
! (17)

If we finally measure the first register in computational basis, we obtain a
value y such that y p 0$ = modulo 2. Repeating this procedure in order to get N −
1 linearly independent vectors y1, ..., yN−1, we can determine p from the set of
equations y p 0i $ =# -. To this end we have to query the oracle ()O N times.15

Hence, we get an exponential speedup compared with any classical algorithm.
And in contrast to the Deutsch–Jozsa algorithm, this exponential gap remains if
we allow for probabilistic classical algorithms.16 Simon’s algorithm has much in
common with Shor’s algorithm: they both try to find the period of a function,17

both yield an exponential speedup, and both make use of classical algorithms in
a post-processing step. Actually, Shor’s work was inspired by Simon’s result.

4 GROVER’S DATABASE SEARCH ALGORITHM

The speedup due to the quantum algorithms presented for the Deutsch-Jozsa
and Simon problems is enormous. However, the oracle functions are constrained
to comply with certain promises, and the tasks considered hardly appear in prac-
tical applications. In contrast, Grover’s algorithm deals with a frequently appear-
ing problem [33]: database search.

Assume we have an unsorted list and want to know the largest element, the
mean, whether there is an element with certain properties, or the number of such
elements. All these are common problems or necessary subroutines for more com-

264 J. Eisert and M.M. Wolf

14Note that this step is not even necessary – it is merely pedagogical.
15This symbol is the “big-O” Landau symbol for the asymptotic upper bound. In the rest of
this chapter, this notation will be used even if the asymptotic behavior could be specified more
precisely.
16Simon’s problem is an instance of an oracle problem relative to which BPP≠BQP. That is, clas-
sical and quantum polynomial-time complexity classes for bounded error probabilistic algo-
rithms differ relative to Simon’s problem.
17Whereas Simon’s problem is to find a period in ()Z N

2 , Shor’s algorithm searches for one
in Z2N .

plex programs. Due to Grover’s algorithm, all these problems in principle admit
a typically quadratic speedup compared with classical solutions. Such an
improvement in performance might not seen very spectacular; however, the prob-
lems to which it is applicable are quite numerous,18 and the progress from ordi-
nary Fourier transform to the FFT has already demonstrated how a quadratic
speedup in an elementary routine can boost many applications.

Consider the problem of searching a marked element x0 ∈ {1,, N} within
an unsorted database of length N = 2n. Whereas classically we have to query our
database ()O N times in order to identify the sought element, Grover’s algorithm
will require only ()O N trials. Let the database be represented by a unitary19

Ux0 = 1 − 2 �x0〉 〈x0�, (18)

which flips the sign of �x0〉 but preserves all vectors orthogonal to �x0〉. The first
step of the algorithm is to prepare an equally weighted superposition of all

basis states
N

x1
x

=H HW ! . As we have seen previously, this step can be

achieved by applying N Hadamard gates to the state vector �0〉. Next, we apply the
Grover operator

G = UY Ux0, UY = 2 �W〉 〈W � − 1 (19)

to the state vector �W〉. Geometrically, the action of G is to rotate �Y 〉 towards �x0〉
by an angle 2 j, where sin x N10= ={ W . The idea now is to iterate this

rotation k times until the initial state is close to �x0〉, i.e.,

Gk�W 〉 ≈ �x0〉 (20)

Measuring the system (in computational basis) will then reveal the value of x0
with high probability.

So, how many iterations do we need? Each step is a 2 j -rotation, and the ini-
tial angle between �W 〉 and �x0〉 is p/2 − j.20 Using that for large N sin ϕ ≈ ϕ, we
see that k N 4.r rotations will do the job, and the probability of obtaining
a measurement outcome different from x0 will decrease as (/)O N1 . Since every
step in the Grover iteration queries the database once, we need only ()O N
trials compared with ()O N in classical algorithms. To exploit this speedup, we
need of course an efficient implementation not only of the database-oracle Ux0

but
also of the unitary UY. Fortunately, the latter can be constructed out of

()logO N elementary gates.
What if there are more than one, say M, marked elements? Using the equally

weighted superposition of all the respective states instead of �x0〉, we can essen-
tially repeat the above argument and obtain that (/)O N M queries are required
in order to find one out of the M elements with high probability. However, per-
forming further Grover iterations would be overshooting the mark: we would
rotate the initial state beyond the sought target, and the probability for finding a

Quantum Computing 265

18For instance, the standard solution to all NP-complete problems is doing an exhaustive search.
Hence, Grover’s algorithm would speed up finding a solution to the traveling salesman, the
Hamiltonian cycle, and certain coloring problems.
19�x0〉 〈x0� means the projector onto the vector �x0〉. That is Ux0 �x〉 = (−1) dx, x0 �x〉.

20This clarifies why we start with the state vector �Y 〉: the overlap �〈Y �x0〉� does not depend on x0.

marked element would rapidly decrease again. If we initially do not know the
number M of marked elements, this problem is, not serious, however. As long as
M N% , we can still gain a quadratic speed-up by simply choosing the number of
iterations randomly between 0 and /N 4r . The probability of finding a
marked element will then be close to 1/2 for every M. Notably, Grover’s algo-
rithm is optimal in the sense that any quantum algorithm for this problem will
necessarily require ()O N M queries [34].

5 EXPONENTIAL SPEED-UP IN SHOR’S
FACTORING ALGORITHM

Shor’s algorithm [2] is without doubt not only one of the cornerstones of
quantum information theory but also one of the most surprising advances in the
theory of computation itself: a problem that is widely believed to be hard becomes
tractable by refering to (quantum) physics – an approach completely atypical
for the theory of computation, which usually abstracts away from any physical
realization.

The problem Shor’s algorithm deals with is factorization, a typical NP prob-
lem. Consider for instance the task of finding the prime factors of 421301. With
pencil and paper, we might well take more than an hour to find them. The inverse
problem, the multiplication 601 × 701, can, however, be solved in a few seconds,
even without having pencil and paper at hand.21 The crucial difference between
the two tasks of multiplication and factoring is, however, how the degree of diffi-
culty increases with the length of the numbers. Whereas multiplication belongs to
the class of “tractable” problems for which the required number of elementary
computing steps increases polynomially with the size of the input, every known
classical factoring algorithm requires an exponentially increasing number of
steps. This is what is meant when we say that factoring is an “intractable” or
“hard” problem. In fact, it is this discrepancy between the complexity of the fac-
toring problem and its inverse that is exploited in the most popular public
key encryption scheme based on RSA -its security heavily relies on the assumed
difficulty of factoring. In a nutshell, the idea of Shor’s factoring algorithm is the
following:
1. Classical part: Using some elementary number theory, one can show that the

problem of finding a factor of a given integer is essentially equivalent to deter-
mining the period of a certain function.

2. QFT for period-finding: Implement the function from step (1) in a quantum
circuit and apply it to a superposition of all classical input states. Then per-
form a discrete quantum Fourier transform (QFT) and measure the output.
The measurement outcomes will be probabilistically distributed according
to the inverse of the sought period. The latter can thus be determined (with
certain probability) by repeating the procedure.

266 J. Eisert and M.M. Wolf

21Actually, it takes eleven seconds for a randomly chosen Munich schoolboy at the age of 12 (the
sample size was one).

3. Efficient implementation: The crucial point of the algorithm is that the QFT
as well as the function from step (1) can be efficiently implemented, i.e., the
number of required elementary operations grows only polynomially with
the size of the input. Moreover, the probability of success of the algorithm can
be made arbitrarily close to 1 without exponentially increasing the effort.
Clearly, the heart of the algorithm is an efficient implementation of the QFT.

Since Fourier transforms enter into many mathematical and physical problems,
one might naively expect an exponential speedup for all these problems as well.
However, the outcome of the QFT is not explicitly available but “hidden” in the
amplitudes of the output state, which cannot be measured efficiently. Only
global properties of the function, like its period, can in some cases be determined
efficiently.

Nevertheless, a couple of other applications are known for which the QFT
leads again to an exponential speedup compared with the known classical algo-
rithms. The abstract problem, which encompasses all these applications, is known
as the hidden subgroup problem [1]. Another rather prominent representative of
this type is the discrete logarithm problem. Let us now have a more detailed look
at the ingredients for Shor’s algorithm.

5.1 Classical part

Let N be an odd number we would like to factor and a < N be an integer
that has no nontrivial factor in common with N, i.e., gcd(N, a) = 1. The latter
can efficiently be checked by Euclid’s algorithm.22 A facot of N can then be
found indirectly by determining the period p of the function : � �f N$,
defined as

f(x) = ax mod N. (21)

Hence, we are looking for a solution of the equation ap − 1 = 0 modN. Assuming
p to be even, we can decompose

2 2()() ,moda a a N1 1 1 0p
p p

- = + - = (22)

and therefore either one or both terms 2()a 1
p

! must have a factor in common with
N. Any nontrivial common divisor of N with 2()a 1

p

! , again calculated by Euclid’s
algorithm, yields thus a nontrivial factor of N.

Obviously, the described procedure is only successful if p is even and the final
factor is a nontrivial one. Fortunately, if we choose a at random,23 this case occurs
with probability larger than one half unless N is a power of a prime. The latter
case can, however, be checked again efficiently by a known classical algorithm,
which returns the value of the prime. Altogether, a polynomial time algorithm for
determining the period of the function in Eq. (21) leads to a probabilistic poly-
nomial time algorithm that either returns a factor of N or tells us that N is prime.

Quantum Computing 267

22In (())logO N 3 time.
23For each randomly chosen a, we must again check whether gcd(N, a) = 1. The probability for
this can be shown to be larger than Nlog1 . The total probability of success is thus at least

()log N1 2 .

5.2 Quantum Fourier Transform

The step from the ordinary discrete Fourier transform (based on matrix mul-
tiplication) to the Fast Fourier Transform (FFT) has been of significant impor-
tance for signal and image processing as well as for many other applications in
scientific and engineering computing.24 Whereas the naive way of calculating the
discrete Fourier transform

nc
n

c e1
y x

i xy

x

n 2

0

1

=
=

- r!t (23)

by matrix multiplication takes ()O n2 steps, the FFT requires ()logO n n . The quan-
tum Fourier transform (QFT) [2, 35–37] is in fact a straightforward quantum gen-
eralization of the FFT, which can, however, be implemented using only

(())logO n 2 elementary operations – an exponential speedup!
Let now the computational basis states of q qubits be characterized by the

binary representation of numbers x = ∑i=1
q xi2

i−1 via

�x〉 = �x1,...,xq〉. (24)

That is, in this subsection, x denotes from now on a natural number or zero
and not a binary word. Then for n = 2q, the QFT acts on a general state vector
of q qubits as c x c yx yyx

7H H!! t . This transformation can be implemented
using only two types of gates: the Hadamard gate and conditional phase gates Pd ,
acting as

, , ,a b a b e i 2,a b
d

27
d r+ (25)

which rotate the relative phase conditionally by an angle p2−d, where d is the “dis-
tance” between the two involved qubits.

Figure 8.4 shows the quantum circuit, which implements the QFT on q = 3
qubits. The extension of the circuit to more than three qubits is rather obvious
and since q(q + 1)/2 gates are required, its complexity is () (())O O logq n2 2= . Being
only interested in an approximate QFT, we could reduce the number of gates even
further to ()O logn by dropping all phase gates Pd with d ≥ m. Naturally, the accu-
racy will then depend on m.25

268 J. Eisert and M.M. Wolf

24Although FFT is often attributed to Cooley and Tukey in 1965, it is now known that by 1805
Gauss had already used the algorithm to interpolate the trajectories of asteroids [38].
25An e-approximation of the QFT (in the 2-norm) would require (())logO q q f operations,
i.e., m is of the order log (q/e) (cf. [35]).

x1

x2

x3

y3

y2

y1

P1H P2

H P1

H

Figure 8.4 The circuit of a discrete quantum Fourier transform on three qubits. The gate Pd
adds a conditional relative phase p/2d, where d is the distance between the two involved qubits
in the circuit.

5.3 Joining the pieces together

Let us now sketch how the QFT can be used to compute the period p of the
function in Eq. (21) efficiently. Consider two registers of q qubits each, where 2q

= n ≥ N2 and all the qubits are in the state vector �0〉 initially. Applying a

Hadamard gate to each qubit in the first register yields ,
n

x1 0
x! . Now suppose

we have implemented the function in Eq. (21) in a quantum circuit that acts as
, , ()x x f x0 7 , where x is taken from �n. Applying this to the state vector and

then performing a QFT on the first register, we obtain

, () .n y f xe1
,

n
i xy

x y

n 2

0

1

=

- r! (26)

what will the distribution of measurement outcomes look like if we now measure
the first register in computational basis? Roughly speaking, the sum over x will
lead to constructive interference whenever y/n is close to a multiple of the inverse
of the period p of f, and will yield destructive interference otherwise. Hence, the
probability distribution for measuring y is sharply peaked around multiples of
n/p, and p itself can be determined by repeating the whole procedure ()O logN
times.26 At the same time, the probability of success can be made arbitrary close
to 1. In the end, we can easily verify whether the result, the obtained factor of N,
is valid or not.

What remains to be shown is that the map

, , () , () modx x f x f x a N0 x
7 = (27)

can be implemented efficiently. This can be done by repeatedly squaring in order
to get a2j mod N and then multiplying a subset of these numbers according to the
binary expansion of x. This requires ()O logN squarings and multiplications of
log N-bit numbers. For each multiplication, the “elementary-school algorithm”
requires (())O logN 2 steps. Hence, by implementing this simple classical algo-
rithm on our quantum computer, we can compute f (x) with (())O logN 3 ele-
mentary operations. In fact, this part of performing a standard classical
multiplication algorithm on a quantum computer is the bottleneck in the quan-
tum part of Shor’s algorithm. If there could be a more refined quantum modular
exponentiation algorithm, we could improve the asymptotic performance of the
algorithm.27

Altogether, the quantum part of Shor’s factoring algorithm requires on the
order (log N)3 elementary steps, i.e., the size of the circuit is cubic in the length of
the input. As described above, additional classical preprocessing and postpro-
cessing is necessary in order to obtain a factor of N. The time required for the

Quantum Computing 269

26For the cost of more classical postprocessing, it is even possible to reduce the expected num-
ber of required trials to a constant (cf. [2]).
27In fact, modular exponentiation can be done in (())log log log loglog logO N N N2 time
by utilizing the Schönhagen–Strassen algorithm for multiplication [39]. However, this is again a
classical algorithm, first made reversible and then run on a quantum computer. If there exists a
faster quantum algorithm, it would even be possible that breaking RSA codes on a quantum
computer is asymptotically faster than the encryption on a classical computer.

classical part of the algorithm is, however, polynomial in log N as well, such that
the entire algorithm does the job in polynomial time. In contrast, the running
time of the number field sieve, which is currently the best classical factoring

algorithm, is [(() ())]Oexp log log logN N3

1

3

2

. Moreover, it is widely believed that
factoring is a classically hard problem, in the sense that no classical polynomial
time algorithm exists. However, it is also believed that proving the latter conjec-
ture (if it is true) is extremely hard, since it would solve the notorious P NP=

?

problem.

6 ADIABATIC QUANTUM COMPUTING

Shor’s factoring algorithm falls into a certain class of quantum algorithms,
together with many other important algorithms, such as the algorithm for com-
puting orders of solvable groups [40] and the efficient quantum algorithm for
finding solutions of Pell’s equation [41]: it is an instance of a hidden subgroup
problem. In fact, it has turned out in recent years that it appears difficult to leave
the framework of hidden subgroup problems and to find novel quantum algo-
rithms for practically relevant problems. This motivates the quest for entirely new
approaches to finding such new algorithms. The algorithm of [42] based on quan-
tum random walks [43] is an important example of such a new approach, although
the problem it solves does not appear in a particularly practical context. Another
approach is the framework of adiabatic quantum algorithms:

In 2000, Farhi, Goldstone, Gutmann, and Sipser introduced a new concept to
the study of quantum algorithms, based on the adiabatic theorem of quantum
mechanics [44]. The idea is the following: let :{ , }f 0 1 N IR be a cost function
for which we would like to find the global minimum, assumed to be in x ∈ {0, 1}N.
In fact, any local combinatorial search problem can be formulated in this way. For
simplicity, suppose that this global minimum is unique. Introducing the problem
Hamiltonian

() ,H f z z z
,

T

z 0 1
N

=

!

!" ,
(28)

the problem of finding the x ∈ {0, 1}N where f attains its minimum amounts to
identifying the eigenstate �x〉 of HT corresponding to the smallest eigenvalue f (x),
i.e., the ground state energy associated with HT. But how does one find the ground
state in the first place? The key idea is to consider another Hamiltonian, H0, with
the property that the system can easily be prepared in its ground state, which is
again assumed to be unique. One then interpolates between the two
Hamiltonians, for example linearly:

() () ,H t T
t H T

t H1T 0= + - (29)

with t ∈ [0, T], where T is the run time of the adiabatic quantum algorithm. This
Hamiltonian governs the time evolution of the quantum state of the system from
time t = 0 until t = T. According to the Schrödinger equation, the state vector
evolves as i∂t�Y(t)〉 = H(t)�Y(t)〉. In a last step, one performs a measurement in the
computational basis. If one obtains the outcome associated with �x〉, then the
measurement result is just x, the minimal value of the function f. In this case

270 J. Eisert and M.M. Wolf

the probabilistic algorithm is successful,—an outcome that happens with success
probability p = |〈x|Y (T)〉|2.

What are the requirements for such an algorithm to work, i.e., to result in x
with a large success probability? The answer to this question is provided by the
quantum adiabatic theorem: If the Hamiltonian H(t) exhibits a nonzero spectral
gap between the smallest and the second-to-smallest eigenvalue for all t ∈ [0, T],
then the final state vector �Y(T)〉 will be close to the state vector �x〉 correspon-
ding to the ground state of HT , if the interpolation happens sufficiently slowly,
meaning that T is sufficiently large. The initial state is then said to be adiabatically
transferred with arbitrary accuracy into the desired ground state of the problem
Hamiltonian, which encodes the solution to the problem. The typical problem of
encountering local minima that are distinct from the global minimum can in prin-
ciple not even occur. This kind of quantum algorithm is referred to as an adia-
batic algorithm.

Needless to say, the question is how large a time T has to be chosen. Let us
denote with

()min E E
[,]

() ()

t T t t0

0 1= -D
!

(30)

the minimal spectral gap over the time interval [0, T] between the smallest Et
(0)

and the second-to-smallest eigenvalue Et
(1) of H(t), associated with eigenvectors

�Yt
(0)〉 and �Yt

(1)〉, respectively, and with

() .max H t
[,]

() ()

t T t t t0

1 02=H W W
!

(31)

Then, according to the quantum adiabatic theorem, the success probability
satisfies

p = �〈YT
(0)�Y(T)〉�2 ≥ 1 − e2 (32)

if

.2e $
D
H (33)

The quantity Q is typically polynomially bounded in N for the problems one
is interested in, so the crucial issue is the behavior of the minimal gap D. Time
complexity is now quantified in terms of the run time T of the adiabatic algo-
rithm. If one knew the spectrum of H(t) at all times, then one could immediately
see how fast the algorithm could be performed. Roughly speaking, the larger the
gap, the faster the algorithm can be implemented. The problem is that the spec-
trum of H(t), which can be represented as a 2N × 2N matrix, is in general
unknown. Even to find lower bounds for the minimal spectral gap is extraordi-
narily difficult, unless a certain symmetry highly simplifies the problem of find-
ing the spectrum. After all, in order for the Hamiltonian to be “reasonable,” it is
required to be local, i.e., it is a sum of operators that act only on a bounded num-
ber of qubits in N. This restriction is very natural, since it means that the physi-
cal interactions involve always only a finite number of quantum systems [45].
Note that, as an indication whether the chosen run time T for an adiabatic algo-
rithm is appropriate, one may start with the initial Hamiltonian and prepare the
system in its ground state, interpolate to the problem Hamiltonian and – using the
same interpolation – back to the original Hamiltonian [46]. A necessary condition

Quantum Computing 271

for the algorithm to have been successful is that, finally, the system is to a good
approximation in the ground state of the initial Hamiltonian. This is a method
that should be accessible to an experimental implementation.

Adiabatic algorithms are known to reproduce the quadratic speedup in the
Grover algorithm for unstructured search problems [47]. But adiabatic algorithms
can also be applied to other instances of search problems: In [48], adiabatic algo-
rithms have been compared with simulated annealing algorithms, finding settings
in which the quantum adiabatic algorithm succeeded in polynomial time but sim-
ulated annealing required exponential time. There is, after all, some numerical
evidence that for structured NP hard problems like MAX CLIQUE and 3-SAT,
adiabatic algorithms may well offer an exponential speedup over the best classi-
cal algorithm, again assuming that P ≠ NP [44]. In fact, it can be shown that adi-
abatic algorithms can be efficiently simulated on a quantum computer based on
the quantum circuit model, provided that the Hamiltonian is local in the above
sense (see also the subsequent section). Hence, whenever an efficient adiabatic
algorithm can be found for a specific problem, this implies an efficient quantum
algorithm [45]. The concept of adiabatic algorithms may be a key tool to estab-
lish new algorithms beyond the hidden subgroup problem framework.

7 SIMULATING QUANTUM SYSTEMS

A typical application of computers is that of being workhorses for physicists
and engineers who want to simulate physical processes and compute practically
relevant properties of certain objects from the elementary rules of physics. If
many particles are involved, the simulation might become cumbersome or even
impossible without exploiting serious approximations. This is true classically as
well as quantum mechanically28: simulating turbulences is not necessarily easier
than dealing with high temperature superconductors. There is, however, a crucial
difference between classical and quantum systems regarding how many are “many
particles.” Whereas the dimension of the classical phase space grows linearly with
the number of particles, the size of the quantum mechanical Hilbert space
increases exponentially. This fact implies that the exact simulation of an arbitrary
quantum system of more than 25 qubits is already no longer feasible on today’s
computers. Consider, for instance, a closed system of N (say 25) qubits whose time
evolution is determined by a Hamiltonian H via Schrödinger dynamics,

�Y(t)〉 = e−iHt�Y(0)〉. (34)

Since H is a Hermitian 2N × 2N matrix, it is, although often sparse, extremely hard
to exponentiate – for N = 25, it has about 1015 entries!

Once we have the building blocks for a universal quantum computer of N
qubits, i.e., a universal set of gates, we can in principle simulate the dynamics of
any closed N-qubit system. That is, we can let our quantum computer mimic the
time evolution corresponding to any Hamiltonian we were given by some theorist

272 J. Eisert and M.M. Wolf

28Even the types of differential equations we have to solve can be very similar. The classical dif-
fusion equation is, for instance, essentially a real version of the quantum mechanical
Schrödinger equation.

and then perform some measurements and check whether the results, and with
them the given Hamiltonian, really fit the physical system in the laboratory.
Despite the naivete of this description, one crucial point here is whether or not
the simulation can be implemented efficiently on our quantum computer. In fact,
it can, as long as the Hamiltonian

H Hl
l

L

=! (35)

is again a sum of local Hamiltonians Hl acting only on a few particles.29 The basic
idea leading to this result is the following [49]:

The evolution according to each Hl can be easily simulated, i.e., with an over-
head that does not grow with N. Since the different Hl in general do not commute,

we have e el
iH t iHtl !P - - . However, we can exploit Trotter’s formula

lim e e
k

iH
k

t

l

L
k

iHt

1

l =
" 3

-

=

-%f p (36)

in order to move in the direction in Hilbert space corresponding to H by con-
catenating many infinitesimal moves along H1, H2, To use Lloyd’s metaphor,
this is like parallel parking with a car that can only be driven forward and back-
ward. In fact, this process is part of everyday life not only for car drivers but also
for people, say, working in nuclear magnetic resonance, where sophisticated pulse
sequences are used in order to drive a set of spins to a desired state. The impor-
tant point, however, is that in such a way e−iHt can be efficiently approximated
with only a polynomial number of operations. Moreover, the number of required
operations scales as (())O 1poly f , with the maximal tolerated error e.

The evolution of closed discrete systems is not the only thing that can be sim-
ulated efficiently. If, for instance, the terms Hl in Eq. (35) are tensor products and
L is a polynomial in N, this simulation also works [1]. Moreover, the evolution of
open systems; approximations of systems involving continuous variables [50, 51];
systems of indistinguishable particles, in particular fermionic systems [52], and
equilibration processes [53] have been studied as well.

Since the simulation of quantum systems has already become an interesting
application for a few tens of qubits, we will see it in the laboratories long before
a “Shor class” quantum computer will be built that strikes classical factoring
algorithms (and thus requires thousands of qubits) [54]. In fact, we do not even
need a full quantum computer setup, i.e., the ability to implement a universal set
of gates, in order to simulate interesting multipartite quantum systems [55].

8 QUANTUM ERROR CORRECTION

Quantum error correction aims at protecting the coherence of quantum states
in a quantum computation against noise. This noise is due to some physical inter-
action between the quantum systems forming the quantum computer and their
environment—an interaction that can never be entirely avoided. It turns out
that reliable quantum computation is indeed possible in the presence of noise,

Quantum Computing 273

29That is, every Hl involves at most a number of particles independent of N.

a finding that was one of the genuinely remarkable insights in this research field.
The general idea of quantum error correction is to encode logical qubits into a
number of physical qubits. The whole quantum computation is hence performed
in a subspace of a larger dimensional Hilbert space, called the error correcting
code subspace. Any deviation from this subspace leads to an orthogonal error sub-
space, and can hence be detected and corrected without losing the coherence of
the actual encoded states [56]. Quantum error correcting codes have the ability to
correct a certain finite-dimensional subspace of error syndromes. These error
syndromes could, for example, correspond to a bit-flip error on a single qubit.
Such bit-flip errors are, however, by no means the only type of error that can
occur to a single qubit. In a phase flip error, the relative phase of �0〉 and �1〉 is
interchanged. Quantum error-correcting codes can be constructed that correct for
such bit-flip and phase errors or both. In a quantum computing context, this
error correction capability is still not sufficient. It is the beauty of the theory of
quantum error correcting codes that indeed, codes can be constructed that have
the ability to correct for a general error on a single qubit (and for even more gen-
eral syndromes). What this means we shall see after our first example.

8.1 An introductory example

The simplest possible encoding that protects at least against a very restricted
set of errors is the following: Given a pure state of a single qubit with state vec-
tor �Y 〉 = a �0〉 + b �1〉, this state can be protected against bit-flip errors of single
qubits by means of the repetition encoding , ,0 0 0 07 and , ,1 1 1 17 , such
that �Y 〉 is encoded as

, , , , .0 1 0 0 0 1 1 17= + +a b a bW (37)

This encoding, the idea of which dates back to work by Peres as early as
1985 [57], can be achieved by means of two sequential CNOT gates to qubit sys-
tems initially prepared in �0〉. Note that this encoding does not amount to a
copying of the input state, which would be impossible anyway. If an error
occurs that manifests itself in a single bitflip operation to any of the three
qubits, one can easily verify that one out of four mutually orthogonal states is
obtained: these states correspond to no error at all, and a single bit flip error to
any of the three qubits. This encoding, while not yet being a quantum error-
correcting code in the actual sense, already exemplifies an aspect of the theory:
With a subsequent measurement that indicates the kind of error that has
occurred, no information can be inferred about the values of the coefficients a
and b. A measurement may hence enquire about the error without learning
about the data.

While already incorporating a key idea, this encoding is nevertheless not a par-
ticularly good one to protect against errors: If a different error than a bit-flip
occurs, then the measurement followed by an error correction cannot recover the
state. Moreover, and maybe more seriously, the state cannot be disentangled from
the environment, if the error is due to some physical interaction entangling the
state with its environment. Let us consider the map involving the qubit undergo-
ing the error and the environment, modeled as a system starting with state vector
�Y0〉, according to

274 J. Eisert and M.M. Wolf

, , , , , ,and0 1 1 00 0 0 17 7W W W W (38)

such that the environment becomes correlated with the qubit undergoing the
error. This process is typically referred to as decoherence. The above encoding
cannot correct for such an error and recover the original state. Such an entan-
gling error, however, corresponds instead to the generic situation happening with
realistic errors. In Preskill’s words, the manifesto of quantum error correction is
to fight entanglement with entanglement [56]. What he means is that the
unwanted but unavoidable entanglement of the system with its environment
should be avoided by means of skillfully entangling the systems in a quantum
error-correcting code, followed by appropriate correction.

8.2 Shor code

There are, notably, error correcting codes that can correct for any error
inflicted on a single qubit of the code block. That such quantum error correcting
codes exist was first noted by Steane and Shor in independent seminal work in
1995 and 1996 [21, 23]. Shor’s 9 qubit code is related to the above repetition code
by encoding again each of the qubits of the codewords into three other qubits,
according to (, , , ,)0 0 0 0 1 1 1 27 + and (, , , ,)1 0 0 0 1 1 1 27 - . If effect,
in the total encoding, each logical qubit is encoded in the state of nine physical
qubits, the codewords being given by

(, , , ,)(, , , ,)(, , , ,) ,0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 87 + + +H H H H H H H (39)

(, , , ,)(, , , ,)(, , , ,) ,1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 87 - - -H H H H H H H (40)

In a sense, the additional encoding of the repetition code mends the weak-
nesses of the repetition code itself. Such an encoding of the encoding is called a
concatenation of codes, which plays an important role in quantum error correc-
tion. What errors can it now correct? If the environment is initially again in a pure
state associated with state vector �Y0〉, then the most general error model leads to
the joint state vector

() () ()

() () ,

0 1 0 1 1 0

0 1 1 0

0 0 1

2 3

+ = + + +

+ - + -

a b a b a b

a b a b

W W W

W W
(41)

where no assumption is made concerning the state vectors �Y0〉, �Y1〉, and �Y2〉,
and �Y3〉. One particular instance of this map is the one where

�Y0〉 = �Y2〉 = �0〉, �Y1〉 = �1〉, �Y3〉 = −�1〉. (42)

One can convince oneself that when disregarding the state of the environment
(reflected by the partial trace), this error is a quite radical one: in effect, it is as if
the qubit is discarded right away and replaced by a new one, prepared in �0〉. The
key point now is that the Shor code has the ability to correct for any such error if
applied to only one qubit of the codeword, and to completely disentangle the
state again from the environment. This includes the complete loss of a qubit, as
in the previous example. In a sense, one might say that the continuum of possible
errors is discretized, leading to orthogonal error syndromes that can be reliably
distinguished with measurements, and then reliably corrected. But then, one

Quantum Computing 275

might say, typical errors affect not only one qubit in such a strong manner but
rather all qubits of the codeword. Even then, if the error is small and of the order
O (e) in e, characterizing the fidelity of the affected state versus the input, after
error correction it can be shown to be of the order O (e 2).

8.3 Steane code

Steane’s 7-qubit quantum error-correcting code is a good example of how
the techniques and the intuition from classical error correction can serve as a
guideline to construct good quantum error-correcting codes [21, 22]. Steane’s
code is closely related to a well-known classical code, the [7, 4, 3]-Hamming code.
The starting point is the parity check matrix of the [7, 4, 3]-Hamming
code, given by

.h
0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

=

J

L

K
K
K

N

P

O
O
O

(43)

The codewords of the classical Hamming code are all binary words u of
length 7 that satisfy huT = 0, which is meant as addition in �2. It is a straightfor-
ward exercise to verify that there are in total 16 legitimate codewords (the kernel
of h is four-dimensional). In the classical setting, if at most a single unknown bit-
flip error occurs to a word u, leading to the word u′, it can be easily detected: if
the error happens on the ith bit, then, from the very construction of h, hu′T is
nothing but a binary representation of i, indicating the position of the error.
If hu′T = 0, one can conclude that u′ = u, and no error has occurred.

The 7-qubit Steane code draws from this observation. It is now defined as fol-
lows: For the logical �0〉, the quantum codeword is the superposition of the eight
codewords of the classical Hamming code with an odd number of 0s, represented
in terms of state vectors. The latter term means that the binary word x1,...,x7 is
represented as �x1,...,x7〉. The logical �1〉 is encoded in a similar state vector corre-
sponding to an even number of 0s. That is,

(, , , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , ,)

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1

0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0

1 1 0 0 1 1 0 1 1 0 1 0 0 1 8

7 + +

+ + +

+ +

(44)

(, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , .

1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 1

0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 0 0 1 1 0 0

1 1 1 0 0 0 0 1 1 1 1 1 1 1 8

7 + +

+ + +

+ +

(45)

The central idea now is that, in the quantum situation, one can make use of
the idea of how the syndrome is computed in the classical case. When appending
a system consisting of three qubits, the transformation , , h0 0 0 7y y yl l l

can be realized in a unitary manner, and the measurement of the state of the
additional qubits reveals the syndrome. But this procedure, one might be tempted
to think, is merely sufficient to correct for bit-flip errors from the construction of
the [7, 4, 3]-Hamming code. This is not so, however: a rotation of each qubit

276 J. Eisert and M.M. Wolf

of the quantum codewords with a Hadamard gate H, as described in Section 2
with () ()0 0 1 2 1 0 1 2and7 7+ - , will yield again a superposition of
binary words. In fact, it is again a superposition of Hamming codewords, and bit-
flip errors in this rotated basis correspond to phase flips in the original basis. So
applying the same method again will in fact detect all errors. The encodings of the
Shor and the Steane code are shown in Figure 5.

8.4 CSS and stabilizer codes

The formalism of Calderbank–Shor–Steane (CSS) codes [58, 22] takes the idea
seriously that the theory of linear codes can almost be translated into a theory of
quantum error-correcting codes. Let us remind ourselves what [n, k, d] in the
above notation specifying the classical Hamming code stands for: n is the length
of the code, k the dimension, and d the distance—the minimum Hamming dis-
tance between any two codewords. At most ()O d 1 2- errors can be corrected
by such a code. Any such linear code is specified by its generator matrix G, which
maps the input into its encoded correspondent. The parity check matrix h can be
easily evaluated from this generator matrix. Associated with any linear code is its
dual code with generator matrix hT. The construction of CSS codes is based not
on one but on two classical codes: on both an [n1, k1, d1] code C1 and an [n2, k2,
d2] code C2 with C2 ⊂ C1, such that both the former code and the dual of the lat-
ter code can correct for m errors. The quantum error-correcting code is then con-
structed for each codeword x1 of C1 as a superposition over codewords of C2,
again represented as pure states of qubits.

With this construction, much of the power of the formalism of classical lin-
ear error correcting codes can be applied. It turns out that with such CSS codes,
based on the classical theory, up to m errors can be detected and corrected, indi-
cating that good quantum error-correcting codes exist that can correct for more
than general errors on single qubits. The above Steane code is already an exam-
ple of a CSS code, but one that corrects for only a single error. Is Steane’s 7-qubit
quantum code the shortest quantum code that can correct for a general error to
a single qubit? The answer is no, and it can be shown that five qubits are suffi-
cient, as was first pointed out by Laflamme, Miquel, Paz, and Zurek on the one
hand [24] and by Bennett et al. [59] on the other. What can also be shown, in turn,
is that no even shorter quantum code can exist with this capability. This insight is
important when considering the hardware resources necessary to design a quan-
tum computer incorporating error correction.

This 5-qubit code is a particular instance of a so-called stabilizer code [18].
The stabilizer formalism is a very powerful means to grasp a large class of unitary
quantum operations on states, as well as state changes under measurements in the
computational basis. Essentially, instead of referring to the states themselves,
the idea is to specify the operators that “stabilize the state,” i.e., those opera-
tors the state vector is an eigenvector of with eigenvalue 1. It turns out that it is
often far easier and more transparent to specify these operators than to specify the
state vectors. The power of the stabilizer formalism becomes manifest when con-
sidering the Pauli group, i.e., the group of all products of the Pauli matrices and
the identity with appropriate phases. Based on this stabilizer formalism, an impor-
tant class of stabilizer codes can be constructed that are a genuine generalization

Quantum Computing 277

of the CSS codes and also embody the 9-qubit Shor code. But the significance of
the stabilizer formalism goes much beyond the construction of good quantum
error-correcting codes. The Gottesman-Knill theorem that has been mentioned
previously in Section 2 can, for example, be proved using this formalism.

There is a notable link between stabilizer codes and quantum error-correcting
codes based on graphs. A large class of quantum error-correcting codes can be
constructed based on a graph, where edges, roughly speaking, reflect an interac-
tion pattern between the quantum systems of the quantum codewords [18, 60].
It turns out that these graph codes present an intuitive way of constructing error-
correcting codes, and they exactly correspond to the stabilizer codes. It is an inter-
esting aspect that the graph states [60, 61] associated with graph codes can also
serve a very different purpose: they themselves form a universal resource for
measurement-based one-way quantum computation [62]. In this scheme, a partic-
ular instance of a graph state is initially prepared as a resource for the quantum
computation. Implementing a quantum algorithm amounts to performing meas-
urements on single qubits only (but not necessarily in the computational basis),
thereby realizing an effective unitary transformation on the output qubits.

8.5 Fault-tolerant quantum computation

Very nice, one might say at this point, it is impressive that errors affecting
quantum systems can be corrected. But is there not a crucial assumption hidden
here? Clearly, when one is merely storing quantum states, errors are potentially
harmful, and this danger can be very much attenuated by means of appropriate
quantum error correction. But so far, we have assumed that the encoding and
decoding of the quantum states can be done in a perfectly reliable manner, with-
out errors at all. Given the degree of complexity of the circuits necessary to do
such an encoding (see, e.g., Figure 8.5), amounting essentially to a quantum com-
putation, it does not seem very natural to assume that this computation can be
done without any errors. After all, one has to keep in mind that the whole proce-
dure of encoding and decoding complicates the actual computation and adds to
the hardware requirements.

It was one of the very significant insights in the field that this assumption is,
unrealistic as it is, unnecessary. In the recovery process, errors may be allowed for,
leading to fault-tolerant recovery, as has been shown in seminal work by Shor [63],
with similar ideas having been independently developed by Kitaev [64]. Fault-
tolerant recovery is possible as long as the error rate in this process is sufficiently
low. But then, it might not be optimal to first encode, then later (when appropri-
ate) decode, perform a quantum gate, and then encode the state again. Instead, it
would be desirable to find ways of implementing a universal set of gates in
the space of the encoded qubits itself. This leads to the theory of fault-tolerant
quantum computation. That this is possible has again been shown by Shor [63],
who devised fault-tolerant circuits for two-qubit CNOT gates, rotations, and

three-qubit Toffoli gates acting as , , , ,x y z x y z xy7 5 30. This might still not be

278 J. Eisert and M.M. Wolf

30Note that, quite surprisingly, Toffoli and Hadamard gates alone are already universal for
quantum computation, thereby eliminating the need for general single-qubit rotations [65, 16].

enough: from quantum error correction above, alone, as described it is not clear
how to store quantum information for an arbitrarily long time with high fidelity.
Knill and Laflamme demonstrated that this is possible with concatenated encod-
ing, meaning that the encoded words are encoded again to some degree of hier-
archy, and appropriate error detection and correction are performed [66, 67].
Uniting these ingredients, it became evident that a threshold for the required
accuracy of general fault-tolerant quantum computation can be identified, allow-
ing in principle for arbitrarily long quantum computation with high fidelity.
Several nonequivalent threshold theorems, asking essentially for only a constant
error rate, have been developed that hold under a number of different assump-
tions [56, 68, 64, 18, 67]. Such schemes for achieving reliable quantum computa-
tion at a constant error rate can be achieved with a polylogarithmic overhead in
both the time and space of the computation to be performed. Hence, the addi-
tional cost in depth and size of the quantum circuit is such that the superiority
of quantum algorithms like Grover’s and Shor’s algorithms over their classical
counterparts is essentially preserved.

So, in a nutshell, quantum error correction, together with techniques from
fault-tolerant quantum computation, significantly lessens the threat posed by the
unavoidable decoherence processes from which any quantum computer will suf-
fer. To preserve the coherence of the involved quantum over the whole quantum
computation remains the central challenge of realization. The theory of quantum
error correction, however, shows that the pessimism expressed in the mid 1990s,
culminating in the statement that these daunting problems cannot be overcome as
a matter of principle, was not quite appropriate.

9 HOW TO BUILD A QUANTUM COMPUTER

We have seen so far what purposes a quantum computer may serve and what
tasks it may perform well (better than any classical computer), and we have

Quantum Computing 279

0

0

0

0

0

0

0

0

0

0

0

0

0

0

H

H

H H

H

H

Figure 8.5. The encoding circuits of the Shor (left) and Steane (right) quantum codes. To the
left of the dotted line, the depicted circuit corresponds to the repetition code. The first line
corresponds to the input qubit.

sketched what the underlying computational model is like. Also, ways have been
described to fight the decoherence due to coupling with the environment, and
eventually to the same devices that are designed to perform the readout. The cru-
cial question remains: how can a quantum computer be built? What are the phys-
ical requirements to appropriately isolate a quantum computer from its
environment? What is the physical hardware that can maintain the promise of the
quantum computer as a supercomputing device?

Needless to say, there are no satisfactory answers to these questions so far. On
the one hand, progress has been made in recent years in the experimental con-
trolled manipulation of very small quantum systems that cannot be called other
than spectacular, in a way that was not imaginable not long ago. Quantum gates
have been implemented in the quantum optical context, and with nuclear mag-
netic resonance (NMR) techniques, even small quantum algorithms have been
realized. On the other hand, however, it seems fair to say that a universal quan-
tum computer as a physical device that deserves this name is still in the remote
future. The only thing that seems safe to say is that none of the current experi-
mental efforts probably deals with exactly the physical system that will be used in
an eventual realization of a Shor-class quantum computer. Supposedly, com-
pletely new ways of controlling individual quantum systems will have to be
devised, potentially combining previous ideas from quantum optics and solid
state physics. Any such implementation will eventually have to live up to some
requirements that have perhaps been most distinctly formulated by DiVincenzo
as generic requirements in practical quantum computation [69], (see Figure 8.6).
It is beyond the scope of this chapter to give an introduction to the very rich lit-
erature on physical implementations of quantum computers. After all, this is the
core question that physicists seek to address in this field. Instead, we will sketch
a few key methods that have been proposed as potentially promising or that have
already been demonstrated in experiments.

9.1 Quantum optical methods

Among the most promising methods to date are quantum optical methods
where the physical qubits correspond to cold ions in a linear trap, interacting with
laser beams. A plethora of such proposals have been made, dating back to semi-
nal work by Cirac and Zoller [70]. In the latter proposal, qubits are identified with
internal degrees of freedom of the ions, which are assumed to be two-level sys-
tems for practical purposes. Single qubit operations can be accomplished by
means of a controlled interaction with laser light, shone onto the ions by differ-
ent laser beams that can individually address the ion. The ions repel each other

280 J. Eisert and M.M. Wolf

(i) Scalable physical system with well-characterized qubits
(ii) Ability to initialize the state of the qubits to a simple fiducial state

(iii) Long decoherence times, much longer than the gate operation time
(iv) Universal set of quantum gates
(v) Qubit specific measurement capability

Figure 8.6. The DiVincenzo criteria of what requirements must be met in any physical imple-
mentation of a quantum computer.

by Coulomb interaction, forming a string of ions, with adjacent ions being a cou-
ple of optical wavelengths apart from each other. More challenging, of course, is
to find ways to let two arbitrary qubits interact to realize a two-qubit quantum
gate. This outcome can be achieved by means of exciting the collective motion of
the canonical degrees of freedom of the ions with lasers, i.e., by using the lowest-
level collective vibrational modes. Several refinements of this original proposal
aim at realizing the gates faster, and in a way that does not require extremely low
temperatures or is less prone to decoherence [71]. Such quantum gates have
already been realized in experiments, notably the implementation of two-qubit
quantum gates due to work by Monroe and coworkers [72] with a single ion and
by Blatt and coworkers [73] with a two-ion quantum processor.

Alternatively to using degrees of freedom of motion to let quantum systems
interact, this goal can be achieved by means of the tools of cavity quantum elec-
trodynamics (cavity QED) [74, 75]. The key idea is to store neutral atoms inside
an optical cavity formed, for example, by two optical supermirrors. The inter-
actions required to perform two-qubit gates are moderated by means of the
interaction of the atoms with a single quantized mode of a high-Q optical cav-
ity. In [74] it is assumed that adjacent atoms are separated by a few wavelengths
of the cavity mode, interacting with laser beams in an individual manner
(standing qubits); but atomic beams passing through the cavity have also been
considered, both theoretically and experimentally (flying qubits). Two regimes
can in general be distinguished: the strong coupling limit, where coherent
atom–cavity dynamics dominates cavity losses and spontaneous emission, and
the bad cavity limit, where cavity loss rate is much larger than the atom–cavity
coupling.

Still using a quantum optical setting, but without a quantum data bus in the
closer sense, are proposals that make use of controlled collisions of cold atoms.
This outcome can be realized, for example, with neutral atoms in optical lattices,
where direct control over single quantum systems can be achieved [76].

Not to be confused with the classical optical computer, in the optical quantum
computer the qubits are encoded in the state of field modes of light [77]. The state
is manipulated by means of optical elements such as beam splitters, mirrors,
phase shifts, and squeezers. The advantage – that photons are not very prone to
decoherence – is at the same time the disadvantage, since letting them interact is
difficult, as is realizing strong Kerr nonlinearities without significant losses. Yet
in order to circumvene the latter problem, instead of requiring that a given task
is accomplished with unit probability, one may effectively realize the required
nonlinear interactions by means of measurements of the photon number. This
is possible at the cost of the scheme becoming probabilistic. Notably, Knill,
Laflamme, and Milburn have proposed a scheme for universal quantum compu-
tation employing optical circuits that merely consist of passive linear optical ele-
ments (hence excluding squeezers), together with photon counters that have the
ability to distinguish 0, 1, and 2 photons [78].

Finally, the vibrational modes of molecules can be employed to serve as qubits
in molecular quantum computers [79]. Both single qubit and two-qubit gates can
be implemented in principle by suitably shaped femtosecond laser pulses, the
form of which can be computed by applying techniques from control theory.
Drawbacks are problems related to the scalability of the setup.

Quantum Computing 281

9.2 Solid-state approaches

Solid-state approaches serve as an alternative to quantum optical settings.
Several different systems have been considered so far, including proposals for
quantum dot quantum computers with dipole–dipole coupling. Ideas from solid-
state physics and cavity QED can be combined by considering solid-state quan-
tum computers, where gates can be realized by controlled interactions between
two distant quantum dot spins mediated by the field of a high-Q microcavity [80,
81]. The Kane proposal is concerned with a silicon-based nuclear spin quantum
computer, where the nuclear spins of donor atoms in doped silicon devices corre-
spond to the physical qubits [82]. The appeal of the proposal due to Ladd is that
it sketches a silicon quantum computer that could potentially be manufactured
using current fabrication techniques with semi-conductor technology and current
measurement techniques [83]. Finally, SQUIDs, superconducting quantum inter-
ference devices, with the quantized flux serving as the qubit, could be candidates
for a physical realization of a quantum computer.

9.3 NMR quantum computing

Probably the most progressed technology so far in a sense is bulk ensemble
quantum computation based on nuclear magnetic resonance (NMR) techniques
[84, 85]. This idea is different from those previously described in that no attempt
is made to control the state of individual quantum systems, trapped or confined
in an appropriate way. Instead, the state of nuclear spins of 1020–1023 identical
molecules is manipulated using well-developed tools from NMR technology. Bulk
techniques are used not only because the standard machinery of NMR is avail-
able but also because the nuclear spin state of a single molecule can hardly be
properly prepared. This setup literally allows for quantum computation with a
cup of coffee. Single qubit gates can be realized fairly easily. With appropriate
hand-tailored molecule synthesis and a sophisticated magnetic field pulse
sequence, a 7-qubit NMR quantum computer has been realized that implements
a shortened and simplified version of Shor’s algorithm [85]. However, quantum
computation with bulk NMR techniques comes with a caveat. Although the most
progress has so far been made in this area, it has been convincingly argued that
the scalability of these kinds of proposals is limited by serious problems: notably,
the signal is exponentially reduced in the number of qubits by effective pure-state
preparation schemes in an exponential manner in the number of qubits [31].

10 PRESENT STATUS AND FUTURE PERSPECTIVES

In the information age, where DVDs, wireless LAN, RSA encryption, and
UMTS are the antiquated technologies of tomorrow, quantum information the-
ory aims to understand the old rules of quantum mechanics from the new per-
spective of information theory and computer science. In contrast to some earlier
approaches to a better understanding of quantum mechanics, this approach is very
pragmatic, leaving aside all metaphysical issues of interpretation and transform-
ing former apparent paradoxes into future applications. The most challenging and

282 J. Eisert and M.M. Wolf

outstanding of these is the universal quantum computer. Its potential is not yet
fully understood. At the moment there are essentially two classes of very promis-
ing quantum algorithms: search algorithms based on Grover’s database search
and applications of the quantum Fourier transform like Shor’s factoring and dis-
crete logarithm algorithms.31 In particular, the latter yield an exponential speedup
compared with the best-known classical algorithms. For which other problems
can we expect such a speedup? The killer application would of course be a poly-
nomial-time algorithm for NP-complete problems. Being optimistic, one could
consider results in adiabatic computing as supporting evidence for this desire.
However, the optimality of the quadratic speedup in search algorithms might be
evidence to the contrary. Moderating our optimism a bit, we could try to find effi-
cient quantum algorithms for problems that are believed to be hard classically but
not NP-complete. The hottest candidate among such problems is probably the
graph isomorphism problem, for which, despite considerable effort, no efficient
quantum algorithm has been found so far.

What role does entanglement play in quantum computers? This question is in
general not entirely answered yet. However, if we consider a quantum computer
unitarily acting on a pure input state, then an exponential speedup compared with
classical computers can only be achieved if the entanglement present in interme-
diate states of the computation increases with size of the input [87, 88].32

It appears that computations based on such (rather typical) quantum evolutions
can in general not be simulated efficiently on classical computers.

Let us finally speculate on how a quantum computer will eventually look.
What will be its hardware? In the past, the most successful realization was NMR,
where even small quantum circuits have been implemented. Unfortunately, it has
been convincingly argued that this implementation is not scalable to larger cir-
cuits. For the near future, ion traps and, in particular regarding the simulation of
quantum systems, optical lattices seem to be quite promising, whereas in the
remote future solid-state realizations would be desirable. However, progress is
never smooth:

Where a calculator on the ENIAC is equipped with 18,000
vacuum tubes and weighs 30 tons, computers in the future may
have only 1,000 tubes and perhaps only weigh 1 1/2 tons.
(Popular Mechanics, March 1949)

Quantum Computing 283

31More recent progress in this direction includes polynomial-time quantum algorithms for esti-
mating Gauss sums [86] and solving Pell’s equation [41].
32As shown by Vidal [88], the evolution of a pure state of N qubits can be simulated on a clas-
sical computer by using resources that grow linearly in N and exponentially in the entanglement.
Similarly, the evolution of mixed states, on which the amount of correlation is restricted, can be
efficiently simulated. Note that subexponential speedups as in Grover’s search algorithm could
also be achieved without entanglment, or with a restricted amount of it [89].

REFERENCES

[1] M. Nielsen, I. L. Chuang (2000): Quantum Computation and Information.
Springer: Berlin Heidelberg New York.

[2] P. W. Shor (1994): Proc 35th Annual Symposium on Foundations of
Computer Science, IEEE Press; Shor PW (1997): SIAM J Comp 26:1484.

[3] R. P. Feynman (1996): Feynman lectures on computation. Addison-Wesley,
Reading; Feynman RP (1982): Int J Theor Phys 21:467.

[4] G. E. Moore (1965): Electronics 38:8.
[5] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden (2002): Rev Mod Phys 74:145.
[6] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore (1992): Phys Rev A

46:R6797; Wineland DJ, Bollinger JJ, Itano WM (1994): Phys Rev A 50:67.
[7] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, J. I.

Cirac (1997): Phys Rev Lett 79:3865.
[8] C. H. Bennett, G. Brassard, B. Popescu, J. A. Smolin, W. K. Wootters

(1996): Phys Rev Lett 76:722.
[9] P. Horodecki, R. Horodecki (2001): Quant Inf Comp 1(1):45.

[10] D. Deutsch (1989): Proc R Soc London A 525:73.
[11] B. Schumacher (1995): Phys Rev A 51:2738.
[12] A. Barenco, D. Deutsch, A. Ekert, R. Jozsa (1995): Phys Rev Lett 74:4083;

Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor PW,
Sleator T, Smolin J, Weinfurter H (1995): Phys Rev A 52:3457.

[13] J. Preskill (1998): Lecture Notes for Physics 229: Quantum Information and
Computation. CalTech: Pasadena.

[14] D. Collins, N. Linden, S. Popescu (2001): Phys Rev A 64:032302.
[15] J. Eisert, K. Jacobs, P. Papadopoulos, M. B. Plenio (2000): Phys Rev A

62:052317; Gottesman D (1998): quant-ph/9807006; J. I. Cirac, W. Dür,
B. Kraus, M. Lewenstein (2001): Phys Rev Lett 86:544.

[16] A. Y. Kitaev (1997): Russian Mathematical Surveys 52:1191.
[17] R. Solovay (1995): Unpublished.
[18] D. Gottesman (1997): Stabilizer Codes and Quantum Error Correction.

PhD thesis, CalTech, Pasadena.
[19] W. K. Wootters, W. H. Zurek (1982): Nature 299:802; Dieks D (1982): Phys

Lett A 92:271.
[20] M. A. Nielsen, I. L. Chuang (1997): Phys Rev Lett 79:321.
[21] A. Steane (1996): Phys Rev Lett 77:793.
[22] A. Steane (1996): Proc R Soc London 452:2551.
[23] P. W. Shor (1995): Phys Rev A 52:2493.
[24] R. Laflamme, C. Miquel, J. P. Paz, W. H. Zurek (1996): Phys Rev Lett

77:198; E. Knill, R. Laflamme, A. Ashikhmin, H. Barnum, L. Viola, W. H.
Zurek (2002): quant-ph/0207170.

[25] D. Deutsch (1985): Proc R Soc London A 400:97.
[26] P. Benioff (1980): J Stat Phys 22:563.
[27] V. Vedral, A. Barenco, A. Ekert (1996): Phys Rev A 54:147.
[28] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca (1998): Proc R Soc London A

454:339.
[29] D. Deutsch, R. Jozsa (1992): Proc R Soc London A 439:553.
[30] E. Bernstein, U. V. Vazirani (1997): SIAM J Comput 26:1411.

284 J. Eisert and M.M. Wolf

[31] N. D. Mermin (2004): IBM Journal of Research and Development 48, 53.
[32] D. R. Simon (1994): Proc 35th Annual Symposium on Foundations of

Computer Science:166.
[33] L. K. Grover (1996): Proceedings STOC:212.
[34] C. H. Bennett, E. Bernstein, Brassard, U. Vazirani (1997): SIAM J Comput

26:1510.
[35] Coppersmith (1994): IBM Research Report RC 19642.
[36] A. Y. Kitaev (1995): quant-ph/9511026.
[37] M. Pueschel, M. Roetteler, T. Beth (1998): quant-ph/9807064.
[38] M. T. Heideman, D. H. Johnson, C. S. Burrus (1984): Gauss and the his-

tory of the fast Fourier transform, IEEE ASSP Magazine 1(4):14.
[39] D. Knuth (1973): The Art of Computer Programming II. Addison-Wesley:

Reading, MA.
[40] J. Watrous (2000): quant-ph/0011023.
[41] S. Hallgren (2002): Symposium on the Theory of Computation (STOC).
[42] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, D. A. Spielmann

(2002): Proc ACM Symposium on Theory of Computing (STOC 2003).
[43] D. Aharonov, A. Ambainis, J. Kempe, U. Vazirani (2001): Proc ACM

Symposium on Theory of Computing (STOC 2001).
[44] E. Farhi, J. Goldstone, S. Gutmann, M. Sipser (2000): quant-ph/0001106;

E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren (2001): Science
292:472.

[45] D. Aharonov, A. Ta-Shma (2003): quant-ph/0301023.
[46] V. Murg, J. I. Cirac (2004): Phys Rev A 69: 042320.
[47] J. Roland, N. J. Cerf (2003): Phys Rev A 65:042308.
[48] E. Farhi, J. Goldstone, S. Gutmann (2002): quant-ph/0201031.
[49] S. Lloyd (1996): Science 273:1073.
[50] B. M. Boghosian, W. Taylor (1998): D. Physica 120:30.
[51] C. Zalka (1998): Proc R Soc London A 454:313.
[52] D. S. Abrams, S. Lloyd (1997): Phys Rev Lett 79:2586; Ortiz G, Gubernatis

JE, Knill E, Laflamme R (2001): Phys Rev A 64:022319.
[53] B. M. Terhal, D. P. DiVincenzo (2000): Phys Rev A 61:22301.
[54] E. Jané, G. Vidal, W. Dür, P. Zoller, J. I. Cirac (2003): Quant Inf Comp

3(1):15.
[55] M. Greiner, I. Bloch, O. Mandel, T. W. Hänsch, T. Esslinger (2001): Phys

Rev Lett 87:160405; M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch,
I. Bloch (2002): Nature 415:39.

[56] J. Preskill (1998): Proc R Soc London A, 454:385.
[57] A. Peres (1985): Phys Rev A 32:3266.
[58] A. R. Calderbank, P. W. Shor (1996): Phys Rev A 54:1098.
[59] C. H. Bennett, D. DiVincenzo, J. Smolin, W. Wootters (1996): Phys Rev A

54:3824.
[60] D. Schlingemann (2002): Quant Inf Comp 2:307.
[61] M. Hein, J. Eisert, H. J. Briegel (2004): Phys Rev A 69: 062311.
[62] R. Raussendorf, H. J. Briegel (2000): Phys Rev Lett 86:5188; Raussendorf

R, Browne DE, Briegel HJ (2003): Phys Rev A 68:022312.
[63] P. W. Shor (1996): Proc 37th Annual Symposium on Fundamentals of

Computer Science, IEEE:56.

Quantum Computing 285

[64] A. Y. Kitaev (1997): Russian Mathematical Surveys 52:1191.
[65] D. Aharonov (2003): quant-ph/0301040.
[66] E. Knill, R. Laflamme (1996): quant-ph/9608012.
[67] E. Knill, R. Laflamme, W. H. Zurek (1998): Science 279:342.
[68] D. Aharonov, M. Ben-Or (1999): quant-ph/9906129.
[69] D. DiVincenzo (2000): Fort Phys 48:771.
[70] J. I. Cirac, P. Zoller (1995): Phys Rev Lett 74:4091.
[71] S. Scheider, D. F. V. James, G. J. Milburn (1999): J Mod Opt 7:499; Sørensen

A. Mølmer K. (1999): 82:1971; Jonathan D, Plenio MB, Knight PL (2000):
Phys Rev A 62:42307.

[72] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, D. J. Wineland
(1995): Phys Rev Lett 75:4714.

[73] F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, Q. P. T. Lancaster,
T. Deuschle, C. Becher, C. F. Roos, J. Eschner, R. Blatt (2003): Nature 422:408.

[74] T. Pellizzari, S. A. Gardiner, J. I. Cirac, P. Zoller (1995): Phys Rev Lett
75:3788.

[75] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, H. J. Kimble (1995):
Phys Rev Lett 75:4714; Domokos P, Raimond JM, Brune M, Haroche S
(1995): Phys Rev Lett 52:3554.

[76] D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner, P. Zoller (1999): Phys
Rev Lett 82:1975.

[77] G. J. Milburn (1989): Phys Rev Lett 62:2124.
[78] E. Knill, R. Laflamme, G. J. Milburn (2001): Nature 409:46; Ralph TC,

White AG, Munro WJ, Milburn GJ (2001): Phys Rev A 65:012314; Lapaire
GG, Kok P, Dowling JP, Sipe JE (2004): Phys Rev A 68:042314; Scheel S,
Nemoto K, Munro WJ, Knight PL (2003): Phys Rev A 68:032310.

[79] C. M. Tesch, R. de Vivie-Riedle (2002): Phys Rev Lett 89:157901; Vala J,
Amitay Z, Zhang B, Leone SR, Kosloff R (2002): Phys Rev A 66:062316.

[80] M. S. Sherwin, A. Imamoglu, T. Montroy (1999): Phys Rev A 60:3508.
[81] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss,

M. Sherwin, A. Small (1999): Phys Rev Lett 83:4204.
[82] B. E. Kane (1998): Nature 393:133.
[83] T. D. Ladd, J. R. Goldman, F. Yamaguchi, Y. Yamamoto, E. Abe, K. M.

Itoh (2002): Phys Rev Lett 89:017901.
[84] N. A. Gershenfeld, I. L. Chuang, S. Lloyd (1996): Phys Comp 96, Proc of

the 4th Workshop on Physics and Computation:134; Gershenfeld NA,
Chuang IL (1997): Science 275:350; Cory DG, Fahmy AF, Havel TF
(1997): Proc Natl Acad Sci USA 94:307.

[85] L. M. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood,
I. L. Chuang (2001): Nature 414:883.

[86] W. van Dam, G. Seroussi (2003): Proc RSoc London A 459:2011.
[87] R. Jozsa, N. Linden (2002): quant-ph/0201143.
[88] G. Vidal (2003): Phys Rev Lett 91:147902.
[89] S. Lloyd (2000): Phys Rev A 61:010301.

286 J. Eisert and M.M. Wolf

Chapter 9

COMPUTER ARCHITECTURE
Joshua J. Yi1 and David J. Lilja2

1Freesale Semiconductor Inc.
2University of Minnesota

1 INTRODUCTION

Originally proposed in 1945 by John von Neumann, the von Neumann archi-
tecture has become the foundation for virtually all commercial processors. von
Neumann machines have three distinguishing characteristics: 1) the stored-
program concept, 2) the partitioning of the processor into different functional
components, 3) and the fetch-execute cycle.

The key idea behind the stored-program concept is that the series of instructions
that form the program are stored in processor-accessible memory. By contrast, for
processors that do not utilize the stored-program concept, the instructions of the
program need to be fed into the processor as the program is running or the program
needs to be hard coded into the processor. Storing the program in memory where
the processor can easily access it is obviously more efficient than feeding in each
instruction while the program is running. Also, reprogramming a stored-program
concept processor is as simple as loading the next program into memory, which is
more flexible than physically reprogramming the processor.

The second key characteristic of von Neumann architectures is that the
processor is partitioned into components for input, output, computation, and
control. Figure 9.1 shows how these components are connected together. The
input and output components allow the processor to communicate to the user
through other parts of the computer. For example, the processor receives infor-
mation from the user through the keyboard and mouse while displaying informa-
tion to the user through the monitor. The arithmetic-logic unit (ALU) is the
component in the processor that actually does the computations. Computations
can be divided into two categories: arithmetic and logical. Examples of the for-
mer include addition, subtraction, multiplication, division, etc. for integer and
floating-point (real) numbers; examples of the latter include AND, OR, XOR,
NOT, etc. In current-generation processors, the ALU is not a single monolithic

component. Rather, multiple, distributed functional units perform its tasks; this
partitioning decreases the overall execution time of each type of operation.
Finally, the purpose of the control logic is to coordinate the flow of instructions
and data between the different components of the processor by producing a
sequence of signals that synchronizes the operation of each of the processor’s
components with respect to the other components. The control unit is necessary
to ensure correct execution of the fetch-execute cycle, which is the third and final
characteristic of a von Neumann architecture.

As its name implies, the fetch-execute cycle consists of two steps: instruction
fetch and instruction execution. Since the program is stored in the computer’s
memory, to fetch an instruction, the processor must first retrieve each instruction
from the computer’s memory before the instruction can be executed. To retrieve
the proper instruction, the processor sends the value of the program counter
(PC), which holds the memory address of the next instruction, to memory, which
returns the instruction stored at that memory location. After receiving that
instruction, the processor calculates the address of the subsequent instruction
and stores it into the PC. Usually, the address of the next instruction is simply the
address of the instruction immediately following the current instruction.
However, due to branch and jump instructions (which are the result of the func-
tion and subroutine calls, IF statements, etc.), the next instruction may not be the
next sequential instruction, but will instead be located somewhere else in memory.
Storing the address of the next instruction into the PC completes the instruction
fetch part of the fetch-execute cycle.

The other half of the fetch-execute cycle, instruction execution, consists of
several smaller substeps. The first substep is instruction decode, which occurs
immediately after the instruction is fetched. In this substep, the decode logic ana-
lyzes the instruction to determine what kind of instruction it is (add, multiply,
AND, branch, load, store, etc.), how many input operands there are, and where
the input operands come from. After the processor decodes the instruction, it first
gathers the values of the input operands, as specified by the instruction. For
example, before the processor can compute the result of “1+2,” it first needs to
retrieve the values of the two input operands (1 and 2) from the specified regis-
ters or memory locations. In the next substep, the processor executes the instruc-
tion. In the case of arithmetic and logical instructions, the processor computes a
new output value. In the case of load and store instructions, the processor
accesses memory to either retrieve a value from memory (load) or write a value to
memory (store). And in the case of branch instructions, the processor determines
whether the branch condition is true or false and then calculates the memory
address of the next instruction. Table 9.1 summarizes the action of these three

288 Joshua J. Yi and David J. Lilja

User I/0 ALU Control

Memory

Figure 9.1. Basic components of a von Neumann architecture

types of instructions. Finally, in the last substep, the result of the instruction is
stored into a register or a memory location so that is it available for the next
instruction. After finishing execution, the processor fetches the next instruction
and restarts the fetch-execute cycle all over again.

To summarize, instruction fetch retrieves the next instruction that the proces-
sor will execute, and in instruction execution, the processor performs the work
that is specified by that instruction. By repeatedly fetching and executing instruc-
tions, the processor executes a program.

Although proposed over 50 years ago, the three fundamental characteris-
tics of a von Neumann architecture, the stored-program concept, partitioned
processor components, and the fetch-execute cycle, still remain the foundation of
modern-day processors.

2 RISC VERSUS CISC

It is important to realize that the characteristics of a von Neumann architecture
specify only how the processor is organized and how it operates from a functional
point of view. As a result, two processors could have very different implementa-
tions, but both could still be von Neumann architectures. Given this freedom of
implementation, computer architects have proposed two implementations that
represent very different design philosophies. The first approach is known as
the reduced instruction set computer, or more commonly by its acronym RISC. The
second implementation is the complex instruction set computer, or CISC.

At heart of the difference between these two design philosophies is the proces-
sor’s instruction set architecture (ISA). The instruction set is the set of assembly-
level instructions that the processor is capable of executing and the set of registers
that are visible (directly accessible) to an assembly-language programmer.

2.1 RISC: Reduced Instruction Set Computers

The basic design philosophy for RISC processors is to minimize the number
and complexity of the instructions in the instruction set, in addition to defining
uniform-length instructions. Adding more complex or nonuniform instructions
into the processor’s instruction set makes it more difficult for the processor to exe-
cute efficiently, since each of those instructions may have its own individual idio-
syncrasies that may require specialized hardware in order to execute those cases.
A processor can execute instructions much more efficiently when they are simple
and uniform in length, since less complex “one-size-fits-all” hardware can be used
for all instructions.

In addition to reducing the complexity of the hardware, minimizing the num-
ber of instructions in the processor’s instruction set has the effect of reducing the

Computer Architecture 289

Table 9.1. Actions of the three main instruction types
Instruction Type Action
Arithmetic and Logical Computes new results
Load and Store Reads from and writes to memory
Branch Checks condition, determines next instruction

bus widths between internal processor components. Since each instruction
has its own unique identifier, known as the opcode, adding additional instruc-
tions to the processor’s instruction set may result in needing to add addi-
tional bits to the opcode. Adding more bits to the opcode may increase the
number of bits needed for each instruction, which in turn increases the width of
each internal bus.

Using simple and uniform-length instructions has two consequences. First,
only load and store instructions are allowed to access memory; this simplifies
the specification and execution latency of the instruction set’s arithmetic and
logical instructions. Instead of allowing an add instruction to directly add the
values in two memory locations, two load instructions are used to first load
those values into the processor’s registers before the add instruction can exe-
cute. After computing the result, the add instruction has to use a store instruc-
tion to write its result to memory. This type of architecture is known as a
“register-to-register” architecture, since all instructions with the exception of
loads and stores can only read their input operands from and write their out-
put values to the register file. Obviously, as compared with allowing each arith-
metic or logical instruction to directly access memory, using load instructions
to first load the values for input operands and then using a store instruction to
store the output value requires three additional instructions (two loads and one
store). While this increases the total instruction count when a program exe-
cutes, it does not change the amount of “work” (steps necessary to execute the
program) that the processor needs to do. Since this approach reduces the com-
plexity of the hardware, this approach may still allow the processor to execute
the program in less time than a CISC processor. In other words, it is easier to
design hardware that executes a few types of instructions over and over again
instead of designing hardware to execute many different types of instructions
just a few times.

The other consequence of executing simple and uniform-length instructions
is that there are fewer ways for load and store instructions to generate the
address that is used to access memory. Since these ways of accessing memory are
relatively simple, the compiler may need to insert additional instructions to help
generate the correct address. For example, when traversing a linked-list in C, if
more complex addressing modes were allowed, each load instruction could
potentially retrieve the base address for the next link in the list. In a RISC
processor, two loads are needed to retrieve the base address of the following link
in the list.

In summary, since each RISC instruction is relatively simple and is uniform in
length, programs compiled for a RISC processor contain additional instructions
to move data between the processor and memory, to support more complex
addressing modes, or to execute pieces of more complex tasks than a CISC
processor. These additional instructions obviously increase the number of
dynamic instructions that the processor executes, in addition to increasing the size
of the compiled program. On the other hand, since all the instructions are simple
and of uniform length, the hardware for the RISC processor is relatively simple
and therefore more efficient, i.e., has a higher clock rate than the equivalent CISC
processor. Simply stated, RISC processors trade off the execution of a larger
number of instructions for a faster clock frequency.

290 Joshua J. Yi and David J. Lilja

2.2 CISC: Complex Instruction Set Computers

The basic design philosophy behind a CISC processor is nearly opposite to
that of the RISC processor. First, instead of using several simple instructions
to accomplish a single task, a CISC processor may use only one or two more com-
plex instructions. Second, instead of having a set of relatively simple, uniform-
length instructions, the instruction set for CISC processors consists of many
complex instructions that are nonuniform in length and have multiple addressing
modes. Third, instead of allowing only load and store instructions to access mem-
ory, in a CISC processor, arithmetic and logical instructions can access memory
directly. As a result of these differences, a CISC processor typically executes fewer
instructions to run the same program than the RISC processor does. Also, the size
of the compiled program for the CISC processor, in terms of bytes, is also smaller
than the size of the RISC program.

Obviously, these three differences have a very significant effect on the actual
implementation of the hardware. Since each CISC instruction is much more com-
plex than its RISC counterpart, the hardware needed to execute each CISC
instruction is correspondingly more complex. In general, increasing the complex-
ity of hardware decreases the speed at which the hardware executes instructions.
As a result, the clock frequency of CISC processors is typically lower than the
clock frequencies of RISC processors. Since each CISC instruction does more
work than does a RISC instruction, each CISC instruction takes more time, as
measured in clock cycles, to execute. Therefore, not only is the clock rate of CISC
processors slower than that of RISC processors but also it typically takes
more clock cycles to execute a CISC instruction than for a RISC instruction.
However, the trade-off is that one CISC instruction does the same amount of
work as several RISC instructions.

In summary, the design philosophy of CISC processors is to support very
complex instructions that can be nonuniform in length. The upsides of this design
philosophy are that each instruction does a significant amount of work and that
the total size of the program is smaller. The downsides are that it takes more
clock cycles to execute each instruction and that the hardware is very complex
and consequently slower than the equivalent RISC processor.

2.3 Performance Analysis of RISC versus CISC

Although the previous two sub-sections compared RISC and CISC processors
somewhat indirectly, this section uses the formula below to directly compare the
performance of these two processors. The time required to execute a program is
summarized below (see Eq. 1).

Te = n * CPI * Tc (1)

Te is the total execution time of the program. n is the total number of
dynamic (executed) instructions in the program, CPI is the average number
of clock cycles needed to execute each instruction, and Tc is the time per clock
cycle.

As this formula shows, the total execution time of the program depends on the
number of instructions that the processor has to execute, the average number of

Computer Architecture 291

clock cycles that each instruction takes, and the amount of time in a clock cycle
(i.e., the reciprocal of the clock frequency). Therefore, to reduce a program’s exe-
cution time, a computer architect can 1) reduce the number of instructions that
the processor executes, 2) reduce the average number of clock cycles that it takes
to execute each instruction, and/or 3) decrease the time per clock cycle (increase
the clock frequency).

Since RISC processors execute more instructions than CISC processors do,
the value of n is higher for RISC processors. However, the corresponding trade-
off is that each RISC instruction takes fewer clock cycles when executing the
same program, which means that the CPI for RISC processors is lower. Finally,
since the hardware for RISC processors is less complex, the clock period for RISC
processors also is typically lower for a given technology.

Ultimately, the key question is, which design philosophy is the better
approach? The answer is usually RISC, and the reason is called pipelining, which
is explained in more depth in the following section. Due to its design philosophy
of simple and uniform-length instructions, RISC processors benefit more from
pipelining than the typical CISC processor does. Since pipelining is more difficult
to implement on a CISC processor, and since it yields lower performance benefits
for a CISC processor, RISC processors have evolved into the principal design phi-
losophy used in the design of most current processors.

3 EXPLOITING PARALLELISM: PIPELINING
AND MULTIPLE INSTRUCTION ISSUE AND
EXECUTION

3.1 Pipelining

To reduce a program’s execution time, computer architects need to either
decrease the number of instructions that the processor executes, reduce the CPI
of each instruction, or reduce the clock period. However, since the number of
instructions in the program cannot be reduced at run-time by the hardware and
since the clock period is limited by the minimum transistor width, the only viable
option for computer architects to reduce the program’s execution time is to reduce
the CPI. Since it is very difficult to directly decrease the CPI of any individual
instruction, the principal method to decrease the processor’s CPI is to increase the
number of instructions that are executing concurrently, i.e., executing instructions
in parallel.

For example, assume that it takes a processor 5 clock cycles to fetch and exe-
cute an add instruction. This corresponds to a CPI of 5 cycles for that instruc-
tion. Then also assume that the multiply instruction that immediately follows the
add instruction takes another 5 cycles. When these two instructions execute
sequentially, i.e., one after another, the add instruction finishes after 5 cycles. In
the next cycle, cycle 6, the multiply starts and then finishes 4 cycles later, in cycle
10. Therefore, in the case of sequential execution, the average CPI for these two
instructions is 5 cycles.

292 Joshua J. Yi and David J. Lilja

On the other hand, assume that the multiply instruction starts executing one
cycle after the add and that there are sufficient hardware resources to execute
both instructions in parallel. The add instruction starts executing in cycle 1, while
the multiply instruction starts executing one cycle later in cycle 2. In cycle 5, the
add instruction finishes, while the multiply instruction does not finish until cycle
6. In this case, the average CPI for these two instructions is 3 cycles. In this exam-
ple, executing two sequential instructions in parallel reduces the average CPI from
5 cycles to 3 cycles, or by 40%.

In the previous example, the execution of the add and multiply instruc-
tions was pipelined. The basic idea behind pipelining is that hardware resources
should be as busy as possible. In a pipelined processor, the processor’s hardware
resources are organized into “stages.” Each major task of instruction execution
maps to one or more pipeline stages. Then, to execute an instruction, the instruc-
tion enters the pipeline and goes through each stage of the pipeline until its result
is written to the register file or to memory and it exits the pipeline.

Within the fetch-execute cycle, the processor performs several tasks to execute
an instruction. Generally, these are fetch, decode, issue and obtain input operand
values, execute, and writeback (store the newly computed results back to the reg-
ister file or to memory). Assuming that each of these tasks is organized into its
own pipeline stage, and assuming that output buffers are placed after each
pipeline stage to store the results of that pipeline stage, the result is a classical
5-stage pipeline. In this case, the first stage of the pipeline is the fetch stage, the
second stage is the decode stage, and so on.

Each pipeline stage performs its task on only one instruction at a time, or in
other words, there is only one instruction in each stage. Unless there are data
and/or control dependences between instructions, each instruction spends only
one cycle in each pipeline stage. (A more detailed explanation of data and control
dependences is given in the following section, but for now, it is only necessary to
understand that data and control dependences force delays between instructions,
which increases the average CPI.) Since each instruction spends only a single cycle
in each pipeline stage and since there is only one instruction in each pipeline
stage, the number of cycles that it takes to execute a program with n instructions,
without any data or control dependences, is (see Eq. 2):

Total Cycles = m + (n−1) (2)

m is the number of pipeline stages. Assuming that the program is running on a
processor with 5 pipeline stages, the first instruction in the program enters the
pipeline at cycle 1 and then exits the pipeline after cycle 5. Therefore, the execu-
tion time of the first instruction is 5, or m, cycles. Then, since each following
instruction starts one cycle after the instruction before it and finishes one cycle
after it, once the first instruction finishes, since one instruction finishes executing
every cycle, the remaining n−1 instructions require only an additional n−1 cycles.
Consequently, an n-instruction program takes only m + (n-1) cycles in order to
execute the program completely.

By contrast, for an unpipelined processor, since each instruction takes m cycles
to finish executing and since the following instruction cannot start executing until
the previous one finishes, the total execution time is n * m cycles. The speedup of

Computer Architecture 293

a pipelined processor – as compared with an unpipelined one – for a very large
program (n→ ∞), is (see Eq. 3):

()

.

m n
n m

n m n m

Speedup Pipelined
Unpipelined

1

1 1 1
1

0 5
1 0

1
0 2
1 5

n = =
+ -

=
+ -

=
+ -

= =

" 3
*

*

(3)

Therefore, for a 5-stage pipeline, when there are a very large number of
instructions and when there are no data or control dependences, the execution
time of a program that runs on a 5-stage pipelined processor is 5 times faster than
the execution time of the same program on an unpipelined one.

In summary, the use of pipelining reduces the execution time of a program by
overlapping the execution of different instructions. Pipelined processors exploit
the parallelism inherent in programs to decrease the program’s execution time. In
the ideal case, when there are not any data or control dependences, a pipelined
processor with m stages is m times faster than an unpipelined one. However, in
typical programs, data and control dependences do exist and can severely degrade
the processor’s performance from its theoretical peak performance.

3.2 Data and Control Dependences

Data and control dependences are the by-products of relationships between
instructions. There are three kinds of data dependences: output, anti, and flow. In
a pipeline, these three dependences cause write-after-write, write-after-read, and
read-after-write hazards, respectively, if the dependences occur between instruc-
tions that are in the pipeline simultaneously.

Output and antidependences are known as name dependences, since they are
the result of two instructions sharing a register or memory location (name), but
not with a producer and consumer relationship. In the case of an output depend-
ence, both instructions write their output values to the same storage location, typ-
ically a register. This dependence is only a problem when both instructions are
allowed to execute in parallel and where the second instruction may finish before
the first. To ensure correct program execution, the first instruction needs to write
its output value to the register before the second instruction writes its output value.

In an antidependence, the second instruction writes to the register that the first
instruction needs to read from. To ensure correct program operation, the first
instruction needs to read the value from the shared register before the second
instruction overwrites the current value. Since output and antidependences are name
dependences, assigning the second instruction to write to a different register will
remove this dependence while maintaining correct program execution.

Flow dependences are the result of a producer and consumer relationship
between two instructions. A flow dependence exists between the two only if the
first instruction writes to a register from which second one reads. Therefore, to
ensure that the second instruction executes correctly (computes its output value
using the correct input values), the second instruction must delay its read of the
shared register until after the first instruction writes to it. Since flow dependences
have to be honored, they are known as “true dependences”. Unfortunately, since

294 Joshua J. Yi and David J. Lilja

the value of the producer flows directly to the consumer, the processor cannot
execute both instructions in parallel. Instead, the second instruction has to wait
for the first to produce its result. Proposing architectural techniques to mitigate
the effect of these dependences and/or to completely break them are very com-
mon topics in computer architecture research and are discussed in Section 3.3 to
Section 4.

The following segment of assembly code gives examples of output, anti, and
flow dependences. In particular, an output dependence exists between instruc-
tions 1 and 3 (through register r1), an antidependence exists between instructions
1 and 2 (through register r2), and a flow dependence exists between instructions 2
and 3 (through register r2).

1. add r1, r2, r3 // r1 = r2 + r3
2. sub r2, r4, r5 // r2 = r4 − r5
3. mult r1, r2, r6 // r1 = r2 * r6

The problem with forcing two instructions to execute in a specific order is that
it forces the first instruction to finish executing before the second can start or, at
the very least, decreases the amount of overlap in the execution of the two
instructions, either of which increases the CPI. From a pipeline point of view,
dependences prevent two instructions from executing in adjacent stages. Instead,
when a dependence exists between two instructions, pipeline “bubbles” (NOP or
“no-operation”) must be placed between the two instructions. The pipeline has
“stalled” when it executes NOPs instead of instructions. Alternatively, instruc-
tions without any dependences can be placed between the two instructions.

Finally, it is important to state that data dependences also exist when two
instructions are not back-to-back. That is, an output, anti, or flow dependence can
exist between two instructions that are separated by several other instructions.

While data dependences are due to the fact that two instructions read from or
write to the same register or memory location, control dependences stem from the
fact that the target (i.e., the next instruction) of the control (i.e., branch) instruc-
tion is unknown until the branch instruction finishes executing. Consequently, the
processor cannot fetch and start executing the next instruction in parallel with the
branch until after it completes execution. This forces the processor to either fill
the pipeline with other instructions or with NOPs.

When a pair of dependent instructions are in the pipeline together, the
dependence between the two instructions can cause a hazard. In other words,
the dependence between instructions evolves from being a potential problem to
an actual one, i.e., incorrect program execution.

3.3. Multiple Instruction Issue and Execution:
SuperScalar and VLIW Processors

Although pipelining can dramatically improve the processor’s performance, a
hazard between any pair of instructions can dramatically degrade a processor’s
performance, since the processor has to stall the pipeline until the first instruction
either reads its input value from, or writes its output value to, the shared register
or memory location. Although this ensures correct program execution, not only

Computer Architecture 295

does this increase the average CPI, it also has the effect of preventing instructions
that are not dependent on the first instruction from being fetched and/or exe-
cuted. Therefore, to avoid this problem, higher performance processors have the
capability of fetching and executing multiple instructions in the same cycle to
avoid being stalled by a single data dependence. This allows the processor to
extract parallelism in another “dimension” to further improve upon the base
processor’s performance. Since these types of processors can issue and subse-
quently execute multiple instructions in the same cycle, these processors are typ-
ically called n-way issue processors (e.g., 4-way issue, 8-way issue, etc.).

To clarify, pipelining reduces a program’s execution time by allowing one
instruction to start executing in every cycle. A multiple issue processor, on the other
hand, further reduces the program’s execution time by allowing multiple instruc-
tions to start executing in every cycle. In other words, a multiple issue processor
duplicates the pipeline such that multiple pipelines operate in parallel.

To support the simultaneous issue and execution of multiple instructions, sev-
eral changes and additions need to be made. First, hardware structures like the
register file need to be multiported so that multiple instructions can read from
and write to them. Second, the buses between hardware components need to be
widened to accommodate the flow of additional instructions. Third, additional
hardware needs to be added to ensure that the processor can operate at peak effi-
ciency or will operate correctly. An example of the former is the register renam-
ing hardware. Since output and antidependences can be removed by simply
renaming the shared register, the processor temporarily retargets the second
instruction to write to another temporary register. In this way, the first instruc-
tion is able to read from or write to the shared register without the possibility of
a premature write from the second instruction.

The reorder buffer (ROB) is an example of a component that is added to the
processor to ensure that the processor executes the program correctly. Since mul-
tiple instructions begin executing every cycle and since a multiple-issue processor
is pipelined, in any given cycle, there are several instructions that are currently
executing. Since some instructions may finish executing before a preceding
instruction, the processor needs to ensure that those instructions do not write
their values to the register file or to memory, since they could be overwritten by
what should be a preceding instruction. To store output values that are not yet
ready to be written to the register file or memory, the processor uses a ROB. This
hardware structure holds the results of instructions until each instruction is ready
to write its value to the register file or memory in the correct order.

Computer architects classify current-generation processors into one of two
groups: superscalar processors and very-long instruction word (VLIW) proces-
sors. Both of these processors use pipelining and multiple instruction issue and
execution to increase the amount of parallelism. The difference between the two
is in how the instructions are scheduled, that is, the order in which the instructions
are to be executed. In a VLIW processor, the compiler schedules the order in
which instructions will execute based on several factors, including any data
and control dependences between instructions, the number and type of available
functional units, and the expected execution latency of each instruction. After
determining a set of instructions that meets the compiler’s scheduling criteria, the
compiler groups these instructions together to form a superinstruction, the very-

296 Joshua J. Yi and David J. Lilja

long instruction word. Since the compiler has already determined that each group
of instructions is free of any dependences within the group, each bundle of
instructions can be fetched, executed, and retired (finished) together.

Use of the compiler to perform the instruction scheduling reduces the com-
plexity of the hardware, since there is no need for complex scheduling logic, which
could decrease the hardware’s speed. Furthermore, since the compiler determines
the instruction execution schedule at compile time, the potential exists for the
compiler to construct a better schedule than would be possible by using only
hardware. The compiler has the advantage of having more time than the hardware
does when trying to determine an optimal schedule, and the compiler can exam-
ine more instructions at a time. However, the big problem with static (i.e., com-
piler-determined) instruction scheduling is that run-time information, such as the
program’s inputs, is not available. Not having the actual inputs of the program
available to the compiler can significantly limit the compiler’s ability to statically
schedule a program.

By contrast, a superscalar processor dynamically, i.e., at run-time, determines
the order of execution for the program’s instructions. More specifically, after the
instructions are decoded, the processor examines the decoded instructions to
determine which ones are ready for execution. (An instruction is ready to be exe-
cuted after it has received its input operands. An instruction that is not ready for
execution must wait for its producer instruction(s) to compute the corresponding
input value(s).) Depending on the issue policy, the issue logic in the processor
then selects a subset of the ready instructions and issues (sends) them to the func-
tional units for execution. If the processor has an in-order issue policy, the proces-
sor issues only ready instructions from the oldest unissued instruction up to the
first nonready instruction. If the oldest unissued instruction is not ready, then no
instructions are issued in that cycle. By contrast, if the processor has an out-of-
order issue policy, it issues as many ready instructions as possible, up to the issue
width limit. Therefore, in the event that there are several ready instructions after
the first nonready one, an out-of-order processor is able to issue those instruc-
tions out of program order, bypassing the nonready instruction to issue as many
ready instructions as possible. Since ready instructions do not need to wait for
older, unready instructions, out-of-order issue can yield significant performance
improvements as compared with in-order issue.

On the other hand, the advantage that in-order processors have over out-of-
order ones is simpler hardware design. Since the processor only checks the oldest
few instructions, instead of all unissued instructions, less complex hardware is
needed to issue the instructions. The trade-off is that ready instructions younger
than the first nonready one cannot be issued that cycle. Consequently, a single
nonready instruction blocks further instruction issue, which slows down the
instruction execution rate. Although the out-of-order processor is able to issue
any instructions that are ready, the issue logic hardware is much more complex,
since the processor needs to examine all unissued instructions to find the maxi-
mum number of ready instructions that can be issued that cycle. This requirement
obviously increases the complexity of the issue logic.

In summary, the fundamental difference between VLIW and superscalar
processors is when the actual order in which the instructions are executed is
determined – either statically at compile-time or dynamically at run-time.

Computer Architecture 297

3.4 The Memory Gap and MultiLevel Caches

One of biggest problems facing computer architects, now and in the future, is
the “memory gap.” The origin of this problem is that the speed of processors is
increasing faster than the speed of memory is increasing. Therefore, as processor
clock frequencies increase, the number of cycles required to access memory also
increases. Since it may take a few hundred cycles to retrieve the data for a load
instruction, the processor will eventually stop issuing any more instructions, since
it cannot find more ready ones. Shortly after the processor stops issuing instruc-
tions, the processor finishes executing the last few issued instructions, and further
instruction execution stops completely. Therefore, until memory returns the value
of the load instruction, the processor is completely idle. For multiway issue
processors, this phenomenon is especially problematic, since the processor cannot
execute any more instructions for several hundred cycles while it is waiting for the
results of a load instruction. Instead of executing n instructions per cycle, where
n is the maximum issue width, for a few hundred cycles, the processor stalls, i.e.,
“instruction slots” are wasted. Obviously, if the processor has to stall frequently
to wait for memory accesses, the execution time of the program will be much
higher than if the processor did not have to wait for memory accesses. To further
exacerbate this problem, in addition to the increasing memory gap, the issue
width of processors is also increasing. This means that even more instruction slots
will be wasted in the future as the gap between processor and memory speeds
increases.

To combat this problem, computer architects add small, fast memory struc-
tures called caches between the processor and memory (RAM). Caches exploit
spatial and temporal locality to improve the performance of the memory hierar-
chy. Due to spatial locality, the next memory reference is likely to access an
address that is close, physically, to the last one. Due to temporal locality, the next
memory reference is likely to access an address that was recently accessed. The
memory references of typical applications exhibit both kinds of locality due to
the use of loops and the linearly increasing value of the PC. Thus, to improve the
performance of the memory hierarchy, caches store data around the most recently
accessed addresses.

When the program begins execution, the cache is said to be “cold,” or com-
pletely empty. As the processor requests data from different addresses, the cache
stores the values at those addresses and nearby addresses. When the cache
becomes full, selected entries in the cache are overwritten based on the organiza-
tion of the cache and its replacement policy. When the processor requests the
value for a memory address that is already in the cache, the cache can send
the value to the processor, instead of forcing the processor to retrieve the value
from main memory. This situation is referred to as a cache hit. The opposite situ-
ation is referred to as a cache miss. Since the latency of a cache hit is much lower
than the latency for a memory access, the number of cycles needed to retrieve the
value for that address will be much lower. Then, if a significant percentage of the
memory accesses are cache hits, the average number of cycles needed for memory
accesses – and, subsequently, the total program execution time – will be much
lower. Generally, as the cache hit rate increases, the number of cycles required for
a memory access decreases.

298 Joshua J. Yi and David J. Lilja

To balance the cost and performance benefits of cache memories, computer
architects use multiple levels of cache. The level-1 (L1) cache, the level of cache
closest to the processor, is the smallest but also the fastest. Since a cache exploits
spatial and temporal locality, a small cache can still have a high cache hit rate but
a low hit latency. A cache with a low hit latency but a high hit rate minimizes the
memory access time. Due to the stored program concept, instructions are stored
and fetched from memory. However, since the memory access patterns of instruc-
tions and data are very different, the L1 cache is usually split into two L1 caches,
one for instructions and one for data, to further improve the cache hit rate. Each
level of cache, L2, L3, etc., between the L1 cache and main memory is larger and
can hold more data, but is slower. Each level of cache services the memory
accesses that were missed in the caches between that cache and the processor,
albeit with a higher access time.

To illustrate how multilevel caches can decrease the average latency of memory
access, first assume that the memory hierarchy consists of an L1 data cache, a
combined L2 cache, and main memory, which have hit latencies of 2, 10, and 150
cycles, respectively. Also assume that the hit rate for L1 is 80% and for L2 is 90%,
while the hit rate for main memory is 100%. Then, for 1000 load instructions, 800
(1000 * 0.80) are L1 hits, 180 (200 * 0.90) are L2 hits, and the remaining 20 are
memory hits. The average latency for these load instructions is (see Eq. 4):

Average Latency = [(800 * 2) + (180 * 10) + (20 * 150)]/1000
= 6400 / 1000 = 6.4 cycles (4)

By comparison, without the L1 and L2 caches, the average memory latency
of these 1000 load instruction is 150 cycles (the access time of main memory),
which will substantially increase the CPI. Therefore, as this example shows, by
adding some small, fast caches to exploit spatial and temporal locality, com-
puter architects are able to dramatically improve the performance of the mem-
ory subsystem.

3.5 Policies and Additions for High-Performance Memory

To further improve the performance of the memory hierarchy, computer
architects have implemented two policies into the memory hierarchy and its inter-
face with the processor core. The first policy, load bypassing, allows load instruc-
tions to bypass preceding store instructions in the order in which load and store
instructions are issued to the memory hierarchy [11]. Since load instructions
retrieve values from memory that are needed by the processor for further compu-
tations, decreasing the latency of load instructions has a larger effect on the pro-
gram’s execution time than does decreasing the latency of the store instructions.
One way to decrease the effective latency of a load instruction is to issue it sooner
than otherwise would normally occur. The one caveat to this policy is that the
addresses for all store instructions preceding this load must be known, i.e., calcu-
lated, before the load is allowed to access the memory hierarchy. The reason for
this is that a preceding store instruction may write to the same memory location
as the load. If the load is allowed to skip ahead of a store that writes to the same
memory location from which the load reads, then the load will retrieve the wrong
value from memory since the store did not first write its value. If the address of

Computer Architecture 299

the load differs from the address(es) of all of the preceding stores, then load is
allowed to skip ahead of those stores.

A more aggressive version of this policy allows the load to access memory
even when the addresses for all preceding store instructions are not known. This
version defers the address check until after the load retrieves its value from mem-
ory. If none of the addresses of the preceding stores matches the address of the
load, then the load forwards its value to the processor core. If the address of a
preceding store matches the address of the load, the load discards its value. In the
former case, the load instruction retrieves its value from memory a few cycles ear-
lier than it could have if it waited for the address calculation of the preceding
store instructions.

In the following example, instruction 3 can execute can before instructions
1 and 2, since the memory address of instruction 3 (A) differs from the addresses
for instructions 1 and 2 (B and C). However, instruction 4 can bypass only
instruction 2, since its address (B) matches the memory address of instruction 1.
1. st B, r1 // B = R1
2. st C, r2 // C = r2
3. ld A, r3 // r3 = A
4. ld B, r4 // r4 = B

When the address of the load matches the address of a preceding store – as is
the case for instructions 1 and 4 – and if both addresses have been computed, then
load forwarding can be used to improve the processor’s performance [9]. With load
forwarding, the value of the store is directly sent to the load. In the event that two
preceding stores write the same address, the load instruction receives its value
from the second store. Sending the results of the store to the load directly has
three benefits. First, it allows to the load to execute before the store, even though
the store precedes the load and accesses the same address. Second, since the load
obtains its value directly from the store instruction, it does not have to wait until
the store instruction has first written its value to memory before accessing the
memory hierarchy to retrieve that value. Finally, since the load instruction does
not need to access memory, the amount of traffic within the memory hierarchy is
reduced.

In addition to the cache size, the other factor that affects the cache hit rate is
its associativity. The associativity can be defined as the number of cache entries
where a specific memory address can be stored. In a direct-mapped cache, each
memory address can only be stored in one cache entry. On the other hand, in a
fully associative cache, any memory address can go in any of the cache entries.
Since many addresses map to the same cache entries, increasing the associativity
increases the number of locations in which the data for a memory address can be
stored, which decreases the likelihood that that memory address will be overwrit-
ten when the cache is full. Two issues limit the degree of associativity. First,
increasing the cache’s associativity requires additional hardware for comparators
and multiplexors, although the capacity of the cache, as measured in bytes, does
not increase. Second, due to this additional hardware, the access time of highly
associative caches is higher than caches with the same capacity but a lower degree
of associativity.

One very simple, yet highly effective, way of effectively increasing the cache’s
associativity is to use a victim cache [3]. A victim cache is a small, fully associative

300 Joshua J. Yi and David J. Lilja

cache that stores cache blocks that are evicted from the L1 data cache. A cache
block is a group of consecutive memory addresses that are moved in and out of
the cache together. Cache blocks are evicted from the cache whenever empty
entries in which an incoming block can be stored in cannot be found. Whenever
a cache evicts a block, the next access to that block will require a higher access
latency, since that cache block is present only in a level of cache that is further
away from the processor. By contrast, when using a victim cache, evicted cache
blocks remain in a level of cache closer to the processor. Although the victim
cache is fully associative, its access time is similar to or lower than the access time
of the L1 data cache, since it is so small. Use of a victim cache in parallel with the
L1 data cache effectively increases the associativity of the L1 data cache since
cache blocks can now be stored in the victim cache. Use of a victim cache in com-
bination with the L1 data cache increases the hit rate of caches closest to the
processor, which increases the processor’s performance.

3.6 Branch Prediction: Speculative Bypass
of Control Dependences

As described in Section 3.2, a control dependence stems from the fact that the
instruction that should execute after a branch instruction is not known until after
the branch has executed. However, waiting to the fetch the next instruction until
after the branch has finished executing decreases the instruction throughput
through the processor, which in turn increases the execution time of the program.
Although the next instruction to follow the branch cannot be known with
absolute certainty before the branch has started to execute, while the processor is
waiting for the branch instruction to execute, the processor can predict the
address of the branch target, i.e., the next instruction to execute, speculatively
execute that instruction and the ones that follow it, and then verify whether the
prediction was correct after branch finishes executing.

The processor component that makes predictions on the branch direction and
target is the branch predictor. When the prediction is correct, the processor has
successfully guessed which instructions will execute next and, consequently, the
instructions that the processor had previously executed are correct. However, if
the processor guesses wrong on which direction the branch will take next, then all
the instructions that the processor speculatively executed are also wrong and need
to be discarded. To return the processor to the correct state, the instructions that
were speculatively executed need to be discarded and removed from the pipeline,
and the processor needs to fetch and start executing instructions on the other
path. The number of cycles that the processor needs to restore the processor state
is known as the branch misprediction penalty. During this time, the processor is
idle and not executing any instructions, which decreases the processor’s perform-
ance. To maximize the performance of the processor, computer architects attempt
to minimize the branch prediction penalty.

Two other key issues affect the processor’s performance when using branch
prediction. First, the number of stages in the pipeline affects how many cycles
elapse before the branch predictor can verify the accuracy of the prediction. To
verify the accuracy of the branch prediction, the branch predictor compares the

Computer Architecture 301

result of the branch with the prediction. However, the longer the pipeline, the
more cycles it takes for the processor to compute the result of the branch for ver-
ification—and the more cycles it takes for the processor to verify the prediction,
the more cycles the processor spends executing instructions that will never be
used. Since the number of stages in the pipeline directly affects the number of
cycles that are needed to execute the branch, the number of stages consequently
affects the processor’s performance as it relates to branch prediction.

Second, the other issue is the branch prediction accuracy. The branch predic-
tion accuracy is defined as the number of correct predictions divided by the total
number of predictions. Since the length of the processor’s pipeline and the branch
misprediction penalty apply only when the branch predictor makes a mispredic-
tion, maximizing the number of correct predictions limits the performance degra-
dation due to these two factors. Therefore, computer architects attempt to
maximize the branch prediction accuracy.

Branch predictors consist of three main components: the branch history
table (BHT), the branch target buffer (BTB), and some logic. The BHT is an on-
chip table that stores the last n-directions for a few thousand branches. In the
fetch stage, when a branch instruction is fetched from memory, the processor
uses the branch’s PC as an index into the BHT. The branch logic uses its algo-
rithm and the branch’s recent history to make a prediction as to whether the
branch is taken or not. If the branch predictor predicts that the branch is not
taken, then the next instruction that the processor will execute is the instruction
that immediately follows the branch. If the branch predictor predicts that the
branch is taken, then the branch logic uses the PC to access the BTB to quickly
determine the address of the next instruction that is to be executed so that
instruction can be fetched from memory. The BTB is a table that stores the
addresses of recently-taken branch targets. Use of a BTB allows the processor
to immediately start fetching the instruction at the predicted branch target
instead of waiting for that address to be computed. After the branch executes,
the processor updates the BHT with the direction of the branch and the BTB,
if the branch is taken.

It is important to note that since the BHT is much smaller than the maximum
number of entries that a PC could index, only a few bits from the least significant
end of the PC are used to index the BHT; the remaining more significant bits are
ignored. Consequently, since the entire PC is not needed to access the BHT, mul-
tiple branch instructions that have the same bit pattern for the BHT index will
map to the same BHT entry. This situation is known as aliasing, and it can affect
the branch predictor’s accuracy since the branch history for another branch could
be used to make predictions for the current branch instruction instead of its own
history.

One simple branch predictor makes its predictions based on the last direction
that is stored in the BHT for that branch, or another branch in the event of alias-
ing. If the last direction that the branch took was taken, then the branch predic-
tor predicts that the branch will be taken again. The opposite prediction occurs
when the branch was most recently not taken. After the branch executes, the BHT
stores the direction that the branch actually took. Since only one bit is needed to
store whether this branch was taken or not, this predictor is known as a one-bit
predictor. While this branch predictor has the advantage of minimal BHT size

302 Joshua J. Yi and David J. Lilja

and fair branch prediction accuracy, the major problem with it is that it tends to
make mispredictions when entering and when leaving a loop.

For example, assume that the processor executes a loop with five iterations.
For the first four iterations, the branch is taken; only the last iteration is not
taken. Since the one-bit predictor immediately writes the most recent direction
into the BHT, when entering the loop, the last direction that is stored in the BHT
is not taken. Therefore, the branch predictor will predict “not-taken” for the first
iteration when the direction is actually taken. After the first iteration, the BHT
stores “taken” as the last direction for that branch and is subsequently able to
make three correct predictions in a row for the next three iterations. However, for
the fifth iteration, the branch predictor predicts “taken” when the branch is actu-
ally not taken. This results in another misprediction, and the branch predictor
stores “not-taken” into the BHT, which will cause yet another misprediction when
the branch executes the next time. This results in a 60% prediction accuracy due
to mispredictions for the first and fifth iterations.

To solve this problem, a two-bit branch predictor can be used. The difference
between the one-bit and the two-bit branch predictors is that the one-bit predic-
tor changes its prediction in response to a single misprediction while the two-bit
predictor requires two mispredictions to change its prediction. In the above exam-
ple, the two-bit predictor would accurately predict the branch’s direction for the
first four iterations, making a misprediction only for the last iteration. Therefore,
in this example, although the two-bit predictor requires twice the number of his-
tory bits in the BHT, it results in an 80% prediction accuracy, which is a very sig-
nificant difference.

Other than one- and two-bit predictors, computer architects have proposed
several other branch predictors to achieve higher branch prediction accuracies.
One- and two-bit branch predictors are fairly accurate for floating-point pro-
grams where the branch behavior is relatively well behaved. But for integer
programs, where the branch behavior is less well behaved, one- and two-bit
branch predictors do not account for the effect that other branch instructions
may have on the direction that the current branch will take and consequently have
poor branch prediction accuracy.

In contrast, correlating and two-level predictors use the history of the most
recently executed branch instructions to make a prediction. While there are sev-
eral flavors and varieties of each, the basic operation for these two predictors is
relatively similar. These branch predictors use a bit pattern that represents the
taken/not-taken behavior of several recent branches as an index into a table of
one- or two-bit prediction counters [10]. To store the direction of each of the m
most recently executed branch instructions, these branch predictors use an m-bit
shift register known as the branch history register (BHR). After a branch instruc-
tion finishes executing, BHR shifts the bits such that the oldest branch is over-
written and the youngest is stored on the other end of the shift register. The
m-bits of the BHR are then used to index the pattern history table (PHT) that has
2m entries. Each entry of the PHT is a one- or two-bit predictor that ultimately
makes the branch prediction. It is important to note that basic versions of these
predictors do not use the PC of the branch instruction, which may lead to alias-
ing in the PHT. To reduce the chance of deconstructive aliasing, variants of these
predictors use at least part of the PC to index the PHT.

Computer Architecture 303

In summary, the basic assumption for these predictors is that whenever a series
of branch instructions has the same history as another series, then the direction
of the current branch can be predicted based on past behavior of the branch that
followed each series of branch instructions.

After a processor jumps to and finishes executing a subroutine, it needs to
return to the point in the program that called the subroutine. To accomplish this,
the processor could use the PC of the branch instruction, which corresponds to
the subroutine return, to access the BTB to determine what the next instruction
is. The problem with this solution is that the subroutine could be called from sev-
eral places in the program and that the calls may be interleaved. Therefore, the
target (return) address could constantly change, depending on which place in the
program called the subroutine. To avoid interrupting the instruction fetch process,
computer architects have designed the return address stack (RAS) to store the
address of the target instruction [4]. When a subroutine is called, the processor
pushes the return address onto the RAS. If that subroutine calls another subrou-
tine, or itself, another return address is pushed onto the stack. Then, when each
subroutine has finished executing, the processor simply pops each return address
off the RAS and resumes fetching instructions starting at the return address.

3.7 Branch Predication: Non-Speculative Bypass
of Control Dependences

Although recently proposed and implemented branch predictors have become
very complex – and accordingly require a large amount of chip area and dissipate
a large amount of power – the control-flow of some branch instructions is so
complex that they are hard to predict very accurately. To achieve higher branch
prediction accuracy, which subsequently results in significantly higher processor
performance, it is very important to accurately predict the direction of these
difficult-to-predict branches. For reasons described above, difficult-to-predict
branches severely degrade performance, since they interrupt the instruction fetch
stream and since misprediction recovery requires several clock cycles.

One solution to this problem, called branch predication, is to simply fetch and
execute instructions down both directions of the branch [7]. After the branch exe-
cutes, the correct direction is known and instructions down the correct path are
saved while instructions down the wrong path are ignored and discarded. To
accomplish this, the branch instruction is converted to a compare instruction
where the result of the compare is written to a predicate register. A predicate reg-
ister is added as an input operand to each instruction down one path; instructions
down the other path are assigned another predicate register. The value of the
predicate register indicates whether the branch instruction was taken or not and
subsequently whether the output values of that instruction should be saved or
not. When the predicate register is set to zero, all instructions that have that pred-
icate register as an input operand are discarded; meanwhile, the value of the
predicate register for the instructions on the other path is 1. When the predicate
register is set to 1, the instructions that use that predicate register are saved and
eventually write their output values to the register file.

Since the processor executes instructions on both branch paths, the processor
effectively predicts the direction of the branch with 100% accuracy. Therefore,

304 Joshua J. Yi and David J. Lilja

why should branch predication not be applied to all branch instructions to
achieve a 100% prediction accuracy? First, the cost of branch predication is that
the processor must devote resources to executing some instructions that will be
discarded. Therefore, the processor’s execution rate is lower when the branch
direction is unknown than after the branch direction has been resolved. Second,
applying branch predication to all branch instructions means that even highly
predictable branch instructions will be converted. This means that instead of
making a high-accuracy prediction and then maximizing the rate of execution
along that path, the processor sacrifices that high rate of execution for a much
lower one to achieve a slight improvement in the branch prediction accuracy.
Therefore, to maximize performance, branch predication should be applied only
to difficult-to-predict branches.

In 2000, Intel began to ship the production version of the Itanium processor.
One of the most notable features of this processor was its implementation of
branch predication. Although initial academic studies suggested performance
improvements of 30% or more, the performance improvement due to branch
predication was a modest 2% [2]. Two key reasons were given to account for this
discrepancy. First, there were several differences in the production and academic
versions of the compiler and the hardware. One key difference was in the level of
detail between the academic and production versions. For instance, the academic
studies did not account for the effect of the operating system and factors such as
the effects of cache contention and pipeline flushes. These relatively small differ-
ences tend to reduce the performance of the real machine. Second, the bench-
marks that were used to generate each set of performance results differed. In the
benchmark suite that was used on the production hardware, branch execution
latency and the misprediction penalty accounted for a smaller percentage of the
program’s execution time than in the benchmark suite for the academic studies.
Despite these differences and the difference in the performance results, the authors
of [2] state that as the Itanium processor and its compiler mature, the performance
impact of branch predication will increase.

3.8 High Performance Instruction Fetch: The Trace Cache

From a conceptual point of view, the instruction fetch and execute compo-
nents of the processor exist in a producer-and-consumer relationship. The
instruction fetch components, which includes the branch predictor and instruc-
tion cache, “produce” instructions by retrieving them from memory and placing
them into a buffer known as the instruction fetch queue. The instruction execute
components, which include the issue logic and the processor’s functional units,
“consume” the instructions by executing them and writing their results to the reg-
ister file and memory. As the issue width increases, the rate at which the proces-
sor consumes instructions increases, which increases the processor’s performance.
However, to maintain the processor’s performance as the issue width increases,
the instruction fetch components need to produce the instructions at a similarly
high rate or the processor’s performance will suffer.

The problem with conventional instruction fetch mechanisms is that they can
only fetch a single cache block from memory per cycle if the cache block contains
a branch instruction that is predicted to be taken. When a cache block does not

Computer Architecture 305

contain any branch instructions or when it contains a branch instruction that is
predicted to be not taken, the next cache block is fetched next from memory.
However, if the cache block has a branch instruction that is predicted to be taken,
then the processor cannot fetch any more cache blocks until after the next block
is brought into the processor. This severely limits the rate at which instructions
can be fetched.

One solution to this problem is the trace cache [8]. The trace cache stores a
trace of instructions that were previously executed together consecutively.
Accordingly, the trace cache implicitly contains the record of which direction
each branch instruction in the trace took. The trace cache is accessed in parallel
with the L1 instruction cache, using the PC for the next instruction. When the
processor finds a matching trace – one that has a matching set of predicted
branch directions – in the trace cache, instructions are retrieved from the trace
cache instead of from the L1 instruction cache. Otherwise, the processor fetches
instructions from the instruction cache.

The advantage of using a trace cache is that by organizing the instructions into
a trace, the instructions from multiple taken branches can be fetched from memory
together in a single cycle. This gives the instruction fetch components the potential
to meet the execution core’s consumption rate. The disadvantage is that the proces-
sor designers must devote a substantial amount of chip area to the trace cache.

3.9 Value Prediction: Speculative Bypass of Data Dependences

As described in Section 3.2, in addition to control dependences, data
dependences – register or memory dependences between instructions – also can
severely degrade the processor’s performance. The counterpart to branch pre-
diction (speculative bypass of control dependences) is value prediction, which
exploits value locality to improve the processor’s performance.

Value locality is the “likelihood of the recurrence of a previously seen value
within a storage location” in a processor [6]. In other words, value locality is the
probability that an instruction produces the same output value.

Value prediction is a microarchitectural technique that exploits value locality.
Based on the past values for an instruction, the value prediction hardware pre-
dicts what the output value could be. After predicting the output value, the proces-
sor forwards that predicted value to any dependent instructions – instructions that
need that value as an input operand – and then speculatively executes those
dependent instructions based on the predicted value. To verify the prediction, the
processor executes the predicted instruction normally. If the prediction is cor-
rect, the processor resumes normal execution and can write the values of the spec-
ulatively executed instructions to the register file and memory. If the prediction
is incorrect, then all the dependent instructions need to be reexecuted with the
correct value.

It is important to realize that without value locality, value prediction would
not be able to improve the processor’s performance, since it would be virtually
impossible to accurately choose the correct value for an instruction from 2m dif-
ferent values, where m is the number of bits in each number (typically 32 or 64).

Last-value prediction is the simplest version of value prediction. Last-
value prediction stores the last output value of each instruction into the value

306 Joshua J. Yi and David J. Lilja

prediction table. Upon encountering the next instance of that instruction, the
processor uses the last output value as the predicted value. For example, if a par-
ticular add instruction computed the output value of 2 last time, then when that
add instruction next executes, the last value predictor predicts that the add will
again produce an output value of 2.

While last-value prediction can yield reasonably high prediction accuracies for
some instructions, its accuracy is very poor when it tries to predict the values of
computations such as incrementing the loop index variable. Therefore, to improve
the prediction accuracy of last-value prediction for these and similar computa-
tions, computer architects have proposed the stride-value value predictor. For this
predictor, the predicted value is simply the sum of the last output value for that
instruction and the stride, which is the difference of the last two output values.
For instance, when the output value history for an instruction is 1, 2, 3, 4, 5, etc.,
the stride value predictor will predict that the next output values will be 6, 7, 8,
etc. Note that when the stride value equals zero, the stride value predictor func-
tions as a last-value predictor.

Although stride-value prediction has a higher prediction accuracy than last-
value prediction, the two predictors are fundamentally the same. Consequently,
for more complex output value patterns such as 1, 4, 7, 9, 1, 4, 7, 9, … 1, 4, 7, 9,
etc., both value predictors have very poor performance. One value predictor that
can accurately predict this irregular pattern is the finite-context method predictor.
This predictor stores the last n output values for an instruction and then uses
some additional logic to determine which of those n values should be used as the
predicted value.

In summary, value prediction improves the processor’s performance by allow-
ing it to execute instructions earlier than would otherwise be possible, if the pre-
diction is correct. This potential performance gain comes at the cost of prediction
verification and a potentially very large value prediction table.

3.10 Value Reuse: Nonspeculative Bypass of Data Dependences

During the course of a program’s execution, a processor executes many redun-
dant computations. A redundant computation is one that the processor had per-
formed earlier in the program. Any and all computations can be redundant. It is
important to note that an optimizing compiler may not be able to remove these
redundant computations during the compilation process, since the actual input
operand values may be unknown at compile time – possibly because they depend
on the inputs to the program.

Redundant computations affect the program’s execution time in two ways.
First of all, executing the instructions for redundant computations increases the
program’s dynamic instruction count. Secondly, these redundant computations
affect the average CPI, since they produce the values for other instructions in
the program (a flow dependence exists between these instructions and others).
Unfortunately, while redundant, these computations need to be executed to
ensure correct program operation. Consequently, the hardware cannot simply
disregard these computations.

Value reuse is a microarchitectural technique that improves the processor’s
performance by dynamically removing redundant computations from the

Computer Architecture 307

processor’s pipeline [12]. During the program’s execution, the value reuse hard-
ware compares the opcode and input operand values of the current instruction
against the opcodes and input operand values of all recently executed instruc-
tions, which are stored in the value reuse table (VRT). If there is a match between
the opcodes and input operand values, then the current instruction is a redundant
computation and, instead of continuing its execution, the current instruction gets
its output value from the result stored in the VRT. On the other hand, if the cur-
rent instruction’s opcode and input operand values do not match those found in
the VRT, then the instruction is not a recent redundant computation and it exe-
cutes as it normally would. After finishing the execution for each instruction, the
value reuse hardware stores the opcode, input operand values, and output value
for that instruction into the VRT. Value reuse can be applied at the level of
individual instructions or to larger units, such as basic blocks [5].

The key difference between value prediction and value reuse is that value pre-
diction is speculative whereas value reuse is nonspeculative. Consequently, the
predictions of the value predictor must be verified with the actual result of the pre-
dicted instruction, and recovery must be initiated if the prediction is wrong. By con-
trast, since the computation and inputs are known, the results for value reuse are
nonspeculative and do not need to be verified, since they cannot be wrong.

While value reuse is able, through table lookups, to generate the output value
of an instruction sooner than would otherwise be possible, two key problems
limit its performance. First, to ensure that multiple instructions can access and
retrieve their output values from the VRT within one or two cycles, the number
of entries in the VRT has to be relatively low. Therefore, the VRT can only hold
a small number of redundant computations. The second problem is that since
VRT is finite in size and since it constantly stores the inputs and outputs of the
most recently executed instructions, the VRT may eventually become filled with
computations that are not very redundant. Therefore, instead of storing the
redundant computations that are very frequently executed, which account for a
large fraction of the program’s execution time, the VRT may store redundant
computations that are relatively infrequently executed and that have very little
impact on the program’s execution time.

3.11 Prefetching

As described in Section 3.4, the performance of the memory hierarchy is the
result of two factors: the hit latency of the caches (or memory) and the hit rate of
the caches. Since the hit latency is determined by how the cache is implemented,
its size, associativity, and location (on-chip or off-chip), computer architects can
only improve the hit rate to decrease the memory access time of load instructions.
One such approach is a mechanism called prefetching [15].

What prefetching attempts to do is to retrieve a cache block of instructions or
data from memory and put that block into the cache before the processor requests
those instructions or data from memory, i.e., needs to use them. For prefetching
to significantly improve the performance of the memory hierarchy, a prefetch-
ing algorithm needs to do two things. First, it needs to predict those address(es)
for which the processor will access memory. Due to very complex memory access
patterns that are prevalent in nonscientific applications, accurate prediction of

308 Joshua J. Yi and David J. Lilja

which address(es) will be needed in the near future is very difficult. Second, for
prefetching to be most effective, the prefetching algorithm needs to place the
block of memory into the cache before the processor requests those instructions
or data. However, due to wide-issue processors and very long memory latencies
that are only getting longer, the prefetch algorithm must determine which block
of memory to retrieve several hundred cycles or more before the processor actu-
ally makes that request. On the other hand, bringing the desired memory block
into the cache far before it is needed may result in that memory block being
replaced by another, higher-priority memory block. Therefore, the timeliness
aspect of prefetching really means that the prefetched block needs to be brought
into the cache as close as possible to when the processor will consume those val-
ues. Bringing that block into the cache too early or too late may not significantly
improve the processor’s performance.

Prefetch algorithms can be initiated either solely by hardware or with some
assistance from the compiler. In the former case, the prefetching algorithm is
completely implemented in the hardware. As a result, the hardware determines
which addresses to prefetch and at what time. In the latter case, the compiler
inserts prefetch instructions into the assembly code. Those instructions tell the
hardware prefetch mechanism when to prefetch and for what to address to
prefetch. For software prefetching, the compiler analyzes the assembly code to
determine which load instructions will seriously degrade the processor’s perform-
ance. For those instructions, the compiler then inserts the necessary prefetch
instructions into the code at a point that it determines is sufficiently far away from
the point in time when the processor will actually use that value.

One very well-known prefetching technique is next-line prefetching. When
using next-line prefetching, after a cache miss, in addition to fetching the cache
block that contains the address that caused the cache miss, the processor also
fetches the next sequential cache block and places that block in a prefetch buffer,
which is a small, fully associative cache. By fetching the next cache block, this
prefetching algorithm is counting on the program to exhibit spatial locality and
on addresses in the next cache block to be requested soon. Storing the prefetched
cache block in a prefetch buffer reduces the amount of cache pollution, which is
caused by bringing in blocks that will not be used before they are evicted or evict-
ing blocks that will be used in the near future.

Finally, due to the increasing memory gap, designing and implementing more
effective prefetching algorithms remains a very active area of research in com-
puter architecture.

4 MULTITHREADED ARCHITECTURES:
NEXT-GENERATION MULTIPROCESSOR
MACHINES

4.1 Speculative Multithreaded Processors

Scientists and engineers, in an effort to decrease the execution time of their
programs, commonly run their programs on multiprocessor systems. Ideally,
after parallelizing the code, each processor can execute its portion of the program

Computer Architecture 309

without having to wait for other processors to catch up or to produce values for
it. A deeply nested loop, where each loop iteration does not depend on the value
of a previous loop iteration, is ideal for parallelization, since it does not contain
any cross-iteration dependences. While this situation is common for scientific
floating-point applications, the loops in integer (nonscientific) programs typically
have cross-iteration data dependences that make them very difficult to run on a
multiprocessor system. These data dependences force the other processors in the
system to stall until the processor running that previous loop iteration generates
the needed value.

To address this issue, computer architects have proposed speculative multi-
threaded processors as a potential solution to allow integer programs to efficiently
run on multiprocessor systems. A representative example of a speculative multi-
threaded processor is the Superthreaded Architecture (STA) [13]. In the STA, the
compiler analyzes the program to determine which loops can be efficiently paral-
lelized to decrease the overall program execution time. Since, at compile time, the
compiler may not be able to determine whether a potential cross-iteration
dependence will actually be one at run-time, the compiler flags that address.
To ensure that those addresses that the compiler has flagged are handled properly
at run-time, the STA uses an on-chip buffer called the memory buffer.

Other than the memory buffer, the only other additions to the base processor,
which can either be an “off-the-shelf” superscalar or VLIW processor, are a little
additional logic for interprocessor communication and for processor execution
synchronization. Each processor is connected to two other processors via a uni-
directional ring. As with typical multiprocessor systems, each processor has
its own private L1 data cache but shares the L2 cache with the other processors.
The memory buffer is a private cache.

When a program begins executing on the STA, only one processor is active;
the remaining processors are idle, waiting for the program to reach a loop (paral-
lel region). The start of the parallel region is denoted by a special instruction.
After the active processor executes that special instruction, it forks off the next
processor in the unidirectional ring and begins execution of its iteration in the
parallel region. Meanwhile, the next processor copies the set of values that are
needed for parallel execution and then forks off its own processor. This process
repeats itself until all processors are executing an iteration of the loop.

When each processor in the system begins parallel execution, the processor
allocates space in the memory buffer for each potential cross-iteration depend-
ence that the compiler flagged. When a load instruction accesses the memory
hierarchy, the memory buffer and L1 data cache are accessed in parallel, although
the data can be present only in one structure. When the address for the load
instruction is found in the L1 data cache, the processor continues execution as
normal. However, when address is found in the memory buffer, the processor
needs to wait until either another processor generates that value or another
processor updates it, if the value is not already there. On the other hand, when
a processor generates a value for an address that is found in the memory buffer,
the processor forwards that value across the unidirectional ring to the other
processors. Therefore, by using the compiler to flag potential cross-iteration
dependences, the memory buffer to track and update the status of those depen-
dences, and the unidirectional ring to pass values from processor to processor, the

310 Joshua J. Yi and David J. Lilja

STA architecture is able to parallelize and efficiently run programs that have
cross-iterations dependences.

When a processor finishes its iteration, it checks to see if all processors that
are executing a previous iteration are finished. If not, the processor stalls until
they are finished. If so, then the processor writes its values back to memory. After
a processor writes its values to memory, the state of memory is the same as if this
iteration just finished executing on a uni-processor.

Finally, since there are an indeterminate number of iterations for some loops,
it is not known until run-time which processor will be the one to execute the last
iteration. To maintain high performance given this uncertainty, each processor
keeps forking off another processor as if no uncertainty exists. When the proces-
sor that executes the last iteration detects that it is the last iteration, it kills all suc-
cessor iterations running on the “downstream” processors. That processor then
starts executing another sequential region of code while all other processors are
idle. This cycle of sequential and parallel execution continues until the program
is finished.

In conclusion, speculative multithreaded processors, such as the
Superthreaded Architecture, allow multiprocessor systems to efficiently execute
programs with many cross-iteration data dependences. To accomplish this, hard-
ware like the memory buffer is added to the base processor to ensure that poten-
tial cross-iteration dependences are handled correctly.

4.2 Simultaneous Multithreading

When multiple programs are running on the same uniprocessor system, the
operating system allows each program to execute for a certain amount of time
before swapping that program out for another one. Before the next program can
start running, the processor state of the current program must be saved to mem-
ory. Then after the processor state of the next program is loaded into the proces-
sor, the next program can begin executing. Obviously, repeated storage and
loading of the processor state of each program adds extra overhead to the time it
takes to execute both programs. On the other hand, running more than one pro-
gram at a time may allow the processor the hide the latency of cache misses by
running another program while the memory hierarchy services the cache miss.

Some operating systems and processors switch programs only when there are
caches misses. This allows one program to efficiently execute the low latency parts
of the code and then allows another program to run while high latency parts of
the code are being serviced. Although this setup allows the execution of two pro-
grams to overlap, it still incurs the cost of saving and loading the processor state.

A hardware improvement on this approach is simultaneous multithreading [14].
A simultaneous multithreading (SMT) processor allows two or more programs,
or threads, to simultaneously execute on the same processor. Therefore, instead of
fetching only the instructions for a single program, an SMT processor fetches the
instructions for multiple programs at the same time. Instead of decoding and issu-
ing instructions from a single program, an SMT processor decodes, issues, and
executes the instructions for multiple programs. Finally, instead of writing the
results for a single program to the register file, an SMT processor writes the result
of each program to its own register file to maintain proper program execution

Computer Architecture 311

semantics. An SMT processor also replicates other base processor resources to
support multiple hardware-based program threads.

Suppose that eight programs are running on a SMT processor. Of those eight
programs, only two are active at any given time. To execute both programs, the
SMT processor first needs to fetch instructions for both programs at the same
time. After fetching instructions from both programs, the instructions execute on
the processor as would the instructions for a single program, with the obvious
exception that instructions for one program do not use the results from the other.
Whenever a load instruction experiences a cache miss, the SMT processor stops
fetching instructions for that program and starts fetching and executing the
instructions for another program. Use of a round-robin fetch policy ensures that
progress is made in executing each program.

It is important to note that the start-to-finish time of any one program run-
ning on an SMT processor will be longer than the start-to-finish time of the same
program running on a conventional uniprocessor of similar resources, since the
other programs compete for the processor’s resources. However, the SMT proces-
sor is able to decrease the overall execution time of all n programs by executing
them in parallel at a fine-grain level as opposed to executing them serially on the
conventional uniprocessor machine.

SMT processors are able to decrease the execution time of multiple programs
for three reasons. First, by allowing instructions from multiple instructions to exe-
cute simultaneously, the SMT processor can find more instructions that are ready
to issue, since dependences, both control and data, do not exist between the
instructions of two different programs. As a result, the SMT processor can reduce
the average CPI across all programs. Second, by supporting multiple program
execution at a very fine-grain level, the SMT processor is able to avoid the cost
of storing and loading the processor state. Third, by swapping out each pro-
gram after it incurs a cache miss, the SMT processor is able to hide the memory
latency of a load instruction in one program by executing instructions in another
program.

Finally, although their names are similar, simultaneous multithreading and
speculative multithreading have several major differences. First, an SMT proces-
sor is a single, very wide-issue processor, while a speculative multithreaded proces-
sor is a multiprocessor system. Second, SMT processors decrease the overall
execution time of multiple programs, while speculative multithreaded processors
decrease the execution time of a single program. Given these differences, these
two approaches could be combined together to form a multiprocessor system that
can quickly execute a single program or multiple programs.

5 CONCLUSION: FUTURE TRENDS AND ISSUES

Over the past few decades, computer architects have improved the perform-
ance of processors in one of three ways: increasing the processor’s clock frequency,
executing multiple instructions simultaneously via pipelining, and executing mul-
tiple instructions in parallel via wide-issue processors. Although these approaches
have significantly improved the processor’s performance, at least two factors limit
further performance gains purely by using these techniques.

312 Joshua J. Yi and David J. Lilja

First, as described in Section 3.4, the disparity in the rates of increase in the
processor speed and the memory speed has led to a memory gap that will only
widen in the future. To ensure that the processor is able to fetch an adequate num-
ber of instructions to feed the execution core and to ensure that data dependences
between load instructions and other types of instructions do not become the bot-
tleneck, computer architects need to find additional methods of decreasing the
average memory latency. Compounding this problem is that memory bandwidth
will increasingly become a limiting factor on any solutions [1]. As a result, instead
of trading off memory bandwidth for memory latency, computer architects will
need to find other solutions that decrease the average memory latency without
dramatically increasing the memory bandwidth requirements. Solutions to this
problem may include novel methods of prefetching data and instructions, differ-
ent cache and memory hierarchy designs, and new technologies that reduce the
memory latency.

Another problem that has already become a major one is the power dissipa-
tion of modern processors. Microarchitectural techniques such as branch predic-
tion, prefetching, and value prediction are all speculative techniques that rely on
predicting in what direction the branch will go, what instructions or data are
needed next, and what values a particular instruction will produce, respectively,
to improve the processor’s performance. Although these techniques are very effec-
tive in improving the processor’s performance, they also consume a lot of additional
energy to do so. The extra energy that these and other speculative techniques con-
sume increases the power consumption, which lowers the battery life of laptop com-
puters or raises the temperature of the processor to dangerous levels. Consequently,
for any performance enhancements, computer architects must balance increased
performance with increased power consumption.

In conclusion, to maintain the phenomenal rate of improvement in micro-
processor performance, computer architects need to implement the techniques that
have been discussed in this chapter. Also, architects need to develop other tech-
niques of improving the performance without exceeding power consumption goals.

REFERENCES

[1] D. Burger, J. Goodman, and A. Kägi (1996): Memory Bandwidth
Limitations of Future Microprocessors, International Symposium on
Computer Architecture.

[2] Y. Choi, A. Knies, L. Gerke, and T. Ngai (2001): The Impact of If-
Conversion on Branch Prediction and Program Execution on the Intel
Itanium Processor, International Symposium on Microarchitecture.

[3] N. Jouppi (1990): Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-associative Cache and Prefetch Buffers,
International Symposium on Computer Architecture.

[4] J. Hennessy and D. Patterson (1996): Computer Architecture: A Quantitative
Approach, Morgan-Kaufman.

[5] J. Huang and D. J. Lilja (2003): Balancing Reuse Opportunities and
Performance Gains with Sub-Block Value Reuse, IEEE Transactions on
Computers, 52, 1032–1050.

Computer Architecture 313

[6] M. Lipasti, C. Wilkerson, and J. Shen (1996): Value Locality and Load
Value Prediction, International Conference on Architectural Support for
Programming Languages and Operating Systems.

[7] S. Mahlke, R. Hank, R. Bringmann, J. Gyllenhaal, D. Gallagher, and W. Hwu
(1994): Characterizing the Impact of Predicated Execution on Branch
Prediction, International Symposium on Microarchitecture.

[8] E. Rotenberg, S. Bennett, and J. Smith (1996): Trace Cache: A Low Latency
Approach to High Bandwidth Instruction Fetching, International
Symposium on Microarchitecture.

[9] J. Shen and M. Lipasti (2003): Modern Processor Design, Fundamentals of
Superscalar Processors, McGraw-Hill.

[10] J. Silc, B. Robic, and T. Ungerer (1999): Processor Architecture: From
Dataflow to Superscalar and Beyond, Springer-Verlag.

[11] D. Sima, T. Fountain, and P. Kacsuk (1997): Advanced Computer
Architectures, A Design Space Approach, Addison Wesley Longman.

[12] A. Sodani and G. Sohi (1997): Dynamic Instruction Reuse, International
Symposium on Computer Architecture.

[13] J. Tsai, J. Huang, C. Amlo, D. Lilja, and P. Yew (1999): The Superthreaded
Processor Architecture, IEEE Transactions on Computers, 48(9).

[14] D. Tullsen, S. Eggers, and H. Levy (1995): Simultaneous Multithreading:
Maximizing On-Chip Parallelism, International Symposium on Computer
Architecture.

[15] S. VanderWiel and D. Lilja (2000): Data Prefetch Mechanisms, ACM
Computing Surveys, 32(2), 174–199.

314 Joshua J. Yi and David J. Lilja

Chapter 10

A GLANCE AT VLSI OPTICAL INTERCONNECTS:
FROM THE ABSTRACT MODELINGS OF THE
1980S TO TODAY'S MEMS IMPLEMENTATIONS
(A SURVEY REPORT)
Mary M. Eshaghian-Wilner
University of California Los Angeles
Lili Hai
State University of New York College
at Old Westbury

Abstract
This chapter presents a brief overview of some of the major research con-

tributions in the area of VLSI computing with optical interconnects from the
early modelings of the 1980s to today's MEMS implementations. Both free-
space and fiber-guided interconnects are covered. Various models and archi-
tectures with optical interconnects are shown, and aspects of their algorithmic
design are also reviewed. The chapter concludes with a brief discussion of some
of the current advancements in MEMS and nanotechnology that could pave
the way towards the actual implementation of some of the theoretical models
that were proposed in the 1980s, and eventually towards designing of all opti-
cal systems. The materials presented in this chapter are compiled from some of
the references that are listed chronologically at the end of the chapter.

1 INTRODUCTION

Optical Computing was a very active area of research in the 1980s. But the
work tapered off because of the materials limitations that seemed to prevent
manufacturing of efficient and cost-effective VLSI optical computing chips. Now,
optical computing is back. New types of conducting polymers can be used to
make transistor-like switches smaller and 1,000 times faster than silicon transis-
tors. Also, researchers have now shown that photons can be trapped long enough
to store data. Even with all these advances, we may not see these technologies on

our computers for another 15 years or so. In the near term, however, optical com-
puters will most likely be hybrid electro-optical systems. The early 1980s intro-
duced the design of such architectures in which computations are done
electronically and communications are done optically. This chapter presents an
overview of such electro-optical architectures, with an emphasis on the design of
optical interconnection mediums for those architectures.

Today, computers perform logic operations in just a few nanoseconds.
Tomorrow's optical computers are expected to be 1,000 to 100,000 times faster.
All current computer device technologies are limited by the speed of electron
motion. The speed of electrons in copper wires is literally half the speed of light
in vacuum, while the speed of light in photonic circuits is the speed of light in vac-
uum – the highest attainable speed, as stated by Einstein's principle that signals
cannot propagate faster than the speed of light. Furthermore, unlike a copper
cable, which sends electricity one pulse at a time, optical fibers can transmit sev-
eral pieces of data as waves of different colors of light, which can travel down an
optical fiber simultaneously. With free-space optics, beams can cross each other
without distorting the information that they carry. All these advances support
such promising statements as the one made by Dr. Abduldayem of NASA,
who said, “Optically, we can solve a problem in one hour which would take
an electronic computer 11 years to solve – and they would be more immune to
noisy data.”

While optical circuits do not dissipate as much heat as silicon chips do, today's
materials that are required to support photonic circuits require too much power
to work in consumer products. Coming up with the right materials may take five
years or more, and it may be a decade after that before optical computing prod-
ucts appear. Therefore, at least in the near term, optical computers will most likely
be hybrid electro-optical systems where computations are done electronically and
communications optically. The rest of this chapter surveys some of the advance-
ments made to date towards design of optical interconnects on a chip, and the
chapter is organized as follows.

In Section 2 we present an overview of abstract models for computing on
a chip with optical interconnects. In Section 3 we review architectures with
free-space optical interconnects, and in Section 4 we review architectures using
fiber-guided interconnects. The Optical Reconfigurable Mesh, a selected
hybrid electro-optical architecture, is presented in Section 5. Section 6 dis-
cusses the nanoscale and MEMS implementation of architectures with optical
interconnects.

2 ABSTRACT MODELS

This section of the chapter presents the theoretical aspects of computing with
optical interconnects on VLSI chips. In this section, we first present an overview
of the optical model of computation (OMC), which represents a VLSI chip
enhanced with free-space optical interconnects. We then present a review of other
models, some of which were based on OMC. We will also discuss some simula-
tion and application algorithms for OMC type of models.

316 Mary M. Eshaghian-Wilner and Lili Hai

2.1 The Optical Model of Computation and Related Models

In this section, we introduce the Optical Model of Computation (OMC),
which is an abstraction of computing chips with optical interconnects. Similar to
the VLSI model of computation, which was proposed by Thompson in the late
1970s, this generic model can be used to understand the limits of computational
efficiency in using optical technology.

Unique qualities of the optical medium are its abilities to be directed for prop-
agation in free space and to have two optical channels cross in space without
interaction. These properties allow optical interconnects to utilize all three
dimensions of space.

One of the first attempts to use free-space optics as a means of data commu-
nications was in [4]. In these authors hybrid GaAs/Si approach to data com-
munication, a GaAs chip with optical sources was connected in a hybrid fashion
(with conventional wire bond techniques) to an Si chip such that light was gener-
ated only along the edges of the Si chip. The sources were of the edge-emitting
or surface-emitting types. The optical signals were routed to the appropriate loca-
tions on the Si chip using conventional and/or holographic optical elements. The
Si chip contained detectors to receive the optical data streams generated by the
sources. Since the detector–amplifier combinations were fabricated in Si, every
computational component on the Si chip was capable of receiving data.

Based on the properties of free-space optics and VLSI technology, an optical
model of computation is defined as follows [23, 37]:

An optical model of computation represents a network of N processors, each
associated with a memory module, and a deflecting unit capable of establishing
direct optical connection to another processor. The interprocessor communication is
performed satisfying the following rules:

● At any time a processor can send at most one message. Its destination is another
processor or a set of processors (broadcasting).

● The message will succeed in reaching the processor if and only if it is the only
message with that processor as its destination at that time step.

● All messages succeed or fail (and thus are discarded) in unit time.

To ensure that every processor knows when its message succeeds, we assume
that the OMC is run in two phases. In the first phase, read/write messages are
sent, and in the second, values are returned to successful readers and acknowl-
edgments are returned to successful writers. We assume that the operation
mode is synchronous and that all processors are connected to a central control
unit. The above definition is supplemented with the following set of assumptions
for accurate analysis.

● Processors are embedded in an Euclidean plane referred as the processing
layer.

● Each of the processing/memory elements occupies unit area.

● Deflectors are embedded in an Euclidean plane referred as the deflecting
layer.

A Glance at VLSI Optical Interconnects 317

● Each deflecting unit occupies at least one unit area.

● The deflecting layer is collinear to the processing layer.

● I/O is performed at I/O pads. Each I/O pad occupies at least one unit area or,
one unit area.

● The total volume is the sum of the space occupied by the processing layer, the
deflecting layer, and the space for optical beams.

● The intercommunication is done through free-space optical beams.

● Time is measured in terms of number of units of clock cycles.

● An optical beam carries a constant amount of information in one unit of time,
independent of the distance to be covered.

● A deflector is capable of redirecting an incident beam in one unit of time.

● A processor can perform a simple arithmetic/logic operation in one unit of
time.

● The time, T, for computation is the time between the arrival of the first input
and the departure of the last output.

To be able to compare our results with those that use Thomson's VLSI model
of computation, without loss of generality, assume that there are N processors
placed on an N1/2 × N1/2 grid called the processing layer. Similarly, there are N
deflecting modules on a layer above the processing layer, called the deflection
layer. The interconnection beams are established in the free-space between these
two layers, as shown in the Figure 10.1 below. Hence, the amount of data that can
be exchanged in a cycle between two sets of processors (two-way information
transfer rate) is N. The time T required to solve a problem is the number of cycles

318 Mary M. Eshaghian-Wilner and Lili Hai

Free Space Interconnections

N

N N�

N N�

N

Processing Layer of Size

Deflection Layer of Size

Figure 10.1. The OMC model

required to exchange the minimum required information (I). This leads to A T =
Ω (I), where A is the area occupied by the processing layer.

A related model is VLSIO [20], which is a three-dimensional generalization of the
wire model of the two-dimensional VLSI model with optical beams replacing the
wires as communication channels. Compared with the three-dimensional VLSI
model of computation, our model is more resource efficient. The simulation of
many parallel organizations using the OMC requires a considerably smaller amount
of volume than their layout in the three-dimensional VLSI model. For example,
the layout volume of an N processor hypercube can be reduced from O(N3/2) to
O(N logN) with OMC.

The Optical communication parallel Computer model (OCPC), presented in a
USC technical report by Anderson and Miller [24], is a well-studied theoretical
model, which was inspired by and based on the OMC model that was also devel-
oped at USC but as part of Eshaghian's Ph.D. thesis [23]. In the next section, the
algorithmic design issues of OMC and OCPC models have been elaborated.

Lastly, note that although fiber optics provide superb bandwidth as com-
pared with electrical wires, from a computational point of view, networks with
fiber optical connections lead to VLSI space-time trade-offs similar to the tra-
ditional electrical interconnects. For this reason, the OMC model was designed
to capture just the computational power of free-space optical interconnects,
which are drastically different from electrical interconnects. An abstract model
called the “Hypernetwork Model” was introduced by Zheng to represent archi-
tectures using fiber optics [68]. A hypernetwork M is essentially a graphical rep-
resentation of the underlying topology of a given network of processors
interconnected with fiber optics. More specifically, it is a network whose under-
lying structure is a hypergraph, in which each vertex corresponds to a unique
processor of the hypernetwork, and each hyperedge corresponds to a multicon-
nect component that connects the processors. Zheng states, “The class of opti-
cal multiconnect components excludes those that provide fixed parallel
connections in the form of image relay using lenses and mirrors.” Optical mul-
ticonnect components can be multi-access fiber buses- or star couplers, as
described in Section 4.

2.2 Simulation and Application Algorithms

The OCPC and OMC models have been appealing to the theoretical commu-
nity [50, 53, 66, 67] because they present a technology through which it is possi-
ble to efficiently simulate PRAM algorithms. The main underlying assumption in
the basic shared and distributed-memory PRAM models is that the intercommu-
nication delay in every step of computation is constant. In other words, using
electrical interconnections, one would need to have a fully interconnected network
to realize such a unit-delay intercommunication requirement. Implementation of a
fully connected network with electrical interconnections, where there is bounded
fan-in fan-out to processors, leads to a lower bound of Ω(log N) delay. Therefore,
every step of a PRAM algorithm will require Ω(log N) time when implemented
in electrical circuits with bounded degree nodes. With optical interconnects as
shown in OMC, and therefore on OCPC too, because any processor can commu-
nicate with any other processor directly through its dynamically reconfigurable

A Glance at VLSI Optical Interconnects 319

deflecting unit, the unit-delay interconnectivity assumed in PRAM can be real-
ized in real time (constant delay) with bounded fan-in fan-out processors.

Goldberg, Matias and Rao [50] presented a randomized simulation of an N
log log N EREW PRAM on the N processor OCPC in which, with high proba-
bility, each step of the PRAM takes O(log logN) steps to simulate on OCPC.
Prior to these results, the simulation of EREW PRAM was described by Valiant
on an OCPC [33]. Valiant had given a constant delay simulation of Bulk
Synchronous Parallel (BSP) computer on the OCPC, and also had given an
O(log N) randomized simulation of an N log N processor EREW PRAM on an
N processor BSP computer. Another simulation with delay O(log N log log N)
was given by Gereb-Graus and Tsantilas [40]. A fundamental problem that
deals with contention resolution on the OCPC is that of realizing an h-relation.
In this problem, each processor has at most h messages to send and at most h
messages to receive. Following Anderson and Miller [24], Valiant [33], and
Gereb-Graus and Tsantilas [40], Goldberg, Jerrum, Leighton, and Rao [45]
solved the problem in time O(h + log log N) for an N processor OCPC. A lower
bound of Ω(log log N)1/2 expected time was obtained by Goldberg, Jerrum, and
MacKenzie [67].

More recently, MacKenzie and Ramachandran [66] showed that the ERCW
PRAM (using the “Tolerant” protocol for resolving write conflicts) with n global
memory cells and unlimited local memory, is computationally equivalent to the
OCPC. This finding is in contrast to the statements given in [66] that the OCPC
model is equivalent to an EREW PRAM, a restriction that was not made in
OMC. In [23, 37], both exclusive and concurrent write features of OMC were
analyzed and applied in solving problems. In the following, a set of application
algorithms as opposed to PRAM simulation algorithms for OMC are shown. The
first is a set of optimal EREW algorithms for some geometric problems, and the
second is a set of ERCW solutions [37]. Please note that, due to space limitations,
the details of the algorithms are not presented. Furthermore, just a few of the
algorithms are explained.

Optimal EREW algorithms

In this section, we present O(log N) algorithms for problems such as finding
connected components and locating the nearest neighboring figure to each figure
in an N1/2 × N1/2 digitized image. We are concerned with black and white (binary)
images, where the black pixels are 1-valued and white pixels are 0-valued.

An early step in intermediate-level image processing is identifying figures in
the image. In a 0/1 picture, the connected 1s are said to form a figure. Thus, asso-
ciated with each PE is a label, which is the unique ID of the figure to which the
PE belongs. An N1/2 × N1/2 digitized picture may contain more than one con-
nected region of black pixels. The problem is to identify to which figure (label)
each I belongs.

Given an N1/2 × N1/2 0/1 image, all figures can be labeled, and the nearest figure
to all figures can be found, in O(log N) time using an (N1/2 / log 1/2 N) × (N1/2 / log1/2

N)-OMC.
The first part of the algorithm requires sequential processing of log N ele-

ments by each PE. Then, once the size of the processors and the pixels match, the

320 Mary M. Eshaghian-Wilner and Lili Hai

following is done for labeling the figures. For details on how the nearest neigh-
boring figures are found, refer to the original manuscript [33].

The basic idea of the labeling algorithm is to identify the outer and inner
boundaries of each figure, and then uniquely label all the connected ones sur-
rounded by each of these boundaries. To assure circular boundaries, the input
image is magnified by a factor of two along each dimension. Each pixel then
locally determines whether it is a boundary pixel or not by checking if at least one
of its four adjacent pixels along the x- and y-axis hold a 0. The pixels along each
boundary are linked to form a circular list. The direction of pointers is deter-
mined as shown in Figure 10.2. The details for two selected segments are shown.
Others can be formulated similarly.

Now only the outer-boundary PEs take part in the computation to identify the
least-numbered PE in their list. Each PE, during iteration i + 1, sets its pointer to
the pointer of the PE to which it was pointing at the end of iteration i. Since this
has the effect of doubling the distance “jumped” during each iteration, in O(log
N) time all the PEs in each list know the least-numbered PE in their list. The final
step is the propagation of the unique IDs of each of the outer boundaries to its
inner region. Broadcasting of IDs is done in parallel along each row of the image.
It is easy to see that, since the figures do not cross, there is always a unique ID
broadcasted to each of the inner PEs.

Constant-Time ERCW algorithms

One of the most attractive properties of optics is superposition. This property
suggests that the resultant disturbance at any point in a medium is the algebraic
sum of the separate constituent waves. Hence, it enables many optical signals to
pass through the same point in space at the same time without causing mutual
interference or crosstalk. Using this property, Giles and Jenkins [21] showed how
a single memory element could be read by many processors at the same time. In

A Glance at VLSI Optical Interconnects 321

Inner Boundary Outer Boundary

1 1

1

1
0

0 1
1

0
1

Figure 10.2. Labeling the figures

this section, we employ this characteristic to allow concurrent writes if all the
requesting processors want to write a 1. This leads to a constant running time of
the following geometric algorithms, under the assumption that broadcasting can
be done in unit time:

Given an N1/4 × N1/4 image, using a N1/2 × N1/2 OMC, in O (1) time,

● For a single figure, its convex hull and a smallest enclosing box can be found.

● For each figure, the nearest neighboring figure can be identified.

3 FREE-SPACE OPTICAL INTERCONNECTS

In this section, we present an overview of various architectures with free-
space optical interconnects. We categorize these into two groups: static cross-
bars and dynamic reconfigurable architectures. Architectures with static
crossbar free-space interconnectivity are those in which the connectivity is
achieved for N input ports to N output ports with free-space beams deflected by
N2 fixed passive optical elements. On the other hand, in architectures with
dynamic free-space interconnectivity, the interconnectivities among any combi-
nation of N elements can be achieved through the reconfiguration of N deflect-
ing units.

3.1 Crossbar Architectures

Two types of crossbar architectures are presented in this section. The first is
of the type referred to in the literature as a matrix crossbar, and the second is an
electro-optical crossbar. The switching speed of these designs is discussed and
compared with classical electrical interconnects.

3.1.1 Matrix Crossbars

The paper by Sawchuck et al. [8] presents an overview of various types of
matrix crossbars. The basic idea behind these architectures is that, there are N
input ports, which could represent processors, and there are N output ports, rep-
resenting destination processors or memory modules. To interconnect these N
points to each other, each of the N processors sends a free-space beam directed to
N deflecting units. Therefore, for an array of N input ports, there will be a deflect-
ing matrix of size N2. Depending on which deflecting units are set beforehand, the
input is routed to the desired output processors. This type of architecture allows
both one-to-one connectivity as well as connectivity through broadcasting.
The deflecting units essentially mask the inputs to the outputs. The masks on the
holograms can be reprogrammed but this process is rather slow. But once the holo-
grams are programmed, they will act as passive components to directly pass
through the incident beams to desired locations. Another technique used for
reconfiguring the connections is to use acousto-optical devices. In this regime, an
acoustic wave generated in the acousto-optical device interacts with the incident
beam and causes it to be redirected to the desired location. The reconfiguration
time here is limited by the speed of acoustic waves, which will be on the order of

322 Mary M. Eshaghian-Wilner and Lili Hai

microseconds, as compared to the switching speed in electrical crossbars, which is
on the order of nanoseconds. Combining optical and electrical crossbar concepts,
in the next section we will show an electro-optical crossbar that has a nanosec-
onds switching speed.

3.1.2 The Electro-Optical Crossbar

Electro-optical crossbar design uses a hybrid reconfiguration technique for
interconnecting processors. There are N processors, each located in a distinct row
and column of the N×N processing layer. For each processor, there is a hologram
module having N units, such that the ith unit has a grating plate with a frequency
leading to a deflection angle corresponding to the processor located at the grid
point (i,i). In addition, each unit has a simple controller and a laser beam. To
establish or reconfigure to a new connection pattern, each processor broadcasts
the address of the desired destination processor to the controller of each of N
units of its hologram module using an electrical bus (see Figure 10.3). The con-
troller activates a laser (for conversion of the electrical input to an optical signal)
if its ID matches the broadcast address of the destination processor. The connec-
tion is made when the laser beams are passed through the predefined gratings.
Therefore, since the grating angles are predefined, the reconfiguration time
of this design is bounded by the laser switching time, which is in the order of
nanoseconds using gallium arsenide (GaAs) technology.

This architecture is faster than the previous designs and compares well with
the clock cycle of current supercomputers. One of the advantages of this sim-
ple design is in its implementability in VLSI, using GaAs technology. Unlike the
previous designs, this can be fabricated with very low cost and is highly suitable
for applications where full connectivity is required. In such applications, the
processor layer area can be fully utilized by placing N optical-beam receivers in
each of the vacant areas to simultaneously interconnect with all the other
processors.

A Glance at VLSI Optical Interconnects 323

N

N

PE 1

Bus 1

Hologram Row 1

Figure 10.3. Electro-optical crossbar design

3.2 Dynamically Reconfigurable Architectures

In this section, we present a class of optical interconnection networks as a
realization of the OMC presented in the previous section. The architectures pre-
sented here are reconfigurable and can interconnect any permutation of proces-
sors to one another. Unlike the crossbar architectures in the last section, here
there are just N deflecting units for interconnecting N inputs to N outputs.
Each of the proposed designs uses a different optical device technology for redi-
rection of the optical beams to establish a new topology, and represents an upper
bound on the volume requirement of OMC.

3.2.1 Optical Mesh Using Mirrors

In optical mesh design using mirrors, there are N processors on the processing
layer of area N. Similarly, the deflecting layer has area N and holds N mirrors.
These layers are aligned so that each of the mirrors is located directly above its
associated processor (see Figure 10.4). Each processor has two lasers. One of
these is directed up towards the arithmetic unit of the mirror, and the other is
directed towards the mirror's surface. A connection phase would consist of two
cycles. In the first cycle, each processor sends the address of its desired destina-
tion processor to the arithmetic unit of its associated mirror using its dedicated
laser. The arithmetic unit of the mirror computes a rotation degree such that both
the origin and destination processors have equal angle with the line perpendicu-
lar to the surface of the mirror in the plane formed by the mirror, the source
processor, and the destination processor. Once the angle is computed, the mirror
is rotated to point towards the desired destination. In the second cycle, connec-
tion is established by the laser beam carrying the data from the source to the mir-
ror and, from the mirror, being reflected towards the destination. Since the
connection is made through a mechanical movement of the mirror, using the cur-
rent MEMS technology described later in this chapter, this leads to an order of

324 Mary M. Eshaghian-Wilner and Lili Hai

PE

Mirror

N

N

Figure 10.4. Optical Mesh using Mirrors

microsecond reconfiguration time. The space requirement of this architecture is
O(N) under the following assumption: each mirror is attached to a simple
electromechanical device, which takes one unit of space and can rotate to any
position in one unit of time.

3.2.2 Reconfiguration Using Acousto-Optical Devices

In reconfiguration using acousto-optical devices, N processors are arranged to
form a one-dimensional processing layer, and the corresponding acousto-optical
devices are similarly located on a one-dimensional deflecting layer (see Figure
10.5). The size of each of the acousto-optical devices is proportional to the size of
the processing array, leading to an O(N2) area deflection layer. Similar to the
design using mirrors, every processor has two lasers, and each connection
phase is made up of two cycles. In the first cycle, each processor sends the address
of its desired destination processor to the arithmetic unit of its associated
acousto-optical device using its dedicated laser. Each arithmetic unit computes
the frequency of the wave to be applied to the crystal for the redirection of the
incoming optical beam to the destination processor. Using the other laser in
the second cycle, each processor sends its data directly to the mirror located above
it. This mirror is fixed such that its reflected beam passes through its correspon-
ding acousto-optical device and then gets redirected towards the desired proces-
sor. One of the advantages of this architecture over the previous design is that it
has a reconfiguration time of the order of microseconds due to the speed of
sound waves. The other advantage is its broadcasting capability, which is due to
the possibility of generating multiple waves through a crystal at a given time.
Furthermore, the above can be extended to interconnect a two-dimensional grid
of processors as follows:

Using an N1/2 × N1/2 processing layer, and an N1/2 × N1/2 array of acousto-opti-
cal devices as the deflecting layer of size O(N2), one step of OMC can be realized
in O(log2 N) time.

The area is obtained with similar arguments as in the one-dimensional case.
The time complexity is due to the movement of data using the standard divide-
and-conquer techniques. At the ith step, a block size 2i is divided into two blocks
of half the size. Each subblock contains only the data locations. To route up O(i)
elements residing in the queue of each of the processors, the ith step is simulated
by O(i) iterations.

A Glance at VLSI Optical Interconnects 325

Processors

Mirrors
Acousto-Optical Devices

1 2 N

Figure 10.5. Reconfiguration using acousto-optical devices.

4 FIBER-GUIDED OPTICAL INTERCONNECTS

In this section, we first present a brief description of different types of mod-
ulations used with fiber optics, including time division multiplexing (TDM) and
wavelength division multiplexing (WDM). Next we present two classes of archi-
tectures: first are those that use star couplers, and second are those that use
shared fiber buses. Architectures in both these categories should be representable
by the hypernetwork model described previously [68]. For a more detailed review
of fiber-guided optical interconnects, see the survey paper by Sahni [74].

TDM is a technique of sending multiple signals on a carrier in the form of one
complex signal, and then recovering the original signals separately at the receiv-
ing end. The network bandwidth is divided into fixed bandwidth segments. Each
segment is assigned to a data source. One data source (using one channel) is given
its own time slot to use the network. Usually, a time slot has a length for one bit
or one byte transmission. The data from each channel is transmitted in turn in a
regular sequence, cycling back from the last channel to the first one. TDM is a
scheme allowing several low-speed channels multiplexed into a single high-speed
channel for the transmission and then decomplexed back to the low-speed chan-
nels at the destinations of transmissions. Currently, TDM transmission speed in
backbone terrestrial optical transmission systems are 2.4 Gbit/s and 10 Gbit/s
with some deploying equipment. Recent advances reported by Cisco Systems
have resulted in speeds of 40 Gbit/s.

WDM is another optical transmission technique where a single optical fiber
transmits multiple optical signals by using different wavelength for each signal
stream. In other words, WDM allows multiple signal travel in parallel at different
speed in one optical fiber. The wavelengths used for WDM are chosen in a certain
range of frequencies. Three ranges so far applied are, 850 nm, 1310 nm and 1550
nm. The wavelength of 1550 nm is found to be the best having the minimum loss
in a fiber. In today's WDM systems, each channel or wavelength can operate at
up to 2.5 to 40 Gbit/s.

In the 1990s, Dense Wavelength Division Multiplexing (DWDM) was devel-
oped to meet the rapidly growing demands of network bandwidth (300% growth
per year). In a recent report by Cisco Systems, the following statement was
made about DWDM: “Without having to lay new fiber, the effective capacity of
existing fiber plant can routinely be increased by a factor of 16 or 32. Systems
with 128 and 160 wavelengths are in operation today, with higher density on the
horizon. The specific limits of this technology are not yet known.” This
approach essentially enables a single fiber to carry more than one terabit/s of
information.

4.1 Multistage Fiber Interconnection Networks

Traditional multistage interconnection networks such as the Omega network
can be implemented using optical interconnects, where electrical wires are
replaced by fiber optics and the intermediate switches are replaced by passive
optical couplers. A passive optical coupler of size K connects one of the K inputs
to up to K outputs. Therefore, the K inputs coming into a coupler will be
processed sequentially in K steps.

326 Mary M. Eshaghian-Wilner and Lili Hai

The Partitioned Optical Passive Stars (POPS) topology [61] is an “all-optical”
interconnection architecture. In the POPS network, source nodes send data to the
destination nodes through passive optical couplers. All links for sending and
receiving data in source and destination nodes are optical devices. A set of two
parameters, n and d, uniquely determines the implementation of a POPS net-
work. The n is the size, the number of nodes, of the system. The d is the degree,
the number of links to source/destination nodes, of a coupler. The number of
groups partitioned is represented by g = n/d.

A POPS of g groups has g2 couplers because each coupler group contains g
couplers to connect with the nodes in g-1 other source node groups and the
source nodes in its own partition. If the g coupler groups are denoted by Gi, 0 ≤ i
< g, the g couplers in each Gi will be denoted by Cij, 0 ≤ j < g.

Each source node has g transmitters. We denote g transmitters of a node to be
T0, T1, ..., Tg-1. Any source node in group Gi, 0 ≤ i < g, connects to one coupler of
g groups as follows: T0 to C0, i, T1 to C1,i, ..., Tg-1 to Cg -1, i. Similarly, each desti-
nation node has g receivers. But those g receivers connect to g couplers in the
same coupler group as that destination node. So if a destination node is in group
Gi and the g receivers of the node are denoted as R0, R1, ... Rg-1, they will connect
to the couplers as R0 to Ci,0, R1 to Ci,1, ..., Rg-1 to Ci,g-1.

Thus, for any source node Ni, 0 ≤ i < n, sending a message to a destination
node Nj, 0 ≤ j < n, the data transmission path is as follows. Assume Ni is in group
Gp, 0 ≤ p < g, and Nj is in group Gq, 0 ≤ q < g. Ni sends a message to g couplers
C0,p, C1,p, ..., Cg-1,p of which coupler Cqp is in coupler group Gq. When the message
is received by Cqp and is broadcast to all destination nodes connected to Gq, the
node Nj receives the message.

By this interconnection, the POPS network presents the advantage that the
network diameter is 1. However, the passive optical coupler in POPS can only
receive one signal at a time from its source nodes, even though it can broadcast a
signal to all destination nodes connected to it. Proper partitioning can alleviate
the bandwidth problem caused by this limitation, as POPS does. But for any
POPS architecture with d > 1, the multisignals from multisource nodes still have
to be received sequentially by a coupler. Only one source link is activated at a
given time for a coupler to prevent collisions. The TDM technique is a good
choice for the optical source links in POPS for static network traffic. For the
dynamic message traffic, an arbitration protocol on a per coupler basis has to be
specified, and WDM protocols can be adapted. More details can be found in [61].

4.2 ARRAYS WITH MULTIPLEXED FIBER
OPTICAL BUSES

The architectures presented here are either one- or two-dimensional arrays
of processors that are interconnected through shared buses, where the buses are
fiber-optical buses. Similar to the traditional bus-based architectures using elec-
trical interconnects, switches can be set to reconfigure the buses. The main dif-
ference here is due to the fact that the optical versions of these bus-based
architectures benefit from the high bandwidth offered through fiber optics.
Also, time and wavelength multiplexing can be performed on the fiber-optical

A Glance at VLSI Optical Interconnects 327

buses. Here is an overview of some of the architectures proposed using these
concepts.

APPB: Array Processors with (Optical) Pipelined Buses (APPB) [35] are linear
arrays with n processors connected to a folded optical bus (also could be two
directional buses). The upper bus segment, named the transmitting bus, is for
processors to send messages out, and the lower bus segment, named the receiving
bus, is for processors to read messages. Some conditions have to be met to guar-
antee that different messages do not overlap when traveling in the same wave-
guide. A complete bus cycle is necessary to transmit data from all processors.
Several message routing approaches can be used in the linear pipelined optical
bus. Two major mechanisms are used. The first uses the TDM scheme [42] with a
waiting time function, and the second is the coincident pulse technique [16]. Both
methods are for one-to-one mapping routing and broadcasting. A single node can
receive no more than one message at a time.

AROB: The array with reconfigurable optical buses, (AROB) [54], was designed
with two major objectives: (1) to be able to simulate efficiently the reconfiguration
mechanism of a traditional reconfigurable network, and (2) to add to the recon-
figurable network the optical communication capabilities of the APPB-like struc-
ture. A (two-dimensional) (2D) AROB uses optical waveguides for the links of
interconnection and optical switches for reconfiguration. Each link between ports
of two adjacent nodes is composed of transmitting and receiving segments, and
each includes three waveguides exactly similar to the optical bus of APPB. The
reconfiguration or the switch setting consists of two operations: (1) setting of the
segment termination nodes so that there are no connections between any internal
ports; and (2) setting of the intermediate nodes so that one port connects to
another port internally. After each switch setting, a set of disjoint linear optical
bus segments appears in the system. Each segment is unidirectional. A pair of
pulses is sent by the leading node to the reference, and then they select waveguides
synchronously on the transmitting segment. Those pulses will reach the receiving
bus segment at the same time. When all nodes on the segment receive those coin-
cident signals, they can determine the configuration of the receiving bus. A 2D
AROB can simulate an n × n reconfigurable mesh with a constant factor slow-
down. However, note that the column/row permutation can be implemented in
one bus cycle.

LARPBS: The linear array with a reconfigurable pipelined bus system,
(LARPBS) [62], is a one-dimensional parallel computing model. On its APPB-like
optical bus segment, two sets of optical switches, RSR (i) and RST(i), 0 ≤ i < n
(where n is the number of nodes in the system), are inserted for each node i. Each
set of RSR(i) includes three switches on three receiving bus sections between node
i and node i + 1. The three switches in RST(i) are for three transmitting bus sec-
tions in coincident pulse technique. Those switches are used for bus reconfigu-
rations and are called reconfigurable switches. The control of setting RSR(i) and
RST(i) is in the node i. There are two states of a switch set, namely, straight
and cross. If the RSR(i) and RST(i) are set to straight, the node i is an inter-
mediate node in a bus segment (do not count the two end nodes in the whole bus).

328 Mary M. Eshaghian-Wilner and Lili Hai

For example, if all reconfigurable switches on the bus are set to straight, the sys-
tem will be a regular pipelined bus system. If RSR(i) and RST(i) are set to cross,
the bus is split into two segments: one contains node 0 to node i and another con-
tains node i+1 to node n-1. Another important feature in LARPBS is the condi-
tional delay for the writing. Between a pair of neighbored nodes, i and i+1, 0 ≤ i
< n-2, a conditional delay unit is inserted on the transmitting segments and con-
trolled by the node i+1. Note that node 0 has no conditional delay unit. This fea-
ture is very useful for algorithms such as finding a binary prefix sum. By setting
the delay unit straight or cross to represent the value of 0 or 1 in a node, each
node i can count the delay time to determine the sum of node 0 to node i in the
coincident pulse scheme.

5 A SELECTED HYBRID ARCHITECTURE

Over the years, many architectures with electro-optical interconnects have
been proposed. The OTIS architecture presented in [43] and the Optical
Reconfigurable Mesh (ORM) architecture presented in [72] are examples of such
systems. Here we explain the ORM system, which is one of the more recent archi-
tectures that can be implemented with MEMS, and can be used in nanoscale
structures as discussed later in the chapter.

5.1 The Optical Reconfigurable Mesh

A 4 × 4 optical reconfigurable mesh (ORM) is shown in figure 10.6a and 10.6b.
There are two layers in the ORM: the deflection layer and the processing layer.
The deflection layer consists of N 2 deflecting units, while the processing layer
consists of N 2 processing units. The processors on the processing layer are inter-
connected as a reconfigurable mesh and can also intercommunicate optically
using the deflection layer. The reconfigurable mesh model used here is standard.
The reconfigurable mesh of size N 2 consists of an N × N array of processors con-
nected to a grid-shaped reconfigurable broadcast bus, where each processor has a
locally controllable bus switch. The switches allow the broadcast bus to be divided
into subbuses, providing smaller reconfigurable meshes or reconfigurable bus seg-
ments. The detailed structure of a processing unit in the processing layer and the
detailed structure of a deflecting unit in the deflection layer are also shown in
Figure 10.6. In the following subsections, we describe each of those components.

5.1.1 The Processing Unit

There are N × N processing units on the processing layer and three optical
transmitters and one receiver residing in each processing unit. One of the trans-
mitters, TR(1), is directed towards the control unit of the deflection unit. The sec-
ond one, TR(2), is directed towards the reconfigurable mirror (RM) of the
deflection unit, and the third one, TR(3), is directed towards the fixed mirror
(FM) of the deflection unit. Each processing unit has a constant number of log N
bit memory cells and simple computation capabilities. It is connected to other pro-
cessing units in the mesh by the electrical reconfigurable buses. Each processing unit

A Glance at VLSI Optical Interconnects 329

controls the internal reconfigurable switches and is responsible for sending and
receiving data to and from the other processing units. We index the processing
unit in the ith row and the jth column of the mesh on the processing layer as
P(i,j) in which 1 ≤ i, j ≤ N (see Figure 10.6b).

5.1.2 The Deflection Unit

The deflecting layer contains N × N deflecting units. Each deflecting unit con-
sists of two mirrors and an arithmetic control unit. One of the mirrors is a fixed
mirror (FM), which transfers data from the processor under it to a fixed address
whenever it is used. Another mirror is a reconfigurable mirror (RM). The control
unit receives an address from the processor under it, translates the address and
controls the direction of the RM (see Figure 10.6b). Since the angle of the FM is
fixed, the processor can send data directly from one dedicated transmitter to its
destination without going through the control unit. We define each deflecting unit
(a mirror and the related control unit) located directly above P(i,j) as M(i,j).

5.2 Data Movement in ORM

The data can be routed in three different ways in this architecture. In the first,
electrical routing, the routing is done only through electrical buses. The second
one, optical routing, uses free-space optics. The third type, electro-optical routing,

330 Mary M. Eshaghian-Wilner and Lili Hai

Control Unit

Reconfigurable
Mirror

Fixed
Mirror

FMRM

Receiver

Reconfigur-
able switch

1bit

log N bit

Transmitters

(a)

(b)

Figure 10.6. A 4 × 4 Optical Reconfigurable Mesh (ORM). (a). optical routing from Processor
p (2, 2) to processor p (2, 4); (b) The structure of the processing unit

uses both electrical and optical free-space connections to allow a complete con-
nection among N processors. Each of the movements is described below. For
application of these data movement techniques for solving some communication-
intensive tasks, see the Ph.D. thesis of Lili Hai, where the first O(log N) time algo-
rithm for finding the convex hulls of all figures in an N × N 0/1 image has been
presented.

5.2.1 Electrical Routing

The electrical routing in ORM is similar to those for reconfigurable meshes.
The electrical routing in ORM is any routing from one node to another or a
broadcast, which uses electrical buses in the reconfigurable mesh only. This
type of communication is suitable for providing arbitrary connections in the
processing layer.

5.2.2 Optical Routing

The optical routing in ORM is the routing through optical free-space inter-
connections only. The data transfer does not use any electrical bus in the system.
All N2 processors can communicate in unit time delay as long as there is only
one read or write from or to each location. How such an optical connection is
established between two processors through the RM is described below.

A connection phase consists of two cycles. In the first cycle, each processor
sends the address of its desired destination processor to the arithmetic control
unit of its associated mirror using its dedicated laser TR(1). The arithmetic con-
trol unit of the mirror computes a rotation degree such that both the origin and
destination processors have an equal angle with the line perpendicular to the sur-
face of the mirror in the plane formed by the mirror, the source processor, and the
destination processor. Once the angle is computed, the mirror is rotated to point
to the desired destination. In the second cycle, the connection is established by the
laser beam, TR(2), carrying the data from the source to the mirror and then from
the reflected mirror towards the destination. An example of an optical routing
from processor P(2,2) to processor P(4,3) is shown in Figure 10.6a.

The read operation has two phases. In the first phase, the read requirement
and the reader's address are sent to the processor, which stores the desired data.
In the second phase, the data are sent back to the reader, depending on the
reader's address. Both phases use the two-cycle write routing method.

5.2.3 Electro-Optical Routing

Electro-optical routing establishes an efficient full connectivity among only the
N processors situated diagonally in the processing layer of the N2 processors in
the ORM (i.e., for processors P(j, j) where 1≤ j ≤N). This routing technique uses
electrical buses on the processing layer and fixed mirrors on the deflection layer.

This connection for electro-optical routing is implemented as follows. Each
processor P(j, j) is associated with the jth row of the deflection unit, where the
row contains N fixed mirrors. The ith fixed mirror in that row for 1≤ i ≤N is
directed to the processing unit P(i,i). There are two possible types of routing:

A Glance at VLSI Optical Interconnects 331

Exclusive Read Exclusive Write (EREW) and Concurrent Read Concurrent Write
(CRCW). We explain both methodologies below. (The other two techniques
described earlier, electrical and optical routings, are EREW.)

The variety of techniques available in this architecture makes ORM a very
powerful computing model. For example, using combinations of the electrical,
the optical, and the electro-optical routing techniques, it was shown in Hai's
Ph.D. thesis [60] that the convex hull of multiple figures in a digitized image of
size N × N could be found in O(logN) time using an N × N ORM. To the best of
our knowledge, this is the fastest known solution to this problem using any
known parallel model or structure with N2 processors. All previous solutions
had a running time of O(log2N). The proof of this theorem is rather lengthy and,
due to space limitations, is not presented here. Interested readers should refer to the
thesis.

EREW Electro-optical Routing
In this routing, any PE P(i,i) sends data to P(k,k) in the following way:

1. P(i,i) sends the data to P(i,k) through the electrical row bus;
2. P(i,k) sends data to P(k,k) through transmitter TR(3) and its deflector

M(i,k).

CRCW Electro-optical Routing
Definition: The CRCW access model for N diagonal processors on the ORM is

defined as follows:

● In one write step, each P(i,i) can send one write request to P(k,k), k ≠ i. If there
is more than one write request to P(i,i), P(i,i) will receive only one of them.

● In one read step, each P(i,i) can send one read request to P(k,k), k ≠ i. The
reader (multiple readers are allowed) can get the requested data back in the
same step.

Now we prove the following:
The concurrent write and the concurrent read of N PEs can be done on the ORM

in O(1) time.
We show this by giving the following constant time algorithm. We assume that

the read or write operation signal (operation command) is known by all PEs. The
following steps are executed in constant time.

Write Operation

There are three steps in this operation. In step 1, the destination address for a
write request is broadcast to the row i by each P(i,i). The processor (in row i, for
each i) with a j index matching the destination address is an active processor in
this step. This processor is responsible for sending the data to the destination, and
therefore its optical light beam is activated. In step 2, a single write request is cho-
sen among multiple write requests directed to a processor. In this step, the losers
become inactive. In step 3, the chosen write request is sent to each destination.
The implementation details of each step are as follows:
1. Initially, the ORM performs the row bus connection. Each P(i,i) sends a write

request destination address j to the row i. The address can be received by all

332 Mary M. Eshaghian-Wilner and Lili Hai

PEs through the row buses of the mesh. Each PE compares the address with
its own column index. The P(i,j) will mark itself as an active PE if the address
j is matched to its column index. The others in row i do nothing.

2. All PEs of the ORM perform the column bus connection except that each
active PE disconnects its north port from its south port. Each active PE sends
a signal to the south port and checks the north port. If an active PE does not
receive any signal from its north, it means that it is a northmost active PE in
the column, so it activates the light beam. All the other active PEs become
inactive. The piece of data in P(i,i) for which the P(i,j) is active is the chosen
one for writing data to P(j,j).

3. Each P(i,i) sends the writing data to the row again. The data are received by
active P(i,j) and sent to P(j,j) through the activated laser beam. Since there is
only one sender left in each column after step 2, each P(j,j) will receive at most
one piece of data from the free space in the step.

Read Operation

The concurrent read operation contains two phases. In the first phase, the
readers send read requests to the destination P(j,j). During this step, the electrical
and optical routes for P(j,j) to send the data back to multiple readers are estab-
lished.

In the second phase, the data are sent to the readers by P(j,j). Two variables,
R and C, are used in each PE to implement the operation. The implementation is
as follows (see Figure 10.7):
1. The ORM does the row bus connection. Each P(i,i) sends the address of the

destination processor, j, and the read request (requested memory cell address)
to row i. When j is matched to the column index of a PE, P(i,j) saves the read
request and sets the variable R = 1.

2. The ORM does the column buses connection. Each P(i,i) sends the address
of the destination processor, j, to column i. Each PE compares j with its row
index. If they match, the PE sets the variable C = 1.

3. The ORM keeps the column buses connection. The PE whose R = 1 is an active
PE in this step. Find the northmost active PE in each column. This PE activates
the light beam and sends the read request to P(j,j) using transmitter TR(3).

A Glance at VLSI Optical Interconnects 333

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

(a) Step

C C

R

R

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

(b) Step

C C

R

R

1
1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

(c) Step

C C

R

R

Figure 10.7. CRCW Electro optical routing

This action can be done because the read request has been saved in this PE in
step 1 and the active P(i,j) uses its M(i,j) to connect the optical path to P(j,j).

4. The ORM does the row bus connection. Each PE with C = 1 is an active PE
now, that activates its light beam using transmitter TR(3). The requested data
are retrieved by each P(j,j) and broadcast to row j. Then the data are sent
to the requester P(i,i) through the bus and the light beam of P(j,i) using
transmitter TR(3) as shown in Figure 10.7c.

6 CURRENT TECHNOLOGIES AND BEYOND

This section addresses some of the recent advances in MEMS and nanoscale
technology. Using these technologies, we first show that it would now be possible
to implement MEMS architectures on an integrated chip with dynamic free-space
interconnectivity and, second, how such concepts can be carried onto designs of
nanoscale architectures that are subject to quantum effects.

6.1 MEMS

The idea of fabricating tiny movable devices on chips was first conceived in the
late 1960s, and strong research and development activity in this field started
around 1980 [79]. Since then, many results have appeared that show theoretical
modelings, new materials, fabrication processes, actuation mechanisms, and sens-
ing methods. The impact that the micro-electro-mechanical systems (MEMS)
already have had in various applications, such as in sensing applications, has been
very noteworthy. The art of integration via MEMS technology has led to the
development of a huge array of integrated microsystems with rich and versatile
functionality. A host of new applications, particularly in biology and medicine,
appears to be imminent.

Optical MEMS is a relatively new and highly productive discipline within
MEMS. The Optical MEMS conference started in 1996 and in just a few years has
grown significantly. Several journals have been dedicated to Optical MEMS.
An interesting issue of Journal of Lightwave Technology is dedicated to “Optical
MEMS and Its Future Trends” and was edited by Lin, Wu, Sawada, and Mohr
[79]. One interesting aspect of this issue, especially as applied to this chapter, is that
it contains papers that discuss the integration of movable micromirrors in a chip.

The paper by Ji and Kim [75] is an example of this discussion. In that paper,
the authors show that they have designed and fabricated an addressable 4×4
array of micromirrors capable of providing up to 90 degrees of angular deflec-
tion. Each micromirror is composed of a single crystalline silicon mirror plate
supported by aluminum springs, which provides an extremely flat reflective sur-
face, and a compliant spring material that enables the integration of the device
into a limited area without mitigating its performance. A mirror rotation angle of
more than 80 degrees can be obtained by applying an external magnetic field.
Furthermore, the authors state that this angle can be increased by the use of an
electrostatic force. Each mirror plate and its associated springs occupy an area of
500 × 500 µm2. A 10 µm thick layer of single-crystal silicon is used as the mirror

334 Mary M. Eshaghian-Wilner and Lili Hai

plate for obtaining a flat surface. The authors' design allows for selective actua-
tion of some of the micromirrors while the others remain clamped by electrostatic
force.

Note that the industry seems to be significantly ahead of academia in design-
ing micromirror arrays. The digital micromirror device, (DMD), is built by DLP,
which is a division of Texas Instruments. DMD is a micromirror system with
approximately a million individually switchable micromirrors. Each mirror has a
length of 13 µm and can be switched in 15 microseconds for maximum preci-
sion. The array of Micro-opto-electro-mechanical System (MOEMS) mirrors
built by Lucent Technologies is an array of 100 million switchable micromirrors.
This essentially can operate as a peta-bit switch that works for 1,296 ports, each
containing 40 separate signals, and each of the signals can carry 40 giga-bits per
second.

These kinds of advancements clearly indicate that we are now able to imple-
ment the OMC-based models with reconfigurable mirrors, such as the Optical
Mesh or the ORM architecture. The nano-electro-mechanical systems (NEMS)
implementation of these types of architectures will open yet another gate of pos-
sibilities towards the efficient implementation of VLSI architectures with recon-
figurable mirrors. In the next section, we talk about some of the ideas currently
under development for integrating the MEMS implementations of ORM with
quantum-level nanoscale computing structures in a multiscale system.

6.2 Nanoscale

Here we discuss a three-dimensional nanoscale electro-optical architecture
called H3D-QCA [80]. In this architecture, just as in the OMC model, there are
two layers: the processing layer below and the deflecting layer on top. The proces-
sors can intercommunicate using a standard reconfigurable mesh through the
local switchable connections and also using the reconfigurable MEMS mirrors
with free-space optical interconnects. Each of the processors contains some local
memory and is attached to a quantum cellular automata (QCA) cube. In each
cube there are quantum cells (see Figure 10.8).

The implementation of QCA using quantum dots is quite well known through
the work of researchers at Notre Dame University, but has the limitation that it
operates under low temperatures. A solution to this is to implement the cells using
molecules. Using molecular magnetic switches, we can simulate a QCA that oper-
ates at room temperature.

The computations within the QCA cubes are done in a fashion similar to a
standard QCA except that the two-dimensional QCA logic circuits are laid out in
three dimensions. In other words, the QCA blocks can be used to compute mil-
lions of logic operations locally by techniques already developed for QCA. The
computations are done as the neighboring cells interact with each other through
quantum tunneling effects. Once the local computations within each cube are
completed, the results are forwarded to their corresponding processing units. The
processors can then store the data in their local memory and/or intercommuni-
cate with other processing units using the electronically reconfigured mesh and/or
the micro-electro-mechanical mirrors.

A Glance at VLSI Optical Interconnects 335

7 CONCLUSION AND FUTURE RESEARCH

Research began in the early 1980s in optical computing, with the goal of
replacing electronics with a technology that could enable the building of signifi-
cantly faster computers. The limitations in the materials that were needed to fab-
ricate all optical computing systems caused work in this area to taper off.
Architectures and models were designed that were hybrid, combining optical inter-
connects with electronic circuits. This chapter has presented an overview of some
of the work that has been done since the 1980s in designing electro-optical com-
puting architectures with optical interconnects. The treatment here is far from
exhaustive, but rather focuses on architectures representing very distinct connec-
tivity styles. The chapter concluded with a brief discussion of what is now possi-
ble with MEMS and nanoscale technology. In our opinion, optical computing is
back again as a research area that needs to be revisited with respect to the advance-
ments made during the past twenty years. What lies ahead in the next few decades
could be the study of the synergy of optical computing and quantum computing.

REFERENCES

The listed references, not all of which are cited in this chapter as a whole high-
light some of the major contributions to the field of optical inter-connections.
Please note that each reference item is tagged with a letter A, B, D, J, S, or
T following the year of publication. These tags respectively identify the cor-
responding Optics article as: (A) Architecture/Algorithm paper, (B) Book,
(D) Dissertation, (J) Journal/special issue, (S) Survey paper, or (T)
Theoretical paper. Although not all the reference items are cited in this

336 Mary M. Eshaghian-Wilner and Lili Hai

QCA
CUBE

2

QCA
CUBE

1

Processing Layer with
3D QCA Cubes

Reconfigurable
Free-Space
Interconnects

Deflection Layer with
Micro Electro
Mechanical Mirrors

Figure 10.8. H3D-QCA architecture

chapter, they all have had a significant role in shaping the field of optical
interconnections since the 1980s. This list is far from exhaustive, but rather
focuses on a class of architectures representing very distinct connectivity
styles.

[1] [1980-S1] H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan (1980): Optical
Bistable Devices: The Basic Components of All-Optical Systems? Op. Engg.

[2] [1982-S1] P.W. Smith (1988): On the Physical Limits of Digital Optical
Switching and Logic Elements. Bell Sys. Tech. J.

[3] [1983-S1] H. J. Caulfield, J. A. Neff, and W. T. Rhodes (1983) Optical com-
puting: The Coming Revolution in Optical Signal Processing. Laser Focus,
19(11), 100–109.

[4] [1984-S1]J. W. Goodman, F. Leonberger (1984): S. Y. Kung, and R. A. Athale,
Optical Interconnections for VLSI Systems. Proceedings of the IEEE. 72(7),
850–866.

[5] [1984-S2] A. A. Sawchuck (1984): T. C. Strand, Digital Optical Computing.
Proceedings of IEEE, 72, 758–779.

[6] [1985-S1] B. Clymer and S. A. Collins (1985): Jr., Optical Computer
Switching Net-work. Op. Engg. 24, 74–81.

[7] [1986-A1] K Brenner, A. Huang, and N. Streibel (1986): Digital Optical
Computing with Symbolic Substitution. App. Op. 25, 3054–3064.

[8] [1986-A2] A. A. Sawchuk, B. K. Jenkins (1986): Dynamic Optical
Interconnections for Parallel Processors. Op. Comp.

[9] [1986-S1] P.R. Haugen, S. Rychnovsky, A. Husain and L.D., Hutcheson
(1986): Optical interconnects for high speed computing. Op. Eng. 25,
1076–1085

[10] [1986-S2] B.S. Wherrett (1986): Architectural Aspects of Optical
Computing. Photonic Logic and Information Processing.

[11] [1986-S3] B. K. Jenkins, C. L. Giles (1986): Parallel Processing Pardigms and
Optical Computing. Optical Computing.

[12] [1986-S4] T. E. Bell (1986): Optical Computing: A Field in Flux. IEEE
Spectrum 23(8), 34–5,7

[13] [1986-S5] A. W. Lohmann (1986): What Classical Optics can do for the
Digital Optical Computer. App. Op. 25, 1543–549

[14] [1986-S6] D.H. Hartman (1986): Digital High Speed Interconnects: A Study
of the Optical Alternative. Optical Engineering. 25, 1086–1102

[15] [1987-A1] I. M. I. Habbab, M. Kavehrad, and C. E. W. Sundberg (1987):
Protocals for Very High-Speed Optical Fiber Local Area Networks using a
Passive Star Topology. J. Lightwave Tech. LT05:1782–1793

[16] [1987-A2] D. M. Chiarulli, R. G. Melhem, and S. P. Levitan (1987): Using
Coincident Optical Pulses for Parallel Memory Addressing. Comp.

[17] [1987-S1] A. A. Sawchuk, B. K. Jenkins, and C.S. Raghavendra, and
A. Varma (1987): Optical Crossbar Networks. IEEE Comp. 20(6), 50–60

[18] [1987-S2] M. J. Murdocca (1987): Digital Optical Computing with One-Rule
Cellular Automata. Applied Optics.

[19] [1987-S3] L. D. Hucheson, P. Haugen, A. Husain (1987): Optical
Interconnects replace hardwire. IEEE Spectrum.

[20] [1987-T1] R. Barakat and J. Reif (1987): Lowerbounds on the Computational
Efficiency of Optical Computing Systems. Applied Optics. 26(6), 1015–1018

A Glance at VLSI Optical Interconnects 337

[21] [1988-A1] B. K. Jenkins and C. L. Giles (1988): Superposition in Optical
Computing. Proceedings of International Conference on Optical computing.
Toulon, France.

[22] [1988-B1] D. G. Feitelson (1988): Optical Computing: A Survey for Computer
Scientists. The MIT Press, Cambridge, MA.

[23] [1988-D1] M. M. Eshaghian (1988): Parallel Computing with Optical
Interconnects. Ph.D. Thesis, University of Southern California.

[24] [1988-T1] R. J. Anderson and G. L. Miller (1988): Optical Communication
for Pointer Based Algorithms. Technical Report CRI 88-14, University of
Southern California.

[25] [1988-T2] M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee (1988)
Comparison between Optical and Electrical Interconnects based on Power
and Speed Considerations. Applied Optics. 27, 1742–1751.

[26] [1989-A1] A. Hartman, and S. Redfield (1989): Design Sketches for Optical
Crossbar Switches intended for Large-Scale Parallel Processing
Applications. Optical Engg. 28(4), 315–327.

[27] [1989-A2] F. Kiamiley, S. Eseneer, R. Paturi, Y. Feinman, P. Mercier, C.C.
Guest, and S. H. Lee (1989): Programmable Optoelectronic Multiprocessors
and their Comparison with Symbolic Substitution for Digital Optical
Computing. Op. Eng. 28 April 1989.

[28] [1989-J1] S. H. Lee, and R. A. Athale (1989): Optical Computing. Opt. Eng.
(special issue) April.

[29] [1989-S1] S. Toborg, and K. Hwang (1989): Exploring Neural Network
and Optical computing Technologies. In Parallel Processing for Supercom-
puters and Artificial Intelligence. K. Hwang and D. Degroot, (eds) McGraw
Hill.

[30] [1989-S2] P.B. Berra, A. Ghafoor, M. Guiznani, S. J. Marcinkowski, and
P. A. Mitkas (1989): Optics and Supercomputing. Proceedings of the IEEE,
77(12), 1797–1815.

[31] [1989-T1] M. R. Feldman, C. C. Guest, T. J. Drabik, and S. C. Esener (1989):
Comparison between Electrical and Free Space Optical Interconnects for
Fine Grain Processor Arrays based on Interconnect Density Capabilities.
Appl. Optics. 28, 3820–3829.

[32] [1990-S1] F. B. McCormick and M. E. Prise (1990): Optical Circuitry for
Free-space Interconnections. Appl. Optics. 29, 2013–2018.

[33] [1990-T1] L. G. Valiant (1990): General Purpose Parallel Architectures,
Chapter 18 of the Handbook of Theoretical Computer Science. J. Van
Leeuwen Elsevie, (ed).

[34] [1991-A1] A. Benner, H. Jordan, and V. Heuring (1991): Digital Optical
Computing With Optically Switched Directional Couplers. Optical Eng., 30,
1936–1941.

[35] [1991-A2] Z. Guo, R.G. Melhem, R. Hall, D. Chiarulli, and S. Levitan
(1991): Pipe-lined Communications in Optically Interconnected Arrays.
J. Parallel and Distributed Comp. 12(3), 269–282.

[36] [1991-B1] A. D. McAulay (1991): Optical Computer Architectures: The Appli-
cation of Optical Concepts to Next Generation Comp. Wiley, New York, NY.

[37] [1991-T1] M. M. Eshaghian (1991): Parallel Algorithms for Image
Processing on OMC. IEEE Transactions on Comp. 40(7), 827–833.

338 Mary M. Eshaghian-Wilner and Lili Hai

[38] [1992-A1] V. P. Heuring, H. F. Jordan and J. P. Pratt (1992): Bit-serial
Architecture for Opt. Comp. Applied Optics, 31, 3213–3224.

[39] [1992-T1] A. Louri and A. Post (1992): Complexity Analysis of Optical-
Computing paradigms. App. Optics. 31, 5568–5583.

[40] [1992-T2] M. Gereb-Graus and T. Tsantilas (1992): Efficient Optical
Communication in Parallel Computers. Proceedings of the ACM Symposium
on Parallel Algorithms and Architectures. 4, 41–48.

[41] [1993-A1] S. Wei, E. Schenfeld (1993): Hierarchical Interconnection Cache
Networks. In the Proceedings of the International Parallel Processing
Symposium, pp. 135–141.

[42] [1993-A2] C. Qiao and R. Melhem (1993): Time-division Optical
Communications in Multiprocessor Arrays, IEEE Transactions on Comp.
42(5), 577–590.

[43] [1993-A3] G. C. Marsden, Ph. J. Marchand, P. Havery, and S. Esener (1993):
Optical Transpose Interconnection System Architectures. Opt. Lett. 18(13),
1083–1085.

[44] [1993-J1] Melhem, R., and D. Chiarulli (1993): Special Issue of Optical
Computing and Interconnection Systems. In the J. of Parallel and Distributed
Comp. 17(3).

[45] [1993-T1] L A. Goldberg, M. Jerrum, T. Leighton, and S. Rao (1993):
A Doubly Logarithmic Communication Algorithm for the Completely
Connected Optical Communication Parallel Computer. In Proceedings of
ACM Symposium on Parallel Algorithms and Architectures, pp. 300–309.

[46] [1994-A2] M. M. Eshaghian, S. H. Lee, and M. E. Shaaban (1994): Optical
Techniques for Parallel Image Computing. Journal of Parallel and
Distributed Comp. 3(2), 190–201.

[47] [1994-A3] D. M. Chiarulli, S. P. Levitan, R. G. Melhem, M. Bidnurkar,
R. Ditmore, G. Gravenstreter, Z. Guo, C. Qiao, M. F. Sakr, and J. P. Teza
(1994): Optoelectronic Buses for High-Performance Comp. Proceedings of
the IEEE, 82(11), 1701–1710.

[48] [1994-B1] J. Jahns and S.H. Lee (1994): Optical Computing Hardware,
Academic Press, Boston.

[49] [1994-S1] H. S. Hinton et al. (1994): Free-Space Digital Optical Systems.
Proceedings of IEEE, Special Issue on Opt. Comp. Sys. Nov. 1994. 82(11),
1632–1649.

[50] [1994-T1] L. A. Goldberg, Y. Matias, and S. Rao (1994): An Optical
Simulation of Shared Memory. ACM Symposium on Parallel Algorithms and
Architectures.

[51] [1995-R1] P. Berthome, Th. Duboux, T. Hagerup, I. Newman, A. Schuster
(1995): Self-simulation for the Passive Optical Star Model. European
Symposium on Algorithms, Lecture Notes in Comp. Sci., 979, 369–380.

[52] [1995-S1] D. Feitelson, L. Rudolph (1995): The Promise of Optical Free-
space Inter-connections for Concurrent Memory Access. Technical Report
95-6, Institute of Computer Science, Hebrew University, Jerusalem.

[53] [1995-T1] S. Rao, T. Suel, T. Tsantilas, (1995): Efficient Communication
using Total-Exchange, International parallel Processing Symposium.

[54] [1996-A1] S. D. Pavel and S. G. Akl (1996): Matrix operations using arrays
with Reconfigurable optical buses. J. Parallel Algorithms and App. 8, 223–242.

A Glance at VLSI Optical Interconnects 339

[55] [1996-D1] I. G. Yayla (1996): Speed and Energy Comparison between
Electrical and Electro-optical Interconnects and Application to Opto-elec-
tronic Comp. Ph.D. Thesis, University of California, San Diego.

[56] [1996-R1] A. Aggarwal, A. Bar-Noy, D. Coppersmith, R. Ramaswami,
B. Schieber, M. Sudan (1996): Efficient Routing in Optical Networks.
J. ACM. 43(6), 973–1001.

[57] [1996-S1] T. Yatagai (1996): Optical Computing and Interconnect.
Proceedings of IEEE, 84(6), June 1996, 828–852.

[58] [1997-A1] E. Harder, S. K. Lee, H. A. Choi (1997): On Wavelength
Assignment in WDM Optical Networks. Proceedings MPPOI '97, Montreal,
Canada.

[59] [1997-J1] M. M. Eshaghian and E. Schenfeld (1997): Special issue on Parallel
Computing with Optical Interconnects. In the J. Parallel and Distributed
Comp. 41(1).

[60] [1997-T1] L. Hai (1997): Efficient Parallel Computing with Optical
Interconnects. Ph.D. Thesis, New Jersey Institute of Tech.

[61] [1998-A1] R. Melhem, G. Gravenstreter, D. Chiarulli, and S. Levitan (1998):
The Communication Capabilities of Partitioned Optical Passive Stars
Networks. In Parallel Computing using Optical Interconnection. (K. Li, Y. Pan
and S. Zheng (eds)) Kluwer Academic Publishers.

[62] [1998-A2] Y. Pan, M. Hamdi, and K. Li (1998): Efficient and Scalable
Quicksort on a Linear Array with a Reconfigurable Pipelined Bus System.
Future Generation Computer Systems, 13(6), 501–513.

[63] [1998-A3] T.H. Szymanski, A. Au, M. Lafrenire-Roula, V. Tyan,
B. Supmonchai, J. Wong, B. Zerrouk, and S.T. Obenaus (1998): Terabit
Optical Local Area Networks for Multiprocessing Systems. Applied Optics,
Special Issue on Massively Parallel Optical Interconnects for Multiprocessor
Systems, 37(2), 264–275.

[64] [1998-A4] D. C. Hoffmeister, J. Chu, J. A. Perreault, and P. Dowd (1998):
Lightning Network and Systems Architecture. In K. Li, Y. Pan, and
S. Zheng (eds). on Parallel Computing using Optical Interconnections. Kluwer
Academic Publishers.

[65] [1998-B1] K. Li, Y. Pan, and S. Zheng (1998): Parallel Computing using
Optical Interconnections. Kluwer Academic Publishers.

[66] [1998-T1] P. D. MackKenzie and V. Ramachandran (1998): ERCW PRAMs
and Optical Communication. Theoretical Comp. Sci. 196, 153–180.

[67] [1998-T2] L.A. Goldberg, M. Jerrum, P. Mckenzie (1998): An Ω (loglogn)
1

2

Lower-bound for Routing in Optical Networks. SIAM J. Comp.
[68] [1998-T3] S. Q. Zheng (1998): An abstract Model for Optical

Interconnection Networks. In K. Li, Y. Pan and S. Zheng (eds) on Parallel
Computing using Optical Interconnections, Kluwer Academic Publishers.

[69] [1999-A1] P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois
(1999): Transmission Polarizing Beam Splitter Grating. J. Optics, A: Pure
App. Opt. 1, 215–219.

[70] [1999-A2] M. Raksapatcharawong, T. M. Pinkston, and Y. Choi (1999):
Evaluation of Design Issues for Optoelectronic Cores: A Case Study of the
WARPII router. J. Optics, A: Pure Applied Optics, 1, 249–254.

340 Mary M. Eshaghian-Wilner and Lili Hai

[71] [1999-A3] S. J. Fancey, M. R. Taghizadeh, G. S. Buller, M. P. Y. Desmulliez,
and A. C. Walker (1999): Optical components of the smart-pixel optoelec-
tronic connection (SPOEC) project. J. Optics, A: Pure Applied Optics. 1,
304–306.

[72] [2000-A1] B. Webb, and A. Louri (2000): A Class of Highly Scalable Optical
Cross-bar-Connected Interconnection Networks (SOCNs) for Parallel
Computing Systems. In IEEE Transactions on Parallel and Distributed Sys.
11(5).

[73] [2001-A1] L. Hai (2001): An Optically Interconnected Reconfigurable Mesh,
J. Parallel and Distributed Comp. 61, 737–747.

[74] [2001-S1] Sartaj Sahni (2001): Models and Algorithms for Optical and
Optoelectronic Parallel Computers. Int. J. on Foundations of Comp. Sci. 12(3).

[75] [2003-A1] C.-H. Ji, and Y.-K. kim (2003): Electromagnetic Micromirror
Array with Single-Crystal Silicon Mirror Plate and Aluminum Spring. In J.
Lightwave Tech. 21(3).

[76] [2003-J1] L. Lin, M. Wu, R. Sawada, and J. Mohr (2003): edited special issue
on Optical MEMS and Its Future Trends. In J. Lightwave Tech. 21(3).

[77] [2003-R1] S. yao, B. Mukherjee, S.J. Ben Yoo, and S. Dixit (2003): A Unified
Study of Contenstion-Resolution Schemes in Optical packet-Switched
Networks. J. Lightwave Tech. 21(3).

[78] [2003-R2] M. M. Eshaghian (2003): Nanoscale Computing Structures.
Proceedings of the 7th World Multi-conference on Systemics, Cybernetics, and
Informatics, SCI2003, Florida.

[79] [2003-S1] M. Mehta (2003): ISRC Future Technology topic Brief. Bauer
College of Business Administration, University of Houston, Texas.

[80] [2006-S1] M. M. Eshaghian, Amar H. Flood, Alexander Khitun, Vwani Roy-
chowdhury, J. Fraser Stoddart and Kang Wang (2006): Molecular and
Nanoscale Computing and Technology. In A. Zomaya (ed), entitled Handbook
of Nature-Inspired and Innovative Computing, Springer USA.

A Glance at VLSI Optical Interconnects 341

Chapter 11

MORPHWARE AND CONFIGWARE
Reiner Hartenstein
TU Kaiserslautern

Abstract
This chapter introduces morphware as the basis of a second machine par-

adigm, which mainly has been introduced by the discipline of embedded sys-
tem design, targeting the system on chip (SoC). But more recently SoC design
is adopting more and more computer science (CS) mentality and also needs
the services of computer science (CS) professionals. CS is going to include the
morphware paradigm in its intellectual infrastructure. The time has come
to bridge the traditional hardware–software chasm. A dichotomy of two
machine paradigms is the road map to upgrade CS curricula by evolution,
rather than by revolution. This chapter mainly introduces morphware platforms
as well as their models and architectures.

1 INTRODUCTION

Morphware [1] [2] is the new computing paradigm, the alternative RAM-based
general-purpose computing platform model. The traditional hardware–software
chasm distinguishes software running on programmable computing engines
(microprocessors) driven by instruction streams scanned from RAM, as well as
application-specific fixed hardware like accelerators that are not programmable
after fabrication. The operations of such accelerators are primarily driven by data
streams. Such accelerators are needed because of the microprocessor’s perform-
ance limits caused by the sequential nature of its operation—by the von Neumann
bottleneck.

John von Neumann’s key achievement has been the simple common model
called the von Neumann machine paradigm ([3, 4], von Neumann has not invented
the computer). His model provides excellent guidance in CS education and also
narrows the almost infinite design space. However, the contemporary common
model of computing systems is the cooperation of the (micro)processor and its
accelerator(s), including an interface between both (Figure 11.1). This model

holds not only for embedded systems but also for the PC needing accelerators
not only for running its own display. Accelerators are a kind of slaves. The oper-
ating system and other software are running on the microprocessor, which is
the host and master of the accelerators. The host may send parameters (for
example, mode select, start, stop, reset, etc.) and receive interrupts and some
result data.

The host operation is instruction–stream driven. The instruction stream is man-
aged by the program counter inside the host processor. The accelerator usually has
no program counter; its operations are data–stream driven (see data stream inter-
face in Figure 11.1). Not only in terms of efficiency, this model especially makes
sense for data-intensive applications, where multiple data streams are interfaced to
the accelerator Figure 11.1. Only a few very sophisticated architectures are diffi-
cult to map onto this model. In the case of computation–intensive applications
with very low data traffic to/from the accelerator, a single data stream generated
by the host may be sufficient. This model (for details, see the next section and
Section 3.1 ff. is as simple as the host’s von Neumann (vN) model, which is also
important for educational purposes (for details, see also Section 3.1).

By the way, data–stream–driven computing (or flowware–based computing: this
term will be defined later) had already been used implicitly by the first program-
mers. In a von–Neumann–based, instruction–stream–driven environment, the
less efficient detour over the application control-structures has been the only
viable solution. However, by avoiding the (vN) bottleneck, a data–stream–driven
environment permits much more direct and efficient solutions. For more detailed
explanations, see Section 11.3.

vN processor programming is supported by compilers, whereas traditional
accelerator development has been and is done with electronic design automation
(EDA), tools [5]—for acronyms, see Figure 11.2.

More recently, however, such accelerator design has been affected by the sec-
ond design crisis (Figure 11.1b). Compared with microprocessor design, the SoC
design productivity in terms of gates per day is slower by a factor of about 10−4

[6]. Another symptom of increasing design implementation problems and the sil-
icon technology crisis has been the drastically decreasing number of wafer starts
for newer technology fabrication (Figure 11.3a) and the still decreasing low num-
ber of application-specific IC design starts (Figure 11.3c). Another major cost fac-

344 Reiner Hartenstein

hardwired
accelerator (s)

(a)

EDA

host

RAM

compilation

year

factor

de
sig

n
co

st

product life cycle

(b)

ac
ce

le
ra

to
r/

ho
st

 in
te

rf
ac

e

d
at

a
st

re
am

s

software hardware architecture

Figure 11.1. The common model of computer systems. (a) Embedded microprocessor model;
(b) impact of the second design crisis.

tor of the application-specific silicon, needed for accelerators, is increasing mask
cost (Figure 11.3b), driven by growing wafer size and the growing number of
masks needed. ASIC stands for mask–configurable gate arrays and similar
methodologies [7] that need fewer masks than full custom ICs requiring the full
mask set of the fabrication process [8].

1.1 Morphware

Illustrated by Makimoto’s wave model [9, 10], the advent of morphware is the
most important revolution in silicon application since the introduction of the
microprocessor [11]. Emerging in the 1980s and now having moved from a niche
market to mainstream, this third class of platforms now fills the gap between
vN–type procedural compute engines and application–specific hardware. It is
morphware, the fastest growing segment of the semiconductor market. (for termi-
nology, see also Figure 11.5). The most important benefit of morphware is the
opportunity to replace hardwired accelerators by RAM–based reconfigurable
accelerators so that application–specific silicon can be mostly avoided, as is well-
known from running software on the vN–type microprocessor. This will be

Morphware and Configware 345

AM anti-machine (DS machine) ISP instruction stream processor
AMP data stream (AM) processor LSI Large Scale ICs
ASIC application-specific IC LUT Look-Up Table
asMB autosequencing Memory Bank MCGA Mask-Configurable Gate Array
BIST Built-In Self-Test MPGA (see MCGA)
CFB Configurable Function Block MSI Medium Scale ICs
CLB Configurable Logic Block MW Morphware
COTS commodity off the shelf PC Personal Computer
CPU “central” processing unit: DPU PS Personal Supercomputer

(with instruction sequencer) pSoC programmable SoC
cSoC configurable SoC rDPU reconfigurable DPU
CW Configware rDPA reconfigurable DPA
DAC Design Automation Conference RA reconfigurable array
DPA data path array (DPU array) RAM random access memory
DS data stream rAMP reconfigurable AMP
DPU data path unit (without sequencer) RC reconfigurable computing
ecDPU emulation-capable DPU rGA reconfigurable gate array
EM evolutionary methods RL reconfigurable logic
EDA electronic design automation RTR run-time reconfiguration
EH evolvable morphware (“evolvable SoC (an entire) System on a Chip

hardware”) SSI Small Scale ICs
FPGA field-programmable gate array SW Software
FRGA field-reconfigurable gate array System C C dialect f.Hw/Sw co–design
FW Flowware UML Unified Modeling Language
GNU GNU’s Not Unix (consortium) Verilog a popular C-like HDL
HDL Hardware Description Language VHDL VHSIC Design Language

an HDL)
HPC High-Performance Computing
HW Hardware VHSIC Very High Speed ICs
IC integrated circuit VLSI Very Large Scale ICs
IP intellectual property vN von Neumann

Figure 11.2. Acronyms

explained in the following paragraphs. The very high and still increasing number
of morphware–based design starts (Figure 11.3c) demonstrates the benefit of
using replacement morphware platforms instead of ASICs, where the backlog of
design starts over morphware has exceeded a factor of more than 10 and is grow-
ing further.

Morphware is structurally programmable hardware, where the interconnect
between logic blocks and/or functional blocks, as well as the active functions of
such blocks, can be altered individually by downloading configware, down to the
configuration memory (configuration RAM) of a morphware chip (also compare
Figure 11.6e). So we need two kinds of input sources: Traditional software for
programming instruction streams, and configware for structural reconfiguration
of morphware.

346 Reiner Hartenstein

0.35 0.25 0.15 0.13 0.1 0.070.8 0.6 0.18

4

3

2

1

12 12 26 28 30 >302016
of masks cost / mio $

mask
set

cost
source:
eASIC

µ feature size

a)

c)

2001 2002 2003 2004

year
0

b)

Morphware use is
the road map to
defeat the silicon
crisis, and, to re-
vitalize the stalled
progress in most
areas of high per-
formance computing
and super computing

d)

100%

80%

40%

60%

20%

0%
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

150 nm
180 nm

250 nm

350 nm

500 nm+

[Nick Tredennick] 50,000

40,000

30,000

20,000

10,000

13
0

nm

W
af

er
 S

ta
rt

s

no. of design starts year

NRE and
mask cost

morphware

ASIC

source:
Dataquest

Figure 11.3. The second design crisis (silicon crisis). a) Decreasing number of wafer starts, b)
growing number of morphware-based design starts [13] vs. declining number of ASIC design
starts [13]; demonstrating that morphware already has reached mainstream status; c) increasing
mask set cost and total NRE cost; d) providing the road map on the way out of the silicon
crisis.

von Neumann’s key achievement is the simple common model called the
von Neumann machine paradigm.

Before going into more detail, we should take a first step in clarifying the termi-
nology around reconfigurability [12]. To highlight the key issues in distinguishing
the classical vN paradigm from morphware, we should define the term reconfig-
urable, because reconfiguration in general has many different meanings. In com-
puting sciences, the terms programmable refer to the time domain, where
programming means instruction scheduling (Figure 11.4a). The term configurable
introduces the space domain, where configuration means the setup of structures and
preadjustment of logic blocks or function blocks (Figure 11.4b). Reconfiguration
means, that a platform can be configured several times for different structures
(Figure 11.4c), whereas Mask–Configurable Gate Arrays (see Section 2) can be con-
figured only once. Configuration or reconfiguration usually is impossible during run
time. But dynamically reconfigurable (Figure 11.4d) means that partial reconfigura-
tion may happen at run time. A warning to educators: Dynamically reconfigurable

Morphware and Configware 347

Configurable: Type of flexible computaions, whereas only one or a few
Istructions per processing element are loded and the
execution is performed in the dimensions of space and time
(-> Area) concurrently

Programmable: Type of flexible computations, wherein a sequence of
Instruction is loaded and executed in the time dimension
by using one or several processing elements

Reconfigurable: General term, which expresses the Features of a
hardware architecture in to be configured more
than once (-> Technology dependent)

Dynamically Reconfigurable:

Type of reconfiguration, that realizes modifications of
configurations during run-time of the system.
This is also called run-time reconfiguration (RTR), on-the-fly
recofiguration or,in-circuit reconfiguration

(a)

(b)

(c)
(d)

Figure 11.4. Contributions to terminology [12]: Programmable vs. (re)configurable.

Platform Program source
Machine
paradigm

Hardware
(not program-

mable) (None)

Mor-
phware

Fine grain morphware Configware

Coarse grain morphware
(data-stream-based)

Configware &
flowware Anti-

machine*Hard-
wired
proces-
sor

Data-stream-based computing Flowware

Instruction-stream-based
computing Software

Von Neu-
mann

* see Section 19.3.6 and Figure 11.23.

Figure 11.5. Terminology.

or self–reconfigurable systems are more bug prone than others and are more dif-
ficult to explain and to understand.

By introducing morphware, we obtain a new general model of embedded com-
puters (Figure 11.7a): The accelerator has become reconfigurable. It has been
changed from hardware (Figure 11.1a) to morphware. As mentioned previously,
accelerator operation is usually data–stream–based. Because of its non–von
Neumann machine principles, an accelerator has no von Neumann bottleneck and
may be interfaced to a larger number of data streams (Figure 11.23c, d). With a

348 Reiner Hartenstein

10
11

00
01

1

0

RAM

RAMRAM

RAM 1

0

Flip-Flop

CLR CLK

LUT
1

0

CLB-local configuration RAM

reconfigurable interconnect fabrics

CLB

co
nf

ig
.

R
A

M

m
ul

tip
le

xe
r

a) b) e)

c) d)

Figure 11.6. Programmable switches and blocks used in FRGAs. a) Pass transistor; b) Tristate
buffer; c) two–way multiplexer; d) four–way multiplexer, e) simplified example of a Configurable
Logic Block (CLB).

hardware

b)

EDA

host

RAM

compilation

RAM

morph-
ware

a)

design flow (EDA)

host

RAM

compilation

RAM

morph-
ware

ac
ce

le
ra

to
r/

ho
st

in
te

rfa
ce

ac
ce

le
ra

to
r/

ho
st

in
te

rfa
ce

software

software

accelerator architecture

accelerator architecture

d
at

a
st

re
am

s

d
at

a
st

re
am

s

Figure 11.7. Traditional embedded computing design flow. a) morphware based; b) morphware/
hardware–based.

morphware accelerator (Figure 11.7a), the host may also use the host/accelerator
interface to organize the reconfiguration process (this will be explained later). Also,
mixed–type accelerators are possible (Figure 11.7b): Hardware and morphware.
However, a few architectures include morphware directly inside the vN micro-
processor. Here the morphware is used for flexible instruction set extensions [14, 15],
a modern version of the vN model only, where morphware is connected to the
processor bus (Figure 11.8a). Also most network processors use instruction set
extensions [16]. This situation is different from the common model shown in Figure
11.7, where morphware is just connected to the host’s memory bus (Figure 11.8b).

1.2 Two RAM-based machine paradigms

We now have two different RAM–based input source paradigms: One for
scheduling (programming) the instruction streams, to be scanned from RAM pro-
gram memory during run time by sequences of instruction fetches, and the other for
configuring structures by downloading configware code to the configuration RAM
before run time. Downloading configware code is a kind of pseudo–instruction
fetch (but here not at run time) where, however, such “instructions” or expressions
may be much more powerful than microprocessor instructions. The configuration
RAM is often called hidden RAM, because it is not nicely concentrated into a
matrix, as in typical RAM components sold by IC vendors. Physically, the indi-
vidual memory cells in a morphware device are located close to the switch point
or connect point they are controlling (see the flip–flops FF in Figure 11.10c and
d). Also, the addressing method used by morphware for downloading reconfigu-
ration code is often different from that of classical RAM.

It was recognized rather early that morphware had introduced a fundamentally
new machine paradigm. Field–reconfigurable Custom Computing Machines
(FCCM) [17], the name of an annual conference series, is an indication. A major

Morphware and Configware 349

Data–stream–driven computing had already been used implicitly by the
first programmers.

in
st

ru
ct

io
n

se
qu

en
ce

r

ex
ec

ut
io

n
un

it

re
gi

st
er

 fi
le

processor bus

memory bus

morphware:
instruction

set extension

in
st

ru
ct

io
n

se
qu

en
ce

r

ex
ec

ut
io

n
un

it

re
gi

st
er

 fi
le

processor bus

memory bus

morphware
machine

a) b)

Figure 11.8. Alternative morphware applications. a) von Neumann processor with morphware-
based instruction set extension; b) von Neumann host with morphware–based coprocessor.

number of experimental computing machines of this kind have been implemented,
mostly from academia (for a survey covering the years 1995 and earlier, see [18]).

As mentioned earlier, the use of commodity off–the–shelf (COTS) morphware
for acceleration can avoid the very costly need for application–specific silicon.
Both kinds of platforms support rapid downloading of patches, upgrades, or even
new applications down to the RAM program memory, even via the Internet. The
consequence is a change of the business model for accelerators. Personalization
before fabrication, typical of hardwired accelerators, can be replaced by the busi-
ness model of the microprocessor, using personalization after fabrication—at the
customer’s site.

It is very important to distinguish, that the personalization source for vN micro-
processors is software, and for morphware it is configware. Because of the growing
importance of configware we currently observe a growing configware industry—a
kind of emerging competitor to the software industry. Morphware has become an
essential and indispensable ingredient in SoC (System on a Chip) design and
beyond. Morphware meanwhile is used practically everywhere, so this chapter has
no room for a survey to mention all uses. A good reading source is the volumes of
proceedings (published by Springer in its LNCS series [19]) of Field–Programmable
Logic [20], the annual international conference on Field–Programmable Logic and
its applications, and the largest conference in this area.

2 FINE-GRAIN MORPHWARE

Since their introduction in 1984, Field–Reconfigurable Gate Arrays (FRGAs,
often also called FPGAs), or reconfigurable Gate Arrays (rGAs) have become the
most popular implementation media for digital circuits. For a reading source on
the role of rGAs (providing 148 references), see [21]. The very high and increas-
ing number of design starts on FRGAs demonstrates that the mask–configurable
ASICs were already the losers years ago (Figure 11.3c). The technology-driven
progress of FRGAs (for key issues, see [22]) is much faster than that of micro-
processors. FRGAs with 50 mio system gates are coming soon [23]. It is well
known that the growth rate of the integration density of microprocessors is much
slower than Moore’s law. However, because of the high degree of layout regular-
ity, the integration density of FRGAs is moving at the same speed as Moore’s law
[9]. But because of the high percentage of wiring area, the transistor density of
FRGAs is memory behind by two orders of magnitude [9]. However, the number
of transistors per chip on FRGAs had surpassed that of microprocessors already
by the early 1990s and is now higher by two orders of magnitude [9].

2.1 The Role of rGAs

We may distinguish two classes of morphware: Fine-grain reconfigurable mor-
phware, and coarse–grain reconfigurable morphware. Reconfigurability of fine
granularity means that the functional blocks have a datapath width of about one
bit. This means that programming, at a low abstraction level, is logic design.
Practically all products on the market are FPGAs (field–programmable gate
arrays, better called FRGAs or rGAs: ((field–)reconfigurable gate arrays),

350 Reiner Hartenstein

although some vendors prefer different terms as kinds of brand names, like, for
instance, Programmable Logic Device (PLD), or reconfigurable logic device LD.
Morphware platforms and their applications have undergone a long sequence of
transitions. First, FPGAs appeared as cheap replacements for MPGAs (or
MCGAs: Mask-Configurable Gate Arrays). Even today, FRGAs are the reason
for the shrinking ASIC markets (Figure 11.3c), since for FPGAs no application-
specific silicon is needed—a dominating cost factor in low production volume
products. (ASIC fabrication cost is much lower—only a few specific masks are
needed than that of other integrated circuits.) Later, the area proceeded into a
new model of computing possible with FRGAs. The next step was making use of
the possibility for debugging or modifications during the last day or week, which
also led to its adoption by the rapid prototyping community which also has led to
the introduction of ASIC emulators faster than simulators. The next step is direct
incircuit execution for debugging and patching at the last minute.

From a terminology point of view, the historic acronyms FPGA and FPL are
a bad choice, because programming, i.e., scheduling, is a procedural issue in the
time domain. The term PLD is also a bad choice and should be replaced by rLD.
A program determines a time sequence of executions. In fact, the FP in FPGA
and in FPL (the acronym for field–programmable), actually means field reconfig-
urable, which is a structural issue in the space domain: configuration in space. For
a clearly consistent terminology, it would be better to use FRGA (field–reconfig-
urable gate array) or rGA instead of FPGA. Throughout this chapter the term
rGA or FRGA will be used instead of FPGA. For terminology, see Figure 11.2,
Figure 11.5, and Sections 2.5 and 4.1.

The most important architectural classes of rGAs are (see [24]) island archi-
tecture (Xilinx), hierarchical architecture (Altera), and row–based architecture
(Actel). A more historic architecture is mesh–connected, sometimes also called sea
of gates (introduced by Algotronix) [25]. A simple example of Configurable Logic
Block block diagram is shown in Figure 11.6. Its functional principles by multi-
plexer implementation are shown in Figure 11.9a and b, where in CMOS technol-
ogy, only 12 transistors are needed for the fully decoded multiplexer (Figure 11.9c).
The island architecture is illustrated in Figure 11.10a. Figure 11.10b show details
of switch boxes and connect boxes. Figure 11.10c shows the circuit diagram of a
cross point in a switch box, and, Figure 11.10d shows the same from within a con-
nect box. The thick wire in Figure 11.10b illustrates how these interconnect
resources are configured to connect a pin of one CLB with a pin of another CLB.
The total configuration of all wires of an application is organized by a placement
and routing software. Sometimes more interconnect resources are needed than are
available, so for some CLB not all pins can be reached. Due to such routing con-
gestion, it may happen that a percentage of CLBs cannot be used.

2.2 Commercially available FRGAs

A wide variety of fine-grain morphware products is available from a number
of vendors, such as the market leader Xilinx [26], the second largest vendor Altera

Morphware and Configware 351

Meanwhile, morphware is used practically everywhere.

[27], and many others. A variety of evaluation boards and prototyping boards is
also offered. COTS (commodity off the shelf) boards for FRGA–based develop-
ments are available from Alpha Data, Anapolis, Celoxica, Hunt, Nallatech, and
others, to support a broad range of in–house developments. As process geome-
tries have shrunk into the deep–submicron region, the logic capacity of FRGAs
has greatly increased, making FRGAs a viable implementation alternative for
larger and larger designs. FRGAs are available in many different sizes and prices

352 Reiner Hartenstein

#

Configuration bits gab
f(A, B) Function

g00 g01 g10 g11

0 0 0 0 0 0 constant 0
1 0 0 0 1 A and B and
2 0 0 1 0 B disables A if B then 0 else A
3 0 0 1 1 A identity A
4 0 1 0 0 A disables B if A then 0 else B
5 0 1 0 1 B identity B
6 0 1 1 0 A exor B antivalence
7 0 1 1 1 A or B or
8 1 0 0 0 not(A or B) nor
9 1 0 0 1 A coin B equivalence

10 1 0 1 0 not(B) negation of B
11 1 0 1 1 B implies A if A then 1 else ¬ B
12 1 1 0 0 not(A) negation of A
13 1 1 0 1 A implies B if B then 1 else ¬ A
14 1 1 1 0 not(A and B) nand
1 1 1 1 1 1 constant1

(A,B)

g00

g01
10 f (A, B)
11

00

01g10

g11repertory of
truth-tables

input

output

multiplexer

a)

LUT

CLB-local
configuration

RAM

(a
,b

)

g 0
0

g 0
1

01

f(
A

,B
)

00 1110

g 1
0

g 1
1

b)

m
ul

tip
le

xe
r

c) g00

g10

g01

g11

A B

f (A,B)

5

Figure 11.9. Illustrating LUT implementation by multiplexer: example for functions of two
variables. a) illustration of the function generator; b) multiplexer circuit; c) illustration of LUT
(look-up table) block use within CLB (compare Figure 11.6e).

Morphware and Configware 353

CLB

CLBCLB

CLB

CLB CLB

FF

FF

FF

FF

FF

FF FF

FF FF

switch
point

connect-
point

part of the
configuration

switching
transistor

RAM

CLB

configurable
logic block

connect box

switch box

interconnect fabrics

ro
ut

in
g

re
so

ur
ce

s

lo
gi

c
re

so
ur

ce
s

switch
box

connect
box

switch
box

connect
box

switch
box

connect
box

switch
box

CLB

switch
box

connect
box

connect
box

CLB

switch
box

connect
box

connect
box

CLB

switch
box

connect
box

connect
box

switch
box

connect
box

CLB

switch
box

connect
box

connect
box

CLB

switch
box

connect
box

connect
box

CLB

switch
box

connect
box

connect
box

switch
box

connect
box

a)

b)

c) d)

Figure 11.10. Illustrating FRGA island architecture fine-grain morphware resources. a) Global
view of interconnect fabrics; b) detailed view (only one configured “wire” shown); c) connect
point circuit of a switch box; d) connect point circuit of a connect box.

per piece, ranging from 10 US–dollars to FRGAs with many more than a million
usable gates for more than 1000 US–dollars. Xilinx has preannounced FRGAs
with 50 mio system gates around 2005 [23]. Modern FRGAs support mapping
entire systems onto the chip by offering on board all components needed, such as
several memory banks for user data; one or several microprocessors like ARM,
PowerPC, MIPS, or others; a major number of communication interfaces (WAN,
LAN, BoardAN, ChipAN etc.) supporting contemporary standards; up to sev-
eral GHz bandwidth; JTAG boundary scan circuitry to support testing; some-
times even multipliers

Also, FRGAs featuring low power dissipation [28] or better radiation toler-
ance (for aerospace applications) are offered. Several major automotive corpora-
tions have contracts with FRGA vendors to develop morphware optimized for
this branch of industry. Some commercially available FRGAs also support par-
tial columnwise reconfiguration so that different talks may reside in the array and
may be swapped individually. This setup may also support dynamic reconfigura-
tion (RTR: run–time reconfiguration), where some tasks may be in the execution
state, while at the same time other tasks are being reloaded. Dynamic reconfigu-
ration, however, tends to be tricky and difficult to understand and to debug. But
static reconfiguration is straightforward and easier to understand. Because
reconfiguration is slow multi–context morphware has also been discussed, but is
not yet available commercially. Multicontext morphware features several alter-
native internal reconfiguration memory banks, for example two or four banks, so
that reconfiguration can be replaced by an ultrafast context switch to another
memory bank.

2.3 Applications

Morphware is used practically everywhere, so this section can mention only a
few examples. Most early FRGA applications have been rapid prototyping [25,
29, 30], rather than directly implementing products on morphware platforms.
Rapid prototyping and ASIC emulation are still important for the development of
hardwired integrated circuits. Since, in IC design, flow simulation may take days
or even weeks, a remedy has been ASIC emulation, using huge emulation
machines called ASIC emulators.

Earlier such machines included racks full of boards equipped with masses of
FRGAs of the low density available at that time. Through acquisitions the three
major EDA vendors now offer ASIC emulators, along with compilers: Cadence
has acquired Quickturn, Synopsys has acquired IKOS, and Mentor Graphics has
bought Celaro, also offering such service over the Internet. Another R&D scene
and market segment calls itself Rapid Prototyping, where for smaller designs less
complex emulation boards are used, such as Logic emulation PWB (based on the
Xilinx Virtex FRGA series, which can emulate up to 3 million gates), and the
DN3000k10 ASIC Emulator from the Dini Group.

354 Reiner Hartenstein

The terminology is reconfigurable vs. programmable. The semantics is
structural vs. procedural.

Another morphware application area is scientific high–performance comput-
ing (HPC) where often the desired performance is hard to attain through “tradi-
tional” high–performance computing. For instance, the gravitating n-body
problem is one of the grand challenges of theoretical physics and astrophysics [31,
32]. Hydrodynamic problems fall into the same category, where often numerical
modeling can be used only on the fastest available specialized hardware.

Analytical solutions exist for only a limited number of highly simplified cases.
For example interpretation of dense centers of galactic nuclei, observed with the
Hubble Space Telescope, by uniting the hydrodynamic and the gravitational
approach within one numerical scheme. The maximum particle number was limited
until recently to about 105 even on the largest supercomputers. For astrophysics, the
situation improved thanks to the GRAPE special purpose computer [33]. To
improve flexibility, a hybrid solution has been introduced with AHA-GRAPE,
which includes auxiliary morphware [31]. Other morphware–based machines such
as, WINE II, MDGRAPE [34], and MDM (Modular Dynamics Machine) [35–37]
are also used for modeling and simulation in molecular dynamics [31, 33, 38].

Because of the availability of high–density FRGAs, the scenario has drasti-
cally changed. The trend is to deliver the FRGA–based solution directly to the
customer, at least for lower production volumes. Not only microcontrollers or
simple logic circuits are easy to transfer onto a FRGA platform; practically every-
thing can migrate onto morphware. A single FRGA type may replace a variety of
IC types. Design and debugging turn–around times can be reduced from several
months to weeks or days. Patches or upgrades may take only days, hours, or even
minutes, and may even be carried out at the customer’s site or remotely over the
Internet or wireless communication, which means a change of the business
model—an important benefit for innovative efforts in remote diagnosis and other
customer services.

A future application of emulation may serve to solve the long–term microchip
spare-part problem in areas such as industrial equipment, military, aerospace,
automotive, etc., with product lifetimes up to several decades [39]. The increasing
spare-part demand stems from the increasing number of embedded systems, the
limited lifetime of microchip fabrication lines (mostly less than 7–10 years), and
the decreasing lifetime of unused microchips. When a modern car with several
dozen embedded microchips needs electronic spare–parts 10 or 15 years later, the
microchip fab line no longer exists, and a major percentage (or all) of the parts
kept in spare–parts storehouses have faded away. The hope of keeping an old fab
line alive that could deliver long–lasting robust products at low NRE cost seems
to be an illusion. Retro emulation might be the only viable solution, where reverse
engineered products are emulated on FRGAs, since application–specific silicon
will not be affordable due to low microchip production volumes in these areas and
rapidly increasing mask cost.

Fortunately now, with FRGAs, a new kind of IC platform is available so that
we can switch from hardware to morphware, which can be “rewired” at run time.
Because of their general–purpose properties, FRGAs are a suitable platform for
reverse engineering of required but unavailable spare parts. Morphware is the
fastest growing segment of the IC market [Dataquest]. Also for industries such
as the automotive, aerospace, military, or industrial electronics such a common
morphware platform would be a promising route to avoid very high mask costs,

Morphware and Configware 355

to reduce the number of IC types needed, to accelerate IC time to market, and to
solve long–term spare–part supply problems by retro emulation.

The new business model of morphware brings a new dimension to digital sys-
tem development and has a strong impact on SoC design (System–on–Chip).
Performance by parallelism is only one part of the story. The time has come to
fully exploit morphware flexibility to support very short turn–around time for
real–time, in–system debugging, profiling, verification, tuning, field maintenance,
and field upgrades. One of the consequences of the new business model is the
adoption of a computer science mentality for developing all kinds of electronics
products, where patches and upgrades are carried out at the customer’s site
(Figure 11.11), or even via the internet using Run–Time Reconfiguration (RTR).
This approach is also an important remedy to the current embedded system
design crisis, caused by skyrocketing design cost coinciding with decreasing
product lifetime, by providing product longevity (Figure 11.1b).

2.4 Application Development support

Morphware is the fastest growing segment of the integrated circuit (IC) mar-
ket, currently relying on a growing large user base of HDL–savvy designers.
A number of books are available that give an introduction to application devel-
opment using FRGAs [29, 41–45]. Not only is the configware industry rapidly
growing, offering IP cores [46] and libraries for morphware platforms but also a
rapidly growing branch of the EDA industry offers tools and design environ-
ments to support configware development. Complete design flows from HDL
sources such as VHDL [47] are offered by Mentor Graphics [48], Synplicity [49],
Celoxica [50], and others. A key issue is the integration of IP cores into the design
flow. At DAC [51], a task force has been set up to solve standards problems.

356 Reiner Hartenstein

years1 2 3 4

revenue
/month

product
update 1

update 2

ASIC

reconfigurable by
configware download

Figure 11.11. accelerator longevity [40].

In morphware application, the lack of algorithmic cleverness is an urgent
educational problem.

Sloppy terminology is a severe problem which torpedoes diffusion and
education.

There are also design flows [52, 53] from Matlab sources [54], and a tool to
generate HDL description from Unified Modeling Language has been reported
[55]. An emerging trend is going to input sources of higher abstraction levels like
the languages Handel–C by Celoxia, Precision–C from Mentor Graphics,
SystemC [56, 57], a C dialect [58] by Synopsys [59] targeting HW/CW/SW co-
design. Matlab indicates a tendency to go to even higher abstraction level of
mathematical formulas. The emerging use of term rewriting systems (TRS) for
design is another indication of this trend [60–63].

Also, a wide variety of vendors are offering tools not covering the entire
design flow, such as those for debugging, timing estimation [64], simulation, ver-
ification, placement and routing, and other tasks, as well as soft IP cores.
Examples include the CoreConnectBus (Xilinx), Parameterizes Processor
(Xilinx), IPbus interface (Xilinx), embedded software development tools (Wind
River, GNU, and others), Integrated Bus Analyzer (Xilinx), board support pack-
age for interface software (Xilinx), and over 40 processor IP models (Xilinx), [23].
Still a research area is morphware operating systems, to load and coordinate mul-
tiple tasks to be resident in a single FRGA. PACT has this sort of an OS for its
XPP coarse–grain reconfigurable array (see Section 3), which can be partly recon-
figured rapidly in parallel while neighboring reconfigurable data path units
(rDPUs) are still processing data. Reconfiguration is triggered externally or even
by special event signals originating within the array, enabling self–reconfiguring
designs [65]. In general, there is still room for new tools and design flows offering
improved quality and designer productivity. Key issues for the performance of
FRGAs implemented in deep–submicron processes are the following three fac-
tors: the quality of the CAD tools used to map circuits into the FRGA, the qual-
ity of the FRGA architecture, and the electrical (i.e., transistor–level) design of
the FRGA. In order to investigate the quality of different FRGA architectures,
we need EDA tools capable of automatically implementing circuits in each
FRGA architecture of interest.

19.2.5 Education

Education is an important area of application development support because
it prevents a shortage of qualified professionals. In morphware application, the
lack of algorithmic cleverness is one of the urgent educational problems. For
instance, how can we implement a high–performance application for low-power
dissipation on 100 datapath units running at 200 MHz, rather than on one proces-
sor running at 20 GHz? An example is the migration of an application from a
very fast digital signal processor to a low power implementation on FRGA, yield-
ing speedup factors between 5 and 22 [66]. The transformation of the algorithm
from the software domain to fine–grain morphware required an enormous effort
by the student-in-charge of this project, because such algorithmic cleverness is
not yet taught within typical curricula.

Morphware and Configware 357

The data stream paradigm has been around for almost three decades.
Software uses it indirectly through inefficient instruction–stream implementa-
tions. Due to poor synthesis methodology, its direct use by systolic arrays
remained a niche until the mid–1990s.

CS education is becoming more and more important for embedded system
development, because SoC design has rapidly adopted CS mentality [67]. The
amount of program code implemented for embedded systems doubles every
10 months and will reach 90% of all codes being written by the year 2010 [68].
Currently, a typical CS graduate with von–Neumann–only mentality does not
have the skills needed for HW/CW/SW partitioning decisions nor the algorithmic
cleverness needed to migrate an application from software onto an FRGA. The
failure to teach the important skills, needed to map applications onto morphware
in our CS curricula will cause a major disaster. Our current graduates are not
qualified for the IT labor market of the near future [72].

Terminology is a key issue. It is very important to maintain a clear and consis-
tent terminology. Sloppy terminology is a severe problem that torpedoes diffusion,
education, and efforts to bridge communication gaps between disciplines. Too
many experts using their own nonconsensus terminology are creating massive
confusion: their colleagues often do not know what they are really talking about.

I have had my own frustrating experiences with contradictory terminology
when teaching VHDL and Verilog in the same course [73]. Students have been
confused by most of the terminology because, for almost each important term in
this area, there have been usually three different definitions: 1) what the student
associates with the term when hearing it for the first time, 2) how the term is used
by VHDL experts, and 3) how it is used by Verilog experts.

Terminology should be tightly linked with common models. In both hardware
and software, the design space has almost infinite size. Not only students get lost
in this space without any guidance by models that narrow the design space.
A machine paradigm is needed. The von Neumann paradigm has been highly suc-
cessful for 50 years; but now because of the dominance of morphware we need a
new, second, machine paradigm that can be used as a general model for guidance
due to: (1) Its well–defined terminology, and (2) its simplicity: the anti–machine
paradigm (see Section 3.6). The term reconfigurable has too many different mean-
ings in too many different areas, including everyday life. For this reason the term
morphware is often much better. Because terminology is so domain specific, you
can guess a person’s field by his or her use of terminology. When somebody asso-
ciates blacksmith with hardware, you know this person is an IT professional.
When somebody associates downloading drivers or other software into the RAM
of a von Neumann machine with reconfiguration, you know that this person is not
familiar with morphware and its environment.

2.6 Innovative Applications

Terms like evolvable hardware (EH) or in fact, evolvable morphware (EM),
Darwinistic Methods for system design, or biologically inspired system design
point to a newer research area stimulated by the availability of fine-grain mor-
phware. Also, retro emulation is an innovative application. It is an efficient way
of re–engineering unavailable electronics parts for replacement to solve the long-
term microchip spare-part problem in areas such as industrial equipment, mili-
tary, aerospace, automotive, etc., with product lifetimes up to several decades. But
in the future, reverse engineering can be avoided, it the implementation of all IC
architectures are FRGA based from the beginning.

358 Reiner Hartenstein

FRGAs may be good platforms to achieve fault tolerance by self–healing
mechanisms [74, 75]. Partial rerouting can circumvent wires or CLBs found to be
faulty. A NASA single–chip spacecraft has been discussed (breaking many para-
digms in spacecraft design [76]), which is based on a high–density FRGA, does
not need an operating system, and uses fault tolerance to reduce the need for radi-
ation hardening. Currently available commercial FRGA architectures insuffi-
ciently support such rearrangements at run time. More research is required to
obtain better architectural support [74, 77].

Another interesting area deals with soft CPUs, also called FRGA CPUs, i.e.,
microprocessors implemented by mapping their logic circuits onto an FRGA.
Examples are the MicroBlaze, a 32–bit Harvard architecture from Xilinx [78],
Altera’s Nios processor [27], the ESA SPARC LEON open source core [79, 80],
the LEON2 processor [81], which is a synthesizable VHDL model of a 32-bit
processor compliant with the SPARC V8 architecture, and the Dragonfly 8-bit
core [78]. Of course, soft processors run about a factor of 3 to 5 times slower than
their hardwired versions. By the way, designing soft CPUs is a popular subject of
lab courses offered by a large number of universities.

2.7 Scalability and Relocatability

Relocation, even dynamically at run time, of configware macros is subject of
the new area of configware operating systems [69–71]. Some FRGAs are so large
that more than 100 soft CPUs can be mapped onto such a single chip. Will future
giga–FRGAs permit the mapping of practically everything, including large
rDPAs, onto a single morphware chip? This leads to the question of FRGA scal-
ability. For instruction set processors, the von Neumann bottleneck guarantees
full relocatability of code. Within very large FRGAs, however, relocatability
might be limited by routing congestion (Figure 11.12a). But Structured
Configware Design (a design philosophy derived from structured VLSI design
[82]) is a promising approach to solve the relocatability problem (Figure 11.12b),
so that FRGAs may be universal as microprocessors.

3 COARSE-GRAIN MORPHWARE

In contrast to fine-grain morphware using CLBs of smallest datapath width
(~1 bit), coarse-grain morphware uses rDPUs (reconfigurable Data Path Units)
with wide data paths, e.g., 32 bits wide. Instead of FRGAs, we have rDPAs
(reconfigurable DPU Arrays). As an example, Figure 11.13 shows the result of
mapping an image-processing application (SNN filter) onto a primarily mesh-
based KressArray [83] with 160 rDPUs of 32-bit path width. This array is inter-
faced to 10 data streams: nine input streams and one output stream. Figure 11.14
shows some details of the XPU (xtreme processing unit), a commercially available
rDPA from PACT AG [84–87]. Figure 11.15 illustrates the differences in the exe-
cution mechanisms. At vN execution (Figure 11.15a), exactly one operation is

Morphware and Configware 359

The antimachine has no von Neumann bottleneck. No caches are needed.

carried out per clock cycle. Intermediate results are stored in registers. For migra-
tion of such an algorithm from vN to an rDPA like PACT XPP (Figure 11.15b),
a subsequence is mapped from time to space and executed in parallel on the array.

As soon as this operation is completed, the next chunk of parallelized code is exe-
cuted. Intermediate results may be communicated by a buffer (see Figure 11.15b).

Usually an rDPA is a pipe network, not a multiprocessor or multicomputer
network, since DPUs do not show a program counter (for details, see later sec-
tions of this chapter). Coarse–grain morphware has been a research area for more
than a decade (for a survey, see [88, 89]). Since it plays an important role in wire-
less communication [90, 91], software–defined radio [92], and multimedia process-
ing, not only performance but also MIPS / mW are key issues. Figure 11.16 shows
that FRGAs just fill the efficiency gap and the flexibility gap between hardwired
platforms and instruction set processors. Coarse-grain arrays, however, almost
attain the efficiency of hardwired platforms (Figure 11.16), when mesh-based
architectures using wiring by abutment are used so that no separate routing areas
are needed [9]. Also, configuration memory being an order of magnitude smaller
than that of FRGAs, contributes to this area/power efficiency [9].

360 Reiner Hartenstein

a)

b)

config-
ware

macro
no.1

config-
ware

macro
no.1

config-
ware

macro
no.2

config-
ware

macro
no.2

long distance
wiring

causing
routing

congestion
in the large

wiring by abutment

Watch the new area of
configware operating

systems (e.g., [69] [71]).

We need a revival of
structured VLSI design:

retargetted to configware.

Figure 11.12. Solving a) the FRGA scalability problem b) automated structured configware
design.

Breaking away from the current mindset requires more than traditional
technology development and infusion. It requires managerial commitment to
a long-term plan to explore new thinking [96].

Morphware and Configware 361

F
ig

ur
e

11
.1

3.
E

xa
m

pl
e

of
m

ap
pi

ng
 a

n
ap

pl
ic

at
io

n
(i

m
ag

e
pr

oc
es

si
ng

:
SN

N
 f

ilt
er

)
on

to
 a

(c
oa

rs
e,

gr
ai

n)
 K

re
ss

A
rr

ay
,

3.1 Pipe Networks and Flowware

We have to distinguish between two different domains of programming in
time: Instruction scheduling and data scheduling. The programming code for von
Neumann–like devices is an instruction schedule, compiled from software
(Figure 11.17b). The programming code for resources like systolic arrays and
other DPA (arrays of DPUs) is a data schedule, which can be compiled from
flowware defining, which data item has to appear at which port at which time.
Such data schedules manage the flow of data streams. This is illustrated in
Figure 11.7a, showing a typical data stream notation introduced with systolic
arrays more than 20 years ago.

The first flowware–based paradigm, the systolic array, got stuck in a niche
for a long time (throughout the 1980s and beyond) because of the wrong syn-
thesis method—until the supersystolic array made it viable for morphware. This

362 Reiner Hartenstein

a)

b)

ALU Ctrl

C
F

G

Figure 11.14. Configurable XPU (xtreme processing unit from PACT. a) Array structure;
b) rDPU.

will be explained later. A systolic array [93–95] is a pipe network. The term sys-
tolic reminds us of the multiple data streams clocked into and out of such a pipe
network and of its similarity to the heart and the bloodstreams entering and
leaving it. Its DPUs never have instruction sequencers. The mode of DPU oper-
ation is transport triggered by data items. If synchronization is done by hand-
shake instead of clocking, a systolic array may be also called a wavefront array.

The traditional systolic array could be used only for applications with strictly
regular data dependencies, because array synthesis methods used linear projec-
tions or algebraic methods resembling linear projections. Such synthesis methods
yield only strictly uniform arrays with linear pipes. The Data Path Synthesis
System (DPSS) [83], however, uses simulated annealing (the mapper in Figure
11.17c), which removes the traditional application limitations, enabling the syn-
thesis of supersystolic arrays featuring and also any kind of nonuniform arrays
with any freeform pipes, such as zigzag, spiral, completely irregular, and many
others. Due to this drastically improved flexibility, reconfigurable arrays (rDPAs)
also make sense. The KressArray Xplorer, including a mapper, has been imple-
mented as a design space explorer to optimize rDPU and rDPA architectures
[97–99]. For more details on Xplorer, see Section Figure 3.4.

Morphware and Configware 363

(a)

(b)

buffer

time to space

mapping

Figure 11.15. Migration to a) PACT XPP from b) von Neumann.

3.2 Data streams and flowware languages

More recently, data–stream–based computing has been popularized by a num-
ber of academic projects, such as SCCC [100], SCORE [101, 102], ASPRC [103],
BEE [104, 105], KressArray [97, 98], and more [106]). The specifications of
data streams can be expressed by flowware language. Data streams are created by
executing flowware code on auto–sequencing memory modules (asM). Figure 11.19
a shows a distributed memory array of such asM modules driving data streams
from/to the rDPA surrounded by the asMs. All enabling architectural resources for
flowware execution are available [107, 108, 110, 111]. The new R&D discipline of
application–specific distributed memory architectures [107] has arrived just in time

364 Reiner Hartenstein

P
S

(p
er

so
na

l
su

pe
rc

om
pu

te
r)

1000

100

10

1

0.1

0.01

0.001
2 1 0.5 0.25 0.13 0.070.1

MOPS / mW

µ feature size

T. Claassen et al., ISSCC 1999
 *)R. Hartenstein, ICECS 2002

standard microprocessor
instruction set processors
fine grain morphware

DSP
hardwired

anti m
achine*

flexibility

MIPS / mW

hard-
wired

anti
machine

instruction
set

processors

fine grain
morphware

a)

b)

Figure 11.16. Performance and energy efficiency: a) vs. technology generation; b) vs. flexibility.

to provide a methodology of architectural resources for processing flowware. Two
alternative memory implementation methodologies are available [107, 112, 113],
either specialized memory architectures using synthesized address generators (e.g.,
APT by IMEC [107]) or flexible memory architectures using programmable
general–purpose address generators [109, 114]. Performance and power efficiency
are supported especially by sequencers, which do not need memory cycles even for
complex address computations [107], having been used also for the smart memory
interface of an early antimachine architecture [114, 115].

Flowware may also be described by higher–level flowware languages [116],
which are similar to high level software languages like C (Figure 11.21). Both lan-
guages have jumps, loops, and nested loops. The main differences between soft-
ware and flowware is that, flowware semantics is based on one or several data
counters, whereas software refers to only a single program counter. Because of

Morphware and Configware 365

RAM

mapper

data
scheduler

DPU library

routing &
placement

flowware

configware

wrapper

instruction
scheduler

software source

software
code

hardware
resource

architecture
parameters

x
x
x

x
x
x

x
x
x

|
||

x
x
x

x
x
x

x
x
x

|
||

xx

x

x

x

x

x x

x

--

-

xx

x

x

x

x

xx

x

--

-

-

-

-

-

-

-

-

-

-

|
|
|

|
|
|

|
|
|

flowware

DPA

time

time

time time

flowware

port #

port #
port #

a)

b)

c)

d)

host

co-compilation

morph-
ware

software
code

configware
code

high level
language source

RAM

configware source

Figure 11.17. Compilation. a) a systolic array example (matrix multiplication) to illustrate
flowware and its role; b) compilation for von Neumann platforms; c) configware / flowware
compilation for morphware platforms; d) software / configware co/compilation.

multiple data counters, flowware also features parallel loops, which are not sup-
ported by software languages. Flowware is much simpler because it does not need
to express data manipulation.

For good morphware application development support, an integrated synthesis
system is useful that efficiently supports configware / flowware codesign, such as,
for instance, DPSS [83] (Figure 11.19b), so that the user does not need to care about
the configware / flowware interaction. A well–designed dual–paradigm language
covering both [116] the flowware paradigm and the configware paradigm, and sup-
porting the communication between both segments, would be useful for designer
productivity. Examples for multiple–scope languages are already existing hardware
languages like VHDL [47] or Verilog [43], which support the co–description of
hardware and software constructs and also alleviate the handling of hardware /
software communication. The strong trend within EDA toward higher abstraction
levels, heralded by new languages like System–C [56–58] and others, opens a path
toward integrated codesign frameworks coordinating all three paradigms covering
hardware, morphware, software, configware, and flowware.

366 Reiner Hartenstein

hardware

EDA

host

RAM

host

RAM

compilation

RAM

morph-
ware

RAM

morph-
ware

ac
ce

le
ra

to
r/

ho
st

in
te

rfa
ce

ac
ce

le
ra

to
r/

ho
st

in
te

rfa
ce

software source

architecture

d
at

a
st

re
am

s

d
at

a
st

re
am

s

compilation

configware source

software code configware code

compilation

software source

software code

compilation

configware source

configware code

a)

b)

Figure 11.18. Modern embedded computing design flow. a) Software / configware codesign;
b) software / configware / hardware codesign.

Because of the wrong synthesis method, the systolic array, the first
flowware–based paradigm, got stuck in a niche for a long time—until the
super–systolic array made it viable for morphware.

The flowware–based common model of data–stream–based computing may
be used for both hardware and morphware. There is, in principle, no difference,
whether DPAs are hardwired or reconfigurable (rDPAs). The only important dif-
ference is the binding time of placement and routing before fabrication (hard-
ware) or after fabrication (morphware: Compare Figure 11.27).

3.3 Coarse-Grain Arrays

Because the number of CFBs is by orders of magnitude smaller than that of
CLBs in FRGAs, mapping takes only minutes or less instead of hours. Since com-
putational data paths have regular structure potential, full custom designs of recon-
figurable datapath units (rDPUs) are drastically more area–efficient, Coarse–grained
architectures provide operator–level CFBs and very area–efficient datapath routing

Morphware and Configware 367

M

M

M

M

M MM M

M

M

M

M

a)

config-
ware
code

flowware
code

high level source program

M asM
auto-seqencingM

data sequencer
rDPU

M

M
memory
bank

rDPA

automatic Partitioner

Analyzer
/ Profiler

software
compiler

software code for
vN µ processor

b)

intermediate

mapper

data scheduler

front end

flowware/
configware
co-compiler*

*) FW/CW compiler

c)

DPSS

data streams

da
ta

 s
tr

ea
m

s

data streams

distributed memory

di
st

rib
ut

ed
 m

em
or

y

M MM M

Figure 11.19. Flowware/configware/software cocompilation. a) Becker’s partitioning cocom-
piler; b) antimachine target example.

switches. A major benefit is massive reduction of configuration memory and con-
figuration time, and drastic complexity reduction of the P&R (placement and rout-
ing) problem. Several architectures will be briefly outlined (for details, see [88]).

Primarily mesh–based architectures arrange their PEs mainly as a rectangular
2-D array with horizontal and vertical connections that support rich communi-
cation resources for efficient parallelism and encourage nearest neighbor links
between adjacent PEs. Typically, longer lines are also added with different lengths
for connections over distances larger than one. The KressArray [83] is primarily a
mesh of rDPUs physically connected through wiring by abutment. MATRIX
[117] is a multigranular array of 8–bit CFBs (basic with vN microprocessor core)
Reconfigurable Architecture Workstation (RAW) [118] provides a 4–by–4 array
RISC multiprocessor architecture of NN–connected 32–bit modified MIPS
R2000 microprocessors. The (Dynamically Reconfigurable Architecture for Mobile
Systems (DReAM) Array [119]) is for next–generation wireless communication.

Some RAs are based on one or several linear arrays, like (Reconfigurable
Pipelined Datapath) (RaPiD) [120] and PipeRench [121]. Architectures using
crossbars include (Programmable Arithmetic Device for DSP) PADDI, which
uses a central reduced crossbar (difficult to rout) and a two level hierarchy of seg-
mentable buses; PADDI–1 [122, 123], and PADDI–2 [124]. The Pleiades
Architecture [66] is a kind of generalized low–power PADDI–3.

3.4 Compilation Techniques

The first step in introducing morphware–oriented compilation techniques in
application development for embedded systems is the replacement of EDA
(Figure 11.7a and b) by compilation also for the morphware part (Figure 11.18a
and b). This step of evolution should be accompanied by a clean model that has
been introduced in the course of history. Partly in synchrony with Tsugio
Makimoto’s Wave model [9, 10], Nick Tredennick summarizes the history of sili-
con application [125] in three phases (Figure 11.22a–c): Hardwired components
like SSI, MSI, and LSI circuits which cannot be programmed; have fixed resources;
and fixed algorithms (Figure 11.22a). The introduction of the microprocessor
changes this set up to fixed resources but variable algorithms (Figure 11.22b). We
need only one programming source: Software (Figure 22e). The advent of mor-
phware has made both resources and algorithms variable (Figure 11.22c). We
need two programming sources: Configware to program the resources, and flowware
to program the data streams running through the resources (Figure 11.22f). An
early implementation is the DPSS (Figure 11.17c, see also Section 3.1).

3.5 Cocompilation

Separate compilation of software and configware (Figure 11.18a and b) gives
only limited support to reach the goal of good designer productivity. Especially
to introduce software / configware / flowware codesign to CS professionals and CS
curricula, we need cocompilation techniques to support application development
at high abstraction levels. Figure 11.17c shows the typical structure of a software
/ configware partitioning / cocompiler (Figure 11.17c), where the configware part
(DPSS in Figure 11.19b) includes both a configware code generator and a flowware

368 Reiner Hartenstein

code generator. CoDe–X was an early implementation of a compiler of this kind,
which was a partitioning cocompiler (Figure 11.19b and c), accepting C language
input (pointers are not supported), which partitions source input to run on a sym-
biosis of a host and a rDPA [126–128]. This partitioner (Figure 11.19c) was based
on the identification of usability of loop transformations [129–134]. This parti-
tioner was implemented via simulated annealing. An additional analyzer / profiler
(Figure 11.19c) was used for further optimization. Figure 11.19b shows the
flowware / configware compiler (a version of the DPSS) as explained above, which
was used as a subsystem inside the CoDe–X co–compiler. Figure 11.20a gives
some DPSS details. ALE–X is an intermediate form derived from the C language.

Language
category Software languages Flowware languages
Sequencing Read next instruction, goto Read next data item, goto (data

managed by (instruction address), jump address), jump (to data address),
(to instruction address), data loop, nesting, parallel loops,
instruction loop, nesting, no escapes, data stream branching
parallel loops, escapes,
instruction stream branching

Data manipulation Yes Not needed
State register Program counter Single or multiple data counter(s)
Instruction fetch Memory cycle overhead No overhead
Address Massive memory cycle overhead Drastically reduced overhead

computation

A newer version of DPSS includes KressArray Xplorer (Figure 11.20a), a
design space explorer to optimize KressArray DPU and rDPA architectures [98,
99]. As shown in Figure 11.20a mapping based on architecture description one
yields a different array configuration than that based on architecture description
two. Figure 11.20b illustrates the high flexibility of the KressArray family concept
accepted by Xplorer. Path width and mode of each nearest neighbor connection
can be individually selected. Also, a wide variety of second–level of back bus inter-
connect resources are available (not shown in the figure) featuring highly parallel
buses or bus segments. Other design space explorers include DSEs (Design Space
Explorers, survey: [88]), which use automatic guidance systems or design assistants
to give advice during the hardware (and morphware) design flow, e.g., by DPE
(Design Planning Environment) [136]; Clio [137] (both for VLSI); and DIA (for
ASICs) [138]. Platform Space Explorers (PSEs) are used to find an optimum vN
processor array, as with DSE [139], Intelligent Concurrent Object-oriented
Synthesis (ICOS) [140], and DSE for Multimedia Processors (DSEMMP) [141].

3.6 A Dichotomy of Two Machine Paradigms

Traditionally hardware experts have been needed for morphware application
development (Figure 11.7a, compare Section 2.4). Because of the rapid growth of

Morphware and Configware 369

It is time to bridge the hardware / software chasm. We need a Mead-&-
Conway–like edu rush [135].

370 Reiner Hartenstein

Mapper

ararchitecture
description

/

i3

i1

i0

i2

o1

o0

/

/

i3

i1

i0

i2

o1

o0

/

i3

i1

i2

í

o0

o1

/

i3

i1

i2

í0

o0

o1ararchitecture
description

d =
if
{

}
else
{

}

AL

d =
if
{

}
else
{

}

d = (i2* i2) + (i3*i3);
if (d ==0)
{o0= 0;
o1= 0;
}

else
{o0= ((i0*i2)+(i1* i3))/d;
o1= ((i1*i2)-(i0* i3))/d;
}

ALE-X Code

operator graph

ALE-X
Compiler

1

2

rDPU

16 8 32

2

24

b)

a)

n
architecture
description

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

+

+ =

−

?:

?:

− −

+

∗

∗

/

=

co

o0 =

i0

o0

o1

i1

i2

i3

complex
operator

o0 =f1(i0,i1,i2,i3)
o1 = f2(i0,i1,i2,i3)

i0i0i0

o0o0

o1o1

i1i1i1

i2i2i2

i3i3i3

i0i2i3 i1

o1 o0

∗

−

/

?: ?:

/=

+ +

∗ ∗ ∗ ∗ ∗

Figure 11.20. KressArray Xplorer (design space explorer [97]). a) Simplified example to illus-
trate platform space exploration by finding an optimized array depending on rDPU architecture
(1 or 2); b) KressArray family rDPU example architecture illustrating flexibility.

Morphware and Configware 371

Language
category

Software Languages Flowware Languages

Sequencing
managed by

Read next instruction,
goto (instruction address),
jump (to instruction address),
instruction loop, nesting, no
parallel loops, escapes,
instruction stream branching

Read next data item,
goto (data address),
jump (to data address),
data loop, nesting,
parallel loops, escapes,
data stream branching

Data manipu-
lation

Yes Not needed

State register Program counter
Single or multiple
data counter(s)

Instruction
fetch

Memory cycle overhead No overhead

Address com-
putation

Massive memory cycle
overhead

Drastically reduced overhead

Figure 11.21. Software languages versus flowware languages.

c)b)

resources
fixed

resources
variable

f)

resources
fixed

data
streams

algorithms
variable:

a)

resources
fixed

algorithms
variable

algorithms
fixed

algorithms
variable

Nick Tredennick

e)

data
streams

resources
variable

algorithms
variable:

d)

instruction
stream

resources
fixed

algorithms
variable:

Tredennick / Hartenstein

hardware

hardware

software

hardwareconfigware

flowware flowware

morphware:mprocessor:

Figure 11.22. Nick Tredennick’s digital system classification scheme. a) Hardwired; b) pro-
grammable in time; c) reconfigurable; d) von Neumann–like machine paradigm; e) reconfig-
urable antimachine paradigm, f) Broderson’s hardwired antimachine.

the amount of code to be implemented for embedded systems [68], CS graduates
are now also needed to handle the amount of work to be done. This expansion is
hardly possible without moving to higher abstraction levels. Because it focuses on
the design space, as the von Neumann paradigm does for software a second
machine paradigm is needed as a simple guideline to implement flowware (and
configware). This antimachine paradigm is summarized in Figure 11.23b–d. In
contrast to the von Neumann paradigm (Figure 11.23a), the sequencer (data
counter) has moved to the memory (as part of asM, an auto–sequencing memory
bank), while the DPU of the antimachine has no sequencer (Figure 11.23b). The
anti machine paradigm [141] also supports multiple data streams by multiple
asMs providing multiple data counters (Figure 11.23c, d). That’s why the antima-
chine has no von Neumann bottleneck. It does not need caches because of mul-
tiple data streams. Caches do not help because new data mostly have new values.

372 Reiner Hartenstein

(c)

(d)

M

M

I/O

I/O

MM MM M

I/O

MM MM M

(r)DPA

memory

(r)DPU

instruction
sequencer

data
path

(ALU)

CPU
(a)

(b)

data
path
unit

DPU or
DPU

data address
generator
(data sequencer)

memory

instruction
stream

data
stream

I/O asM*

*) auto-sequencing memory

data streams

data streams

anti machine

"von Neumann” machine

Introductory CS curricula need
the dichotomy of two machine
paradigms: Data-stream-based
(with data counter(s)) versus
instruction-stream-based (von
Neumanin, with program counter).

Figure 11.23. Illustrating basic machine paradigms (see Figure 11.19 legend). a) data–stream–
based antimachine with simple DPU; b) with rDPU and distributed memory architecture; c) with
DPU array (DPA or rDPA); d) von Neumann.

The enabling technologies for the antimachine architecture implementations are
available [107, 108, 110–114, 142–144]. Figure 11.26a shows details of an antima-
chine mapped onto a KressArray, and Figure 11.26b shows the details mapped
onto a PACT XPP array. The antimachine paradigm is useful for both mor-
phware-based machines and hardwired machines ([145], etc.). The antimachine
should not replace von Neumann: We need both machine paradigms. We need
morphware to strengthen the declining vN paradigm.

The antimachine is not a dataflow machine [146] because it had been established
by an old (now obsolete) research area that focused on an arbitration–driven
machine, which checks, for each operator, whether all operands are available. In
case of a reject, this operator can be resubmitted later. Such a machine operation
is indeterministic, and for an algorithm, the total order of execution cannot be pre-
dicted. The execution of the vN machine and of the antimachine, however, is
deterministic. However, the dataflow languages that have come along with this
indeterministic paradigm [147] could also be useful sources for the antimachine.

4 THE IMPACT OF MORPHWARE
ON COMPUTING SCIENCES

As labeled in Figure 11.24(3) the growth rate of algorithmic complexity [148]
is higher than that of Moore’s law (1), while the growth rate of microprocessor
integration density (2) is far behind Moore’s law. The improvement of computa-
tional efficiency in terms of mA needed per MIPS (5) has slowed down and is mov-
ing towards saturation. The performance requirements for wireless communication

Morphware and Configware 373

1013

1012

1011

1010

109

108

107

106

105

104

103

102

101

100

100

10

1

0.1

0.01

0.001
1960 1970 1980 1990 2010

StrongARM
SH7752

microprocessor / DSP

battery performance

mA/ MIP

2

3

4

5

6

1

 2000

wirelesswireless

Normalizsd

procesor speed

computational
efficiency

Trnsistors/chip

memory

4G

3G

2G

1G

Algorithmic Complexity
(Shannon’s Law)

Figure 11.24. Computational requirements are growing faster than Moore’s law.

(4) are rising by huge steps from device generation to device generation. Also, a
number of other application areas such as multimedia or scientific computing
(Section 2.3) suffer from a similar growth of requirements. Traditional HPC
needs too much power: about 100W per gigaFLOPS [55]. Forth coming micro-
processor generations promise only marginal performance improvements (Figure
11.25). A highly promising alternative is the microprocessor interfaced to a suit-
able coarse-grain array (Figure 11.17d), maybe for converting a PC into a PS (per-
sonal supercomputer). But such a PS will be accepted by the market only when it
is accompanied by a good cocompiler (Figure 11.19b and c), the feasibility of
which has been demonstrated [126–128].

The future of the microprocessor is no longer very promising: only marginal
improvements can be expected for performance area efficiency (Figure 11.25).
Power dissipation is becoming worse, generation by generation. The intel Itanium
2 on 130 nm technology with 410 million transistors dissipates 130 Watts at 1.3
Volts operating voltage [91] compared with 130 Watts at 1.6 Volts for the first
Itanium. Traditional HPC (High Performance Computing) using such or similar
microprocessors needs about 100W per gigaFLOPS [55]. Pipelined execution
units within vN machines yield only marginal benefit for the price of sophisti-
cated speculative scheduling strategies. Multithreading needs substantial over-
head for any kind of multiplexing [149]. All these bad signs get added to the old
limitations like the vN bottleneck [9, 147, 150–154]. Because of the increasing
weakness of the microprocessor, we need a new computing paradigm as an aux-
iliary resource to cooperate with the microprocessor (Figure 11.16b). Morphware
has arrived just in time. The future acceptance of the stand-alone operation of
morphware is not very likely. Adding an rDPA and a good cocompiler to a micro-
processor (Figure 11.17d) enables the PC to become a PS (personal super-
computer).

374 Reiner Hartenstein

3.5

2.5

3

2

1.5

1

0.5

0
1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0

performance

area efficiency

growth factor

Figure 11.25. Pollack’s Law (intel).

Morphware and Configware 375

distributed
memory

banks

b)

a)

M

M

M

M M

M

M

M

configured for
data sequencers

distrib.
memory
banks

unused

used for data
sequencers

used for
application

memory port

136 144 103 112 105 113

116102101104145137138

130 146 079 147 410 111 117

120150100134141140

075 132 078 048 063 085 080

062050106047061060070

135 143 133 107 032 034

115108114134142

SM SMG SMG St Map SWG

St

SMSMSWGDDcSM

DD

+ *

* *

+ * +

<*

*

****++

* + + + + +

+

+

**

*

*+

++

*

*

*

*

A
to

D
to

D
to

A
to

074

2

om

072

k2
ss

073

om

072

k1

ss

Figure 11.26. Antimachine mapped a) onto KressArray: synthesizable data sequencers mapped
by KressArray Xplorer together with an application (linear filter) onto a KressArray; b) onto
PACT XPP (another application example, distributed memory shown).

SoC design rapidly adopts a CS mentality [67]. The amount of program code
implemented for embedded systems doubles every 10 months and will reach 90%
of all codes being written by the year 2010 [68]. Currently, a typical CS graduate with
von–Neumann–only mentality does not have the skills needed for HW / CW / SW
partitioning decisions, nor the algorithmic cleverness needed to transfer an appli-
cation from software onto an FRGA. There is a trend to convey the codesign of
embedded computing systems from the domain of hardware expertise over to CS
methodologies. To cope with this challenge to CS curricula, the new antimachine
paradigm and new compilation methods are needed.

The hardware/software chasm in professional practice and in education is
causing damage amounting to billions of EURO each year worldwide. It is the
main reason for the productivity gap in embedded system design. Meanwhile, it is
widely accepted that morphware is a new computing paradigm. Morphware pro-
vides the enabling fundamentals to cope with this crisis. It is time to bridge the hard-
ware/software chasm. We need a Mead–&–Conway–like rush [135]. We are already
on the way. Scientific computing is using more and more Morphware. The inter-
national HPC conference IPDPS is coming along with the rapidly growing
Reconfigurable Architectures Workshop (RAW [155, 156]). The number of atten-
dees from HPC coming to conferences like FPL [20] and RAW is rapidly increas-
ing. Special interest groups of professional organizations are changing their
scope, e.g., PARS [32, 157–159].

There is sufficient evidence that morphware is breaking through as a new com-
puting paradigm. Breaking away from the current mindset requires more than
traditional technology development and infusion. It requires managerial com-
mitment to a long-term plan to explore new thinking [96]. Morphware has just
achieved its breakthrough as a second class of RAM–based programmable data
processing platforms—a counterpart of the RAM–based von Neumann para-
digm. Morphware combines very high flexibility and programmability with the
performance and efficiency of hardwired accelerators.

4.1 Reconfigurable Computing versus Parallel Processing

A comprehensive treatment of important issues in parallel computing is pro-
vided by The Sourcebook for Parallel Computing [150], a key reference giving a
thorough introduction to parallel applications, software technologies, enabling
technologies, and algorithms. Classical parallelism by concurrent computing has
a number of disadvantages over parallelism by antimachines having no von
Neumann bottleneck, as is discussed elsewhere [105, 114, 151, 152]. In parallel
computing, unfortunately, the scaling of application performance often cannot
match the peak speed the resource platforms seem to provide, and the program-
ming burden for these machines remains heavy. The applications must be pro-
grammed to exploit parallelism in the most efficient way possible. Today, the
responsibility for achieving the vision of scalable parallelism remains in the

376 Reiner Hartenstein

Static reconfiguration is straightforward and easy to understand. But
dynamic reconfiguration tends to be tricky and difficult to understand and to
debug.

hands of the application. Amdahl’s Law explains just one of several reasons for
inefficient resource utilization [153]. vN–type processor chips are almost all mem-
ory, because the architecture is wrong [105]. Here the metric for what is a good
solution has been wrong all along [105].

Reconfigurable versus parallel computing is also a very important issue for
terminology—to avoid confusion. At the circuit level, all transistors look the
same. So the question is how to distinguish switching within a reconfiguration
fabric from other switching activities in an IC. The antimachine model introduced
in section 3.6 is a good guideline for definition of the term reconfigurable.
Switching during run time of instruction–stream–based operations, such as,
addressing the register file is no reconfiguration. Switching inside a memory
address decoder is also not reconfiguration. What about microprogramming? Is it
reconfiguration? A microprogrammable instruction-set processor can be modeled
by the nested machine model, showing that a microinstruction stream is also an
instruction stream [149]. This means that running microcode is not reconfigura-
tion—it is execution of a micro instruction stream. The following definitions
will help us to avoid confusion. An important difference between reconfigurable
computing and concurrent computing is determined by the binding time (Figure
11.27). Another important criterion is whether the code semantics is structural or
procedural.

● The routing of data, addresses, and instructions during run time is not
reconfiguration.

● Loading an instruction–stream–driven device to the program memory is not
reconfiguration. It is procedural–style programming (instruction scheduling).

● Changing before their run time the effective structure of data paths and
other resources: is definitely reconfiguration.

● Depending on the method used, dynamic reconfiguration (RTR) may be a
hybrid, where parts of the system are running to manage the reconfigura-
tion of other parts. (This chapter has already mentioned that RTR is quite
a difficult subject.)

Within reconfigurable computing systems, the “instruction fetch” (i.e., setup
of all computational resources and of all related communication paths) happens

Morphware and Configware 377

microprocessor
parallel computer

Reconfigurable
Computing

hardwired

tine of ” instruction fetch“

run
time

loading
time

compile
time

fabrication
time
Figure 11.27. “Instruction Fetch.”

before run time (Figure 11.27). We call this reconfiguration because it changes the
effective structure of data paths and similar resources. Within concurrent com-
puting systems, however, the instruction fetch and setup of all related communi-
cation paths happens during run time (Figure 11.27), which we do not call
reconfiguration. The main difference with respect to performance is the amount of
switching activity at run time, which is low for reconfigurable systems and high
for instruction–stream–driven parallel computing. Depending on the application
and the architecture, massively parallel concurrent systems may suffer heavily
from communication congestion at run time. Because run time is more precious
than compilation time, this migration of switching activities over to compile time
or leading time is a welcome performance property of the morphware para-
digm. Unfortunately, the distinction between parallel and reconfigurable com-
puting is blurred by some projects labeled “reconfigurable” but that, in fact, deal
with classical parallel computing on a single chip.

4.2 New Taxonomy Needed

We now live in a time exhibiting a shortage of analysts writing good and com-
prehensive surveys. What is currently missing and should soon be the subject of
research is an all–embracing taxonomy of architectures and algorithms covering
both areas, classical parallel computing and supercomputing, as well as reconfig-
urable computing. We need a taxonomy of architectures providing guidance in
designing modern high–performance computing systems using resources from
both areas, or to decide which area’s resources provide the more promising alter-
natives. We also need all–embracing taxonomy algorithms to support the migra-
tion of applications or parts of applications from one area to another, for
instance, from a vN platform to fine-grain morphware, or to coarse–grain mor-
phware, or to mixed platforms. Such a taxonomy of algorithms should also sur-
vey the amount of interconnect resources needed by vN to morphware migration.
Depending on the algorithm class, the interconnect requirements may show
extremely wide variety. Some kinds of algorithms may be very easy to convert
into pipelines, whereas others, for instance the parallelized Viterbi algorithm, may
require enormously complex interconnect structures. A new taxonomy should be
developed rapidly that supports the algorithmic cleverness needed for a good
morphware–based designer productivity and for retrieving high–quality design
solutions.

We should not hesitate to reform CS and CSE curricula in order to prevent
disqualification in the job market in the near future. Introductory undergraduate
programming lab courses should not support the development of a procedural-
only mindset. Such courses should rather be a guide to the world of embedded
systems, requiring algorithmic cleverness for partitioning an application prob-
lem into cooperating software, flowware, and configware blocks. The exercises of
such courses should feature varieties of tasks, including several subtasks of dif-
ferent nature, such as, (1) software implementation of the problem, (2) flowware

378 Reiner Hartenstein

We need a new taxonomy of architectures and algorithms.

implementation of the problem, and (3) partitioning the problem into (3a) a soft-
ware part, (3b) a flowware part, and (3c) development of the interface needed for
its dual-paradigm coimplementation.

5 CONCLUSIONS

Morphware has become an essential and indispensable ingredient in SoC
(System on a Chip) design and beyond. Already HDLs like VHDL (which is an
Ada dialect), Verilog (a C dialect), and others are languages of higher abstraction
levels and should be taught also to CS students.

The hardware/software chasm in professional practice and in education causes
damage amounting to billions of EURO each year worldwide. It is the main rea-
son for the productivity gap in embedded system design. Meanwhile, it is widely
accepted that morphware is a new computing paradigm. Morphware provides the
enabling fundamentals to cope with this crisis.

But most current work on reconfigurable systems is specialized and is not
motivated by long-term aspects—wearing blinders that limit the view to par-
ticular applications, architectures, or tools. The long–term view, however,
shows a heavy impact of reconfigurable computing upon the intellectual infra-
structures of CS and CSE. This chapter has drafted a road map for upgrading
CS and CSE curricula and for bridging the gap between a procedural and a
structural mentality. The impact of morphware on CS will help to achieve this
by evolution, rather than by revolution. You all should be evangelists for the
diffusion of the visions needed to take this road and move out of the current
crisis.

REFERENCES

[1] http://www.darpa.mil/ipto/programs/pca/vision.htm
[2] http://morphware.net/
[3] A. Burks, H. Goldstein, J. von Neumann (1946): Preliminary discussion

of the logical design of an electronic computing instrument. US Army
Ordnance Department Report.

[4] H. Goldstein, J. von Neumann, and A. Burks (1947): Report on the math-
ematical and logical aspects of an electronic computing instrument.
Princeton Institute of Advanced Study.

[5] D. Jansen et al. (2003): The electronic design automation handbook,
Kluwer.

[6] P. Gillick (2003): State of the art FPGA development tools. Reconfigurable
Computing Workshop, Orsay, France.

[7] M. J. Smith (1997): Application specific integrated circuits, Addison Wesley.
[8] D. Chinnery and K. Keutzer (2002): Closing the gap between ASIC & cus-

tom, Kluwer.
[9] R. Hartenstein (invited paper) (1987): The Microprocessor is no more gen-

eral purpose Proc. IEEE International Symposium on Innovative Systems
(ISIS), Austin, Texas.

Morphware and Configware 379

[10] T. Makimoto (keynote) (2000): The rising wave of field–programmability,
Proc. FPL 2000, Villach, Austria, August 27–30, Springer-Verlag,
Heidelberg/New York.

[11] F. Faggin, M. Hoff, S. Mazor, and M. Shima (1996): The history of 4004.
IEEE Micro. Dec. 1996.

[12] J. Becker (invited tutorial) (2003): Reconfigurable computing systems.
Proceedings Escola de Microelectrônica da SBC–Sul (EMICRO 2003). Rio
Grande, Brasil, September.

[13] B. Lewis (2002): Gartner Dataquest, October 28.
[14] P. Athanas (1992): An adaptive Machine Architecture and Compiler for

Dynamic Processor Reconfiguration Ph.D thesis, Brown University,
Providence, Rhode Island.

[15] S. Vassiliadis, S. Wong, and S. Cotofana (2001): The MOLEN rm–coded
processor. Proc. FPL.

[16] M. Iliopoulos, T. Antonakopoulos (2000): Reconfigurable network proces-
sors based on field-programmable system level integrates circuits. Proc. FPL.

[17] http://www.fccm.org
[18] R. Hartenstein (1995): Custom computing machines. DMM’95, Smolenice,

Slovakia.
[19] http://www.springer.de/comp/lncs/
[20] http://fpl.org
[21] S. Hauck (1998): The role of FPGAs in reprogrammable systems. Proc. IEEE.
[22] V. Betz, J. Rose, and A. Marquardt (eds.) (1999): Architecture and CAD for

deep-submicron FPGas. Kluwer.
[23] S. Hoffmann (2003): Modern FPGAs, reconfigurable platforms and their

design tools. Proc. REASON summer school. Ljubljana, Slovenia, August
11–13.

[24] D. Soudris et al. (2002): Survey of existing fine grain reconfigurable hard-
ware platforms. Deliverable D9 AMDREL consortium (Architectures and
Methodologies for Dynamically Reconfigurable Logic).

[25] J. Oldfield and R. Dorf (1995): Field–programmable gate arrays:
Reconfigurable logic for rapid prototyping and implementation of digital
systems. Wiley-Interscience.

[26] http://www.xilinx.com
[27] http://www.altera.com
[28] V. George and J. Rabaey (2001): Low–energy FPGAs: Architecture and

design. Kluwer.
[29] Z. Salcic and A. Smailagic (1997): Digital systems design and prototyping

using field programmable logic. Kluwer.
[30] J. Hamblen and M. Furman (2001): Rapid prototyping of digital systems.

Kluwer.
[31] R. Männer and R. Spurzem et al. (1999): AHA-GRAPE: Adaptive hydro-

dynamic architecture–GRAvity PipE. Proc. FPL.
[32] G. Lienhart (2003): Beschleunigung hydrodynamischer N–Körper–simula-

tionen mit rekonfigurierbaren rechensystemen. Joint 33rd Speedup and 19th
PARS Workshop. Basel, Switzerland, March 19–21.

[33] N. Ebisuzaki et al. (1997): Astrophysical Journal, 480, 432.

380 Reiner Hartenstein

[34] T. Narumi, R. Susukita, H. Furusawa, and T. Ebisuzaki (2000): 46 Tflops
Special– purpose computer for molecular dynamics simulations WINE-2.
Proc. 5th Int’l Conf. on Signal Processing. Beijing 575–582.

[35] T. Narumi, R. Susukita, T. Koishi, K. Yasuoka, H. Furusawa, A. Kawai,
and T. Ebisuzaki (2000): 1.34 Tflops molecular dynamics simulation for
NaCl with a special–purpose computer: MDM. SC2000, Dallas.

[36] T. Narumi, A. Kawai, and T. Koishi (2001): An 8.61 Tflop/s molecular
dynamics simulation for NaCl with a special–purpose computer: MDM.
SC2001, Denver.

[37] T. Narumi, R. Susukita, T. Ebisuzaki, G. McNiven, and B. Elmegreen
(1999): Molecular dynamics machine: Special–purpose computer for
molecular dynamics simulations. Molecular Simulation, 21, 401–415.

[38] T. Narumi (1998): Special–Purpose Computer for Molecular Dynamics
Simulations Ph D dissertation, University of Tokyo.

[39] T. Thurner (2003): Trends in der automobile–elektronik; GI/ITG FG AH -
Zielplan–Workshop at FDL 2003. Frankfurt /Main, Germany.

[40] T. Kean (invited keynote) (2000): It’s FPL, Jim–but not as we know it!
Market opportunities for the New commercial architectures. Proc. FPL.

[41] R. Zeidman (2002): Designing with FPGAs and CPLDs. CMP Books.
[42] U. Meyer-Baese (2001): Digital signal processing with field programmable

gate arrays (With CD-ROM). Springer-Verlag.
[43] K. Coffman (1999): Real World FPGA design with verilog. Prentice Hall.
[44] R. Seals and G. Whapshott (1997): Programmable logic: PLDs and FPGAs.

McGraw-Hill.
[45] G. Martin and H. Chang (ed.) (2003): Winning the SoC revolution:

Experiences in real design. Kluwer.
[46] G. Ou and M. Potkonjak (2003): Intellectual property protection in VLSI

design. Kluwer.
[47] P. J. Ashenden (2001): The designer’s guide to VHDL (2nd Ed.), Morgan

Kaufmann.
[48] http://www.mentor.com/fpga/
[49] http://www.synplicity.com/
[50] http://www.celoxica.com/
[51] http://www.dac.com
[52] http://www.mathworks.com/products/connections/product_main.

shtml?prod_id=304
[53] http://www.celoxica.com/methodology/matlab.asp
[54] http://www.mathworks.com/
[55] I. Jones (2003): DARPA funded Directions in embedded computing.

Reconfigurable Computing Workshop. Orsay, France, Sept.
[56] T. Grötker et al. (2002): System design with system-C. Kluwer.
[57] http://www.synopsys.com/products/concentric_systemC/cocentric_

systemC_ds.html
[58] http://www.systemc.org/
[59] http://www.synopsys.com/
[60] J. Hoe, Arvind: Hardware synthesis from term rewriting systems. Proc.

VLSI’99. Lisbon, Portugal.

Morphware and Configware 381

[61] M. Ayala-Rincón et al. (2003): Efficient computation of algebraic opera-
tions over dynamically reconfigurable systems specified by rewriting–logic
environments. Proc. 23rd SCCC. IEEE CS press.

[62] M. Ayala-Rincón et al. (2003): Architectural specification, exploration and
simulation through rewriting-logic. Colombian J. Comput. 3(2), 20–34.

[63] M. Ayala-Rincón et al. (2003): Using rewriting–logic notation for func-
tional verification in data–stream–based reconfigurable computing. Proc.
FDL 2003 (Forum on Specification and Design Languages). Frankfurt
/Main, Germany, September 23–26.

[64] P. Bjureus et al. (2002): FPGA Resource and timing estimation from mat-
lab execution traces 10th Int’l Workshop on Hardware/Software Codesign.
Estes Park, Colorado, May 6–8.

[65] V. Baumgarten, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M.
Weinhardt (2003): PACT XPP -A self–reconfigurable data processing archi-
tecture. The J. Supercomputing. 26(2), Sept. 2003, 167–184.

[66] J. Rabaey (1997): Reconfigurable processing: The solution to low-power
programmable DSP. Proc. ICASSP.

[67] http://public.itrs. net/Files/2002Update/2002Update.htm
[68] N. N., Department of Trade and Industry (DTI), London, UK, 2001
[69] H. Simmler et al. (2000): Multitasking on FPGA coprocessors. Proc. FPL
[70] H. Walder and M. Platzner (2003): Reconfigurable hardware operating sys-

tems: From design concepts to realizations. Proc. ERSA 2003.
[71] H. Walder and M. Platzner (2004): A runtime environment for reconfig-

urable hardware operating systems. Proc. FPL 2004.
[72] R. Hartenstein (invited paper) (2002): Reconfigurable computing: Urging a

revision of basic CS curricula. Proc. 15th Int’l Conf. on Systems Engineering
(ICSENG02). Las Vegas, USA, 6–8 Aug. 2002.

[73] course ID=27 in: http://vlsil.engr.utk.edu/~bouldin/C OURSES/HTML/
courselist.html

[74] C. Stroud et al. (2002): BIST-based diagnosis of FPGA interconnect. Proc.
IEEE Int’l. Test Conf.

[75] P. Zipf (2002): A Fault Tolerance Technique for Field–Programmable Logic
Arrays Dissertation. Univ. Siegen, Germany.

[76] http.//directreadout.gsfc.nasa.gov
[77] M. Abramovici and C, Stroud (2000): Improved BIST–based diagnosis of

FPGA logic blocks. Proc. IEEE Int’l Test Conf.
[78] http://www.xilinx.com/events/docs/e sc_sf2001_microblaze.pdf
[79] http://www.leox.org/
[80] J. Becker and M. Vorbach (2003): An industrial/academic configurable sys-

tem– on–chip project (CSoC): Coarse.grain XPP/Leon–based architecture
integration. DATE.

[81] http://www.gaisler. com/leonmain.html
[82] C. Mead and L. Conway (1980): Introduction to VLSI systems design.

Addison-Wesley.
[83] R. Kress et al.: A datapath synthesis system (DPSS) for the reconfigurable

datapath architecture. Proc. ASP-DAC¢95
[84] http://pactcorp.com

382 Reiner Hartenstein

[85] V. Baumgarten et al. (2001): PACT XPP – A self–reconfigurable data pro-
cessing architecture. ERSA.

[86] J. Becker, A. Thomas, M. Vorbach, and G. Ehlers (2002): Dynamically
reconfigurable systems–on–chip: A core-based industrial/academic SoC
synthesis project. IEEE Workshop Heterogeneous Reconfigurable SoC.
Hamburg, Germany, April 2002.

[87] J. Cardoso and M. Weinhardt (2003): From C programs to the configure–exe-
cute model. DATE.

[88] R. Hartenstein (2001): A decade of research on reconfigurable architec-
tures. DATE.

[89] W. Mangione-Smith et al. (1997): Current issues in configurable computing
research. IEEE Computer, Dec 1997.

[90] J. Becker, T. Pionteck, and M. Glesner (2000): An application–tailored
dynamically reconfigurable hardware architecture for digital baseband pro-
cessing. SBCCI.

[91] M. Sauer (2003): Issues in concept development for embedded wireless
SoCs. GI/ITG FG AH -Zielplan-Workshop. Frankfurt/Main, Germany.

[92] A. Wiesler, F. Jondral (2002): A software radio for second and third gener-
ation mobile systems. IEEE Trans. on Vehicular Technology. 51, (4), July.

[93] N. Petkov (1992): Systolic parallel processing. North-Holland.
[94] M. Foster, H. Kung (1980): Design of special-purpose VLSI chips:

Example and opinions. ISCA.
[95] H. T. Kung (1982): Why systolic architectures? IEEE Computer 15(1),

37–46
[96] http://directreadout.gsfc.nasa.gov
[97] U. Nageldinger et al. (2000): Generation of design suggestions for coarse-

grain reconfigurable architectures FPL 2000.
[98] U. Nageldinger (2001): Coarse–grained Reconfigurable Architectures Design

Space exploration Dissertation, – downloadable from [99]
[99] http://xputers.informatik.uni-kl.de/papers/publications/Nageldinger

Diss.html
[100] J. Frigo et al. (2001): Evaluation of the streams–C C–to–FPGA compiler:

An applications perspective. FPGA.
[101] T.J. Callahan: Instruction–level parallelism for reconfigurable computing.

FPL¢98
[102] E. Caspi et al. (2000): Extended version of: Stream computations organized

for reconfigurable execution (SCORE). FPL ¢2000.
[103] T. Callahan (2000): Adapting software pipelining for reconfigurable com-

puting. CASES
[104] H. Kwok-Hay So, BEE (2000): A Reconfigurable Emulation Engine for

Digital Signal Processing Hardware M.S. thesis, UC Berkeley.
[105] C. Chang, K. Kuusilinna, R. Broderson (2002): The biggascale emulation

engine. FPGA.
[106] B. Mei et al. (2003): Exploiting loop–level parallelism on coarse–grained

reconfigurable architectures using modulo scheduling. DATE 2003.
[107] M. Herz et al. (invited paper) (2002): Memory organization for data–

stream–based reconfigurable computing ICECS.

Morphware and Configware 383

[108] M. Herz et al. (1997): A novel sequencer hardware for application specific
computing. Proc. ASAP.

[109] H. Reinig et al. (1995): Novel sequencer hardware for high–speed signal
processing. Proc. Design Methodologies for Microelectronics, Smolenice,
Slovakia.

[110] M. Herz (2001): High Performance Memory Communication Architectures
for Coarse-grained Reconfigurable Computing Systems Ph.D. thesis,
Kaiserslautern – downloadable from: [111]

[111] http://xputers.informatik.uni-kl.de/papers/publications/HerzDiss.html
[112] F. Catthoor et al. (2002): Data access and storage management for embed-

ded programmable processors. Kluwer.
[113] F. Catthoor et al. (1998): Custom memory management methodology

exploration of memory organization for embedded multimedia systems
design. Kluwer.

[114] M. Weber et al. (1988): MOM–map oriented machine. In (E. Chiricozzi,
A. D’Amico (ed.) Parallel Processing and Applications. North-Holland.

[115] A. Hirschbiel et al. (1987): A flexible architecture for image processing.
Microprocessing and Microprogramming. 21, 65–72.

[116] A. Ast et al. (1994): Data–procedural languages for FPL–based machines.
FPL’94.

[117] E. Mirsky and A. DeHon (1996): MATRIX: A reconfigurable computing
architecture with configurable instruction distribution and deployable
resources. Proc. IEEE FCCM’96. April 17–19 Napa, CA, USA.

[118] E. Waingold et al. (1997): Baring it all to software: RAW machines. IEEE
Computer. 86–93.

[119] J. Becker et al. (2000): Architecture and application of a dynamically recon-
figurable hardware array for future mobile communication systems. Proc.
FCCM’00. April 17–19, Napa, CA, USA.

[120] C. Ebeling et al. (1996): RaPiD: Reconfigurable pipelined datapath. Proc.
FPL’96.

[121] S. C. Goldstein et al. (1999): PipeRench: A coprocessor for streaming mul-
timedia acceleration. Proc. ISCA’99, May 2–4 Atlanta.

[122] D. Chen and J. Rabaey (1990): PADDI: Programmable arithmetic devices
for digital signal processing. VLSI Signal Processing IV, IEEE Press.

[123] D. C. Chen and J. M. Rabaey (1992): A reconfigurable multiprocessor IC
for rapid prototyping of algorithmic-specific high–speed DSP data paths.
IEEE J. Solid–State Circuits. 27(12).

[124] A. K. W. Yeung and J. M. Rabaey (1993): A reconfigurable data–driven
multiprocessor architecture for rapid prototyping of high throughput DSP
algorithms. Proc. HICSS-26. Jan. Kauai, Hawaii.

[125] N. Tredennick (1995): Technology and business: Forces driving micro-
processor evolution. Dec. Proc. IEEE.

[126] J. Becker et al. (1998): Parallelization in co–compilation for configurable
accelerators. Proc. ASP-DAC’98.

[127] J. Becker (1997): A partitioning compiler for computers with Xputer–based
Accelerators Ph.D. Dissertation, University of Kaiserslautern. download-
able from [128].

384 Reiner Hartenstein

[128] http://xputers.informatik.uni-kl.de/papers/publications/BeckerDiss.pdf
[129] L. Lamport (1974): The parallel execution of Do-loops. C. ACM 17, 2, Feb.
[130] D. Loveman (1977): Program improvement by source–to–source transfor-

mation. J. ACM 24, 1.
[131] W. Abu-Sufah, D. Kuck, and D. Lawrie (1981): On the performance

enhancement of paging systems through program analysis and transforma-
tions. IEEE-Trans. C-30(5).

[132] U. Banerjee (1979): Speed–up of ordinary programs; Ph.D. Thesis,
University of Illinois at Urbana-Champaign, Oct. DCS Report No.
UIUCDCS-R-79-989.

[133] J. Allen, K. Kennedy (1984): Automatic loop interchange. Proc. ACM SIG–
PLAN’84, Symp. on Compiler Construction, Montreal, Canada, SIGPLAN
Notices June 19, 6.

[134] J. Becker and K. Schmid (1998): Automatic parallelism exploitation for
FPL–based accelerators. Hawaii Int’l. Conf. on System Sciences (HICSS’98),
Big Island, Hawaii.

[135] http://xputers.informatik.uni-kl.de/staff/hartenstein/eishistory_en.html
[136] D. Knapp et al. (1991): The ADAM design planning engine. IEEE Trans

CAD.
[137] J. Lopez et al. (1992): Design assistance for CAD frameworks. Proc.

EURODAC’92. Hamburg, Sept. 7–10, Germany.
[138] L. Guerra et al. (1998): A methodology for guided behavioral level opti-

mization. Proc. DAC’98, June 15–19, San Francisco.
[139] C. A. Moritz et al. (1999): Hot Pages: software caching for RAW micro-

processors. MIT. LCS-TM-599, Aug. Cambridge, MA.
[140] P.-A. Hsiung et al. (1999): PSM: An object–oriented synthesis approach to

multiprocessor design. IEEE Trans VLSI Systems 4/1. March.
[141] J. Kin et al. (1999): Power efficient media processor design space explo-

ration. Proc. DAC’99. June 21–25, New Orleans, http://anti-machine.org.
[142] K. Schmidt et al. (1990): A novel ASIC design approach based on a new

machine paradigm. J. SSC -invited reprint from Proc. ESSCIRC.
[143] W. Nebel et al. (1984): PISA, a CAD package and special hardware for

pixel-oriented layout analysis. ICCAD.
[144] R. Hartenstein et al. (1990): A novel paradigm of parallel computation and

its use to implement simple high performance hardware. Future Generation
Computer Systems 791/92, -invited reprint fr. Proc. InfoJapan’90 (Int’l
Conf. Commemorating the 30th Anniversary Computer Society of Japan),
Tokyo, Japan.

[145] C. Chang et al. (2001): The biggascale emulation engine (Bee). summer
retreat UC Berkeley.

[146] D. Gajski et al. (1982): A second opinion on dataflow machines. Computer,
Feb.

[147] J. Backus (1978): Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs. Communications of
the ACM, August, 20(8), 613–641.

[148] J. Rabaey (keynote) (2000): Silicon Platforms for the Next Generation
Wireless Systems. Proc. FPL.

Morphware and Configware 385

[149] G. Koch et al. (1975): The universal bus considered harmful. Proc. 1st
EUROMICRO Symposium on the microarchitecture of computing systems.
Nice, France, North Holland.

[150] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and
A. White (ed.) (2002): The sourcebook of parallel computing. Morgan
Kaufmann.

[151] Arvind et al. (1983): A Critique of Multiprocessing the von Neumann
Style. Proc. ISCA.

[152] G. Bell (keynote) (2000): All the chips outside. The architecture challenge.
Proc. ISCA.

[153] G. Amdahl (1967): Validity of the single processor approach to achieving
large-scale computing capabilities. AFIPS Conference Proceedings. (30).

[154] J. Hennessy (1999): ISCA25: Looking backward, looking forward. Proc.
ISCA.

[155] http://www.ece.lsu.edu/vaidy/raw04/
[156] http://xputers.informatik.uni-kl.de/raw/index_raw.html
[157] http://www.iti.uni-luebeck.de/PARS/
[158] http://www.speedup.ch/
[159] http://www.hoise.com/primeur/03/articles/monthly/AE-PR-04-03-61.html

386 Reiner Hartenstein

Chapter 12

EVOLVING HARDWARE
Timothy G. W. Gordon and Peter J. Bentley
University College London

1 INTRODUCTION

In the hundred years since John Ambrose Fleming invented the diode at
University College London and gave birth to the field, electronics has become a
well-understood engineering discipline. This solid grounding of knowledge has
allowed the commercial semiconductor industry to grow at a remarkable rate in
the intervening years, both in volume and in the complexity of hardware. As a
result, the now-famous Moore’s Law has held true for almost forty years [85]. But
problems are beginning to emerge. For the industry to flourish, the growth in
hardware complexity must continue, but it is becoming clear that current design
methodologies applied to silicon-based technologies can no longer support the
present rate of scaling.

In the medium term, the requirement for new and innovative designs is set to
grow as it becomes necessary to squeeze more and more out of the technologies
we already have. The long-term solution is likely to lie in the development of new
circuit medium technologies. But even when new circuit media do eventually
become commercially feasible, they are likely at best to require features in our
designs that our current circuit methodologies are not aimed at providing, such as
fault tolerance, and at worst require a complete rewriting of the design rules.
So it is clear that there is a significant requirement for innovative circuit designs
and design methodologies, and the cost of developing these in man-hours of
research and design is likely to be considerable.

Over the past decade, a new field applying evolutionary techniques to hard-
ware design and synthesis has emerged. These techniques may be able to give us
a new option. We can use evolution to design automatically, or at least aid in the
design and realization of innovative circuits. This field has been coined evolution-
ary electronics, hardware evolution, and evolvable hardware, amongst others. Here
it will be referred to as evolvable hardware.

The field of evolvable hardware draws inspiration from a range of other fields,
as shown in Figure 12.1. For many years computer scientists have modeled their
learning algorithms on self-organizing processes observed in nature. Perhaps the
most well-known example is the artificial neural network (ANN) [93]. Others
include the collective decision-making of ant colonies [12], the adaptive ability of
immune systems [98], the growth of self-similar structures in plants [64], and of
course Darwinian evolution [19]. Collectively, work on such algorithms is known
as bio-inspired software, which is shown at the intersection of Computer Science
and Biology in Figure 12.1.

Ideas from nature have also been used in electronic engineering for many
years; for instance, simulated annealing algorithms are used in many circuit par-
titioning algorithms. (Simulated annealing algorithms are based on the physical
phenomenon of annealing in cooling metals.) Interest in using ideas from nature
has grown in recent years to the extent that the field of bio-inspired hardware is
now firmly established in its own right. This field uses many of the ideas adopted
from nature by software developers, and some new ones, to allow fault tolerance,
reconfigurability, and even automatic circuit design in modern hardware. The
field of evolvable hardware is shown at the intersection of Computer Science,
Biology, and Electronic Engineering in Figure 12.1. The focus of this chapter is
in this central area.

The interrelationships between areas of hardware design and synthesis, and
evolutionary computation are shown in Figure 12.2. Digital hardware synthesis is
traditionally a combination of two processes. First, a human-designed circuit
specification is mapped to a logical representation through the process of logic
synthesis. This is represented as the lower right-hand set in Figure 12.2. This
netlist then undergoes further combinatorially complex optimization processes in
order to place and route the circuit to the target technology. This area is repre-
sented as the lower left-hand set in Figure 12.2. Many modern electronic
design automation (EDA)1 tools use intelligent techniques in these optimization
algorithms, and research into the use of evolution for these purposes abounds [18,
74]. Hence we see the set representing evolutionary design intersect with that of

388 Timothy G. W. Gordon and Peter J. Bentley

Biology

Bio-
inspired

Hardware

Evolvable
HardwareSystems

Engineering

Computer
Science

Electronic Engineering

Bio-
inspired
Software

Figure 12.1. The field of evolvable hardware originates from the intersection of three sciences

technology mapping, placement, and routing in Figure 12.2 to yield evolutionary
mapping, placement, and routing. However, circuit design, along with some opti-
mization decisions during the synthesis process, is still in the domain of the
human designer. It has only been recently that significant interest has developed
in implementing evolutionary techniques higher up the VLSI design flow at cir-
cuit design, a move that can allow evolution to generate creative designs that can
rival or improve on human ones. The most widespread examples of this have been
to use evolution for the design of logic, as represented by the intersection of the
areas of evolutionary design and logic synthesis in Figure 12.2. Some of the work
in this intersection falls into the field of evolvable hardware. However, much work
at the logical level is carried out in the spirit of evolving programs or other forms
of logic, and so is beyond the scope of this chapter.

The rest of the chapter is organized as follows. Section 2 begins with a brief
discussion of how evolvable hardware can be realized, and surveys its areas of
application. The field is still young, and there are several problems that must be
tackled before large-scale commercial use of the techniques will become viable.
Section 3 discusses key past and current research into evolvable hardware by
focusing on the two largest and most actively researched of these problems,
namely, generalization and evolvability, along with the most important benefit of
evolvable hardware in our eyes: innovation. We use “level of abstraction,” “learn-
ing bias,” and “evolving platform” as the main features to map out this research.

A distinction commonly made is the difference between extrinsic evolution,
where candidate circuit designs are evaluated in simulation, and intrinsic evolu-
tion, where candidate circuit designs are synthesized and evaluated directly on
programmable logic devices (PLDs). In the case of circuits evolved intrinsically,
the choice of platform used can have a profound effect on evolution’s perform-
ance. Criteria for choosing a suitable platform are discussed at the end of Section
3, along with an appraisal of platforms that have been used for evolvable hard-
ware to date. Section 4 presents some of our recent work into a new branch of
evolvable hardware, developmental hardware evolution, which has the potential
to solve many of the evolvability issues in the field. Finally, a summary will be
given in Section 5.

Evolving Hardware 389

Evolutionary
Design

Evolutionary Logic
Design

Logic
SynthesisHardware

Synthesis

Evolvable
Hardware

Evolutionary
Map, Place,

Route

Technology Map,
Place, Route

Figure 12.2. Evolvable hardware can include aspects of hardware design and optimization
techniques

2 EVOLVABLE HARDWARE IN PRACTICE

Evolutionary Computation is the field of solving problems using search algo-
rithms inspired by biological evolution. These algorithms are collectively known
as evolutionary algorithms. They model the principles of selection, variation, and
inheritance that are the basis of the theory of Darwinian evolution, and have
been applied to a huge spectrum of problems, from classic optimization [52] to
the creation of original music [5]. Typically they work on a population of
prospective solutions in parallel. Each member of the population is evaluated
according to a problem-specific fitness function that tests how well each solution
performs a required task and then assigns that solution a fitness score. A selection
operator then probabilistically chooses solutions with higher fitness from the
population to form the basis of a new generation of solutions. These solutions are
then varied, commonly by randomly altering each solution to model mutation
and/or by recombining two solutions in some way to model sexual reproduc-
tion—a procedure commonly called crossover. The process is then iterated for a
number of generations until a stopping condition is met, for instance, the discov-
ery of a solution with a given fitness or the completion of a predefined number
of generations.

This chapter concerns the application of evolutionary algorithms to the auto-
matic design of electronic circuits. In order to familiarize the reader with how cir-
cuits might be evolved, an example is now presented.

2.1 An Example of Evolvable Hardware

The class of evolutionary algorithms most commonly used in evolvable hard-
ware is the genetic algorithm. Most commonly, these operate on a fixed-size pop-
ulation of fixed-length binary strings called chromosomes. Each chromosome
encodes a common set of parameters that describe a collection of electronic com-
ponents and their interconnections. Thus, each set of parameter values represents
an electronic circuit. The set of all possible combinations of parameter values
defines the search space of the algorithm, and the circuits that they represent
define the solution space of the algorithm. Traditionally, every parameter set in
the search space encodes a unique circuit description in the solution space. For
every chromosome/circuit pair, the chromosome is called the genotype and the cir-
cuit is called the phenotype.

An example of evolvable hardware is shown in Figure 12.3. The algorithm
begins by initializing the bits of each chromosome with random values. The chro-
mosomes are then evaluated in turn by creating a circuit based on the parameter
values, either as a simulated model of the circuit or as a concrete circuit embod-
ied in reconfigurable hardware (an example of which is shown in Section 5). The
circuit’s fitness for performing the target task is then measured by passing to it a
set of test values and evaluating the veracity of the circuit’s output. The selection
operator then probabilistically populates the next generation of chromosomes
such that chromosomes with high fitness are more likely to be selected. There are
many methods to achieve this, a common approach being two-member tourna-
ment selection [19]: the operator selects two individuals at random and compares
their fitness. Only the individual with the highest fitness is inserted into the next

390 Timothy G. W. Gordon and Peter J. Bentley

generation. If the two have equal fitness, the individual to be inserted is chosen at
random. Once the new population has been selected, it is varied. Common varia-
tion operators are one-point crossover and point mutation [19]. One-point
crossover recombines two chromosomes by choosing a position at random along
the chromosome and swapping every bit beyond this point between the strings. It
is stochastically applied according to a fixed probability. Point mutation inde-
pendently inverts each bit in the chromosome according to a fixed probability.
These operators are applied to all members of the new population. Often, in addi-
tion to these operators, the best member of the original population is copied into
the new population unchanged, a strategy called elitism [19]. The new population
is now complete, and the algorithm then iterates the steps of evaluation, selection,
and variation until a circuit that functions adequately is found or a prespecified
number of generations is completed.

Using evolution to design circuits in this way brings a number of important
benefits to electronics, allowing design automation and innovation for an increas-
ing range of applications. Some of the more important areas where evolvable
hardware can be applied include the following:

Evolving Hardware 391

0 10110 101 1

1 10010 100 1

1 10111 010 0

1 10100 110 0

1 11010 010 1

1 10010 010 0

1 10100 110 0

Fitness

30

14

14

28

18

0 10110 101 1

1 10111 100 1

1 11010 010 1

1 11010 010 1

1 10111 100 1

1 111 11 010 1

1 010 10 100 1

1 110 01 000 1

1 110 10 100 0

2. Evaluate Circuit

3. Select Breeding Pairs

1. Create New Population

4. Cross Over

5. Mutate6. Insert Into New Population

Iterate until
stopping conditions

are met

Figure 12.3. An example of evolvable hardware

● Automatic design of low-cost hardware

● Coping with poorly specified problems

● Creation of adaptive systems

● Creation of fault-tolerant systems

● Innovation in poorly understood design spaces

The remainder of this section will explore research in these areas in a little
more detail.

2.2 Automatic Design of Low-Cost Hardware

Automation has been used in circuit synthesis for many years. Traditional digi-
tal design involves the mapping of an abstract human-designed circuit to a specific
technology through the application of simple minimization, placement, and rout-
ing rules. As our capability for synthesizing more complex circuits has grown, so has
the need for more resourceful processes to handle the combinatorially complex
mapping procedures. Intelligent techniques such as simulated annealing [97] and
ANNs [133] have been routinely used to search these exploding spaces of mappings
and minimizations for some time. More recently, so has evolution [18, 74].

Evolvable hardware allows us to take the automation of circuit production a
step further, automating how to generate the actual circuit design from a behav-
ioral specification and simultaneously automating the circuit synthesis process.
The behavioral specification presented to the evolvable system may be as simple
as a series of circuit input signals that the system must match to a corresponding
predefined set of output signals, although other representations of circuit behav-
ior may be used, often including environmental conditions or simulated error test
cases or depending on the requirements of the circuit. How the representation
and contents of the circuit specification affect the functionality of circuits is cur-
rently the center of much interest and is discussed in more detail under the head-
ing of generalization in Section 3.

In applications where a suitable behavioral specification has been found,
evolvable hardware can remove the necessity for a designer, or at least reduce the
design time that is required, thus reducing production costs. This advantage is
particularly useful when design costs are a significant proportion of total cost, for
instance for hardware that is produced in low volumes. Evolvable hardware even
allows us to evolve designs to suit an individual. Many medical applications have
not been suitable for hardware solutions owing to the expense of personalization.
Evolvable hardware allows cheap, fast solutions to such applications. For exam-
ple, a system has been developed to control a prosthetic hand by recognition of
patterns of myoelectric signals in a user’s arm [45]. The implementation is an
entirely hardware-based solution with reconfigurable logic, a hardware genetic
algorithm unit, a CPU core for evaluation, a chromosome memory, and a ran-
dom number generator implemented on the same integrated chip.

Evolution can also be used to reduce production costs on larger scales by opti-
mizing circuits that fail to meet their required specifications due to variations dur-
ing fabrication. For instance, [88] corrected variations in the frequency of

392 Timothy G. W. Gordon and Peter J. Bentley

intermediate frequency filters by using evolution to control the output of a series
of transconductance amplifiers. This is a useful tool in the case of analogue cir-
cuit designs, where individual component behaviors can vary quite markedly, and
in particular for designs where power and size are important, since tuning the
components in this way allows smaller, low-power components to be used. In
light of this, intermediate frequency filters tuned using this technique are already
in use in commercial mobile communications products [87]. The idea of using
evolution to counteract fabrication variations has also been explored for digital
circuits. For instance, Takahashi, Kasai, et al. incorporated programmable delay
elements in the registers of a memory test pattern generator [112], thus allowing
the evolved circuits to compensate for not only clock skew but also any variations
in data delays throughout the circuit. Simulation results demonstrated that an
almost 50% improvement in production yield was possible using this method.
Such improvements in yield can reduce production costs considerably.

2.3 Poorly Specified Problems

For some problems, it is difficult to specify functionality succinctly but easy to
specify a behavioral description. Computer scientists have used evolution to han-
dle problems with such poor specifications for many years. ANNs have been
applied to problems such as noisy pattern recognition [93]. Evolvable hardware
techniques have similarities with and advantages over ANNs, as noted by Yao
and Higuchi [132]. Both can be feed-forward networks, and both can learn non-
linear functions successfully. But, in addition, hardware is by nature a fast
medium, and in many cases, such as when restricted to feed-forward networks,
evolved hardware designs are more easily understood than ANNs. Therefore this
approach is often suited to problems usually tackled with ANNs but that require
fast operation and good solution tractability. Evolvable hardware suitable for
such purposes has already been developed for industrial use [88].

One problem where evolved hardware can rival ANNs is pattern recognition.
For example, Sekanina has successfully evolved image noise filters that rival the
best traditionally designed circuits [100]. One of the advantages of evolutionary
systems is the ease with which learning biases can be incorporated. For instance,
Higuchi et al. have evolved high-speed robust classifiers [34, 42] Good general-
ization characteristics were incorporated into the solutions by specification of a
bias based on machine learning theory. More recently, do Amaral et al. evolved
fuzzy functions that can be used as building blocks in the construction of fuzzy
logic controllers [11].

2.4 Adaptive systems

With sufficient automation (i.e., real-time synthesis provided by PLDs), evolv-
able hardware has the potential to adapt autonomously to changes in its environ-
ment. This ability can be very useful in situations where real-time manual control
over systems is not possible, such as on deep space missions. It could be particu-
larly useful when unexpected conditions are encountered.

Stoica et al. have noted that current lack of validation for online evolutionary
systems means that critical spacecraft control systems, and other mission-critical

Evolving Hardware 393

systems, cannot currently be placed under evolutionary control [104]. Greenwood
and Song have proposed using evolutionary techniques in conjunction with for-
mal verification techniques to circumvent this problem [22]; however, to date only
noncritical systems such as sensor processing systems have been explored, for
example, adaptive data compression systems [15]. Other systems that could bene-
fit from the ability to autonomously evolve are power management systems and
controller deployment mechanisms for booms, antennae, etc. [91]

Several other adaptive hardware compression systems have also been devel-
oped. Two systems have been developed at the Electrotechnical Lab. (ETL), both
using predictive coding. The first predicts each pixel, using a standard prediction
function, from a subset of surrounding pixels selected by a genetic algorithm. It
has proved successful in compressing bi-level images for high precision elec-
trophotographic printers, outperforming JBIG, the ISO standard for bi-level
image compression, by an average of around 50%. Since then the method has
been proposed as a new ISO standard [94]. The second approach breaks images
into smaller sections and uses evolution to model a function for each section [95].
They also suggested that a similar system could be used for real-time adaptive
compression of video signals. A similar technique was used by Sekanina to evolve
adaptive circuits that filter image noise in changing environments [99].

Many other adaptive filters have been evolved, including digital finite impulse
response (FIR) filters, commonly used in audio applications such as noise and
echo cancellation [125, 131] and their more complex but less reliable counterparts,
infinite impulse response (IIR) filters [100]. Analogue adaptive filters have also
been evolved. For example, Zebulum et al. presented signal extraction filters
capable of adaptively amplifying the strongest component of the input signal
while attenuating others, thus improving a hypothetical signal/noise ratio [135].
Through evolution, these circuits could be adapted to new input profiles.

Online scheduling hardware has also been developed, most notably adaptive
cell scheduling systems for ATM networks, that responds to changes in traffic
flow [59, 65]. In a related field, Damiani et al. have developed an online adaptive
hashing system that could be used to map cache blocks to cache tags dependent
on the access patterns of the data over time [9].

2.5 Fault-Tolerant Systems

Ongoing advances in component miniaturization have not been complemented
by improvements in fabrication reliability. This means that many modern VLSI
circuit designs must be tolerant to fabrication faults. It is expected that this issue
will become even more important in future circuit technologies. Miniaturization
also exposes components to a greater risk of operational faults—for instance, due
to the effects of power fluctuations or ionizing radiation. Reliability is of para-
mount importance for many systems, such as medical equipment and transport
control systems. Military and spacecraft systems are particularly susceptible to
reliability problems, as they are regularly subjected to harsh conditions. Current
techniques for fault tolerance rely on the presence of additional redundant com-
ponents and thorough testing, either at the point of manufacture or online, and
add considerable cost and design complexity. Fortunately, evolvable hardware pro-
vides a number of mechanisms to introduce fault tolerance into circuits.

394 Timothy G. W. Gordon and Peter J. Bentley

A class of adaptive system that was not mentioned in Section 2.4 comprises
circuits that can adapt to faults in their own hardware, thus providing a mecha-
nism of fault recovery. An early demonstration of this ability was that of Higuchi
et al. [34], where an adaptive hardware system learned the behavior of an expert
robot controller by example using a genetic algorithm. More recently, Vigander
demonstrated that a simple evolutionary system could restore most but not all
functionality to a 4-bit × 4-bit multiplier that had been subjected to random faults
[130]. Complete functionality could be restored by applying a voting system to
select between several alternative circuits that had been repaired by evolution.
Sinohara et al. used a multiobjective evolutionary algorithm that allowed essen-
tial functionality to be restored at the expense of secondary behavior that was not
deemed to be important by the designer, such as power dissipation [102]. This
algorithm was demonstrated in the repair of NOR gates and inverters. Hounsell
and Arlsan have explored the repair of an evolved FIR filter after the injection of
multiple faults [38]. They examined two different recovery methods. The first was
to recall the final population of the evolutionary run that created the original fil-
ter design, and the second was to seed a new random population with a copy of
the original design. Both mechanisms recovered functionality faster than rerun-
ning evolution with a completely random population, with population seeding
outperforming population recall by a small margin. Zebulum et al. demonstrated
evolutionary recovery with a 4-bit DAC that had initially been evolved using tra-
ditionally designed operational amplifiers and smaller DACs evolved in earlier
experiments as building blocks. Faults were introduced into one of the opera-
tional amplifiers. The recovered circuit outperformed the circuit that had initially
been evolved. It was suggested that operational amplifiers were not useful build-
ing blocks for evolution. Gwaltney and Ferguson investigated fault recovery in an
evolved analogue motor controller [26], again by re-evolving the population that
gave rise to the best nonfaulty controller after introducing faults. They discovered
that evolution could recover from faults in some components better than others,
although at least some functionality was restored in all cases.

Louis [70] combined an evolutionary approach with a case-based memory,
where partial solutions to similar, previously attempted problems were inserted
into the evolutionary population. This process demonstrated that better quality
solutions to parity problems could be evolved in less time than when using evolu-
tion alone and suggested that this method might prove useful for fault recovery.

Most evolutionary fault recovery systems that have been demonstrated to date
have only explored recovery from errors introduced into the logic of the circuit.
However, Lohn et al. have demonstrated an evolutionary fault recovery system
that can repair routing in addition to logic [66], which they suggest is important
for modern routing-rich programmable devices. Another type of fault is the fail-
ure of a component at extreme temperatures. Stoica et al. have observed that mul-
tipliers, Gaussian curve generators, and logic gates that have evolved under
standard conditions degrade or fail at extreme temperatures. However, when re-
evolved at those temperatures, the circuits regained functionality in all cases.

Fault detection is traditionally dealt with by incorporating additional hard-
ware into a design to perform a built-in self test (BIST). Garvie and Thompson
have demonstrated that evolution can be used to design small adders and multi-
pliers that incorporate BIST at very low additional cost by sharing components

Evolving Hardware 395

between BIST and the circuit function [17]. Innovative circuit designs such as this
will be discussed in Section 2.6.

A number of other bio-inspired online autonomous hardware, fault-tolerance
mechanisms have been developed for both fault detection [7] and recovery [72,
126]. Although these have been proposed as a platform for evolutionary experi-
ments, they do not use evolution as an adaptive repair mechanism, and so will not
be considered further here.

Fault tolerance refers to systems that are inherently tolerant to faults, rather
than systems that can detect and/or recover from faults. Evolution has proved an
ideal candidate for the exploration of fault-tolerant systems and is discussed
under the heading of generalization in Section 3.3.

2.6 Design Innovation in Poorly Understood Design Spaces

Traditional circuit designers tend to work on a problem from the top down,
decomposing the problem into smaller subproblems that have limited interactions
and then repeating the process until only a number of small problems remain that
are well understood in the field of circuit design and have known solutions. Each
decomposition carefully directs the process towards these solutions by using for-
mal design rules. Evolution works differently. It works from the bottom up,
adding components together to make partial solutions to the design problem,
which are in turn combined and tinkered with, until the solution meets the design
criteria. This idea is discussed more fully in Section 3. For now, we shall discuss
when this approach might be useful.

The clearest cases for application are design spaces for which we have very lim-
ited knowledge of how components will interact, and so design rules have not yet
been developed. Advances in electronic engineering are beginning to generate new
kinds of circuit technologies for which the design spaces are often very poorly
understood. In these cases, evolution can prove a useful technique in searching for
innovative designs, since it can be guided purely by the behavior of the evolving
circuit rather than by relying on domain knowledge. An example of this is the
field of nanoelectronics, where Thompson and Wasshuber have successfully
evolved innovative (but at this stage not particularly useful) single-electron NOR
gates [122].

There is also a set of current technologies for which traditional logic synthe-
sis techniques have not yet been designed but that are becoming increasingly
important for circuit designers. Many programmable logic technologies provide
XOR gates and multiplexers, but digital design rules are best suited to generating
sum-of-products solutions that do not map well to these elements. In these cases,
an evolutionary approach can work directly with a design abstraction suitable for
the technology and potentially search areas of space that a traditional designer
would miss if using the techniques above, and this approach may discover more
parsimonious solutions, as has been demonstrated by Miller et al. [76].

Beyond these technologies, there are design spaces where the interactions are
so complex that it has not been possible to develop formal methods to partition
and decompose the design space. For instance, when compared to the design
space of digital logic, analogue design is much less well understood. Hence circuit

396 Timothy G. W. Gordon and Peter J. Bentley

design in this domain requires more expert knowledge. Evolutionary algorithms
have proved very successful in discovering human-competitive (and better) analogue
circuit designs [1, 51].

Perhaps the most successful application of evolution to complex design spaces
is the automatic design of antennas. Traditional antenna designs are based on a
handful of known, regular topologies. Beyond these, the interactions between ele-
ments become too complex to abstract. Linden has demonstrated that evolution
is capable of discovering an array of highly unconventional, irregular antenna
designs [63] and has shown that evolved antennas can be evolved and operate
effectively in real-world settings using transmission of real data [61] and trans-
mission where the signal path is obstructed [61]. Such is evolution’s performance
when applied to antenna design that an evolved antenna is undergoing flight
qualification testing for NASA’s upcoming Space Technology 5 mission [69], and
if successful will be the first evolved hardware in space.

A more subtle and perhaps surprising point is that evolution searches an
inherently different area of search space than traditional designers do. Because of
this difference, it is possible for evolution to discover innovative solutions even for
well-understood design spaces, since some useful circuits lie beyond the areas of
solution space we would normally explore if we were to tackle the problem. This
outcome, of course, demands that evolution is allowed to work without the design
constraints that we would normally place on circuit designs, as was first demon-
strated by Thompson. Currently, this approach has not yet yielded any significant
real-world applications, but the concept has prompted a great deal of research, as
discussed in Section 3.

Current evolutionary techniques only works well for small problems, since the
search spaces can become vast for large circuits. A great deal of research is cur-
rently directed at scalability, which is discussed later in this chapter. That said, we
can still make use of evolution by finding small yet innovative designs that are
evolved to produce limited interactions and so can be used by traditional design-
ers as building blocks for larger circuits. Such building blocks have been found for
both analogue and digital designs [1, 78]. This approach has also been advocated
for use at higher abstractions [101], where it was suggested that evolved or evolv-
able IP cores could now be provided for commercial use in programmable logic
devices. It has also been suggested that previously evolved building blocks may
help evolution discover larger circuits [135].

Finally, evolution has proved to be very successful at the generation of circuits
that incorporate several functions within one set of shared components, a task for
which there is little domain knowledge. We have described an example of this in
Section 2.5, where adders and multipliers were evolved to incorporate a BIST
function. A related idea is that of polymorphic electronics [108], where a circuit
is evolved to perform multiple functions using a shared set of components, with
each function becoming apparent under different environmental conditions. For
example, a circuit might perform as an AND gate at one temperature and an OR
gate at another. Such circuits might prove very useful for military and intelligence
purposes.

Design innovation is, in our eyes, the most significant benefit of evolvable
hardware; hence, research in this area is discussed in more detail in Section 3.

Evolving Hardware 397

3 RESEARCH IN EVOLVABLE HARDWARE

Having discussed the benefits of evolvable hardware, and some of the appli-
cations that these benefits allow, this section reviews the main thrusts of research
in this field. The research is decomposed into three areas: innovation, generaliza-
tion and evolvability.

3.1 Innovation

Traditional circuit designers decompose a problem from the top down, itera-
tively splitting the task into smaller and smaller subproblems by applying con-
straints on their interactions. This partitioning is actively directed to reach a set of
subproblems contained within the reservoir of electronics and materials knowl-
edge, and is known as abstraction. These subproblems can then be individually
modeled as an encapsulated physical device, without the need to understand its
complex internal interactions. An example is a digital memory device, which can
be mapped to an array of analogue circuits that use different techniques to
achieve similar input/output characteristics. When the subproblems are reassem-
bled, care must be taken to ensure that the constraints made during the parti-
tioning process are adhered to. For example the digital memory device
mentioned above is often constructed of high-gain analogue components, so we
must ensure that its output is allowed to saturate before it is passed to another
part of the circuit.

Evolution uses a different approach. It works from the bottom up, attempting
to find correlations between sets of components that consistently improve the
behavior of a circuit with respect to the problem at hand. Unlike traditional
design, the direction of its search does not have to be directed by previous knowl-
edge. If evolution is set up in such a way that it can exploit correlations between
the components it manipulates and the observed external behavior of a circuit,
then circuit designs can be discovered using this behavior alone as a guide, regard-
less of the complexities of the interactions within the circuit.

In Section 2 we discussed four areas of application for innovative evolution-
ary design: familiar design technologies with relaxed abstractions, programmable
logic abstractions, complex design technologies, and new design technologies.
These are now discussed in turn.

3.1.1 Relaxing Abstractions

Seminal work on the relaxation of design abstractions was carried out by
Thompson. He first set out to show that evolution could successfully manipulate
the dynamics and structure of circuits when the dynamical and structural con-
straints that traditional designers depend on heavily had been relaxed. He demon-
strated this [120] by evolving a complex recurrent network of high-speed gates at
a netlist level abstraction to behave as a low-frequency oscillator. Fitness was
measured as an average error based on the sum of the differences between desired
and measured transition periods. Circuits were evaluated in simulation using an
asynchronous digital abstraction. Hence a search space containing only circuits

398 Timothy G. W. Gordon and Peter J. Bentley

that used behavior modeled by the simulator was searched, with the space strictly
partitioned into units of logic gates. However, as the simulator allowed the gates
to interact asynchronously, the selection operator could explore the asynchronous
dynamics of the model, being free to make use of any such behavior or ignore it
as it saw fit.

The required behavior of the circuit was successfully evolved, showing that it
is possible for evolution to search without the constraints (in this case, synchro-
nous constraints) usually needed by traditional designers. Further, a graph-parti-
tioning algorithm showed that the structure of the circuit contained no significant
structural modules, as would be seen through the successive abstraction approach
of a traditional top-down approach. Thompson also showed that the circuit
behavior relied on methods that would not have been used by traditional design-
ers. So not only had evolution found a solution by searching the space beyond
conventional circuit design space but also it had found a solution that that actu-
ally lay within this space.

Thompson went on to show that evolution with relaxed restrictions on circuit
dynamics was possible in physical hardware, rather than simulation [120]. The
hardware was a finite-state machine for a robot controller. However, whether the
states were controlled synchronously by a given clock or not was under genetic
control, an architecture Thompson termed a dynamic state machine (DSM). The
evolved robot controller used a mixture of synchronous and asynchronous behav-
ior and interacted with the environment in a complex dynamical manner to pro-
duce behavior that would not have been possible using the finite-state machine
abstraction with such limited resources. Importantly, he suggested that the ability
of such a parsimonious controller to interact in such a complex manner with its
environment was not attributable to the DSM architecture. Rather, it arose from
the ability of evolution to exploit it. Again, evolution had found a circuit that tra-
ditional design techniques could not generate by avoiding a traditional design
constraint, which in this case was the synchrony imposed on the finite-state
machine abstraction. But in addition, evolution had found a circuit that used the
rich dynamics that can arise by relaxing design constraints to perform a real task,
demonstrating that such dynamics can give rise to useful behavior in the real
world.

Thompson also carried out the first intrinsic evolution of a circuit evaluated
on an FPGA. A 10 × 10 area of a Xilinx XC6126 bitstream was evolved. Almost
all bits in the bitstream corresponding to this area were evolved directly as the bits
of the chromosome of a genetic algorithm [116]. Thereby Thompson set about
evolving a circuit at the lowest level of abstraction possible with the device he
had—that of the physical behavior of the target technology. The task was to
evolve a circuit to discriminate between 1 kHz and 10 kHz signals. Fitness was
calculated by subjecting each circuit to five 500 ms bursts of each signal in a ran-
dom order, and awarding high fitness to circuits with a large difference between
the average voltage of the output during these bursts. The average voltages were
measured with an analogue integrator. The only input to the circuit was the
1 kHz/10 kHz signal—no clock was given, and hence the task required that a con-
tinuous-time arrangement of components be found that discriminated between
signals many orders of magnitude longer than the delay afforded by each indi-
vidual component. The resulting circuit used a fraction of the resources that a

Evolving Hardware 399

traditional designer would need to achieve the same task. Following months of
analysis, Thompson and Layzell described the functionality of the circuit as
“bizarre,” and to date, the nature of some of the mechanisms it uses are still not
completely understood, although the authors postulated that the circuit made use
of the underlying physics of the substrate in a way that traditional design would
consider too complex to consider.

Later, Thompson and Layzell carried out a similar experiment, this time pro-
viding the circuit with a 6 MHz oscillator signal that could be used or ignored as
evolution required [121]. The prime motivation for the experiment was to investi-
gate robustness, and so evaluation was carried out under a range of conditions
specified by an operational envelope. Hence the constraints to the system were the
same as before, except that a soft bias towards robust behavior had been added
through the fitness function. However, an additional dynamical resource had
been provided. The resulting circuit made use of the clock, and the design was
simulated by using the PSpice digital simulator. The simulated design behaved
exactly like that of the real circuit, showing that evolution had found a solution
within the digital design abstraction of the simulator, even through the con-
straints did not explicitly require that. However, analysis of the simulation wave-
forms showed a large number of transient signals. This finding allows us to
conclude that potentially useful circuits lie within the digital abstraction that are
undiscoverable using traditional digital design methodologies owing to their
greedy, top-down nature, and that at least some of these circuits can be discovered
using evolution.

3.1.2 Programmable Logic Abstractions

In Section 2 we noted that most digital circuit design methodologies are
geared towards producing logic in the canonical sum-of-products form. However,
many programmable logic devices support additional components that are not
easily utilized by such an abstraction, such as XOR gates, multiplexers, and
lookup tables (LUTs). Miller et al. have conducted research into the discovery of
innovative circuits, one of their main motivations being the derivation of new
design principles that could be applied to logic abstractions such as those found
in programmable logic devices. They note [78] that Boolean or other algebraic
rules can map from a truth table of required circuit behavior to an expression in
terms of that algebra. They then suggest that a bottom-up evolutionary approach
could search not only the class of expressions that the algebraic rules map to but
also a larger space of logical representations beyond commonly used algebras.

In an attempt to demonstrate this idea, they successfully evolved one- and
two-bit adders based on the ripple adder principle using a feed-forward netlist
representation of AND, OR, NOT, XOR and MUX gates. This space lies beyond
the commonly used Boolean and Reed–Muller algebra spaces but is of interest
since the multiplexer is available as a basic unit in many technologies. This argu-
ment is very similar to Thompson’s in principle—that the discovery of innovative
circuits can be facilitated through the modification of design abstractions imple-
mented through representational biases.

Many of the circuits reported in this and other work [83, 76] were unusual but
interesting because of their efficiency in terms of gate count. They lay in the space

400 Timothy G. W. Gordon and Peter J. Bentley

of circuits making use of multiplexers and XOR gates, outside the space of tra-
ditional atomic Boolean logic units. The authors argued that these circuits were
unlikely to be found using traditional algebraic methods, and so evolutionary
“assemble-and-test” was a useful way that such a space can be explored. The work
continued with the evolution of two-bit and three-bit multipliers. All work was
carried out using gate-level logic simulation. Similar work has been carried out
with multiple valued algebras [46].

Another aspect of this group’s work is the contention that design principles
useful to traditional designers could be discovered by searching for patterns in
evolved circuits. In particular, they hypothesis that by evolving a series of mod-
ules of increasing size, design principles that the modules have in common may
be extracted from them. The authors [78], [83] evolved many one and two bit
adders, and by inspection deduced the principle of the ripple adder. Although
knowledge of this principle already exists in the domain, they went on to argue
that evolution discovered and made use of it with no prior knowledge or explicit
bias. Since the design principle could be extracted a comparison of one- and two-
bit adders that had evolved to use the principle, they asserted that evolution could
be used as a method of design principle discovery.

More recent work in this area has concentrated on developing an automatic
method of principle detection [76, 77]. Having successfully evolved two- and
three-bit multipliers that are much more compact than those of traditional
design, the authors have integrated a data mining procedure to search for design
principles [43]. The learning algorithm used for the data mining process is an
instance-based learning technique called Case Based Reasoning [84], (Chapter 8).
We shall argue in our discussion on scalability in Section 3.4 that by modeling
biological development we might be able to allow evolution to automatically
encapsulate such design principles without the need to resort to other learning
techniques and to use evolution itself to select for design principles that are inher-
ently evolvable.

3.1.3 Complex Design Technologies

In Section 2, we noted that there are complex design spaces for which it has
not been possible to develop formal methods to partition and decompose the
design space, and that evolutionary algorithms offer an alternative approach to
the use of a human expert. An example of this kind of design space is that of ana-
logue circuit design.

One traditional technique of simplifying an analogue design space is to fix the
topology of the circuit to a design with well-known characteristics and to modify
only parameters relating to the components within the design. A good deal of
work using evolutionary algorithms in analogue circuit design takes this
approach, and can be considered to have more in common with evolutionary
optimization than evolutionary circuit design [3]; [88]. However, as the field of
evolvable hardware has developed, researchers have begun to allow evolution to
explore analogue circuit topologies. For instance, Grimbleby developed a hybrid
genetic algorithm/numerical search method that used the genetic algorithm to
search topologies and a numerical design optimization method to select parame-
ter values for the evolved topologies [23]. Additionally, Koza et al. and Lohn and

Evolving Hardware 401

Columbano have both developed evolutionary circuit design methods that
explore both topology and component parameters [67]; [50]. These two methods
are of particular interest to us since they do not use a fixed mapping of genotype
to phenotype. The benefits of using such an approach, and details of these two
examples in particular, are discussed at length in Section 3.4.

With the advantages of evolutionary design in mind, Gallagher has recently
advocated a return to the development of analogue computers [16], which today
have been almost completely replaced by their digital counterparts. He distin-
guished two classes of analogue computers. The first is direct computers, which
are designed to reproduce the behavior of a physical system directly. The example
he gave was of a serial RLC circuit. This can be considered as directly modeling
a damped harmonic oscillator, where inductance is equivalent to mass, capaci-
tance is equivalent to the inverse of spring elasticity, and resistance is equivalent
to frictional damping. Indirect analogue computers simply implement complex
mathematical functions using building blocks that embody simple mathematical
functions, such as adders and integrators. Gallagher suggests that the demise of
the analogue computer is mostly due to a combination of the difficulty in dis-
covering direct implementations of required computations and the difficulty in
constructing accurate indirect models due to compound errors in component pre-
cision. He went on to point out that intrinsic evolution actually discovers direct
implementations, since the circuit is designed purely to replicate a specified behav-
ior rather than to perform a mathematical function, and that for applications
where size and power are vital, evolving direct analogue models should be con-
sidered as a serious alternative to digital models of analogue computations.

An impressive example of evolution’s ability to manipulate interactions that
are too complex for human designers to fathom is that of antenna design. We
have already mentioned in Section 2 that evolution is capable of discovering an
array of highly unconventional, irregular antenna designs. Early work in this field
used simulation; however, Linden [60] went a step further. He intrinsically evolved
an array of wires connected with reed switches, which are mechanical switches
that are closed by an induced magnetic field, controllable from a computer. The
antennas that he evolved made use of the complex electromechanical coupling
between wire segments that resulted from the fields of the reed switches. Human
designers would be unable to exploit such complex nonlinear physical interac-
tions in a controlled manner.

3.1.4 New technologies

In Section 2, we briefly discussed that evolutionary design is likely to be a use-
ful tool for new circuit design technologies for which no domain knowledge exists.
Thompson [119] suggested that until a model of a new technology is derived, only
a blind search technique such as evolution can be of use to design circuits in it.
He first noted that as we move towards nanoscale circuitry, we cannot continue
to suppress quantum effects so that our macroscopic models fit; rather, we must
make use of them. He then described a system of this third class. The system
consisted of an array of quantum dots between which electrons could only
pass by quantum mechanical tunnelling. The task was to evolve a NOR gate by

402 Timothy G. W. Gordon and Peter J. Bentley

modifying effectively only the size, shape, and position of the dots. Thus, evolved
circuits would rely on tunnelling effects to perform a logical function. (The task
was carried out in simulation, but the concept is unaffected.) The evolved circuit
used a property called stochastic resonance in which the thermal energy of the
electrons allows stochastic transmission of a signal. This is an innovative prop-
erty never before considered for the design of electronic circuits, be they single-
electron or not. That evolution discovered this property demonstrates its ability
to blindly design in the absence of any useful design rules.

There are also hopes to exploit quantum effects in another way: through quan-
tum computing. Quantum computers do not process bits. Instead, they process
qbits, which exist in a superposition of states. This allows n coupled qubits to rep-
resent a superposition of 2n states, and operators acting upon the qubits operate
on the superposition of states in parallel. This means that, as the number of
superposed bits the operators operate upon increases, the processing power of the
device increases exponentially with respect to traditional computing devices.
Once quantum circuits are developed that can operate on superpositions of even
tens of bits, they are likely to have enormous computing power. Theory has
pointed to a number of rudimentary quantum gates that could be used to develop
quantum circuits, although practice suggests that the number of interconnected
gates is likely to become a limiting factor in their design. This realization has led
a number of researchers to begin searching for innovative parsimonious sets of
quantum gates using evolutionary algorithms [71]; [111].

Several researchers have also suggested that the field should be designing new
technologies to suit evolutionary algorithms rather than the reverse. Miller and
Downing have noted that all of today’s electronic components have been designed
specifically for top-down design methodologies and that researchers in hardware
evolution have been “abusing” these components [75]. They argue that biological
evolution is clearly capable of evolving extremely complex structure by exploiting
the physics of the surrounding environment, and so we should be looking for sub-
strates that exhibit rich, complex internal interactions and must be reconfig-
urable, ideally by small applied voltages. They suggest that substances that exist
in a state on the edge of disorder would be good candidates, as they would exhibit
the rich interactions necessary while being able to quickly relax to a homogeneous
quiescent state. The Candidates they have suggested include liquid crystals, elec-
troactive polymers, and voltage-controlled colloids.

Amorphous computers have also recently been suggested as a substrate
amenable to evolution. Amorphous computers are essentially large collection of
simple, wireless units that perform computations. These units are unreliable, not
geometrically aligned, and can only communicate locally, but they are likely to be
relatively easy to synthesize in extremely large arrays, as compared with other
future technologies. However, no computational paradigm exists that can take
advantage of their massively distributed function. Future nanoscale devices are
also likely to have an amorphous structure, as Miller and Downing have pointed
out [75]; hence, this could be a major issue for upcoming computational devices.
Haddow and van Remortel have suggested that, by combining the principles of
biological development and evolvable hardware, it may be possible to realize
designs for amorphous computers [28].

Evolving Hardware 403

3.2 Generalization

In the section above, we have discussed what we believe to be the primary
motivation for work on evolvable hardware, namely, its ability to create innova-
tive hardware. In this and the next section, we discuss the two greatest hurdles to
evolvable hardware’s viability for general real-world applications. The first of
these is the difficulty of generalization.

Inductive learners such as evolutionary algorithms infer hypotheses from
observed training examples of some kind. In the case of evolvable hardware, we
test prospective circuits by exposing them to different conditions, most commonly
a range of input signals, and observing the circuit outputs in order to evaluate fit-
ness. If it is infeasible for all possible training examples to be observed by the
learner, then the learner generalizes beyond the cases it has observed. Modern
real-world circuits can process hundreds of input signals, and to observe each
possible combination of these just once, even at millions of training cases a sec-
ond, would take longer than the age of the universe. For sequential circuits, the
number of training cases is infinite. And as we shall see later in this section,
unseen signal inputs are but one (admittedly important) example of unseen oper-
ating conditions that we might hope a circuit to generalize across. Clearly, the
ability to generalize is vital to the long-term future of evolvable hardware.

Two approaches to applying bias towards generalization can be found in the
literature:
1. Introduce domain knowledge about the structure of circuits that exhibit the

required generalization characteristics, perhaps in the form of a heuristic.
2. Introduce knowledge about the behavior of circuits that exhibit the required

generalization characteristics, and rely on evolution to learn about the struc-
ture of circuits that exhibit the required behavior in addition to the primary
task.
We now explore work on generalization, first by considering the special case

of generalization across unseen input signal cases.

3.2.1 Generalization Across Input Vectors

Several researchers have explored input generalization under the framework of
pattern recognition, a familiar problem in the area of generalization and therefore
well suited to the study of this problem. As we mentioned in Section 2, many sys-
tems have been developed that demonstrate that evolvable hardware can general-
ize to unseen test cases for real-world pattern recognition data, such as image and
signal classification [34]; [90] and image and signal noise filtering [100]; [131]. Yao
and Higuchi have implied that the success of evolvable hardware in problems like
these relies in some way on the use of a hard bias towards feed-forward networks
of nonlinear processing units, likening their function to ANNs [132]. This bias is
an example of case 1 above. Iwata et al. successfully managed to improve upon
the generalization abilities of this kind of system by applying additional knowl-
edge, again in the style of case 1 above [42]. They introduced a heuristic commonly
used in the machine learning literature to improve generalization. The heuristic
emerges from the application of the Minimum Description Length (MDL) princi-
ple to the discovery of maximum a posteriori hypotheses in Bayesian settings, and

404 Timothy G. W. Gordon and Peter J. Bentley

biases the search towards small circuits. For details of this interpretation of
MDL, see Mitchell, [84] Chapter 6).

Miller and Thomson investigated the generalization abilities of a system
evolving two- and three-bit multipliers with respect to the size of the input train-
ing sets [80, 81] and were far less successful. The task was to evolve a functional
circuit from a subset of the truth table. They found that if evolution was pre-
sented with a subset of training cases throughout the entire evolutionary run, it
was not able to produce general solutions. This finding suggests that in the setting
of this problem and algorithm there was no implicit bias towards generality, even
though they again enforced a hard representational bias towards feed-forward
networks. They also reported that even when evolution was provided with a new
set of training cases randomly drawn from the truth table every generation, gen-
eral solutions were still not found, suggesting that evolution had little memory in
the context of this problem.

Miller and Thomson also investigated the evolution of square root functions
[80, 81]. In these cases, they discovered that some acceptable solutions were gen-
erated when evolution was limited to an incomplete training set. These cases
occurred when the missing training cases tested low-order bits, which contributed
less to the fitness. This outcome seems to answer the puzzle as to why their earlier
experiments failed to generalize, as we shall now explain with reference to another
experiment.

Imamura, Foster, and Krings also considered generalization in Miller’s multi-
plier problems [40] and concurred that evolving fully correct circuits to many
problems was extremely difficult without access to a full training set. They
pointed out that the problem was exacerbated in functions where each test vector
contained equal amounts of information relevant to the problem, such as the case
of the three-bit multiplier studied by Miller and Thomson. However they sug-
gested that in cases where the data contained a large amount of “don’t care” val-
ues, evolvable hardware could be successful using a smaller test vector. Real-world
pattern classification data contain redundant information, which explains why
they succeeded where the multiplier problem failed. Indeed, since many input sets
exhibit this property, it seems reasonable to assume that for any real-world prob-
lem some level of redundancy is likely to exist, although the problem of how to
select test vectors remains. Immamura, Foster, and Krings suggested an adap-
tive approach of allowing the evolving system to search for useful subsets of test
vectors.

3.2.2 Generalizing Across Operating Environments Though Representation

Just as it is unrealistic for the algorithm to train from every conceivable circuit
input, in most cases it is unrealistic to train under every conceivable operating
environment. Operating environments might include a range of technologies or
platforms on which the designed circuit should operate, as well as a range of con-
ditions to which the embodied circuit may be subjected.

Traditional designers usually manage such generalization by imposing hard
biases on the nature of the circuit. These biases are again representational
abstractions that encode domain knowledge known to produce behavior common
across all necessary operating environments. The abstractions are then mirrored

Evolving Hardware 405

on the physical hardware through some constraint on the hardware’s behaviour.
A circuit that behaves correctly in all necessary conditions should then follow. For
example, a gate-level digital design abstraction requires that the physical gates of
the target technology behave as perfect logic operators. In most technologies,
these gates are represented by transistors—physical devices that behave like high-
gain amplifiers. Timing constraints and operating environment constraints speci-
fied by the manufacturer of the physical device are imposed on the real hardware.
This ensures that, when an abstract computation takes place, the voltages of the
transistors within each logic gate have reached saturation, and any transient
behavior generated before saturation has dissipated. From this point forward, the
outputs can be treated as logical values. In synchronous systems, these constraints
are usually imposed with respect to a clock. The manufacturer will then guaran-
tee that for a range of operating conditions, the device will behave as it appeared
to within the design abstraction. The design is then portable across a range of
devices and operating conditions.

Evolutionary circuit design often takes a similar approach to the traditional
design process by applying design abstractions used by traditional designers.
Many circuits have been evolved at levels of abstractions that would limit the
search to circuits with good generalization characteristics. However, the only case
we are familiar with where representational design abstractions have been
imposed specifically to ensure good generalization is that of Stoica and colleagues
[109], where a very high level of generalization was required. The experiment
involved evolving transistor level circuits, and a representational bias was
imposed that prevented input signals from connecting to transistor gates rather
than to source or drain inputs, thus improving the loading characteristics of the
evolved circuits. (The experiment is discussed in more detail in Section 3.3.3.)

3.2.3 Generalization Across Operating Environments by Inference from
Examples

In cases where no knowledge is available about the structure of solutions that
generalize across all operating environments, the only solution is for evolution to
infer this information from examples.

Early work with intrinsically evolved circuits by Thompson focused on design
innovation through relaxation of constraints [115, 116, 117]. Thompson success-
fully evolved a circuit to distinguish between two frequencies, using a Xilinx
XC6200 FPGA. However, he then went on to note the lack of robustness to envi-
ronmental conditions such as temperature, electronic surroundings, and power
supply that may occur. He also noted that the design was not portable when
moved not only to a different FPGA, but also to a different area of the same
FPGA. Similar results have been reported by Masner et al. [73]. Thompson went
on to explore how solutions that generalized well across a range of operating
environments could be evolved [18]. He took a previously evolved FPGA circuit
that discriminated between two tones. He then specified a number of parameters
for an operational envelope which, when varied, affected the performance of this
circuit: temperature, power supply, fabrication variations, packaging, electronic
surroundings, output load, and circuit position on the FPGA. The final popula-
tion from the previous experiment was then allowed to evolve further, this time on

406 Timothy G. W. Gordon and Peter J. Bentley

five different FPGAs maintained at the limits of environmental conditions speci-
fied by the operational envelope parameters. Although there was no guarantee
that the circuit would generalize to behave robustly under all environmental con-
ditions within the envelope, Thompson found a level of robustness evolved in
four out of five cases. Hence, it appears that the biases he had introduced into
the evolutionary algorithm were sufficient to promote good operating-condition
generalization characteristics for the evolution of the 6200 architecture.

In a similar vein, Stoica et al. [106] explored the operation of circuits in
extreme temperatures. Their initial experiment involved testing both traditionally
designed circuits and circuits evolved under standard conditions (multipliers,
Gaussian curve generators, and logic gates) to see whether they degrade or fail at
extreme temperatures. This was primarily an experiment in evolutionary fault
recovery, and they demonstrated that all circuits could regain functionality when
evolved under extreme conditions. However, it is interesting to note that a popu-
lation of 50 circuits re-evolved for 200 generations in this manner often exhibited
degraded performance under standard conditions, whereas before they had func-
tioned perfectly. This finding suggests that generalization qualities are easily lost
if a consistent bias towards them is not asserted during evolution.

A problem closely related to Thompson’s exploration of portability is the
portability of extrinsically evolved analogue circuits to physical devices. Analogue
circuit simulators tend to simulate circuit behavior very closely, and so it might be
expected that extrinsically evolved circuits would generalize well to the real cir-
cuit. However, this does not happen in practice. One issue is that some behaviors
that simulate according to the physics programmed into the simulator may not be
feasible in the chosen implementation technology. A common example is that
simulators fail to prevent the simulation of extremely high currents, and so evo-
lution is free to take advantage of them in its design. Koza et al. have evolved
many circuits extrinsically at an analogue abstraction using the Berkeley SPICE
simulator [50], but have found that these circuits are practically infeasible because
they rely on extremely high currents. Additionally, analogue simulators use very
precise operating conditions. The circuits of Koza et al. are evolved to operate
at 27°C, and so there is no explicit bias towards generalization across a range of
temperatures.

When evolving networks of transistors intrinsically, Stoica et al. have come
across the reverse problem: circuits evolved intrinsically may operate as expected
under the conditions prevailing when they were evolved, but may not operate
acceptably in software [105]. Their solution to the problem was to evaluate some
circuits of each generation intrinsically, and some extrinsically. This they termed
mixtrinsic evolution [107]. They also suggested that another use of mixtrinsic evo-
lution would be to reward solutions that operate differently in simulation than
when instantiated in a physical circuit. This would encourage innovative behavior
not captured by simulation. They later developed a method [25] to include several
different software models, based on various different processes, analysis tests, and
timing resolutions.

The issues of portability discussed above have only dealt with portability
between simulation and PLDs. An issue of extreme importance for evolutionary
circuit design is whether designs evolved either extrinsically on PLDs or intrinsi-
cally are portable to custom application-specific integrated circuits (ASICs),

Evolving Hardware 407

which cannot be used during mixtrinsic evolution. Until recently, this question
had been left unanswered, but Stoica et. al [109] evolved transistor-level gates
using a combination of comprehensive fitness testing on each individual and mix-
trinsic testing across the population. Comprehensive tests included transient
analyses at different frequencies, testing a number of loads. Mixtrinsic tests were
SPICE analysis on several process models and a range of voltages and tempera-
tures. Additionally, a representational bias was imposed to improve loading
characteristics, as mentioned in Section 3.3.2. Tests that were carried out mix-
trinsically during evolution were carried out in full on the final evolved solutions,
and revealed that some but not all of the circuits performed robustly across all
tests. All circuits exposed to the full range of validation were successfully vali-
dated in silicon, showing that with careful validation procedures, portability of
evolved designs to ASIC technologies is possible.

The concept of the ability of circuits to function under various environmental
conditions can be extended to include the capacity of circuits to operate in the
presence of faults. This was first investigated by Thompson [115, 116, 117]. He
evolved a DSM-based robot controller problem (discussed in Section 3.2.1) in the
presence of single-stuck-at (SSA) faults in the RAM used to hold a lookup table
of state transitions for the state machine. Rather than testing each candidate solu-
tion exhaustively across all sets of possible faults, he aimed to test only the fault
that caused the most degradation in each controller. He recognized that the pop-
ulation was likely to be made up of individuals of various designs, and hence the
highest degradation of performance was unlikely to be caused by the same fault
in the RAM. To circumvent this problem, at each generation he averaged the
RAM bits across the DSMs of the entire population to give what he termed a con-
sensus individual. Faults were only introduced once a good solution was found,
and then the population was tracked to see how it performed. He found that solu-
tions that were tolerant to most SSA faults existing in the initial population of
evolved solutions, for reasons discussed in Section 3.3.4, but as evolution pro-
ceeded in the presence of faults, tolerance was lost as the algorithm concen-
trated on tolerating the single worst fault until eventually solutions tolerant to
any single fault were discovered.

Canham and Tyrell extended this work to more complex faults that commonly
develop in FPGA architectures [8]. They emulated a Xilinx 6200 series architec-
ture on a Xilinx Virtex FPGA and introduced simulated SSA faults in the logic
of the configurable logic blocks (CLBs), and short circuit faults between the
inputs and outputs of the CLBs during evolution. The resultant circuits were
compared against a set of control circuits that were evolved in the absence of
faults and found a large increase in fault tolerance that could not be explained
purely by “junk” faults occurring in unused areas of the FPGA.

Hartmann et al. have evolved fault-tolerant circuits using nonperfect digital
gates called messy gates [30]. Various levels of noise were injected into digital gate
models simulated using SPICE, and digital circuits were evolved. The circuits are
manipulated by evolution at the gate level, but the evaluation of circuits was car-
ried out using SPICE. The authors discovered that adders and multipliers could
be evolved under high levels of noise. They postulated that the noise smoothed
the fitness landscape as highly fit circuits that depended on each gate to perform
function were no longer present in the search space.

408 Timothy G. W. Gordon and Peter J. Bentley

3.2.4 Inherent Generalization

Another fascinating model for fault tolerance is that the biases of the evolu-
tionary algorithm have an inherent tendency to generate solutions that generalize
across certain conditions. Thereby, evolved circuits would exhibit robustness to
changes in those particular conditions “for free.”

Thompson has also postulated that evolved circuits may be inherently robust
to some types of fault. He observed that an evolutionary algorithm will by nature
be drawn to optima surrounded by areas of high fitness, and suggested that as
a result, a single bit mutation from such an optimum will also tend to also have a
high fitness. He then conducted experiments on an artificial NK landscape to
demonstrate this. For details of this type of landscape, see work by Kauffman and
Levin [47]. He then proposed that such an effect could have beneficial engineer-
ing consequences if a mutation were to cause a change in the circuit that is simi-
lar to a fault—namely, that the evolved system is likely to be inherently robust to
such faults. He went on to highlight this by using the evolution of the DSM robot
controller described in Section 3.3.3 as an example. Each bit of the RAM that
encoded the controller’s state machine was directly encoded in the chromosome,
and so mutation of one of these bits had a effect similar to a “single stuck at”
(SSA) fault. Examination of the effect of SSA faults on a previously evolved state
machine revealed that it was quite robust to faults. However, since state machines
for this problem with similar fitness could not be easily generated by any means
other than evolution, statistical tests of the evolved machine’s resilience to faults
could not be carried out.

Following this experiment, Masner et al. [73] carried out studies of the effect
of representational bias on the robustness of evolved sorting networks to a range
of faults. The aim of the work was to explore the relationship between size and
robustness of sorting networks using two representations—tree and linear. They
noted that robustness first increases and then decreases with size, and is therefore
not due purely to the existence of redundant nonfunctional gates in the sorting
networks. They also noted that the linear representation tended to decrease in
robustness with respect to size faster than the tree representation.

Layzell has suggested that robustness of solutions can also be generated at
the level of populations [55]. In particular, he was interested in the ability of
another member of the population to be robust with respect to a fault that
causes the original best solution to fail. This outcome he called populational fault
tolerance (PFT). He went on to demonstrate that PFT is inherent in certain
classes of evolved circuit and to test various hypotheses that could explain its
nature. As with Masner et al., he noted that fault tolerance did not seem to be a
result of redundant units based on the current design. Instead, he showed that
descendants of a previously best and inherently different design were still pres-
ent in redundant genes in the members of the population. It was these individu-
als that provided PFT. He demonstrated that this situation did not result from
the presence of a diverse range of distinct solutions in the final population when
he repeated the experiment using a single hillclimber to evolve solutions and then
generated 50 single-bit mutants of this single individual. These individuals pre-
sented a similar tolerance to fault, confirming that the fault tolerance was inher-
ent to the incremental nature of evolutionary processes in general: the entire

Evolving Hardware 409

population contained remnants of inherently different solutions that had been
explored earlier.

This fact suggests that PFT is somewhat of a misnomer, since one might
expect it to refer to tolerance owing to the nature of a population-based search.
Tyrrell et al. have explored what might be called “true” populational fault toler-
ance [127]. Unlike Layzell’s work, population diversity was encouraged by evolv-
ing oscillators using a population of 16 hillclimbers that did not interact with
each other. This setup ensured that the evolved solutions did not share a common
evolutionary history, so any fault tolerance observed could not be a result of the
effect proposed by Layzell above. When faults were introduced to the oscilla-
tors that caused the best member of the population to fail, another member
of the population often retained relatively high fitness. This demonstrates that
population diversity can also play a role in evolved fault tolerance.

3.3 Performance and Evolvability

A good deal of research in the field of evolvable hardware is devoted to the
following:

● improving the quality of solutions that evolution discovers for a given problem

● improving the scalability of evolution to larger and/or more complex problems

● improving the speed with which evolution finds acceptable solutions

These ideas are highly interrelated since they all aim to improve the perform-
ance of the evolutionary search in order to achieve slightly different goals.

3.3.1 Representations

Selection of a good representation is crucial to the performance of an evolu-
tionary algorithm. As discussed in Section 2, the representation of an evolution-
ary algorithm defines how solution space is mapped onto search space. This
process affects the performance of the algorithm as it delimits the solutions pres-
ent in the search space, thereby fixing the density of acceptable solutions in the
search space. Many researchers, particularly in the early days of evolvable hard-
ware, believed that performance could be improved by reducing the size of the
search space and increasing the density of good solutions lying within it. This
approach will be discussed in due course. However, representation has a second
effect. In Section 2 we discussed how it partly specifies the order of traversal of
search space, since it sets the distance between any given points in space. Hence,
it changes the nature of the search space. It is becoming increasingly recognized
that having a small-sized space is not as important as having a space that allows
evolution to discover incremental improvements in fitness that will lead it to a
solution [10, 2, 115]. We define a search space that allows this process to occur an
evolvable search space.

Miller and Thomson have explored how changes in circuit geometry affect
the evolvability of a two-bit multiplier [79, 80, 81] and how the functionality-
to-routing ratio affects the evolvability of netlist representations of the SBOX

410 Timothy G. W. Gordon and Peter J. Bentley

problem space [79, 80, 81]. It appears that evolvability is affected profoundly
but erratically by both factors, making it difficult to draw many direct conclu-
sions. Miller and Thomson did note, however, that evolvability was improved by
allowing cells dedicated to routing signals between functional cells. However,
because these studies may be dependent on the problem, the biases imposed by
the specific operators used within the algorithm, and the level of abstraction at
which the experiments were conducted, again it is dangerous to read too much
into this work.

3.3.2 Function Level Evolution

The function-level approach to improving evolvability was proposed by
Murakawa et al. [89] and has since been adopted by many others [124, 99, 123].
Murakawa et al. pointed out that the size of the search space for a binary genetic
algorithm increases at a rate of 2n for every addition n genes, and suggested that
as evolution tackles larger problems, the explosion in search-space size prevents
the algorithm from searching effectively. One solution they proposed was func-
tion-level evolution. Here they suggested that instead of using gate-level repre-
sentations, domain knowledge could be used to select high-level computational
units, such as adders, subtractors, and sine generators, that could be represented
directly in the chromosome. thereby reducing the size of the chromosome neces-
sary to represent an acceptable solution. Although this approach has proved to be
successful for limited problems, there are several issues that indicate it is not a
long-term solution. First is the problem of domain knowledge, which requires an
experienced designer to select suitable function-level units for the problem at
hand. Furthermore, if little or no domain knowledge exists for the problem,
it may not be suitable for a function-level approach. Second, the approach is not
scalable to problems of increasingly greater complexity without introducing more
domain knowledge through the selection of more powerful functions. Third, once
an abstraction has been made through the selection of function-level units, evo-
lution will be limited to search the space of this abstraction, and any innovative
solutions at a lower abstraction will be unattainable. Finally, and perhaps most
importantly, the functional units are selected using domain knowledge from tra-
ditional design processes. As we have discussed throughout this chapter, evolution
performs a bottom-up search rather than a top-down design. In Section 3.4.1, we
pointed out that there is very little domain knowledge about the evolvability
of circuit design spaces, and so even functions selected by experienced designers
may not be of value when attempting to solve a problem using an evolutionary
algorithm.

Indeed, Thompson argued that coarse-grained representations such as those
employed by function-level evolution may reduce the evolvability of a hardware
design space [115, 116, 117], since the addition to or removal from a circuit design
of a complex function is likely to have a more dramatic effect on the overall func-
tion of the circuit than simple function. Thompson makes a strong argument that
traditional evolution has the capability to search larger spaces than those advo-
cated by Murakawa et al. [89]. In particular, he suggests that there may be features
of many hardware design landscapes that allow us to search large spaces beyond

Evolving Hardware 411

the point where the evolving population has converged in fitness. Such a feature,
he suggested, was the neutral network.

3.3.3 Neutral Networks

Neutral networks can be conceived as collections of genotypes with pheno-
types of identical fitness that are arranged in search space so as to make pathways
or networks that can be navigated by evolution through the application of its
genetic operators. It has been suggested that genetic drift along such networks can
allow evolution to escape local optima that they would otherwise be anchored to
[39]. The idea of neutral mutations has been recognized in the field of evolution-
ary biology for some time but has only in recent years been used as a paradigm
for search in evolutionary computation. Harvey suggested that taking full advan-
tage of neutral networks would require a redesign of evolutionary algorithms,
and in light of this he proposed the Species Adaptation Genetic Algorithm
(SAGA) [31], which advocates incremental changes in genotype length and a
much greater emphasis on mutation than is common for genetic algorithms.
Thompson, however, managed to prove his point using only a fixed-length genetic
algorithm with a SAGA-style mutation rate to search an incredibly large circuit
design space (21800) for good solutions. This he succeeded in doing, and when the
algorithm was stopped owing to time constraints, fitness was still increasing even
though the population had converged long before [32]. Analysis of the evolution-
ary process did indeed reveal that a converged population had drifted along neu-
tral networks to more fruitful areas of the search space. He attributed much of
this behavior to the increased mutation rate, a change to the static procedural
mapping of the algorithm. He went on to speculate that neutral networks might
be a feature of a great deal of design spaces, including many hardware design
spaces.

Vassiliev and Miller have explored neutrality in the three-bit multiplier logic
netlist space. Their work [128, 129] suggests that neutral changes at the start of an
evolutionary run occur because of high redundancy in the genotype. As the run
continues and fitness becomes higher, redundancy is reduced. However, the num-
ber of neutral changes does not drop as quickly, suggesting that selection pro-
motes neutral changes in order to search the design space. They then went on to
show that when neutral mutations were forbidden, the evolvability of the land-
scape was reduced. They have also proposed that the search for innovation may
be assisted by using current designs as a starting point for evolution, and pro-
posed that a neutral bridge could be used to lead from conventional design space
to areas beyond [128, 129].

Much of the work on neutrality uses evolutionary strategies as opposed to the
more traditional genetic algorithm. Evolutionary strategies do not use the
crossover operator, and because of this, their use in studies of neutral mutations,
the driving force of evolution in the neutral network paradigm, simplifies analysis.

3.3.4 Incremental Learning

Following the function-level approach, Torresen proposed another idea based
on evolving more complex components to improve scalability. Inspired by results

412 Timothy G. W. Gordon and Peter J. Bentley

from the use of automatically defined functions in genetic programming, and rec-
ognizing that an incremental, bottom-up process might improve scalability, he
suggested that evolution could be handed the task of evolving higher-level func-
tions. He also suggested that the process could be repeated incrementally so as to
produce a complex solution based on a series of modules that had been iteratively
encapsulated into larger ones. Thus he dubbed the approach increased complexity
evolution. However, he still needed a mechanism to modularize the problem into
less complex subtasks that would each present a more evolvable landscape than
that of the entire task.

He suggested that the complexity of the problem could be subdivided by a tra-
ditional functional decomposition, and demonstrated the process with a pattern
recognition task where a number of character images were to be classified accord-
ing to character. Each output of the circuit corresponded to an individual char-
acter and was to be set high only if the pattern under test corresponded to that
character. He manually decomposed the problem into a set of circuits where each
would be evolved to detect only a single character. His results showed that there
was a significant increase in evolutionary performance when decomposing the
problem in this way. Unfortunately, his demonstration implicitly included domain
knowledge by applying the idea of top-down decomposition to a problem that is
amenable to such an approach. Additionally, he also stopped short of demon-
strating the benefits such an approach could bring to scalability, since he did not
present a demonstration of evolution at a higher level of abstraction using the
evolved circuits as primitives. Finally, the opportunity for an incrementally evolved
system to innovate is curtailed by this approach, in this case by the imposition of
a traditional top-down design that was implicitly imposed. Although this method
does not fundamentally solve the problem of scalability it may be useful when
knowledge is available as to how a problem might be decomposed. For example,
Hounsell and Arslan [37] decomposed a three-bit multiplier problem by output
pins in this manner. In this case, they automatically integrated the individual cir-
cuits, which were evolved extrinsically, using standard logic minimization tech-
niques, thereby automating the technique and addressing to some extent the issue
of parsimony that Torresen had not touched upon. Kazadi et al. [48] have
extended the idea further by removing the requirement of combining evolved cir-
cuits using traditional minimization techniques, thereby increasing the opportuni-
ties for innovative circuit design. They achieved this by first evolving the correct
behavior for a single output and then selecting a single parsimonious solution and
encapsulating it as a module. The module was then used as a primitive for another
stage of evolution in which correct behavior for an additional output was required.
The process was iterated until correct behavior for all outputs was observed.
Although this method can automate the generation of a complete circuit, it is still
relies on decomposition by output producing evolvable subproblems.

Lohn et al. have compared a number of incremental-type systems. They com-
pared three dynamic fitness functions against a static one [68]. The dynamic fit-
ness functions increased in difficulty during an evolutionary run. One had a fixed
increase in difficulty, based on domain knowledge; one had a simple adaptive
increase based on the best fitness within the population; and one put the level of
difficulty under genetic control by coevolving the problem and the solution. The
results showed that the coevolutionary system performed best on an amplifier

Evolving Hardware 413

design problem, but the static system performed best of all. When discussing
potential reasons as to why the incremental systems showed poorer perform-
ance, Lohn et al. recognized that the discontinuity in the fitness landscapes result-
ing from the adaptive nature of the fitness functions might have reduced the
evolvability of the systems.

3.3.5 Dynamic Representations

Another proposal from ETL to improve the speed of evolution was to use a
variable length representation, with the aim of reducing the size of the search
space necessary for a problem. Applied to a pattern recognition problem, per-
formance was improved over an algorithm that did not use variable-length repre-
sentations, in terms of both solution parsimony and efficacy [44].

A similar approach was taken by Zebulum in an experiment to evolve Boolean
functions using a chromosome of product terms that were summed by the fitness
function [139]. However, the search order of representation space differed from
the ETL experiments. Inspired by the observation that complex organisms have
evolved from simpler ones, the population was seeded with short chromosomes.
This approach assumes a correlation between complex behavior and complex
structure. As we discussed earlier, Thompson has demonstrated that this is not
necessarily true, since complexity in behavior can arise from interactions of a sim-
ple system with a complex environment [120]. However, the simplicity of the
simulation used to evaluate circuit designs in this example may mean that in this
case the assumption holds. A new operator was introduced to increase chromo-
some length, under the control of a fixed parameter. Hence a simple pressure to
move from short representations to long ones was set. It was found that a low rate
of increase allowed fully functional but more parsimonious solutions to be found
over a larger rate.

In both these examples, each gene in the representation was mapped directly
to a Boolean function, and the representation space was searched by adding and
removing genes guided by evolution in the first case, and by adding genes guided
by a simple heuristic in the second case. In both cases, only the size of the space
searched was changeable, rather than any arrangement of the order; hence, the
evolvability of the space remained unaltered.

3.3.6 Development

The use of evolution itself to explore representation space as a meta-search
in addition to the search of design space is an attractive idea. This leaves the
question of how to do so such that the search of representations achieves
the following:

● it allows evolution to explore innovative design spaces;

● it allows evolution to explore design spaces of varying evolvability, not
just size.

We have already explained that evolution searches design space from the bot-
tom up, and that this is unlike approaches imposed by traditional top-down

414 Timothy G. W. Gordon and Peter J. Bentley

design, allowing evolution to explore innovative areas of design space. We have
also already mentioned how we have little understanding of how to make such
searches more evolvable.

One approach we can take is to turn to nature to gain some insight into evolv-
ability. The proof that bottom-up evolutionary design can be highly evolvable is
all around us in the form of extremely complex biological organisms. However,
Dawkins has noted that that the organisms that evolved early in evolutionary his-
tory have since then evolved the least [10], since most simple organisms present
today are virtually unchanged since their appearance in the fossil record, whereas
organisms that have evolved in more modern times have continued to evolve
increasingly complex structure. This led Dawkins to suggest that biological evo-
lution has over time discovered evolvable mechanisms that it has used to generate
increasingly complex organisms: there has been an evolution of evolvability. This
has led us to believe that we should look to differences between the mechanisms
that simple and higher organisms employ to map from genotype to phenotype for
sources of evolvability. A striking feature of higher organisms is their modularity.
The period of evolutionary history in which organisms first made use of complex
modular structures, the Cambrian period, heralded the appearance of Metazoan
organisms and was marked by an explosion of evolution [49]. This would suggest
that the idea of decomposing a problem into modules to improve evolvability is a
good one. The mechanisms of problem decomposition previously used to evolve
hardware designs relied on top-down human design abstractions. The mechanism
by which all Metazoan organisms map genotype to phenotype is quite different.
It is the process of development. Development provides a mechanism for evolu-
tionary control over a bottom-up modularization process. It allows evolution to
make use of any innovative design features it discovers at lower abstractions and
to encapsulate them for reuse at a higher level of abstraction.

Development maps genotype to phenotype in an indirect process. It provides
a series of instructions describing how to construct an organism [4]. It is also a
generative process. It uses abstraction and iteration to manage the flow of con-
trol within the series of instructions [36]. In this sense, it can be likened to a tra-
ditional declarative computer program. Developmental systems that employ
these ideas in an abstract sense have been explored for a number of years in the
context of ANN design. They directly evolve programs that explicitly describe
how a system should develop. The language in which the programs are
described employ fixed, explicit mechanisms for abstraction and reuse. Such
systems have been labeled as explicit developmental systems by Bentley and
Kumar [4]. One such system is cellular encoding [24]. More recently, the same
method has been used by Koza et al. to evolve analogue circuits [50]. The basic
technique is to evolve trees of developmental steps using genetic programming
(GP). Each developmental step, encoded as a GP node, explicitly codes for a
phenotype modification. A fixed “embryonic” phenotype is “grown” by apply-
ing a tree of rules to it. Koza used automatically defined functions (ADFs) to
explicitly provide modularity, and automatically defined copies (ADCs) to pro-
vide iteration. Lohn and Columbano have used a similar approach, but with a
linear mapping representation that is applied to an embryonic circuit in an
unfolding manner, rather than a circuit-modifying one [67]. The representa-
tional power is limited, although some but not all of these limitations have more

Evolving Hardware 415

recently been removed by introducing new operators [6]. Although both systems
have managed to evolve innovative designs, only Koza has demonstrated exam-
ples of modularization and reuse in his solutions, and these have been limited
to a few examples that do not produce modularization and reuse on the order
of that seen in biological organisms. This result might suggest that there are
other features of biological development important to evolvability that are not
captured by implementing such abstract ideas of modularization, reuse, and
growth alone. To benefit from using a developmental genotype–phenotype
mapping, the process by which biological development achieves these features
should be modeled more closely.

Biological development describes the transformation of a single-celled
embryo into a complex adult organism. The entire process is by no means com-
pletely understood. It encapsulates a huge array of interactions between genes,
their products, and the environment, from microscopic to macroscopic, some of
seemingly minor importance, some ubiquitous to all stages of development. One
mechanism that has a hand in all stages of development is DNA transcription.
Transcription regulates the rate of gene expression through the presence of pro-
teins called transcription factors, which either increase (activators) or decrease
(inhibitors) the transcription rate of a particular gene. All transcription factors
are proteins that are generated by the expression of other genes. Thus a dynamic,
autocatalytic network of gene products specifies which genes are expressed. These
networks are called gene regulatory networks (GRNs) [103]. Such networks may
be arranged as modules, controlled by a master control gene [58]. When activated,
the master control gene causes a cascade of activity throughout a GRN module
and generates a complex feature in a phenotype.

Evolution is able to manage the flow of control for the developmental pro-
gram over time by manipulating gene products involved in GRNs. However,
another mechanism is required to communicate flow of control over space. To
achieve this, biology makes use of two processes: growth and induction. Growth
occurs through cellular division; thus, regulatory substances within an ancestor
cell can be distributed to all the cell’s descendents as they spread through space.
Development can control this process, for instance, by constraining the location
of a regulatory substance within a cell such that, after cell cleavage, it is present
only in one daughter cell. Such regulatory substances are known as cytoplasmic
determinants. Induction is quite different. Here a cell encodes regulatory infor-
mation as a chemical signal, which is transmitted to nearby cells. A variety of
inductive signal types have been identified [103] that pass information over vari-
ous localities and at various rates.

Evolutionary design systems that model these processes are termed implicit by
Bentley and Kumar [4]. Flow of control in implicit systems is commonly modeled
by successively rewriting a symbolic description of a simple object according to a
set of rewriting rules. The map between genotype and phenotype is specified by a
fixed start symbol for the rule rewriting process, and the grammar is evolved. One
type of system that models both transcription and growth are L-Systems. These
have been explored in the context of circuit design by Haddow and Tufte [27]. The
L-System they used was context free; hence, the rules were rewritten such that
there was no communication between adjacent structures. Hence, no concept of
induction was modeled. Miller has explored a similar growth-based system that

416 Timothy G. W. Gordon and Peter J. Bentley

incorporated a limited amount of context [82]. The phenotype consists of a sin-
gle embryonic cell. The chromosome encodes a set of functions to determine the
inputs and function of the cell and whether it should divide to produce two
daughter cells. At each developmental timestep, the functions are executed in all
current cells, and the process iterates. The arguments of shared functions are the
positions of the inputs, current function, and location of that cell. Functions were
used to determine the connections and function in the next step of development.
Hence a form of communication is captured by the model through the labels of
each cell’s current neighbours affecting the current cell’s next state. However, the
communication between cells (and hence the model of induction) is present in a
highly abstract and limited sense, and the role of induction in the development of
the circuit cannot be separated from the role of growth.

3.3.7 An Example of Developmental Evolutionary Circuit Design

The recent work of Gordon [20] provides an alternative approach. With the
eventual goal of evolving complex, functioning circuits, an exploratory system
based on the three principles of being generative, implicit, and context-driven was
designed. It was decided that a rule-based system could satisfy all three criteria.
Like biological organisms, the phenotype is composed of “cells”, but unlike bio-
logical organisms, the cells in our model are laid out on a two-dimensional grid,
mirroring the medium of electronic circuits. This layout has the advantage of
being easily mapped to a circuit design for a programmable logic device such as a
Field Programmable Gate Array (FPGA), and so was in keeping with our aim of
developing a system with as little computational overhead as possible. To update
the entire individual for a single developmental timestep, the set of rules that
make up the chromosome is tested against the “chemical environment” that is
modeled in each of these cells. For each cell, only the rules that match that cell’s
environment are activated. If the environment differs between cells, it is possible
for different rules to be activated in each cell, which leads to their environments
being altered in different ways. In this way, different chemical environments can
be maintained between cells. By modeling a cell’s context with only transcription
factors (proteins that activate genes) and ignoring all other chemistry present in
biological cells, we were able to keep our model as simple as possible yet encap-
sulate the key features that provide a generative, implicit, context-driven process.

Transcription factor proteins were modeled as binary state variables. Each
gene was modeled as a rule. The precondition of the rule specified which proteins
must be present (activators) and which must be absent (inhibitors) in order for
that particular gene to activate. The postcondition of the rule defines the protein
that is generated if the rule is activated. An example rule is shown in Figure 12.4.

For a rule like this to be activated, the proteins in the environment must match
the pattern of proteins specified in the rule precondition. There are five bits in the
rule precondition for each protein in the model. The final three bits define the
protein concentration that the operator will act upon. Hence a rule can specify
concentration values to range from 0 to 7. The first two bits of the protein con-
dition specify the operator—not equal to (00), less than or equal to (01), greater
than or equal to (10), or equal to (11). The specific protein to be tested is deter-
mined by the locus of these bits. A set of these rules makes up the chromosome

Evolving Hardware 417

and defines how the proteins interact over time. At each timestep in the develop-
mental process, the environment is inspected to determine which proteins are
present, and then each rule is inspected to determine whether the environment
matches the rule. If it does, the rule is activated; the protein defined in the rule’s
postcondition is generated and goes on to make up part of the protein environ-
ment of the following timestep.

Context is a key feature of our model—cells must be able to affect their neigh-
bor’s environment. In our model, this is achieved through the interaction of pro-
teins. Each cell inspects its neighbors to determine what proteins they are
generating. The protein concentration detected by a cell is determined thus: for
each protein, the cell sums the total number of neighbors that are generating that
protein. If the cell itself is also generating that protein, it adds an additional 3
concentration points to the total. Thus the maximum concentration can be 7
points, since as 4 are contributed by the neighbors and 3 by the cell itself. To sim-
ulate this process, the cell model for our exploratory system contains a protein
detector and a protein generator in order to record the proteins that are present
in the cell and the proteins that are detected by the cell, respectively. To summa-
rize, a complete developmental timestep for a cell proceeded thus:

1. For each protein in the model, the cell’s protein detector sends a query to
each of its von Neumann neighbors (i.e., the four neighbors to the north,
south, east, and west on a 2D grid) to determine if they are generating that
protein. It also queries its own generator, and sums the results from the
neighbors and itself (with an additional bias towards itself) to give a
detected concentration for that protein.

2. The rule set is tested against the pattern of proteins detected by the detec-
tor in step 1. As each rule with a precondition matching the cell’s current
pattern of detected proteins is activated, the cell’s protein generator is
updated to represent the protein specified in the rule postcondition.

These two steps are then repeated for a number of cycles, as shown in
Figure 12.5, allowing the pattern of proteins formed across the global array of
cells to change until a stable state or cycle of states is reached, or until develop-
ment is halted after a predetermined number of timesteps. Gordon provides Full
details [20].

The system described above so far models the process of forming patterns of
gene products. What remains is for a mechanism to be introduced by which the
patterns of gene products generate a circuit design. Each cell in our cellular array
is mapped directly to a configurable logic block (CLB) on a Xilinx Virtex FPGA,
and the activity of the genes in each cell are linked to alterations in the functional
components in the CLB. This means that in addition to proteins, the models of

418 Timothy G. W. Gordon and Peter J. Bentley

then Generate BIf A ≠ 0 and 3 and 7 and D 4

Protein: BA

00 011011000 100011 111

D

01

CB =

C

≥ <

Figure 12.4. An example of a rule

our cells also contain functional components that map directly to functional
components in a CLB. In order to keep the initial model simple, we added as
few components as possible to our cell model. Each cell has four input wires that
could be driven by its local neighbors, two 4-input lookup tables (LUTs), and an
output wire from each LUT. The LUTs map directly to two of the four LUTs in
a Virtex CLB, and the input and output wires map directly to manually selected
single lines between the CLBs. For details of the Virtex architecture and how this
mapping was made, see the work of Gordon and Bertley [21].

To allow these functional components to be altered by gene activity, we intro-
duced new postconditions to the rules. These coded for an alteration to the logic
in a CLB. Over the course of development, the activities of these circuit-altering
postconditions were recorded by activity counters – one counter in each cell for
each circuit-altering postcondition—and once development was complete, the
activity counters were inspected in order to determine what alterations should be
made to a predefined template circuit on the Virtex. Gordon and Bertley give
details of this process [21].

Numerous experiments have been carried out on this model and variations of
it [19]. The results showed the importance of good intercellular communication
to improve development’s ability to generate and maintain a range of patterns.
The work has shown that the computational power of this developmental model
is sufficient to allow the learning of patterns that map to fully functional adder
circuits [20]. This is an important step towards tackling real-world problems with
development.

3.4 Platform Research

We have now reviewed most current research into evolvable hardware. We have
seen that many researchers believe that working at low levels of abstraction can
have advantages. We have also seen that mechanisms to explore evolvability and
generalization are being actively investigated. What we have not considered is the
availability of platforms for low-abstraction hardware evolution.

Evolving Hardware 419

Functional Components

Present

Not Present

Present

Present

Protein Detector

?

?

?

?

?

Protein Generator

A:

E:

D:

C:

B:

If (A ∨ !B ∨ C) -> D
If (C ∨ D) -> D

If (A ∨ !B ∨ C) -> E

Functional Components

?

?

?

?

?

Protein Detector

?

?

?

?

?

Protein Generator

Not Present

1. The cell detects proteins by

querying neighboring protein

generators at timestep t.

2. The presence of proteins in the

detectors fires any rules with matching

preconditions

3. The generators for tim
estep t +1

are updated

4. And the cycle
continues

A:

E:

D:

C:

B:

Functional Components

Present

Not Present

Present

Present

Not Present

Protein Detector

Not Present

Present

Present

Not Present

Not Present

Protein Generator

A:

E:

D:

C:

B:

Figure 12.5. A developmental timestep highlighting the protein interaction model with a cell

In this section, we cover the platforms that have been reported in the evolvable
hardware literature. Some are commercially available, and some have been devel-
oped by researchers. Commercial devices have not been developed with evolvable
hardware as a primary goal, and so most struggle to compete with dedicated
evolvable hardware on performance, versatility, and ease of use for our purposes.
However, they do have advantages of availability and cost (although some that
were used for early research are now no longer available), and so many researchers
have explored their use for evolvable hardware.

3.4.1 Criteria for successful evolutionary platforms

Thompson [115] has listed a number of criteria for intrinsic circuit evolution
platforms. These are discussed below:

Reconfigurable an unlimited number of times. Many field programmable
devices are designed to be programmed only once. Others are designed to be pro-
grammed a small number of times, but repeated configuration can eventually
cause damage. Evolutionary experiments can require millions of evaluations, and
so devices for intrinsic experiments should be able to be reconfigured infinitely.

Fast and / or partial reconfiguration. If millions of evaluations are needed, the
evaluation process should be fast. Modern programmable devices have millions of
configurable transistors and consequently have large configuration bitstreams.
This can mean that downloading the configuration becomes the bottleneck of the
evolutionary process. The brute force solution to this problem is to use devices
with high bandwidth configuration ports. Another solution is to evaluate many
individuals at once, as proposed by Higuchi, Iba, and Manderick, among others
[33]. Batch evaluation limits the type of evolutionary algorithm to those with
large populations, ruling out the use of steady-state genetic algorithms or low-
population evolutionary strategies. A more elegant solution is that of partial
reconfiguration, where only the changes from the current configuration need to
be uploaded. This yields similar bandwidth use with no constraints on the learn-
ing algorithm.

Indestructibility or validity checking. In conventional CMOS technologies, a
wire driven from two sources can result a short circuit if one drives the wire to a
different voltage level than another. The high currents generated from such an
event are extremely undesirable, as they can damage the device, and so should be
prevented by hard constraints, rather than the softer ones advocated so far. Some
hardware platforms are designed around an architecture with which contention is
impossible. For those that are not, there are two options—either an abstract
architecture can be imposed on top of the real hardware, or circuits can be tested
for contention before they are synthesized, and evaluated by an alternative means
if such a condition is detected.

Fine-grain reconfigurability. In order to allow evolution the ability to innovate,
evolution must be able to manipulate candidate circuits at a low level of abstrac-
tion. Hence a good platform needs fine-grain control over the evolving platform.

420 Timothy G. W. Gordon and Peter J. Bentley

Thompson also points out the distinction between fine-grain architectures and
fine-grain reconfigurability—namely, that although a device’s architecture may be
based on repeated large units, if these can be reconfigured at a finer level, then
this criterion will be met.

Flexible I/O. The method of supplying input and retrieving output from an
evolved circuit can affect the feasibility of successful evolution, so a platform that
allows experimentation with this is useful.

Low cost. This is of particular importance when the motive behind using evo-
lution is to lower costs through design automation.

Observability. In order to analyze how evolved circuits work, their internal sig-
nals need to be probed. However, when working with low-design abstractions, it
may be impossible to avert the potential of signal probes to change the behavior
of the circuit, and the probed signal architectures should be chosen with this as a
consideration.

3.4.2 Platforms

Bearing these criteria in mind, the platforms that have been used or proposed
for use for evolvable hardware experiments are now considered briefly. These can
be classified into three groups: commercial digital, commercial analogue, and
research platforms. They are tabulated below.

Evolving Hardware 421

Commercial Analogue Platforms
Zetex TRAC [14]: Based around 2 pipelines of 10 op-amps + programmable capacitors,
resistors. Linear and nonlinear functions successfully evolved. Large-grained
reconfigurability and limited topology limit worth for evolution.

Anadigm FPAA(Inc. 2003): Up to 4 reconfigurable blocks with programmable
interconnect. CABs contain 2 op-amps, capacitor banks, serial approximation register.
Large-grained reconfigurability limits worth for evolution. No reports on use for evolvable
hardware.

Lattice ispPAC [92]: Designed for filtering applications. Based on programmable
amplifiers. Limited reconfigurability (~10,000x) limits suitability for evolvable hardware.

Motorola MPAA020 [136]: 20 cells containing an op. amp, comparator, transistors,
capacitors, and SRAM. A range of circuits has been evolved. Much of the bitstream is
proprietary. Geared towards circuits based around the op. amp. No longer available.

Commercial Digital Platforms
Xilinx 6200 [115, 116, 117, 50, 121]: Developed for dynamic reconfig. apps. Fast and
infinite reconfig., fully or partially. Homogenous fine-grained architecture of MUXes. All
configurations valid. Good I/O. Expensive, no longer available.

Xilinx XC4000 [57]: Low cost, infinite but slow reconfig. SRAM LUT based architecture.
Damaged by invalid configurations. Parts of bitstream proprietary and undisclosed.
Reconfigurable at resource level using Xilinx JBits software. No longer available.

4 SUMMARY

The problems of electronic circuit design are increasing as demand for
improvements increases. In this review, we have introduced a promising new type
of solution to these difficulties: evolvable hardware. This emerging field exists at
the intersection of electronic engineering, computer science, and biology.

The benefits brought about by evolvable hardware are particularly suited to
a number of applications, including the design of low-cost hardware, poorly
specified problems, creation of adaptive systems, fault-tolerant systems, and
innovation.

The chapter has also reviewed and analyzed current research trends in evolvable
hardware in depth. In particular, the research focusing on innovation, evolvability,
and platforms have been described, and a recent example of a developmental evo-
lutionary electronics system designed by the authors has been provided.

Evolvable hardware is still a young field. It does not have all the answers to the
problems of circuit design, and there are still many difficulties to overcome.
Nevertheless, these new ideas may be one of the brightest and best hopes for the
future of electronics.

422 Timothy G. W. Gordon and Peter J. Bentley

Xilinx Virtex/II/II Pro [35, 56]: Medium cost. SRAM LUT based architecture. Can be
reconfigured infinitely and quickly, fully and partially. Can be damaged by random
configurations. Some of the bitstream is proprietary and undisclosed, but most hardware
resources can be reconfigured using Xilinx JBits software. Virtex II provides embedded
multipliers, Virtex II Pro provides embedded CPU core. Widely available.

Research Platforms
FPTA [105, 53, 13]: Reconfigurable at transistor level, additionally supporting capacitors
and multiple I/O points. Programmable voltages control resistances of connecting switches
for use as additional transistors. Some versions allow variable channel height and width.
FPTA2 provides 8 × 8 array of FPTA cells Fits criteria for evolvable hardware well.

Embryonic Arrays [113, 126]: Bio-inspired fault tolerant FPGA architecture.
Programmable cells usually based on MUXtrees. New POEtic tissue designed to support
hierachical logical genotype, developmental and phenotype layers. Interesting architecture
for developmental hardware evolution.

Palmo [29]: PWM-based signaling rather than true analogue. Based around array of
integrators. All configurations valid.

Evolvable Motherboard [54]: Array of analogue switches, connected to six interchangeable
evolvable units. Evolution of gates, amplifiers, and oscillators demonstrated using bipolar
transistors as evolvable unit. Good I/O. Board-based architecture is not suitable for real-
world problems due to size, cost, and number of evolvable units.

FIPSOC [86]: Complete evolutionary system aimed at mixed signal environments.
Analogue and digital units. CPU and memory to encode evolutionary algorithm.
Analogue units based around amplifiers. Digital units based on LUTs and flip-flops.
Context-based dynamic reconfiguration suitable for real-time adaptive systems.

PAMA [96]: Fixed analogue MUX array allowing interconnection of interchangeable
evolvable units. Current version implements a 32 16:1 bidirectional low on-resistance
MUX/deMUX allowing for random configurations.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Peter Rounce for his insights and advice.

REFERENCES

[1] V. Aggarwal (2003): Evolving sinusoidal oscillators using genetic algorithms.
2003 NASA/DoD Conference on Evolvable Hardware, Chicago, IL, USA,
IEEE Comput. Soc., Los Alamitos, CA, USA.

[2] L. Altenberg, (1995): The Schema Theorem and Price’s Theorem.
Foundations of Genetic Algorithms 3. D. Whitley and M. D. Vose. San
Mateo, CA, U.S.A., Morgan Kaufmann: 23–49.

[3] T. Arslan and D. H. Horrocks (1995): The Design of Analogue and Digital
Filters Using Genetic Algorithms. 15th SARAGA Colloquium on Digital
and Analogue Filters and Filtering Systems, London, U.K.

[4] P. J. Bentley and S. Kumar (1999): Three Ways to Grow Designs:
A Comparison of Embryogenies for an Evolutionary Design Problem.
Proceeding of the Genetic and Evolutionary Computation Conference,
Orlando, FL, U.S.A.

[5] J. A. Biles (1994): GenJam: A Genetic Algorithm for Generating Jazz Solos.
Proceedings of the 1994 International Computer Music Conference, San
Francisco, CA, U.S.A., International Computer Music Association.

[6] J. P. B., Botelho, L. B. Sa, et al. (2003): An experiment on nonlinear syn-
thesis using evolutionary techniques based only on CMOS transistors. 2003
NASA/DoD Conference on Evolvable Hardware, Chicago, IL, USA, IEEE
Comput. Soc., Los Alamitos, CA, USA.

[7] D. W. Bradley and A. M. Tyrrell (2001): The architecture for a hardware
immune system. Proceedings Third NASA/DoD Workshop on Evolvable
Hardware. EH 2001. 12–14 July 2001, Long Beach, CA, USA, IEEE
Comput. Soc., Los Alamitos, CA, USA.

[8] R. O. Canham and A. M. Tyrrell (2002): Evolved Fault Tolerance in
Evolvable Hardware. 2002 World Congress on Computational Intelligence,
Honolulu, HI, U.S.A., IEEE, Piscataway, NJ, USA.

[9] E., Damiani and V. Liberali, et al. (2000): Dynamic Optimisation of Non-
linear Feed-Forward Circuits. 3rd International Conference on Evolvable
Systems, Edinburgh, U.K.

[10] R. Dawkins, (1989): The evolution of evolvability. Proceedings of Artificial
Life: The Quest for a New Creation, Santa Fe, U.S.A., Addison-Wesley.

[11] J. F. M., do Amaral, J. L. M. do Amaral, et al. (2002): Towards Evolvable
Analog Fuzzy Logic Controllers. 2002 NASA/DoD Conference on Evolvable
Hardware, Alexandria, VA, U.S.A., IEEE Press.

[12] M. Dorigo, and G. Di Caro (1999): The Ant Colony Optimization Meta-
heuristic. New Ideas in Optimization. D. Corne, M. Dorigo and F. Glover.
London, UK, McGraw-Hill: 11–32.

[13] I., Ferguson, A. Stoica, et al. (2002): An Evolvable Hardware Platform
based on DSP and FPTA. 2002 Genetic and Evolutionary Computation
Conference, Memlo Park, CA, U.S.A., AAAI Press.

Evolving Hardware 423

[14] S. J. Flockton and K. Sheehan (1999): A system for intrinsic evolution of
linear and non-linear filters. Proceedings of the First NASA/DoD Workshop
on Evolvable Hardware. 19–21 July 1999, Pasadena, CA, USA, IEEE
Comput. Soc., Los Alamitos, CA, USA.

[15] A. Fukunaga and A. Stechert (1998): Evolving Nonlinear Predictive
Models for Lossless Image Compression with Genetic Programming. Third
Annual Genetic Programming Conference, Madison, WI, U.S.A.

[16] J. C. Gallagher, (2003): The once and future analog alternative: evolvable
hardware and analog computation. 2003 NASA/DoD Conference on
Evolvable Hardware, Chicago, IL, USA, IEEE Comput. Soc., Los
Alamitos, CA, USA.

[17] M. Garvie and A. Thompson (2003): Evolution of Self-diagnosing
Hardware. 5th International Conference on Evolvable Systems, Trondheim,
Norway, Springer-Verlag.

[18] N., Göckel, R. Drechsler, et al. (1997): A Multi-Layer Detailed Routing
Approach based on Evolutionary Algorithms. Proceedings of the IEEE
International Conference on Evolutionary Computation, Indianapolis, IN,
U.S.A.

[19] D. E. Goldberg (1989): Genetic algorithms in search, optimization, and
machine learning. Reading, Mass.; Harlow, Addison-Wesley.

[20] T. G. W. Gordon (2003): Exploring Models of Development for
Evolutionary Circuit Design. 2003 Congress on Evolutionary Computation,
Canberra, Australia.

[21] T. G. W. Gordon and P. J. Bentley (2002): Towards Development in
Evolvable Hardware. 2002 NASA/DoD Conference on Evolvable Hardware,
Washington D.C., U..S.A.

[22] G. W. Greenwood and X. Song (2002): How to Evolve Safe Control
Strategies. 2002 NASA/DoD Conference on Evolvable Hardware,
Alexandria, VA, U.S.A., IEEE Press.

[23] J. B. Grimbleby (2000): Automatic Analogue Circuit Synthesis Using
Genetic Algorithms. IEE Proceedings on Circuits Devices and Systems
147(6): 319–323.

[24] F. Gruau (1994): Neural Network Synthesis Using Cellular Encoding and
the Genetic Algorithm. Laboratoire de l’Informatique du Parallilisme. Lyon,
Ecole Normale Supirieure de Lyon: 151.

[25] X., Guo, A. Stoica, et al. (2003): Development of consistent equivalent
models by mixed-mode search. IASTED International Conference on
Modeling and Simulation, Palm Springs, California, U.S.A.

[26] D. A. Gwaltney and M. I. Ferguson (2003): Intrinsic hardware evolution
for the design and reconfiguration of analog speed controllers for a DC
Motor. 2003 NASA/DoD Conference on Evolvable Hardware, Chicago, IL,
USA, IEEE Comput. Soc., Los Alamitos, CA, USA.

[27] P. C., Haddow, G. Tufte, et al. (2001): Shrinking the Genotype: L-systems
for EHW? The 4th International Conference on Evolvable Systems: From
Biology to Hardware, Tokyo, Japan.

[28] P. C. Haddow and P. van-Remortel (2001): From here to there: future
robust EHW technologies for large digital designs. Proceedings Third

424 Timothy G. W. Gordon and Peter J. Bentley

NASA/DoD Workshop on Evolvable Hardware, Long Beach, CA, USA,
IEEE Comput. Soc., Los Alamitos, CA, USA.

[29] A., Hamilton, K. Papathanasiou, et al. (1998): Palmo: Field Programmable
Analogue and Mixed-signal VLSI for Evolvable Hardware. 2nd International
Conference on Evolvable Systems, Lausanne, Switzerland, Springer-Verlag,
Berlin, Germany.

[30] M., Hartmann, P. Haddow, et al. (2002): Evolving robust digital designs.
2002 NASA/DoD Conference on Evolvable Hardware. 15–18 July 2002,
Alexandria, VA, USA, IEEE Comput. Soc., Los Alamitos, CA, USA.

[31] I. Harvey, (1991): Species Adaptation Genetic Algorithms: The basis for a
continuing SAGA. 1st European Conference on Artificial Life, Paris, France.

[32] I. Harvey and A. Thompson (1997): Through the labyrinth, evolution finds
a way: A silicon ridge. 1st International Conference on Evolvable Systems,
Tsukuba, Japan, Springer-Verlag, Berlin, Germany.

[33] T., Higuchi, H. Iba, et al. (1994): Evolvable Hardware. Massively Parallel
Artifical Intelligence. Cambridge, MA, U.S.A., MIT Press: 398-421.

[34] T., Higuchi, M. Iwata, et al. (1996): Evolvable hardware and its application
to pattern recognition and fault-tolerant systems. Proceedings of Towards
Evolvable Hardware: An International Workshop. 2–3 Oct. 1995, Lausanne,
Switzerland, Springer-Verlag, Berlin, Germany.

[35] G., Hollingworth, S. Smith, et al. (2000): The Intrinsic Evolution of Virtex
Devices Through Internet Reconfigurable Logic. Proceedings of the Third
International Conference on Evolvable Systems, Edinburgh, U.K.

[36] G. Hornby (2003): Generative Representations for Evolutionary Design
Automation. Department of Computer Science. Waltham, MA, U.S.A.,
Brandeis University.

[37] B. I. Hounsell and T. Arslan (2000): A novel genetic algorithm for the auto-
mated design of performance driven digital circuits. 2000 Congress on
Evolutionary Computation, La Jolla, CA, USA, IEEE, Piscataway, NJ, USA.

[38] B. L. Hounsell and T. Arslan (2001): Evolutionary design and adaptation
of digital filters within an embedded fault tolerant hardware platform.
Proceedings Third NASA/DoD Workshop on Evolvable Hardware. EH 2001.
12–14 July 2001, Long Beach, CA, USA, IEEE Comput. Soc., Los
Alamitos, CA, USA.

[39] M. A., Huynen, P. F. Stadler, et al. (1996): Smoothness within ruggedness:
The role of neutrality in adaptation. Proceedings of the National Academy
of Science 93.

[40] K., Imamura, J. A. Foster, et al. (2000): The test vector problem and limi-
tations to evolving digital circuits. 2nd NASA/DoD Workshop on Evolvable
Hardware, Palo Alto, CA, U.S.A., IEEE Comput. Soc., Los Alamitos, CA,
USA.

[41] A. Inc. (2003): AN120E04 FPAA Data Sheet, http://www.anadigm.com.
2004.

[42] M., Iwata, I. Kajitani, et al. (1996): A pattern recognition system using
evolvable hardware. 4th International Conference on Parallel Problem
Solving from Nature PPSN IV, Berlin, Germany, Springer-Verlag, Berlin,
Germany.

Evolving Hardware 425

[43] D., Job, V. Shankararaman, et al. (1999): Hybrid AI Techniques for Software
Design. Proceedings of the 11th International Conference on Software
Engineering and Knowledge Engineering, Kaiserslautern, Germany.

[44] I., Kajitani, T. Hoshino, et al. (1996): Variable length chromosome GA for
evolvable hardware. 3rd IEEE International Conference on Evolutionary
Computation, Nagoya, Japan, IEEE, New York, NY, USA.

[45] I., Kajitani, T. Hoshino, et al. (1999): An Evolvable Hardware Chip and
Its Application as a Multi-Function Prosthetic Hand Controller. 16th
National Conference on Artificial Intelligence, Orlando, FL, U.S.A., AAAI
Press.

[46] T., Kalganova, J. F. Miller, et al. (1998): Some aspects of an evolvable hard-
ware approach for multiple-valued combinational circuit design. 2nd
International Conference on Evolvable Systems, Lausanne, Switzerland,
Springer-Verlag, Berlin, Germany.

[47] S. Kauffman and S. Levin (1987): Towards a General Theory of Adaptive
Walks on Rugged Landscapes. Journal of Theoretical Biology. 128: 11-45.

[48] S., Kazadi, Y. Qi, et al. (2001): Insufficiency of piecewise evolution. 3rd
NASA/DoD Workshop on Evolvable Hardware, Long Beach, CA, USA,
IEEE Comput. Soc., Los Alamitos, CA, USA.

[49] M. Kirschner and J. Gerhart (1998): Evolvability. Proceedings of the
National Acadamy of Science 95(8): 420–8427.

[50] J., Koza, F. H. I. Bennett, et al. (1999): Genetic Programming III. San
Francisco, California, U.S.A., Morgan-Kauffmann.

[51] J. R., Koza, M. A. Keane, et al. (2000): Automatic creation of human-com-
petitive programs and controllers by means of genetic programming.
Genetic Programming and Evolvable Machines 1(1-2): 121–64.

[52] W. B. Langdon, (1997): Scheduling Maintenance of Electrical Power
Transmission. Artificial Intelligence Techniques in Power Systems. K. Warwick
and A. O. Ekwue. London, IEE Press: 220-237.

[53] J., Langeheine, J. Becker, et al. (2001): A CMOS FPTA chip for intrinsic
hardware evolution of analog electronic circuits. Proceedings Third
NASA/DoD Workshop on Evolvable Hardware. EH 2001. 12–14 July 2001,
Long Beach, CA, USA, IEEE Comput. Soc., Los Alamitos, CA, USA.

[54] P. Layzell (1998): A new research tool for intrinsic hardware evolution. 2nd
International Conference on Evolvable Systems, Lausanne, Switzerland,
Springer-Verlag, Berlin, Germany.

[55] P. Layzell and A. Thompson (2000): Understanding Inherent Qualities of
Evolvaed Circuits: Evolutionary History as a Predictor of Fault Tolerance.
3rd International Conference on Evolvable Systems, Edinburgh, U.K.,
Springer-Verlag.

[56] D. Levi (2000): HereBoy: a fast evolutionary algorithm. The Second
NASA/DoD Workshop on Evolvable Hardware., Palo Alto, CA, USA, IEEE
Comput. Soc., Los Alamitos, CA, USA.

[57] D. Levi and S. A. Guccione (1999): GeneticFPGA: evolving stable circuits
on mainstream FPGA devices. 1st NASA/DoD Workshop on Evolvable
Hardware, Pasadena, CA, U.S.A., IEEE Comput. Soc., Los Alamitos, CA,
USA.

426 Timothy G. W. Gordon and Peter J. Bentley

[58] E. B. Lewis (1992): Clusters of master control genes regulate the develop-
ment of higher organisms. Journal of the American Medical Association
267: 1524–1531.

[59] J. H. Li and M. H. Lim (2003): Evolvable Fuzzy System for ATM Cell
Scheduing. 5th International Conference on Evolvable Systems, Trondheim,
Norway, Springer-Verlag.

[60] D. S. Linden (2001): A system for evolving antennas in-situ. Proceedings
Third NASA/DoD Workshop on Evolvable Hardware. EH 2001. 12–14 July
2001, Long Beach, CA, USA, IEEE Comput. Soc., Los Alamitos, CA,
USA.

[61] D. S. Linden (2002): An evolvable antenna system for optimizing signal
strength in-situ. IEEE Antennas and Propagation Society International
Symposium, vol.1, 16–21 June 2002, San Antonio, TX, USA, IEEE,
Piscataway, NJ, USA.

[62] D. S. Linden (2002): Optimizing signal strength in-situ using an evolvable
antenna system. 2002 NASA/DoD Conference on Evolvable Hardware.
15–18 July 2002, Alexandria, VA, USA, IEEE Comput. Soc., Los Alamitos,
CA, USA.

[63] D. S. Linden and E. E. Altshuler (1999): Evolving wire antennas using
genetic algorithms: a review. Proceedings of the First NASA/DoD Workshop
on Evolvable Hardware. 19–21 July 1999, Pasadena, CA, USA, IEEE
Comput. Soc., Los Alamitos, CA, USA.

[64] A. Lindenmayer (1968): Mathematical models for cellular interactions in
development I Filaments with one-sided inputs. Journal of Theoretical
Biology 18: 280–289.

[65] W., Liu, M. Murakawa, et al. (1997): ATM cell scheduling by function level
evolvable hardware. 1st International Conference on Evolvable Systems,
Tsukuba, Japan, Springer-Verlag, Berlin, Germany.

[66] J., Lohn, G. Larchev, et al. (2003): A Genetic Representation for
Evolutionary Fault Recovery in Virtex FPGAs. 5th International
Conference on Evolvable Systems, Trondheim, Norway, Springer-Verlag.

[67] J. D. Lohn and S. P. Colombano (1998): Automated analog circuit synthe-
sis using a linear representation. 2nd International Conference on Evolvable
Systems, Lausanne, Switzerland, Springer-Verlag, Berlin, Germany.

[68] J. D., Lohn, G. L. Haith, et al. (1999): A comparison of dynamic fitness
schedules for evolutionary design of amplifiers. 1st NASA/DoD Workshop
on Evolvable Hardware, Pasadena, CA, USA, IEEE Comput. Soc., Los
Alamitos, CA, USA.

[69] J. D., Lohn, D. S. Linden, et al. (2003): Evolutionary Design of an X-Band
Antenna for NASA’s Space Technology 5 Mission. 2003 NASA/DoD
Conference on Evolvable Hardware, Chicago, IL.

[70] S. J. Louis (2003): Learning for evolutionary design. 2003 NASA/DoD
Conference on Evolvable Hardware, Chicago, IL, USA, IEEE Comput. Soc.,
Los Alamitos, CA, USA.

[71] M., Lukac, M. A. Perkowski, et al. (2003): Evolutionary Approach to
Quantum and Reversible Circuits Synthesis. Artificial Intelligence Review
20(3-4): 361–417.

Evolving Hardware 427

[72] N. J. Macias and L. J. K. Durbeck (2002): Self-assembling circuits with
autonomous fault handling. 2002 NASA/DoD Conference on Evolvable
Hardware. 15–18 July 2002, Alexandria, VA, USA, IEEE Comput. Soc.,
Los Alamitos, CA, USA.

[73] J., Masner, J. Cavalieri, et al. (1999): Representation and robustness for
evolved sorting networks. 1st NASA/DoD Workshop on Evolvable Hardware,
Pasadena, CA, U.S.A., IEEE Comput. Soc., Los Alamitos, CA, USA.

[74] P. Mazumder and E. M. Rudnick (1999): Genetic Algorithms for VLSI
Design, Layout and Test Automation. Upper Saddle River, NJ, U.S.A.,
Prentice-Hall.

[75] J. F. Miller and K. Downing (2002): Evolution in materio: looking beyond
the silicon box. 2002 NASA/DoD Conference on Evolvable Hardware. 15–18
July 2002, Alexandria, VA, USA, IEEE Comput. Soc., Los Alamitos, CA,
USA.

[76] J. F., Miller, D. Job, et al. (2000): Principles in the Evolutionary Design of
Digital Circuits -Part I. Genetic Programming and Evolvable Machines
1(1/2): 7–35.

[77] J. F., Miller, D. Job, et al. (2000): Principles in the Evolutionary Design of
Digital Circuits -Part II. Genetic Programming and Evolvable Machines 1(3):
259–288.

[78] J. F., Miller, T. Kalganova, et al. (1999): The Genetic Algorithm as a
Discovery Engine: Strange Circuits and New Principles. Proceedings of the
AISB Symposium on Creative Evolutionary Systems, Edinburgh, U.K.

[79] J. F. Miller and P. Thomson (1998): Aspects of Digital Evolution:
Evolvability and Architecture. 5th International Conference on Parallel
Problem Solving from Nature, Amsterdam, The Netherlands, Springer-
Verlag.

[80] J. F. Miller and P. Thomson (1998): Aspects of digital evolution: geometry
and learning. Proceedings of Second International Conference on Evolvable
Systems: From Biology to Hardware. (ICES 98). 23–25 Sept. 1998,
Lausanne, Switzerland, Springer-Verlag, Berlin, Germany.

[81] J. F. Miller and P. Thomson (1998): Evolving Digital Electronic Circuits for
Real-Valued Function Generation using a Genetic Algorithm. 3rd Annual
Conference on Genetic Programming, San Francisco, CA, U.S.A,.

[82] J. F. Miller and P. Thomson (2003): A Developmental Method for Growing
Graphs and Circuits. 5th International Conference on Evolvable Systems,
Trondheim, Norway, Springer-Verlag.

[83] J. F., Miller, P. Thomson, et al. (1997): Designing electronic circuits using
evolutionary algorithms. Arithmetic circuits: a case study. Applications of
Computer Systems. Proceedings of the Fourth International Conference.
13–14 Nov. 1997, Szczecin, Poland, Wydwnictwo i Drukarnia Inst. Inf.
Polytech. Szczecinskiej, Szezecin, Poland.

[84] T. M. Mitchell (1997): Machine Learning. London, McGraw-Hill.
[85] G. E. Moore (1965): Cramming More Components Onto Integrated

Circuits. Electronics 38(8): 114–117.
[86] J. M., Moreno, J. Madrenas, et al. (1998): Feasible, evolutionary and self-

repairing hardware by means of the dynamic reconfiguration capabilities of

428 Timothy G. W. Gordon and Peter J. Bentley

the FIPSOC devices. 2nd International Conference on Evolvable Systems,
Lausanne, Switzerland, Springer-Verlag, Berlin, Germany.

[87] M., Murakawa, T. Adachi, et al. (2002): An AI-calibrated IF filter: a yield
enhancement method with area and power dissipation reductions. 2002
IEEE Custom Integrated Circuits Conference, Singapore.

[88] M. Murakawa, S. Yoshizawa, et al. (1998): Analogue EHW chip for inter-
mediate frequency filters. Proceedings of Second International Conference
on Evolvable Systems: From Biology to Hardware. (ICES 98). 23–25 Sept.
1998, Lausanne, Switzerland, Springer-Verlag, Berlin, Germany.

[89] M. Murakawa, S. Yoshizawa, et al. (1996): Hardware evolution at function
level. 5th Conference on Parallel Problem Solving from Nature, Berlin,
Germany, Springer-Verlag, Berlin, Germany.

[90] M. Murakawa, S. Yoshizawa, et al. (1999): The GRD chip: Genetic recon-
figuration of DSPs for neural network processing. IEEE Transactions on
Computers 48(6): 628–639.

[91] J. Plante, H. Shaw, et al. (2003): Overview of Field Programmable Analog
Arrays as Enabling Technology for Evolvable Hardware for High
Reliability Systems. 2003 NASA/DoD Conference on Evolvable Hardware,
Chicago, IL, U.S.A., IEEE Press.

[92] E. Ramsden (2001): The ispPAC family of reconfigurable analog circuits.
3rd NASA/DoD Workshop on Evolvable Hardware, Long Beach, CA, USA,
IEEE Comput. Soc., Los Alamitos, CA, USA.

[93] D. E. Rumelhart, B. Widrow, et al. (1994): The Basic Ideas in Neural
Networks. Communications of the ACM 37(3): 87–92.

[94] H. Sakanashi, M. Iwata, et al. (2001): A Lossless Compression Method for
Halftone Images using Evolvable Hardware. 4th International Conference
on Evolvable Systems, Tokyo, Japan, Springer-Verlag.

[95] M. Salami, M. Murakawa, et al. (1996): Data compression based on evolv-
able hardware. 1st International Conference on Evolvable Systems from
Biology to Hardware, Tsukuba, Japan, Springer-Verlag, Berlin, Germany.

[96] C. C. Santini, R. Zebulum, et al. (2001): PAMA-programmable analog mul-
tiplexer array. 3rd NASA/DoD Workshop on Evolvable Hardware, Long
Beach, CA, USA, IEEE Comput. Soc., Los Alamitos, CA, USA.

[97] Sechen (1988): VLSI Placement and Global Routing Using Simulated
Annealing. Boston, MA, U.S.A, Kluwer Academic Publishers.

[98] L. A. Segel and I. Cohen, Eds. (2001): Design Principles for the Immune
System and Other Distributed Autonomous Systems. Santa Fe Institute
Studies in the Sciences of Complexity. New York, Oxford University Press.

[99] L. Sekanina (2002): Evolution of digital circuits operating as image filters
in dynamically changing environment. 8th International Conference on Soft
Computing, Brno, CZ.

[100] L. Sekanina (2003): Easily Testable Image Operators: The Class of Circuits
Where Evolution Beats Engineers. 2003 NASA/DoD Conference on
Evolvable Hardware, Chicago, IL, U.S.A., IEEE Press.

[101] L. Sekanina (2003): Towards Evolvable IP Cores for FPGAs. 2003
NASA/Dod Conference on Evolvable Systems, Chicago, IL, U.S.A., IEEE
Press.

Evolving Hardware 429

[102] H. T. Sinohara, M. A. C. Pacheco, et al. (2001): Repair of analog circuits:
extrinsic and intrinsic evolutionary techniques. Proceedings Third
NASA/DoD Workshop on Evolvable Hardware. EH 2001. 12–14 July 2001,
Long Beach, CA, USA, IEEE Comput. Soc., Los Alamitos, CA, USA.

[103] J. M. W. Slack (1991): From Egg to Embryo. Cambridge, Cambridge
University Press.

[104] A. Stoica, A. Fukunaga, et al. (1998): Evolvable hardware for space appli-
cations. Second International Conference on Evolvable Systems: From
Biology to Hardware. (ICES 98). 23–25 Sept. 1998, Lausanne, Switzerland,
Springer-Verlag, Berlin, Germany.

[105] A. Stoica, D. Keymeulen, et al. (1999): Evolutionary experiments with a
fine-grained reconfigurable architecture for analog and digital CMOS cir-
cuits. Proceedings of the First NASA/DoD Workshop on Evolvable
Hardware. 19–21 July 1999, Pasadena, CA, USA, IEEE Comput. Soc., Los
Alamitos, CA, USA.

[106] A. Stoica, D. Keymeulen, et al. (2001): Evolvable hardware solutions for
extreme temperature electronics. 3rd NASA/DoD Workshop on Evolvable
Hardware., Long Beach, CA, USA, IEEE Comput. Soc., Los Alamitos,
CA, USA.

[107] A. Stoica, R. Zebulum, et al. (2000): Mixtrinsic Evolution. 3rd International
Conference on Evolvable Systems, Edinburgh, U.K.

[108] A. Stoica, R. Zebulum, et al. (2002): On polymorphic circuits and their
design using evolutionary algorithms. 20th IASTED International
Multiconference on Applied Informatics, Innsbruck, Austria, ACTA Press,
Anaheim, CA, USA.

[109] A. Stoica, R. S. Zebulum, et al. (2003): Silicon validation of evolution-
designed circuits. 2003 NASA/DoD Conference on Evolvable Hardware,
Chicago, IL, USA, IEEE Comput. Soc., Los Alamitos, CA, USA.

[110] S. Sundaralingam and K. C. Sharman (1998): Evolving Complex Adaptive
IIR Structures. 9th European Signal Processing Conference, Rhodes, Greece.

[111] A. J. Surkan and A. Khuskivadze (2002): Evolution of quantum computer
algorithms from reversible operators. 2002 NASA/DoD Conference on
Evolvable Hardware. Alexandria, VA, U.S.A., IEEE Comput. Soc., Los
Alamitos, CA, USA.

[112] E. Takahashi, Y. Kasai, et al. (2003): A Post-Silicon Clock Timing
Adjustment Using Genetic Algorithms. 2003 Symposium on VLSI circuits,
IEEE Press.

[113] G. Tempesti, D. Mange, et al. (2002): The BioWall: an electronic tissue for
prototyping bio-inspired systems. 2002 NASA/DoD Conference on
Evolvable Hardware, Alexandria, VA, U.S.A., IEEE Comput. Soc., Los
Alamitos, CA, USA.

[114] A. Thompson (1995): Evolving electronic robot controllers that exploit
hardware resources. Advances in Artificial Life. Third European Conference
on Artificial Life. Proceedings. 4–6 June 1995, Granada, Spain, Springer-
Verlag, Berlin, Germany.

[115] A. Thompson (1996): An Evolved Circuit, Intrinsic in Silicon, Entwined with
Physics. 1st International Conference on Evolvable Systems, Springer-Verlag.

430 Timothy G. W. Gordon and Peter J. Bentley

[116] A. Thompson (1996): Hardware Evolution. Brighton, U.K., University of
Sussex.

[117] A. Thompson (1996): Silicon Evolution. Proceedings of the 1st Annual
Conference on Genetic Programming, Stanford, CA, U.S.A.

[118] A. Thompson (1998): On the automatic design of robust electronics
through artificial evolution. Proceedings of Second International Conference
on Evolvable Systems: From Biology to Hardware. (ICES 98). 23–25 Sept.
1998, Lausanne, Switzerland, Springer-Verlag, Berlin, Germany.

[119] A. Thompson (2002): Notes on design through artificial evolution:
Opportunities and algorithms. Adaptive computing in design and manufac-
ture 5(1): 17–26.

[120] A. Thompson, I. Harvey, et al. (1996): Unconstrained Evolution and Hard
Consequences. Towards Evolvable Hardware: The Evolutionary Engineering
Approach. E. Sanchez and M. Tomassini. Berlin, Germany, Springer-
Verlag. 1062: 136–165.

[121] A. Thompson and P. Layzell (2000): Evolution of Robustness in an
Electronics Design. Proceedings of the 3rd International Conference on
Evolvable Systems: From Biology to Hardware, Edinburgh, U.K.

[122] A. Thompson and C. Wasshuber (2000): Evolutionary design of single
electron systems. Proceedings. The Second NASA/DoD Workshop on
Evolvable Hardware. 13–15 July 2000, Palo Alto, CA, USA, IEEE Comput.
Soc., Los Alamitos, CA, USA.

[123] R. Thomson and T. Arslan (2003): The evolutionary design and synthesis
of non-linear digital VLSI systems. 2003 NASA/DoD Conference on
Evolvable Hardware, Chicago, IL, USA, IEEE Comput. Soc., Los
Alamitos, CA, USA.

[124] J. Torresen (2000): Possibilities and limitations of applying evolvable hard-
ware to real-world applications. Proceedings of FPL 2000. 10th
International Conference on Field Programmable Logic and Applications.
27–30 Aug. 2000, Villach, Austria, Springer-Verlag, Berlin, Germany.

[125] G. Tufte and P. C. Haddow (2000): Evolving an adaptive digital filter.
Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware.
13–15 July 2000, Palo Alto, CA, USA, IEEE Comput. Soc., Los Alamitos,
CA, USA.

[126] A. Tyrrell, E. Sanchez, et al. (2003): POEtic Tissue: An Integrated
Architecture for Bio-inspired Hardware. 5th International Conference on
Evolvable Systems, Trondheim, Norway.

[127] A. M. Tyrrell, G. Hollingworth, et al. (2001): Evolutionary strategies and
intrinsic fault tolerance. 3rd NASA/DoD Workshop on Evolvable Hardware.
EH 2001, Long Beach, CA, USA, IEEE Comput. Soc., Los Alamitos, CA,
USA.

[128] V. Vassilev and J. F. Miller (2000): The Advantages of Landscape Neutrality
in Digital Circuit Evolution. Proceedings of the 3rd International
Conference on Evolvable Systems: From Biology to Hardware, Edinburgh,
U.K.

[129] V. Vassilev and J. F. Miller (2000): Embedding Landscape Neutrality To
Build a Bridge from the Conventional to a More Efficient Three-bit

Evolving Hardware 431

Multiplier Circuit. Genetic and Evolutionary Computation Conference, Las
Vegas, NV, U.S.A.

[130] S. Vigander (2001): Evolutionary Fault Repair of Electronics in Space
Applications. Trondheim, Norway, Norwegian University Sci. Tech.

[131] K. A. Vinger and J. Torresen (2003): Implementing evolution of FIR-filters
efficiently in an FPGA. 2003 NASA/DoD Conference on Evolvable
Hardware, Chicago, IL, USA, IEEE Comput. Soc., Los Alamitos, CA,
USA.

[132] X. Yao and T. Higuchi (1997): Promises and challenges of evolvable hard-
ware. 1st International Conference on Evolvable Systems: From Biology to
Hardware, Tsukuba, Japan, Springer-Verlag, Berlin, Germany.

[133] J. S. Yih and P. Mazumder (1990): A Neural Network Design for Circuit
Partitioning. IEEE Transactions on Computer Aided Design 9(10): 1265–1271.

[134] R. S. Zebulum, M. Aurélio Pacheo, et al. (1997): Increasing Length
Genotypes in Evolutionary Electronics. 7th International Conference on
Genetic Algorithms, East Lansing, MI, U.S.A.

[135] R. S. Zebulum, D. Keymeulen, et al. (2003): Experimental results in evolu-
tionary fault-recovery for field programmable analog devices. 2003
NASA/DoD Conference on Evolvable Hardware, Chicago, IL, USA, IEEE
Comput. Soc., Los Alamitos, CA, USA.

[136] R. S. Zebulum, M. A. Pacheco, et al. (1998): Analog circuits evolution in
extrinsic and intrinsic modes. 2nd International Conference on Evolvable
Systems, Lausanne, Switzerland, Springer-Verlag, Berlin, Germany.

432 Timothy G. W. Gordon and Peter J. Bentley

Chapter 13

IMPLEMENTING NEURAL MODELS IN SILICON
Leslie S. Smith
University of Stirling

Abstract
Neural models are used in both computational neuroscience and in pat-

tern recognition. The aim of the first is understanding of real neural systems,
and of the second is gaining better, possibly brainlike performance for systems
being built. In both cases, the highly parallel nature of the neural system con-
trasts with the sequential nature of computer systems, resulting in slow and
complex simulation software. More direct implementation in hardware
(whether digital or analogue) holds out the promise of faster emulation both
because hardware implementation is inherently faster than software and the
operation is much more parallel. There are costs to this: modifying the system
(for example, to test out variants of the system) is much harder when a full
application-specific integrated circuit has been built. Fast emulation can per-
mit direct incorporation of a neural model into a system, permitting real-time
input and output. Appropriate selection of implementation technology can
help to make simplify interfacing the system to external devices. We review the
technologies involved and discuss some example systems.

1 WHY IMPLEMENT NEURAL MODELS
IN SILICON?

There are two primary reasons for implementing neural models: one is to
attempt to gain better and possibly brainlike performance for some system, and
the other is to study how some particular neural model performs. Current com-
puter systems do not approach brainlike system performance in many areas (sens-
ing, motor control, and pattern recognition, for example, to say nothing of the
higher level capabilities of mammalian brains). There has been considerable
research into how the neural system attains its capabilities. Implementing neural
systems in silicon can permit direct applications of this research by permitting
neural models to run rapidly enough to be applied directly to data. It is true that

increases in workstation performance have allowed some software implementa-
tions of neural models to run in real time, but the highly parallel nature of neu-
ral systems, coupled with increasing interest in the application of more
sophisticated (and computationally more expensive) neural models, has caused
interest in more direct implementation to be maintained. Interest in applying neu-
ral models to sensory and sensory-motor systems has made attaining real-time
performance a critical factor. Real sensory systems are highly parallel, with mul-
tiple parallel channels of information, so even though each channel might be
implementable in real-time in software, implementing multiple channels implies
hardware implementation.

The study of how particular models of neural systems perform is one aspect
of computational neuroscience. Such studies are usually carried out in software,
since this allows easy alteration of and experimentation with systems. However,
models of the highly parallel architecture of neural systems run slowly on stan-
dard computers. This has led to interest in the use of parallel computer systems
for such models [1, 2] and to interest in silicon implementations. Some researchers
in computational neuroscience would like to apply their models directly to real
data (implying real-time operation). Even if parallel computers can provide the
speed required, it is easier and cheaper to interface silicon implementations to
external hardware.

Recently, another motivation for silicon implementation has arisen as well.
The continuing applicability of Moore’s Law (which states that the number of
transistors on a chip doubles every 18 to 24 months) suggests that we shall soon
have chips with more than 108 transistors but that we may also have chips whose
transistors may be relatively noisy. Such large numbers of transistors seem to
entail highly parallel algorithms if these transistors are not to sit unused almost
all of the time [3]. Further, biological systems seem to produce relatively robust
solutions with relatively noisy components, something that standard computer
systems cannot achieve. This has led to increased interest in the study and imple-
mentation of neural models directly in silicon.

1.1 What this review covers—and what it omits

This review covers the implementation of a number of different types of
model neuron, ranging from the very simple McCulloch–Pitts neuron to highly
complex multicompartment models. It includes implementations of integrate-
and-fire neurons and other models of intermediate complexity. It does not cover
those silicon chips that are primarily concerned with using these neural models to
solve a particular problem. We do describe some of the implementation tech-
niques used for the back-propagated delta rule and the Boltzmann machine, but
we do not review all these chips, concentrating instead on specific issues such as
synapse implementation or noise. A more detailed review of such chips may be
found in [4].

1.2 Organization of this review

We start by outlining the organization and structure of a real neuron. This
overview will allow us to see the different aspects of neuron behavior that are

434 Leslie S. Smith

being modelled. We review the different types of models for neural systems that
have been proposed, differentiating between those that deal with simple vector
input (in which time is either irrelevant or occurs only in terms of the order in
which the input vectors are presented), and those in which the precise timing of
the inputs matters. We then discuss the different technologies for implementation
and describe how different types of model neurons have been implemented. We
discuss some applications, and consider what has been and can be expected to be
achieved by using these different implementation technologies.

2 AN OUTLINE OF A REAL NEURON

Real neurons, like all real cells, are very complex. The aim of this subsection
is to describe a neuron at a level of detail and in a language that is informative to
a wide range of scientists and that can also be used to illustrate what is actually
being modeled in particular implementations. A detailed neurophysiological
description of real neuron operation may be found in [5], part II, and in [6].

There are many different types of neurons, and these very enormously in mor-
phology (shape) and extent, as well as in the details of their biophysics. Neurons
are found in a very wide range of animal species: invertebrate, insect, and verte-
brate. What they all share is operation using electric charge. The operation of the
neuron relies on the neuron’s excitable membrane. The membrane of any cell is its
outermost layer: its boundary. In neurons, this membrane is a bilipid membrane
that contains ionic channels (see Figure 13.2). What makes the membrane
excitable is the way in which its characteristics alter depending on the (localized)
voltage across the membrane. The purely bilipid part of the membrane is essen-
tially a very thin insulator, separating the relatively conducting electrolytes inside
and outside the cell. The ionic channels (and there are many different types of
ionic channel) embedded in this membrane allow selected (charged) ions to cross
the membrane. Unbalanced movement of ions into and out of the neuron alters
the potential difference between the inside and the outside of the neuron (see
Figure 13.3). The ions of particular significance here are potassium (K+), sodium
(Na+), and calcium (Ca++). There is some disagreement as to whether ion channels
are static or can move around inside the membrane [7].

In the absence of any input to the neuron, the excitable membrane will main-
tain the inside of the neuron at a particular potential relative to the outside of
the neuron. This resting membrane potential is usually on the order of −65 mV
(millivolts) (though this does vary across different populations of neurons). This
resting potential results from the movement of ions, primarily due to the differ-
ent ionic concentrations inside and outside of the neurons, and this is maintained
by the Na+–K+ pump which keeps the Na+ concentration inside the cell low and
the K+ concentration inside the cell high (see Figure 13.3). External inputs to the
neuron result in the increase of this potential (known as depolarization in the neu-
rophysiology community) or decrease of this potential (hyperpolarization).

Before discussing the details of how this potential changes, we consider the
overall structure of a neuron: see Figure 13.1. The neuron has a cell body (the
soma), and in most neurons, this has projections. These projections are of two
types: the dendrites and the axon. The dendrites have a treelike structure (hence

Implementing Neural Models in Silicon 435

their name, which comes from the Greek ed odtqo [dendron], a tree) and are
located where inputs to the neuron arrive. The axon, which also has a branching
structure, transfers the output of the neuron to other neurons. These two projec-
tions can be difficult to tell apart in electron micrographs, but they have different
populations of ion channels in their membranes, and they function in different
ways.

Connections between neurons take place at synapses. Mostly, each synapse is
between the axon of one neuron (the presynaptic neuron) and the dendrite of

436 Leslie S. Smith

Axon

Dendrite

Dendrite

Soma

Nucleus

Synapse

Synapse

Synapse

Synapse

Soma

Dendrite

Dendrite

Dendrite

Nucleus

K+
K+

Extracellular

Intracellular

Na+

Figure 13.1. Overall structure of a neuron (actually, a local interneuron). Figure modified from
[5] (Figure 2.8), with permission.

Figure 13.2. Patch of cell neuron membrane. Ion channels are embedded in the bilipid mem-
brane. The membrane is made up of molecules each with a hydrophilic end (circle) and a
hydrophobic end (lines), and is impermeable to ions. There are many types of ion channels, each
consisting of a protein embedded in the membrane: different proteins have different permeabil-
ities to ions because of the conformation of the protein. Additionally, the protein confirmation
itself may be dependent on the voltage across the membrane, so the ion channel’s behavior may
be dependent on the voltage across the membrane as well.

1There are also axo-axonic and dendro-dendritic synapses, as well as axonic synapses that con-
tact the cell body.

another neuron (the postsynaptic neuron).1 It is through the synapse that the
potential at that point in the presynaptic axon alters the potential at that point in
the postsynaptic neuron’s dendrite. Brains contain a large number of highly inter-
connected neurons, and each interconnection consists of a synapse. Some neu-
rons (e.g., cortical pyramidal neurons) may have as many as 10,000 synapses on
their dendrites. There are therefore a very large number of synapses in animal
brains. According to Koch [6], in primates there are about 100,000 cells, and
about 6 × 108 synapses per cubic mm in the cortex.

In an animal brain, synapses are of many different types. Actual synaptic
operation is complex. Many synapses operate by releasing small bubbles (called
vesicles) of a chemical (called a neurotransmitter) from the presynaptic axon into
the space (called the cleft) between the presynaptic axon and the postsynaptic
dendrite (see Figure 13.4). In one type of synapse (ionotropic), this process
directly affects the ionic channels on the dendrite, causing some of them to open
and to allow influx or efflux of ions, altering the potential at that point in the
postsynaptic dendrite. In another type of synapse (metabotropic), the effect is less
direct, altering the ion transport of neighboring proteins. Clearly, both types of
synapse require some time for the effect of the presynaptic pulse to be felt post-
synaptically, and this effect (called postsynaptic potentiation or PSP) takes some
time to decay as well. There are many types of both ionotropic and metabotropic
synapses (often classified by the neurotransmitters used). Ionotropic synapses are
faster in operation than metabotropic synapses.

Implementing Neural Models in Silicon 437

Extracellular

Sodium/Potassium ion pump

Intracellular (Cytoplasmic)

E_Na

g_Na

I_Na

g_CI g_k

I_k

I_k

I_Na

C
_m

em
br

an
e

E_kE_Cl

Figure 13.3. Equivalent circuit of a patch of membrane. The arrows show the direction of the
ion movement (which is the same direction as current transfer). The sodium–potassium pump
maintains the inside of the cell at a negative potential (more Na+ ions are transferred out than
K+ ions are transferred in). The capacitance is provided by the (insulating) bilipid membrane.

When the potential alteration is depolarizing, the synapse is said to be
excitatory, and when the potential alteration is hyperpolarizing, the synapse is
said to be inhibitory. These small alterations in potential are summed on the den-
drites. On many neurons, this summation appears to be essentially linear within a
certain range of potentials: outside of this range, ion channels alter their config-
uration, and the dendrite ceases to be linear. This nonlinearity may occur at some
small portion of the dendrite, due, for example, to many nearby synapses being
simultaneously stimulated. On some neurons, synapses are located on spines on
the dendrite (spiny neurons, as opposed to smooth neurons), leading, it is believed,
to greater ionic and electrical isolation of each synapse. Some researchers believe
that the dendrites perform a considerable amount of processing (the neurophysi-
ology is discussed in Section 19.3.2 of [6], and modeling in [8]), and that there are
essentially nonlinear processes operating on the neuron that provide neurons with
considerable information processing power.

In many neurons, it is the potential at a particular part of the neuron, the axon
hillock (located on the soma of the neuron, at the root of the axon projection)
that is of particular importance. At this trigger zone on the neuron, there is a
large concentration of particular types of sodium channels. The result is that
when the voltage at this location increases beyond a certain threshold value (usu-
ally about −48 mv), a particular set of voltage-sensitive ion channels opens and
allows the influx of Na+ ions, rapidly increasing the depolarization. This results
in even more of these channels opening, causing a very fast and large rise in the
membrane potential. As a result of this increased depolarization, two things
occur: firstly, the sodium ion channels close, and secondly, another set of ionic
channels opens, allowing the efflux of a different set of ions (K+), causing the
potential to drop nearly as rapidly as it rose (see Figure 13.5). This potential
increase and decrease is regenerated along the axon, resulting in a spikelike signal
passing along the axon, arriving at the synapses that this axon makes. Because the
spike is regenerated, its shape is characteristic of the mechanism of its produc-
tion and does not carry information. It is worth noting that (1) the sodium ion

438 Leslie S. Smith

pre-synaptic nerve terminal

2 3

Transmitter
Ca++

synaptic
cleft

post-synaptic cell

Na+

receptor
channel

1

Figure 13.4. Diagram showing the operation of an ionotropic synapse. Modified with permis-
sion from [5] (Figure 10.7).

channels are not able to reopen immediately, so there is an inbuilt maximal rate
at which these spikes can be produced by the neuron, and (2) the potassium efflux
normally overshoots, causing a brief after-spike hyperpolarization. The delay in
the reusability of the sodium channels results in the neuron’s absolute and rela-
tive refractory period: that is, the period during which the neuron cannot fire
again, and the period during which it is more difficult for the neuron to fire again.

The actual propagation speed of the spike is relatively slow due to both the
nature of the conductance and the distributed resistance and capacitance of the
axon. It can be speeded up by a process known as myelinization. In myelinization,
glial cells form a myelin insulation a round the axon, reducing its capacitance, and
allowing the spike to jump (by electrical conductivity, rather than by regenera-
tion) from point to point (actually, to breaks in the myelin, known as Nodes of
Ranvier) along the axon. Actual propagation speeds vary from 1 mm/sec to 100
mm/s inside brains (and faster along peripheral nerves).

Not all neurons actually produce spikes: some output graded potentials.
Indeed, not all neurons have actual dendrites: some receive synapses only on the
soma itself. In many synapses, the alteration in potential produced depends also
on the potential at the synapse. In particular, some synapses (shunting synapses)
tend to drive the potential back towards the resting potential (and thus are either
excitatory or inhibitory, depending on the local potential). In addition, synapses
do not always have exactly the same effect postsynaptically as a result of a presy-
naptic spike. Many synapses are depressing synapses: the effect of the first few
spikes (after a period of presynaptic inactivity) is much larger than that caused by
later spikes. Other synapses are facilitating: after a period of presynaptic inactiv-
ity, the effect of a train of spikes gradually increases. These effects appear to be
due partly to depletion of presynaptic neurotransmitter, and partly to changes at
the membrane on the postsynaptic dendrite (see [9], chapter 10).

Implementing Neural Models in Silicon 439

Na+
influx

K+
efflux

2ms

time

−70mV

+50mv

Figure 13.5. Graph of depolarization on an axon during an action potential (spike).

One important aspect of real neural systems is that they alter in response to
their inputs. They adapt, so identical inputs at different times can have different
effects. This adaptation takes place over many time scales: it may occur rapidly,
as a result of a single event, or very slowly over the lifetime of the animal. Early
in the animal’s life, the neural system grows. There is a great deal of evidence that
the stimulation it receives is critical in adjusting the processing that takes place to
the actual input arriving (e.g., in vision: see chapter 56 of [5]). In mammals many
synapses are formed but do not last. Changes inside the system take many forms:
in addition to growth and decay of synapses, there are structural and biochemi-
cal alterations at synapses, alterations in neuron morphology, and subtler changes
due to hormones and diffusable neurotransmitters such as nitrous oxide (NO)
and peptides. Neural models have tended to focus almost exclusively on changes
at synapses. In addition to the short-term synaptic alteration above (called
dynamic synapse behavior), synapses can also become stronger over a longer
period (long-term potentiation, LTP), or become weaker over a longer period
(long-term depression, LTD). Somehow, out of all these forms of adaptation, the
system appears to learn: we see systemwide changes that provide appropriate
changes in behavior.

There are many views on how much of the detail of the behavior of neurons
is important for understanding their information-processing capabilities. These
views range from the view that only the firing of the neuron matters to views that
voltage-based processing on the dendrite is crucial in information processing, to
views that it is the detail of the quantum effects upon the movement of ions and
the conformation of proteins that matter. Some believe that the firing of neurons
is essentially for information transfer, and that what happens on the dendrites is
critical to information processing (see [6] chapter 20, and [10]). These differences
in beliefs are at the root of the many models that we will now describe.

3 SIMPLE (TIME-FREE) NEURON MODELS

The simplest neural models do not include time: that is, each neuron’s input is
considered as a vector, and the output is computed from this input without regard
for what the neuron’s previous input (or output) had been. There is no internal
state inside the neuron that would allow previous inputs to affect current opera-
tion. Networks of such neurons can be made sensitive to previous inputs if the
network contains loops (because the state information is contained in these new
inputs), but even then, these networks are sensitive only to the order of the inputs
and not to their actual timing. This type of neuron model is the basis for most of
the current work in neural networks for pattern recognition. Such models have
been implemented on analogue computers, digital computers, and in various
types of hardware.

3.1 The McCulloch–Pitts model

The earliest model was the McCulloch-Pitts neuron [11]. This model forms the
weighted sum of its (vector) input and produces a binary output, which is 1 if
the weighted sum exceeds some threshold, and 0 otherwise. This can be written

440 Leslie S. Smith

A w Xi i
i

n

1
=

=

! (1)

followed by Y = 1 if A > q, and Y = 0 otherwise. Here wi is the weight char-
acterizing the synapse from input i, Xi is the ith input, A is the activity of the neu-
ron, q is the threshold, and Y is the neuron’s output.

The model has been formed by (1) considering each spiking neuron as a two-
state device, in which the neuron is either firing (output = 1) or not (output = 0),
and (2) considering each synapse as characterized by a single number (wi). An
excitatory synapse has wi > 0, and an inhibitory synapse has wi < 0. The effect
of the presynaptic neuron on the postsynaptic neuron is found by simple multi-
plication. The overall effect of all the presynaptic neurons—the activity, A—is
a simple linear sum: the dendrite is reduced to a single point. The nonlinearity
is introduced only at the end, where the activity is thresholded to produce the
output.

What makes this very simple model interesting is that it can be used to do
computation. It is straightforward to design simple NOT, AND, and OR gates,
and these can be assembled to provide any logical predicate. The addition of a
clock allows one to build a digital computer from such devices.

3.2 Learning systems

Many extensions to this simple model have been proposed. In terms of basic
operation, these extensions have often been relatively minor, such as graduating
the output. The knowledge that real neural systems are not preprogrammed (at
least in vertebrates) but adapt or learn has been very influential, partly because
useful adaptation has proven very difficult to achieve in traditional computer sys-
tems, and partly because there are many problems for which a purely algorithmic
solution is virtually impossible to find, whereas examples of correct behavior are
quite simple to produce. A system based on learning might be able to solve such
problems.

The earliest form of neural learning was suggested by Hebb [12]. In this form
of learning, synapses that connect neurons that fire together are strengthened.
This type of learning can be applied to make simple learning systems. These have
been investigated in the context of both time-free models and models that include
time: in the time-free case, they can provide a basis for certain self-organizing sys-
tems [13]. We will discuss the case including time in more detail in Section 5.4.3.
We first discuss learning systems that have a teacher: that is, learning systems in
which there is a known correct output for many of the possible inputs. We return
to systems without a teacher in Section 3.3.

3.2.1 Perceptrons

One of the earliest learning systems was the perceptron [14], in which some of
the geometry of the dendrite was reintroduced. What the perceptron is best
known for is the perceptron learning rule [14]. This rule (described in many
Neural Networks textbooks, (e.g., [15,16])) was the first one discussed that
allowed the neural model to adapt itself so as to produce the desired input:out-
put mapping. It was limited to a single layer of simple perceptrons (i.e., perceptrons

Implementing Neural Models in Silicon 441

which had the dendrite geometry removed) with binary outputs (which are the
same as McCulloch–Pitts neurons), but was shown to be able to generate any log-
ical predicate that this architecture could permit. This was the first truly adaptive
system, and it was hugely influential. It led to various forms of implementation
(see Section 5).

3.2.2 The Delta rule

The Delta rule is another learning algorithm for the same architecture [17, 18].
This rule minimizes the Euclidean (least squares) distance between the actual out-
put and the desired output by adjusting the weights (and is sometimes known as
the least mean squares rule). It is applicable to units whose output is a continu-
ously increasing function of the weighted sum of the inputs. The unit output
function may be linear (i.e., the output is simply a constant times the activity
A from Equation 1), or may be a squashing function such as a logistic:

Y = 1/(1 + exp(−k1 A + k2)) (2)

where Y is the output, and k1 and k2 are constants that determine the magni-
tude and location of the maximum slope. The logistic function has a value that is
always between 0 and 1. Other squashing functions (e.g., tanh) have also been uti-
lized. Again, it has been shown that the Delta rule can produce any output that
the particular single-layer architecture could produce, and given small enough
weight changes, will converge to a solution (see, e.g., Section 5.4 of [15]). The way
in which the network is used is that a set of (input, output) pairs is produced, and
these are then applied to the network as the input and the desired output for this
input. The weights are then adjusted to reduce the error: that is, the square of the
sum of the differences between the desired and actual outputs.

However, the limited computational ability of the single-layer architecture was
proven in [19]. The architecture can only produce linearly separable mappings.
Minsky and Papert’s doubt as to whether it could be extended either to more
complex perceptron networks or to a larger class of functions led to a decrease in
the effort extended in neural computing (see [15], Section 1.2) in the 1970s and
early 1980s.

3.2.3 The Hopfield network and the Boltzmann machine

Two new adaptation algorithms were introduced for similar types of neurons
in the early 1980s, one for binary neurons (the Hopfield model, and its extension,
the Boltzmann machine), and the other an extension of the Delta rule (the back-
propagated Delta rule). Both of these networks were hugely influential, and both
were implemented in various forms in hardware.

Hopfield’s network [20] is symmetrical: that is, wij = wji, where wij is the weight
from presynaptic neuron j to postsynaptic neuron i. This network is not a simple
layer of neurons, but has cycles. Updating the network was done neuron by neu-
ron, asynchronously, and the Hopfield proved that the network eventually settles
into a stable state. It was therefore the first network to have a dynamical behav-
ior, although this was not normally used in its operation. The network is consid-
ered to have an overall energy

442 Leslie S. Smith

E w X X2
1

,
ij i j

i j

N

1
= -

=

! (3)

where the neuron’s output, Xi, is either +1 or 1, rather than +1 or 0, and updat-
ing each neuron’s state minimizes this total energy, E. The network could be
trained to be an associative memory by applying the vectors to be stored and then
adjusting the weights so as to minimize E. Hopfield and others (as is clearly
explained in [15]) showed that such a network could remember a maximum of
0.138N vectors. These could be recalled by providing the network with an incom-
plete vector, thus providing content-addressable memory.

An important extension to this network was the Boltzmann machine [21]. In
this network, the original Hopfield network is extended by adding new nodes that
are not connected to the outside world. These so-called hidden nodes can learn to
form internal representations that can allow the network to learn additional vec-
tors and can be used to allow the network to classify its inputs by examining the
hidden unit state. However, the learning technique also has to change (since the
Hopfield learning recipe cannot train weights to and from hidden nodes). The
learning algorithm used is statistical in nature: essentially, it uses concepts from
statistical physics and Boltzmann distributions (hence the algorithm’s name) to
set these weights. A comprehensible description may be found in [15], chapter 7
or in [16], chapter 11. Using such techniques in software is exceedingly slow.
However, the idea that this type of network could learn some form of internal
representation helped rekindle interest in the whole area, and the slowness of
the algorithm in software helped motivate implementations of this type of net-
work in silicon.

3.2.4 The back-propagated Delta rule

The best known of the simple neural network learning rules is the back-prop-
agated Delta rule. Discovered independently at least five times [22–26], it permits
a Delta rule like network to be extended from a simple single layer to a feed-for-
ward network (see Figure 13.6). The basic idea is that errors at the output layer
are funneled back to the units of each hidden layer: for details see any book on
neural networks, e.g., [15] chapter 6, or [16], chapter 4. Once the error at a unit is
known, it can be used to adjust the weights to that unit, essentially using the orig-
inal Delta rule.

There are two problems with the back-propagated Delta rule: firstly, it is no
longer the case that continued application of the learning rule will necessarily
allow the network to learn the input:output mapping, even although it may be
possible for the architecture to do so; and secondly, learning tends to be slow. The
result of the first problem is that one cannot be sure that the network produced
is the best network possible given the (input:output) pairs that have been pro-
vided. So-called local error minima can result in the network stopping learning
before it has done as well as it can. Further, if the (input:output) pairs contain
some noise (perhaps the result of measurement errors), it is quite possible for the
network to attempt to learn this noise. A great deal has been written about the
best ways in which to use this type of network. Certainly, like the Boltzmann
machine, it is capable of extracting information about the (input:output) pairs
provided and coding this into its weights. Learning is slow because the mapping

Implementing Neural Models in Silicon 443

between the weights and the error (the so-called error surface) can be very com-
plex: gradient descent methods applied to high-dimensional complex surfaces
must move slowly because they otherwise risk missing the desired minima of the
surface. The error surface may also contain local minima: if the weights are
trapped in one of these, the performance will be suboptimal.

Because of the wide possible applicability of this network, and because it is
slow to train, many attempts have been made to implement it directly into hard-
ware. These are reviewed in Section 5.3.

Many extensions to this rule have been described and many have been con-
cerned with improving the form of the gradient descent, attempting to make it
closer to steepest descent (some are described in [16], chapter 4). Others have
attempted to replicate the hidden layer’s effects by recoding the input. The idea
here is that what the back-propagated Delta rule does in its hidden layers is to
recode the input so that the mapping from the recoded input to the output
becomes separable, thus permitting the Delta rule to be used. This is essentially
the basis for the Radial Basis Function network [27], (see also [16] chapter 5),
which performs recoding and uses the simple Delta rule between the recoded
input and the desired output.

Bishop [28] has shown that these types of network essentially implement a
form of statistical algorithm. This does not reduce the utility of these systems,
and indeed helps to explain why they are so useful. However, it does show that the

444 Leslie S. Smith

Figure 13.6. Feed-forward neural network. The input layer simply transfers its inputs through
(adjustable) weighted synapses to the hidden layer. There may be a number of hidden layers,
with different numbers of units. The radial basis function network [16] has a similar structure,
with one hidden layer, whose units have a peak response at one point in the input space.

Weighted connections
from hidden to output

units

Weighted connections
from input to hidden

units

Output Units

Input Units

Hidden Units
(1 layer)

limitations of this type of algorithm are essentially the same as the limitations of
the statistical techniques.

3.2.5 Learning sequences

All the above rules can be turned into systems that learn sequences of inputs,
either classifying the sequence or attempting sequence completion. In such
sequences it is the order of the elements, not their precise times, that matters.
Learning can be achieved in a number of ways: a window through the sequence
can be used as the input to the network (i.e., the last n elements of the input are
used as input, and the output target might be the next element in the sequence),
or a network with loops may be used, in which case information about the previ-
ous sequence element is held internally inside the network (see, e.g., [29]). What
networks of these types cannot achieve is learning anything that requires infor-
mation about the precise timing (as opposed to order) of the input vectors.

3.3 Self-organizing systems

Self-organizing systems are systems that adjust their behavior in response to
their input. No correct output is provided: instead, the system adjusts its internal
parameters so as to detect some regularity in the input. Such situations com-
monly occur in sensory perception: the input is of very high dimensionality (for
example, there is one value per light sensor in a camera system, or one value per
bandpass filter in a sound sensor), yet although this suggests a very high number
of possible inputs, real inputs are confined to some relatively small subspace. In
other words, the probability distribution functions of each of the (scalar) inputs
are not independent. It is usually the case that the aim of self-organizing systems
is to adjust the weights in the system so as to produce outputs (usually of lower
dimensionality than the input) that catch the important aspects of the variation
in the input.

The idea of neural processing as data reduction goes back to [30]. Simple
Hebbian learning systems have some utility in this area: consider a number of
inputs that converge on a single output. Assume that the synapses are excitatory,
and that a number of coincident inputs are required to make the output neuron
fire. Inputs which co-occur in large enough numbers to make the output unit fire
will tend to increase their weights, making the output neuron more sensitive to
these inputs. However, simple Hebbian learning alone fails to work effectively
because the weights increase without limit. Below, we discuss two algorithms that
add something to Hebbian learning and that have been candidates for silicon
implementation. A useful introduction to this field may be found in [16], chapter 8.

3.3.1 Learning vector quantisation

Learning vector quantization (LVQ) is used to map a number of inputs (each
with a scalar value) into one of a number of outputs. LVQ is one of a class of
algorithms known as competitive learning algorithms (see [15], chapter 9). This
class of algorithms clearly produces outputs of lower dimensionality: the map-
ping is from some subset of RN to {1..M} where N is the number of inputs and

Implementing Neural Models in Silicon 445

M the number of output units. Normally, all the input units have synapses to all
the output units, initially with random weights. The learning algorithm has a
Hebbian aspect, in that weights between input units and output units that fire are
increased. However, usually only one output unit is allowed to be active at a time,
and the weights to that unit are adjusted in such a way that the total weight (or
the total squared weight) remains the same. Some variants also reduce the weights
on some of the synapses on inactive output units.

LVQ algorithms are of particular interest in compressive coding: by replacing
the input vector with the code for the output unit that best represents it, a very
considerable reduction in data volume can be achieved. Further, the LVQ net-
work adjusts itself to the statistics of the data. Because such coding is fre-
quently required in real time (for example, for transmitting coded images), there
is considerable interest in the hardware implementations of LVQ systems.

3.3.2 The Kohonen mapping network

The Kohonen mapping network is a variant of LVQ in which not only the
weights of the winning unit are adjusted but also weights to nearby units are
adjusted (see [16], chapter 9, or [31]). This description presupposes a definition of
“nearby”, forcing the designer to place some form of topology on the output
units. For example, the output units might be organized in one dimension (as
points on a line or a circle) or in two dimensions (as points on a grid or on the
surface of a sphere or cylinder or torus). The network is trained by being exposed
to many input vectors, and the weights to the output units are adjusted.
Usually, the number of units whose weights are adjusted for each winning pattern
is gradually reduced.

After training, novel inputs will normally result in some localized area of
the output units being activated. In this way, high-dimensional data are mapped
into some area on a surface. Such data compression can be very useful for sen-
sory information, for example, in robotics or surveillance. Often the require-
ment is that training can be relatively slow, but operational results are required
quickly for real-time applications. This situation has led to interest in silicon
implementations of this technique.

4 MODELS THAT INCLUDE TIME

Model neurons that include time are those in which the actual timing of the
input (as opposed to the order of the input) matters. Models of this form can
be sensitive to the actual timing of their inputs, as opposed to their order: the
neurons contain internal time-varying state. The simplest form of neural model
that includes time is the integrate-and-fire model. Such neurons can process
general time-varying signals, but their outputs are normally spike trains.
In common with spike trains of real neurons, the actual shape of the spike is
irrelevant. All that matters is the timing of the spike. Thus, the output can be
characterized by

S = {ti : i = 1 ... n}, ti < ti+1

446 Leslie S. Smith

where ti is the time of the ith spike train in a train of n spikes. More complex mod-
els model the neuron in more detail, sometimes including the membrane itself
and sometimes including the actual production of the spike.

4.1 The leaky integrate-and-fire model

The leaky integrate-and-fire neuron has a very long history: the concept can
be traced back to 1907 [32]. In this neuron model, the dendrites are modeled as
single points at which the synaptic inputs are summed, while current leaks away
linearly: a detailed description can be found in [6], chapter 14. Below threshold,
the voltagelike state variable at that point, A, is described by the equation

()A A I td
d

t = - +x (4)

where t is the time constant of the point neuron (i.e., a [reciprocal] measure of its
leakiness), and I(t) is the total external input to the neuron (see Figure 13.7). In
the presence of positive input, the activity A can rise to the threshold q. When this
threshold is crossed from below, the neuron emits a spike, and A is reset to some
initial value. The mechanism of spike generation is generally ignored in the
model, and the output is characterized entirely by the sequence of spike times.
This type of neuron is sometimes known as a point neuron, because all the geom-
etry of the dendrite has been shrunk to a single point. If R is infinite, then the
neuron is not leaky, and it simply integrates its input until it reaches the thresh-
old. If t is small, then more recent inputs have a larger effect on A. If I(t) is made
up of a number of excitatory synaptic inputs, each of which is not large enough
to cause A to exceed q, then the neuron will act as a coincidence detector, firing
when a number of its excitatory inputs occur at about the same time, allowing A
to reach q in spite of the leakage.

Implementing Neural Models in Silicon 447

Comparator,
spike generator

Sike
output

Threshold

Discharge
C

0v

CR

I(t) A(t)

Figure 13.7. Leaky integrate-and-fire unit. The resistor R models the overall (fixed) leakage of the
membrane (if omitted, there is no leakage), and the capacitor C models the overall capacitance of
the membrane. The time constant t = RC. When a spike occurs, the capacitor is discharged.

4.1.1 Other point neuron models

The leaky integrate-and-fire model is the best known (and most frequently
implemented) of the models that represent the dendrite as a single point. Another
important model is Gerstner’s spike response model [33,34], in which the thresh-
old is dynamic and the shape of the postsynaptic potential is modeled. The
dynamic threshold permits the neuron’s refractory period and relative refractory
period to be included in this relatively simple model.

In Equation 4, the leakage is linear. Feng and Brown [35] suggest a nonlinear
leakage coefficient (equivalent to making t = t(A)), with the result that under cer-
tain conditions, inhibitory input can increase the firing rate [36]. Izhikevich [37]
reviews a number of point neuron type models, both from the point of view of
neural plausibility and computational efficiency. Not surprisingly, the more bio-
logically plausible models take much more computing time. Izhikevich has pro-
posed a new model [38] based on bifurcation analysis, which can generate realistic
neural output from a simple simulation.

4.2 More detailed neuron models

Compartmental neuron models divide up the neuron into a number of sec-
tions (or compartments), each of which is modeled individually, with electrical
current feeding into neighboring sections. The advantage is that the whole neuron
(soma, dendrites, and axon) may be modeled with a degree of accuracy that can
be determined by the modeller. The morphology may be simulated (at least as far
as branching and neurite diameter is concerned), and each section may be given
different properties. The usual techniques are based on the Hodgkin–Huxley
equations (see [6], chapter 6, and [5] chapter 7), and these allow different popula-
tions of ion channels in each compartment to be modeled. Essentially, a nonlin-
ear leakage current is associated with each ion type. There are some standard
simulation tools developed for this type of simulation, most notably Neuron [39].

There are also simplified models, often based on the Hodgkin–Huxley equa-
tions—for example, the FitzHugh–Nagumo equations and the Morris–Lecar
equations (both reviewed in [6], chapter 7, and discussed in terms of computa-
tional efficiency in [37]). Indeed, Feng and Brown’s model [35] is a version of the
FitzHugh–Nagumo model. These models can aid the speed of computation (in
software) and possibly the complexity of a hardware implementation.

4.3 Learning in models that include time

Neural models that include time generally have a spike-based output. This
spike output may be thought of either as coding a value in terms of its instanta-
neous spiking rate (rate coding) or by the precise timing of the spikes. In rate cod-
ing (and also in the case where the output is not a sequence of spikes, but a
continuously varying value), it is possible to apply, for example, Hebbian-type
learning rules as discussed in section 3.2. There are no equivalents of the Delta
rule or the perceptron learning rule that make specific use of these types of code.
These learning rules are based on the idea of a single vector input producing a
single vector output. One can still use this formulation of a network that uses

448 Leslie S. Smith

rate-coded spiking neurons, but no advantage is being taken of the neurons
including time.

Although rate-coded and graded-output neurons clearly can have more
sophisticated learning rules, there has been more interest in learning rules for
spike timing-coded neurons. This case is of particular interest to computational
neuroscientists, since it may inform brain science. There has been particular
interest in temporal versions of Hebbian learning rules (reviewed in [40] and
also in chapter 10 of [34]). To apply Hebbian learning to spiking neurons, we
need to reconsider what “firing together” means: the usual view is that, for exci-
tatory synapses, those whose postsynaptic currents assist in making the postsy-
naptic neuron fire are strengthened, while those whose postsynaptic currents
do not help are weakened. Generally, these new rules do not alter synaptic
strength unless the postsynaptic neuron fires: thus their effect is to strengthen
synapses that were active just before the postsynaptic neuron fired and to weaken
those that were active just after the postsynaptic neuron fired. Although such
learning rules have not yet been demonstrated to be effective in applied neural
networks, there is considerable interest in silicon implementations of this type of
rule (see Section 5.4.3).

5 TECHNIQUES FOR HARDWARE
IMPLEMENTATION

Hardware implementation of neural models and networks of neural models
can allow these systems to operate in real time and to use the massive parallelism
inherent in these types of design. Sequential computers cannot provide true par-
allelism, and parallel computers are expensive: further, there is often a mismatch
between the very intense intercommunication required for neural computers and
the relatively low bandwidth parallelism provided by the cheaper forms of paral-
lel computer, such as networks of transputers or Beowulf clusters [41].

In fact, direct hardware implementation of neural systems and networks has a
relatively long history. Prior to the advent of the workstation, neural modelers
were forced either to use mainframe computers or to develop their own hardware.
Models of excitable membranes using discrete components were developed
[42–45], as well as full neurons [46]. More computationally oriented models of
perceptron-based machines were built [47,48]. This chapter is not the place for a
full review of this historically interesting material: however, the history does show
that dedicated hardware for neural systems is not a new idea. Modern neural
hardware developers are primarily interested in chip-based implementation. This
focus has certainly made the resulting hardware smaller (the neural model of the
avian retina developed by Runge et al. [49] ran to 50 circuit boards!), though more
difficult to test and modify.

There are many possible ways of organizing a review of implementations of
neural models. In a much earlier article [50], these were organized by chip type. In
[4], they are organized by actual chip, and in [51], a table of chips and their charac-
teristics is provided. Here, we review some of the issues, then discuss the analogue
versus digital issue, and then look at the question of whether the implementations
use static (time-free) or dynamic (including time) approaches.

Implementing Neural Models in Silicon 449

5.1 VLSI implementation of neural models

Chip-based implementations are very attractive to the neural system imple-
mentor. Not only are they small (and easily incorporated into complete systems)
but also most design systems proffer at least some facilities for testing the design
prior to actual chip manufacture. Further, if the implementation is successful, the
designer will normally receive a number of chips, allowing more than one
researcher to work with the implementation. In addition, reusing designs or sec-
tions of designs is relatively straightforward. However, implementors of neural
systems in silicon do not have the luxury of developing a new silicon technology,
and so must use technologies that were developed for other purposes, such as for
high-speed digital processors.

The basic implementation techniques are summarized in Table 13.1. There are
many different possibilities within each of these classes of implementation tech-
nique. Analogue implementations are normally custom integrated circuits. These
may use the linear range of the field-effect transistors (above threshold) or the
very-low-power exponential part of their range (subthreshold). Digital imple-
mentation techniques range from software (i.e., implementation on a normal
computer) to field-programmable gate array (FPGA: a technology in which an
array of electrically programmable gates can be interconnected in an electri-
cally programmable way) to application-specific digital integrated circuits (digital
ASIC). Of course, these technologies may be mixed, even on the same chip. We
note in passing that field-programmable analogue arrays (FPAAs) are in devel-
opment (see, for example, [52]), although they are not yet nearly large enough to
replace complex analogue ASICs. The downside of hardware implementation is
the length of the timescale from design (or modification) to implementation. For
all the hardware implementation techniques (except FPGA), change of design
means refabrication, and this process generally takes months. On occasion, focused
ion beam (FIB) machines (see, e.g., http://www.feico.com/support/fiblab.htm) can
be used to modify devices, but this option is often not available, or else is inappro-
priate for the modification required. FPGAs can be reprogrammed quickly: they
are a technology with aspects of both hardware and software.

In Table 13.1, the “Degree of Implementation” [53] column relates to the
extent to which all the elements of all neurons exist as separate hardware compo-
nents. Fully implemented systems have identifiable (and different) circuit ele-
ments for each entity being modeled. Real neural systems are fully implemented.
Most analogue implementations are also fully implemented. However, full imple-

450 Leslie S. Smith

Table 13.1. Summary of characteristics of different implementation techniques for
implementing neural systems.

Degree of Real-time Power
Implementation Technology Implementation Speed System Consumption
Subthreshold a VLSI High High Yes Very low
Above threshold a VLSI High Very high Yes Medium
dVLSI Low High Possible Medium to high
FPGA Low-medium Medium Possible Medium to high
Workstation software Minimally low Low Not usually High
DSP based software Low Medium-high Possible High

mentation is not usually possible for digital VLSI implementations since replicat-
ing, e.g., digital multipliers at each synapse would make the circuit impossibly
large: instead, the same functional unit may be reused frequently. For example,
one digital multiplier may well be used as part of the implementation of many
synapses. Such a virtual design (again using the terminology of [53]) trades off the
speed of the functional unit against its area and the switching involved in multi-
plexing signals to the functional unit. By careful design, real-time performance
may still be possible, but even with fast digital electronics, it is not guaranteed.
FPGA- and DSP-based implementation are not normally fully implemented.
Depending on the design chosen, component re-use will occur to a greater or
lesser extent. Pure software implementations use the CPU(s) of the workstation
for all computational tasks and have the lowest degree of implementation. Even
implementations on parallel sets of workstations (e.g., Beowulf) simply tend to
distribute the different parts of larger simulations across a number of worksta-
tions. DSP chips are also software driven and are normally controlled from a
workstation. The degree of implementation depends on the details of the design
(for example, on the number of chips used). The systems are easily reconfigurable,
but because they are special purpose, they require specific software packages and
can be difficult to program.

5.2 Analogue or digital VLSI

The first choice facing a designer intent on implementing a neural model in
VLSI is whether to use an analogue or a digital design. If an ASIC is being pro-
duced, it is very likely that the technology being used for chip manufacture might
have been developed for digital designs. When the implementor is attempting to
build an analogue ASIC, or, indeed, any target except a digital ASIC (for exam-
ple, a mixed (or hybrid) design: part digital and part analogue), problems arise.
The quoted feature size for a particular technology (λ) is intended for use in the
production of digital gates. For such gates, all that matters is that the realized
circuit conforms with the designed circuit and that the switching voltage between
an FET being on and off is within a particular range. For above-threshold ana-
logue VLSI, the implementor is attempting to use the linear part of the transis-
tor’s characteristic, and so is reliant on the actual placing and shape of the
transistor’s Ids/Vgs characteristic. This reliance can lead to matching problems,
though it does appear to be the case that these problems are not major. However,
for subthreshold aVLSI, the designer is reliant on the characteristic of the tran-
sistors before they turn on (i.e., Ids/Vgs below threshold). This is not a character-
istic that digital chip designers generally care about since it does not impact on
their designs.

Why then would anyone consider analogue implementation? We discuss below
some of the differences in implementation characteristics implied by these two
different approaches.

5.2.1 Signal coding

The primary difference between digital and analogue systems is in how signals
are coded. Digital signals are discrete values, valid at specific instants, and analogue

Implementing Neural Models in Silicon 451

signals are continuous values in continuous time. In a digital system, the two pri-
mary parameters of a signal are sampling rate and sample length. In an analogue
system, the parameters are bandwidth, slew rate (maximal rate at which a signal can
change), noise level, and drift. (Drift causes the analogue signal to change slowly
[perhaps due to temperature variation], again reducing overall accuracy.) There is a
third form of coding, namely, spike encoding, that provides spikes at specific
instants, which we discuss further in Section 5.4.

In a digital system, the sampling rate determines the signal bandwidth: the
maximal bandwidth is half the sampling rate. The bandwidth determines the
maximal rate at which values (such as postsynaptic potentials) can change, For
fully implemented systems, both analogue and digital systems normally have
plenty of bandwidth in hand compared with real neural systems. However, digi-
tal systems are not normally fully implemented, so they need to have a higher
bandwidth. If a particular piece of circuitry is used in P different ways (for exam-
ple, a digital multiplier might be used in P different synapses), then its processing
bandwidth (or speed) must be at least P times the actual required bandwidth. The
sampling rate also determines the accuracy with which the time of an event can
be determined: this can be important for spiking neurons (see also Section 5.4).

In a digital system, sample length determines the accuracy with which a value
can be held: theoretically, an analogue system holds a value precisely, but the
effect of noise is that the value is no longer precise, and drift causes further diffi-
culties. Maximizing sample length leads to space problems: for most circuitry, the
number of gates required is at best proportional to sample length.

5.2.2 Memory technologies

Memory is required in neural systems to hold constant values (such as thresh-
olds, delays, or characteristics for ion channels) as well as variable values such as
those characterizing synapses or any other aspect of the model that can alter.
Digital memory techniques are well known: memory consists of a string of bits,
each held either as a static RAM (sRAM) or a dynamic RAM (dRAM) cell.
dRAM requires frequent refreshing, and both sRAM and dRAM are volatile and
thus require reinitializing on power cycling. Another possibility is to use electri-
cally erasable programmable read-only memory (EEPROM or flash memory)
techniques to provide nonvolatile but rewritable memories.

Analogue memory elements are more problematic. In discrete systems, fixed
values may be held by selecting discrete components (usually resistors and/or
capacitors) with particular values. This approach is not practical on analogue
VLSI chips: resistors can be fabricated, but their accuracy is low, and capacitors of
any reasonable size take up too much space. One method of keeping values in ana-
logue systems is to use a digital storage solution combined with a digital-analogue
convertor (DAC). Such a system can provide accurate storage, with storage for
each value taking up little space. If many values are required (as might be the case
for synapse weight storage), this usually means using a smaller number of DACs
and sharing them, with a consequent need for additional routing of signals.

True analogue VLSI storage generally uses either the charge on a capacitor or
floating gate technology [54]. The simplest technique relies on simply storing
some charge on a capacitor, which is essentially isolated. However, this charge

452 Leslie S. Smith

tends to leak away, and so a refresh system is often introduced. A variant on this
technique for increasing the quality of this form of representation is to use the
ratio of the charge stored on two neighboring capacitors, relying on them both
leaking at the same rate [55]. Such memories are essentially volatile. Restoration
of these values often makes use of external digitally held values and an on-chip
DAC. Floating-gate technology proffers the possibility of longer-term nonvolatile
analogue storage: it is based on the same techniques that are used for EEPROM,
but attempts to retain an analogue value [54, 56, 57]. Extended analogue storage
is not a requirement of standard digital technology, and so is not supported in
design systems. This can make chip development more difficult because the
devices are often not supported in simulation environments.

The above techniques are for storing constant values. However, an important
aspect of neural simulations (and particularly of neural networks) is adaptivity:
we need to be able to adjust values, and to adjust them gradually. This process
consists of first determining what the parameter alteration should be (discussed
in Sections 5.3.1 and 5.4.3), and second, implementing some mechanism for on-
chip parameter alteration. For digital storage, there is no difficulty in adjusting a
binary string: what is required is either an adder or a step-up/step-down counter,
or each value may be rewritten, having been recalculated elsewhere. For analogue
systems, the problem requires novel solutions. This is not a new problem: special-
ized devices for weight storage and updating in the analogue domain have a long
history (see Section 8.2 of [53]). The original Perceptron Mark 1 used motor-
driven potentiometers. Later, Widrow introduced the memistor, a copper/elec-
trolyte variable-resistance electrochemical cell. Some systems expect weight
adjustments to be determined and effected from outside of the chip: weights are
recalculated and then updated using a digital computer interface (e.g., [55, 58]).
If the neural simulation is to be be trained without an external computer, then
it should incorporate internal adaptation. For capacitative storage, there must be
some mechanism for gradually increasing or gradually decreasing the charge
stored on the capacitor. For floating-gate techniques, there needs to be a mecha-
nism for charging and discharging the floating gate. Meador [56] suggested using
pairs of floating-gate transistors and transferring charge between them. Diorio
[57] uses hot-current injection to add electrons to its floating gate and
Fowler–Nordheim tunneling to remove them. External checking of the actual
weight may be required because of variations in chip processing. This is still an
area of active research: Hsu et al. [59] have developed Diorio’s ideas in a compet-
itive learning chip, and Morie et al. [60] are developing a multinanodot floating-
gate technique for postsynaptic pulse generation.

5.2.3 Simple arithmetic operations

Whether one is using a simple neuron like that in Equation 1 or a more com-
plex neuron with an explicit dendrite, one needs to use arithmetic operations both
for calculating neuron output and for any internal parameter alteration. For
example, to calculate the postsynaptic activation one requires at least a multiply;
to compute the total activation, one requires addition. In a digital implementa-
tion, these process imply the use of adders and multipliers, and in an analo-
gue implementation the use of circuitry that can sum voltages (or currents) and

Implementing Neural Models in Silicon 453

perform multiplication on whatever circuit value is being used to represent the
output, activation, or synaptic data.

Such arithmetic operators occur very frequently in neural models. In real neu-
rons, these operations are accomplished using (for synapses) the effects of alter-
ing release probabilities for presynaptic neurotransmitter vesicles and changing
the probabilities of opening postsynaptic ion channels, and (for the activation
summation) by charge summation inside the dendrite. Both these operations take
up very little space indeed. In digital systems, very fast adders and multipliers can
easily be built. Adders tend to be relatively small, but multipliers tend to be larger.
Depending on the multiplier implementation, one has a choice between having
the latency and the size of the multiplier increase linearly with operand length (or
having the latency increase as the log of the operand length) and having the size
of the multiplier increase as the square of operand length [61]. In either case, it is
not practical to use a separate multiplier per synapse for neural network imple-
mentation, although it can be practical to use one adder per neuron for activation
summation.

In analogue implementation, simple multiplication of positive values (single-
quadrant multiplication) is relatively straightforward. Thus, if a neuron’s output
can be guaranteed to be positive, and the weight is known to be excitatory
(inhibitory), the product can be added to (subtracted from) the postsynaptic
activity. However, the most popular time-free neural model (back-propagation)
has neurons whose weights can be either excitatory or inhibitory, and can change
between these during training. In addition, some versions of back-propagation
use a tanh(A) output function, rather than a logistic (1/(1 + exp(−A))) function,
resulting in outputs being either negative or positive. Thus, either two-quadrant
or even four-quadrant multiplication is required. This can be problematic, since it
is very easy for the product to be outside the linear range of the multiplier (see
[62], chapter 6).

In analogue implementations, it is possible to use the transfer characteris-
tics of MOSFETs (or of circuits of MOSFETs) directly, even when these are
nonlinear. This option was one of the driving forces behind the Mead’s origi-
nal proposal to use subthreshold a VLSI for neural modeling (and for neuro-
morphic systems) [62]. In this way, exponential functions, differentiators, and
integrators can be built directly (see also [63]). This approach is clearly much
more space efficient than developing digital circuits for the same function, and
this is the reason why subthreshold a VLSI systems have a very high degree of
implementation. However, design is more difficult (or perhaps more skilled),
and one is reliant on the silicon implementation behaving in exactly the same
way as the designer’s model, which, as discussed earlier, may be difficult to
achieve.

5.3 Implementing simple time-free neuron model networks

An implementation of a simple time-free neuron model consists of an imple-
mentation of the synapses, of the dendrites, and of the generation of the output
of the model neuron. In addition, it is necessary to implement the interconnec-
tion between the neurons. Further, for adaptive systems, one must also implement
both parts of the mechanism for adaptation. The primary difficulties arise at

454 Leslie S. Smith

synapses. The problems are computation of postsynaptic potential and computa-
tion (and implementation) of synaptic parameter alterations. If there are many
neurons, there may also be problems associated with neuron interconnection.

The dendrites accumulate the activity passed to them by the synapses. This is
a simple additive process (see Eq. 1). In a digital implementation, this is simple
addition, with the number of bits used determining both the precision of the
result and when overflow or underflow might occur. In an analogue implementa-
tion, either currents or voltages may be summed. Accuracy is then a function of
noise, drift, and the linearity of the system. Analogue equivalents to overflow and
underflow occur when the current or voltage reaches its limit.

The output of the neuron may be binary (for McCulloch–Pitts neurons or per-
ceptrons, for example), or it may be graded (for a linear threshold unit, for exam-
ple). In digital implementations, the former is achieved by numerical comparison
with a fixed (binary-coded) threshold, and therefore requires an adder. In ana-
logue implementations, this adder is replaced by a comparator, and the threshold
is required to be stable. Where the output is graded (as is the case for Delta rule
[plain and and back-propagated] and for the Radial Basis Function networks),
some function must be applied to the activity. This may be simple multiplication
(for linear units) or a logistic function (Eq. 2) or some other function. Accurate
implementation may be quite complex in a digital implementation. Sometimes
look-up tables are used to speed up this operation. Generally, the output function
is shared between a number of neurons on the same chip (partial implementa-
tion). In analogue implementations, it may be virtually impossible to achieve
exactly the output function required. However, in both the Delta and back-prop-
agated Delta rule, it is not the exact function that matters but rather that the func-
tion is a squashing function, which is smooth and always has a positive derivative.
Given suitable limits to the activity of the neuron, this outcome can often be
achieved relatively easily and compactly in an analogue implementation. One can
claim some biological plausibility for this approach as well, since the activation at
the axon hillock (where spiking is initiated) will necessarily limit as it tends
towards both positive and negative values due to the opening of additional ion
channels. Both this form of limitation and the limitation on maximal spiking
rates are likely to have similar forms of characteristics, but are unlikely to follow
some analytical mathematical function.

Lastly, model neuron outputs must be connected to the appropriate synapses.
Each neuron output may be connected to many different synapses, though each
synapse is normally connected to only one neuron output. In a digital implemen-
tation, this outcome is best achieved by the use of some form of bus, particularly
if the synapses are not fully implemented. The bus allows values to be directed to
whichever element of circuitry is implementing that synapse at that time: it is
straightforward to calculate whether the bus speed is sufficiently high, and to
replicate it if required. In an analogue system, it is more common to use a rec-
tangular array of synapses, as discussed in the next section.

5.3.1 Synapses for time-free neurons

The emulation of synapses is critical in silicon implementations of model
neurons. As with real neurons, synapses are by far the most frequently occurring

Implementing Neural Models in Silicon 455

element of model neural networks. Because a single model neuron may have so
many synapses, the system designer is faced with a choice between replicating a
small amount of circuitry and hence a simple synapse (full implementation) or
sharing the circuitry between a number of synapses (partial implementation).
Replicating large amounts of circuitry is generally not practical.

The basic function of a synapse in a network of time-free neurons is to allow
a presynaptic input to affect the postsynaptic neuron. Simple implementations of
synapses are generally multiplicative: the change in postsynaptic activity is pro-
portional to the presynaptic input, and the constant of proportionality is known
as the weight, as in Eq. (1). For simple binary neurons, this set up can be imple-
mented by adding or substracting a constant (weight-dependent) amount from
the activity. For graded output neurons, multiplication of the output of the presy-
naptic neuron and the weight is required. Digital multipliers are standard circuit
components but contain a considerable amount of circuitry. Full implementation
of such multipliers results in the synapse numbers becoming the limiting factor in
what can be placed on a single chip, while partial implementation implies precise
switching of the presynaptic input and the appropriate weight, and of the result-
ing product.

Mechanisms for weight storage were discussed in Section 5.2.2. Chips nor-
mally have the weights on-chip, although some may require the weights to be
downloaded at start-up. Analogue synapses are often stored in a rectangular
array, as illustrated in Figure 13.8. For example, the Intel 80170NX chip [55] has
a 160 by 64 array of synapses. Each set of synapses belonging to a single neuron
is in a vertical column. The presynaptic inputs from a single neuron are in a hor-

456 Leslie S. Smith

Dendrite_j Dendrite_j+1 Dendrite_j+2 Dendrite_j+3

Input_i

Synapses

Input_i+1

Input_i+2

to axon hillock model

XXXX

X X X X

XXXX

Figure 13.8. Synapses (each a simple multiplier) are arranged in a rectangular formation.
Dendrites accumulate current from all synapses to that neuron.

izontal line. Where the two meet, there is a synapse (though some may have no
effect). The vertical lines accumulate this input (whether as a current Isyn or a volt-
age Vsyn) and apply this to the simulated axon hillock. Weight storage precision
can affect the system in terms of both the system displaying the correct behavior
once trained and the system being able to work correctly during training. (This is
a general problem in digital signal processing: see [64].) In general, attaining cor-
rect behavior once trained is less demanding than attaining appropriate behaviour
during training: 4 to 8 bits is enough for almost any application [65,66].

For specific fixed applications, weights may be set externally and fixed.
Generally, synaptic adaptivity is attained by weight alteration, which requires that
the weights be updatable. We discussed mechanisms for updating the weight in
Section 5.2.2: here we are interested in determining what this weight update
should be. This calculation may take place on-chip or off-chip. Different neural
network algorithms make different changes: with the exception of the perceptron
rule and the Hopfield network, however, these changes are often small. Further
when using the back-propagated Delta rule, small changes often occur a long way
from the best solution due to nearly flat areas in the error/weight space. If the
weight update calculation is off-chip, this situation may not present a problem
since high-precision arithmetic will be available off-chip. However, if the changes
are calculated on-chip, there can be difficulties with digital weight storage update
calculation when the weight change becomes less than one bit. (Indeed, these
problems apply equally at weight update, even if the changes are calculated at
high precision.) This critical point results in a sudden performance breakdown
[67] in training, although such precision is not required in recall. Digitally stored
analogue weights suffer from exactly the same problem. There has been consider-
able software exploration of this problem [68]. In a purely analogue system,
weights can often be adjusted by very small amounts (exactly how small depends
on the details of the implementation), limited by the noise and drift in the system.
Failure from this source tends to be less sudden. Changing purely analogue
weights can be an imprecise affair, and some systems allow a “chip in the loop”
form of updating (e.g., the Intel 80170 [69]), where the effect of the weight update
is tested immediately and the update is possibly repeated.

5.3.2 Developed hardware for time-free neurons

Hardware time-free neuron implementations have been around for some time
(see [4,51]): a number of chips have been produced commercially and by
University Departments (see [70] for a list). A number of the major semiconduc-
tor manufacturers have also produced chips: Intel produced the 80170NX (or
Electronically Trainable Artificial Neural Network, ETANN) [69], an essentially
analogue device directly implementing a number of neurons. Synapses were
implemented using the difference between voltages on two neighboring floating
gates. The values were externally determined and nonvolatile, with analogue mul-
tipliers at each synapse. IBM produced the ZISC036 (ZISC, for zero instruction
set computer) [71], a digital chip implementing a radial basis function with on-
chip learning. This chip could load and evaluate a vector in about 4 microseconds.
Motorola collaborated with Adaptive Solutions to develop CNAPS [72], which is
essentially a specialized DSP device that can be programmed to implement neural

Implementing Neural Models in Silicon 457

network applications in a highly efficient fashion. Phillips produced Lneuro [73]
and Lneuro 2.3 [74], both digital implementations. Both were intended as spe-
cial-purpose processors used in conjunction with a computer. Lneuro2.3 was
intended also for other signal and image-processing applications. Siemens pro-
duced the SYNAPSE-3 neurocomputer, based on their MA16 chip [75,76],
a digital chip that can be programmed to perform many different neural network
algorithms at high speed. Many other smaller companies (and many university
departments) also developed neural network chips in the early 1990s.

Very few of these chips appear to be currently in production, even though the
technology of neural networks is quite widely applied. There are two reasons why
neural network chips have not taken off. The first is that workstation prices have
tumbled while at the same time their performance has rocketed. The result is that
(1) training up neural networks does not take an unreasonably long time, even
when large amounts of data are involved, and (2) using neural network software
after training is very fast: real-time performance is often possible without special
hardware. Since most users do not really care, how long training takes, so long as
recall is fast, there is no commercial advantage in building systems a round neu-
ral network chips. The second reason is that neural networks themselves (and
therefore neural network chips) are components in larger systems. These systems
are required in order to massage the data into a form where it can be used directly
with a time-free neural network: generally these systems already require a PC, so
adding on some neural network software to complete the system is a much more
attractive proposition than adding on neural network hardware. Neural network
chips tend to be in use either in specialized defense applications (e.g., Irvine
Sensors 3DANN devices, see http://www.irvine-sensors.com) or in visual sensors
(e.g. NeuriCam, see www.NeuriCam.com). There is still interest in developing
neural network chips for algorithms: the Boltzmann machine’s capability for gen-
erating representations (and for using noise in the algorithm itself) has led to con-
tinuing interest in that algorithm ([77,78]). In addition, there has been interest in
hardware for the more recent products of expert algorithms [79], resulting in a
mixed-signal (hybrid) implementation [80].

Perhaps a third reason can be added as well: as is clear from the paragraph
above, there has been no agreement among chip designers as to the best way to
implement this type of device. Technologies have varied from specialized ana-
logue systems to specialized digital systems to systems that were essentially
adapted digital signal processors. All these approaches work, but none had a spe-
cific competitive edge.

5.4 Implementing spiking neurons

The earliest implementations of spike-based neurons used existing pulse-
based technologies. Interest in this approach appears to have decreased in favor
of more biologically plausible systems based on integrate-and-fire neurons.

5.4.1 Pulse-based neuron implementations

Pulse-based techniques have been used in signal processing for many years.
Signals take the form of a train of pulses, usually with the signal in an inactive

458 Leslie S. Smith

(zero) state most of the time. Such signals have advantages over level coded sig-
nals: they are low power (assuming that power consumption is minimal during
the zero period), reasonably noise immune, and easily regenerated if the pulse
edge is flattened. There are essentially three basic techniques for coding (modu-
lating) values onto pulses: pulse height modulation, pulse width modulation, and
pulse frequency modulation. These techniques are, up to a point, independent of
each other. One can argue that these pulse-based techniques do have a degree of
neural plausibility: pulse frequency modulation is the same as biological spike-
rate coding. One can argue that pulse height modulation is what is happening at
synapses, although the postsynaptic smearing of the precise spike timing could
also be interpreted as pulse width modulation.

A number of groups have developed pulse-based neural systems. Murray’s
group [81–83] used pulse frequency modulation for neuron-to-neuron communi-
cation, and pulse width modulation inside the neuron for neuron state (or activ-
ity). Their chips were used in robot controllers. Richert’s group [84] also used
pulse height modulation. Hamilton [83] uses pulse height modulation for postsy-
naptic currents. The systems produced are relatively compact and low power, and
can process and produce time-varying signals (for example, by modulating the
pulse frequency). One problem is that it takes time to decode such pulse outputs:
one needs to sample pulses for some time in order to estimate the value repre-
sented by a pulse frequency coded signal. Lehmann describes circuits for imple-
menting classical conditioning [85] and for biologically inspired learning [86] in
pulsed neural networks.

5.4.2 Point neurons

Point neurons such as leaky integrate-and-fire (LIF) neurons are more accu-
rate models than time-free models because, even although they reduce the den-
drite to a single point, they do model behavior in time. The mathematical model
for this neuron is described in Eq. (4). Implementing such a neuron can be
achieved very directly in discrete analogue electronics, as was shown in Figure
13.7. The capacitor C models the membrane capacitance, and the resistor R mod-
els the (constant) membrane leakage (in Eq.(4), t = RC). The threshold q is mod-
eled using a comparator. Circuitry to generate the spike is required, as is circuitry
to discharge the capacitor when a spike is generated. Additional aspects of LIF
neurons, such as an absolute refractory periods (the period after spiking during
which the neuron cannot fire), relative refractory periods (the period following
the absolute refractory period during which it is more difficult to make the neu-
ron fire), postsynaptic current pulse shaping, and spike output shaping can, if
required, also be implemented directly in analogue circuitry. The problem with
such analogue models in size and complexity: researchers are usually interested in
experimenting with networks of LIF neurons, and in adaptation in such net-
works. It is impractical (or perhaps just unfashionable) to produce discrete ana-
logue implementations of such networks. Such direct implementations are larger,
and one has to build each one individually. However, considering the difficulties
involved in VLSI implementation, and the fact that many hardware implementa-
tions are used for experimenting with relatively small networks (taking advantage

Implementing Neural Models in Silicon 459

of speed, rather than size), there may still be a place for such discrete component-
based systems.

Researchers are often more interested in software and hardware implementa-
tions of such networks. Software for such neurons is straightforward to develop.
There are two basic techniques used. The direct approach involves modeling the
development of the voltage on each neuron using discreticized time (where the
timestep is chosen to be small enough to capture the behavior being studied). This
approach is useful for small numbers of neurons and can permit the modeling of
postsynaptic current pulse shaping. Where large numbers of neurons are to be
simulated, this approach can be slow. The alternative is the next spike time
approach. In this case, the effect of each spike’s arrival is modeled. Membrane
voltages are updated only when a spike arrives, relying on the fact that for a neu-
ron with fixed threshold and no noise, spiking is always the direct effect of the
most recent excitatory presynaptic pulse. The effect is that the simulation time
becomes dependent on the level of spiking and on the degree of interconnection.
This technique has been used by [2, 87–89] for simulating large numbers of neu-
rons. In addition, Grassman and Cyprian [89] have developed special-purpose
hardware to support this.

Neither of these software techniques will work in real time unless the network
being simulated is small. Hardware implementations offer this possibility. Both
digital [90, 91] and analogue [58, 92–95] implementations have been built. Digital
implementations using the direct approach are attractive, since we can update the
representation of the membrane voltage with each timestep. Turning Equation 4
into voltage and discreticizing gives

() () ()
()

V t t V t t V t C
I t t

+ = - +xD D D
(5)

where V(t) is the voltage on the membrane, ∆t is the timestep, and I(t) is the
postsynaptic current injected. If we use floating-point arithmetic throughout, this
presents few problems. However, using fixed-point (which takes up much less chip

space), we run into problems when t
x
D V (t) or

()
C

I t tD
disappears because they

are less than the smallest number representable. This occurs when either number

is less than 2n
i for an n-bit representation. This problem is serious, particularly for

attempts at fully implemented chips [91]. The problem can result in the failure of
continuous small inputs to push the V over the threshold. Further, attempting to
gain better accuracy for spike times by decreasing ∆t makes the problem worse.
Only increasing the length of the representation really helps.

Including a refractory period (relative or absolute) presents few problems: the
absolute refractory period uses a timer, and the neuron simply may not fire dur-
ing this time. The relative refractory period requires adjusting the value of q:
though not implemented in the examples above, it could be implemented either by
setting q to a high value and then decrementing it towards its rest value, or using
a number of q values and setting the values with the aid of another timer.

Analogue implementations suffer from different problems. The most crucial
problem is that the timing expected from LIF neurons does not match well with
the values of R and C (and hence t) that can be produced with standard analogue
technologies. (Meador’s design [56] appears to integrate signals in less than 1 ms.)

460 Leslie S. Smith

We would like values for t of around 20 ms. This would imply that RC = 0.02.
Capacitors are produced using areas of metal (often deposited aluminium) sepa-
rated by a thin layer of silicon dioxide. The capacitance is directly proportional
to the area, making it impossible to fabricate a number of large capacitors on a
single chip. The maximal value realistically achievable is of the order of 1 pF, or
10−12 F. This value implies a value for R of 2*1010, or 20 GΩ. Resistors are
produced either as tracks of polysilicon or by using transistors with fixed Vgs as resis-
tors. The former produces only resistors with low values: the latter can produce
much higher values of resistance by utilizing the part of the transistor characteristic
just below the transistor’s conduction threshold. However, in this region, the drain-
source resistance is an exponential function of Vgs, so precision (and stability) of this
resistance requires both precision (stability) in Vgs. Unless one is willing to manually
trim Vgs for each neuron, this also requires reproducibility of below-threshold cur-
rents across the chip. Chicca et al. [95] used careful layout, with an additional metal
layer, but report about 16% variation in leakage current over one chip.

Switched capacitor techniques [96] have been used to increase the value of R
achievable, and hence to reduce the value of C that needs to be implemented.
Switched capacitor techniques introduce a digital switching signal to partially dis-
charge the capacitor. This results in problems associated with hybrid systems, par-
ticularly adding noise to circuitry that is attempting to use precise analogue
values. This situation can be problematic, requiring very careful circuit and sys-
tem design. Additionally, the use of switched circuit designs also can make the
precise timing of spike generation (resulting from the activation exceeding the
threshold) become phase entrained to the switching signal [97].

Liu and Minch [94] have achieved a degree of adjustment in firing rate in
response to perturbations in the neuron’s overall input by adapting the integrate-
and-fire neuron’s threshold upwards in response to each generated spike, and
gradually downwards otherwise. The decrease uses a tunneling mechanism with a
time constant of seconds or minutes. Indiveri [98] achieves spike frequency adap-
tation by charging a capacitor. In addition, this low power chip has a refractory
period. A different variety of point neuron has been implemented by Patel and
DeWeerth [99]. Their approach implements a more complex (but more biologi-
cally realistic) model neuron: the Morris–Lecar model [100]. Their aVLSI imple-
mentation is particularly relevant to the design of neural oscillators, since it can
produce outputs with frequencies in the range of 0.1 Hz to 1 Khz, depending on
circuit parameters.

5.4.3 Synapses for spiking neurons

Spiking neuron synapses receive a train of pulses, rather than values. These
spike trains are digital in the sense that a spike is an all-or-nothing event, yet ana-
logue in the sense that in an unclocked implementation, the spike time is uncon-
strained. Although real neuron spikes are of the order of 1ms in duration,
implemented spikes are often much shorter (about 100 ns in [93]), or they may be
coded simply as event times, with no duration assumed at all. Implementing these
synapses means translating these pulse trains (or event lists) into activity changes.
One way of achieving this outcome is to inject a small amount of current for each
spike. The exact amount and the direction of current injection depend on the

Implementing Neural Models in Silicon 461

synaptic weight and on whether the weight is inhibitory or excitatory. Such cur-
rent pulses may be fixed length and height modulated (as in [83, 93]), or could use
other pulse modulation techniques. The use of pure pulse-based techniques does
tend to result in relatively small synapses [81, 83].

Simple modulated current injection for each spike assumes that the shape of
the postsynaptic current is rectangular. One result of this is that if the activity
is near threshold, and a spike arrives at an excitatory synapse, then the thresh-
old is instantly reached, and the postsynaptic neuron fires at once. Though there
are occasions when this outcome can be useful, resulting in instant synchro-
nization of firing neurons, it is certainly not biologically realistic, and can cause
problems if neurons are reciprocally connected without a refractory period. In
simulations, the effect of the synapse is often approximated by an alpha func-
tion, at exp(−at): in hardware implementations, the noninstantaneous effect of
the synapse can be implemented using capacitances (only really practical in sub-
threshold aVLSI where minute currents are used), or by using a table lookup (in
a digital system).

Weight storage and manipulation can be the same as for time-free neurons.
The time parameter means that there are additional options in terms of synaptic
weight changes. In addition to the long-lasting changes discussed earlier, synapses
may have shorter-term changes—for example they may be depressing or facilitat-
ing (see Section 2). A simple depressing synapse has been implemented by Rasche
and Hahnloser [101]. The weight on this synapse is set by the charge on a capac-
itor, which each incoming spike discharges. This capacitor is slowly being charged
up to its maximal level (which corresponds to the synapse’s original weight). The
result is that a sequence of closely spaced presynaptic spikes have a gradually
decreasing effect: if, however, there is then a gap, the synapse recovers to its ini-
tial weight. Liu and Minch [94] have also implemented a depressing synapse, but
with a longer time constant: their work is aimed at maintaining neural processing
in the face of rising input spike frequencies.

A number of different mechanisms for altering weights in spiking neuron net-
works have been suggested. Some of these are extensions of techniques used in
time-free networks. Maass has suggested how spiking neuron firing times might
be interpreted in order to implement a spiking neuron equivalent of the back-
propagation learning algorithm [102]. However, such rules do not take advantage
of the capabilities of spiking networks to use patterns over time, and have low
biological plausibility. Designers of spiking neural networks have generally been
interested in more biologically plausible rules, perhaps because there has not been
a spiking equivalent of a perceptron network or a Delta rule. Instead, such
designers have been interested in variations on the original Hebbian learning
rules, particularly temporally asymmetric Hebbian learning [40].

There has been considerable interest in the implementation of such rules.
Bofill et al. [103] have produced one possible circuit. This form of a VLSI imple-
mentation has been used to detect synchrony by taking advantage of the tendency
of this implementation of the rule towards making weights go to one of their end-
points [104]. Chicca et al. [95] have implemented a bistable excitatory Hebbian
synapse. Paired presynaptic spiking input and postsynaptic neural activity result
in the synapse being strengthened towards its higher level, but otherwise the
synapse decays towards its lower level. There is also a stochastic element in the

462 Leslie S. Smith

synaptic strength variation. In [105] these, authors report that each synapse uses
14 transistors.

One specific synapse that has received a great deal of attention is the synapse
between the inner hair cell of the the organ of Corti (in the cochlea, in the inner
ear) and the neurons of the spiral ganglion whose axons form the auditory nerve.
The reason for interest in this synapse is that this synapse is part of the transduc-
tion of the movement of the membranes in the cochlea into a neural signal, and
maintaining precise timing is known to be important for finding the direction of
sound. Software models have been built (reviewed in the similar manner as in
[106]), as have hardware implementations. These often include depression (since
the biological synapses appear to be depressing). Hardware implementations are
popular, as they permit real-time implementations of biologically inspired audi-
tory models. The first silicon implementation is discussed in [107], and the field is
reviewed in [108]. The most sophisticated version is in [109].

5.4.4 Interconnecting spiking neuron systems

Single chips may contain a number of spiking neuron implementations, and
for small networks, it is sometimes possible to produce the whole network on a
single chip. In general, however, one will want to connect up neurons on different
chips. In addition, it is often the case that the inputs to the network and the out-
puts from the network will be required off-chip. On chips that contain a small
number of neurons, one can connect neurons and the appropriate synapse using
point-to-point wiring. For larger numbers of neurons, this approach is impracti-
cal.

The address/event representation (AER) was introduced for this purpose (see
[110] for a tutorial introduction). This is a time-division multiplexing system that
uses a digital bus to transfer spikes from neurons to the appropriate synapses. It
allows for interconnection to be described in biologically natural ways, and also
for reprogrammable configuration. “Virtual” wiring is possible as well. There is
ongoing work on chip-based support at the Institute for Neuroinformatics in
Zurich, Switzerland.

5.5 Implementing more complex neuron models

Many researchers are not satisfied with time-free or point neuron models. It is
well known that real neurons are far more complex than either of these models.
The computational properties of time-free neural models have been well investi-
gated over many years. Networks of point neurons and learning mechanisms for
point neurons are still under research. Point neurons make the implicit assump-
tion that there is no interaction between the different inputs that arrive on the
dendrite. Even although relatively complex postsynaptic functions may be used,
what arrives at the thresholding element is simply the (linear) sum of these inputs.

Yet there is a school of thought (discussed in [111]), which holds that the
spikes from neurons are simply the mechanism whereby neurons communicate
their results, and that complex processing can take place on the neuron itself, pos-
sibly even without any spiking occurring at the axon hillock. Such a view seems
attractive when one considers both the complex morphology of many neurons

Implementing Neural Models in Silicon 463

and the nonuniform placing of ion channels on these neurons. Even the briefest
inspection of neural images shows that the dendrites have very considerable com-
plexity: indeed, many types of neuron are differentiated by their dendrite shapes.

The limiting factors in the accuracy of neuron simulation are time and space.
One could model neurons right down to the molecular or atomic level. Before a
researcher produces a model, the researcher normally has some particular idea
that they want to investigate. More complex models of full neurons have normally
been either compartmental models or models of dendrites: others have gone fur-
ther and have modeled patches of membrane (though such models are rarely
modeling full neurons).

5.5.1 Multicompartment neurons

Software implementations of compartmental models model the dendrites, cell
body, and axon as an interconnected set of cylinders and branches. Each modeled
element has its inputs and outputs to and from adjacent elements, as well as its
various cross-membrane leakage currents modeled. In addition, postsynaptic cur-
rents from model synapses can be included in the modeled elements. The most
prevalent package for this is Neuron [39]. This form of model is generally slow,
though this depends on the number of compartments being modeled. However,
even although hardware implementation would clearly be faster, it is rarely
attempted, primarily because such simulations are carried out with a view to
understanding detailed neuron operation (for example, the effects of synapses on
distal and proximal dendrites, and the effects of branching both in dendrites and
axons) rather than actual information processing.

There has been more interest in hardware implementation of dendrites.
Extending the dendrite beyond a single point means that the activity of the neu-
ron is no longer a single value but is a function of location as well as time.
Further, the precise time ordering of presynaptic signals will have an effect on this
activity. Mel [8] has provided a major review of information processing on the
dendrite, concluding that dendrites from single neurons could perform logical
operations or discriminate between images. Elias [112] and Northmore and Elias
[113] have developed an analogue VLSI dendrite implementation which can
process spike trains. In [114], they have used switched capacitor techniques to
achieve the range of membrane resistances required. Simple dendritic processing
has been used to design an aVLSI chip that is sensitive to the direction of motion
[115]. In [116], learning in dendritic systems is emulated. There is current interest
in combining model dendrites with temporal Hebbian learning: recent research
suggests that the precise timing of presynaptic and postsynaptic signals [40], and
the location of the synapse on the dendrite [117], can affect the way in which
weights characterizing synapses alter. Dendritic models are usually combined
with spike-generating entities, and sometimes with models of delay in the axon,
due to axon diameter (wide axons conduct faster) and even myelinization2 to pro-
duce models of whole neurons in which precise spike timing can be modeled.

464 Leslie S. Smith

2Myelin is a protein produced by glial brain cells. It is often wrapped around axons, reducing
both their leakage and their capacitance, and allowing much faster transfer of action potentials
(see [5], chapter 4).

5.5.2 Implementing models of excitable membranes

The lowest level of neural modeling currently attempted is modeling of
excitable membranes. The impetus for producing such models is clear: as dis-
cussed in Section 2, ion channels embedded in the membrane are the primary
mechanism whereby the potential of the neuron is modified or altered. The aim
of this work has generally been “explanatory neuroscience” [118], rather than bio-
logically inspired computing. It is not possible to emulate multiple different yet
interacting ion species directly in electronics. Electronic systems have only one
charge carrier, the electron. Similarly, one cannot model multiple varieties of
voltage-sensitive (and ion-type-sensitive) ion channels. These can be modeled in
software, but such models are slow and complex.

The idea of using subthreshold FETs to emulate the exponential conductance
properties of ion channels is discussed at length in Mead’s book [62], where he
calls it eclectronics. A highly influential implementation of the spiking character-
istics of the soma and axons was produced by Mahowald and Douglas [119]. This
aVLSI implementation implements bulked ion channels (rather than individual
ones) and is essentially a silicon compartment model. It was the first to achieve
this goal in hardware and thus to operate in real time. A more detailed discussion
of the elements of this chip can be found in [120]. A number of other authors
have followed this early start: Rasche, Douglas, and Mahowald [121] added extra
conductances, and Rasche and Douglas [122] have developed this concept and
have produced a more robust chip. Both [119] and [122] implement these ion
channels as a circuit, rather than as a single transistor, as implied by Mead.
Implementing ion channels as single transistors was attempted in [123]: however,
it proved difficult to get the range of behaviors one would want from a range of
different types of ion channels. Shin and Koch [124] provide an aVLSI imple-
mentation of an adaptive algorithm that permits an electronic neuron to enable it
to adapt its current threshold to the mean of the input current. Rasche [125] has
produced aVLSI adaptive dendrite that can operate in widely varying levels of
overall neural activity. This form of adaptation allows the dendrite to signal
changes from the short-term mean of their input. Rasche and Douglas [126]
have developed the silicon axon so that it can support both forward and back-
ward propagation of spikes. Minch et al. [127] have produced a silicon axon that
recreates a pulse along its length.

Real synapses, of course, are not simple mulipliers. One form of synapse (a
chemical synapse: see [5] chapter 10) consists in essence of a set of ion channels
on the postsynaptic membrane that are opened when neurotransmitter is released
presynaptically. This occurs in response to presynaptic action potentials. Such a
synapse has been implemented in aVLSI by Rasche and Douglas [128], where
they provide equivalent circuits for (bulk) AMPA and NMDA conductances.

5.5.3 Applications of hardware spiking neurons

What evidence is there that more sophisticated neural hardware, such as that
of point neurons, might have application, when those for time-free neurons (dis-
cussed in Section 5.3.2) have proven largely a graveyard for silicon implementa-
tions? Firstly, these chips can process time-varying signals directly. They do not

Implementing Neural Models in Silicon 465

require the signal to be sampled initially. Thus a minimum of extra hardware is
required (bringing the signal into the desired voltage/current range, or pulse cod-
ing it, for example), greatly simplifying the direct interfacing of the neural net-
work system with the devices providing input and accepting output from the
network. If interfacing the chip does not entail using a PC, then there is more
advantage to be gained from direct hardware implementation.

Although such silicon neural systems have not yet found industrial applica-
tions, there have been applications for this type of technology in the neuromor-
phic field. These applications vary from line following in a robot [129] to sound
direction finding [130, 131], including sonar [132], to real-time image analysis [133,
134] to motor control [135]. They have been applied particularly in autonomous
systems, where the simplicity of interfacing the implemented neuron to the rest of
the system has been important. Even where digital computers are part of the
overall system, there are still advantages in using hardware-implemented neu-
ral systems, particularly at the sensor-processing end of the system. Their
explicit parallelism can permit effective real-time exploitation of the signals
being interpreted, distributing the processing in an effective way.

The other application area for hardware neural implementations is in model-
ing and interfacing to real neural systems. One interesting example of modeling
neural systems is Tobi Delbruck’s “Physiologist’s Friend” chip [136], a model of a
visual cortical neuron with retinal sensors that can model the receptive field of a
visual cortical neuron well enough to be used instead of a live animal for training
psychology or physiology students. In addition, spiking silicon neurons are one of
the underlying technologies that may permit effective sensory implants [137],
both auditory [138] and visual [139]. These prosthetic applications may prove to
be an important growth area for this type of technology, where small size and
ultra-low power consumption are critical.

There is also rather less disagreement about the most appropriate technologies
to use for implementing these systems. Most implementations are either analogue
or hybrid, using aVLSI (often largely subthreshold, partly because of its low
power consumption and partly to take advantage of its nonlinear circuit ele-
ments) and sometimes combining this with pulse techniques. One recent paper
[140] uses a mixture of excitatory and inhibitory neurons, implemented in sub-
threshold aVLSI, with separate dendrites for different types of input. The ana-
logue circuitry produces an essentially digital output, using strong positive
feedback to provide a robust selection output—robust against the actual level of
the input. This mixture of analogue and digital, inspired by biology yet not con-
strained to follow it exactly, is conceptually reasonably simple (and thus effi-
ciently implementable) and able to implement an algorithm. This approach may
represent a direction that could lead to a greater range of applications.

6 CONCLUSION

Modeling neurons at a number of different levels has uncovered a number of
what appear to be computational principles of the brain. These have then been
used in electronic systems or in software and where appropriate in hardware as
well. Neural network technology is now well established. Whether the novel com-

466 Leslie S. Smith

putational paradigms from more sophisticated model neurons will prove useful
remains to be seen. Initial applications seem to suggest that the first areas of
application will be in what is currently the niche area of autonomous systems.
Other research areas (with titles like “the disappearing computer” or “the ubiq-
uitous computer”) suggest that greater autonomy for computer-based systems
will be required, so this niche area may well come to be more important.

It is, however, still the case that brains can do many things that are not possi-
ble in current electronic systems. Neuromorphic systems have been proposed as
one set of techniques for capturing some of these capabilities. They have indeed
helped to explain some of the brain’s sensory capabilities, particularly in vision
and in motor control. Yet the deeper, less peripheral capabilities of brains remain
essentially untouched. It is an open question as to which, if any, of the other
aspects of neural systems apart from those already modeled might provide a clue
as to the nature of these capabilities. Currently, spiking systems are being investi-
gated by many laboratories. These certainly show promise for parallel processing
of time-varying signals. However, so far, investigation of spiking systems has
thrown no light on awareness, self-consciousness, or indeed, consciousness. Even
planning is still entirely in the domain of old-fashioned software.

There are a number of candidate “biotechnologies” for possible further inves-
tigation. These range from the interactions between the different ion types gated
by the zoo of ion channels found in neurons to interactions between elements of
neurons at the quantum level (as suggested by Hammeroff and Penrose).
Modeling these systems in software or hardware presents one way of investigat-
ing these possibilities. There are other possibilities as well, such as producing
hybrid machines, part electronic and part neural [141].

There are difficulties in producing simulations of interacting ions or of sys-
tems at the quantum level on normal computers. Such computers are inherently
deterministic, and this makes the modeling of stochastic or quantum systems
slow and cumbrous. It is possible that Moore’s Law will come to the rescue: as
feature sizes decrease, gates and transistors become more noisy do to various
noise effects, making the emulation of stochastic systems in hardware much sim-
pler (even if it does make building deterministic systems that much harder). It
may yet be that there are general principles of another sort of computation
grounded in this stochasticity, and that understanding these using modeling will
provide some other general principles, perhaps even shedding light on some of the
brain’s deeper capabilities.

ACKNOWLEDGMENTS

The support of the UK EPSRC (grant number GR/R64654) is acknowledged.

REFERENCES

[1] P. Hammarlund and O. Ekeberg (1998): Large neural network simulations
on multiple hardware platforms. Journal of Computational Neuroscience 5,
443–459.

Implementing Neural Models in Silicon 467

[2] E. Claverol, A. Brown, and J. Chad (2001): Scalable cortical simulations on
Beowulf architectures. Neurocomput. 43, 307–315.

[3] D. Hammerstrom (2001): Biologically inspired computing. [Online].
Available: http://www.ogi.ece.edu/strom

[4] Neural network hardware. [Online]. (1998): Available: http://neuralnets.web.
cern.ch/NeuralNets/nnwlnHepHard.html

[5] E. Kandel, J. Schwartz, and T. Jessell (2000): Principles of Neural Sci.
(4th Ed.) McGraw Hill.

[6] C. Koch (1999): Biophysics of Computation. Oxford.
[7] T. Bell (1991): A channel space theory of dendritic self-organisation.

AI Laboratory, Free University of Brussels, Tech. Rep. 91–4.
[8] B. Mel (1994): Information processing in dendritic trees. Neural Comput. 6,

1031–1085.
[9] D. Aidley (1999): The Physiology of Excitable Cells. (4th Ed.) Cambridge

University Press.
[10] S. Hammeroff (1999): The neuron doctrine is an insult to neurons.

Behavioural and Brain Sciences, 22, 838–839.
[11] W. McCulloch and W. Pitts (1943): A logical calculus of ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, 5, reprinted in [142].
[12] D. Hebb (1949): The Organization of Behavior. Wiley, New York. partially

reprinted in [142].
[13] J. Anderson (1995): An Introduction to Neural Networks. Cambridge, MA:

MIT Press.
[14] F. Rosenblatt (1962): Principles of Neurodynamics. Spartan, New York.
[15] J. Hertz, A. Krogh, and R. Palmer (1991): Introduction to the Theory of

Neural Computation. Addison Wesley.
[16] S. Haykin (1999): Neural Networks: A Comprehensive Foundation. (2nd Ed.)

Macmillan.
[17] B. Widrow and M. Hoff (1960): Adaptive switching circuits, In 1960 IRE

WESCON Convention Record. New York: IRE, 4, 96–104.
[18] R. Rescorla and A. Wagner (1972): A theory of pavlovian conditioning:

The effectiveness of reinforcement and nonreinforcement. In Classical
Conditioning II: Current Research and Theory (A. Black and W. Prokasy,
eds) Appleton-Century-Crofts, New York: 64–69.

[19] M. Minsky and S. Papert (1969): Perceptrons. MIT Press, Cambridge par-
tially reprinted in [142].

[20] J. Hopfield (1982): Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy of
Sciences. USA, 79, 1982, reprinted in [142].

[21] D. Ackley, G. Hinton, and T. Sejnowski (1985): A learning algorithm for
boltzmann machines. Cognitive Science, 9, reprinted in [142].

[22] A. Bryson and Y.-C. Ho (1969): Applied Optimal Control. Blaisdell, New
York.

[23] P. Werbos (1974): Beyond regression: New tools for prediction and analysis
in the behavioral sciences. Ph.D. dissertation, Harvard University.

[24] D. Parker (1985): Learning logic. Center for Computational Research in
Economics and Management Science, Massachusetts Institute of
Technology, Cambridge, MA, Tech. Rep. TR–47.

468 Leslie S. Smith

[25] Y. Le Cun (1985): Une procédure d’apprentissage pour réseau à seuil
assymétrique. In Cognitiva 85: A la Frontière de l’Intelligence Artificielle des
Sciences de la Connaissance des Neurosciences, (Paris 1985). CESTA, Paris:
599–604.

[26] D. Rumelhart, G. Hinton, and R. Williams (1986): Learning representa-
tions by back-propagating errors. Nature, 323, 533–536, reprinted in
[142].

[27] J. Moody and C. Darken (1988): Learning with localized receptive fields. In
Proceedings of the 1988 Connectionist Models Summer School, (D. Touretzky,
G. Hinton, and T. Sejnowski, eds) (Pittsburg). Morgan Kaufmann, San
Mateo 133–143.

[28] C. Bishop (1995): Neural networks for Pattern Recognition. Clarendon
Press, Oxford.

[29] J. Elman (1990): Finding structure in time. Cognitive Science. 14,
179–211.

[30] H. Barlow (1959): Sensory mechanisms, the reduction of redundancy and
intelligence. The Mechanisation of Thought Processes: NPL Symposium, 10.

[31] T. Kohonen, T. Huang, and M. Schroeder (2000): Self-organizing Maps.
(3rd ed.) Springer-Verlag.

[32] L. Lapique (1907): Sur l’excitation electrique des nerfs. J. Physiology. Paris,
620–635.

[33] W. Gerstner (1995): Time structure of the activity in neural network
models. Physical Reviews E. 51, 738–758.

[34] W. Gerstner and W. Kistler (2002): Spiking Neural Models. Cambridge.
[35] J. Feng and D. Brown (2000): Integrate-and-fire models with nonlinear

leakage. Bulletin of Mathematical Biology. 62, 467–481.
[36] J. Feng and G. Wei (2001): Increasing inhibitory input increases neu-

ronal firing rate: when and why? Diffusion process cases. J. Phys. A. 34,
7493–7509.

[37] E. Izhikevich. Which model to use for cortical spiking neurons? submitted
to IEEE Transactions of Neural Networks.

[38] —— , Simple model of spiking neurons, accepted for publication in IEEE
Transactions of Neural Networks.

[39] M. Hines and N. Carnevale (1997): The NEURON simulation environ-
ment. Neural Computation. 9, 1179–1209.

[40] G. Bi and M. Poo (2001): Synaptic modification by correlated activity:
Hebb’s postulate revisited. Annual Review of Neuroscience. 24, 139–166.

[41] L. Smith (2002): Using Beowulf clusters to speed up neural simulations.
Trends in the Cognitive Science. 6, 231–232.

[42] R. Fitzhugh (1966): An electronic model of the nerve membrane for
demonstration purposes. J. Appl. Physiology. 21, 305–308.

[43] R. Johnson and G. Hanna (1969): Membrane model: a single transistor
analog of excitable membrane. J. Theoretical Biology. 22, 401–411.

[44] E. R. Lewis (1968): An electronic model of the neuroelectric point process.
Kybernetik. 5, 30–46.

[45] G. Roy (1972): A simple electronic analog of the squid axonmembrane:
the neuro FET. IEEE Transactions on Biomedical Engineering. BME-18,
60–63.

Implementing Neural Models in Silicon 469

[46] W. Brockman (1979): A simple electronic neuron model incorporating both
active and passive responses. IEEE Transactions on Biomedical Engineering.
BME-26, 635–639.

[47] F. Rosenblatt (1958): The perceptron: a probabilistic mode for information
storage and processing in the brain. Psychological Rev. 65, 386–408.

[48] B. Widrow (1962): Generalization and information storage in networks of
ADALINE neurons. In Self-Organizing Systems (G. Yovitts, ed) Spartan
Books.

[49] R. Runge, M. Uemura, and S. Viglione (1968): Electronic synthesis of the
avian retina. IEEE Transactions on Biomedical Eng., BME-15, 138–151.

[50] L. Smith (1989): Implementing neural networks. In New Developments in
Neural Computing (J. Taylor and C. Mannion, eds) Adam Hilger, 53–70.

[51] I. Aybay, S. Cetinkaya, and U. Halici (1996): Classification of neural net-
work hardware. Neural Network World. 6(1), 11–29.

[52] “AN220E04 datasheet: Dynamically reconfigurable FPAA,” Anadigm, 2003.
[53] R. Hecht-Nielsen, Neurocomputing. Addison-Wesley, 1990.
[54] E. Vittoz, H. Oguey, M. Maher, O. Nys, E. Dijkstra, and M. Cehvroulet

(1991): Analog storage of adjustable synaptic weights. In VLSI Design of
Neural Networks. (U. Ramacher and E. Rueckert, eds) Kluwer Academic.

[55] “80170nx electrically trainable analog neural network,” Intel Corporation,
1991.

[56] J. Meador, A. Wu, C. Cole, N. Nintunze, and P. Chintrakulchai (1991):
Programmable impulse neural circuits. IEEE Transactions on Neural
Networks. 2(1), 101–109.

[57] C. Diorio, P. Hasler, B. Minch, and C. Mead (1996): A single-transistor
silicon synapse. IEEE Transactions on Electron Devices. 43(11), 1982–1980.

[58] L. Smith, B. Eriksson, A. Hamilton, and M. Glover (1999): SPIKEII: an
integrate-and-fire aVLSI chip. Int. J. Neural Syst. 9(5), 479–484.

[59] D. Hsu, M. Figueroa, and C. Diorio (2002): Competitive learning with
floating-gate circuits. IEEE Transactions on Neural Networks. 13, 732–744.

[60] T. Morie, T. Matsuura, M. Nagata, and A. Iwata (2003) A multinanodot
floating-gate mosfet circuit for spiking neuron models. IEEE Transactions
on Nanotechnology. 2, 158–164.

[61] D. Green (1999) Digital Electronics (5th ed.) Prentice Hall.
[62] C. Mead (1989): Analog VLSI and Neural Systems. Addison-Wesley.
[63] S.-C. Liu, J. Kramer, G. Indiveri, T. Delbruck, and R. Douglas (2002):

Analog VLSI: Circuits and Principles. MIT Press.
[64] E. Ifeachor and B. Jervis (2002): Digital Signal Processing: A Practical

Approach (2nd ed.) Prentice Hall.
[65] M. Hohfield and S. Fahlman (1997): Probabilistic rounding in neural net-

work learning with limited precision. Neurocomputing. 4, 291–299.
[66] E. Sackinger (1997): Measurement of finite precision effects in handwriting

and speech recognition algorithms. In ICANN 97: LNCS 1327 (W. Gerstner,
A. Germond, M. Hasler, and J.-D. Nicoud, eds), Springer Verlag, 1223–1228.

[67] P. Moerland and E. Fiesler (1997): Neural network adaptations to hard-
ware implementations. In Handbook of Neural Computation (E. Fiesler and
R. Beale, eds) IOP Publishing.

470 Leslie S. Smith

[68] S. Draghici (2002): On the capabilities of neural networks using limited
precision weights. Neural Networks. 15, 395–414.

[69] I. Corporation (1990): 80170NN electrically trainable analog neural
network. Datasheet.

[70] C. S. Lindsey, B. Denby, and T. Lindblad. Neural network hardware.
[Online]. Available: http://www.avaye.com/ai/nn/hardware/index.html

[71] A. Eide (1994): An implementation of the zero instruction set computer
(zisc036) on a pc/isa-bus card, [Online]. Available: citeseer.nj.nec.com/
eide94implementation.html

[72] H. McCartor (1991): Back propagation implementation on the adaptive
solutions cnaps neurocomputer chip. In Advances in Neural Information
Processing Systems 3, (R. Lippmann, J. Moody, and D. Touretzky, eds),
Morgan Kaufmann pp. 1028–1031.

[73] N. Mauduit, M. Duranton, and J. Gobert (1992): Lneuro 1.0: A piece of
hardware LEGO for building neural network systems. IEEE Transactions
on Neural Networks. 3(3).

[74] Y. Deville (1995) Digital VLSI neural networks: from versatile neural
processors to application-specific chips. Proc. of the International
Conference on Artificial Neural Networks ICANN’95, Paris, France,
Industrial Conference, Session 9, VLSI and Dedicated Hardware.

[75] U. Ramacher, J. Beichter, W. Raab, J. Anlauf, N. Bruels, U. Hachmann, and
M. Weseling (1991): Design of a 1st generation neurocomputer. In VLSI
Design of Neural Networks, (U. Ramacher and E. Rueckert, eds), Kluwer
Academic.

[76] U. Ramacher, W. Raab, J. Anlauf, U. Hachmann, J. Beichter, N. Bruls,
R. Manner, J. Glas, and A. Wurz (1993): Multiprocessor and memory archi-
tecture of the neurocomputer SYNAPSE-1. Proc. International Conference
on Microelectronics for Neural Networks. Edinburgh, pp. 227–232.

[77] H. Chen and A. Murray (2002): A continuous restricted Boltzmann
machine with a hardware amenable training algorithm. In Proceedings of
ICANN 2002, pp. 426–431.

[78] — , A continuous restricted Boltzmann machine with an implementable
training algorithm. In IEEE Proceedings on Vision Image and Signal
Processing.

[79] G. Hinton, B. Sallans, and Z. Ghahramani (1999): A hierarchical commu-
nity of experts. In Learning in Graphical Models (M. Jordan, ed) MIT Press
pp. 479–494.

[80] P. Fleury and A. Murray (2003): Mixed-signal VLSI implementation of the
products of experts’ contrastive divergence learning scheme. In Proceedings
of ISCAS 2003. 5, pp. 653–656.

[81] A. Murray, L. Tarassenko, H. Reekie, A. Hamilton, M. Brownlow,
D. Baxter, and S. Churcher (1991): Pulsed silicon neural nets—following
the biological leader. In Introduction to VLSI Design of Neural Networks
(U. Ramacher, ed), Kluwer pp. 103–123.

[82] A. Murray, S. Churcher, A. Hamilton, A. Holmes, G. Jackson,
R. Woodburn, and H. Reekie (1994) Pulse-stream VLSI neural networks.
IEEE MICRO, pp. 29–39.

Implementing Neural Models in Silicon 471

[83] A. Hamilton, S. Churcher, P. Edwards, G. B. Jackson, A. Murray, and
H. Reekie (1994): Pulse-stream VLSI circuits and systems: the EPSILON
neural network chipset. Int. J. Neural Sys. 4(4), 395–405.

[84] P. Richert, L. Spaanenburg, M. Kespert, J. Nijhuis, M. Schwarz, and
A. Siggelkow (1991): ASICs for proto-typing pulse-density modulated neu-
ral networks. In Introduction to VLSI Design of Neural Networks
(U. Ramacher, ed), Kluwer pp. 125–151.

[85] T. Lehmann (1997): Classical conditioning with pulsed integrated neural
networks: Circuits and system. pt. II, IEEE Transactions on Circuits and
Systems, 45(6), 720–728.

[86] T. Lehmann and R. Woodburn (1999): Biologically-inspired learning in
pulsed neural networks. In Learning on Silicon: Adaptive VLSI Neural
Systems (G. Cauwenberghs and M. Bayoumi, eds) Kluwer, pp. 105–130.

[87] L. Watts (1993): Event driven simulation of networks of spiking neurons.
In Advances in Neural Information Processing Systems 6 (J. Alspector,
J. Cowan, and G. Tesauro, eds), pp. 927–934.

[88] A. Nishwitz and H. Glünder (1995): Local lateral inhibition—a key to
spike synchronization. Biological Cybernetics. 73(5), 389–400.

[89] L. Smith, B. Eriksson, A. Hamilton, and M. Glover (1999): Fast digital
simulation of spiking neural networks and neuromorphic integration with
SPIKELAB. Int. J. Neural Sys. 9(5), 473–478.

[90] S. Lim, A. Temple, S. Jones, and R. Meddis (1998): Digital hardware imple-
mentation of a neuromorphic pitch extraction system. In Neuromorphic
Systems: Engineering Silicon from Neurobiology (L. Smith and
A. Hamilton, eds), World Scientific.

[91] N. Mtetwa, L. Smith, and A. Hussain (2000): Stochastic resonance and
finite resolution in a network of leaky integrate-and-fire neurons.
In Artificial neural networks—ICANN 2002. Springer, Madrid, Spain
pp. 117–122.

[92] S. Wolpert and E. Micheli-Tzanakou (1996): A neuromime in VLSI. IEEE
Transactions on Neural Networks, 7(2), 300–306.

[93] M. Glover, A. Hamilton, and L. Smith (1998): Analogue VLSI integrate
and fire neural network for clustering onset and offset signals in a sound
segmentation system. In Neuromorphic Systems: Engineering Silicon from
Neurobiology (L. Smith and A. Hamilton, eds), pp. 238–250.

[94] S.-C. Liu and B. A. Minch (2001): Homeostasis in a silicon integrate and
fire neuron. In Advances in Neural Information Processing Systems 13, Papers
from Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA
(T. K. Leen, T. G. Dietterich, and V. Tresp, eds), MIT Press, pp. 727–733.

[95] E. Chicca, D. Badoni, V. Dante, M. D’Andreagiovanni, G. Salina,
L. Carota, S. Fusi, and P.D. Giudice (2003): A vlsi recurrent network of
integrate-and-fire neurons connected by plastic synapses with long term
memory. IEEE Transactions on Neural Network. 14(5), 1409–1416.

[96] J. Mavor, M. Jack, and P. Denyer (1983): Introduction to MOS LSI Design.
Addison Wesley.

[97] B. Eriksson (2002): A critical study of a hardware integrate-and-fire neural
network. Master’s thesis, University of Stirling, Department of Computing
Science and Mathematics.

472 Leslie S. Smith

[98] G. Indiveri (2003): A low-power adaptive integrate-and-fire neuron circuit.
In Proc. IEEE International Symposium on Circuits and Systems. May 2003.

[99] G. Patel and S. P. DeWeerth (1997): Analog VLSI Morris-Lecar neuron.
Electronics Letters, 33, 997–998.

[100] C. Morris and H. Lecar (1981): Voltage oscillations in the barnacle giant
muscle fiber. Biophysics J. 35, 193–213.

[101] C. Rasche and R. Hahnloser (2001): Silicon synaptic depression. Biological
Cybernetics. 84, 57–62.

[102] W. Maass (1997): Networks of spiking neurons: The third generation of
neural network models. Neural Networks. 10 (9), 1659–1671.

[103] A. Bofill, R. Woodburn, and A. Murray (2001): Circuits for VLSI implemen-
tation of temporally-asymmetric Hebbian learning. In Neural Information
Processing Systems. Vancouver.

[104] A. Bofill-i-Petit and A. Murray (2003): Synchrony detection by analogue
VLSI neurons with bimodal STDP synapses. accepted for NIPS 2003.

[105] E. Chicca, G. Indiveri, and R. Douglas (2003): An adaptive silicon synapse.
In Proc. IEEE International Symposium on Circuits and Systems. May.

[106] M. Hewitt and R. Meddis (1991): An evaluation of eight computer models
of mammalian inner hair-cell function. J. Acoustical Soc. Am. 90(2),
904–917.

[107] J. Lazzaro and C. Mead (1989): Circuit models of sensory transduction in
the cochlea. In Analog VLSI Implementations of Neural Networks. Kluwer
pp. 85–101.

[108] I. Grech, J. Micallef, and T. Vladimirova (1999): Silicon cochlea and its
adaptation to spatial localisation. IEE Proceedings—Circuits Devices and
Systems. 146(2), 70–76.

[109] A. van Schaik and A. McEwan (2003): An analog VLSI implementation of
the meddis inner hair cell model. EURASIP J. Applied Signal Processing.

[110] K. Boahen, Point-to-point connectivity between neuromorphic chips using
address-events. IEEE Transactions on Circuits and Systems II. 47(5), 416–434.

[111] I. Segev, M. Rapp, Y. Manor, and Y. Yarom (1992): Analog and digital pro-
cessing in single nerve cells: dendritic integration and exonal propagation.
In Single Neuron Computation (T. McKenna, J. Davis, and S. Zornetzer,
eds) pp. 173–198.

[112] J. Elias (1993): Artificial dendritic trees. Neural Comput. 5(4), 648–664.
[113] D. Northmore and J. Elias (1996): Spike train processing by a silicon neu-

romorph: The role of sublinear summation in dendrites. Neural Comput.
8(6), 1245–1265.

[114] J. Elias and D. Northmore (1995): Switched-capacitor neuromorphs with
wide-range variable dynamics. IEEE Transactions on Neural Networks. 6(6),
1542–1548.

[115] M. Ohtani, H. Yamada, K. Nishio, H. Yonezu, and Y. Furukawa (2002)
Analog LSI implementation of biological direction-sensitive neurons. part 1
Japanese Journal of Applied Physics, 41, 1409–1416.

[116] W. Westerman, D. P. Northmore, and J. G. Elias (1998): A hybrid (hard-
ware/software) approach towards implementing hebbian learning in silicon
neurons with passive dendrites. In Neuromorphic Systems: Engineering Silicon
from Neurobiology. (L. Smith and A. Hamilton, eds), World Scientific.

Implementing Neural Models in Silicon 473

[117] A. Saurdagiene, B. Porr, and F. Woergoetter (2004): How the shape of pre-
and post-synaptic signals can influence STDP: A biophysical model,
accepted for Neural Comput.

[118] R. Douglas, M. Mahowald, and K. Martin (1996): Neuroinformatics as
explanatory neuroscience. Neuroimage. S25–S27.

[119] M. Mahowald and R. Douglas (1991): A silicon neuron. Nature, 354
(6354), 515–518.

[120] R. Douglas and M. Mahowald (1995): A construction set for silicon neu-
rons. In An Introduction to Neural and Electronic Networks (S. Zornetzer,
J. L. Davis, C. Lau, and T. McKenna, eds) Academic Press pp. 277–296.

[121] C. Rasche, R. Douglas, and M. Mahowald (1998): Characterization of a
silicon pyramidal neuron. In Neuromorphic Systems: Engineering Silicon
from Neurobiology (L. Smith and A. Hamilton, eds) World Scientific.

[122] C. Rasche and R. Douglas (2001): An improved silicon neuron. Analog
Integrated Circuits and Signal Processing. 23(3), 227–236.

[123] C. Breslin and L. Smith (1999): Silicon cellular morphology. International
Journal of Neural Systems. 9(5), 491–495.

[124] J. Shin and C. Koch (1999): Adaptive neural coding dependent con the
time-varying statistics of the somatic input current. Neural Computation.
11(8), 1893–1913.

[125] C. Rasche (1999): An aVLSI basis for dendritic adaptation. IEEE
Transactions on Circuits and Systems II. 48(6), 600–605.

[126] C. Rasche and R. Douglas (2001): Forward- and backpropagation in a sil-
icon dendrite. IEEE Transactions on Neural Networks. 12(2).

[127] B. A. Minch, P. Hasler, C. Diorio, and C. Mead (1995): A silicon axon.
In Advances in Neural Information Processing Systems (G. Tesauro,
D. Touretzky, and T. Leen, eds) 7. The MIT Press, pp. 739–746.

[128] C. Rasche and R. Douglas (1999): Silicon synaptic conductances.
J. Comput. Neuroscience. 7(1), 33–39.

[129] R. Mudra and G. Indiveri (1999): A modular neuromorphic navigation sys-
tem applied to line following and obstacle avoidance tasks. In Experiments
with the Mini-Robot Khepera: Proceedings of the 1st International Khepera
Workshop (A. A. Loeffler, F. Mondada, and U. Rueckert, eds), pp. 99–108.

[130] C. Schauer, T. Zahn, P. Paschke, and H. Gross (2000): Binaural sound local-
ization in an artificial neural network. In IEEE International Conference on
Acoustics, Speech, and Signal Processing, pp. 865–868.

[131] A. van Schaik and S. Shamma (2003): A neuromorphic sound localizer for
a smart mems system. In IEEE International Symposium on Circuits and
Systems. pp. 864–867.

[132] G. Cauwenberghs, R. Edwards, Y. Deng, R. Genov, and D. Lemonds
(2002): Neuromorphic processor for real-time biosonar object detection. In
IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP). pp. 3984–3987.

[133] G. Crebbin and M. Fajria (2000): Integrate-and-fire models for image
segmentation. In Visual Communications and Image Processing 2000,
pp. 867–874.

474 Leslie S. Smith

[134] T. Netter and N. Franceschini (2002): A robotic aircraft that follows terrain
using a neuromorphic eye. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2002), pp. 129–134.

[135] M. Lewis, M. Hartmann, R. Etienne-Cummings, and A. Cohen (2001):
Control of a robot leg with an adaptive aVLSI CPG chip. Neurocomputing.
38, 1409–1421.

[136] T. Delbrck, S.-C. Liu, E. Chicca, G. M. Ricci, and S. Bovet. (2001): The
physiologist’s friend chip. [Online]. Available: http://www.ini.unizh.ch/tobi/
friend/chip/index.html

[137] T. Berger, M. Baudry, R. Brinton, J. Liaw, V. Marmarelis, A. Park,
B. Sheu, and A. Tanguay (2001): Brain-implantable biomimetic electron-
ics as the next era in neural prosthetics. Proceedings of the IEEE. 89(7),
993–1012.

[138] T. Lande, J. Marienborg, and Y. Berg (2000): Neuromorphic cochlea
implants. In IEEE International Symposium on Circuits and Sys. (ISCAS
2000), pp. 401–404.

[139] E. Maynard (2001): Visual prostheses. Annual Review of Biomedical
Engineering. 3, 145–168.

[140] R. Hahnloser, R. Sarpeshkar, M. Mahowald, R. Douglas, and H. Seung
(2000): Digital selection and analogue amplification coexist in a cortex-
inspired silicon circuit. Nature. 405, 947–951.

[141] T. DeMarse, D. Wagenaar, A. Blau, and S. Potter (2001): The neurally con-
trolled animat: Biological brains acting with simulated bodies. Autonomous
Robots. 11, 305–310.

[142] J. Anderson and E. Rosenfeld (eds) (1988): Neurocomputing: Foundations of
Research. MIT Press, Cambridge.

Implementing Neural Models in Silicon 475

Chapter 14

MOLECULAR AND NANOSCALE COMPUTING
AND TECHNOLOGY
Mary M. Eshaghian-Wilner, Amar H. Flood, Alex Khitun,
J. Fraser Stoddart, and Kang Wang
University of California, Los Angeles

Due to the continued scaling of CMOS chips, it is expected that the feature
size of devices will reach the atomic and molecular scales in the next decades.
However, there is concern that this scaling effort may come to an end.
Nanoscale CMOS and other novel nano-devices promise improved perform-
ance for information processing. But there are many issues and challenges
associated with the design of such nano-systems. This chapter attempts to
present a very brief overview of nanoscale and molecular computing technol-
ogy. Several nanoscale and molecular computing elements and architectures
proposed by the authors are described, and their performance and limitations
are discussed. The chapter includes a brief tutorial on various existing
nanoscale and molecular devices. These include molecular switches, resonant
tunnel diodes, tunnel diodes, single electron transistors, carbon nanotube
field-effect transistors, quantum dots, and spin systems. Nanoscale computing
modules such as quantum- and spin-based cellular logic arrays and molecular-
based cellular automata, all made from the switches presented here, are dis-
cussed. These modules are an integral part of a hierarchical 3-D multiscale
architecture presented. A set of nano quantum and molecular self-assembled
structures, including molecular crossbars are also shown. The materials pre-
sented here are compiled from the reference articles listed at the end of the
chapter.

1 INTRODUCTION

Nanotechnology may offer a potentially viable manufacturing technology that
allows precise control of the structure of matter by working with atoms and mol-
ecules [68]. It entails the ability to build molecular systems with atom-by-atom

precision, yielding a variety of systems and nanomachines. It will allow many
things to be manufactured at low cost. It will lead to the production of systems
including nanoelectronic circuits and nanomachines. The development of nan-
otechnology in the broadest sense has immediate implications, since we can
design a whole new range of machines from nanoscale objects. These nano
objects may be made of bits of crystal of inorganic, organic, and even biological
materials. The development and use of molecular nanotechnology – the building
up from atoms – will be slower because it will take time to find the exact point
where changing only a few atoms in a structure will make a difference. The single
electron device (e.g., memory) may be a case where molecular technology research
will be commercialized more easily.

A consequence of Moore’s Law is that the individual feature sizes of elec-
tronic components decrease every year despite the continued difficulty in fabri-
cating smaller and smaller electronic components. Following on from Moore’s
Law, ITRS (The International Technology Roadmap for Semiconductors, 2003 edi-
tion) anticipates that by the year 2009 the feature sizes of devices will become less
than 45 nm, where the electronic properties of the materials will change from
obeying classical physics to the wave nature of quantum physics. Transistors may
eventually reach a limit of one electron per bit. Current CMOS technology has
reached the 90-nm feature size in manufacture.

The scaling effort is intended to increase device density, functionality, and per-
formance along with cost benefits. Therefore, shrinking of the device feature size
will continue in the future until the limits and cost benefits are reached. In
research, devices with a gate feature size of about 10 nm have been demonstrated,
as is schematically shown in Figure 14.1 (from INTEL Components Research).
The ultimate feature size of CMOS may reach 5–7 nm, for which the tunneling
between source and drain may be the limiting factor. As devices are scaled down,
there are many technical challenges and fundamental limits. The challenging
issues range from lithography, power dissipation (power supply), short-channel
effect, and gate oxide to interconnect delays.

478 Mary M. Eshaghian-Wilner, Amar H. Flood, Alex Khitun, et al.

Today

Future

50 nm 30 nm 20 nm 15 nm

Gate Length

Figure 14.1. Current and future gate sizes (from INTEL Components Research 2002).

In the nanoscale regime, electrons in a solid no longer flow like particles;
rather, they can better be described as quantum mechanical—as a wave. This wave
behavior makes it possible for electrons to do remarkable things, such as instantly
tunneling through an insulating layer that normally would be impermeable. To
understand how and when quantum effects come into play, we must consider
what happens to a semiconductor device as it becomes smaller. As we reduce the
size, the net electron transit time through the devices is shorter, and hence there is
an incentive for making electronic devices smaller and smaller. However, there are
more fundamental effects, such as the fact that for individual atoms and mole-
cules the electronic states are discrete and quantized. Quantum effects become
observable when the separation between these energy levels becomes larger than
the thermal energy that allows rapid transitions at operating temperature. As the
physical dimensions of the devices are reduced, the separation between the dis-
crete energy levels increases and quantum effects persist to higher temperatures.
A school of thought believes that these effects might be used to our advantage—
if we knew how to control them. Nanoelectronics is the emerging field of build-
ing electronic devices at the atomic level to harness these small-scale “quantum”
properties of nature. The field unites physicists, chemists and biologists in order
to understand how nature works at the atomic scale and how we can control it.
For more details, see [14, 39, 41, 75, 83, 87].

Another new and exciting interdisciplinary field is the area of molecular elec-
tronics, which is concerned with the exploitation of organic compounds in
electronic and optoelectronic devices. It is possible to build electronic devices
based on molecular switches of different designs [47, 48, 62, 76, 84]. The key issue
in designing a molecular-based switch, as compared with a scaled switch such as
a transistor, is being able to control the flow of electrons. Use of a molecule that
switches by the relative mechanical movements of its component parts, as in
bistable [2] rotaxanes and [2] catenanes, is one method, from which it has been
possible to fabricate a 64-bit RAM device [82]. Another way to do this in a mol-
ecule is to control the overlap of electronic orbitals. For example, with the right
overlap it may be possible for electrons to flow, but if the overlap can be control-
lably perturbed, it may be possible to block the flow.

The task of fabricating and testing such tiny molecular devices is possible by
utilizing one of two simple methods, based on (1) the use of a scanning tunneling
microscope (STM), and (2) the fabrication of electrode-molecule-electrode
(EME) devices. STMs use a sharpened conducting tip with a bias voltage applied
between the tip and the substrate. When the tip is brought within < 1 nm of a
molecular layer that is on the surface of a substrate, electrons from the molecular
sample begin to tunnel across the 1 nm gap into the tip or vice versa, depending
upon the sign of the bias voltage. The tunneling process is quantum mechanical,
and therefore, it takes advantage of wave properties to move an electron through
an energy barrier at lower energies than if the electron was a particle. EME
devices can be prepared by utilizing closely packed molecular monolayers
deposited onto a bottom electrode, using the Langmuir-Blodgett (LB) technique
[7], such that a Ti [62] or Au [97] electrode can be vapor deposited on top without
damaging, or penetrating through, the molecules. The electronic properties of the
EME device can be interrogated using simple I-V measurements.

Molecular and Nanoscale Computing and Technology 479

Over the past 40 years, scientists have investigated and tried to understand
unusual quantum phenomena, but an important question is whether or not it is
possible that a new kind of computer can be designed based entirely on quan-
tum principles. The extraordinary power of the quantum computer is a result of
a phenomenon called quantum parallelism, a mechanism that enables multiple
calculations to be performed simultaneously. This is in contrast to a classical
computer that can only perform operations one at a time, albeit very quickly
[80]. The field of quantum computation had remained a largely academic one
until the 1990s, when it was shown that, for certain key problems, quantum com-
puters could, in principle, outperform their classical counterparts. Since then,
research groups around the world have been racing to pioneer a practical system.
However, trying to construct a quantum computer at the atomic scale is far from
easy, since it requires the ability to manipulate and control single atoms.
“Wiring” quantum bits together via coherent wave interactions is a challenging
task. In addition, it requires the manipulation of electrons and protons within
individual atoms without disturbing the coherence of the particle’s spins. These
systems may need to be constructed with molecular mimics or even using bio-
logical materials.

The objective of the present chapter is to present a very brief overview of
nanoscale computing elements, structures, and architectures. Nanoscale elements
include nano CMOS, SET, molecular devices, and others. We will study the design
and fabrication of nanoscale chips for computing using Nano and Molecular ele-
ments. While the architectures presented may employ quantum and tunneling
effects because of the device feature size being below 10 nm, the style of the com-
putation used is classical rather than quantum.

The rest of the chapter is organized as follows. In the next section, we present
a brief tutorial on various existing nanoscale and molecular devices. These
include molecular switches, resonant tunnel diodes, tunnel diodes, single electron
transistors, carbon nanotube field-effect transistors, quantum dots, and spin sys-
tems. Next, in Section 3, we review a set of nanoscale computing modules, such
as quantum and spin-based cellular logic arrays, and molecular-based cellular
automata, all made from the switches presented here. These modules will be an
integral part of a hierarchical 3-D multi-scale architecture. In Section 5, we dis-
cuss self-assembled structures including molecular and quantum-based self-
assemblies. A discussion of design issues and challenges for nanoscale and
molecular computing is presented in Section 6. Concluding remarks and future
research are presented in Section 7.

2 SWITCHING ELEMENTS

In this section, we present a very brief description of various basic elements,
devices, and units used in designing molecular and nanoscale computing struc-
tures and architectures. The basic devices presented here are used in the architec-
tures and structures presented in the later Sections of this chapter. For a more
detailed overview of some of these devices, refer to an earlier publication by
Goldbaher-Gordon et al. [24].

480 Mary M. Eshaghian-Wilner, Amar H. Flood, Alex Khitun, et al.

2.1 Molecular Switches

Solid-state electronic devices based on molecular switches have been proposed
as the active units in both nonvolatile random access memory circuits and as the
reconfigurable bits for a custom configurable logic-based computing machine
[82]. The central element of such devices is based on the simple EME configura-
tion, which forms a molecular switch tunnel junction that can be electrically
switched between high and low conductance states. The mounting evidence, both
experimental and theoretical, is consistent with the molecule’s role in the devices’
switching mechanism [82, 90, 96, 98]. Consequently, it may be possible for device
characteristics, such as volatility, on/off current ratios, and absolute conductance,
to be tuned by altering the internal structure of the molecules. Furthermore, the
molecules are designed to operate individually, which is anticipated to allow
these devices to be scaled, ultimately to a very small number of molecules, if not
a single one.

An integrated systems-oriented approach has guided the team of Heath and
Stoddart [82] to develop and demonstrate molecular-switch tunnel junctions
(MSTJs) capable of 64-bit RAM with multiple write, read and erase cycles. The
MSTJ devices have been scaled from microns down to nanometer-sized devices
and, further, to a situation where [91] a single semiconducting carbon nanotube
is utilized as one of the electrodes. These devices are essentially fabricated the
same way at each length scale. A silicon nanowire or single semiconducting car-
bon nanotube is prepared, and wired for electrical connectivity, on an SiO2 sub-
strate. An LB monolayer of closely packed molecular switches is transferred to
the substrate, and a Ti top electrode is vapor-deposited on top of the monolayer
through a mask at an angle orthogonal to the bottom electrode. An Al electrode
is deposited on top of the Ti one for electrical connectivity. The remaining part
of the monolayer, which is not covered by the crossbar, is finally washed away.
The mechanism of switching and electrical transport in these devices relies on
molecular properties and hence represents a significant development in the design
and integration of organic compounds within an electronics paradigm.

The Stoddart group at UCLA has been developing voltage-driven molecular
switches from the classes of compounds known as bistable [2] catenanes, [2] rotax-
anes, and [2] pseudorotaxanes for their use as the active components in solid-state
molecular switch devices.

These molecules, shown in Figure 14.2 can be rationally designed to provide
many advantages. First, voltage-addressable bistability can be designed into these
molecules, and this bistability can be thoroughly characterized in the solution
phase using various optical and NMR spectroscopies. Second, the bistable
[2]catenanes, [2]rotaxanes and [2]pseudorotaxanes display slightly different over-
all structures, yet they contain the same voltage-activated subunits that allow
their switching mechanisms to behave in a similar way within the devices. Third,
these compounds are prepared using a modular synthetic approach that allows
them to be optimized and customized. For example, to facilitate the formation of
Langmuir monolayers, amphiphilicity can be incorporated into their molecular
structures. This property allows for the preparation of closely packed monolayers
that can easily be deposited on Si electrodes. The quality of the films is paramount

Molecular and Nanoscale Computing and Technology 481

for obtaining a working device and is assured using in-situ techniques prior to
deposition of the top electrode.

The MSTJs based on bistable [2] catenanes, [2] rotaxanes and [2] pseuodro-
taxanes are as dependent on the electrode material as they are on the molecule
[93]. While MSTJs based on the three different molecular structures have demon-
strated switching characteristics in devices, it is noteworthy that the same result
has not been obtained when wholly metallic materials have been employed as
both of the electrodes. In all cases, operational devices were only obtained when
the bottom electrode was either polycrystalline silicon, with its native oxide layer,
or a single semiconducting carbon nanotube. The switching voltages were all
about +2 V (switch on) or −2 V (switch off), the on/off current ratios were about
10, the device’s switching was observed to be thermally activated and displayed
volatility, and only switchable molecules defined a binary character in the device,
in contrast to nonswitchable control compounds. However, when Pt was used as
the bottom electrode, in place of Si or C, the results were different [88, 89].
Although switching of the device between on and off states was observed, it was
a phenomenon that was not isolated to switchable molecules. The switching
mechanism from devices built on Pt electrodes was ultimately determined to be
due to electromigratory nanofilament growth [100]. Moreover, in single-molecule
break junction measurements [101] conducted at low temperature, the differential
conductance between two platinum wires, across a switchable rotaxane, indicate
that the electron transport properties of the single-molecule EME are dominated
by the electrode-molecule interface. It is conceivable that a Schottky-like barrier
is present at this novel type of heterojunction. One useful rule of thumb that is
suggested from these observations is that, in order to resolve the contribution of
the molecule to the device’s electrical transport properties, it may be important to
utilize electrodes that are made of materials with a similar work function to those
of the carbon that constitute organic compounds.

482 Mary M. Eshaghian-Wilner, Amar H. Flood, Alex Khitun, et al.

(a) (b) (c) (d)

Figure 14.2. From left to right, molecular structures and graphical representations of the
switchable molecules. (a) A bistable [2]catenane. (b) An amphiphilic, bistable [2]pseudorotaxane.
(c, d) Two versions of amphiphilic, bistable [2]rotaxanes. In all these molecular switches, the
solution-phase switching mechanism is based on voltage-driven oxidation of the tetrathiafulva-
lene (TTF) unit, followed by Coulombic repulsion-driven motion of the tetracationic cyclo-
phane component so that it encircles the dioxynaphthalene (DNP) ring system.

The design of switchable molecules and MSTJ structures alike has resulted
from an interplay between synthetic chemists and device builders. This approach
has allowed for both elements to evolve in order to fit the boundary conditions
determined by the other one. In this way, a new technology – switchable molecules
– has been integrated successfully into memory devices. Moreover, the potential
to perform logic also invites investigation. The challenge faced when utilizing
crossbars, or 2-D networks at the nanoscale, is one of circuit design [88] and one
that has not been outside the team’s consideration. Specifically, Williams’
research group at HP – the third team member with Heath and Stoddart – has
developed a demultiplexer and multiplexer system, thus providing the necessary
proof of principle demonstration of how to electrically address nanoscale wires
and junctions. Such an integrated systems-oriented approach supports the efforts
of a team of many research groups geared towards the development of molecu-
lar electronic devices.

2.2 Devices with Negative Differential Resistance

The first tunneling diode was proposed by Esaki and Tsu in 1970 [2], and the
first negative-differential resistance was observed in 1973 [3]. In 1974, resonant
tunneling through a double-barrier resonant-tunneling diode (RTD) was
reported [4]. Among the many nanoelectronic devices proposed, the RTD has
been very extensively explored for nanoelectronic circuit applications because of
its compact size, high speed, device design flexibility, and negative differential
resistance. RTD has been realized with nanofabrication techniques such as molec-
ular beam epitaxy (MBE), atomic layer deposition (ALD), and metal-organic
chemical vapor deposition (MOCVD). Figure 14.3 shows a typical band diagram
with quantized energy levels of the RTD and I-V characteristics.

Initially, with low voltage across the RTD (point A in Figure 14.3), the elec-
trons are below the resonance level, so the probability for the electrons to tunnel
is extremely small. As the voltage through the RTD increases, the emitter region
is wrapped upwards, and the collector region is warped downwards. Eventually,
the band of electrons in the emitter is lined up with the resonant level, allowing
tunneling to the collector (peak point B). With higher voltage, the electrons are
pushed past the resonant energy level, which decreases the tunneling probability
(point C). If the voltage increases further, some electrons become able to flow
over the top of the quantum barriers, and the current will rise.

For RTD devices, two material characteristics are important for achieving
high current density and high peak-to-valley ratio. These are (1) large enough
energy band discontinuities and (2) material compatibility (lattice mismatch). The
best performance of RTDs has been achieved with a III-V semiconductor [45].
An oscillator of InAs/AlGaAs RTD demonstrated works at over 700 GHz [21].
Also, a few logic circuits using RTDs have been proposed [37]. Among these are
logic gates consisting of RTDs and HBT, Boolean function circuits, cellular neu-
ral networks, etc. The first tunnel diode SRAM cell was proposed by Goto et al.,
and it consisted of only one FET and two tunnel diodes [2]. Since then, tunneling
devices [6, 41, 42] have attracted a great deal of interest, particularly in SRAM
applications [33]. In a tunneling-based SRAM cell [60], tunneling current flows
continuously to maintain one of several stable states. Figure 14.14 shows forward

Molecular and Nanoscale Computing and Technology 483

I-V characteristics of the Si-Based SRAM cell [16]. The lower branch of the
curve, which is marked as state I, occurs as the diode is brought from zero bias.
As the forward bias is increased above a transition voltage (3.5V in the figure), the
diode switches to the low-resistance branch, which is marked as state II. It has
recently been shown that for tunneling-based SRAM, the standby power/bit can
approach the limit of technology-dependent leakage by reducing the NDR tun-
neling current [44]. (Large-scale integration (LSI) transistor/RTD technology has
been demonstrated in compound semiconductor material systems [31].)
Tunneling-based static and dynamic RAMs are expected to reduce the standby
power/bit (less than 1 pW for gigabit applications) [10, 17].

484 Mary M. Eshaghian-Wilner, Amar H. Flood, Alex Khitun, et al.

Applied voltage

Diode Current

Tunnel Barriers

Quantum Well

Electron tunneling

Cathodo

Anode

A

C

B

Figure 14.3. Energy levels of the RTD and IV characteristics.

20
mA

500
mA

Figure 14.4. I-V characteristics of the Si-Based SRAM cell.

In contrast, the silicon-based Si/SiGe RTD demonstrated to date has a rela-
tive power current density and a smaller peak-to-valley ratio than those of III-IV
materials [77]. The small peak-to-valley ratio is due to the fact that the band off-
sets are too small and the effective mass is too large. Even though silicon-based
RTDs have not been integrated with CMOS, silicon tunnel RTD devices have
recently been reported [22, 28, 29], and they can be readily integrated with current
Si technologies [7].

Negative differential resistance is the key property of RTDs to be used in com-
putational devices. It can be exploited to design compact bistable–multistable cir-
cuits [15], Cellular Neural Networks (CNN) [70], Neuromorphic Architecture
[23], and Cellular Automata [94].

2.3 Carbon Nano-Tube Field Effect Transistors

Nanotubes (NTs) form another class of nanostructures. The first experimen-
tal realization of individual Y-junction carbon NT diodes was recently accom-
plished [59]. The I-V measurements on these diodes show rectifying behavior at
room temperature, suggesting potential device applications. Other earlier studies
on carbon p-n junction diodes can be seen in the references [49, 50, 52]. These
simple devices demonstrate the general concept of rectifying operation. Besides
the rectifying behavior, Leonard and Tersoff [63] recently recognized that in NT
two-terminal devices, tunneling through a potential barrier can lead to negative
differential resistance (NDR). They treated theoretically both a nanotube p-n
junction and an undoped metal-nanotube-metal junction by calculating quantum
transport, using a self-consistent potential in tight-binding approximation. The
predicted peak-to-valley current ratio, even at room temperature, exceeds by
orders of magnitude those seen in existing devices.

Molecular field-effect transistors (FETs), three-terminal switching devices
with single-wall and multiwall carbon NTs, were fabricated and demonstrated
[38, 43]. With the application of a voltage to a gate electrode, the nanotube can
be switched from a conducting to an insulating gate. At room temperature, some
devices show a transistor action similar to that of p-channel field-effect transis-
tors [54], whereas others behave like gate-voltage independent wires. At room
temperatures, transport is usually dominated by Coulomb blockade. At higher
temperature, power law behaviors are observed in the bias and temperature
dependences of conductance. With the use of the gate electrode, the conductance
of a single-wall NT-FET could be modulated by more than five orders of magni-
tude. However, large-diameter multiwall NTs typically show no gate effect; on
the other hand, structural deformation can modify their electronic structure
sufficiently to yield the FET behavior.

It should be noted that the above NT-FETs were fabricated on top of high-
work-function metal electrodes such as platinum or gold. These devices have gen-
erally high-contact resistance and were unipolar with hole-transport
characteristics. To investigate the origin of the p-type characteristics of semicon-
ducting NTs, Martel et al. [73] fabricated carbon NT FETs with titanium carbide
contacts and passivated with a uniform SiO2 layer (see Figure 14.5). In contrast
to the above-mentioned devices, the titanium-carbide-contacted FET showed that
an apparent barrier height for carrier injection could be modulated by the gate

Molecular and Nanoscale Computing and Technology 485

field, allowing the FETs to be ambipolar with a low contact resistance for both
n- and p-type conduction. This finding suggests that the usual p-type character-
istic of NT FETs is not an intrinsic property of a nanotube, but rather appears to
be a property of the nanotube–metal junction contacts. Moreover, the ambipo-
lar properties of NT FETs may therefore be exploited for implementation of
complementary logics.

486 Mary M. Eshaghian-Wilner, Amar H. Flood, Alex Khitun, et al.

Metal
Nanotube

Metal Carbide

drainsource

Alignment
mark 150 nm Thermal Oxide

Gate

Source

Nanotube

Drain

h ht t t

r

r

r

Planar

Carbon
nanotube
array

Drain

Minimum pitch

Source

Coaxial Parallel Plate

P+ Silicon
(0.01Ω - cm, about 3�10010cm−3)

Figure 14.5. Carbon nanotube FET (CNFETs); see Martel et. al. [67]. Two gate electrode con-
figurations (planar and coaxial) CNFETs.

Significant progress in CNT fabrication has been made possible by utilizing
electric-field-directed deposition. Single-walled carbon nanotubes were synthe-
sized by chemical vapor deposition of methane at controlled locations on a sub-
strate using patterned catalytic island [58]. Combined synthesis and microfabrication
techniques allows a large number of ohmically contacted nanotube devices with
controllable length to be placed on a single substrate.

2.4 Single Electron Transistors

As the feature size goes to the nanometer scale, the number of electrons that
the gate controls will continue to decrease and eventually reach a single electron.
Device functions may be realized by controlling a single electron, referred to as a
single-electron transistor (SET). The SET emits an electron to a small silicon
island coupled to two external reservoirs (source and drain) through a tunneling
barrier, and the potential barrier of the island can be controlled by a gate or mul-
tiple gates, as shown in Figure 14.6. Because the size of the island is on the order
of nanometers, the capacitance may be on the order of aF, and the charging
energy (e2/2C) becomes more than tens of meV. In this case, the Coulomb block-
ade is even visible at room temperature. The drain current controlled by the gate
voltage exhibits periodic oscillations with a period of (e/Cg), called Coulomb oscil-
lations.

Due to the unique features described above, single-electron transistors offer
the following advantages for some circuit applications: (1) good scalability, in
which the principle of the Coulomb blockade permits single-electron devices to
operate at very small physical dimensions, down to the atomic scale, making
ultra-large-scale integration possible; (2) ultra-low-power dissipation, simply

Molecular and Nanoscale Computing and Technology 487

e/2C 3e/2C (2N+1)e/2C

Vg

Id

(b)

(a)

source

Gate

Tunnel junctions Si Island

Drain

Figure 14.6. Single Electron Transistor.

because these transistors use a very small number of electrons and there is little
or no standby power dissipation; and (3) faster operation, with a small capaci-
tance, even though the current is low [61]. The single-electron transistor has
another interesting feature in that a large-threshold voltage shift can be achieved
by adding only one electron to charge the gate [32]. As the size of the floating
is shrunk to tens of nanometers, the storage of a single electron results in a
threshold voltage shift much greater than the charging energy.

Based on the Coulomb blockade effect, several circuit applications in logic
and memory have been proposed and simulated [11, 13, 55, 64, 72]. Single-elec-
tron flash memory is the first single-electron device demonstrated to operate at
room temperature, in which one electron stored in the floating gate represents one
bit of information [25]. Single-electron transistor with multiple gates was pro-
posed to implement complicated logic functions, with a small number of devices
with respect to the conventional CMOS, by making full use of a unique feature
of SETs of an oscillatory conductance as a function of the gate voltage.
Takahashi et al. [67] confirmed that a two-gate SET functioned as an XOR gate
operating at 40 K. Figure 14.7 shows (a) a SET inverter realized with capacitively
coupled SET transistors (the offset charges q are specified to insure proper
inverter operation) and (b) a SET inverter realized with resistively coupled SET
transistors.

Note that, although many logic schemes have been proposed, no logic family
has been thoroughly characterized experimentally. One of the problems is that
it has been difficult to fabricate complex circuits with the very small feature sizes
necessary (< 100 nm) for single electronics circuits. In order for SET circuits to
function, the energy that is necessary to add an electron to a device must be larger
than the characteristic thermal energy kBT. According to the published data [72],
the speed of SET logic circuits is very slow, and the gate delay is more than tens
of milliseconds. Actually, this large delay is not a fundamental characteristic of
SET itself but results from the interconnect.

The main challenge in integration of SET devices in VLSI circuits is the
charge offset problem. This problem manifests itself as a random offset due to the
presence of spurious charge in the island or the region near to it. Since the source-
drain current versus the gate voltage is periodic (see Figure 14.6), the random

488 Mary M. Eshaghian-Wilner, Amar H. Flood, Alex Khitun, et al.

input inputoutput output

q = 0

(a) (b)

q = e/2

+Vb
+Vb

Figure 14.7. (a) A SET inverter realized with capacitively coupled SET transistors. The offset
charges q are specified to insure proper inverter operation. (b) A SET inverter realized with
resistively coupled SET transistors.

offset makes the threshold voltage of each island different, and thus it is impos-
sible to predict the “high” or “low” state. An anticipated solution to this problem
may come from the use of fault-tolerant architecture [23] compensating for the
deviation in a single device performance.

2.5 Quantum Dots

Quantum dots (QDs) are nano-sized deposits of one semiconductor embed-
ded in another semiconductor. Since the dot material has an energy band gap that
is smaller than that of the surrounding material, it can trap charge carriers. While
quantum dots are particles made up of hundreds to thousands of atoms, in many
of their characteristics they behave like a single gigantic atom. The optical and
transport properties of quantum dots – particularly the ease of customizing those
properties by adjusting the size or composition of the dots – make them very suit-
able for molecular electronics. In the category of QDs, there are individual dots
(a.k.a. artificial atoms), as well as coupled dots (quantum-dot molecules), and a
composite device of four or five QDs called a QD cell. The integration of these
into various architectures is shown later in this chapter. The following is a
brief discussion on how quantum dots compare with RTD and SETs as explained
in [24].

The essential structural feature that all three of these devices (RTD, SET, and
QD) have in common is a small “island” composed of semiconductor or metal in
which electrons may be confined. The island’s role is analogous to that of the
channel in an FET. The extent of confinement of the electrons in the island is dif-
ferent in these three devices. In QD, the island confines electrons with zero classi-
cal degrees of freedom remaining. In RTDs, because of the size, the island
confines electrons with one or two classical degrees of freedom. And in SETs, the
island confines electrons with three classical degrees of freedom. The composi-
tion, shape, and size of the island give the different types of solid-state nanoelec-
tronic devices their distinct properties. It should be noted that as the feature size
of RTD and equivalent devices get smaller, they eventually behave as SET.

2.6 Spins

As explained in the overview article by Awschalom et al. [78], devices that rely
on an electron’s spin to perform their functions form the foundation of spin-
tronics or magnetoelectronics. Electrons have a property called spin that can
be orientated in one direction or the other – called spin-up or spin-down. When
electron spins are aligned, they create a large-scale net magnetic moment.
Magnetism is an intrinsic physical property associated with the spins of electrons
in a material.

In an ordinary electric current, spins are oriented at random and hence play
no role in determining the resistance of a wire or the amplification of a transis-
tor circuit. Spintronic devices, in contrast, rely on differences in the transport of
spin-up and spin-down electrons. In a ferromagnet, such as iron or cobalt, the
spins of certain electrons on neighboring atoms tend to line up. In a strongly mag-
netized piece of iron, this alignment extends throughout much of the metal.
When a current passes through the ferromagnet, electrons of one spin direction

Molecular and Nanoscale Computing and Technology 489

tend to be obstructed. The result is a spin-polarized current in which all the elec-
tron spins point in the other direction.

In 1990, Supriyo Datta and Biswajit A. Das, then at Purdue University, pro-
posed a design for a spin-polarized field-effect transistor, or spin FET. The
Datta–Das spin FET has a ferromagnetic source and drain so that the current
flowing into the channel is spin-polarized. When a voltage is applied to the gate,
the spins rotate as they pass through the channel and the drain rejects these
antialigned electrons. Macroscopic spin transport was first demonstrated in n-
doped gallium arsenide. Recent experiments have successfully driven coherent
spins across complex interfaces between semiconductor crystals of different com-
position. For more information, refer to the cited overview article [78].

3 COMPUTING MODULES

Having presented the basic nano and molecular switching elements, we now
proceed with an overview of a set of computing modules that can be built using
those switches. These modules will be integrated to form the high-level architec-
tures presented in the next section. The computing modules presented here are
Quantum-based, Spin-based, and Molecular-based.

3.1 Quantum-Based Computing Modules

The Quantum Cellular Automata (QCA) has been extensively studied by a
group of researchers at the University of Notre Dame for several years [12, 57].
The basic idea behind QCA is that when the level of integration is very small,
then cells interact with each other through quantum effects and tunneling. By uti-
lizing quantum dots, the size of an elementary cell can be shrunk down to hun-
dreds or tens of nanometers, and the intercell interaction can be realized via
quantum tunneling without wires. Moreover, the product of energy of switching,
E, and of switching time, τ, may approach the fundamental limit E ˙ τ ≤ -h.
Through use of this concept, simple cells have been developed mainly using five
quantum dots called a quantum dot molecule. The five dots are close enough to
enable electrons to tunnel between the dots. The barriers between cells are
assumed to be sufficient to completely suppress intercellular tunneling. Two elec-
trons occupy each cell. The occupancy can be stabilized because of the large
energy splitting between different charge states of the cell. The Coulomb interac-
tion between electrons in a cell acts to produce two distinct cell states with differ-
ent charge configurations. If the barriers to tunneling are sufficiently high, the
two-electron ground-state wave function in the cell will localize the two electrons
on antipodal sites. This localization is due to Coulomb exclusion, a phenomenon
closely related to the well-known Coulomb blockade of current, and results in
nearly exact quantization of charge in each dot.

There are two possible configurations with the electrons on opposite corners
of the dots, as shown in Figure 14.8. The polarization of the states is defined as
+1 and −1. Binary information can be encoded using cell polarization. A cell
polarization of +1 corresponds to a bit value of 1; a cell polarization of −1 cor-
responds to a bit value of 0. The Coulomb interaction between cells causes the

490 Mary M. Eshaghian-Wilner, Amar H. Flood, Alex Khitun, et al.

state of one cell to affect the state of a neighboring cell. Even a slight polariza-
tion in a neighboring cell induces essentially complete polarization in the target
cell. This means that at every stage the signal level is restored. This restoration
will enable a line of QCA cells to act as a robust binary wire. Similarly, a series of
logic gates can be built using a specific arrangement of such cells. Therefore, it is
possible to implement logic circuits in QCA. A schematic for a full adder is shown
in Figure 14.8.

The details of how to lay out the QCA circuit arrays in 3-D is shown in the
next section. However, at the moment, there are a number of difficulties in mak-
ing QCA work efficiently. One of the main difficulties at this time is that its oper-
ation is limited to low temperatures. One solution here may be to implement the
QCA molecularly.

3.2 Spin-Based Computing Modules

Eventually, an atomic-level Cellular Automota (CA) may be built on individ-
ual nuclear or electron spins. The original idea to use nuclear spins for quantum
computing was proposed by Kane [36] (see Figure 14.9).

Initially, the aim of associating nuclear spins via hyperfine interaction was to
perform a quantum superposition (entangled state) of all spins in an array.

Molecular and Nanoscale Computing and Technology 491

A B
Inputs

Ci

Cc

Empty Quantum dot

Quantum dot with one
electron

Sum

“1” “0”

Figure 14.8. An implementation of a binary Full Adder using QCA (adapted from the QCA
website)

However, as we explained before, our focus is just on classical computations sub-
ject to quantum effects and not “quantum computing.” The problem is signifi-
cantly simplified if we eliminate the very stringent demand of quantum
coherency and consider nuclear spins as semiclassical two-state systems. When
using spins, the maximum cell density is defined not by the cell size itself but by
the intercell distance, which in turn is restricted by the interatom distance.

Similar to the QCA presented in the last section, logical functions and circuits
can be implemented using spins, where the spin’s direction can act as a binary
switch. A binary signal is communicated from one electron to the next by spin
coupling. There are no physical wires; the quantum-mechanical interaction plays
the role of wires. Figure 14.10 shows how spins implement various logic func-
tions. For a more detailed description, refer to the paper on Granular
Nanoelectronics [20].

3.3 Molecular-Based Computing Modules

Cellular Automata (CA) is a distributed data-processing system that consists of
many identical processing elements (cells) regularly arrayed on a plane. The data
that the CA manipulates are a pattern of the cell states. Each cell changes its state
in each discrete time through interactions with its nearest neighbors. The cellular
automation receives an input pattern and converts the pattern into different pat-
terns in next time steps using a set of rules. Finally, it renders the result as the out-
put. We discuss here a molecular-based CA. Molecular electronics has recently
attracted attention, since there is great potential in implementing new molecules
(mainly organic) for a variety of electronics and optoelectronic functionalities [25].
A significant feature offered by molecular electronics is the possibility of building
an intelligent molecule, that can be self-assembled by chemical syntheses and
whose state can be linked to its nearest connecting neighboring molecules. The
intelligent molecules may function as an ALU. It has only recently become possi-
ble to obtain some kinds of intelligent polymer molecules attached to solid sur-
faces [35]. Powerful chemical methods are now available for creating polymeric
modules that can be assembled in a variety of ways to perform useful, intelligent
molecule functions. An example of an optically driven NAND logic gate based on
intelligent molecules is described in an article by Crandall and Lewis [9].

492 Mary M. Eshaghian-Wilner, Amar H. Flood, Alex Khitun, et al.

magnetic field clock

H (DC)

H (AC)

low g
high g

V>0 V>0

p
31

Ge
Si0.23Ge0.77 barrier
SiD.15Ge0.85

Si0.4Ge0.6

Si0.23Ge0.77 barrier

n-Si0.4Ge0.6 ground plane

Si-Ge buffer layer

Si substrate

Figure 14.9. Magnetic field-driven spin CA. A single electron spin device may be used as an
elementary cell. The nearest neighboring spins are coupled by exchange interaction. The
strength of coupling is controlled by the local electric and global magnetic fields.

In Figure 14.10, we have schematically shown such a “smart molecular”-based
CA. An elementary cell consists of one smart molecule with a driving electrode. The
electrode serves to initiate the molecule to the initial state and also to provide the
reading of the final resultant state. Association among the neighboring molecules is
done though chemical bonds. Time-step synchronization may be done by optical
pulses. Potentially, a number of different logic functions can be realized by one smart
molecule, for example, activated by optical pulses at different wavelengths.

There are several significant drawbacks intrinsic to molecular schemes. The
most important one is thermal instability. Indeed, most polymers become unsta-
ble and decomposed at several hundred degrees, implying thermal budget restric-
tions in fabrication. Thermal instability can also cause reliability problems due to
breakdown of chemical bonds. The minimum size of the molecular CA is limited
by the size of the intelligent molecule, which usually exceeds a few nanometers.

Molecular and Nanoscale Computing and Technology 493

Cell Contacts Cell Contacts

Optical Clock

Common Contact

Input 1(DANH)

Input 2(DANS) Porphyrin ATPRSB

0.001 micron

CIO4−

N
HNo2

No2

N

N

N

N

NN M

Laser Beams

Figure 14.10. Optically driven molecular CA. An elementary cell is built by “smart molecules.”
Interactions among the nearest molecules may be initiated by optical pulses.

4 HIGH-LEVEL ARCHITECTURES

The computing modules presented in the previous sections can be assembled
together to form various computing architectures. Here we present two high-level
architectures. The first one is a hierarchical multiscale architecture whose basic
computing modules can be any of the three modules presented in the previous
section. The second architecture is neuromorphic, which presents a different style
of computing paradigm. This high-level architecture also can be implemented
with quantum dots, RTDs, and/or spins.

4.1 Multiscale Architecture Design

Here we discuss the integration of the nanoscale computing modules, described
in the last section, into a three-dimensional hierarchical multiscale computer archi-
tecture, as shown in Figure 14.11. In this architecture, there are two layers: the pro-
cessing layer below, and the deflecting layer on top. The processors can
intercommunicate by using a standard reconfigurable mesh through the local switch-
able connections and also by using the reconfigurable microelectromechanical
(MEMS) mirrors with free-space optical interconnects. Each of the processors
contains some local memory and is attached to a nanoscale computing cube. In
each cube there are nanoscale cells laid out in a three-dimensional format as
shown. Each cube essentially can be the 3-D implementation of either the QCA,
spin-based circuitry, or the molecular cellular automata.

The implementation of the architecture shown in Figure 14.11, using the quan-
tum dot cellular automata logic circuitry that is quite well known from the work of
researchers at Notre Dame University, has a low-temperature operation limitation.
A solution to this problem could be to implement the cells using molecules, as
described in the previous section. By using molecular magnetic switches, we can
simulate the QCA that operates at room temperature. For more details, refer to [92].

In the QCA implementation, the computations within each QCA cube are done
in a similar fashion as a standard QCA, except that the two-dimensional QCA logic
circuits are laid out in three dimensions, as shown at the bottom right of Figure 14.11.
In other words, the QCA blocks can be used to compute millions of logic operations
locally by techniques already developed for QCA. The computations are done as the
neighboring cells interact with each other through quantum tunneling effects. Once
the local computations within each cube are completed, the results are forwarded to
their corresponding processing units. The processors can then store the data in their
local memory and/or intercommunicate with other processing units using the elec-
tronically reconfigured mesh and/or the micro-electromechanical mirrors.

It is possible to replace the QCA cubes with spin-based computational cubes.
The overall operation at the architectural level is still the same. Computations are
done within the cubes using quantum effects but based on spins instead of based
on the polarities of the quantum cells. Once the cubes complete the computa-
tions, they send their results to their cube-designated processor, which will inter-
communicate with other cubes using electro-optical interconnectivity. The cubes
can also be replaced by molecular cellular automata units, where the computa-
tions within the cubes are governed by a set of rules as described in the previous
section. Once the results of each cube are obtained, the operation among the
MEMS-level processors proceeds via the electro-optical connectivity available.

494 Mary M. Eshaghian-Wilner, Amar H. Flood, Alex Khitun, et al.

Whether the cells are implemented using quantum dots, spins, and/or mole-
cules, it is easy to see that the space-time trade-offs of this multiscale model are
similar to those for three-dimensional VLSI, which is VT3/2 = Ω(I)3/2. The differ-
ence here is that the VLSI three-dimensional model was not implementable due
to fabrication limitations on the number of layers, but now we have a technology
that could eventually allow a 3-D construction at the nanoscale level.

4.2 Neuromorphic Architecture Design

Neuromorphic architectures, shown below, are a class of nanoelectronic cir-
cuits that exploit the charging behavior in resistively/capacitively linked arrays
of nanometer-sized metallic islands (quantum dots), self-assembled on a reso-
nant tunneling diode, to perform neuromorphic computation. These circuits
produce associated memory effects and realize the additive short-term memory
or content-addressable memory models of neural networks without requiring
either large-area/high-power operational amplifiers or massive interconnectiv-
ity between devices. These two requirements had seriously hindered the appli-
cation of neural networks in the past. Additionally, the circuits can solve
NP-complete optimization problems (such as the traveling salesman problem)
using single electron charge dynamics, exhibit rudimentary image-processing
capability, and operate at room temperature, unlike most quantum devices.
Two-dimensional (2-D) processors, with a 100 × 100 pixel capacity, can be fabri-
cated in a nanoscale area. For more details, see the publication by
Roychowdhury et. al. [23].

Molecular and Nanoscale Computing and Technology 495

Reconfigurable
free-space
interconnects

Processing layer with CUBE
2

CUBE
1

Deflection layer with
micro-electro
mechanical mirrors

Each of the nano
computing cubes is
implemented by
using either quantum
cellular automata logic
circuitry, spin-based
logic circuitry, or
molecular cellular
automata. The cubes are
wrapped around in 3D
to utilize the space in
nano-level as shown.

nano computing cubes

Figure 14.11. A hierarchical multiscale architecture.

5 SELF-ASSEMBLED STRUCTURES

As anticipated, the device feature size will be reduced to the nanometer
regime. Self-assembly appears to be one of the most promising techniques to
reach such scales economically. However, several barriers exist. The most critical
are the control of the placement, the size, the uniformity, and the placement of
self-assembled nanostructures. In what follows, we talk about two different types
of self-assembly. One is regular arrays of quantum dots and the other is a molec-
ular approach.

5.1 Regular Arrays of Quantum Dots

The control of the placement of nano-islands is of high practical importance
for a number of potential applications, such as quantum dot-based lasers, single-
electron transistors, and quantum computers. On most occasions, the self-assem-
bled quantum dots are randomly distributed on substrate surfaces due to the
spontaneous nucleation process.

Only recently, an ordered arrangement of self-assembled nano-island has been
reported [27,51]. First, Kamins et al. [27] reported that Ge dots were well aligned
along the two edges of the pre-grown Si stripe mesas on patterned Si (001) sub-
strates. Then, G. Jin et al. [51] observed a cooperative arrangement of self-assem-
bled dots on one-dimensional (1-D) ridges of Si stripe mesas formed by selective
epitaxial growth. The cooperative arrangement of Ge dots was obtained with a
degree of periodicity to place the dots at the desired location – an essential
requirement for information processing. Moreover, the aligned Ge dots on the
ridges had a mono-modal distribution, in contrast with a bi-(even multi-) modal
distribution of self-assembled Ge dots normally observed on planar Si (001) sub-
strates. Figures 14.12 and 14.13 show ordered arrangement of self-assembled Ge
quantum dots on selectively grown Si mesas on pattern substrates prepared with
a conventional photolithography [51]. This approach enables us to realize regi-
mented arrays of high-density nano-structures at low cost and free of defects and
damages.

This approach of using substrate patterns to achieve the regimented place-
ment also provides self-assembly of the nearest neighbor interconnects.
Moreover, using tilted substrates, we are able to form regular surface steps via
appropriate surface treatments, such as annealing. These regular atomic steps
have been used as a template for the formation of ordered dot arrays. It is also
possible to control the surface reconstruction via a surface modification to
accomplish the ordering structures in an atomic scale. What has been demon-
strated is just the beginning, and there are abundant opportunities to explore new
principles and methods not yet discovered to achieve regimented structures for
scales down to the atomic level.

5.2 Molecular Self-Assembly

An interesting alternative for circuit fabrication, when devices are scaled to a few
tens of nanometers in size and smaller, is the bottom-up, self-assembly-based man-
ufacturing approach being developed in molecular electronics research programs.

496 Mary M. Eshaghian-Wilner, Amar H. Flood, Alex Khitun, et al.

However, at this time there are many challenges in developing circuitry by this
approach. For example, self-assembly leads most readily to periodic structures,
and, while the starting material for such approaches may be highly purified, the
assembly steps themselves are unlikely to be perfect. Furthermore, various structural
parameters of a circuit that are obtained through lithographic patterning, such as
the length, diameter, orientation, and separation of the wires, can be substantially
more difficult to control by using chemical assembly. Also, nanowires with the most
desirable electrical characteristics, such as single-walled carbon nanotubes, do not
necessarily have the chemical properties required for controlled self-assembly.

Single Crossbars: The relevance of the crossbar circuit for molecular electron-
ics was first reported by Heath et al. [34]. Later a room-temperature, minimal-
lithography technique for chemically assembling small deterministic crossbars of

Molecular and Nanoscale Computing and Technology 497

00

0

100

200

(nm)

Quantum dots

{113}
facet

Si substrate

0.40.4

0.80.8

1.2
1.2

(µm)
(µm)

Figure 14.12. Three-dimensional AFM image of the cooperative arrangement of self-assembled
Ge dots on <110>-oriented Si stripe mesas with a window width of 0.6 µm. Self-aligned and
well-spaced 1D arrays of Ge dots are formed on the ridges of the Si mesas after the deposition
of 10 ML Ge. The growth temperature is 630˚C. The sidewall facets of the Si stripe mesas are
confirmed to be {113} facets. The dimensions of the Ge islands are about 80 nm wide and about
20 nm high, and the period of the Ge islands is about 110 nm.

(a) (b)
Figure 14.13. AFM images of the 2-D arrangement of Ge dots on Si mesas with different Ge
amounts. (a) 0.4 nm – one dot; (b) 1.3 nm – four dots. The growth temperature is 600˚ C. The
scale of the images is 4×4 µm2.

single-walled carbon nanotubes (SWNT) was presented [79]. Results indicate that
it is possible to fabricate deterministic wiring networks from SWNTs by using
chemical self-assembly. While this process is currently limited to the fabrication of
relatively small crossbars (4 × 4 and less), preliminary results indicate that the opti-
mization of several experimental handles may lead to the assembly of large-scale
structures without requiring the use of lithographic techniques. Thus, relatively
inexpensive routes toward fabricating designed circuits with characteristic dimen-
sions on the order of a few nanometers may be possible. Three SWNT crossbars
of varying structural characteristics are shown in Figure 14.14. A key result of
this work is that the pitch of the crossbar was controllable and correlated with the
length of the SWNT ropes. Although progress is being made, it has been difficult,
up until recently, to exercise the level of control required in order to attain the

498 Mary M. Eshaghian-Wilner, Amar H. Flood, Alex Khitun, et al.

Figure 14.14. Scanning electron micrographs of SWNT crossbars with varying pitch. Scale bars
are 500 nm for A) and B), and 1 µm for C). The diameter of the ropes is not well measured with
this technique, but can be measured with force microscopy. The shortest (500 nm) wires are
characterized by diameters of 1–2 nm, while the longest (20µm) wires possess diameters rang-
ing from 10 to 15 nm. SWNT rope lengths [µm]: A) 3.7 ± 0.3 & 1.2 ± 0.33; B) 2.8 ± 0.53; C)
3.8 ± 1.2.

A)

B)

C)

required density and complexity by utilizing processes that are amenable to large-
scale manufacture. Lieber’s group has demonstrated the large-scale alignment and
multilevel fabrication of ultra-high-density Si nanowire elements for electronic
applications [99]. The precise alignment of the nanowires was provided by the
self-organizational principle inherent in large-aspect ratio wires orienting at the
air–water interface, like the timber in a log run. These arrays of nanowires,
deposited as LB films and patterned using lithographic techniques, form the basis
for one class of circuitry based on crossbars.

The crossbar junction represents one of the simplest elements that can be con-
sidered as an active device when the two wires are separated by an insulating
dielectric or a molecular switch. Bistable nanotube mechanical junctions [66], as
well as various EME junction devices–diodes [98], molecular switch tunnel junc-
tions [62], and junctions exhibiting negative differential resistance [65], have all
been demonstrated at the device level.

The opportunity to build functional electronic components from semiconduct-
ing nanowires offers ultra-high-density circuitry, which has been facilitated by
recent advances in nanowire fabrication. Lieber has developed a method for grow-
ing nanowires that provide the ability to modulate the doping along a Si nanowire
between high and low levels [95]. In addition, nanowires can be grown with core
shell structures [81] from two different materials, wherein the sheath can be
removed, exposing the inner core. While these new classes of nanowires provide a
similar level of nanometer-scaled control over the electronic structure, which is dis-
played in molecular electronic components, they do not display the facility to
undergo a molecule’s geometry rearrangements. When these highly structured
nanomaterials are coupled with the new handling techniques for laying down
nanowires in a controlled way using the LB method, the door to a new class of
nanoelectronic devices founded on custom-designed nanowires may be opening.

Crossbar Networks: During the development of nanometer scale switches, tra-
ditional circuit designs may not be able to take maximum advantage of the unique
properties and scale conferred. Consequently, the crossbar junction appears to be
the basis from which to consider (see Figure 14.15) higher levels of complexity for
the formation of crossbar networks. It is possible to conceive of different schemes
to design 1-D [48, 69, 71] or 2-D networks for memory or logic purposes.

The state-of-the-art crossbar networks are tiled in 2-D, in which each crossbar
is a two-terminal switching device. This higher level of complexity in circuit design
sets one fundamental limitation: each crossbar has to be independently addressable.
In cases where the 2-D networks have been fabricated in the past, as in ferroelectric
[18] and magnetoresistive [56] crosspoint memories, the key issue has been that of
half-select. In a crossbar network, each wire crosses many others at their crosspoints
and this can lead to a situation where switches are incorrectly selected. However,
when a rotaxane-based molecular switch is used at the crossbar, half select is no
longer a problem. The bistable molecular switches are voltage gated, which means
that only those crosspoints that are defined by a potential difference, which exceeds
a certain threshold voltage, will lead to an addressed crosspoint. All the other wires
crossing the two that are used to address the crosspoint of interest are below the
switching threshold and are therefore not mistakenly switched. Through use of
bistable [2] rotaxane-based molecular switches, it has been possible to generate a
memory array and to perform simple logic such as an AND or XOR gate [82].

Molecular and Nanoscale Computing and Technology 499

6 DESIGN ISSUES AND CHALLENGES

In this section, we talk about the design issues and challenges in nanoscale and
molecular computing architectures.

6.1 Unidirectionality Issues

A major drawback of the proposals for logic implementations based on
bistable devices without directionality such as the QCA lies in their failure to
ensure propagation of the logic signal from the input to the output. That is, if two
bistable devices are connected together in series, then there must be some isola-
tion between the input and output so that the input drives the output and not the
reverse. Coulomb interactions between two identical charge polarizations are
reciprocal, so it is impossible to distinguish the input polarization from the out-
put polarization. In other words, the output influences the input just as much as
the input influences the output. Consequently, logic signals cannot propagate uni-
directionally from the input to the output, from one stage to the next, leading to
an operational failure. This occurs because the input cannot uniquely and pre-
dictably determine the output. This problem is pathological in many proposed

500 Mary M. Eshaghian-Wilner, Amar H. Flood, Alex Khitun, et al.

Figure 14.15. It is possible to utilize a crossbar in increasing levels of complexity to attain
memory and perform logic. The crossbar networks can be composed of switches or diodes, in
which molecules may provide the key active component in order to realize such devices.
(Adapted from [82].)

Device

ID Circuit

2D Memory Circuit

2D Logic Circuit
in

out

Power
Supply

Switch

Switch
and
Diode

schemes of nano-electronic architecture: one needs to ensure that the signals
propagate from the input to the outputs and that the whole system does not get
stuck in metastable states. For more details, see the article by Anantrand and
Roychowdhury [46].

On the other hand, the cellular automata-based architectures with local con-
nectivity also have shortcomings: they offer no mechanism for loading the initial
program into the cellular array of quantum devices. As a result, they are also of
questionable efficacy.

In neuromorphic schemes, unidirectional signal propagation from the input to
the output is effected through a clocking mechanism. For example, when the OR
gates in the first layer are operational, the AND gate in the succeeding stage is
disabled. Once the OR gates have reached stable states, then a clock pulse is
applied to initialize the AND gate. This scheme avoids the potential problem of
the AND gate acting as an input to the OR gates, and instead allows the OR gates
to drive the AND gate. The same strategy can be extended to the case of multi-
level circuits. Such a scheme of multiphase clocking (“push-clock” and “drop-
clock”) is also used in conventional charge-coupled devices (CCDs). Moreover,
this multiphase clocking scheme will enable pipelining. That is, every other level in
a multilevel circuit can operate simultaneously, and a new set of inputs can be fed
to the circuit every other clock cycle. This setup allows the implementation of a
high throughput logic block.

6.2 Fault-Tolerant Designs

In order to replace conventional CMOS circuits with nanoscale devices,
we first have to demonstrate nano-devices with combined memory and logic
functions. Recent investigations suggest that “smart molecules” could be a pos-
sible first step toward constructing molecular nanoscale computing modules.
To date, the unprecedented accuracy required for positioning single mole-
cules into an array of growing, perfectly ordered quantum dots to form a con-
trolled array is a road block for practical realization of the proposed schemes.
In general, any attempt to construct a large number of identically operating
devices integrated on a large scale usually suffers from inevitable material
imperfections. Potentially, this problem may be resolved by progress in
advanced fabrication techniques (for example, a high level of self-assembly).
Another possible solution is the use of fault tolerance or self-correction mech-
anisms to allow for faults in logic functionalities, rather than simply working
toward perfecting fabrication processes [19, 23, 30]. Clearly, progress in both
areas will be helpful.

Any computational architecture at the nanoscale level should display inherent
fault-tolerant properties. Nanostructure devices will probably have more variabil-
ity in their characteristics than their earlier-generation microstructure counter-
parts. Any scheme that ignores this fact and relies on every quantum dot being
perfect will almost inevitably be impractical. In order to ensure fault tolerance,
one can allow a cluster of islands to represent a gate, rather than a single dot or
just a few dots. Note that the size of the arrays for each gate can be varied depend-
ing on the state of the technology. By providing larger arrays, one can increase
fault tolerance.

Molecular and Nanoscale Computing and Technology 501

6.3 Challenges of Molecular Computing

There are a number of issues facing the emerging field of molecular electronics
that need to be addressed. At a fundamental level, bistable [2] rotaxane-based
switches are believed to permit electron transport primarily by tunneling through
quantized energy levels. Consequently, by tuning the molecular subunits that consti-
tute the rotaxanes, it may be possible to enhance the on/off current ratio and there-
fore widen the areas of applicability of molecular computing. One other key area
relates to how exactly molecular electronic components can be fully harnessed by
employing unique computer circuits. This is a salient thesis in this chapter, and there-
fore an integrated systems-oriented approach forms a central feature and returns the
problem to one of interdisciplinary description–what are molecular properties, and
how do they impact on the architecture? The driving force to face this challenge may
be provided less by fundamental discovery than by market forces. This situation is
not unfamiliar in the area of electronics, where it is Moore’s Law that has guided sci-
entists and engineers alike into the molecular and quantum domains.

7 CONCLUSION

In this chapter, we have presented an overview of various nanoscale and
molecular computing architectures. We have given a brief tutorial on various
existing nanoscale and molecular devices. These include molecular switches, res-
onant tunnel diodes, tunnel diodes, single electron transistors, carbon nanotube
field-effect transistors, quantum dots, and spin systems. We have next discussed a
set of nanoscale computing modules, such as quantum and spin-based cellular
logic arrays, and molecular-based cellular automata, all made from the switches
presented here. These modules are an integral part of the hierarchical 3-D multi-
scale architecture presented. We have also showed a set of quantum and molecu-
lar self-assembled structures including molecular crossbars. The fabrication of
these architectures currently faces a number of challenges, as discussed in this
chapter. Nanoscale and molecular computing is a promising alternative to today’s
CMOS technology but is in an infancy stage, with many interesting design issues
yet to be studied and resolved.

ACKNOWLEGMENTS

We acknowledge with great thanks Dr. Vwani Roychowdhry for his contributions
as a consultant to this project.

REFERENCES

[1] [1960-01] E. Goto, K. Mutara, K. Nakazawa, T. Moto-Oka, Y.
Matsuoka, Y. Ishibashi, T. Soma, and E. Wada. (1960): Esaki diode
high speed logical circuits, IRE Transactions on Electronics and
Computing 9, 25.

502 Mary M. Eshaghian-Wilner, Amar H. Flood, Alex Khitun, et al.

[2] [1970-01] L. Esaki and R. Tsu (1970): Superlattice and negative differential
conductivity in semiconductors, IBM Journal of Research and Development
14, 61.

[3] [1973-01] L.L. Chang, L. Esaki, W.E. Hpoward, and R. Ludeke (1973):
Structures grown by molecular beam epitaxy (GaAs and GaAs-Ga/sub 1-
x/Al/sub x/As), Journal of Vac. Science and Technology 10, 11, 9.

[4] [1974-01] L.L. Chang, L. Esaki, and R. Tsu (1974): Resonant tunneling in
semiconductor double barriers, Applied Physics Letters 24, 593.

[5] [1976-01] J. Holland (1976): Studies of the spontaneous emergence of self-
replicating systems using cellular automata and formal grammars, in
Automata Languages Development, North-Holland Publishing Co.,
Amsterdam, The Netherlands, pp. 385.

[6] [1987-01] V.J. Goldman, D.C. Tsui, and J.E. Cunningham (1987):
Observation of intrinsic bistability in resonant-tunneling structures,
Physical Review Letters 58, 1256.

[7] [1990-01] A. Miura, T. Yakihara, S. Uchida, S. Oka, S. Kobayashi,
H. Kamada, and M. Dobashi (1990): Monolithic sampling head IC, IEEE
Trans. Microwave Theory and Technology 38, 1980.

[8] [1991-01] A. Ulman (1991): An Introduction to Ultrathin Organic Films
from Langmuir-Blodgett to Self-assembly, Academic Press, San Diego.

[9] [1992-01] B.C. Crandall and J. Lewis (1992): Nanotechnology Research and
Perspectives, The MIT Press Cambridge, pp. 149–170.

[10] [1992-02] Y.-C. Kao, A.C. Seabaugh, and H.-T. Yuan (1992): Vertical inte-
gration of structured resonant tunneling diodes on InP for multi-valued
memory applications, Int. Conference on Indium Phosphide and Related
Materials 489.

[11] [1992-03] J.R. Tucker (1992): Complementary digital logic based on the
`Coulomb blockade,’ Journal of Applied Physics, 72, 4399.

[12] [1993-01] C.S. Lent, P.D. Togaw, and W. Porod (1993): Bistable saturation
in coupled quantum dots for quantum cellular automata, Applied Physics
Letters 62, 714.

[13] [1993-02] K. Yano, T. Ishii, T. Hashimoto, T. Kobayashi, F. Murai, and
K. Seki (1993): A room-temperature single-electron memory device using
fine-grain polycrystalline silicon, IEDM Technical Digest 541.

[14] [1994-01] P. Balasingam and V.P. Roychowdhury (1994): Nanoelectronic
functional devices, Purdue University Technical Report: TR-EE 94-24.

[15] [1994-02] K. Maezawa, T. Akeyoshi and T. Mizutani (1994): Functions and
applications of monostable-bistable transition logic elements (MOBILE’s)
having multiple-input terminals, IEEE Transactions On Electron Devices
41, 148.

[16] [1995-01] T.K. Carns, X. Zheng, and K.L. Wang (1995): A novel high
speed, three element Si-based static random memory (SRAM) cell, IEEE
Electron Device Letters 16, 256.

[17] [1995-02] K. Itoh, K. Sasaki, and Y. Nakagome (1995): Trends in low-
power RAM circuit technologies, Proceedings of IEEE 83, 524.

[18] [1995-03] R.E. Jones, Jr., P.D. Maniar, R. Moazzami, P. Zurcher,
J.Z. Witowski, Y.T. Lii, P. Chu, and S.J. Gillispie (1995): Ferroelectric non-
volatile memories for low-voltage, low-power applications, Thin Solid Films
270, 584.

Molecular and Nanoscale Computing and Technology 503

[19] [1996-01] S. Bandyopadhyay and V.P. Roychowdhury (1996):
Computational paradigms in nanoelectronics: quantum coupled single
electron logic and neuromorphic networks, Japan. J. Appl. Phys. 35, 3350.

[20] [1996-02] S. Bandyopodhyay and V.P. Roychowdhury (1996): Granular
nanoelectronics: The logical gateway to the 21st Century, IEEE Potentials.

[21] [1996-03] E.R. Brown and C.D. Parker (1996): Resonant tunnel diodes as
submillimetre-wave sources, Philos. Trans. R. Soc. London, Ser. A 354,
2365.

[22] [1996-04] J.Koga and A. Toriumi (1996): Room temperature negative dif-
ferential conductance in three-terminal silicon surface tunneling device,
IEDM Technical Digest 265.

[23] [1996-05] V.P. Roychowdhury, D.B. Janes, S. Bandyopadhyay, and X. Wang
(1996): Collective computational activity in self-assembled arrays of quan-
tum dots: a novel neuromorphic architecture for nanoelectronics, IEEE
Transactions on Electron Devices 43, 1688.

[24] [1997-01] D. Goldhaber-Gordon, M.S. Montermerlo, J.C. Love,
G.J. Opiteck, and J.C. Ellenbogen (1997): Overview of nanoelectronic
devices, Proceedings of IEEE.

[25] [1997-02] J. Jortner and M. Ratner (1997): Molecular Electronics, Oxford,
U.K.

[26] [1997-03] T.I. Kamins, E.C. Carr, R.S. Williams, and S.J. Rosner (1997):
Deposition of three-dimensional Ge islands on Si(001) by chemical vapor
deposition at atmospheric and reduced pressures, Journal of Applied
Physics 81, 211.

[27] [1997-04] T.I. Kamins and R.S. Williams (1997): Lithographic positioning
of self-assembled Ge islands on Si(001), Physical Letters 71, 1201.

[28] [1997-05] S.J. Koester, K. Ismail, K.Y. Lee, and J.O. Chua (1997): Operation
of a novel negative differential conductance transistor fabricated in a
strained Si quantum well, IEEE Electron Device Letters 118, 432.

[29] [1997-06] K. Morita, K. Morimoto, H. Sorada, K. Araki, K. Yuki, M. Niwa,
T. Uenoyama, and K. Ohnaka (1997): Si interband tunnelling diode through
a thin oxide with a degenerate poly-Si electrode, in Extended Abstracts from
the 3rd International Workshop Quantum Functional Devices 175.

[30] [1997-07] V.P. Roychowdry, D.B. Janes and S. Bandyopadhyay (1997):
Nanoelectronic architecture for Boolean logic, Proc. IEEE 85, 574.

[31] [1997-08] A. Seabaugh, B. Brar, T. Broekaert, G. Frazier, P. van der Wagt,
and E. Beam (1997): Resonant tunneling circuit technology: has it arrived?,
GaAs IC Symposium and Technology Digest 119.

[32] [1997-09] J.J. Welser, S. Tiwari, S. Rishton, K.Y. Lee, and Y. Lee (1997):
Room temperature operation of a quantum-dot flash memory, IEEE
Electron Devices Letters 18, 278.

[33] [1997-10] X. Zhu, X. Zheng, M. Pak, M.O. Tanner, and K.L. Wang (1997):
Si bistable diode utilizing interband tunneling junctions, Applied Phyics
Letters 71, 2190.

[34] [1998-01] J.R. Heath, P.J. Kuekes, G.S. Snider, R.S. Williams (1998):
A defect tolerant computer architecture: Opportunities for nanotechnol-
ogy, Science 280, 1716.

504 Mary M. Eshaghian-Wilner, Amar H. Flood, Alex Khitun, et al.

[35] [1998-02] K.M. Horn, B.S. Swartzentruber, G.C. Osbourn, A. Bouchard,
and J.W. Bartholomew (1998): Electronic structure classifications using
scanning tunneling microscopy conductance imaging, Journal of Applied
Physics 84, 2487.

[36] [1998-03] B.E. Kane (1998): A silicon-based nuclear spin quantum com-
puter, Nature 393, 133.

[37] [1998-04] C.H. Lin, K. Yang, M. Bhattacharya, X. Wang, X. Zhang, J.R.
East, P. Mazumder, and G.I. Haddad (1998): Monolithically integrated
InP-based minority logic gate using an RTD/HBT heterostructure,
International Conference on Indium Phosphide and Related Materials 419.

[38] [1998-05] R. Martel, T. Schmidt, H.R. Sea, T. Hertel, and P. Avouris (1998):
Single- and multi-wall carbon nanotube field-effect transistors, Applied
Physics Letters 73, 2447.

[39] [1998-06] J.H. Reif (1998): Alternative computational models: A compari-
son of biomolecular and quantum computation, Proceeding of the 18th

International Conference on Foundations of Software Technology and
Theoretical Computer Science.

[40] [1998-07] M. Rodder, S. Hattangady, N. Yu, W. Shiau, P. Nicolllian,
T. Laaksonen, C.P. Chao, M. Mehrota, C. Lee, S. Murtaza, and S. Aur
(1998): IEDM Tech. Dig. 623.

[41] [1998-08] A.C. Seabaugh and R. Lake (1998): Beyond-the-roadmap tech-
nology: Silicon heterojunctions, optoelectronics, and quantum devices,
Encyclopedia of Physics 22, 335.

[42] [1998-09] J.P. Sun, G.I. Haddad, P. Mazumder, and J.N. Shulman (1998):
Resonant tunneling diodes: models and properties, Proceedings of IEEE 86,
641.

[43] [1998-10] S.J. Tans, R.M. Verschueren, and C Dekker (1998): Room tem-
perature transistor based on a single carbon nanotube, Nature 393, 49.

[44] [1998-11] J.P.A. van der Wagt, A.C. Seabaugh, and E.A. Beam (1998):
RTD/HFET low standby power SRAM gain cell, IEEE Electron Device
Letters 19, 7.

[45] [1998-12] T. Waho, T. Itoh, and M. Yamamoto (1998): Ultrahigh-speed
resonant tunneling circuits, in Second International Workshop on Physics
and Modeling of Devices based on Low-Dimensional Structures, p.73.

[46] [1999-01] M.P. Anantram and V.P. Roychowdhury (1999): Metastable states
and information propagation in a one-dimensional array of locally coupled
bistable cells, Journal of Applied Physics 85.

[47] [1999-02] J. Chen, M.A. Reed, A.M. Rawlett, and J.M. Tour (1999): Large
on-off ratios and negative differential resistance in a molecular electronic
device, Science 286, 1550.

[48] [1999-03] C.P. Collier, E.W. Wong, M. Belohradsky, F.M. Raymo,
J. F. Stoddart, P.J. Kuekes, R.S. Williams, and J. R. Heath (1999):
Electronically configurable molecular-based logic gates, Science 285,
391.

[49] [1999-04] K. Esfarjani, A.A. Farajian, Y. Hashi, and Y. Kawazoe (1999):
Electronic and transport properties of N-P doped nanotubes, Applied
Physics Letters 74, 79.

Molecular and Nanoscale Computing and Technology 505

[50] [1999-05] A.A. Farajian, K. Esfarjani, and Y. Kawazoe (1999): Nonlinear
coherent transport through doped nanotube junctions, Physical Review
Letters 82, 5084.

[51] [1999-06] G. Jin, J. L. Liu, S. G. Thomas, Y. H. Luo, K. L. Wang, and
B. Y. Nguyen (1999): Controlled arrangement of self-organized Ge islands
on patterned Si (001) substrates, Applied Phyiscs Letters 75, 2752.

[52] [1999-07] F. Leonard and J. Tersoff (1999): Novel length scales in nanotube
devices, Physical Review Letters 83, 5174.

[53] [1999-08] K. Likharev (1999): Single-electron devices and their applica-
tions, Proceedings of IEEE, 87.

[54] [1999-09] J. Nygard, D.H. Cobden, M. Bockrath, P.L. McEuen, and
P.E. Lindelof (1999): Electrical transport measurements on single-walled
carbon nanotubes, Applied. Physics A 69, 297.

[55] [1999-10] Y. Ono, Y. Takahashi, K. Yamazaki, H. Namatsu, K. Kurihara,
and K. Murase (1999): Si complementary single-electron inverter, IEDM
Technical Digest 367.

[56] [1999-11] S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers,
R.E. Scheuerlein, E.J. O’Sullivan, S.L. Brown, J. Bucchigano, D.W.
Abraham, Y. Lu, M. Rooks, P.L. Trouilloud, R.A. Wanner, and W.J.
Gallagher (1999): Exchange-biased magnetic tunnel junctions and applica-
tion to nonvolatile magnetic random access memory, J. Appl. Phys. 85,
5828.

[57] [1999-12] G. Snider, A. Orlov, I. Amlani, X. Zuo, G. B. Stein, C. Lent,
J. Mez, and W. Porod (1999): Quantum-dot cellular automata, Journal of
Applied Physics.

[58] [1999-13] H.T. Soh, C.F. Quate, A.F. Morpurgo, C.M. Marcus, J. Kong,
and H. Dai (1999): Integrated nanotube circuits: Controlled growth and
ohmic contacting of single-walled carbon nanotubes, Appl. Phys. Lett. 75,
627.

[59] [1999-14] A.S. Vedeneev, J. Li, C. Papadopoulos, A. Rakitin, A.J. Bennett,
H.W. Chik, and J.M. Xu (1999): Molecular-scale rectifying diodes based on
Y-junction carbon nanotubes, Proceedings of IEDM 231.

[60] [1999-15] J.P.A. van der Wagt (1999): Tunneling-based SRAM, Proceedings
of IEEE, 87, 571.

[61] [1999-16] K. Yano, T. Ishii, T. Sano, T. Mine, F. Muri, T. Hashimoto,
T. Kobayashi, T. Kure, and K Seki (1999): Single-electron memory for giga-
to-tera bit storage, Proceedings of IEEE 87, 633.

[62] [2000-01] C.P. Collier, G. Mattersteig, E.W. Wong, Y. Luo, K. Beverly,
J. Sampaio, F.M. Raymo, J.F. Stoddart, and J.R. Heath (2000): A [2]cate-
nane-based solid state electronically reconfigurable switch, Science 289,
1172.

[63] [2000-02] F. Leonard and J. Tersoff (2000): Negative differential resistance
in nanotube devices, Physical Review Letters 85, 4767.

[64] [2000-03] Y. Ono and Y. Takahashi (2000): Single-electron pass-transistor
logic: operation of its elemental circuit, IEDM Technical Digest 297.

[65] [2000-04] M.A. Reed and J.M. Tour (2000): Computing with molecules, Sci.
Am. 282, 86.

506 Mary M. Eshaghian-Wilner, Amar H. Flood, Alex Khitun, et al.

[66] [2000-05] T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, and
C.M. Lieber (2000): Carbon nanotube-based nonvolatile random access
memory for molecular computing, Science 289, 94.

[67] [2000-06] Y. Takahashi, A. Fujiwara, K. Yamazaki, H. Namtsu, K. Kurihara,
and K.Murase (2000): Multigate single-electron transistors and their applica-
tion to an exclusive-OR gate, Applied Physics Letters 76, 637.

[68] [2000-07] M. Wilson, K. Kannangara, G. Smith, M. Simmons, B. Raguse
(2000): Nanotechnology, Basic Science and Emerging Technologies,
Chapman & Hall/CRC.

[69] [2001-01] A. Bachtold, P. Hadley, T. Nakanaishi, and C. Dekker (2001):
Logic circuits with carbon nanotube transistors, Science 294, 1317.

[70] [2001-02] M. Hanggi and L.O. Chua (2001): Cellular neural networks based
on resonant tunneling diodes, Int. Journal of Circuit Theory and
Applications 29, 487.

[71] [2001-03] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, and C.M.
Lieber (2001): Logic gates and computation from assembled nanowire
building blocks, Science 294, 1313.

[72] [2001-04] D.H. Kim, S.-K. Sung, J.S. Sim, K.R. Kim, J.D. Lee, B.-G. Park,
B.H. Choi, S.W. Hwang, and D. Ahn (2001): Single-electron transistor
based on a silicon-on-insulator quantum wire fabricated by a side-wall pat-
terning method, Appl. Phys. Lett. 79, 3812.

[73] [2001-05] R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.K. Chan,
J. Tersoff, and P. Avouris (2001): Ambipolar electrical transport in semicon-
ducting single-wall carbon nanotubes, Physics Review Letters 87, 256805.

[74] [2001-06] R. Martel, H.-S.P. Wong, K. Chan, and P. Avouris (2001): Carbon
nanotube field effect transistors for logic applications, International Electron
Devices Meeting. Technical Digest (Cat. No.01CH37224) IEEE 751.

[75] [2001-07] M.T. Niemier and Peter Kogge (2001): Exploring and exploiting
wire-level pipelining in emerging technologies, 28th Annual Symposium on
Computer Architecture.

[76] [2001-08] M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, and J.M. Tour
(2001): Molecular random access memory cell, Appl. Phys. Lett. 78, 3735.

[77] [2001-09] P. See, D.J. Paul, B. Hollander, S. Mantl, I.V. Zozoulenko, and K.-
F. Berggren (2001): High performance Si/Si/sub 1-x/Ge/sub x/ resonant tun-
neling diodes, IEEE Electron Device Letters 22, 182.

[78] [2002-01] D.D. Awschalom, M.E. Flatté, and N. Samarth (2002):
Spintronics, Scientific American, May.

[79] [2002-02] M.R. Diehl, S.N. Yaliraki, R.A. Beckman, M. Barohona, and
J.R. Heath (2002): Self-assembled, deterministic carbon nanotube wiring
networks, Angew. Chem. Int. Ed. 41.

[80] [2002-03] A.Y. Kitaev, A.H. Shen, and M.N. Vyalyi (2002): Classical and
quantum computation, American Mathematical Society.

[81] [2002-04] L.J. Lauhon, M.S. Gudiksen, C.L. Wang, and C.M. Lieber
(2002): Epitaxial core-shell and core-multishell nanowire heterostructures,
Nature 420, 57.

[82] [2002-05] Y. Luo, C.P. Collier, J.O. Jeppesen, K.A. Nielsen, E. DeIonno,
G. Ho, J. Perkins, H.-R. Tseng, T. Yamamoto, J.F. Stoddart, and J.R. Heath

Molecular and Nanoscale Computing and Technology 507

(2002): Two-dimensional molecular electronics circuits, ChemPhysChem 3,
519.

[83] [2002-06] S.E. Lyshevski (2002): MEMS and NEMS, Systems, Devices, and
Structures, CRC Press.

[84] [2002-07] J.K. Mbdindyo, T.E. Mallouk, J.B. Mattzela, I. Kratochvilova,
B. Razavi, T.N. Jackson, and T.S. Mayer (2002): Template synthesis of
metal nanowires containing monolayer molecular junctions, J. Am. Chem.
Soc. 124, 4020.

[85] [2002-08] M.J. Krawczyk, K. Kulakowski, and A.Z. Maksymowicz (2002):
New cellular automaton designed to simulate geometration in gel elec-
trophoresis, Elsevier, Computer Physics Communications 147, 1-2(1), 354–7,
Netherlands.

[86] [2002-09] T. Yang, R.A. Kiehl, and L.O. Chua (2002): Chaos in circuits and
systems, World Scientific, pp. 577-91.

[87] [2003-01] G. Bourianoff (2003): The future of nanocomputing, IEEE
Computer, August.

[88] [2003-02] Y. Chen, G.-Y Jung, D.A.A. Ohlberg, X. Li, D.R. Stewart,
J.O. Jeppesen, K.A. Nielsen, J.F. Stoddart, and R.S. Williams (2003):
Nanoscale molecular-switch crossbar circuits, Nanotechnology 14, 462.

[89] [2003-03] Y. Chen, D.A.A. Ohlberg, X. Li, D.R. Stewart, R.S. Williams,
J.O. Jeppesen, K.A. Neilsen, J.F. Stoddart, D.L. Olynick, and E. Anderson
(2003): Nanoscale molecular-switch devices fabricated by imprint lithogra-
phy, Appl. Phys. Lett. 82, 1610.

[90] [2003-04] W. Deng and W. A. Goddard, Ab initio simulation of the Heath-
Stoddart electronic devices J. Am. Chem. Soc., submitted.

[91] [2003-05] M.R. Diehl, D.W. Steuerman, H.-R. Tseng, S.A. Vignon, A. Star,
P.C. Celestre, J.F. Stoddart, and J.R. Heath (2003): Single-walled carbon
nanotube-based molecular switch tunnel junctions, ChemPhysChem 4,
1335.

[92] [2003-06] M.M. Esahghian (2003): Nanoscale Ccomputing structures,
Proceedings of the 7th World Multi-conference on Systemics, Cybernetics,
and Informatics, SCI2003, Florida, July.

[93] [2003-07] J.R. Heath and M.A. Ratner (2003): Molecular electronics,
Physics Today, May, 43.

[94] [2003-08] A. Khitun, S. Hong, and K.L. Wang (2003): Semiconductor tun-
neling structure with self-assembled quantum dots for multi-logic cellular
automata module, SPIE-International Society Optical Engineering,
Proceedings of SPIE 5023, pp.445-8.

[95] [2003-09] C.M. Lieber (2003): Presentation at the DARPA PI Review
Meeting for the Moletronics Program, Virginia.

[96] [2003-10] Y. Luo, H.-R. Tseng, D.W. Steuerman, J. F. Stoddart, and J. R.
Heath, Conservation of molecular mechanisms in solution, half devices
and full devices, Angew. Chemie Int. Ed., manuscript in preparation.

[97] [2003-11] R.M. Metzger (2003): Unimolecular electrical electrical rectifiers,
Chem. Rev. 103, 3803.

[98] [2003-12] H.-R. Tseng, D. Wu, N. Fang, X. Zhang, and J.F. Stoddart
(2003): Nanoelectromechanical switching in a self-assembled monolayer of
[2]rotaxanes on gold, ChemPhysChem, in press.

508 Mary M. Eshaghian-Wilner, Amar H. Flood, Alex Khitun, et al.

[99] [2003-13] D. Whang, S. Jin, Y. Wu, and C.M. Lieber (2003): Large-scale
hierarchical organization of nanowire arrays for integrated nanosystems,
Nano Lett. 3, 1255.

[100] [2003-14] R.S. Williams (2003): Presentation at the DARPA PI Review
Meeting for the Moletronics Program, VA.

[101] [2003-15] H. Yu, Y. Luo, K Beverly, J.F. Stoddart, H.-R. Tseng, and J.R.
Heath (2003): The molecule-electrode interface in single-molecule transis-
tors, Angew. Chemie Int. Ed. 42, 5706.

Molecular and Nanoscale Computing and Technology 509

Chapter 15

TRENDS IN HIGH-PERFORMANCE COMPUTING
Jack Dongarra
University of Tennessee and Oak Ridge
National Laboratory

1 HISTORICAL PERSPECTIVE

In last 50 years, the field of scientific computing has undergone rapid change—
we have experienced a remarkable turnover of technologies, architectures, vendors,
and the usage of systems. Despite all these changes, the long-term evolution of per-
formance seems to be steady and continuous, following Moore’s Law rather closely.
In 1965 Gordon Moore, one of the founders of Intel, conjectured that the number
of transistors per square inch on integrated circuits would roughly double every year.
It turns out that the frequency of doubling is not 12 months, but roughly 18 months
[8]. Moore predicted that this trend would continue for the foreseeable future. In
Figure 15.1, we plot the peak performance over the last five decades of computers
that have been called supercomputers. A broad definition for a supercomputer is that
it is one of the fastest computers currently available. These are systems that provide
significantly greater sustained performance than that available from mainstream
computer systems. The value of supercomputers derives from the value of the prob-
lems they solve, not from the innovative technology they showcase. By performance
we mean the rate of execution for floating-point operations. Here we chart KFlop/s
(Kiloflop/s, thousands of floating-point operations per second), MFlop/s
(Megaflop/s, millions of floating-point operations per second), GFlop/s (Gigaflop/s,
billions of floating–point operations per second), TFlop/s (Teraflop/s, trillions
of floating-point operations per second), and PFlop/s (Petaflop/s, 1,000 trillions of
floating-point operations per second). This chart shows clearly how well Moore’s
Law has held up over almost the complete lifespan of modern computing—we see
an increase in performance averaging two orders of magnitude every decade.

In the second half of the 1970s, the introduction of vector computer systems
marked the beginning of modern supercomputing. A vector computer or vector
processor is a machine designed to efficiently handle arithmetic operations on
elements of arrays, called vectors. These systems offered a performance advantage

of at least one order of magnitude over conventional systems of that time. Raw
performance was the main, if not the only, selling point for supercomputers of
this variety. However, in the first half of the 1980s, the integration of vector sys-
tems into conventional computing environments became more important. Only
those manufacturers that provided standard programming environments, operat-
ing systems, and key applications were successful in getting the industrial cus-
tomers that became essential for survival in the marketplace. Performance was
increased primarily by improved chip technologies and by producing shared-
memory multiprocessor systems, sometimes referred to as symmetric multiproces-
sors or SMPs. An SMP is a computer system that has two or more processors
connected in the same cabinet, managed by one operating system, sharing the
same memory, and having equal access to input/output devices. Application pro-
grams may run on any or all processors in the system; assignment of tasks is
decided by the operating system. One advantage of SMP systems is scalability;
additional processors can be added as needed up to some limiting factor deter-
mined by the rate at which data can be sent to and from memory.

Fostered by several government programs, scalable parallel computing using dis-
tributed memory became the focus of interest at the end of the 1980s. A distributed
memory computer system is one in which several interconnected computers share
the computing tasks assigned to the system. Overcoming the hardware scalability
limitations of shared memory was the main goal of these new systems. The increase
of performance of standard microprocessors after the Reduced Instruction Set
Computer (RISC) revolution, together with the cost advantage of large-scale paral-
lelism, formed the basis for the “Attack of the Killer Micros.” The transition from
Emitted Coupled Logic (ECL) to Complementary Metal-Oxide Semiconductor
(CMOS) chip technology and the usage of “off the shelf” commodity microproces-
sors instead of custom processors for Massively Parallel Processors or MPPs was the

512 Jack Dongarra

IBM
BG/L

ASCI White
Pacific

EDSAC 1
UNIVAC 1

IBM 7090

CDC 6600

IBM 360/195CDC 7600

Cray 1

Cray X-MP
Cray 2

TMC CM-2

TMC CM-5 Cray T3D

ASCI Red

1950 1960 1970 1980 1990 2000 2010

1 KFlop/s
(103)

1 MFlop/s
(106)

1 GFlop/s
(109)

1 TFlop/s
(1012)

1 PFlop/s
(1015)

Earth Simulator

Figure 15.1. Moore’s Law and peak performance of various computers over time.

consequence. The strict definition of an MPP is a machine with many intercon-
nected processors, where “many” is dependent on the state of the art. Currently, the
majority of high-end machines have fewer than 256 processors, with the highest
number on the order of 10,000 processors. A more practical definition of an MPP is
a machine whose architecture is capable of having many processors—that is, it is
scalable. In particular, machines with a distributed memory design (in comparison
with shared memory designs) are usually synonymous with MPPs, since they are not
limited to a certain number of processors. In this sense, “many” is a number larger
than the current largest number of processors in a shared-memory machine.

2 STATE OF SYSTEMS TODAY

The acceptance of MPP systems not only for engineering applications but also
for new commercial applications, especially for database applications, emphasized
different criteria for market success, such as stability of the system, continuity of
the manufacturer, and price/performance. Success in commercial environments is
now a new, important requirement for a successful supercomputer business. Due
to these factors and the consolidation in the number of vendors in the market,
hierarchical systems built with components designed for the broader commercial
market are currently replacing homogeneous systems at the very high end of per-
formance. Clusters built with off-the-shelf components are also gaining more and
more attention. A cluster is a commonly found computing environment consist-
ing of many PCs or workstations connected together by a local area network. The
PCs and workstations, which have become increasingly powerful over the years,
can together be viewed as a significant computing resource. This resource is com-
monly known as a cluster of PCs or workstations and can be generalized to a het-
erogeneous collection of machines with arbitrary architecture.

At the beginning of the 1990s, while the multiprocessor vector systems reached
their widest distribution, a new generation of MPP systems came on the market,
claiming to equal or even surpass the performance of vector multiprocessors. To pro-
vide a more reliable basis for statistics on high-performance computers, the Top500
[4] list was begun. This report lists the sites that have the 500 most powerful installed
computer systems. The best LINPACK benchmark performance [9] achieved is used
as a performance measure to rank the computers. The Top500 list has been updated
twice a year since June 1993. In the first Top500 list in June 1993, there were already
156 MPP and SIMD systems present (31% of the total 500 systems).

The year 1995 saw remarkable changes in the distribution of the systems in
the Top500 according to customer types (academic sites, research labs,
industrial/commercial users, vendor installations, and confidential sites). Until June
1995, the trend in the Top500 data was a steady decrease of industrial customers,
matched by an increase in the number of government-funded research sites. This
trend reflects the influence of governmental High Performance Computing (HPC)
programs that made it possible for research sites to buy parallel systems, especially
systems with distributed memory. Industry was understandably reluctant to follow
this path, since systems with distributed memory have often been far from mature or
stable. Hence, industrial customers stayed with their older vector systems, which
gradually dropped off the Top500 list because of low performance (see Figure 15.2).

Trends in High-Performance Computing 513

Beginning in 1994, however, companies such as SGI, Digital, and Sun began
selling symmetric multiprocessor (SMP) models in their workstation families.
From the very beginning, these systems were popular with industrial customers
because of the maturity of the architecture and their superior price/performance
ratio. At the same time, IBM SP systems began to appear at a reasonable number
of industrial sites. While the IBM SP was initially intended for numerically inten-
sive applications, in the second half of 1995 the system began selling successfully
to a larger commercial market, with dedicated database systems representing a
particularly important component of sales.

It is instructive to compare the growth rates of the performance of machines at
fixed positions in the Top500 list with those predicted by Moore’s Law. To make
this comparison, we separate the influence of increasing processor performance
and that of the increasing number of processors per system on the total accumu-
lated performance. (To get meaningful numbers, we exclude the SIMD systems for
this analysis, since these tend to have extremely high processor numbers and
extremely low processor performance.) In Figure 15.3 we plot the relative growth
of the total number of processors and of the average processor performance,
defined as the ratio of total accumulated performance to the number of proces-
sors. We find that these two factors contribute almost equally to the annual total
performance growth—a factor of 1.82. On average, the number of processors has
grown by a factor of 1.30 each year and the processor performance by a factor 1.40
per year, compared to the factor of 1.58 predicted by Moore’s Law.

3 PROGRAMMING MODELS

The standard parallel architectures support a variety of decomposition strate-
gies, such as decomposition by task (task parallelism) and decomposition by data
(data parallelism). Data parallelism is the most common strategy for scientific
programs on parallel machines. In data parallelism, the application is decomposed
by subdividing the data space over which it operates and assigning different
processors to the work associated with different data subspaces. Typically, this
strategy involves some data sharing at the boundaries, and the programmer is

514 Jack Dongarra

0

100

200

300

400

500

200320022001200019991998199519941993 1997

Scalar

Vector
SIMD

1996
Figure 15.2. Processor design use as seen in the Top500.

responsible for ensuring that this data sharing is handled correctly—that is, that
data computed by one processor and used by another is correctly synchronized.

Once a specific decomposition strategy is chosen, it must be implemented.
Here the programmer must choose the programming model to use. The two most
common models are

● the shared-memory model, in which it is assumed that all data structures are
allocated a common space that is accessible from every processor; and

● the message-passing model, in which each processor (or process) is assumed to
have its own private data space, and data must be explicitly moved between
spaces as needed.

In the message-passing model, data are distributed across the processor mem-
ories; if a processor needs to use data that are not stored locally, the processor
that owns those data must explicitly “send” the data to the processor that needs
them. The latter must execute an explicit “receive” operation, which is synchro-
nized with the “send,” before it can use the communicated data.

To achieve high performance on parallel machines, the programmer must be
concerned with scalability and load balance. Generally, an application is thought
to be scalable if larger parallel configurations can solve proportionally larger prob-
lems in the same running time as smaller problems on smaller configurations. Load
balance typically means that the processors have roughly the same amount of
work, so that no one processor holds up the entire solution. To balance the com-
putational load on a machine with processors of equal power, the programmer
must divide the work and communications evenly. This division can be challenging
in applications applied to problems that are unknown in size until run time.

4 FUTURE TRENDS

Based on the current Top500 data (which cover the last 13 years) and the
assumption that the current rate of performance improvement will continue for

Trends in High-Performance Computing 515

1.687 PF/s

1.167 TF/s

59.7 GF/s

136.8 TF/s

0.4 GF/s

1.166 TF/s

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

Fujitsu

'NWT' NAL

NEC

Earth Simulator

Intel ASCI Red

Sandia

IBM ASCI White

LLNL

N=1

N=500

SUM

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

IBM

BlueGene/L

Figure 15.3. Performance growth at fixed Top500 rankings.

some time to come, we can extrapolate the observed performance and compare
these values with the goals of government programs such as the Department of
Energy’s Accelerated Strategic Computing Initiative (ASCI), High Performance
Computing and Communications, and the PetaOps initiative. In Figure 15.4, we
extrapolate the observed performance using linear regression on a logarithmic
scale. This means that we fit exponential growth to all levels of performance
in the Top500. This simple curve fit of the data shows surprisingly consistent
results. Based on the extrapolation from these fits, we can expect to see the first
100 TFlop/s system by 2005. By 2005, no system smaller than 1 TFlop/s should
be able to make the Top500 ranking.

Looking even farther into the future, we speculate that based on the current
doubling of performance every twelve to fourteen months, the first PetaFlop/s
system should be available around 2009. Due to the rapid changes in the tech-
nologies used in HPC systems, there is currently no reasonable projection possi-
ble for the architecture of the PetaFlops systems at the end of the decade. Even
as the HPC market has changed substantially since the introduction of the Cray
1 three decades ago, there is no end in sight for these rapid cycles of architectural
redefinition.

There are two general conclusions we can draw from these figures. First, par-
allel computing is here to stay. It is the primary mechanism by which com-
puter performance can keep up with the predictions of Moore’s law in the
face of the increasing influence of performance bottlenecks in conventional
processors. Second, the architecture of high-performance computing will con-
tinue to evolve at a rapid rate. Thus, it will be increasingly important to find
ways to support scalable parallel programming without sacrificing portability.
This challenge must be met by the development of software systems and algo-
rithms that promote portability while easing the burden of program design and
implementation.

516 Jack Dongarra

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

N=1

N=500

SUM

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

10 Pflop/s

1 Eflop/s

100 Pflop/s

DARPA

HPCS

Figure 15.4. Extrapolation of Top500 results.

4.1 Grid Computing

Grid computing provides for a virtualization of distributed computing and
data resources such as processing, network bandwidth, and storage capacity to
create a single system image, providing users and applications seamless access to
the collective resources. Just as an Internet user views a unified instance of con-
tent via the Web, a grid user essentially sees a single, large virtual computer.

Grid technologies promise to change the way organizations tackle complex com-
putational problems. However, the vision of large-scale resource sharing is not yet a
reality in many areas—Grid computing is an evolving area of computing, where
standards and technology are still being developed to enable this new paradigm.

The early efforts in Grid computing started as projects to link US supercom-
puting sites, but now that initiative has grown far beyond its original intent.
In fact, there are many applications that can benefit from the Grid infrastruc-
ture, including collaborative engineering, data exploration, high-throughput
computing, and of course distributed supercomputing.

Ian Foster [12] defines a Grid as a system that

● coordinates resources that are not subject to centralized control . . . (A Grid
integrates and coordinates resources and users that live within different con-
trol domains—for example, the user’s desktop vs. central computing, different
administrative units of the same company, or different companies—and
addresses the issues of security, policy, payment, membership, and so forth
that arise in these settings. Otherwise, we are dealing with a local management
system.)

● . . . using standard, open, general-purpose protocols and interfaces . . .
(A Grid is built from multipurpose protocols and interfaces that address such
fundamental issues as authentication, authorization, resource discovery, and
resource access. As discussed further below, it is important that these proto-
cols and interfaces be standard and open. Otherwise, we are dealing with an
application-specific system.)

● . . . to deliver nontrivial qualities of service. (A Grid allows its constituent
resources to be used in a coordinated fashion to deliver various qualities of
service, relating for example to response time, throughput, availability, and
security, and/or co-allocation of multiple resource types to meet complex user
demands so that the utility of the combined system is significantly greater
than that of the sum of its parts.)

At its core, grid computing is based on an open set of standards and protocols
— e.g., Open Grid Services Architecture (OGSA) — that enable communication
across heterogeneous, geographically dispersed environments. With grid comput-
ing, organizations can optimize computing and data resources, pool them for
large capacity workloads, share them across networks, and enable collaboration.

A number of challenges remain to be understood and overcome in order for
Grid computing to achieve widespread adoption. The major obstacle is the need
for seamless integration over heterogeneous resources to accommodate the wide
variety of different applications requiring such resources.

Trends in High-Performance Computing 517

5 TRANSFORMING EFFECT ON SCIENCE
AND ENGINEERING

Supercomputers have transformed a number of science and engineering disci-
plines, including cosmology, environmental modeling, condensed matter physics,
protein folding, quantum chromodynamics, device and semiconductor simula-
tion, seismology, and turbulence. As an example, consider cosmology—the study
of the universe, its evolution and structure—where one of the most striking par-
adigm shifts has occurred. A number of new, tremendously detailed observations,
deep into the universe, are available from such instruments as the Hubble Space
Telescope and the Digital Sky Survey [2]. However, until recently, it has been
difficult, except in relatively simple circumstances, to tease from mathematical
theories of the early universe enough information to allow comparison with
observations.

However, supercomputers have changed all that. Now cosmologists can simu-
late the principal physical processes at work in the early universe over space–time
volumes sufficiently large to determine the large-scale structures predicted by the
models. With such tools, some theories can be discarded as being incompatible
with the observations. Supercomputing has allowed comparison of theory with
observation and thus has transformed the practice of cosmology.

Another example is the DOE’s Accelerated Strategic Computing Initiative
(ASCI), which applies advanced capabilities in scientific and engineering com-
puting to one of the most complex challenges in the nuclear era—maintaining the
performance, safety, and reliability of the nation’s nuclear weapons without phys-
ical testing. As a critical component of the agency’s Stockpile Stewardship
Program (SSP), ASCI research develops computational and simulation technolo-
gies to help scientists understand aging weapons, predict when components will
have to be replaced, and evaluate the implications of changes in materials and
fabrication processes for the design life of aging weapons systems. The ASCI pro-
gram was established in 1996 in response to the Administration’s commitment to
pursue a comprehensive ban on nuclear weapons testing. ASCI researchers are
developing high-end computing capabilities far above the current level of per-
formance, as well as advanced simulation applications that can reduce the current
reliance on empirical judgments by achieving higher resolution, higher fidelity, 3-
D physics, and full-system modeling capabilities for assessing the state of nuclear
weapons.

Parallelism is a primary method for accelerating the total power of a super-
computer. That is, in addition to continuing to develop the performance of a tech-
nology, multiple copies are deployed that provide some of the advantages of an
improvement in raw performance, but not all.

Employing parallelism to solve large-scale problems is not without its price.
The complexity of building parallel supercomputers with thousands of proces-
sors to solve real-world problems requires a hierarchical approach—associating
memory closely with Central Processing Units (CPUs). Consequently, the cen-
tral problem faced by parallel applications is managing a complex memory hier-
archy, ranging from local registers to far-distant processor memories. It is the

518 Jack Dongarra

communication of data and the coordination of processes within this hierarchy
that represent the principal hurdles to effective, correct, and widespread accept-
ance of parallel computing. Thus, today’s parallel computing environment has
architectural complexity layered upon a multiplicity of processors. Scalability, the
ability for hardware and software to maintain reasonable efficiency as the number
of processors is increased, is the key metric.

The future will be more complex yet. Distinct computer systems will be net-
worked together into the most powerful systems on the planet. The pieces of this
composite whole will be distinct in hardware (e.g., CPUs), software (e.g., operat-
ing system), and operational policy (e.g., security). This future is most apparent
when we consider geographically distributed computing on the Computational
Grid [10]. There is great emerging interest in using the global information infra-
structure as a computing platform. By drawing on the power of high-performance
computing resources that are geographically distributed, it will be possible to
solve problems that cannot currently be attacked by any single computing system,
parallel or otherwise.

Computational physics applications have been the primary drivers in the
development of parallel computing over the last twenty years. This set of prob-
lems has a number of features in common, despite the substantial specific differ-
ences in problem domain:
1. Applications were often defined by a set of partial differential equations

(PDEs) on some domain in space and time.
2. Multiphysics often took the form of distinct physical domains with different

processes dominant in each.
3. The life cycle of many applications was essentially contained within the

computer room, building, or campus.
These characteristics focused attention on discretizations of PDEs, the corre-

sponding notion of resolution being equivalent to accuracy, and solution of the
linear and nonlinear equations generated by these discretizations. Data paral-
lelism and domain decomposition provided an effective programming model and
a ready source of parallelism. Multiphysics, for the most part, was also amenable
to domain decomposition and could be accomplished by understanding and trad-
ing information about the fluxes between the physical domains. Finally, attention
was focused on the parallel computer, its speed and accuracy, and relatively little
attention was paid to I/O beyond the confines of the computer room.

The Holy Grail for software is portable performance. That is, software should
be reusable across different platforms and should provide significant perform-
ance, say, relative to peak speed, for the end user. Often, these two goals seem to
be in opposition to each other. Languages (e.g., Fortran, C) and libraries (e.g.,
Message Passing Interface (MPI) [7] and Linear Algebra Libraries, i.e., LAPACK
[3]) allow the programmer to access or expose parallelism in a variety of standard
ways. By employing standards-based, optimized libraries, the programmer can
sometimes achieve both portability and high performance. Tools (e.g., svPablo
[11] and Performance Application Programmers Interface (PAPI) [6]) allow pro-
grammers to determine the correctness and performance of their codes and, if
falling short in some ways, to suggest various remedies.

Trends in High-Performance Computing 519

ACKNOWLEDGMENTS

This research was supported in part by the Applied Mathematical Sciences
Research Program of the Office of Mathematical, Information, and Computational
Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with
UT-Battelle, LLC.

REFERENCES

[1] E. Brooks (1989): The Attack of the Killer Micros. Teraflop Computing
Panel, Supercomputing ‘89, Reno, Nevada.

[2] Donald G. York et al. September (2000): The American Astronomical
Society. The Sloan Digital Sky Survey: Technical Summary, The
Astronomical Journal, 120:1579–1587.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammaring, A. McKenney, and D. Sorensen
(1999): LAPACK Users’ Guide – Third Edition. SIAM Publication,
Philadelphia.

[4] Top500 Report. http://www.top500.org/
[5] J. Dongarra, K. London, S. Moore, P. Mucci, and D. Terpstra (2001): Using

PAPI for Hardware Performance Monitoring on Linux Systems. Terpstra. In
Proceedings of the Conference on Linux Clusters: The HPC Revolution.

[6] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci (2000): A Portable
Programming Interface for Performance Evaluation on Modern Processors.
International Journal of High Performance Computing Applications, 14(3),
189–204.

[7] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra (1996):
MPI: The Complete Reference. MIT Press, Boston.

[8] G.E. Moore (1965): Cramming More Components onto Integrated
Circuits. Electronics 38(8), 114–117.

[9] J. J. Dongarra (2003): Performance of Various Computers Using
Standard Linear Equations Software (Linpack Benchmark Report).
University of Tennessee Computer Science Technical Report, CS-89-85.
http://www.netlib.org/benchmark/performance.pdf

[10] I. Foster and C. Kesselman (eds) (1998): Computational Grids: Blueprint for
a New Computing Infrastructure. Morgan Kaufman.

[11] L. DeRose and D. A. Reed (1999): SvPablo: A Multi-Language Architecture-
Independent Performance Analysis System. Proceedings of the International
Conference on Parallel Processing (ICPP’99), Fukushima, Japan.

[12] I. Foster, What is the Grid? A Three Point Checklist. GRIDToday, July 20,
2002.

520 Jack Dongarra

Chapter 16

CLUSTER COMPUTING: HIGH-PERFORMANCE,
HIGH-AVAILABILITY, AND HIGH-THROUGHPUT
PROCESSING ON A NETWORK OF COMPUTERS
Chee Shin Yeo1, Rajkumar Buyya1, Hossein Pourreza2,
Rasit Eskicioglu2, Peter Graham2, Frank Sommers3

1The University of Melbourne, Australia
2The University of Manitoba, Canada
3Autospaces, LLC

1 INTRODUCTION

The first inspiration for cluster computing was developed in the 1960s by
IBM as an alternative to linking large mainframes in order to provide a more
cost-effective form of commercial parallelism [1]. At that time, IBM’s Houston
Automatic Spooling Priority (HASP) system and its successor, Job Entry System
(JES), allowed the distribution of work to a user-constructed mainframe clus-
ter. IBM still supports clustering of mainframes through its Parallel Sysplex sys-
tem, which allows the hardware, operating system, middleware, and system
management software to provide dramatic performance and cost improve-
ments while permitting large mainframe users to continue to run their existing
applications.

However, cluster computing did not gain momentum until the convergence of
three important trends in the 1980s: high-performance microprocessors, high-
speed networks, and standard tools for high-performance distributed computing.
A possible fourth trend is the increasing need of computing power for computa-
tional science and commercial applications, coupled with the high cost and low
accessibility of traditional supercomputers. These four building blocks are also
known as killer-microprocessors, killer-networks, killer-tools, and killer-applications,
respectively. The recent advances in these technologies and their availability as cheap
and commodity components are making clusters or networks of computers such
as Personal Computers (PCs), workstations, and Symmetric Multiple-Processors
(SMPs) an appealing solution for cost-effective parallel computing. Clusters,

built using commodity-off-the-shelf (COTS) hardware components as well as
free, or commonly used, software, are playing a major role in redefining the con-
cept of supercomputing. And consequently, they have emerged as mainstream
parallel and distributed platforms for high-performance, high-throughput, and
high-availability computing.

The trend in parallel computing is to move away from traditional specialized
supercomputing platforms, such as the Cray/SGI T3E, to cheaper and general-
purpose systems consisting of loosely coupled components built up from single
or multiprocessor PCs or workstations. This approach has a number of advan-
tages, including being able to build a platform for a given budget that is suitable
for a large class of applications and workloads.

The emergence of cluster platforms was driven by a number of academic proj-
ects, such as Beowulf [2], Berkeley NOW [3], and HPVM [4], that prove the
advantage of clusters over other traditional platforms. These advantages include
low-entry costs to access supercomputing-level performance, the ability to track
technologies, incrementally upgradeable system, open-source development plat-
forms, and vendor independence. Today, clusters are widely used for research and
development in science, engineering, commerce, and industry applications that
demand high-performance computations. In addition, clusters encompass
strengths such as high availability and scalability that motivate wide usage in non-
supercomputing applications as well, such as clusters working as web and database
servers.

A cluster is a type of parallel or distributed computer system that consists of
a collection of inter-connected stand-alone computers working together as a sin-
gle integrated computing resource [1, 5]. The typical architecture of a cluster is
shown in Figure 16.1. The key components of a cluster include multiple standalone
computers (PCs, workstations, or SMPs), operating systems, high-performance
interconnects, middleware, parallel programming environments, and applications.

522 Chee Shin Yeo, Rajkumar Buyya, et al.

Figure 16.1. Cluster architecture (R. Buyya [1]).

The remaining part of this chapter focuses on cluster-specific components and
their functionality, along with representative examples. It assumes that the reader
is familiar with the standard commodity hardware and software components such
as stand-alone computers, operating systems such as Linux and Windows, and
standard communication software such as TCP/IP.

2 INTERCONNECTION TECHNOLOGIES
AND COMMUNICATION SOFTWARE

Clusters need to incorporate fast interconnection technologies in order to sup-
port high-bandwidth and low-latency interprocessor communication between
cluster nodes. Slow interconnection technologies had always been a critical per-
formance bottleneck for cluster computing. Today, improved network technolo-
gies help realize the construction of more efficient clusters.

Selecting a cluster interconnection network technology depends on several
factors, such as compatibility with the cluster hardware and operating system,
price, and performance. There are two metrics to measure performance for inter-
connects: bandwidth and latency. Bandwidth is the amount of data that can be
transmitted over the interconnect hardware in a fixed period of time, while
latency is the time needed to prepare and transmit data from a source node to a
destination node.

Table 16.1 gives a summary of some interconnection technologies, which are
then compared as shown in Table 16.2. The comparisons examine factors that
include bandwidth, latency, hardware availability, support for Linux, maximum
number of cluster nodes supported, how the protocol is implemented, support for
Virtual Interface Architecture (VIA), and support for Message Passing Interface
(MPI). VIA [9] is a standard for the low-latency communication software inter-
face that was developed by a consortium of hardware producers and academic
institutions and that has been adopted for use by most cluster vendors. MPI [10]
provides message passing through a set of libraries that users can use to develop
parallel and distributed applications. This means that MPI provides the commu-
nication layer for user applications and thus ensures portability of application
code across all distributed and parallel platforms.

With the current popularity of cluster computing, it is increasingly important
to understand the capabilities and potential performance of various network
interconnects for clusters. Furthermore, due to the low cost of clusters and their
growing acceptance within the scientific community, many recent cluster builders
are not computer scientists or engineers and thus have limited technical comput-
ing skills. This new group of cluster builders is less interested in features such as
Network Interface Card (NIC) programmability and special messaging libraries.
Instead, they are concerned with two primary factors: cost and performance.
While cost is easily determined and compared, performance is more difficult to
assess, particularly for users who may be new to cluster computing.

Several performance assessments of cluster systems, and of specific intercon-
nects, have been performed [15–19]. Unfortunately, much of the work done has,
in some sense, been “comparing apples to oranges.” This is because most existing
performance analyses have been forced to compare results for interconnects being

Cluster Computing 523

used on different cluster systems (since any given cluster seldom has more
than one or two interconnects available). To be as useful as possible, interconnect
performance assessments should

● be based on timing runs done on real hardware using real programs, thereby
eliminating any issues related to either limitations of simulation or overtuning
of synthetic benchmarks;

● use identical cluster node hardware for all runs with all network interconnects
so that the results do not have to be carefully “interpreted” to account for pos-
sible performance variations due to differences in system components other
than the network interconnect;

● concurrently consider as many different network interconnects as possible to
avoid possible discrepancies between independent experiments done at differ-
ent times; and

● include a number of real-world applications in addition to the key bench-
mark suites commonly used to assess cluster performance in order to pro-
vide greater confidence that the results observed are not simply those that

524 Chee Shin Yeo, Rajkumar Buyya, et al.

Table 16.1. Examples of some interconnection technologies.
Interconnection
Technology Description
Gigabit Ethernet ● Provides a reasonably high bandwidth given its low price, but suffers

from relatively high latency, thus restricting Gigabit Ethernet as a
good choice. However, the low price of Gigabit Ethernet is
appealing to building clusters.

● http://www.10gea.org
Giganet cLAN ● Giganet cLAN was developed with the goal of supporting VIA in

hardware, and it supports a low latency. But it provides only a low
bandwidth of less than 125 MBytes/s, thus making it not a viable
choice for implementing fast cluster networks.

● http://www.giganet.com
Infiniband [6] ● The latest industry standard based on VIA concepts and released in

2002, Infiniband supports connecting various system components
within a system such as interprocessor networks, I/O subsystems, or
multiprotocol network switches. This makes Infiniband independent
of any particular technology.

● http://www.infinibandta.org
Myrinet [7] ● The current most widely used technology for fast cluster networks.

The key advantage of Myrinet is that it operates in user space, thus
bypassing operating system interferences and delays.

● http://www.myrinet.com
QsNet II ● The next generation version of QsNet, based on a high-performance

PCI-X interface as compared with QsNet’s PCI interface. QsNet II
is able to achieve 1064 MBytes/s, support 4096 nodes, and provide
64-bit virtual address architecture.

● http://www.quadrics.com
Scalable Coherent ● The first interconnection technology standard specified for cluster

Interface (SCI) [8] computing. SCI defines a directory-based cache scheme that can
keep the caches of connected processors coherent, and is thus able
to implement virtual shared memory.

● http://www.scizzl.com

Cluster Computing 525

T
ab

le
16

.2
.

C
om

pa
ri

so
n

of
so

m
e

in
te

rc
on

ne
ct

io
n

te
ch

no
lo

gi
es

 (
up

da
te

d
ve

rs
io

n
fr

om
 [1

1]
).

C
om

pa
ri

so
n

G
ig

ab
it

Sc

al
ab

le
 C

oh
er

en
t

C
ri

te
ri

a
E

th
er

ne
t

G
ig

an
et

 c
L

A
N

In
fi

ni
ba

nd
M

yr
in

et
Q

sN
et

 I
I

In
te

rf
ac

e
(S

C
I)

B
an

dw
id

th
 (

M
B

yt
es

/s
)

<
 1

00
<

 1
25

85
0

23
0

10
64

<
 3

20
L

at
en

cy
 (

µs
)

<
 1

00
7-

10
<

 7
10

<
 3

1–
2

H
ar

dw
ar

e
A

va
ila

bi
lit

y
N

ow
N

ow
N

ow
N

ow
N

ow
N

ow
L

in
ux

 S
up

po
rt

N
ow

N
ow

N
ow

N
ow

N
ow

N
ow

M
ax

.N
o.

of
N

od
es

10
00

s
10

00
s

>
 1

00
0s

10
00

s
40

96
10

00
s

P
ro

to
co

l I
m

pl
em

en
ta

ti
on

H
ar

dw
ar

e
F

ir
m

w
ar

e
H

ar
dw

ar
e

F
ir

m
w

ar
e

F
ir

m
w

ar
e

F
ir

m
w

ar
e

on
 a

da
pt

or
on

 a
da

pt
or

on
 a

da
pt

or
on

 a
da

pt
or

V
ir

tu
al

 I
nt

er
fa

ce

N
T

/L
in

ux
N

T
/L

in
ux

So
ft

w
ar

e
L

in
ux

N
on

e
So

ft
w

ar
e

A
rc

hi
te

ct
ur

e
(V

IA
)

Su
pp

or
t

M
es

sa
ge

 P
as

si
ng

 I
nt

er
fa

ce

M
V

IC
H

 [1
2]

 o
ve

r
3rd

P
ar

ty
M

P
I/

P
ro

 [1
4]

3rd
P

ar
ty

Q
ua

dr
ic

s
3rd

P
ar

ty
(M

P
I)

 S
up

po
rt

M
-V

IA
 [1

3]
,T

C
P

can be expected of, in particular, well-tuned benchmark code (results for
real applications are likely to be more indicative of what new cluster users
can expect from their applications than are results from well-established
benchmarks).

A subset of the authors (Pourreza, Eskicioglu, and Graham) have conducted
performance assessments of a number of interconnects identified in Table 16.2 by
taking timings when running identical applications on identical cluster nodes.
Repeated isolated runs were made of a number of standard cluster computing
benchmarks (including the NAS parallel benchmarks [20] and the Pallas bench-
marks [21]), as well as some real world parallel applications1 on first- and second-
generation Myrinet [7], SCI [8], and Fast (100 Mbps) and Gigabit (1000 Mbps)
Ethernet, and the key results are summarized below. For those readers who are
interested, additional details are available in [23].

For small-scale compute clusters, most first-time cluster builders tend to
choose between a very low-cost commodity interconnect (most commonly, Fast
or Gigabit Ethernet) and a more expensive but higher performance interconnect
(such as Myrinet or SCI). In many cases, this choice is made prior to any serious
investigation of the interconnection needs of the application(s) to be run on the
cluster and is often determined by simply asking the question, “Can our budget
afford a fast interconnect?” This approach is undesirable and may lead to frus-
tration with the resulting cluster performance, due to two possible reasons: one is
that the selected network interconnect is inadequate for the work to be done, and
the other is that the money spent on an underutilized interconnect could have
been better spent on other useful components, such as faster processors and
larger memory. Cluster builders could easily avoid these problems by following
some simple guidelines and considering the performance characteristics of the
various interconnects as determined by independent analysis.

In general, the cost of commodity interconnects is currently approximately an
order of magnitude lower than the cost of high-performance interconnects. The
wide price differential means that, whenever possible, it is highly desirable to use
a commodity interconnect. The primary difference between commodity and high-
performance interconnects is the latency of sending messages and, to a somewhat
lesser extent, the bandwidth available for messaging. This naturally means that
high-performance interconnects are most desirable when the applications to be
run over them communicate frequently (particularly if they exchange many small
messages). Applications that communicate only infrequently and that exchange
larger messages often perform quite well using commodity interconnects. These
general observations are confirmed by the example graphs shown below.

The cost of Fast (100 Mbps) Ethernet is now so low that a common strategy
among many first-time cluster builders is to start by using Fast Ethernet for their
interconnect and then upgrade when necessary (or when they have a better idea
of their application characteristics and hence requirements). Given the extremely
low cost of Fast Ethernet, there is little concern if the equipment is used only for

526 Chee Shin Yeo, Rajkumar Buyya, et al.

1Among these applications were PSTSWM (http://www.csm.ornl.gov/chammp/pstswm), a shal-
low-water model commonly used as part of larger Global Climate Models (GCMs), and
Gromacs [22] (http://www.gromacs.org), a molecular dynamics package.

a short period of time. Furthermore, many cluster builders will keep their Fast
Ethernet network to carry maintenance traffic (such as NIS, NFS, and remote
logins) even after adding a high-performance interconnect to their cluster. Thus,
they avoid “polluting” the high-speed interconnect with unnecessary traffic that
might interfere with the actual executing programs. In addition, if the Fast
Ethernet equipment is no longer required, it can be easily redeployed for usage
elsewhere in the organization. Gigabit Ethernet is also increasingly being treated
in a similar fashion, even though it is more expensive. But the advantages of
Gigabit Ethernet are a longer lifespan as an active interconnect and the ability to
support a much wider range of applications.

All the timings reported are done on an eight-node Linux cluster (with
RedHat 9.0, kernel 2.4.18 smp and gcc 3.2.2). Each node has a dual Pentium III,
550-MHz processor with 512 MB of shared SDRAM memory and local IDE
disks (all I/O activity in the experiments occurs on local disks to eliminate the
effects of NFS access). Each node also has first- and second-generation Myrinet,
GigaNet, Fast Ethernet, Gigabit Ethernet, and point-to-point SCI (Dolphin
WulfKit) Network Interface Cards (NICs). All NICs except the SCI NICs are
connected to dedicated switches. The SCI NICs are interconnected in a 4x2 mesh
configuration. The Fast Ethernet network is also used for “maintenance” traffic,
but steps were taken to ensure that traffic “maintenance” would be minimal dur-
ing the experiments. Although each node has a dual processor, only a single
processor is used for running most of the applications, since most small-scale
cluster nodes are still uniprocessor. The results from the best performing version
of MPI that is available for each interconnect are reported. The public-domain
GNU compilers (gcc and g77 version 3.2.2) are used to compile all applications
because GNU compilers are the most commonly used by most cluster builders.
All timings are taken in isolation from other work and logins (in other words, no
other applications are running while the timings are being taken, no other users
are allowed to log in, and the operating systems on all nodes are only running
cluster-essential software daemons). This setup represents the characteristics of a
“production” cluster environment. Results for the GigaNet interconnect are not
reported due to lack of a suitable MPI implementation. Also, results using the
second-generation Myrinet NICs are omitted, since the cluster nodes do not sup-
port 64-bit transfers, which is one of the key benefits of second-generation
Myrinet. Through experimentation, we discovered that without such wide trans-
fers, there is little difference between the two generations of Myrinet.

The base performance of the various interconnects (in terms of bandwidth
and latency) are shown in Figures 16.2 and 16.3, respectively. The relative figures
for the four networks are as expected, with Fast Ethernet clearly being inferior to
all the other interconnects and Gigabit Ethernet being noticeably below SCI and
Myrinet despite advertising a similar raw bandwidth. Even from these results, it
is clear that fast Ethernet would likely only be suitable for the most compute-
bound applications.

The NPB suite consists of a number of parallel programs implemented using
MPI that have a variety of communication patterns and frequencies (some of the
programs are compute bound, while others are communication bound). All pro-
grams are derived from real-world program codes. The sample results shown
below are for the FT and LU benchmarks. The FT-A benchmark (shown in

Cluster Computing 527

Figure 16.4) implements a Fourier Transform (on relatively small data – the “-A”
suffix) and is quite communication bound, while the LU-A benchmark (shown in
Figure 16.5) implements LU decomposition (also on small data) and is relatively
compute bound. The trends seen for FT are consistent with those described ear-
lier and expected. The fact that LU is more compute bound is reflected by the
improved relative performance of the commodity interconnects in Figure 16.5.

528 Chee Shin Yeo, Rajkumar Buyya, et al.

Figure 16.2. Bandwidth of four interconnects (H. Pourreza et al. [23]).

Pallas Ping-Pong Bandwidth

0

100

200

300

400

500

600

700

800

900

1 10 100 1000 10000 100000 1000000 10000000
size (byte)

M
bp

s
Fast Eth

Myrinet
SCI

Gigabit Eth

1

4

16

64

256

1024

4096

16384

65536

262144

 1 32 1024 32768 1.04858e+06

us
ec

on
ds

size (bytes)

Latency of Ping-Pong Packets

Fast Eth
Gigabit Eth

Myrinet
SCI

Figure 16.3. Latency of four interconnects (H. Pourreza et al. [23]).

Figures 16.6 and 16.7 show speedup values for FT-A and LU-A on the four
interconnects, in this case using all 16 processors in the cluster. Again, the impact
of LU’s being compute bound is clearly evident, reinforcing the idea that strongly
compute-bound code can make good use of cheap, commodity interconnects.

It is useful to note that the overall results obtained for the large, real-world
MPI applications are highly consistent with the results for the NPB suite. Both
sample applications (PSTSWM and GROMACS) are moderately compute bound

Cluster Computing 529

FT-A Benchmark

0

0.5

1

1.5

2

2.5

3

2 4 8
Number of Processors

N
or

m
al

iz
ed

 M
F

lo
ps

Fast Eth

Gigabit Eth

Myrinet

SCI

Figure 16.4. The NPB FT-A benchmark (H. Pourreza et al. [23]).

Figure 16.5. The NPB LU-A benchmark (H. Pourreza et al. [23]).

Fast Eth Gigabit Eth
Myrinet SCI

LU-A Benchmark

0

0.2

0.4

0.6

0.8

1

1.2

2 4 8
Number of Processors

N
or

m
al

iz
ed

 M
F

lo
ps

(PSTSWM more so than GROMACS). As a result, Fast Ethernet is an undesir-
able interconnect to use when running them. It is interesting to note that the effect
of the point-to-point interconnects in SCI also begin to have a negative impact in
GROMACS (presumably since some of the nodes must forward messages on
behalf of other nodes).

530 Chee Shin Yeo, Rajkumar Buyya, et al.

FT-A Speedup

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16

Number of Processors

S
pe

ed
up

Ideal

Fast Eth

Gigabit Eth

Myrinet

SCI

LU-A Speedup

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16
Number of Processors

S
pe

ed
up

Ideal

Fast Eth

Gigabit Eth

Myrinet

SCI

Figure 16.6. Speedup for the FT-A benchmark (H. Pourreza et al. [23]).

Figure 16.7. Speedup for the LU-A benchmark (H. Pourreza et al. [23]).

From the graphs shown (as well as other related work) and considering the
cost of the networking equipment, it is clear that fast Ethernet is no longer a
desirable choice for a cluster interconnect unless cost is an overriding considera-
tion (in which case, poor cluster performance for all but the most compute-bound
applications must be expected). Despite its extremely low raw latency, SCI can
experience problems when used in a point-to-point configuration due to the over-
head of forwarding “third-party” messages. To take full advantage of SCI’s capa-
bilities, the cluster programmer must be prepared to expend significant effort to
ensure that the application is structured to minimize nondirect communication.
This task is often onerous and should not be taken lightly. Of all interconnects,
Myrinet offers the best and most consistent performance but is also (not surpris-
ingly) the highest-cost interconnect. Gigabit Ethernet, a commodity interconnect,
offers surprisingly good performance for a fair range of applications (excluding
those that are heavily communication bound) and is likely a good interconnect for
many cluster builders if they expect their applications to be at least partially com-
pute bound. Gigabit Ethernet is now significantly cheaper than Myrinet and
other similar interconnect technologies (e.g., GigaNet and Infiniband). Further,
with the appropriate switches, better performance can be obtained with Gigabit
Ethernet using “Jumbo” frames. But, of course, the best way to select an inter-
connect is by benchmarking the application(s) to be run. If this is not possible,
the use of the guidelines described and tests based on the NPB suite appear to be
reasonable alternatives.

3 SINGLE SYSTEM IMAGE (SSI)

The Single System Image (SSI) [24] represents the view of a distributed system
as a single unified computing resource. SSI provides better usability for the users,
since it hides from them the complexities of the underlying distributed and het-
erogeneous nature of clusters. SSI can be established through one or several
mechanisms implemented at various levels of abstraction in the cluster architec-
ture: hardware, operating system, middleware, and applications.

The design goals for SSI cluster-based systems focus on complete trans-
parency of resource management, scalable performance, and system availability
in supporting user applications. Key SSI attributes that are generally considered
desirable include point of entry, user interface, process space, memory space, I/O
space, file hierarchy, virtual networking, job management system, and control
point and management. Table 16.3 summarizes how SSI can be achieved at dif-
ferent levels of abstraction, with examples. The next section explains the cluster
resource management systems.

3.1.1 SSI at the Operating System Level

The operating system in each of the cluster nodes provides the fundamental
system support for the combined operation of the cluster. The operating sys-
tem provides services such as protection boundaries, process/thread coordina-
tion, interprocess communication, and device handling, thus creating a high-level
software interface for user applications.

Cluster Computing 531

A cluster operating system is desired to have the following features:

● Manageability: Ability to manage and administrate local and remote
resources.

● Stability: Support for robustness against system failures with system recovery.

● Performance: All types of operations should be optimized and efficient.

● Extensibility: Provide easy integration of cluster-specific extensions.

● Scalability: Able to scale without impact on performance.

● Support: User and system administrator support is essential.

● Heterogeneity: Portability over multiple architectures to support a cluster con-
sisting of heterogeneous hardware components. May be achieved through the
use of middleware.

There are two main types of cluster operating systems: free and commercial.
Examples of free releases are Linux and MOSIX. Linux [43] is the most widely

532 Chee Shin Yeo, Rajkumar Buyya, et al.

Table 16.3. Achieving Single System Image (SSI) at different levels of abstraction.
Level of Abstraction Description and Examples
Hardware Implementing SSI at the Hardware layer (lowest level of

abstraction) allows the user to view a cluster as a shared-memory
system. Some examples are

● Memory Channel [25]
● Distributed Shared Memory (DSM) [26, 27]

Operating System Modifying the existing operating system kernel to support SSI.
Some examples are

● MOSIX [28]
● Solaris MC [29]
● UnixWare [30, 31]
Constructing a new operating system layer that integrates operating

systems on each node. Some examples are
● GLUnix [32]

Middleware Implementing SSI at the Middleware layer is most common for
clusters.

Using a programming environment for development and execution
of applications. Some examples are

● Parallel Virtual Machine (PVM) [33]
Installing resource management systems (RMSs) that manage

resources and applications in the cluster. Some examples are
● Condor [34]
● Loadleveler [35]
● Load Share Facility (LSF) [36]
● Open Portable Batch System (OpenPBS) [37]
● Sun Grid Engine (SGE) [38]
● Libra [39]

Application Implementing SSI at the Application layer (highest level of
abstraction) provides an application-specific user interface. Some
examples are

● PARMON [40]
● Linux Virtual Server [41]
● Problem Solving Environments [42]

used cluster operating system, since it is free, open-source, and has a wide user
and developer community. MOSIX [28] is a set of extensions built on top of the
Linux kernel that enables process migration in a cluster environment to support
automatic load balancing.

Commercial releases of cluster operating systems are proprietary and shipped
with commercial clusters. Examples include IBM’s AIX [44], SGI’s IRIX [45],
Sun’s Solaris MC [29], HP/Compaq’s Tru64 [46], SCO’s Unixware [30], and
Microsoft’s Windows NT/2000 [47] and Windows Server family.

4 RESOURCE MANAGEMENT SYSTEM (RMS)
MIDDLEWARE

A cluster resource management system (RMS) acts as a cluster middleware
that implements the SSI [24] for a cluster of machines. It enables users to execute
jobs on the cluster without needing to understand the complexities of the under-
lying cluster architecture. An RMS manages the cluster through four major
branches, namely, resource management, job queuing, job scheduling, and job man-
agement.

Figure 16.8 shows a generic architecture of a cluster RMS. An RMS manages
the collection of resources such as processors and disk storage in the cluster. It
maintains status information on resources so as to know what resources are avail-
able, and it can thus assign jobs to available machines. The RMS uses job queues
that hold submitted jobs until there are available resources to execute the jobs.
When resources are available, the RMS invokes a job scheduler to select from the
queues what jobs to execute. The RMS then manages the job execution processes
and returns the results to the users upon job completion.

The advent of Grid computing [48] further enhances the significance of the
RMS in clusters. Grid brokers can discover Grid resources such as clusters and
submit the jobs via an RMS. The RMS then manages and executes the jobs before
returning the results back to the Grid brokers. To enable effective resource man-
agement on clusters, numerous cluster management systems and schedulers have
been designed. Table 16.4 gives a summary of some examples of RMSs.

Cluster Computing 533

Resource Manager

Job Manager

Computation
Node 1

:
:
:

Computation
Nodes

User u

:
:
:

job

Manager
Node

Node Status
Monitor

User
Population

User 1
job

Job Scheduler Computation
Node c

execution
results

execution
results

Figure 16.8. Cluster RMS architecture.

Condor [34], developed by the University of Wisconsin–Madison, not only is
able to manage a cluster of dedicated machines but also allows execution of jobs
on nondedicated machines that are otherwise left idle. Condor can automati-
cally detect these idle machines and use them via checkpointing and migration of
job processes. Idle machines are placed into a Condor pool so that they are allo-
cated for job execution, and are taken out of the pool when they become busy.
Condor also provides extensions for using multiple Condor pools. A technique
in Condor called flocking allows jobs submitted within a Condor pool to execute
on another separate pool of machines. A version of Condor called Condor-G also
supports the utilization of Globus [49] software that provides the infrastructure
for authentication, authorization, and remote job submission of Grid resources.

LoadLeveler [35] is a resource management system developed by IBM to man-
age resources for IBM cluster products. LoadLeveler schedules jobs and provides
functions for building, submitting, and processing jobs. When a user submits a
job, LoadLeveler examines the job command file to determine what resources
the job requires. Based on the jobs’ requirements, it determines which machines
are best suited to provide these resources and the best time for the job to be dis-
patched to the machines, and then dispatches the job at that time. To aid this
process, LoadLeveler uses job queues to store the list of jobs that are waiting to
be processed. LoadLeveler also uses a classification mechanism called job classes
to schedule jobs to run on machines. For example, a job class called “short” con-
tains short running jobs, while a job class called “weekend” contains jobs that are
only allowed to run on the weekends. Job classes can be defined by the adminis-
trator to restrict which users can use a specific job class and what jobs can run on
a particular machine.

LSF [36] is a loosely coupled cluster solution for heterogeneous systems,
allowing LSF extension modules to be installed to provide advanced services.

534 Chee Shin Yeo, Rajkumar Buyya, et al.

Table 16.4. Examples of Resource Management Systems (RMSs) middleware.
RMS Organization Brief Description and Website
Condor University of ● Able to detect and execute jobs on idle

Wisconsin–Madison nondedicated machines.
● http://www.cs.wisc.edu/condor

Loadleveler IBM ● Manages resources and jobs for IBM clusters.
● http://www.ibm.com/servers/eserver/clusters/

software
Load Share Platform Computing ● Adopts a layered architecture that supports

Facility (LSF) many extension utilities.
● http://www.platform.com/products/LSF

Open Portable Altair Grid ● Supports multiple scheduling policies based
Batch System Technologies on extensible scheduler architecture.
(OpenPBS) ● http://www.openpbs.org

Sun Grid Sun Microsystems ● The Enterprise edition supports scheduling
Engine (SGE) of jobs over multiple clusters within an

organization.
● http://gridengine.sunsource.net

Libra University of ● Supports resource allocation based on
Melbourne computational economy principles and users’

quality of service requirements.
● http://www.gridbus.org/libra

This setup is possible due to LSF’s design, which is based on a layered architec-
ture. The base layer consisting of Base System and Server Daemon layers and pro-
vides low-level cluster services such as dynamic load balancing and transparent
access to the resources available on all participating machines in the cluster. Other
LSF utilities are then supported on top of the base layer at the Utilities layer.
Examples of LSF utilities include LSF Batch, which provides a centralized
resource management system for the cluster; LSF MultiCluster, which enables
users to access resources on multiple LSF clusters in different geographic loca-
tions; and LSF Analyzer, which generates reports about the cluster by processing
historical workload data.

OpenPBS [37] is the open-source version of the Portable Batch System (PBS).
PBS was developed for NASA to control job execution and to manage resources
for Numerical Aerodynamic Simulation (NAS) applications. It aims to be a flex-
ible and extensible batch-processing system that supports multiple scheduling
policies and job migration to meet the unique demands of heterogeneous com-
puting networks. Currently, a new commercial version of PBS called PBSPro is
available with more advanced features, such as supporting preemption, a back-
filling algorithm, and advanced reservations for scheduling. OpenPBS adopts an
independent scheduler architecture that enables the administrator to modify the
existing default scheduling policies more easily to suit different requirements of
the cluster. The administrator can create his own new customized scheduler that
defines what types of resources and how much of each resource can be used by
each job.

SGE [38] is currently an open-source project by Sun Microsystems which aims
to establish community-driven standards that facilitate execution of computa-
tionally intensive applications. The user is able to submit batch, interactive, and
parallel jobs to SGE. SGE also provides transparent workload distribution within
the cluster and supports check pointing that enables jobs to migrate automatically
between machines without user intervention based on load demands. The
Enterprise Edition of SGE supports resource management and scheduling over
multiple clusters within an organization. This setup enables the negotiation of
resource and job policies to facilitate cooperation across multiple clusters.

Libra [39] is a computational economy-driven scheduling system that aims to
improve the value of utility delivered to the user and the quality of services, as
opposed to existing cluster RMSs that focus on a system-centric approach to
resource management. Developed as part of the Gridbus Project at the University
of Melbourne, Libra is designed to support allocation of resources based on the
users’ quality of service (QoS) requirements. It is intended to work as an add-on
to the existing queuing and resource management system. The first version has
been implemented as a plug-in scheduler to PBS. The scheduler offers market-
based, economy-driven service for managing batch jobs on clusters by scheduling
CPU time according to user-perceived value (utility), determined by the user’s
budget and deadline rather than by system performance considerations. Libra
shows that the deadline and budget-based proportional resource allocation strat-
egy improves both the utility of the system and user satisfaction as compared
to system-centric scheduling strategies. We believe that this feature of Libra
helps enforce resource allocation based on service level agreements when cluster
services are offered as a utility on the Grid.

Cluster Computing 535

5 CLUSTER PROGRAMMING MODELS

All of a cluster’s subsystems, from I/O to job scheduling to the choice of node
operating system, must support the applications the cluster is designed to run.
While small clusters are often constructed to support a single class of applica-
tions, such as serving Web pages or database applications, larger clusters are often
called on to dedicate parts of their resources to different kinds of applications
simultaneously [50, 51]. These applications often differ not only in their workload
characteristics but also in the programming models they employ. The program-
ming models employed by an application, in turn, determine the key performance
characteristics of a cluster application. This section details the most important
programming models used to construct cluster-aware applications; the next sec-
tion provides examples of cluster applications constructed with one or more of
these models.

Cluster computing programming models have traditionally been divided into
categories based on the relationship of programs to the data the programs oper-
ate on [52]. The Single-Instruction, Single-Data (SISD) model defines the tradi-
tional von Neumann computer. Multiple-Instruction, Multiple-Data (MIMD)
machines include most of today’s clusters as well as parallel computers. In the
Single-Instruction, Multiple-Data (SIMD) model, each processor executes the
same program. Finally, the Multiple-instruction, Single-Data model (MISD)
defines systems where multiple programs operate on the same data. MIMD has
emerged as the most prevalent programming model on clusters.

In addition to dividing cluster programming models based on how programs
relate to data, programming models can also be categorized on how they exploit
a cluster’s inherent parallelism. On that basis, cluster computing programming
models can roughly be divided into two categories. The first category of mod-
els allows a serial (nonparallel) application to take advantage of a cluster’s
parallelism. The second category of models aids in the explicit parallelization
of a program. Since cluster users are much more familiar with creating a serial
program than with developing explicitly parallel applications, the first cate-
gory of programming models have become dominant in cluster computing
applications.

Pfister [5] coined the term SPPS (serial program, parallel subsystem) to describe
a common technique of running a serial program on a cluster. In SPPS, many
instances of a serial program are distributed on a cluster. A parallel subsystem pro-
vides input to each serial program instance and captures output from those
programs, delivering that output to users. Because there are multiple programs
on the clusters, operating on multiple data, SPPS is a form of MIMD. This sec-
tion describes the two most common categories of SPPS programming models:
distributed shared virtual memory-based systems, and message passing as illus-
trated by the Message Passing Interface (MPI) standard. Finally, programming
models based on virtual machines are explained.

The SPPS model facilitates a division of labor in developing a cluster applica-
tion: it allows a domain expert to write serial programs and delegates the task of
creating an often complex parallel subsystem to highly skilled parallel program-
ming specialists. The parallel subsystem in an SPPS-style cluster application is
increasingly provided in the form of off-the-shelf middleware.

536 Chee Shin Yeo, Rajkumar Buyya, et al.

For example, Database Management Systems (DBMS) and Transaction
Processing Monitors (TPM) routinely apply the SPPS technique to hide the com-
plexity of parallel operations from users. A database query is typically submitted
from a serial program to a cluster-aware DBMS subsystem responsible for query
processing. That subsystem may process the query in a parallel fashion, possibly
involving many cluster nodes. The query results are then returned to the serial
program [53]. SPPS is used in scientific applications as well, allowing a scientist
to focus on writing a serial program and submit that serial program for parallel
execution on a cluster. An example is found in FermiLab’s Cooperative Processes
Software (CPS) [54].

When many instances of a serial program operate in parallel, those instances
must coordinate work through a shared cluster resource, such as distributed
shared memory or a message-passing infrastructure. The primitive operations
that coordinate the work of concurrently executing serial programs on a cluster
define a coordination language [55]. A coordination language is often described in
terms of an Application Programming Interface (API) to a parallel subsystem.
Such an API offers bindings to one or more programming languages. Another
way to describe a coordination language is to use declarative scripting, which dif-
fers from API since it describes the required conditions and relationships and lets
the computer system determine how to satisfy them. A coordination language,
together with a programming language, defines the programming model of a clus-
ter parallel application. Table 16.5 shows some examples of cluster programming
models.

The Linda tuplespace system [56] exploits distributed shared memory [57] to
facilitate the parallel execution of a serial program on a cluster. Linda defines
primitive operations on a shared memory resource, allowing data items – tuples –
to be written to that memory, read from shared memory, and deleted from shared

Cluster Computing 537

Table 16.5. Examples of cluster programming models.
Supported

Programming Coordination Programming
Environment Language Language Website
Linda API C, Fortran ● http://www.cs.yale.edu/cswwworig/

Linda/linda.html
JavaSpaces API Java ● http://www.sun.com/jini

● http://www.jini.org
Message API C, C++, Java ● http://www.microsoft. com/

Queues windows2000/technologies/
communications/msmq/default.asp

● http://www-306.ibm.com/software/
integration/mqfamily

● http://www.sun.com/software/
products/message_queue

Message-Passing API C, C++, ● http://www.mpi-forum.org
Interface (MPI) Fortran

JavaGroups API Java ● http://www.jgroups.org/
javagroupsnew/docs

Parallel Virtual API C, C++, ● http://www.csm.ornl.gov/pvm/
Machine (PVM) Fortran pvm_home.html

Parameter Sweep Script-based Declarative ● http://www.csse.monash.edu.au/
constructs programming ~davida/nimrod

memory. A tuple is similar to a database relation. A serial process with access to
the shared memory writes data items to memory, marking each item with an
attribute indicating that that item requires processing. Another process awaiting
newly arriving tuples removes such an item from the shared memory, performs
computations on that data item, and deposits the results into the shared memory.
The original submitter of the job then collects all the results from the tuplespace.
Each process operating on a tuplespace is typically a serial program, and the
Linda system facilitates the concurrent execution of many such programs.

JavaSpaces [58] is an object-oriented Linda system that takes advantage of
Java’s platform-independent code execution and mobile code facility. Mobile code
allows not just data but also code to move from one cluster node to another at
run-time. A master node runs a JavaSpace process, providing a shared memory
resource to other cluster nodes that act as workers. When a worker removes a job
request from the shared JavaSpace, the operating codes for that job dynamically
download to that worker. The worker executes that downloaded code and places
the output of that execution into the JavaSpace. JavaSpaces, therefore, facilitates
the automatic run-time distribution of code to cluster nodes. JavaSpaces also pro-
vides optional transactional access to the shared memory resource, which is espe-
cially helpful in the case of very large clusters with frequent node failures.

While message queues first became popular with SMPs as a load-distribution
technique [5], distributed message queues have become increasingly popular with
clusters as well. Distributed queues are a form of distributed shared memory with
the added property of ordered message delivery. Most message queues in com-
mercial use also provide transactional access to the queue.

While distributed shared memory facilitates communication via a shared clus-
ter resource, the message-passing model coordinates work by sending and receiv-
ing messages between processes. The Message-Passing Interface (MPI) [10]
standard defines a programming model for message passing, along with a series
of functions to support that programming model. Language bindings to MPI
functions exist for a variety of languages, such as C, C++, and Fortran. In addi-
tion, a Java-based version of MPI specifies how this programming model can be
used from Java programs [59].

In the MPI model, a set of processes are started at program startup. There is
one process per processor, but each processor may execute a different process.
Thus, MPI is a message-passing programming model for MIMD systems. During
program execution, the number of processes in an MPI program remains fixed.

MPI processes are named, and processes send and receive messages in a point-
to-point fashion based on process name. Processes can be grouped, and collective
communication functions can be used to perform global operations on a group,
such as broadcast and synchronization. Message exchanges in MPI can convey
the communication context in which a message exchange occurs. MPI even offers
a process the ability to probe its environment and to probe for messages, allowing
MPI programs to use both synchronous and asynchronous message exchange.

In addition to defining message exchange semantics, the MPI programming
model provides explicit support for the construction of parallel programming
libraries suitable for execution on a cluster [60]. Libraries written for the MPI
standard are portable and can be reused by higher-level application software. The
chief MPI tools for library construction are communication contexts, process

538 Chee Shin Yeo, Rajkumar Buyya, et al.

groups, virtual topologies, and cached attributes. An MPI construct called a com-
municator encapsulates all these functions in a reusable fashion.

An MPI process group is an ordered collection of processes that defines the
scope for process names and for collective communication. Because the system
can differentiate between processes sharing a context, communication context
allows partitioning of information during message exchange. Separate contexts
by MPI libraries insulate communication internal to the library execution from
external communication.

An MPI communicator can be thought of as a group identifier associated
with a context. Intra-communicators operate on a single group, whereas inter-
communicators are used for point-to-point communication between two groups
of processes. While intra-communicators let a library developer encapsulate com-
munication internal to a library, inter-communicators bind two groups together,
with communication contexts shared by both groups.

The MPI standard limits itself to defining message passing semantics and
functions and to defining the primitives required for reusable libraries. MPI does
not provide an infrastructure for program construction and task management.
Those responsibilities are left to MPI implementations. The most popular imple-
mentation of the MPI standard is MPICH [61]. Available as an open-source
package, MPICH supports the latest MPI 2 standard [10]. MPI has recently been
extended for Grid communication with the MPICH-G library [62].

While MPI provides a comprehensive message-passing library of over 150
functions, several of the key MPI concepts have influenced the design of smaller,
special-purpose message-passing libraries. JavaGroups [63] is an open-source Java
toolkit for reliable multicast communication on a cluster, or even on a wide-area
network. Similar to MPI, JavaGroups facilitates the creation of processes groups
and also allows the processes to dynamically join or leave groups. An automatic
membership-detection infrastructure in JavaGroups handles the removal of non-
responsive group members. Communication in JavaGroups can be point-to-point
from one group member to another, or group communication (from one group
member to an entire group). Several cluster-aware Java applications rely on
JavaGroups for group message passing, such as the JBoss application server [64].

In addition to message passing and virtual shared memory, programming
models based on virtual machines also facilitate the parallel execution of serial
programs on a cluster (SPPS). The Parallel Virtual Machine (PVM) [33] consists
of daemon processes, to be executed on all cluster nodes, and an application pro-
gramming library. PVM presents heterogeneous cluster resources as a homoge-
nous environment to a program. The PVM daemon process can run on machines
with widely differing computational capabilities, from notebooks to supercom-
puters. PVM offers language bindings to C and C++ as a set of API functions,
and a binding to Fortran as a series of subroutines.

Using PVM is straightforward. First, the user starts up the PVM daemons
on the set of cluster nodes he or she wishes to incorporate into the shared clus-
ter resource. Next, the user writes a set of serial programs, includes calls to the
PVM routines, and links those programs with the PVM libraries. Finally, the user
executes a “master” program on one machine. That program, through the PVM
API calls, will spawn other programs, “slaves,” on other cluster nodes as needed.
Those programs communicate with each other through a simple message-passing

Cluster Computing 539

mechanism. The run concludes with the termination of the initial serial master
program. Code for each slave program must be made available to the PVM dae-
mon on each node prior to executing the master.

Each serial program running on the nodes that make up a PVM instance typ-
ically runs as a task on a host’s operating system. Therefore, the unit of paral-
lelism in PVM is a task. A group of such tasks make up a PVM program. PVM
tasks are identified by a task ID, typically an integer. Task IDs are assigned by
PVM, and intertask communication takes place in PVM based on task IDs.
Currently, PVM does not use MPI for intertask message-passing communica-
tion. However, an effort is under way to incorporate the benefits of MPI into
PVM [65].

A PVM task can belong to one or more task groups during its execution. Task
groups in PVM are dynamic: a task can join or leave a task group during its exe-
cution without having to notify other tasks in a given group. PVM also supports
group communication primitives: a task can broadcast a message not only to
other members of the group to which it currently belongs but also to tasks
belonging to other task groups.

Parameter Sweep supports parallelism by executing the same program with
different parameters in parallel as individual processes. An example of a tool that
supports parameter sweep is Nimrod [66], which performs parameter sweep over
a cluster of computers. Nimrod provides a script-based declarative programming
language for defining parameter-sweep specification. It allows users to define
varying values for key parameters to be studied in a simple script. Using the
script, it automatically generates the required data files for each program,
depending on the set of parameters. Nimrod then selects a computer for each pro-
gram, transfers the generated data files and other required files for each program
to the selected workstation for execution, and transfers back the execution results.

6 CLUSTER APPLICATIONS

One category of applications where cluster computing is rapidly becoming the
architecture of choice is Grand Challenge Applications (GCA). Grand Challenge
Applications (GCAs) [67] are defined as fundamental problems in science and
engineering with broad economic and scientific impact whose solution can be
advanced by applying High Performance Computing and Communications
(HPCC) technologies.

The high scale of complexity in GCAs demands an enormous amount of
resource needs, such as processing time, memory space, and communication
bandwidth. A common characteristic of GCAs is that they involve simulations
that are computationally intensive. Examples of GCAs are applied fluid dynam-
ics, environmental modeling, ecosystem simulation, biomedical imaging, biome-
chanics, molecular biology, molecular design, cognition, and computational
sciences.

Other than GCAs, cluster computing is also being applied in other applica-
tions that demand high availability, scalability, and performance. Clusters are
being used as replicated storage and backup servers that provide the essential
fault tolerance and reliability for critical applications. For example, the Internet

540 Chee Shin Yeo, Rajkumar Buyya, et al.

search engine Google [68] uses cluster computing to provide reliable and efficient
Internet search services. There are also many commercial cluster products
designed for distributed databases and web servers. In the following subsections,
we will discuss some of these applications and examine how cluster computing is
used to enable them.

6.1.1 Google Search Engine

Internet search engines enable Internet users to search for information on the
Internet by entering specific keywords. A widely used search engine, Google [68]
uses cluster computing to meet the huge quantity of worldwide search requests
that comprise a peak of thousands of queries per second. A single Google query
needs to use at least tens of billions of processing cycles and access a few hundred
megabytes of data in order to return satisfactory search results.

Google uses cluster computing as its solution to the high demand of system
resources, since clusters have better price–performance ratios than alternative
high-performance computing platforms, and also use less electrical power. Google
focuses on two important design factors: reliability and request throughput.

Google is able to achieve reliability at the software level so that a reliable com-
puting infrastructure can be constructed on clusters of 15,000 commodity PCs
distributed worldwide. The services for Google are also replicated across multiple
machines in the clusters to provide the necessary availability. Google maximizes
overall request throughput by performing parallel execution of individual search
requests. This means that more search requests can be completed within a specific
time interval.

A typical Google search consists of the following operations:
1. An Internet user enters a query at the Google webpage.
2. The web browser searches for the Internet Protocol (IP) address via the

www.google.com Domain Name Server (DNS).
3. Google uses a DNS-based load-balancing system that maps the query to

a cluster that is geographically nearest to the user so as to minimize net-
work communication delay time. The IP address of the selected cluster is
returned.

4. The web browser then sends the search request in Hypertext Transport
Protocol (HTTP) format to the selected cluster at the specified IP address.

5. The selected cluster then processes the query locally.
6. A hardware-based load balancer in the cluster monitors the available set of

Google Web Servers (GWSs) in the cluster and distributes the requests evenly
within the cluster.

7. A GWS machine receives the request, coordinates the query execution, and
sends the search result back to the user’s browser.
Figure 16.9 shows how a GWS operates within a local cluster. The first phase

of query execution involves index servers consulting an inverted index that
matches each query keyword to a matching list of documents. Relevance scores
are also computed for matching documents so that the search result returned to
the user is ordered by score. In the second phase, document servers fetch each
document from disk to extract the title and the keyword-in-context portion of the
document. In addition to the two phases, the GWS also activates the spell checker

Cluster Computing 541

and the ad server. The spell checker verifies that the spelling of the query key-
words is correct, while the ad server generate advertisements that relate to the
query and may therefore interest the user.

6.1.2 Petroleum Reservoir Simulation

Petroleum reservoir simulation facilitates a better understanding of petroleum
reservoirs, which is crucial to better reservoir management and more efficient oil
and gas production. Petroleum reservoir simulation is an example of GCA, since
it demands intensive computations in order to simulate geological and physical
models. For example, the Center for Petroleum and Geosystems Engineering of
the University of Texas at Austin is constructing a new parallel petroleum reser-
voir simulator called General Purpose Adaptive Simulator (GPAS) [69] using a
cluster of 64 dual-processor servers with a total of 128 processors.

A typical petroleum reservoir simulator consists of a coupled set of nonlinear
partial differential equations and constitutive relations that describe the physical
processes occurring in a petroleum reservoir. There are two most widely used sim-
ulators. The first is the black oil simulator, which uses water, oil, and gas phases
for modeling fluid flow in a reservoir. The second is the compositional simulator,
which uses phases with different chemical species for modeling physical processes
occurring in a reservoir. Previously, compositional simulators were used less
often, since they are more complicated and thus require more intensive memory
and processing requirements. With the advent of cluster computing, more
researchers are using compositional simulators that use more data to characterize
reservoirs.

The GPAS [69] is a compositional petroleum reservoir simulator that can per-
form more accurate, efficient and high-resolution simulation of fluid flow in
permeable media. It uses a finite-difference method that divides a continuous

542 Chee Shin Yeo, Rajkumar Buyya, et al.

Index servers Document servers

Ad server

Spell checkerGoogle Web server

Figure 16.9. Google query-serving architecture (L. A. Barroso et al. [68]).

domain into smaller cells to solve the governing partial differential equations. The
higher number of cells produces more accurate results but requires more compu-
tation time. A fully implicit solution results in a structure of nonlinear equations
that are then resolved using Newton’s method. However, large sparse linear sys-
tems of equations are needed to obtain a numerical solution of these nonlinear
equations. Therefore, the Portable Extensible Toolkit for Scientific Computation
(PETSc) [70], a set of tools for solving partial differential equations, is used to
solve these linear systems.

To handle the parallel processing requirements, an Integrated Parallel Accurate
Reservoir Simulator (IPARS) framework has been developed to separate the phys-
ical model development from parallel processing. IPARS provides input and out-
put, memory management, domain decomposition, and message passing among
processors to update overlapping regions. Communications between the simula-
tor framework and a physical model are carried out through FORTRAN sub-
routine calls provided within the IPARS, thus hiding the complexities from the
physical model developers, who only need to call the FORTRAN subroutines to
perform corresponding tasks.

6.1.3 Protein Explorer

The Bioinformatics Group at RIKEN Genomic Sciences Center in Japan is
currently building the world’s first petaflops supercomputer. The Protein Explorer
(PE) system [71] will be a specialized system for molecular dynamics simula-
tions—specifically, protein simulations—and is expected to be ready in early
2006. The PE system will be a PC cluster equipped with special-purpose engines
to calculate nonbonded interactions between molecular atoms. These calculations
constitute the most time-consuming portion of the simulations. The PE project is
motivated by the national Protein 3000 project in Japan that was initiated in 2002
with the goal of solving the structures of 3,000 proteins by the year 2007.

Figure 16.10 shows the components of the PE system. It will be a cluster of
256 dual-processor nodes giving a total of 512 processors, connected via Gigabit
Ethernet. Each cluster node has two special-purpose engine boards (with 12
MDGRAPE-3 chips on each board) connected to it, giving it a total of 6,144
chips.

The cluster nodes will transmit the coordinates and the other data of particles
for the molecular dynamics simulation to the special-purpose engines, which then
calculate the nonbonded forces such as Coulomb force and van der Walls force
between particles before returning the results to the hosts. In other words, the spe-
cial-purpose engines only focus on computing the most complex portion of the
simulation, that is, calculating the nonbonded forces. All the coordination and
other calculations are handled by the cluster nodes themselves.

6.1.4 Earthquake Simulation

Earthquake simulation is classified as a GCA, given its high modeling and
computational complexities [72]. First, multiple spatial scales characterize the
earthquake source and basin response, ranging from tens of kilometers for
the basin dimensions to hundreds of kilometers for earthquake sources. Second,

Cluster Computing 543

temporal scales differ—from hundredths of a second for depicting the highest fre-
quencies of the earthquake source to several minutes of shaking within the basin.
Third, many basins have highly irregular geometry. Fourth, the soils in the basins
comprise heterogeneous material properties. And fifth, there remains great uncer-
tainty into the modeling process due to the indirect observation of geology and
source parameters.

An ongoing research project in the United States [72] focuses on developing
the capability for generating realistic inversion-based models of complex basin
geology and earthquake sources. This capability could then be used to model and
forecast strong ground motion during earthquakes in large basins such as Los
Angeles (LA). Ground motion modeling and forecasting is essential to studying
which structures will become vulnerable during the occurrence of an earthquake.
This modeling can be used to design future earthquake-resistant structures and to
retrofit existing structures so as to mitigate the effects of an earthquake. The Los
Angeles region was chosen for the case study because it is the most highly popu-
lated seismic region in the USA, has well-characterized geological structures
(including a varied fault system), and has extensive records of past earthquakes.

The earthquake simulation is conducted using a terra-scale HP AlphaServer
cluster that has 750 quadruple-processor nodes at the Pittsburgh Supercomputing
Center (PSC). It simulates the 1994 Northridge earthquake in the Greater LA
Basin at 1 Hz maximum frequency resolution and 100 m/s minimum shear wave
velocity. The resulting unstructured mesh contains over 100 million grid points
and 80 million hexahedral finite elements, ranking it as one of the largest unstruc-
tured mesh simulations ever conducted. It is also the most highly resolved simu-
lation of the Northridge earthquake ever done. It sustains nearly a teraflops over
12 hours in solving the 300 million wave propagations.

544 Chee Shin Yeo, Rajkumar Buyya, et al.

Network
Switch

High-Speed Serial
Interconnection

24 chipsPC1

PC2

PC3

PC4

PC256

Special-
Purpose

Computers
(6144 chips)

PC Cluster (512 CPU)

Figure 16.10. Block diagram of Protein Explorer system (M. Taiji et al. [71]).

The simulations are based on multiresolution mesh algorithms that can
model the wide range of length and time scales depicting earthquake response.
Figure 16.11 shows the process of generating a mesh using the etree method. That
method is used for earthquake simulations in heterogeneous basins, where the
shear wave velocity and maximum resolved frequency determine the local element
size. At the initial “construct” step, an octree is constructed and stored on disk.
The decompositions of the octants are dependent on the geometry or physics
being modeled, thus resulting in an unbalanced octree. Then the balance step
recursively decomposes all the large octants that violate the 2-to-1 constraint until
there are no more illegal conditions, thus creating a balanced octree. Finally, in
the transform step, mesh-specific information such as the element–node relation-
ship and the node coordinates are derived from the balanced octree and sepa-
rately stored in two databases: one for the mesh elements, another for the mesh
nodes.

For the balancing step, the whole domain is first partitioned into equal-size
blocks. Then, internal balancing enforces the 2-to-1 constraint within each block.
Finally, boundary balancing is used to resolve interactions between adjacent
blocks. This local balancing step is very effective, since it can achieve a speedup
ranging from 8 to 28, depending on the size of the meshes being balanced.

Figure 16.12 shows snapshots at different times of the simulation of the wave
propagation throughout the basin based on the 1994 Northridge earthquake.
These snapshots reflect the directivity of the ground motion along the strike from
the epicenter and the concentration of motion near the fault corners.

6.1.5 Image Rendering

The Scientific Computing and Imaging (SCI) Institute at University of Utah
has explored cluster-based scientific visualization [73] using a 32-node visualiza-
tion cluster composed of commodity hardware components connected with a
high-speed network. The OpenGL [74] scientific visualization tool, Simian, has
been modified to create a cluster-aware version of Simian that supports paral-
lelization by making explicit use of remote cluster nodes through a message-
passing interface (MPI). Simian is able to generate 3D images for fire-spread
simulations that model scenarios such as when a missile located within a pool of
jet fuel catches fire and explodes. The use of image rendering for fire-spread sim-
ulations enables researchers to a better visualize the destructive effects.

Cluster Computing 545

application-specific input

construct

etree library

unbalanced
octree

balance

etree library

balanced
octree

transform

etree library
node

database

element
database

Figure 16.11. The etree method of generating octree meshes (V. Akcelik et al. [72]).

Normally, Simian uses a swapping mechanism to manage datasets that are too
large to load into the available texture memory, resulting in low performance and
interactivity. For the cluster-aware Simian, large datasets are divided into subvol-
umes that can be distributed across multiple cluster nodes, thus achieving the
interactive performance. This “divide-and-conquer” technique first decom-
poses the dataset into subvolumes before distributing the subvolumes to multiple
remote cluster nodes. Each node is then responsible for rendering its subvolume
by using the locally available graphics hardware. The individual results are finally
combined using a binary-swap compositing algorithm to generate the final image.
This enables the cluster-aware Simian to visualize large-scale datasets and main-
tain interactive rates without the need for texture swapping.

546 Chee Shin Yeo, Rajkumar Buyya, et al.

time = 2.56 sec

time = 10.24 sec

time = 17.92 sec

time = 25.60 sec time = 28.16 sec

time = 20.48 sec

time = 12.80 sec

time = 5.12 sec time = 7.68 sec

time = 15.36 sec

time = 23.04 sec

time = 30.72 sec

Distance (km) : E-W Distance (km) : E-W Distance (km) : E-W

D
is

ta
nc

e
(k

m
)

: N
-S

D
is

ta
nc

e
(k

m
)

: N
-S

D
is

ta
nc

e
(k

m
)

: N
-S

D
is

ta
nc

e
(k

m
)

: N
-S

80

60

40

20

80

60

40

20

80

60

40

20

80

60

40

20

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

20 40 60 80 20 40 60 80 20 40 60 80

Figure 16.12. Snapshots of propagating waves from simulation of 1994 Northridge earthquake
(V. Akcelik et al. [72]).

Figure 16.13 shows the visualization of two fire-spread datasets simulating
a heptane pool fire, generated by the cluster-aware version of Simian using
eight cluster nodes. The top row of Figure 16.13 shows two views (side and top
views) of the h300_0075 dataset, while the bottom row shows the h300_0130
dataset.

SUMMARY

We have discussed the motivation for cluster computing as well as the tech-
nologies available for building cluster systems. The emphasis placed on the use of
commodity-based hardware and software components to achieve high perform-
ance, availability, and scalability means that cluster computing is a more cost-
effective platform compared with traditional high-performance platforms.

We have examined the various cluster-specific components such as intercon-
nection technology, operating system, middleware, and programming model. We
have discussed the performance of a number of common cluster interconnects.
We have also presented various parallel programming models and concepts of
single system image and its realization at the cluster resource management level.
The rapid research and development of cluster hardware and software compo-
nents has enhanced the usage of cluster computing for a wide variety of applica-
tions, both in scientific and commercial domains. We have studied some of these
applications and how clusters are used to implement them.

For recent developments and innovations in cluster computing technologies
and their applications, we recommend readers to refer to the Proceedings of the
IEEE Task Force on Cluster Computing (TFCC) [75] events such as the
ClusterXY [76] and CCGridXY [77] conference series.

Cluster Computing 547

Figure 16.13. Visualization of fire-spread datasets (C. Gribble et al. [73]).

REFERENCES

[1] R. Buyya (ed) (1999): High Performance Cluster Computing: Architectures
and Systems, 1, Prentice Hall.

[2] The Beowulf Cluster site, http://www.beowulf.org
[3] T. E. Anderson, D. Culler, and D. A. Patterson (1995): A Case for NOW

(Network of Workstations), IEEE Micro, 15(1), 54–64.
[4] A. Chien, S. Pakin, M. Lauria, M. Buchanan, K. Hane, L. Giannini, and

J. Prusakova (1997): High Performance Virtual Machines (HPVM): Clusters
with Supercomputing APIs and Performance, Proc. 8th SIAM Conference on
Parallel Processing for Scientific Computing (PP97), Minneapolis, USA.

[5] G. F. Pfister (1998): In Search of Clusters, 2nd Edition, Prentice Hall.
[6] T. Shanley (2002): Infiniband Network Architecture, Addison-Wesley.
[7] N. J. Boden, D. Cohen, R. E. Felderman, A.E. Kulawik, C.L. Seitz,

J.N. Seizovic, and Wen-King Su (1995): Myrinet: A Gigabit-per-second
Local Area Network, IEEE Micro, 15, (1), 29–36.

[8] K. Alnaes, E. H. Kristiansen, D. B. Gustavson, and D. V. James (1990):
Scalable Coherent Interface, Proc. 1990 IEEE International Conference on
Computer Systems and Software Engineering (CompEuro ‘90), Tel-Aviv,
Israel, pp. 446–453.

[9] D. Cameron and G. Regnier (2002): Virtual Interface Architecture, Intel Press.
[10] Message Passing Interface (MPI) Forum, http://www.mpi-forum.org
[11] M. Baker, A. Apon, R. Buyya, and H. Jin (2002): Cluster Computing and

Applications, Encyclopedia of Computer Science and Technology, 45
(Supplement 30), A. Kent and J. Williams (eds), Marcel Dekker, pp. 87–125.

[12] MVICH: MPI for VIA, http://old-www.nersc.gov/research/FTG/mvich
[13] M-VIA: VIA for Linux, http://old-www.nersc.gov/research/FTG/via
[14] MPI/PRO, http://www.mpi-softtech.com
[15] M. Banikazemi, J. Liu, D. K. Panda, and P. Sadayappan (2001):

Implementing TreadMarks over Virtual Interface Architecture on Myrinet
and Gigabit Ethernet: Challenges, Design Experience, and Performance
Evaluation, Proc. 2001 International Conference on Parallel Processing
(ICPP ‘01), Valencia, Spain, pp. 167–174.

[16] Z. Lan and P. Deshikachar (2003): Performance Analysis of a Large-Scale
Cosmology Application on Three Cluster Systems, Proc. 2003 IEEE
International Conference on Cluster Computing (Cluster 2003), Hong Kong,
China, pp. 56–63.

[17] A. J. van der Steen (2003): An Evaluation of Some Beowulf Clusters, Cluster
Computing, 6(4), 287–297.

[18] H. Chen, P. Wyckoff, and K. Moor (2000): Cost/Performance Evaluation of
Gigabit Ethernet and Myrinet as Cluster Interconnects, Proc. 2000
Conference on Network and Application Performance (OPNETWORK
2000), Washington, USA.

[19] J. Hsieh, T. Leng, V. Mashayekhi, and R. Rooholamini (2000): Architectural
and Performance Evaluation of GigaNet and Myrinet Interconnects on
Clusters of Small-Scale SMP Servers, Proc. 2000 ACM/IEEE Conference on
Supercomputing (SC2000), Dallas, USA.

548 Chee Shin Yeo, Rajkumar Buyya, et al.

[20] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and W. K. Weeratunga (1991): The NAS Parallel
Benchmarks, International Journal of Supercomputing Applications, 5(3), 63–73.

[21] Pallas MPI Benchmarks, http://www.pallas.com/e/products/pmb/index.htm
[22] E. Lindahl, B. Hess, and D. van der Spoel (2001): GROMACS 3.0: a pack-

age for molecular simulation and trajectory analysis, Journal of Molecular
Modeling, 7(8), 306–317.

[23] H. Pourreza, R. Eskicioglu, and P. C. J. Graham (2004): Preliminary
Performance Assessment of Four Cluster Interconnects on Identical
Hardware, Proc. 18th International Symposium on High Performance
Computing Systems and Applications (HPCS2004), Winnipeg, Canada.

[24] R. Buyya, T. Cortes, and H. Jin (2001): Single System Image (SSI),
International Journal of High Performance Computing Applications, 15(2),
124–135.

[25] Hewlett-Packard, Memory Channel, http://www.hp.com/techservers/sys-
tems/symc.html

[26] A Comprehensive Bibliography of Distributed Shared Memory, http://dsm-
biblio.cs.umanitoba.ca/WEB

[27] Distributed Shared Memory (DSM), http://www.cs.umd.edu/~keleher/
dsm.html

[28] A. Barak and O. La’adan (1998): The MOSIX multicomputer operating sys-
tem for high performance cluster computing, Future Generation Computer
Systems, 13(4–5), 361–372.

[29] Y. A. Khalidi, J. M. Bernabeu, V. Matena, K. Shirriff, and M. Thadani
(1995): Solaris MC: A Multi-Computer OS, Sun Microsystems Technical
Report TR-95-48.

[30] SCO Unixware, http://www.thescogroup.com/products/unixware713
[31] B. Walker and D. Steel (1999): Implementing a Full Single System Image

UnixWare Cluster: Middleware vs. Underware, Proc. International Conference
on Parallel and Distributed Processing Techniques and Applications
(PDPTA99), Las Vegas, USA, pp. 2767–2773.

[32] D. P. Ghormley, D. Petrou, S. H. Rodrigues, A. M. Vahdat, and
T. E. Anderson (1998): GLUnix: A Global Layer Unix for a Network
of Workstations, Software: Practice and Experience, 28(9), 929–961.

[33] V. S. Sunderam (1990): PVM: A framework for parallel distributed comput-
ing, Concurrency: Practice and Experience, 2(4), 315–339.

[34] University of Wisconsin-Madison, Condor Version 6.6.2 Manual, 2004.
[35] IBM, LoadLeveler for AIX 5L V3.2 Using and Administering, SA22-7881-01,

2003.
[36] Platform Computing, LSF V4.1 Administrator’s Guide, 2001.
[37] Altair Grid Technologies: OpenPBS Release 2.3 Administrator Guide, 2000.
[38] Sun Microsystems, Sun ONE Grid Engine, Administration and User’s

Guide, Oct. 2002.
[39] J. Sherwani, N. Ali, N. Lotia, Z. Hayat, and R. Buyya (2004): Libra:

A Computational Economy based Job Scheduling System for Clusters,
Software: Practice and Experience, 34(6), 573–590.

Cluster Computing 549

[40] R. Buyya (2000): PARMON: a portable and scalable monitoring system for
clusters, Software: Practice and Experience, 30(7), 723–739.

[41] W. Zhang (2000): Linux Virtual Server for Scalable Network Services, Linux
Symposium, Ottawa, Canada.

[42] E. Gallopoulos, E. Houstis, and J. R. Rice (1994): Computer as thinker/doer:
problem-solving environments for computational science, IEEE
Computational Science and Engineering, 1(2), 11–23.

[43] Linux Online, http://www.linux.org
[44] IBM AIX: UNIX Operating System, http://www.ibm.com/servers/aix
[45] SGI IRIX, http://www.sgi.com
[46] HP/Compaq Tru64, http://www.tru64unix.compaq.com
[47] Microsoft Windows 2000: http://www.microsoft.com/windows2000
[48] I. Foster and C. Kesselman (eds), (1999): The Grid: Blueprint for a New

Computing Infrastructure, Morgan Kauffman Publishers.
[49] I. Foster and C. Kesselman (1997): Globus: A Metacomputing

Infrastructure Toolkit, International Journal Supercomputer Applications,
11(2), 115–128.

[50] R. Evard, N. Desai, J. Navarro, and D. Nurmi (2002): Clusters as large-scale
development facilities, Proc. 2002 IEEE International Conference on Cluster
Computing (Cluster 2002), Chicago, USA.

[51] N. Pundit (2002): CPlant: The Largest Linux Cluster, Newsletter of IEEE
Task Force on Cluster Computing, 4(1), Fall.

[52] M. Flynn (1972): Some computer organizations and their effectiveness,
IEEE Transactions on Computers, 21(9), 948–960.

[53] S. Ghandeharizadeh and F. Sommers (2001): Parallel Databases and
Decision Support Systems, Handbook of Data Mining and Knowledge
Discovery, W. Klosgen and J. Zytkow (eds), Oxford University Press.

[54] T. Nash (1992): Cluster Computing at FermiLab, presentation to IEEE SSS.
[55] G. Papadopoulos and F. Arbab (1998): Coordination models and languages,

Centrum voor Wiskunde en Informatica Technical Report SEN-R9834.
[56] N. Carriero and D. Gelernter (1990): How to Write Parallel Programs:

A First Course, MIT Press.
[57] K. Li and P. Hudak (1986): Memory Coherence in Shared Virtual Memory

Systems, Proc. 5th Annual ACM Symposium on Principles of Distributed
Computing, Calgary, Canada, pp. 229–239.

[58] J. Waldo et al. (2001): The Jini Specifications, 2nd Edition, Addison-Wesley.
[59] B. Carpenter, V. Getov, G. Judd, T. Skjellum, and G. Fox (1998): MPI For

Java: Position Document and Draft API Specification, Java Grande Forum
Technical Report JGF-TR-03.

[60] A. Skjellum, N. E. Doss, and P. V. Bangalore (1993): Writing Libraries in
MPI, Proc. Scalable Parallel Libraries Conference, Mississippi State, USA,
pp. 166–173.

[61] W. Gropp, E. Lusk, N. Doss, and A. Skjellum (1996): A High-Performance,
Portable Implementation of the MPI Message Passing Interface Standard,
Parallel Computing, 22(6), 789–828.

[62] I. Foster, and N. Karonis (1998): A Grid-Enabled MPI: Message Passing in
Heterogeneous Distributed Computing Systems, Proc. 1998 IEEE/ACM
Supercomputing Conference (SC98), Orlando, USA.

550 Chee Shin Yeo, Rajkumar Buyya, et al.

[63] JavaGroups, http://www.jgroups.org/javagroupsnew/docs
[64] JBoss, http://www.jboss.org
[65] G. Fagg and J. Dongarra (1996): PVMPI: An Integration of the PVM and

MPI Systems, Calculateurs Parallèles, 8(2), 151–166.
[66] D. Abramson, R. Sosic, J. Giddy, and B. Hall (1995): Nimrod: A Tool for

Performing Parametised Simulations Using Distributed Workstations, Proc.
4th IEEE Symposium on High Performance Distributed Computing
(HPDC95), Pentagon City, USA, pp. 112–121.

[67] National Coordination Office for Informational Technology Research and
Development, Grand Challenge Applications, High Performance Computing
and Communications: Foundation for America’s Information Future,
http://www.nitrd.gov/pubs/blue96/section.2.6.0.html

[68] L. A. Barroso, J. Dean, and U. Holzle (2003): Web search for a planet: The
Google cluster architecture, IEEE Micro, 23(2), 22–28.

[69] T. Uetani, B. Guler, and K. Sepehrnoori (2002): Parallel Reservoir
Simulation on High Performance Clusters, Proc. 6th World Multi-Conf. on
Systemics, Cybernetics and Informatics (SCI2002), V.

[70] Portable Extensible Toolkit for Scientific Computation (PETSc),
http://www-unix.mcs.anl.gov/petsc

[71] M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N. Takada, and
A. Konagaya (2003): Protein Explorer: A Petaflops Special-Purpose
Computer System for Molecular Dynamics Simulations, Proc. 2003
ACM/IEEE Supercomputing Conference (SC2003), Phoenix, USA.

[72] V. Akcelik, J. Bielak, G. Biros, I. Epanomeritakis, A. Fernandez, O. Ghattas,
E. J. Kim, J. Lopez, D. O’Hallaron, T. Tu, and J. Urbanic (2003): High
Resolution Forward and Inverse Earthquake Modeling on Terascale
Computers, Proc. 2003 ACM/IEEE Supercomputing Conference (SC2003),
Phoenix, USA.

[73] C. Gribble, X. Cavin, M. Hartner, and C. Hansen (2003): Cluster-based
Interactive Volume Rendering with Simian, University of Utah School of
Computing Technical Report UUCS-03-017.

[74] OpenGL, http://www.opengl.org
[75] IEEE Task Force on Cluster Computing, http://www.ieeetfcc.org
[76] ClusterXY - IEEE Intl. Conference on Cluster Computing, http://www.cluster

comp.org
[77] CCGridXY - IEEE Intl. Symposium on Cluster Computing and the Grid,

http://www.ccgrid.org

Cluster Computing 551

Chapter 17

WEB SERVICE COMPUTING: OVERVIEW
AND DIRECTIONS
Boualem Benatallah1, Olivier Perrin2, Fethi A. Rabhi1,
Claude Godart2

1The University of New South Wales, Australia.
2INRIA-LORIA, France

1 INTRODUCTION

Web Service is a new buzzword sweeping through the information systems
infrastructure industry. With the advent of the Internet and the Web, the first gen-
eration of Web services was born, namely Business-to-Customer (B2C) Web serv-
ices (e.g., virtual malls, customized news delivery, traffic monitoring, and route
planning). More recently, organizations started using the Internet and Web as
means to automate relationships between their business processes, i.e., creating
Business-to-Business (B2B) Web services. These services allow organizations to
form alliances by joining their applications, databases, and systems. The purpose
is to share their costs, skills, and resources as well as to offer value-added services.
Examples of B2B Web services include procurement, customer relationship man-
agement (CRM), finance, billing, traffic information services, accounting, human
resources, supply chain, and manufacturing.

The basic technological infrastructure for Web services is structured around
XML-based standards and Internet protocols. These standards provide building
blocks for service description, discovery, and interaction. Web service technolo-
gies have clearly influenced positively the development of integrated systems by
providing programmatic access to Web services. They are evolving toward being
able to solve critical integration issues, including security, transactions, collabo-
rative processes management, semantic aspects, and seamless integration with
existing middleware infrastructures. The infrastructure that is needed to support

Web services is clearly much broader than traditional transaction processing
systems.

This chapter introduces some basic concepts related to Web services develop-
ment in Section 2. Then it provides an overview of existing and emerging standards
in Section 3. It describes the role of Web services in integrating Business-to-
Business applications in Section 4 and Web service composition in Section 5. The
last sections conclude the chapter by providing an overview of current research
work and future trends.

2 BASIC CONCEPTS

By definition, a Web service is a self-content, self-describing, loosely coupled,
reusable software component that can be published, discovered/located, and
invoked via Internet protocols. A Web service is agnostic of operating systems,
programming models, and languages. It provides an interface describing how
other systems can interact with it using messages. Web services perform functions,
which can be anything from simple requests (transformation, storage and/or
retrieval of data) to complicated business processes (aggregation, composition,
orchestration).

The life cycle of activities related to Web service development, deployment,
and enactment is illustrated in Figure 17.1. Briefly stated, these activities are as
follows:

● Wrapping native services: ensuring that a native/proprietary service (e.g.,
legacy application) can be invoked by other Web services regardless of its
underlying data model, message format, and interaction protocol.

● Setting outsourcing agreements: negotiating, establishing, and enforcing con-
tractual obligations between partner services.

● Assembling composite services: A service can be elementary or composite. The
development of an elementary service is entirely under the responsibility of
the provider. The development of a composite service requires the aggregation
of other services, which are referred to as component services.

554 Boualem Benatallah, Olivier Perrin, Fethi A. Rabhi, Claude Godart

Setting
Outsourcing
Agreements

Monitoring
Services

Executing
Services

Assembling
Composite Services

Wrapping
Native Services

Evolving
Services

Legend:

Activity
Next activity

Figure 17.1. Web service development lifecycle

● Executing services: This process particularly relates to enacting composite
service specifications with regard to execution models satisfying certain prac-
tical constraints (e.g., efficiency, availability).

● Monitoring services: supervising service executions (e.g., logging service invo-
cations, state changes, and message exchanges) in order to detect contract vio-
lations, measure performance, and predict exceptions.

● Evolving services: adapting composite services to accommodate organizational
changes, take advantage of new technological opportunities, or take into
account feedback from monitoring.

In addition, the cycle may refer to other activities such as service advertise-
ment/discovery, i.e., generating service descriptions and publishing these descrip-
tions in registries for subsequent discovery. Service descriptions cover several
aspects ranging from interfaces to nonfunctional properties and contractual
agreements with customers.

Figure 17.2 provides an overview of existing specifications of Web services
organized in terms of the issues that they address.

The rest of this chapter is dedicated to presenting in more detail the various
specifications that comprose the Web services stack, explaining their relationships
with each other, and discussing open research issues and problems.

3 WEB SERVICES INFRASTRUCTURE:
AN OVERVIEW

In this section, we first describe the use of SOAP (Simple Object Access
Protocol), WSDL (Web Services Description Language), and UDDI (Universal

Web Service Computing: Overview and Directions 555

SOAP, WS–Security, WS–ReliableMessaging, WS–Routing
ebXML Messaging Service

WSDL, WS–Policy
ebXML CPP/CPA

 Composition/Choreography Transactions

Description Advertisement/Discovery

WS–Coordination/Transaction
OASIS BTP

BPEL4WS, WSCI
ebXML BPSS

UDDI, WS–Inspection
ebXML Registry

Unicode, XML, XML Schema

Format and Encoding

HTTP, HTTPS, SMTP

Transport

Messaging

Figure 17.2. Overview of the Web services stack

Description, Discovery, and Integration) as building blocks for Web services-
enabled applications [1,7]. Then we give a brief overview of other Web service
standards.

3.1 Simple Object Access Protocol (SOAP)

SOAP provides an XML-based protocol for structured message exchanges.
It relies on existing transport protocols such as HTTP and MQSeries. SOAP fea-
tures document-based communication among Web services. Document-based
communication allows the integration of loosely coupled services. A SOAP mes-
sage contains two parts: the header and the body. The header includes informa-
tion such as intended purpose (e.g., service invocation, invocation results),
sender’s credentials, response type, and so on. The body contains an XML repre-
sentation of a service invocation request (i.e., name of operation to be invoked,
values of input parameters) or response (i.e., results of service invocation). SOAP
implementations exist for several programming languages, including Java and C.
SOAP implementations provide mappings between SOAP messages and formats
understood by service implementations (e.g., Java classes). SOAP implementa-
tions typically automatically generate the SOAP header, and provide mappings
between the contents of SOAP message bodies and data structures in the host
language (e.g., Java objects).

If we take a car rental Web service as an example, the following SOAP
request message invokes the operation RentCar using the most stable version
(version 1.1):

POST /carRenting HTTP/1.1
Host: www.carRenting.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "http://example.com/RentCar"
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsopa.org/soap/envelope"
SOAP-ENV:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding">
<SOAP-ENV:body>

<m:RentCar xmlns:m="http://example.com/RentCar">
<customer>Rayan Stephan</customer>
<rentalDate>12/02/2002</rentalDate>
<returnDate>15/02/2002</returnDate>

</m:RentCar>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This example shows the different parts that make up a SOAP invocation
method. Lines 5 and 11–14 specify the method to invoke (RentCar) and its
three arguments, which are the customer name, the rental date, and the return
date. After a successful invocation, the result is returned in a SOAP response
message, such as:

556 Boualem Benatallah, Olivier Perrin, Fethi A. Rabhi, Claude Godart

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsopa.org/soap/envelope"
SOAP-ENV:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding">
<SOAP-ENV:Body>

<m:RentCarResponse xmlns:m="http://example.com/RentCar">
<rentalFee>356.00</rentalFee>

</m:RentCarResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

3.2 Web Service Description Language (WSDL)

WSDL [29] is an XML-based language for describing the functional proper-
ties of Web services. It aims at providing self-describing XML-based service def-
initions that applications, as well as people, can easily understand. In WSDL, a
service consists of a collection of message exchange end points. An end point
contains an abstract description of a service interface and implementation bind-
ing. The abstract description of a service contains (1) definitions of messages
that are consumed and generated by the service (i.e., input and output messages)
and (2) signatures of service operations. Here is an example of an abstract
description:

<?xml version="1.0"?>
<definitions name="carRenting">
<types>
<schema targetNamespace="http://example.com/carRenting.xsd"

xmlns="http://www.w3.org/2000/10/XMLSchema">
<element name="Customer">

<complexType>
<all>

<element name="Name" type="string"/>
<element name="Gender" type="string"/>
<element name="CreditCardNo" type="string"/>

</all>
</complexType>

</element>
</schema>
</types>

The implementation binding provides a means to map abstract operations to
concrete service implementations. It essentially contains information about the
location of a binding, the communication protocol to use (e.g., SOAP over
HTTP) for exchanging messages with the service, and mappings between the
abstract description of a service and the underlying communication protocol

Web Service Computing: Overview and Directions 557

message types (i.e., how interactions with service occur over SOAP). Here is an
example of an implementation binding:

<binding name="carRentingSoapBinding"
type="tns:carRentingPortType">

<soap:binding
stype="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="RentCar">
<soap:operation soapAction="http://example.com/RentCar"/>

<input>
<soap:body use="literal"/>

</input>
<output>

<soap:body use="literal"/>
</output>

</operation>
</binding>

3.3 Universal Description Discovery and Integration (UDDI)

UDDI is a specification of an XML-based registry for Web services. It defines
an interface for advertising and discovering Web services. The UDDI information
model, defined through an XML schema, identifies three types of information:
white pages, yellow pages, and green pages.

White pages contain general information, such as business name (i.e, service
provider’s name) and contact information (e.g., provider’s phone numbers).
Yellow pages contain meta-data that can be used to effectively locate businesses
and services based on classification schemes. For instance, UDDI uses the fol-
lowing standard taxonomies to facilitate businesses/services discovery: NAICS
(North American Industry Classification System), UNSPSC (Universal Standard
Products and Services Code System), and ISO 3166 (the ISO geographical classi-
fication system). The green pages contain service access information, including
service descriptions and binding templates. A binding template represents a serv-
ice end point (i.e., a service access interface). It refers to an entity called the
tModel. A tModel describes the compliance of a service with a technical specifi-
cation (e.g., WDSL document, RMI interface, CORBA IDL). For instance, a
WSDL document can be registered as a tModel in the UDDI registry and used in
the description of a WSDL-complaint service end point to provide access to serv-
ice operations. The current stable version of UDDI is version 3.

3.4 Other specifications

Other standards in the Web services stack include the following.

3.4.1 WS-Security

WS-Security [14] aims at integrating several existing security-related technolo-
gies in a coherent model and providing an XML syntax for this model. This is

558 Boualem Benatallah, Olivier Perrin, Fethi A. Rabhi, Claude Godart

achieved by defining header elements to be included in SOAP messages. WS-
Security does not provide a complete security framework for Web services; how-
ever, it does provide mechanisms for ensuring single-message security within
SOAP. Three mechanisms are supported in the current specification:

● Propagation of unsigned and signed security tokens in both text and binary
formats. Examples of unsigned security tokens include usernames and pass-
words, while signed tokens include X.509 certificates and Kerberos tickets.
Recent extensions provide support for SAML (Security Assertions Markup
Language) assertions and XrML (eXtensible rights Markup Language)
licenses.

● Message integrity of SOAP messages is provided using the XML Signature
specification in conjunction with security tokens.

● Message confidentiality uses the XML Encryption specification in conjunc-
tion with security tokens.

3.4.2 WS-Reliability

WS-Reliability [9] and WS-ReliableMessaging [14] are two competing stan-
dards that aim at defining SOAP header elements for addressing three issues:

● Guaranteed message delivery through retries

● At most once message delivery through duplicate elimination

● Guaranteed message ordering by attaching sequence numbers to messages
within a message group

3.4.3 WS-Coordination and WS-Transaction

Since ACID transactions are not suitable for loosely coupled environments
like the Web, OASIS BTP and WS-Transaction/WS-Coordination are proposals
for dealing with specific WS aspects of coordination.

WS-Coordination [17] defines a generic framework that can support various
coordination protocols. Each protocol is intended to coordinate a different role
that a Web service plays in the activity. Some examples of coordination proto-
cols are Completion (a single participant tells the Coordinator either to try to
commit the transaction or to force a rollback), 2PC – Two-Phase Commit (a par-
ticipant such as a resource manager registers for this protocol so that the
Coordinator can manage a commit/abort decision across all resource man-
agers), and PhazeZero (the Coordinator notifies a participant just before a 2PC
protocol begins).

A Coordination Service propagates and coordinates activities between serv-
ices. The messages exchanged between participants carry a Coordination Context
that contains critical information for linking the various activities within the pro-
tocol. A Coordination Service consists of several components: an Activation
Service that allows a Coordination Context to be created, a Registration Service
that allows a Web service to register its participation in a Coordination Protocol,

Web Service Computing: Overview and Directions 559

and a set of Coordination Protocol Services for each supported Coordination
Type (e.g., Completion, 2PC).

WS-Transaction [18] is a specification released in August 2002 by Microsoft,
IBM, and BEA Systems. It specifies transactional properties of Web Services
independently of coordination aspects. It uses two completion patterns:

● atomic transaction (AT)

● business activity (BA)

An Atomic Transaction is used to coordinate activities having a short duration
and executed within limited trust. It has the classical atomicity property (“all or
nothing” behavior) from ACID properties.

A Business Activity provides flexible transaction properties (relaxing Isolation
and Atomicity) and is used to coordinate activities that are long in duration and
aimed at applying business logic to handle business exceptions. Actions are
applied immediately and are permanent because the long duration nature of the
activities prohibits locking of data resources. A Web Service application can
include both Atomic Transactions and Business Activities.

3.5 WS-Policy

WS-Policy [12] provides a framework with an XML-syntax for defining capa-
bilities and requirements of Web services in the form of policy assertions. Policy
assertions are statements about an XML element or a Web service description that
provide indications regarding the text encoding and natural language used in an
XML element, the version of a given standard specification used by a Web serv-
ice, and the mechanisms used for Web service security (e.g., authentication scheme)
with reference to the WS-Security specification (see above). A related specification,
namely, WS-PolicyAttachement, provides a mechanism for associating policy
assertions expressed in WS-Policy to WSDL descriptions and UDDI entries.

4 B2B INTEGRATION FRAMEWORKS

B2B integration frameworks refer to the use of computerized systems for con-
ducting business (e.g., exchanging documents, selling products) among different
partners. They provide functions for defining and integrating business processes
and for supporting interactions with back-end application systems such as ERPs
(Enterprise Resource Planning) [5]. Usually, interactions between partners’ exter-
nal business processes may be carried out based on a specific B2B standard (e.g.,
EDI, RossettaNet). B2B standards include definitions of the format and seman-
tics of messages (e.g., request for quote), bindings to communication protocols
(e.g., HTTP, FTP), business process conversations (e.g., joint business process),
and security mechanisms (e.g., encryption, nonrepudiation).

Web services may be coupled with B2B (Business to Business) integration
frameworks to capture the semantics of documents and business processes. In this
section, we briefly discuss three representative XML-based integration frame-
works, namely, eCO, cXML, and RosettaNet [5, 16].

560 Boualem Benatallah, Olivier Perrin, Fethi A. Rabhi, Claude Godart

eCO aims at providing a means to access services regardless of the standards
and protocols each potential partner adopts. It introduces xCBL (XML Common
Business Library) to define information documents. xCBL consists of a set of
XML core documents that are used to represent common interactions among
partners. It does not target vertical industry domains. Examples of such core doc-
uments are purchase orders, invoices, date, time, and currencies. Partners may use
and extend these documents (e.g., adding new elements) to develop their own doc-
uments. eCO provides some flexibility in the sense that there is no specific set of
predefined document schemas. However, this process may complicate integration
efforts, since partners need to be aware of newly created document schemas.

cXML (Commerce XML) provides an XML-based schema language for
describing business documents. It targets business transactions that involve non-
production Maintenance, Repair, and Operating (MRO) goods and services.
cXML defines a set of XML DTDs to represent documents. It provides the fol-
lowing elements for describing product catalogs: Supplier, Index, and Contract.
The supplier element gives general information about a supplier (e.g., address,
ordering methods). The index element describes the supplier’s inventory (e.g.,
product description, part numbers, classification codes). The contract element
relates to the negotiation agreements between a buyer and a supplier on product
attributes (e.g., price, quantity).

RosettaNet is another B2B integration standard specialized in the areas of
Information Technology, Electronic Components, and Semiconductor
Manufacturing. RosettaNet is based on two dictionaries: the Business Dictionary
and the Technical Dictionary. The Business Dictionary defines vocabulary that
can be used to describe business properties (e.g., business name, address, tax iden-
tifier). An XML-based schema is used for this purpose. The Technical Dictionary
contains properties that can be used to describe characteristics of products (e.g.,
computer parts).

RosettaNet further recognizes the fact that the business processes governing
the interchange of messages must be harmonized and explicitly specified. For this
purpose, the RosettaNet standard defines a number of predefined XML-based
conversation protocols called PIPs (Partner Interface Processes). A PIP essen-
tially consists of a set of business documents (e.g., purchase order, purchase order
acknowledgment) and a set of rules for exchanging messages containing these
documents.

In conclusion, a B2B integration framework describes the semantics and struc-
ture of service data and operations using XML and domain ontologies. Briefly
stated, an ontology defines terms that can be used to describe entities (e.g., service
properties, operations) of a specific domain (e.g., healthcare, finance, travel) and
relationships among terms. In this approach, an organization creates and pub-
lishes the XML documents that describe its offerings, requirements, assumptions,
and terms for doing business. Partners can interact with each other after inspect-
ing, understanding, and using each other’s definitions. This approach allows the
use of services without prior agreement and without the help of external media-
tors. The establishment of a new relationship with existing partners does not
require any additional work for a given partner. This feature is essential to allow
the dynamic formation of trading communities. The business process of the trad-
ing community is specified by the shared document definitions. The partners in

Web Service Computing: Overview and Directions 561

the trading community are interconnected according to the terms of agreed-upon
documents, and the business logic implementation on a partner’s side is invisible
to other trading partners.

5 SERVICE COMPOSITION AND ORCHESTRATION

Web service composition refers to the development of new Web services by
interconnecting existing ones according to some business logic, expressed (for
example) as a business process model. For example, a composite Web service for
travel arrangement could bring together a number of Web services for flight book-
ing, accommodation booking, attractions search, car rental, events booking, etc.
in order to provide “one-stop shopping” for its users. Web service composition is
a key element of the Web services paradigm, since it provides a means to inte-
grate heterogeneous enterprise applications and to realize business-to-business
collaborations.

Orchestration deals with implementation management (what happens behind
interfaces, i.e., process execution). Orchestration is therefore a private process, con-
trolled by one party, and defines steps of an executable workflow. Propositions such
as BPEL and BPML are clearly at this level. Choreography is more about what
happens between interfaces. It can involve static or dynamically negotiated pro-
tocols. In this sense, choreography is a public, abstract process, where conversa-
tions are composed by equals who define sequences of observable messages [24].
In this section, we describe a representative sample of the ongoing efforts in serv-
ice composition, orchestration, and choreography standardization.

5.1 Business Process Execution Language for Web Services
(BPEL4WS)

The Business Process Execution Language for Web Services (BPEL4WS
[Thatte2003]) is a language to model Web service-based business processes. The
core concept is the representation of peer-to-peer interactions between a process
and its partners using Web services and an XML-based grammar. It is built on
top of WSDL (both the processes and partners are modeled as WSDL services).

BPEL4WS – BPEL for short – is a language based on XML that allows con-
trol of the process flow (states, coordination, and exceptions handling) of a set of
collaborating Web services. For that, it defines interactions that exist within and
between organization processes. The language uses either a graph-based or alge-
braic representation, and offers the ability to manage both abstract and exe-
cutable processes. It provides constructs to handle long-running transactions
(LRTs), compensation, and exception by using related standards WS-Transaction
and WS-Coordination.

BPEL offers an interesting feature that allows independent representation of
the interactions between the partners. The interaction protocols are called abstract
processes, and they are specified in business protocols. This concept separates the
external behavior of the partners (public and visible message-exchange behavior)
from their private internal behavior and implementation. Executable processes
are represented using the BPEL meta-model to model the actual behavior using

562 Boualem Benatallah, Olivier Perrin, Fethi A. Rabhi, Claude Godart

the three classical flows: the control flow, the data flow, and the transactional
flow. The meta-model it also includes support for the message flow.

As in traditional flow models, the control flow defines the execution flow as a
directed acyclic graph. The language is designed to combine the block-oriented
notation and the graph-oriented notation. It contains powerful constructors for
modeling structured activities: aggregation, branching, concurrency, loops, excep-
tions, compensations, and time constraints. Links are used to define control
dependencies between two block definitions: a source activity and a target activ-
ity. Activities can be grouped within a scope, and associated with a scope are three
types of handlers: fault handlers, compensation handlers, and event handlers. When
an error occurs, the normal processing is terminated and control is transferred to
the corresponding fault handler. Then a process is terminated when it completes
normally, when a terminate activity is called (abnormal termination), when a
fault reaches the process scope, or when a compensation handler is called.

BPEL basic activities are handled by three types of messages: <invoke> to
invoke an operation on a partner, <receive> to receive an invocation from a part-
ner, and <reply> to send a reply message in partner invocation. One must associ-
ate a partner with each message, thereby prohibiting message exchange between
two internal components for instance. Furthermore, a timeout is not able to be
associated with the <invoke> activity, which could block the system if no
response were returned.

Data flow management is ensured by using scoped variables. Input and out-
put of activities are maintained in variables, and data are transferred between two
(or more) activities thanks to shared data spaces that are persistent across Web
services and global to one scope. The <assign> activity is used to copy data from
one variable to another.

BPEL also proposes a compensation protocol to handle the transaction flow,
particularly long-running transactions. One can define either a fault handler or a
compensation handler. Handlers are associated with a scope: a fault handler
defines alternate execution paths within the scope, while the compensation han-
dler is used to reverse the work performed by an already completed scope.

On collaboration aspects, BPEL is able to model several types of interactions
from simple stateless interactions to stateful, long-running, and asynchronous
interactions. Partner Link Types are used to model partner relationships, and cor-
relation sets represent the conversations, maintaining the state of the interaction.
The choreography of the collaborative business processes is defined as an abstract
process.

For example, given the previous WSDL definitions, we assume for our car
rental example that there are three services: the customer service, the rental serv-
ice, and the credit card service. Here is a simple BPEL process definition, compli-
ant with version 1.1 of June 2003.

<!—Process definition —>
<process name="carRentingProcess"

targetNamespace="http://example.com/bpel/carRenting"
xmlns="http://schemas.xmlsoap.org/bpel/business-process/"
xmlns:rns="http://example.com/wsdl/carRenting">

<!—Partners definition. Defines the WS and roles —>

Web Service Computing: Overview and Directions 563

<!—used by the process. —>
<partners>

<partner name="customer" partnerLinkType="rns:customer"
myRole="customerService"/>

<partner name="rentalOffice" partnerLinkType="rns:rental"
myRole="rentalRequestor" partnerRole="rentalService"/>

<partner name="CCChecker" partnerLinkType="rns:credit"
myRole="creditRequestor" partnerRole="creditService"/>

</partners>

<!—Variables definition. Defines messages sent —>
<!— and received from partners. —>
<variables>

<variable name="rentalOrder"
messageType="rns:rentalOrderMessage"/>

<variable name="rentalFee"
messageType="rns:rentalFeeMessage"/>

<variable name="rentalFault"
messageType="rns:rentalFaultType"/>
</variables>

<!—Data manipulation. In the process, data can be —>
<!—copied and manipulated between variables.—>
<assign>

<copy>
<from variable="rentalOrder" part="customerInfo"/>
<to variable="creditCardRequest" part="customerInfo"/>

</copy>
</assign>
<!—Sequence including two flows, one for checking —>
<!—inventory, second for checking customer account —>
<sequence>

<receive partnerLink="customer"
portType="rns:rentalOrderPT"
operation="sendRentalOrder" variable="rentalOrder"
createInstance="yes" />

<flow>
<invoke partnerLink="rentalOffice"

portType="rns:rentalInventoryPT"
operation="checkINV" inputVariable="rentalRequest"
outputVariable="rentalResponse" />

<invoke partnerLink="CCChecker" portType="rns:creditPT"
operation="checkCRED" inputVariable="creditRequest"
outputVariable="creditResponse" />

</flow>
...
<reply partnerLink="customer"

portType="rns:rentalOrderPT"

564 Boualem Benatallah, Olivier Perrin, Fethi A. Rabhi, Claude Godart

operation="sendRentalOrder" variable="rentalFee"/>
</sequence>
</process>

5.2 Web Service Choreography Interface (WSCI)

The WSCI specification [2] proposed by Sun, SAP, BEA, and Intalio, is an
XML-based language for describing the observable behavior of a Web service
during a message exchange in the context of a collaborative business process. This
language enables users to describe the sequence of Web service invocations, i.e.,
the conditions under which an operation can be invoked. The specification is
mainly concerned with public message exchanges among Web services, and it sup-
ports message correlation, sequencing rules, exception handling, and transac-
tions. Since WSCI defines the flow of messages exchanged by a stateful Web
service describing its observable behavior, it does not directly address the issue of
supporting executable business processes, as BPEL does. A WSCI document
defines only one partner’s participation in a message exchange, including the
specification of temporal constraints and logical dependencies using constructs
to express the flow chart and conditional correlation. Thus, other Web services
can unambiguously interact with it according to the intended collaboration.
Therefore, a collaboration is described using a set of WSCI documents, one for
each partner. There is no private workflow nor global cooperation business
process. A WSCI interface is built on top of a WSDL interface that defines state-
less operations supplied by a Web service. Therefore, a WSCI interface can be
regarded as an augmented WSDL interface that includes operation abstraction,
simple sequencing (call, delay, empty, fault, and spawn), message correlation, and
properties based on message contents. An action in WSCI maps to a WSDL oper-
ation and to a role to perform it. This corresponds to a basic activity in BPEL.
A second level aims at defining exceptions, transactions, and compensating trans-
actions, and offers rich sequencing rules: loops, branches, joins, and nested activ-
ities (all, choice, foreach, sequence, switch, until, and while). Thus, a stateless
WSDL description can be transformed into a stateful message exchange using
WSCI. This corresponds to structured activities in BPEL. However, WSCI does
not define a transactional protocol but only exposes the transactional capacities
of Web services in a collaboration. An extensibility feature of WSCI suggests
using RDF to annotate a WSCI interface definition with additional semantics.

5.3 Business Process Management Language (BPML)

BPML [4] from BPMI (Business Process Management Initiative) is a language
that provides an abstract model and grammar for describing business processes.
BPML allows the definition of both abstract and executable processes, Web serv-
ices orchestration, and multi-partners collaboration choreography BPML can be
used to develop a private implementation of already existing WSCI collabora-
tions. In fact, BPML is more or less at the same level as BPEL and can be used
to define a series of activities that a business process performs using a block-
structured language. An activity is a component performing a specific func-
tion, and atomic activities can be composed into complex activities. A BPML

Web Service Computing: Overview and Directions 565

specification extends WSCI activity types, adding assign, raise, and synch.
A process is a complex activity that can be invoked by other processes. The lan-
guage includes three process types: nested processes (a process that is defined to
execute within another process, such as WfMC nested processes), exception
processes to handle exceptional conditions, and compensation processes to sup-
port compensation logic. An activity executes within a context, which is similar
to a BPEL scope. A context is an environment for execution that allows two activ-
ities: (1) definition of a common behavior, e.g., coordination of the execution
using signals (such as the raise or synchronize signal) and (2) sharing of proper-
ties (data flow exchange between activities). A context is transmitted from a par-
ent to a child, and it can be nested. The language includes a logical process model
to express concurrency, loops, or dynamic tasks. The process instantiation is
based on the receipt of a message, either in response to a system event and sched-
uling or invoked from an activity (called or spawned).

5.3.1 ebXML and the Business Process Specification Schema (BPSS)

ebXML (Electronic Business using eXtensible Markup Language) is a global
electronic business standard envisioned to define an XML-based framework that
will allow businesses to find each other and conduct business using well-defined
messages and standard business processes [OASIS and UN/CEFACT]. The
ebXML Business Process Specification Schema (BPSS) is part of the ebXML
framework B2B suite of specifications aimed at representing models for collabo-
rating e-business public processes. Using XML syntax, BPSS describes public
business processes as collaborations between roles, where each role is an abstrac-
tion of a trading partner. It also defines relationships and responsibilities. Being
abstract, a definition is reusable, since it only defines the exchange of information
between two or more partners – business documents and business signals. A busi-
ness process includes business collaborations, which are a choreographed set of
business transaction activities. There are two types of collaborations: binary col-
laborations between two roles, and multiparty collaborations between three or
more roles. Multiparty collaborations are decomposed into binary collaborations.

BPSS does not use WSDL to describe services. Instead, BPSS process models
contain service interface descriptions and capabilities for each role. A partner can
declare its support for a given role (service interfaces) in a ebXML CPP –
Collaboration Protocol Profile, which serves two purposes. Firstly, it supports
messaging exchange capabilities, i.e., specific asynchronous request and response
operations, each with a defined message content. ebXML uses SOAP with
attachments to manage XML document types and MIME attachments. Secondly,
it supports generic acknowledgment and exception messages, which allows for
reliable and secure messaging service management, e.g., authorization, encryp-
tion, certification and delivery. In BPSS, there is no explicit support for describ-
ing how data flows between transactions. Instead, BPSS assigns a public control
flow (based on UML activity graph semantics) to each binary collaboration. The
control flow describes the sequencing of business transactions between the two
roles. It can specify sequential, parallel, and conditional execution of business
transactions. In addition, BPSS supports a long-running business transaction
model based on transaction patterns. A business transaction consists of a request

566 Boualem Benatallah, Olivier Perrin, Fethi A. Rabhi, Claude Godart

and an optional response. Each request or response may require a receipt
acknowledgment. Time constraints can be applied on messages and/or acknowl-
edgments. If a transaction fails, the opposite side is notified so that both sides can
decide on the actions that need to be taken. Transactions are not nested, and there
is no support for specifying compensating transactions, so a business transaction
either succeeds or fails completely. BPSS handles exceptions by defining a num-
ber of possible exceptions and prescribing how these are communicated and how
they affect the state of the transaction. Then BPSS provides explicit support for
specifying quality-of-service semantics for transactions such as authentication,
acknowledgments, nonrepudiation, and timeouts.

5.4 WSCL

Web Services Conversation Language (WSCL) is a proposition from Hewlett-
Packard related to previous work on e-Speak. WSCL is an XML vocabulary that
offers the ability to define the external behavior of the services by specifying the
business-level conversations between Web services. One of the main design goals
of WSCL is simplicity. As such, WSCL provides a minimal set of concepts nec-
essary for specifying the conversations. A WSCL document specifies three parts:
the XML schemas that correspond to the XML documents being exchanged as
part of the conversation, the conversation description (the order in which docu-
ments are exchanged), and the description of the transactions from one conver-
sation to another. In contrast with BPEL or BPML, WSCL does not specify how
the content of the exchanged messages is created. The specification states that
typically the conversation description is provided from the perspective of the serv-
ice provider; however, if can also be used to determine the conversation from the
perspective of the user. Although the conversation is defined from the service
provider’s perspective, WSCL separates the conversational logic from the appli-
cation logic or the implementation aspects of the service.

6 TRENDS AND OPEN PROBLEMS

Despite the growing interest in Web services, several issues still need to be
addressed in order to provide similar benefits to what traditional middleware
brings to intraorganizational application integration. Indeed, EAI middleware
provides much more than basic features such as service description, discovery,
and invocation. In order for Web service technologies to scale to the Internet, sev-
eral research issues still need to be addressed, including service composition,
dependability, privacy, quality of service, mobility, and semantics.

6.1 Process-based integration of services

In spite of the potential opportunities, B2B integration solutions are mainly
used by large organizations. One of the main reasons is that the development of
integrated services is still, by and large, hand coded, time consuming, and depend-
ent on a considerable low-level programming effort. The integration process is made
harder by the fact that the components of integrated service may be heterogeneous,

Web Service Computing: Overview and Directions 567

distributed, and autonomous. Developers typically are required to have intimate
knowledge of the underlying communication protocols, data formats, and access
interfaces. In addition, B2B service integration requires flexibility in order to adapt
dynamically adapt to changes that may occur in partners’ applications. Businesses
must be able to respond rapidly to both operational changes (e.g., increases in a
server’s load) and market environment changes (e.g., new regulations), which are
not easily predictable.

The extension of traditional business process modeling techniques so as to
streamline B2B service integration is a natural step in this direction. Indeed, sev-
eral standardization efforts for process-based integration of Web services are
emerging (e.g., BPEL4WS, WSCI, and ebXML BPSS). The momentum gained
by the Web services paradigm is reflected by the large number of software devel-
opment tools that support, or claim to support, the Web services standards.
However, the tools and products that efficiently support service composition
are still far from mature. The rest of this section provides a quick overview of
existing tools and prototypes.

eFlow [6] and CMI (Collaboration Management Infrastructure) [25] are two
representative prototype systems for (Web) service composition. Both CMI and
eFlow advocate the specification of composite services by using a process
model. While CMI argues for the use of state machines to describe the behavior
of composite services, eFlow suggests the use of graphs in which the nodes
denote invocations to service operations and the edges denote control-flow
dependencies. eFlow further introduces the concept of a search recipe: a query
that is evaluated at run-time (i.e., during the execution of the composite service)
in order to retrieve the service that will execute a given service operation. A sim-
ilar concept is introduced in CMI as well, where it is termed placeholder. Search
recipes and placeholders provide a mechanism for run-time service selection
(see also [9]).

More recently, SELF-SERV [3] has taken the ideas of eFlow and CMI fur-
ther by refining the concepts of a placeholder/search recipe into that of a com-
munity (or container). A community is an abstract definition of a service
capability that contains a set of policies for managing membership in the com-
munity and selects at run-time the service that will execute a given service invo-
cation on behalf of the community. Policies for run-time selection of services are
formulated using multiattribute value functions. In addition, SELF-SERV advo-
cates a peer-to-peer model for orchestrating a composite service execution in
which the control and data-flow dependencies encoded in a composite service
definition are enforced through software components located in the sites of the
providers participating in a composition. This peer-to-peer orchestration model,
which has its roots in the Mentor distributed workflow engine [20], is an alter-
native to a centralized model in which the execution is controlled by a central
scheduler. From an architectural point of view, Web service composition systems
such as eFlow and SELF-SERV provide (1) a tool for designing composite serv-
ices and translating these designs into an XML-based representation, (2) a tool
for assisting the deployment of composite services, and (3) a runtime environ-
ment for orchestrating the execution of composite service instances and for
handling service selection.

568 Boualem Benatallah, Olivier Perrin, Fethi A. Rabhi, Claude Godart

6.2 Dynamic and scalable orchestration of services

The number of services to be integrated may be large and continuously chang-
ing. Consequently, if the development of an integrated service requires identify-
ing, understanding, and establishing interactions among component services
at service-definition time, that approach is inappropriate. Instead, divide-and-
conquer approaches should be adopted, whereby services providing similar capa-
bilities (also called alternative services) are grouped together, and these groups take
over some of the responsibilities of service integration (e.g., the dynamic discovery
of services, based on their availability, characteristics, organizational policies, and
resources, that are needed to accomplish the integrated service). In addition, in
existing techniques, eventhough the components that contribute to an integrated
service can be distributed, they are usually centrally controlled. Given the highly
distributed nature of services, and the large number of network nodes that are
capable of service execution, novel mechanisms involving scalable and completely
decentralized execution of services will become increasingly important.

6.3 Dependable integration of Web services

Traditional transaction management techniques are not appropriate in the
context of composite services because the components of such services may be
heterogeneous and autonomous. They may not be transactional, and even if they
are, their transactional features may not be compatible with each other. In addi-
tion, for different reasons (e.g., quality of service), component services may not
be willing to comply with constraints such as resource locking until the termina-
tion of the composite service execution (as in traditional transaction protocols).
Therefore, new transaction techniques are required in the context of Web services.
For instance, it is important to extend the description of services by explicitly
describing transactional semantics of Web service operations (e.g., specify that an
operation can be aborted without effect from a requester’s perspective). It is also
important to extend service composition models to specify transactional seman-
tics of an operation or a group of operations (e.g., specify how to handle the
unavailability of a component service). For instance, at the composite service
level, we may specify that, if a service is unavailable, we should try to find an alter-
native service. The effective handling of transactional aspects at the composite
service level depends on exploiting the transactional capabilities of the partici-
pating services.

6.4 Privacy in Web services

In applications such as digital governments, there are services that are respon-
sible for collecting data from users and from other services—for instance, those
that represent organizations. In real life, privacy policies prevent providers from
disclosing data to nonauthorized users or services. There are several issues here:
for instance, privacy policy specification for composite services and the privacy-
preserving composition of services. If services are going to be used in critical
applications, they must provide support for controlling and monitoring violations

Web Service Computing: Overview and Directions 569

of privacy policies and service-level agreements. For instance, it is important to
look at possible inference techniques (e.g., data mining) and to ensure that pri-
vacy is not violated by using these techniques (e.g., aggregation of data from
different services and inference of privacy-protected data).

6.5 Web services in mobile environments

The explosive growth of interconnected computing devices (e.g., PDAs, wire-
less technologies) has created new environments where ubiquitous information
access will be a reality. In particular, Web services are poised to become accessible
from mobile devices.

Existing service provisioning techniques are inappropriate to cope with the
requirements of these new environments. Several obstacles still hinder the seam-
less provisioning of Web services in mobile environments, including the through-
put and connectivity of wireless networks, the limited computing resources of
mobile devices, and the frequency of disconnections. Examples of critical issues
follow.

● Context-sensitive service selection. In addition to criteria such as monetary
cost and execution time, service selection should take into account the loca-
tion of requesters and services and the capabilities of the computing resources
on which services are executed (e.g., CPU, bandwidth). This context-aware
service selection calls for policies that enable the system to adapt itself to
different computing and user requirements.

● Handling disconnections during service execution. In a mobile environment, dis-
connections are frequent. The various causes include discharged batteries, a
change of location, or a request from the user to minimize communication
costs. To cope with issues related to client or provider disconnection during a
service execution, agent-based service composition middleware architecture
may be appropriate. In [16], an architecture in which users and services may be
represented by delegate agents is proposed. This architecture contains discon-
nection control policies related to requesters and providers. For example, a del-
egate agent may be used to collect execution results during disconnection of
the user’s device and then return these results to the user upon reconnection.

Tuple Spaces are a promising technology for delivering Web services to mobile
devices [12]. Indeed, Tuple Spaces provide an effective mechanism for handling
two-way asynchronous communications between clients and servers, as opposed to
the one-way asynchronous communication mechanism provided by Message-
Oriented Middleware (MOM), in which only the server can handle requests asyn-
chronously through its message queue (Section 3). However, more research and
development is needed in order to bring Tuple Spaces and other blackboard-based
middleware (e.g., JavaSpaces) to the level of maturity and adoption of MOM.

6.6 Optimal QoS-driven service selection

During development of a composite service, the exact set of services to be
integrated may not be known at design time. Consequently, approaches are

570 Boualem Benatallah, Olivier Perrin, Fethi A. Rabhi, Claude Godart

inappropriate in which development of an integrated service requires identifying,
understanding, and establishing interactions among component services at design
time. Instead, divide-and-conquer approaches should be adopted, whereby serv-
ices providing similar capabilities (i.e., interoperable services) are grouped
together. Services within a group (e.g., “tax declaration services”) can then be dif-
ferentiated statically or at invocation time with respect to organizational and
Quality of Service (QoS) parameters such as price, availability, reliability, sup-
ported policies, etc. The result of this “grouping” process is that each service
operation required by a composite service is potentially provided by multiple
interoperable Web services but with different organizational and QoS attributes.
The challenge is then to be able to select (especially at run-time), among all the
possible alternatives for executing a composite Web service, those that would sat-
isfy certain constraints and maximize certain preferences set by the user for that
particular execution. Research in the area of optimal runtime selection of serv-
ices is under way (see, for example, [31]), but there are still many open issues, such
as how to quantitatively compare service offers described in terms of different
sets of attributes.

6.7 Semantic Web services

Another effort worth mentioning in the general context of Web technologies
is the Semantic Web. The Semantic Web aims at improving the technology that
organizes, searches, integrates, and evolves Web-accessible resources (e.g., Web
documents, data) by using rich and machine-understandable abstractions for the
representation of resources semantics. Efforts in this area include the develop-
ment of ontology languages such as RDF and OWL [30.]. By leveraging efforts
in both Web services and the Semantic Web, the Semantic Web services paradigm
promises to take Web technologies a step further by providing foundations to
enable automated discovery, access, combination, and management of Web serv-
ices. Efforts in this area are focusing on providing rich and machine-understand-
able representation of service properties, capabilities, and behavior, as well as
reasoning mechanisms to support automation activities [21]. Examples of such
efforts include DAML-S [8], WSMF (Web Services Modeling Framework) [11],
and METEOR-S [26]. However, this work is still in its infancy, and many of the
objectives of the Semantic Web services paradigm, such as service capability
description, dynamic service discovery, and goal-driven composition of Web serv-
ices still remain to be reached. In particular, service ontologies are needed that
would capture both functional (i.e., capability related) and nonfunctional attrib-
utes (e.g., price, payment, time, location) [22].

SUMMARY

Web services promise to revolutionize the way in which applications interact
over the Web. However, the underlying technology is still in a relatively early stage
of development and adoption. While the core standards such as XML, SOAP,
and WSDL are relatively stable and are supported in various ways by a number of
tools, the standardization efforts in key areas such as security, reliability, policy

Web Service Computing: Overview and Directions 571

description, and composition are still under way. The tools supporting these emerg-
ing standards are also still evolving. In addition (or perhaps as a consequence), rel-
atively few production-level Web services have been deployed and are being used in
practice.

To some extent, these difficulties can be explained by the fact that businesses
have already spent considerable resources in the last few years to expose their sys-
tems’ functionality as interactive Web applications. As a result, they are reluctant
to invest more to move this functionality into Web services until the benefits of
such a move are clearer. It will probably take another two years before the tech-
nology reaches the level of maturity necessary to trigger a widespread adoption
[27]. In the meantime, it is important that middleware platform developers inte-
grate the numerous facets of Web services into their products (e.g., facilitating the
use of message-oriented middleware for Web service development), while
researchers advance the state of the art in challenging issues such as Web service
delivery in mobile environments, QoS-driven selection of services, and manipula-
tion of semantic-level service descriptions.

REFERENCES

[1] G. Alonso, F. Casati, H. Kuno and V. Machiraju (2003): Web Services.
Springer Verlag.

[2] BEA Systems, Intalio, SAP, Sun Microsystems (2002): Web Service
Choreography Interface (WSCI) 1.0, http://www.w3.org/TR/wsci.

[3] B. Benatallah, Q.Z. Sheng, M. Dumas (2003) The Self-Serv Environment for
Web Services Composition. IEEE Internet Computing, 7(1), 40–48.

[4] BPMI, BPML: Business Process Modeling Language 1.0 (2002),
http://bpmi.org/bpml-spec.esp.

[5] C. Bussler (2003): B2B Integration: Concepts and Architecture, Springer.
[6] F. Casati and M.C. Shan (2001) Dynamic and Adaptive Composition of

E-Services. Information Systems, 26(3), 143–162.
[7] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, S. Weerawarana (2002),

Unraveling the Web Services Web. IEEE Internet Computing 6(2), 86–93.
[8] DAML-S Consortium (2001), DAML Services, http://www.daml.org/services
[9] M. Devarakonda, A. Mukherjee, and B. Kish (1995): Meta-Scripts as a

Mechanism for Complex Web Services. In Proceedings of the 5th Workshop
on Hot Topics in Operating Systems (HotOS), Orcas Island, WA, USA, May
1995. IEEE Computer Society.

[10] C. Evans, et al. (2003): Web Services Reliability (WS-Reliability) Version 1.0.
http://www.sonicsoftware. com/docs/ws_reliability.pdf

[11] D. Fensel, and C. Bussler (2002) The Web services modelling framework
WSMF. Electronic Commerce Research and Application, 1(2), 113–137.

[12] M. Fontoura, T. Lehman and Y. Xiong (2003): TSpaces Services Suite:
Automating the Development and Management of Web Services. In
Proceedings of the Alternate Tracks of the 12th International Conference on
the World Wide Web (WWW), Budapest, Hungary, May 2003.

572 Boualem Benatallah, Olivier Perrin, Fethi A. Rabhi, Claude Godart

[13] M. Hondo, and C. Kaler, (eds) (2002): Web Services Policy Framework (WS-
Policy) Microsoft. http://www-106.ibm.com/developerworks/library/
ws-polfram

[14] C. Kaler, (ed) (2002): Web Services Security (WS-Security), Version 1.0.
http://www-106.ibm.com/developerworks/library/ws-secure

[15] D. Langworthy, (ed) (2003): Web Services Reliable Messaging Protocol (WS-
ReliableMessaging). http://xml.coverpages.org/ws-reliablemessaging
20030313. pdf

[16] Z. Maamar, Q.Z. Sheng, B. Benatallah (2004): On composite Web services
provisioning in an environment of fixed and mobile computing resources.
Information Technology and Management, 5(3), in press.

[17] B. Medjahed, B. Benatallah, A. Bouguettaya, et al. (2003) Business-to-
Business Interactions: Issues and Enabling Technologies. The VLDB
Journal, Springer, 2003.

[18] Microsoft, BEA, and IBM (2002a.): Web Services Coordination (WS-
Coordination).

[19] Microsoft, BEA, and IBM (2002b.): Web Services Transaction (WS-
Transaction).

[20] P. Muth, D. Wodtke, J. Weissenfels, A.K. Dittrich, G. Weikum (1998):
From Centralized Workflow Specification to Distributed Workflow
Execution. Journal of Intelligent Information Systems 10(2), Kluwer
Academic Publishers.

[21] S. Narayana and S. McIlraith (2002): Simulation, verification and auto-
mated composition of Web services. Proceedings of the 11th International
World Wide Web Conference, May 2002, Honolulu, USA. ACM Press.

[22] J. O’Sullivan, D. Edmond and A. ter Hofstede (2002): What’s in a service?
Distributed and Parallel Databases 12(2/3), 117–133.

[23] OASIS and UN/CEFACT. Electronic Business XML (ebXML).
http://www.ebxml.org

[24] C. Peltz, Web Service Orchestration, HP white paper http://devresource.hp.
com/drc/technical_white_papers/WSOrc h/WSOrchestration.pdf

[25] H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker (2000):
Modeling and Composing Service-Based and Reference Process-Based
Multi-enterprise Processes. In Proceedings of the International Conference
on Advanced Information Systems (CAiSE), Stockholm, Sweden,
pp. 247–263. Springer.

[26] K. Sivashanmugam, K. Verma, A. Sheth and J. Miller (2003): Adding
Semantics to Web Services Standards. In Proceedings of the 12th International
Semantic Web Conference (ISWC), Sanibel Island, FL, USA, Springer.

[27] B. Sleeper, and B. Robins (2002): The Laws of Evolution: A Pragmatic
Analysis of the Emerging Web Services Market. Stencil Group
Analysis Memo. http://www.stencilgroup. com/ideas_scope_200204evolu-
tion.html

[28] S. Thatte, (ed) (2003): Business Process Execution Language for Web
Services version 1.1. http://dev2dev.bea.com/techtrack/BPEL4WS.jsp.

[29] W3 Consortium (2001a.): Web Services Description Language (WSDL) 1.1.
Note, W3C. http://www.w3.org/TR/wsdl.

Web Service Computing: Overview and Directions 573

[30] W3 Consortium (2001b.): Semantic Web Activity, http://www.w3.org/2001/sw
[31] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q.Z. Sheng (2003):

Quality Driven Web Services Composition. In Proceedings of the
International Conference on the World Wide Web (WWW).

574 Boualem Benatallah, Olivier Perrin, Fethi A. Rabhi, Claude Godart

Chapter 18

PREDICTING GRID RESOURCE
PERFORMANCE ONLINE
Rich Wolski,1 Graziano Obertelli,1 Matthew Allen,1 Daniel
Nurmi,1 and John Brevik1

1University of California, Santa Barbara

In this chapter, we describe methods for predicting the performance of
Computational Grid resources (machines, networks, storage systems, etc.) using
computationally inexpensive statistical techniques. The predictions generated in
this manner are intended to support adaptive application scheduling in Grid
settings, as well as online fault detection. We describe a mixture-of-experts
approach to nonparametric, univariate time-series forecasting, and detail the
effectiveness of the approach using example data gathered from “production”
(i.e., nonexperimental) Computational Grid installations.

1 INTRODUCTION

Performance prediction and evaluation are both critical components of the
Computational Grid [20, 8] architectural paradigm. In particular, predictions
(especially those made at run time) of available resource performance levels can be
used to implement effective application scheduling [13, 38, 42, 12, 43, 9]. Because
Grid resources (the computers, networks, and storage systems that make up a
Grid) differ widely in the performance they can deliver to any given application,
and because performance fluctuates dynamically due to contention by competing
applications, schedulers (human or automatic) must be able to predict the deliv-
erable performance that an application will be able to obtain when it eventually
runs. Based on these predictions, the scheduler can choose the combination of
resources from the available resource pool that is expected to maximize performance
for the application.

Making the performance predictions that are necessary to support scheduling
typically requires a compositional model of application behavior that can be
parameterized dynamically with resource information. For example, consider the

problem of selecting the machine from a Grid resource pool that delivers the
fastest execution time for a sequential program. To choose among a number of
available target platforms, the scheduler must predict the execution speed of the
application code on each of the platforms. Grid infrastructures such as Globus
[19, 15] provide resource catalogs in which static and therefore precisely known
attributes (such as CPU clock speed) are recorded. As such, the simplest
approach to selection of the best machine is to query the catalog for all available
hosts and then choose the one with the fastest clock rate.

There are several assumptions that underlie this simple example. One
assumption is that the clock speeds of the various available CPUs can be used
to rank the eventual execution speeds of the program. Clock speed correlates
well with execution performance if the machine pool is relatively homogeneous.
One of the basic tenets of the Grid paradigm, however, is that a wide variety of
resource types is available. If, in this example, a floating-point vector processor
is available, and the application vectorizes well, a slower-clocked vector CPU
could outperform a faster general-purpose machine, making clock speed an
inaccurate predictor of application performance. Conversely, if a scalar integer
code is applied, a high-clock-rate vector machine might underperform a slower
commodity processor.

A second assumption is that the CPU is the only resource that needs to be con-
sidered as a parameter in the application model. If the input and output require-
ments for the program are substantial, the cost of reading the inputs and
generating the outputs must also be considered. Generating estimates of the time
required for the application to perform I/O is particularly difficult in Grid set-
tings, since the I/O usually traverses a network. While static CPU attributes (e.g.,
clock speed) are typically recorded for Grid resources, network attributes and
topology are not. Moreover, at the application level, the required network per-
formance estimates are end-to-end. While it is possible to record the performance
characteristics of various network components, composing those characteristics
into a general end-to-end performance model has proved challenging [36, 16, 53,
17, 6, 30, 37].

However, even if a model is available that effectively composes application
performance from resource performance characteristics, the Grid resource pool
cannot be assumed to be static. One of the key differentiating characteristics of
Computational Grid computing is that the available resource pool can fluctuate
dynamically. Resources are federated to the Grid by their resource owners, who
maintain ultimate local control. As such, resource owners may reclaim their
resources or may upgrade or change the type and quantity of resource that is
available, etc., making “static” resource characteristics (e.g., the amount of mem-
ory supported by a machine) potentially time varying.

Even if resource availability is slowly changing, resource contention can cause
the performance, which can be delivered to any single application component, to
fluctuate much more rapidly. CPUs shared among several executing processes
deliver only a fraction of their total capability to any one process. Network per-
formance response is particularly dynamic. Most Grid systems, even if they use
batch queues to provide unshared, dedicated CPU access to each application, rely
on shared networks for intermachine communication. The end-to-end network
latency and throughput performance response can exhibit large variability in both

576 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

local-area and wide-area network settings. As such, the resource performance
that will be available to the program (the fraction of each CPU’s time slices, the
network latency and throughput, the available memory) must be predicted for the
time frame that the program will eventually execute.

Thus, to make a decision about where to run a sequential program given a
pool of available machines from which to choose, a scheduler requires

● a performance model that correctly predicts (or ranks) execution performance
when parameterized with resource performance characteristics, and

● a method for estimating what the resource performance characteristics of the
resources will be when the program executes.

In this chapter, we focus on techniques and a system for meeting the latter
requirement. In particular, we discuss our experiences in building and deploy-
ing the Network Weather Service (NWS) [52, 49, 50, 35]—a robust and scalable
distributed system that monitors and predicts resource performance online.
The predictions made by the NWS are based on real-time statistical analyses
of historically observed performance measurement data. Typically deployed as
a Grid middleware service, the system has been used extensively [38, 12, 48, 3,
41, 51, 43, 9] to provide resource performance forecasts to Grid schedulers. In
this chapter, we describe the architecture of the NWS, the statistical techniques
that have proved successful from our collaborations with various Grid sched-
uling projects, and some of the lessons we have learned from building and
deploying a Grid information system capable of managing dynamic data in
real time.

2 REQUIREMENTS FOR GRID PERFORMANCE
MONITORING AND FORECASTING

As a Grid service, the NWS (as well as any other system that serves dynamically
changing performance data) must meet a demanding list of requirements. The sys-
tem must be able to run continuously so that it can gather a history of available per-
formances from each monitored resource. At the same time, the fluctuations in
performance and availability that it is tracking cannot impede its function. Network
failures, for example, cannot cause NWS outages, even though the NWS may be
using those network links that have failed to gather and serve performance data.

The performance monitoring system must also avoid introducing false corre-
lations between measurements. For example, the typical method for measuring
host availability is to use some form of “heartbeat” message to renew a soft-state
availability registration [21]. Hosts send a message periodically to a central server
to indicate their availability, and missing heartbeats indicate host failure. While this
architecture method is robust if the central server is running on a highly available
system, it inextricably convolves network failure and host failure. That is, a miss-
ing heartbeat or set of heartbeats could be because the host has failed, or because
the network linking the host to the central server has failed. For hosts within a
cluster, the problem is especially acute. If the network partitions between a clus-
ter and the soft-state registration server, the cluster hosts will appear to have

Predicting Grid Resource Performance Online 577

failed when, in fact, they can communicate with each other and with any hosts on
the same side of the partition.

Grid performance monitoring systems themselves necessarily have the most
restrictive performance requirements of all Grid services. If client applications
and services are to use the performance data served by the performance system,
in some sense the system must run “faster” than these clients so that the needed
data are immediately available. If they are not, clients may waste more time wait-
ing for performance data from the resources they intend to use than they will gain
from having the performance data in the first place. That is, the data must be gath-
ered and served in time to be useful. Few other Grid services must operate under
such restrictive performance deadlines.

Moreover, the standard technological approaches that have been developed
for serving data across a network typically are not optimized to handle dynami-
cally changing data. Most extant systems are designed under the assumption that
the rate of queries for the data is substantially higher than the rate at which the
data change. For static resource attributes such as processor type, operating sys-
tem and revision level, static memory capacity, etc. this assumption is reason-
able. As an example, queries for operating system type and revision level (which
are critical to support for automatic resource discovery) should occur at a higher
rate than the administrative OS upgrade frequency in any reasonable setting.
However, when historical resource performance is to be used to gauge resource
suitability, particularly with respect to load and availability, the opposite data
access pattern is typical. Resources update the information base with periodic
performance measurements much more frequently than queries are made. Thus
query-optimized systems, if not architecturally structural to support more fre-
quent updates than queries, may have trouble coping with the update load intro-
duced by the need to constantly gather performance measurements.

The need to monitor Grid resources constantly without perturbing those
resources requires the monitoring system to be ubiquitous yet mostly invisible to users
and administrators. Further, a resource monitoring process that has a noticeable
impact on running applications will not and should not be tolerated. These issues
imply a monitoring system that is powerful enough to provide useful information and
yet lightweight enough to not have significant impact on resource performance.

Finally, the Grid performance information system must be able to meet the
daunting engineering challenges described in this section at a relatively large
scale. While the debate about the feasibility of Internet-wide Grid computing
continues, at present Grid systems containing tens of thousands of hosts gener-
ating millions of individual performance histories are being deployed. To be effec-
tive, Grid performance monitoring systems must be able to operate at least on this
scale, in the wide area, while respecting the constraints placed upon resource
usage by each resource owner.

3 THE NETWORK WEATHER SERVICE
ARCHITECTURE

It is, perhaps, easiest to think of the NWS as a Grid application designed to
measure performance and service availability. Resource sensors must be deployed

578 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

and executed on a large, heterogeneous, and distributed set of resources with
widely varying levels of responsiveness and availability. Due to the volatile nature
of Grid environments, the NWS is necessarily designed to be portable and scala-
ble, with functional mechanisms for load balancing, redundancy, and failure han-
dling. In this section, we describe the individual components of the NWS as well
as the mechanisms that have enabled it to be successfully deployed on Grid archi-
tectures around the world and to be compatible with or to work within the most
common Grid infrastructures (Condor [46], Globus [19, 15], GrADS [7, 23], etc.).

The NWS is composed of three persistent components and a suite of user
interface tools. The set of persistent entities that compose a minimal NWS instal-
lation includes one of each of the following: nameserver, memory, and sensor.
NWS installations typically include many sensor components, one on each
machine that is to be monitored. An installation also includes one or more mem-
ory processes, depending on the scale of the installation, and a single nameserver.
Each sensor process is responsible for gathering resource information, which is
then stored over the network to a memory, the location of which is registered in
the nameserver along with other system control information. The relationship
between these components is shown in Figure 18.1, and will be more thoroughly
explained in the following subsections.

In addition to these persistent components, NWS installations include inter-
face tools that allow users to search, extract, and request forecasts of measure-
ment data. Tools also exist that allow an NWS administrator to control the
running state of the entire installation from a single point on the network.
These tools are covered in depth at the end of this section.

Predicting Grid Resource Performance Online 579

N
W

S
 A

P
I

F
orecaster

C
ache

Replicated
Nameservers

Resource Monitors

DB

FS

nameserver

nameserver

GrADS

XML

NPACI
memory

memory

memory Globus

sensor

sensor

sensor sensor

sensor

C
P

U

N
etw

ork

A
vailability

M
em

ory

sensor

Figure 18.1. Overview of an example NWS installation.

3.1 Nameserver

The nameserver can be considered to be the phone book of the NWS—it
keeps a record of every host and activity in the system. As a single source of
control and information, NWS users and other NWS entities use the name-
server and stored registrations to perform lookup, search, store, and many
other control tasks. Essentially, if an activity, host, or process exists in an NWS
installation, information about it can be gleaned from the data stored in the
nameserver.

Although there can be multiple nameserver processes, there is only one logical
nameserver for each NWS installation. All other NWS components such as mem-
ories and sensors are in periodic contact with the nameserver to keep the view of
the system current and controllable.

To combat the inevitable downtime of a nameserver or of a machine on
which a nameserver is running, a robust failover mechanism has been built into
the system. In order to provide robustness, the nameserver is architecturally
structured with mirroring capabilities: two or more nameservers, on separate
hosts, can be directed to keep their data synchronized. In this case, every update
request coming to one nameserver will be forwarded to all others. The name-
servers also implement a queue of update requests to tolerate temporary net-
work failures. Nameservers that fail permanently are removed from the
mirroring process.

The primary datum kept by the nameserver is called a registration. Each reg-
istration is a set of flexible key/value attribute pairs, with only a few keys required
to construct a valid registration. The required keypairs in every registration are
name, objectclass, timestamp, and expiration. The former two are used to describe
the type of registration and are provided by the registering host, and the latter
two are used for management and are added by the name-server upon receipt.
The nameserver offers fast search capabilities and updates on the registrations by
keeping them ordered in memory and periodically saving a backup to stable stor-
age. Apart from the required keypairs, NWS hosts are free to add new attributes
containing whatever control information they require to operate.

Of the required keypairs, objectclass is the highest level and the only key-pair
that defines the content of the registration itself. Currently, objectclass supports
the following values and additional information:

● nwsHost. Every host registers itself with the nameserver. hostType indicates
whether the NWS host is a memory nameserver of the sensor; ip Address is the
ip address of the nwsHost, as reported by gethostbyname or forced from
the command line; port is the TCP port on which the host is listening; started
is the time when the host was executed; owner is the login name of the user that
started the host; version is the NWS version; and flags are the options passed
to configure upon NWS compilation flags. Other keypairs reflect specific host
details (systemType, releaseName, machineArch, CPUCount, etc.).

● nwsSkill. Every NWS sensor registers a list of its capabilities (called skills). It
contains the skillName, the option that can be used when starting an activity, and
an informative list of what the options take as arguments (integer, string, . . .).

580 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

● nwsControl. Currently there are two different controls defined by the
controlName: periodic and clique. This objectclass also defines the host bound
to the control, the option that is passed to the control, and the skillName that
can be started under this control.

● nwsActivity. Experiments that are being run in the NWS system are all regis-
tered with the nameserver. Objects of this type contain the control-Name that
started the activity, the host running the activity, the skillName used for this
activity, and the option that the skill uses.

● nwsSeries. Collections of measurements are called series. Objects of this type
contain the host that ran the experiments, the activity generating the series, the
measured resource, the NWS memory that stores the series, the measuring unit
for this resource (label), and the option used for this skill.

The nameserver’s responsibility is to store small, independent data items and
make them available to users. As a result, it is optimized to make searching and
correlating data quick and simple. However, this design is not conducive to stor-
ing large sets of data such as measurement series. These data are stored by
another process that is designed to deal with the information’s specific nature.
This component, called the memory, is described in the next section.

3.2 Memory

The memory server is responsible for housing measurement data produced by
sensors within an NWS installation. The memory receives measurements from
sensors and other sources and organizes them into a collection called a series.
It makes these series available to users through a well-defined interface.

Memories are a very flexible part of the NWS infrastructure and can be used
in whatever way is appropriate to the scale of the installation. Users interested
in minimizing the network traffic that is used to save measurement data can cre-
ate a memory on each machine or administrative domain housing sensors.
Alternatively, to reduce the cost of retrieving data from a single source, a mem-
ory can be place on a nearby central host capable of handling a large number of
sensors and measurement series.

The memory registers every series that it is responsible for with the name-
server. In the case of the failure of a replicated nameserver, the memory knows
how to contact and utilize backup nameservers. Without the presence of any
functional nameserver, it can operate independently–storing measurement data
and series registration from newly started sensors. If sensors establish new series
with a memory while the nameserver is inaccessible, the memory caches their reg-
istrations and forwards them when the nameserver becomes available again.

Upon restart, a memory checks if there are older series in stable storage.
If any exist, it creates a limited registration and sends this to the nameserver.
This mechanism allows the system to access series that are no longer updated by
active sensors but are still addressable by the memory.

By default, memories store measurement data using the file system. Each
series is associated with a file named with the fully qualified series name. These
files are managed as circular queues, with a size determined by a user parameter.

Predicting Grid Resource Performance Online 581

The first line of the file contains data for managing the circular queue. Each series
measurement is stored in a fixed-length, human-readable buffer containing the
arrival timestamp, sequence number, expiration timeout, and the timestamp/
measurement pair sent by the sensor. As the circular queue becomes full, old
values are overwritten.

If data are stored in the file system in this way, the memory keeps a cache of
the most frequently accessed series in resident memory to minimize the perform-
ance hit of going to the file system. To keep update operations safe, the cache is
write-through. Although the cache reduces IO load and increases performance
for read operations, the fact that it does not cache write operations results in sub-
stantial IO overhead from writes being performed on disk files. Larger installa-
tions typically exploit the feature of NWS memories, which, by allowing multiple
memory instances within an installation, significantly reduces IO load on any one
host running a memory process.

While memories usually store a large enough backlog of data to make accu-
rate resource forecasts, some applications require a longer trace of data. In these
cases, memories can use a database instead of a circular-queue filled flat file.
In the database, a new table is generated for each series the memory is handling.
Each set of measurements is stored in the table with the same information as the
flat file design. Data are stored for as long as the database administrator decides
to keep the history.

When data are requested from an NWS installation, the memory process is
responsible for providing the data. The memory makes no effort to interpret user
requests, so users usually talk to the nameserver to discover the name of a series
and the memory that houses it. The primary source of data for the memory is the
sensor process, which is responsible for running online performance tests. This
process is described in the next section.

3.3 Sensor

The NWS sensor component is responsible for gathering resource information
from machines, coordinating low-level monitoring activities, and reporting meas-
urements over the network to an NWS memory.

On each machine that houses monitored resources, a single sensor process is
deployed. Since single machines house multiple resources, each sensor process
has the capability of spawning child processes for measuring each unique
resource. Sensors are typically measuring resources available to normal users, so
the NWS sensor should be executed using normal user permissions. Running
sensors with system privilege is, in fact, discouraged. Starting them can be done
manually through automated execution systems (cron, etc.) or at system
startup.

To account for unforeseen complications that may cause various resource
measurement processes to fail or block, the sensor separates its administrative
and measurement components into separate processes. The original parent
process is responsible for accepting control messages and starting measurements,
while child processes are created to perform the actual measurements. If this
approach is not desirable, this feature can be disabled, leaving only one process to
handle both measurements and control messages.

582 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

If the network between the sensor and memory fails or the memory process
becomes temporarily unavailable, the sensor process will begin caching resource
measurements until such a time when the memory becomes available. In this way,
the sensor is capable of maintaining a consistent view of measured resources
without gaps incurred by network or process failures.

The introduction of firewalls often adversely affect distributed systems. NWS
sensors can be instructed to use a specified port when conducting network exper-
iments, allowing an administrator to open only two ports in the firewall: one to
control the sensor and the other to allow the sensors access to one another while
taking network measurements.

A sensor is instructed to start monitoring a resource using a specific skill with
some well-specified options. An activity is the process of using a skill at specific
interval. An activity generates one or more series measurements, and a single sen-
sor is capable of running any number of activities. The current NWS sensor
implementation includes the following predefined skills (note that, due to system
limitations, not all skills are available on all architectures):

● availabilityMonitor: measures time since the machine last booted.

● cpuMonitor: measures the fraction of the CPU available and the current CPU
load. Accepts a nice level as options.

● diskMonitor: measures available disk capacity of a specified disk. Accepts a
path as option.

● filesystemMonitor: monitors performance of a specified file system. Accepts
multiple options, including path, fstype (block/char), fstmpdir, fssize, and
fsbufmode (instruct, skill to attempt to avoid file system buffer cache using var-
ious methods).

● startMonitor: registers the numbers of seconds since the sensor started.

● tcpMessageMonitor: monitors bandwidthTcp and latencyTcp to a target host.
It accepts options to set the buffer size of the socket, the message size to be
used, and the total experiment size.

● tcp ConnectMonitor: measures the time it takes to establish a TCP connection
with a target host.

● memorySpeedMonitor (experimental): measures attainable memory speed
(random or sequential access).

In addition to predefined skills, the sensor has been architecturally structured
to make the addition of novel user-defined skills fairly straight forward. A user
who wishes to add a new skill needs only to implement a function for measur-
ing a resource of interest, and can rely on existing mechanisms for caching, com-
munication, and control, making the process of adding a new skill as simple and
efficient as possible.

Many resources, like CPU, memory, etc. are measured on a single machine.
Other resources, in particular network resources, require that two hosts participate
in the experiment. Because the NWS uses active network probes, simultaneous
tests could interfere with each other. To deal with these different types of

Predicting Grid Resource Performance Online 583

measurements, the NWS uses two methods to determine when measurements will
be taken.

Periodic skills

Periodic skills need to be run at specific time intervals and are independent
(thus running these skills on different hosts at the same time doesn’t cause inter-
ference in the measurement). Upon starting such skills, the period option is used
to determine how many seconds pass between experiments. Most predefined skills
are periodic skills, since measurement of the CPU, memory, disk, and other inde-
pendent resources has no effect on other hosts measuring the same resources.

Clique skills

NWS cliques are used to provide a level of mutual exclusion within a group of
hosts so that their measurement activities do not interfere with each other. This is
a best-effort mutual exclusion mechanism. Upon the start of a clique activity, a
token is generated and circulated within the members of the clique. A member
can take measurements only if it has the token. Once the member has
finished taking all the needed measurements, the token is passed to the next clique
member.

Because the network can partition or hosts can fail, the token can get lost. To
account for this, the clique protocol implements a mechanism to regenerate the
token if knowledge of it is lost. Every clique has a leader (by default, the member
that starts the token) that keeps track of the time needed to circulate the token.
If the leader doesn’t receive the token within a reasonable length of time, it regen-
erates the token and starts a new circulation. Also, if a member of the clique sees
a long enough delay between tokens, it becomes the leader and starts a new
instance of the token. The clique is timed out after a few multiples of the clique
periodicity.

The token system is best effort because it considers taking measurements at the
right frequency over strict mutual exclusion. The clique protocol ensures that
the sensors take their network measurements at roughly the periodicity asked
by the activity. Members can starts taking measurements without holding the
token if too much time has elapsed. If the token is then received after the sensor’s
timeout, the token is passed along without taking the measurements. Mechanisms
are in place to eliminate multiple tokens circulating at the same time (for example,
when a network partition is restored).

3.4 Design considerations

The NWS is expected to provide access to useful data for a large set of het-
erogeneous and faulty systems. As a result, it is required to be robust, portable,
and scalable. Furthermore, sensor processes are run on the machines they are
monitoring. If they have high resource requirements, they are likely to degrade
application performance and to interfere with their own measurements.

Failure is a complicating factor in the design of NWS processes, since they
cannot disregard their responsibilities because a process they report to is unavail-

584 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

able. Passive failure detection is accomplished using heartbeat messages between
dependent processes. Heartbeats are used to detect expired registrations and fail-
ures in replicated nameservers. Also, the NWS relies heavily on timeouts to
aggressively avoid deadlock during communication among NWS processes.
Components measure the length of time to send data and receive heartbeats for
each host with which they interact. By using forecasting techniques (described in
Section 4), the processes use these measurements as a timeseries to compute a
perdition and error value. These two pieces of information are combined to form
an expected upper bound. These bounds are used to timeout network communi-
cation, determine lost clique tokens, and note which processes have not sent a
heartbeat message.

The NWS has a number of mechanisms, detailed in the sections describing
each component, for handling the failure of the processes on which they depend.
First, nameserver replication adds some robustness to the NWS’s central point of
failure. Additionally, memories and sensors all cache registrations that could not
be sent to the nameserver. This means that these processes can be started even
when the nameserver has failed, and they can also accommodate temporary
nameserver failures. Lastly, sensors cache measurement data so that measurement
are not lost when memories fail. These caches can hold a large number of meas-
urements, and can store almost an hour of CPU availability before they start to
lose information.

There are a handful of portability issues that have been addressed for the
NWS as well. For one, timing out socket communication is not a trivial task.
Early versions used alarm signals to interrupt blocking communication system
calls. This method is not portable for all OSes and does not interact well with
threaded processes. Therefore, the NWS can be configured at compile time to
use nonblocking sockets, disabling the use of the alarm signal. Other portabil-
ity issues come from the use of threads, which are notoriously different across
architectures and OSes. Therefore, forking is used in places where threads might
be used. To allow users to implement processes that use the NWS within
threads, the NWS libraries can be built with an option to add mutexes to syn-
chronize internal calls.

Monitoring the network performance of a set of hosts requires taking O(n2)
measurements, which obviously poses scalability concerns at some level.
Observing that, most likely, there are clusters of machines tightly connected (fast
local networks) that as a group are connected with wide-area networks, we make
the assumption that the statistical properties of the links from machines in one
cluster to machines of another cluster are somewhat similar. Hence we do not
require all individual measurements from all machines within separate clusters,
but can instead elect one (or a few) machines from each cluster and start a super-
clique among these selected machines. Newer versions of NWS provide a caching
mechanism that understands this operation and provides a logical view of an all-
to-all performance matrix of TCP network measurements. This caching mecha-
nism can be seen in Figure 18.2.

The NWS cache provides another scalability feature. Accessing O(n2) series
requires a user to contact the memory O(n2) times, thus increasing the time when
data are effectively available to unacceptable levels. To address this problem, we
have made the assumption that what is really needed is the single prediction

Predicting Grid Resource Performance Online 585

instead of the entire history. The cache works as proxy, collecting the data from
the memory and generating the forecasts, then returns the O(n2) forecasts in one
call, avoiding the prohibitive O(n2) connection cost.

Finally, the components themselves are designed to be able to scale to a large
number of hosts. The biggest liability is the nameserver, since it is the most cen-
tralized component. The requirements on the nameserver, however, are extremely
low, so this liability poses little problem. The worst observed example was a name-
server running on a common desktop Linux machine that served more than
50,000 registrations and hundreds of hosts. In a case where nameservers are fre-
quently accessed, they can be replicated so that different hosts and users can
depend on different nameservers. The requirements of memories are not as light
as nameservers, so they cannot serve nearly as much information. However, mem-
ories are very flexible about where they can be placed, so large systems can easily
support a large number of memories.

Sensors have been designed to be lightweight and as nonintrusive as possible
on the host being measured. Only under excessive monitoring, due to misconfig-
uration, may slower or less robust systems be taxed (when the periods of large
cliques, file system sensors, and CPU sensors are excessively short). Typically, sen-
sors uses between two and four megabytes of system memory, depending on
the number of experiments they run. They spend most of their time waiting for
control messages without using the host’s processor.

3.5 User interface

There are three main interface applications that are used to interact with an
NWS installation: nws_search, nws_extract, and nws_ctrl. These provide the core
command-line interface with the NWS processes.

586 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

C
ache

Logical RepresentationClique Hierarchy

memory

Figure 18.2. Hierarchical clique with connectivity cache reduces both the number of experi-
ments taken and the connectivity graph creation when cliques contain a large number of hosts
separated by wide-area networks.

The nws_search program allows a user to search through the registrations that
a nameserver has available. It uses a syntax reminiscent of LDIF, and all the usual
operators can be used (&, ⎜, =, >=, <= ...). For convenience, shortcuts have been
added that allow users to list standard things like sensors, series, or skills without
knowing the registration structure.

The nws_extract program allows the user to retrieve measurement data (series)
from an NWS installation. The user specifies the nameserver, the resource they
are interested in, and the hosts whose data they want to retrieve. nws_extract will
first query the nameserver to find which series name matches the user request,
then lookup in the matched object and the contact information of the associated
memory, which is then contacted for data retrieval. The series of data is then fed
to the forecaster, and the measurements, forecasts, and respective errors are then
presented to the user. If the nameserver is unknown, nws_extract can query the
first sensor asking to report which nameserver it is using. If the user knows
the series names and the memory storing them, using -M and -S they can
bypass the nameserver and query the memory directly.

Finally, nws_ctrl allows the user to control processes in an NWS installation.
Most importantly, it allows administrators to modify behavior, which is usually
specified through command line options at start time. However, there is also a
handful of other commands. The following actions are understood by nws_ctrl:

● test: performs a simple test of health of a nwsHost. The nwsHost can be dead
(no connection was made), unresponsive (connection was made but there was
no response from the sensor), sick (the sensor is reachable but it cannot talk
to its nameserver), or healthy (everything is functioning as expected).

● register: instructs the nwsHost to use a different nameserver for registration of
objects. This allows the administrator to replace, restart, or move the name-
server process without redeploying the entire NWS installation. If the com-
mand is given to a nameserver, it will begin mirroring with the target.

● memory: instructs the given sensor to send all new measurements to a differ-
ent NWS memory.

● halt: stops the nwsHost.

● log: toggles the verbosity of logging on the specified nwsHost.

● skill: asks a sensor to run a particular skill with specified options. Unlike an
activity, the results are not taken continuously or sent to the memory but are
instead reported directly to the user at his or her terminal.

● add/remove: adds or removes a member from a currently running clique. The
user needs to specify a member of the clique and the clique name, and the sen-
sor will restart the modified clique with the same options but a different list of
members.

● ping: runs a single network experiment (tcpMessageMonitor) between the host
running the command and the remote sensor, reporting the results directly to
the user.

● start/stop: asks a sensor to start or stop an activity.

Predicting Grid Resource Performance Online 587

All these processes make use of the well-defined NWS-API to retrieve infor-
mation and change the behavior of NWS processes. These functions are available
to users through the nws_api library. It is therefore possible to include the func-
tionality of these programs in a user’s application with relative ease. In fact, these
programs are invaluable examples of how to interface with the NWS at an appli-
cation level.

4 THE NWS FORECASTING METHODOLOGY

The forecasting methodology used by the NWS assumes that each resource
performance characteristic can be measured quantitatively. Each resource can be
described by a stream of performance measurements, and predictions of future
measurement values are the quantities that are of interest. Notice that useful
qualitative information may be difficult to incorporate under this assumption.
For example, it may be possible to know that “less” bandwidth will be available
to a desktop machine typically used by a person who frequently downloads
images from the Internet than to a machine used by a person who typically works
locally. The NWS approach is to gather performance measurements from both
machines and then predict future measurement values so that the predictions can
be compared quantitatively. For some Grid applications, simply knowing that
“less” or “more” resource will be available may be enough to develop an effective
schedule. The advantage of using quantifiable resource characterization, however,
is that the information is more easily encoded for use by an automatic scheduler.
That is, it may be difficult for a scheduling agent to parse and compare the qual-
ities of a resource, but forecast quantities can almost always be compared if the
units are compatible.

A second important assumption made by the NWS forecasting method is that
performance measurements can be gathered nonintrusively. In particular, any
load that the performance monitors introduce does not have a measurable effect
on the resource being monitored.

Finally, because the methods are time series based, they assume that the char-
acteristics being measured have an instantaneous value that can be sampled at
any given point in time. Not all quantifiable performance characteristics that are
useful for scheduling easily conform to this model. For example, it is useful to pre-
dict the duration of time that a resource will be available based on previous avail-
ability history. Availability, in a time series form, is a series of binary values
indicating “available” or “unavailable” at a particular time. Thus, the measure-
ment levels are bimodal. While Markov-based models are adept at predicting
modality, time-series analysis tends to be less effective. It is possible to incorpo-
rate state-transition models into the NWS forecasting framework, but at present
these are not used by the system.

Dynamic Model Differentiation
Rather than relying on a single model, the NWS uses a mixture-of-experts

approach to forecasting. A set of forecasting models are configured into the sys-
tem, each having its own parameterization. Given a performance history of pre-
viously observed measurement values, each model is exercised to generate a
forecast for every measurement value, based only on the measurement values that

588 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

come before it. That is, given a performance history of N values, a forecast is gen-
erated for each. To generate a forecast for measurement k, only values up to meas-
urement k − 1 will be presented to each forecasting model, for all values 1 ≤ k ≤
N. We term this method of replaying a performance history to generate a forecast
for each known measurement value postcasting.

Postcast errors are generated for each forecasting method by differencing
each measurement with the forecast generated for it. By aggregating the post-
cast errors, each method is assigned an overall accuracy score for the complete
history up to the point in time when the forecast is generated. When a single
forecast is required, the NWS forecasting system applies the postcasting pro-
cedure to all the configured prediction models using the most recent perform-
ance history available, and ranks each prediction model in terms of its
accuracy. The most accurate model is then chosen to make the requested fore-
cast. Each time a forecast is requested, the NWS recalculates the accuracy
ranking using the most recently gathered history. The NWS constantly gath-
ers measurement data from sensors that it controls. Thus, the performance
histories that it uses are, typically, up to date at the time a forecast is requested
from the system, and the forecaster choice takes into account the “fresh” his-
torical data.

This method of differentiating between competing models based on previ-
ously observed accuracy has several advantages. The first is that it is nonpara-
metric. Each individual model may have a specific parameterization, but the
complete technique simply takes the constantly updated performance history
gathered by the NWS as its only input. A second potential advantage is that it is
possible for the system to adapt to changing conditions in cases where the per-
formance response series is nonstationary. For example, if an exponential
smoothing predictor with a gain factor of 0.01 is the most accurate predictor at
one point in time, and conditions change so that a sliding-window median pre-
dictor with a window size of 10 becomes the most accurate (due to a change in
the series dynamics) then the system will switch predictors if the change is per-
sistent enough to cause the aggregate error ranking to change. If, however, the
forecasters have been exposed to an extensive performance history before the
change point, it may take a great deal of time for the better method to garner a
lower aggregate error.

To improve the response of the overall technique to changes in the underlying
dynamics of each measurement series, the NWS forecasting subsystem also selec-
tively limits the amount of history during postcasting to determine if “old” data
is harming accuracy. During the dynamic model-selection phase, a postcast is
conducted using all previously available data. In addition, the system conducts
postcasts using different windows of previous data (always starting with the most
recent data and working backwards in time) and records the “winning” forecaster
for each window size. The number of postcast-limiting windows and their sizes
are fixed at compile time, but can be changed via configuration parameters when
the forecasting subsystem is built. Each window size of previous history is subse-
quently treated as a separate forecaster, and a final accuracy tournament deter-
mines which forecaster will be used.

The pseudocode shown in Figure 18.3 summarizes how NWS forecasts are
generated from a given measurement trace. The effect of using this method is that

Predicting Grid Resource Performance Online 589

either the forecaster that has the lowest aggregate error since the beginning of the
trace will be chosen as best forecaster, or the forecaster that has the lowest error
over an abbreviated history of fixed size will be chosen. If the system has quickly
changing dynamics, forecasters that work well over short histories should be more
accurate, since they do not include stale data.

5 AN EXAMPLE

To illustrate the types of forecasts that can be generated by the NWS adaptive
forecasting technique, we will use the following example. Figure 18.4 depicts an
application-level TCP/IP trace from the University of Tennessee (UTK) to the
University of California in San Diego (UCSD). The trace times a 64 kilobyte
TCP/IP socket transfer and an application-level acknowledgment, and from that
timing and data size, it calculates a throughput measure. The socket buffers for
this trace are 32 kilobytes, and the buffers used in each communication system
call are 16 kilobytes. The entire trace spans the month of June 2000, with one
transfer recorded every 30 seconds.

(Note: The actual trace contains a little over 85,000 measurements. As such,
the trace data used to generate the graphical figures in this chapter have
been decimated. All forecasting and error calculations, however, use the com-
plete trace. We decimate the time series output only for graphical display
purposes.)

A companion trace of traceroute data showing the end-to-end gateway tra-
versal indicates that the series is likely not a stationary one. The routes used to
connect UTK with UCSD changed from time to time due to routing table
misconfigurations and maintenance.

590 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

input: T: measurement trace
F: set of forecasting models that take a trace of fixed size and pro-

duce a forecast of next value
W: a set of integer window sizes to limit postcasting

for each window size in W+ (entire history)
for each forecaster in F

postcast current forecaster over current window size in T
(window size slides over all of T)

record aggregate error for current forecaster
end for
record forecaster with lowest aggregate error for this window size

end for

choose forecaster and window size with lowest aggregated error and make
final forecast using it

Figure 18.3. Pseudocode for NWS forecasting methodology.

In Figure 18.5 we show the NWS forecasts (the light color) superimposed over
the measurement series (dark color). After each measurement was gathered, it
was passed to the forecasting subsystem, and a forecast (using the method
described in Section 4) was generated to produce the forecast trace. From Figure,
18.5 it is clear the the NWS forecasters determine a centralized or smoothed esti-
mate at each step in the series. Figure 18.5 also provides a qualitative depiction of
the forecasting error. Each light-colored forecast point is matched vertically with
the dark-colored measurement data point it forecasts. The degree to which the
dark features are showing (i.e., are not obscured by light-colored features) pro-
vides an indication of the overall error.

Predicting Grid Resource Performance Online 591

UTK to UCSD
NWS Measured TCP/IP Throughput

June 1 through July 1,2000

0

0.2

0.4

0.6

0.8

1
T

C
P

/IP
 B

W
 (

m
b/

s)
T

ue Jun
27

15:16:51
2000

W
ed Jun
21

02:49:54
2000

W
ed Jun
14

10:19:28
2000

W
ed Jun

7 17:26:42
2000

T
hu Jun 1

00:05:14
2000

Figure 18.4. Internet throughput, 64KB messages.

1

T
C

P
/IP

 B
W

 m
b/

s)

UTK to UCSD
NWS TCP/IP Throughput

Measurements and Forecasts
June 1 through july 1 2000

0

0.2

0.4

0.6

0.8

T
ue Jun

27
15:16:51

2000

W
ed Jun
21

02:49:54
2000

W
ed Jun
11

10:19:28
2000

W
ed Jun

7
17:26:42

2000

T
hu Jun

1
00:05:14

2000

Figure 18.5. NWS forecasts of UTK to UCSD throughput.

More quantitatively, Figure 18.6 details the error performance of the fore-
casting system. The vertical axis of the graph shows those forecasters that are cur-
rently configured into the NSF Middleware Initiative (NMI) [32] release of the
NWS and their individual error performance. Error (shown on the horizontal
axis) is measured as the square root of the mean square error (MSE). If each
NWS forecast is considered to be a conditional expectation of the succeeding
measurement, then the forecasting error approximates the conditional sample
standard deviation. We do not claim, however, that the conditional expectation or
the conditional standard deviation is either an optimal or an unbiased estimates
for the true conditional mean and variance—only engineering approximations.

Each of the horizontal bars in Figure 18.6 (except the top two) shows the error
performance of a different forecasting model. Notice that one type of model (e.g.,
exponential smoothing [24]) is used multiple times with different parameterizations
(e.g., the gain factor). The entire forecasting suite is similarly populated by different
parameterizations of a smaller set of models. The software has been modularized
to permit new model types, as well as different modularizations of the included
models when it is configured. Currently, the NWS uses 24 model parameterizations
(shown in Figure 18.6) in the standard release. The choice of these models is based
on our anecdotal experience with effective prediction techniques in the Grid set-
tings, where we or our collaborators have constructed successful schedulers.

The error bar that is second from the top Figure 18.6 shows the error perform-
ance of the adaptive NWS technique. That is, this line indicates the true error an

592 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

0.20.150.10.050mb/s

Optimal Postcast
NWS Adaptive MSE

Adaptive Median Window 21-51
Adaptive Median Window 5-21

30% Trimmed Median Window 51

30% Exp. Smooth, with 10% trend
20% Exp. Smooth, with 10% trend
15% Exp. Smooth, with 10% trend
10% Exp. Smooth, with 10% trend
5% Exp. Smooth, with 10% trend

90% Exp. Smooth
75% Exp. Smooth
50% Exp. Smooth
40% Exp. Smooth
30% Exp. Smooth
20% Exp. Smooth
15% Exp. Smooth
10% Exp. Smooth
5% Exp. Smooth

Running Mean
Last Value

30% Trimmed Median Window 31
Sliding Median Window 5

Sliding Median Window 31
 Median Window 5

 Median Window 31

Figure 18.6. NWS forecasts of UTK to UCSD throughput.

NWS user would have seen from the forecasts generated when the trace was gath-
ered “live.” Notice that this performance is equivalent to the minimum error across
all configured forecasters. While space constraints prevent us from demonstrating
this effect more completely, in all postmortem trace analyses performed by our
group since the inception of the project, this phenomenon has been observed. The
NWS adaptive forecaster achieves at least equivalent (if not slightly better) error
performance as the most accurate of its constituent models. We do not claim that
the adaptive forecaster must achieve equivalent accuracy. It is clear that it is possi-
ble to construct a series artificially for which the adaptive technique will be less
accurate. Our experience, however, is that for empirically observed measurement
series taken from Grid systems, this phenomenon occurs in every case.

Also, for space constraints, we have omitted the limited postcast history errors.
For this trace, the best overall adaptive performance comes from considering all
previous values at any given point in the trace (despite the potential for nonsta-
tionarity). That is, the forecasters that adapt based on a shortened window of his-
tory are less accurate that the ones that consider all previous measurements.

The error bar marked “Optimal Postcast” at the top of the figure indicates the
theoretically maximal forecasting performance (minimum error) that the method
could have achieved if the best predictor at each step were known. That is, each
time a forecast was generated, if the most accurate prediction made by any pre-
dictor in the suite were used, the aggregate error measure shown by the top error
bar in Figure 18.6 would have resulted. This measure represents the upper bound
on accuracy, since it is the most accurate that the entire suite could have been if
perfect foreknowledge of predictor accuracy were possible.

The bottom two error bars are also noteworthy. The bottommost error bar
(marked “Last Value”) represents the accuracy obtained by simply using the last
observed value as a prediction of the next performance measurement at each step.
This method corresponds to the typical way in which Grid users make ad hoc
estimates without the aid of numerical forecasting techniques. Most users simply
“ping” the desired resources or read the most recent performance measurements
recorded for those resources by an available monitoring tool, and compare the
measurements that they observe to make their scheduling decisions. This method
is, by far, the least accurate of those that are available. A second common method
is to use a running average as an estimator, based on the assumption that the
series is converging to a single mean performance value. The running mean is
more accurate than the last value as a predictor, but again, significantly less accu-
rate than other, only slightly more sophisticated techniques.

One possible argument for using the more simple last value or running average
techniques is that the computational efficiency of these methods is quite high. The
last value requires no computation, and the running average can be calculated as
a simple ongoing update. The techniques that we have chosen to incorporate in the
NWS implementation, however, come primarily from the signal processing disci-
plines, making very high-performance versions possible. With careful implementa-
tion, each forecast shown in Figure 18.5 required 161 microseconds on an
unloaded 750 MHz Pentium III laptop. Thus the additional computational over-
head introduced by our implementation of the adaptive methodology introduces
negligible performance overhead. More concretely, considering the difference in
error performance between the Last Value predictor, the adaptive NWS predictor,

Predicting Grid Resource Performance Online 593

and the Optimal Postcast, our implementation halves the error difference between
optimal and last value at a cost of 161 microseconds per forecast.

Forecasting Error

For Grid scheduling, the forecasting error can also be used to gauge the value
of a particular resource. In Figure 18.7, we show a trace of TCP/IP throughput
between adjacent workstations attached to a 100 megabit-per-second Ethernet at
the San Diego Super Computer Center (SDSC). The probe size for this trace is
64 kilobytes, with one probe taken every 120 seconds, and the adaptive NWS min-
imum MSE forecast is superimposed over the measurement trace. The Ethernet
segment, however, is also shared by other hosts at SDSC. That is, it is not dedicated
to a particular cluster, but rather is a part of the shared, local-area network infra-
structure. In Figure 18.8, we show three days’ worth of TCP/IP trace data
between a pair of cluster nodes at UTK. The nodes are attached via a switched
gigabit Ethernet that is dedicated to intracluster communication exclusively. Both
figures are plotted using the same scale. Note that the missing values in Figure
18.8 occur when the machine was taken out of service for maintenance.

As expected, the forecast performance of the dedicated gigabit Ethernet link
is higher than that for the 100 megabit connection throughout the measurement
period. The gigabit link’s forecast hovers near 100 megabits per second for most
of the trace, while the forecasts for the 100 megabit link are mostly just above 50
megabits. However, the MSE value (termed the forecast deviation in each figure)
for the 100 megabit trace is 9.7 megabits per second. For the gigabit trace, it is
64.3 megabits per second. Roughly speaking, as a percentage of the forecast
value, the forecast deviation is approximately 20% of the forecast for the 100 MB
Ethernet, but 60% for the gigabit link. For programs with malleable granularity
that can be controlled by an online scheduler, a more predictable performance
response, despite lower absolute performance, may make a resource more valu-

594 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

TCP/IP Throughput
Adjacent workstations

100 mb/s Ethernet

Forecast Error Deviation: 9.7 mb/s

day 3day 1

0

50T
hr

ou
gh

pu
t (

m
b/

s)

100

150

200

250

Time

Figure 18.7. NWS measurements and forecasts of 100 MB Ethernet at SDSC.

able than a faster, less predictable resource. Data parallel or SPMD (Single
Program Multiple Data) programs, for example, have their overall performance
defined by the slowest task. In [9] we describe a dynamic scheduling technique for
data parallel programs that automatically partitions the workload based on fore-
cast performance levels. For that system, a grossover prediction of delivered per-
formance results is extra work assigned to the potentially slow resource, and as a
result, the application executes with less-than-expected performance.

This example also illustrates the role that forecasting can play in detecting
faulty resources. For a dedicated gigabit switched network, a forecast value near
100 megabits, with an error deviation of more than 60%, is indicative of a poten-
tial problem. When shown these data, the system administrators for the cluster
upgraded the system software (several times: hence the dropout in the trace) in an
effort to correct a suspected configuration problem. By using the NWS forecast-
ing, it is possible to build an alarm system that would have signaled the potential
problem much earlier [29].

6 FORECASTING ERROR AND EMPIRICAL
CONFIDENCE INTERVALS

In the previous example, the forecast error deviation permits a ranking of
resources by their predictability. For some measurement streams, the forecasting
error also can be used to generate a quantifiable bound on the predictability of
the measurements in the stream. By treating the MSE as the conditional sample
variance, a confidence interval for the forecasted value can be calculated as (fore-
cast − *K MSE , forecast + *K MSE), where K is a multiplicative factor to be
determined. We have used a K value of 3 to bound the predicted execution times
of worker tasks in a master–slave distributed implementation of FASTA — a
commonly used genetic sequencing application [43]. For the genome sequences

Predicting Grid Resource Performance Online 595

TCP/IP Throughput
Switched Cluster Nodes

1000 mb/s ethernet

Forecast Error Deviation: 64.3 mb/s

day 3day 1
0

50T
hr

ou
gh

pu
t (

m
b/

s)

100

150

200

250

Time
Figure 18.8. NWS measurements and forecasts of switched gigabit Ethernet within a cluster
at UTK.

we examined, a K factor of 3 allowed the scheduler to determine the “depend-
able” task execution time across a wide range of target resources.

To predict the performance of an individual resource (as opposed to the con-
volution of data-dependent task execution time with resource performance
response, as in the FASTA experiment), smaller multiplicative factors are often
effective. For example, we observe that for network throughput, a factor of 2
yields a 90% or better “hit rate” for each succeeding measurement, with the rate
being above 95% for most of the measurement streams we have encountered.

Figure 18.9 shows this form of empirical confidence interval as generated by
plotting forecast +/− (* MSE2) for the UTK-to-UCSD throughput trace shown
previously in Figure 18.4. At each point in time, the prediction interval is formed
by making a forecast for the next measurement value, and then adding and sub-
tracting * MSE2 for the MSE that has been observed up to that point. The cap-
ture rate for this trace is 95.6%. That is, over the entire measurement period, the
confidence range predicted by / * MSE2+ - captures the next measured value
for 95.6% of the total number of measurements. We note that one can also make
one-sided predictions using the same idea: For example, if a scheduler (such as
the one reported on in [97]) were concerned with the minimum available perform-
ance, it could determine a K-value to produce lower prediction bounds that have
a capture percentage approximately equal to a given value.

The dotted line in Figure 18.9 represents the 5% quantile for the entire trace,
with 95% of the measurements falling above this line. If the data were treated as
a sample rather than as a time series, this value could be used as an empirical esti-
mate of the minimum throughput level with 95% confidence. By treating the data
as a potentially nonstationary series, and recalculating the confidence interval at
each time step based on forecasting error, the NWS methodology generates a sig-
nificantly tighter lower bound than a sample-based quantile method.

As an example of how pervasive this phenomenon is for TCP/IP network
throughput, we show the distribution of forecast capture percentages (i.e., the

596 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

UTK to UCSD
NWS TCP/IP Throughput

June 1 through July 1 2000
95.6% Capture

1.2

1

0.8

0.6

0.4

T
C

P
/IP

 B
W

 (
m

b/
s)

0.2

0

NWS Forecast + 2 Dev

NWS Forecast - 2 Dev

T
ue Jun

27
15:16:51

2000

W
ed Jun
21

02:49:54
2000

W
ed Jun
14

10:19:28
2000

W
ed Jun

7 17:26:42
2000

T
hu Jun 1

00:05:14
2000

Figure 18.9. Confidence range formed by +-2 deviations.

observed confidence percentage) for a complete Grid system that we monitored
during the month of October 2002. The Grid Application Development Software
(GrADS) [7, 23] project, as part of its research agenda, maintains a Grid testbed
based on stable deployments of the Globus [19, 22] toolkit and the NWS. The pur-
pose of the testbed is to provide support for the development of Grid programming
tools and to act as a production Grid environment in which GrADS enabled appli-
cations can be tested and evaluated. Globus and the NWS provide the base Grid
software infrastructure that GrADS software tools build upon. Approximately 50
users (programmers, graduate students, and project administration personnel) have
access to the testbed at any given time, and it is maintained as a permanent resource.
Thus, the GrADS testbed constitutes an example of a practical, working Grid.

During the month of October 2002, the GrADS project developed and
deployed six GrADS-enabled applications for demonstration at SC02—a promi-
nent high-performance computing conference that takes place annually in
November. As such, the October measurement and forecast data for the testbed
reflect Grid dynamics in a production computing setting.

The testbed comprises 77 host machines organized into several Linux clusters
as well as various independent Unix and Linux machines. Within each cluster, the
available networking is either 100 megabit Ethernet or gigabit Ethernet. Clusters
at a single site are connected either via local area networking or via the campus
network infrastructure (GrADS testbed sites are located at various Universities
and two research laboratories). Intersite network connectivity is provided by the
Internet, although several of the sites have experimental, high-performance
access to an Internet backbone. The GrADS sites are geographically distributed,
with machines located at Rice University, UCSD, UTK, the University of Illinois
at Urbana-Champaign (UIUC), Indiana University, the Information Science
Institute (ISI), and the University of California at Santa Barbara (UCSB).

The NWS provides support for organizing end-to-end network measurements
hierarchically. Not all machines must conduct machine-to-machine probes of net-
work connectivity to provide forecasts for the entire resource pool (details on this
scaling technique are described in [44] and [52]). For the GrADS testbed, 1234 NWS
TCP/IP probe traces are sufficient to provide a complete end-to-end performance
forecast report. Finally, the NWS uses a variety of probe sizes ranging from 64 kilo-
bytes per probe to 4 megabytes per probe, depending on the link characteristics at
hand. As such, the complete GrADS testbed trace captures a good cross section of
available network technologies and probe sizes under Grid computing loads.

Figure 18.10 shows the distribution of capture percentage over the total October
trace set when two forecast error deviations are used to form a confidence interval.
All network types (intracluster, intrasite, and intersite) are represented. The traces
have been sorted from smallest capture percentage to largest. The x-axis depicts trace
number and the y-axis shows the capture percentage observed for each trace using
+/− (* MSE2) to form each conditional prediction interval. The smallest capture
percentage is approximately 89%. In 1084 of the 1234 traces, however, the predic-
tions capture 95% or more of the future values. We are just beginning to study this
phenomenon in detail, but anecdotally the GrADS testbed analysis reflects the com-
mon experience reported by NWS users for TCP/IP throughput in different settings.

In Figure 18.11 we show the cumulative distribution of CPU load measure-
ment capture percentage that two deviations generate for the 77 hosts in the

Predicting Grid Resource Performance Online 597

GrADS testbed. The NWS supports a CPU monitor that reports the percentage
of CPU cycles that are available to an executing process. The default periodicity
(which is what has been used to monitor the GrADS machines) is 10 seconds.
Thus, each of the 77 traces contains approximately 250,000 measurements of
available CPU fraction at each 10-second time step. The number is approximate,
since data may be missing when a machine becomes unavailable as is the case in
Figure 18.8. For 75 of the 77 traces, forecast + / − (* MSE2) also generates a
95% (or higher) confidence interval.

It is clear that the empirical confidence technique warrants more study.
Resource characteristics such as TCP/IP round-trip time are not as predictable as
throughput or available CPU fraction. We suspect that available nonpaged mem-
ory will prove to be similar to CPU measurements in terms of predictability, but

598 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

TCP/IP Throughput Capture Percentage
2 Forecast Deviations

GrADS Testbed, October 2002

0
89

98

93

95

98

99

200 400 600
Throughput Series Number

P
er

ce
nt

ag
e

C
ap

tu
re

d

800 1000 1200

Figure 18.10. Distribution of capture percentages for TCP/IP throughput on the GrADS test-
bed.

CPU Availability Capture Percentage
2 Forecast Deviations

GrADS Testbed, October 2002

70605040

CPU Measurement Series Number

P
er

ce
nt

ag
e

C
ap

tu
re

d

3020100
89

91

93

95

97

99

Figure 18.11. Distribution of capture percentages for CPU availability measurements on the
GrADS testbed.

the NWS memory sensor has only recently been developed, giving us limited
experience with true load characteristics.

7 LESSONS LEARNED FROM DEVELOPMENT
AND DEPLOYMENT

Having developed and deployed the NWS in a variety of contexts, we have
repeatedly encountered somewhat surprising anecdotes within the user commu-
nity. While we are hesitant to give these observations the status of “principles,”
they nevertheless recur with enough frequency to warrant some exposition, if
only to provide insight into the successes and failures the system has experienced.
Moreover, many of our experiences run counter to the “conventional wisdom” or,
in some cases, contradict predicted outcomes made by acknowledged experts. In
all cases, however, we present these anecdotes without attribution and acknowl-
edge that any misrepresentation is strictly our responsibility.

7.1 Grid Performance Tools versus Grid Performance Services

Many Grid users install and use individual resource performance monitoring
tools to aid in resource discovery. While system administrators clearly understand
the need for Grid services such as remote sign-on and file system access, per-
formance monitoring services (particularly for dynamically changing perform-
ance data) are often overlooked, since they are used, primarily, to optimize rather
than to enable application execution. At the same time, user-level performance
tools, particularly for measuring network performance, are plentiful, easy to
install, and simple to use. Thus many Grid installations have an administrator-
supported infrastructure for secure access, but leave the problem of gauging
resource performance to the individual users.

There are two problems with this approach. First, most individual perform-
ance monitoring tools are designed for single-user execution. Popular applica-
tion-level network monitoring tools such as Iperf [26], netperf [28], and nttcp [33]
all measure end-to-end network throughput by sending data from a source host
to a sink host, and timing the transfer. To ensure that the effects of TCP slow-
start [27] do not affect the measurements, these tools (by default) will transfer
data continuously for tens of seconds to ensure that steady-state behavior is being
observed.

If used occasionally, in isolation (e.g., for performance debugging), the net-
work load introduced by lengthy network probes is negligible. However, if many
users each run network probes individually, without coordination, a great deal of
unnecessary load may be generated. For example, all hosts at the University of
California, Santa Barbara (UCSB) share a common network path (once they exit
the campus backbone) to the University of Wisconsin (Wisc) backbone that trav-
erses the Abilene [1] network. While the paths through each campus may differ, all
UCSB-to-Wisc transfers share the same route across Abilene and, more impor-
tantly, the performance of that route dominates the end-to-end performance. Thus
multiple users at UCSB issuing throughput probes to multiple hosts at Wisc will
each introduce tens of seconds worth of network load to measure the same

Predicting Grid Resource Performance Online 599

artifact: the performance of the cross-country Abilene route. Perhaps more prob-
lematically, if enough users issue these probes simultaneously, or if multiple users
probe the same host (or issue probes from the same host), the measurements that
are generated measure contention between probes.

The NWS solves this problem by using a hierarchy of cliques, as described in
Section 3. Cliques at either campus provide intracampus measurements, while a
single campus-to-campus probe sequence measures the cross-country through-
put. Moreover, the NWS proxy caching layer can automatically generate a virtual
fully interconnected network by filling in the “missing” network measurements
between hosts at either campus with forecasts taken for the intercampus link. As
such, the NWS measures the shared path using a single sequence of measure-
ments but at the same time can present a virtual all-to-all measurement picture to
all interested clients by correctly reporting the dominant shared performance for
any pair of hosts.

A second problem with the use of tools rather than a service for generating
measurements is that user tools are typically designed to require user intervention
when resource failure requires the tool to abort. Returning to the network prob-
ing example described above, the TCP protocol by default does not include an
inactivity timeout. That is, once a TCP handshake has been completed, a network
partition will not cause the TCP connection to shut down or abort. The optional
KEEP_ALIVE feature of TCP is designed to implement an inactivity abort
according to RFC-1122, but the timeout value by default can be no less than 2
hours, which is often too long for Grid applications. The assumption made by
most user tools is that the user will manually “time out” the tool and abort it from
the command line. Often, due to the need for continuous and historical measure-
ment, these tools are executed repeated within scripts, causing end-point memory
and process load.

The NWS TCP throughput probe, however, includes portable timeout mecha-
nisms and an adaptive timeout discovery protocol [4] so that long-running, unat-
tended execution is feasible. However, the engineering effort required to build a
portable and reliable timeout mechanism for TCP sockets (without kernel modi-
fication) introduces another potential point of confusion. In particular, it may be
that the additional mechanisms introduce overhead that affects the quality of the
measurements. Indeed, one reason often cited as justification for the use of a par-
ticular individual network monitoring tool is that the tool in question is believed,
by its user, to be the most accurate among all the available options. In addition,
several users, when queried as to why they preferred a particular tool to the NWS
as a service, claimed that the tool in question generated more accurate measure-
ments of end-to-end throughput. Questioned further, some speculated that the
reason for the loss of accuracy was that the NWS network probe included time-
out mechanisms that most applications using TCP sockets do not, and the
timeout mechanisms introduced extra overhead.

Figure 18.12 shows a comparison of the throughput measured by three popu-
lar user tools – Iperf, netperf, and nttcp – and the NWS throughput measurement
service. To generate these data, we ran each different method back-to-back (so
that all methods would experience approximately the same ambient network con-
ditions) every 60 seconds over a 72-hour period, resulting in 400 comparable
measurements for each technique. We configured all four systems to use the same

600 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

end-point buffering, which is the one used by default in Iperf, and to transfer the
same amount of data. The large circular “dot” for each method marks the median
throughput observed, and the bars show the range of values between the first
and third quartiles. From these data, it is not possible to conclude that there is any
statistical difference between the measurements generated by these methods. The
three tools and the NWS service all generate clearly overlapping ranges of values.
The NWS probes, however, include all the overhead necessary to implement
reliable socket timeouts at the application layer.

As such, we speculate that user-reported perception of tool utility is not based
on accuracy but rather on intellectual and manual ease of use. All three of these
network measurement tools are well engineered, documented, and simple to
understand, install, and use. The NWS is a long-running Grid service designed to
support many clients and resources simultaneously. While it does not require spe-
cial user privileges (each user can in principle install a separate instance of the
NWS), it is necessarily more complicated than a simple “ping” tool. As a result,
if the local administrator has elected not to install the system, or plans to do so
as a low-priority task, we believe users will naturally gravitate towards using tools
that they can easily understand, install, and maintain themselves. Subsequent
familiarity then breeds a “lore” regarding tool accuracy that, when examined crit-
ically, is unverifiable. The cost of this convenience, however, is the wasted resource
consumed by redundant measurements. By carefully engineering and structuring
the measurement system, a Grid service such as the NWS can yield the same lev-
els of accuracy with greater dependability using significantly fewer resources.

7.2 Network Heterogeneity

Another observation that we have made while developing the NWS and Grid
applications that use it [13, 51, 9] is that network performance is truly heterogeneous,
and the way in which applications access the network should take this heterogene-
ity into account to achieve the best possible performance. The use of parallel

Predicting Grid Resource Performance Online 601

Application

Comparison of Network Measurement Tools

NWSnttcpiperfnetperf

M
ea

su
re

m
en

t (
M

b/
s)

0

1

2

3

4

5

6

Figure 18.12. Comparison of Internet throughput measurements between a host UCSB and
one at the University of Wisconsin.

sockets by applications such as GridFTP [2] and the Internet Backplane Protocol
[40] (IBP) illustrates the need to consider such heterogeneity.

For systems such as the TeraGrid [47], where a high-bandwith dedicated net-
work connects nationally distributed computing nodes, the standard congestion
avoidance and control mechanisms built into commercially available TCP imple-
mentations prevent applications from achieving maximum possible end-to-end
throughput. The specific reason is that TCP uses the timing of packet acknowl-
edgments to control the speed with which it will introduce new data into the net-
work, both at start-up and after a packet has been dropped. For networks with
high bandwidth-delay products and low drop rates (such as the 40 gigabit/second
TeraGrid network), the loss of throughput can be substantial. On these systems,
to avoid the need for specially engineered kernel-level TCP stacks, many applica-
tions use parallel sockets to circumvent the unnecessary congestion avoidance
and control mechanisms.

However, in network settings where the bandwidth-delay product is lower, or
where packet loss due to congestion is a possibility, parallel sockets can have the
opposite effect. Figure 18.13 compares the performance of the IBP streaming
download protocol [40] that uses parallel sockets with a single-socket implemen-
tation that uses NWS forecasts for proximity resolution and adaptive timeout dis-
covery [5]. The IBP progress-driven protocol [40] uses parallel sockets and a
deadline-driven scheduling algorithm to download segments from a replicated
file. Different file segments are fetched in parallel within some prespecified
progress window. If the segment at the beginning of the window is late, that seg-
ment is fetched in parallel from where it is replicated before new segment trans-
fers are initiated. One simplicity advantage of this approach is that it is
completely reactive. That is, it does not require a prediction of future perform-
ance levels or failure likelihood, but rather reacts to conditions as they occur.

In contrast, the NWS protocol uses throughput forecasts to rank the replica
sites in terms of their download speed. It then maintains a database of forecast
response times and of forecast variance so that it can automatically determine

602 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

1
0

20

40

60

80

100

29 57 85 113 141 169
Time (Seconds)

General Progfess-driven and NWS Adaptive
Timeout Discovery

6 Replicas

F
ile

s
A

rr
iv

ed
 (

P
er

ce
nt

)

197 225 253 281 309

IBP Streaming Download

NWS Adaptive Timeout

Figure 18.13. Empirical cumulative distribution of file download arrival times for IBP down-
load protocol and adaptive NWS protocol using six replicas.

how long it should wait for each replica to respond. Only one segment of the file
is downloaded at a time. The protocol tries the replicas in order of their speed,
and switches between them when a timeout occurs [5, 4].

In Figure 18.13, we show the cumulative distribution of file arrival times, where
six replicas for each file are distributed across PlanetLab [39], the download point
is located at UCSB, and each segment has an artificially induced 5% chance of fail-
ing. From Figure 18.13, it is clear that the NWS methodology outperforms the IBP
methodology while maintaining the same level of robustness (both systems com-
pletely download all files) and using substantially less bandwidth. In this case, the
additional network load generated by the IBP protocol through the use of parallel
sockets over the Internet slows the individual file transfer times. The adaptive NWS
protocol, however, uses the fastest replica when it can and relies on rapid failure
discovery and remediation for robustness. Thus parallel sockets, while an excel-
lent choice for dedicated high—bandwidth-delay product networks, yield lower
application-level performance over the Internet when compared with a socket
scheduling system that uses performance forecasts to control resource usage.

8 MEASURING AND PREDICTING OTHER
RESOURCE CHARACTERISTICS

While the empirical and adaptive time series forecasting approach has proved
useful in a variety of contexts, there are quantifiable resource characteristics that
are not well modeled by a periodic statistical series. Resource availability dura-
tion (i.e., resource “lifetime”), for example, is represented as a highly correlated
time series with two modes namely, “available” and “unavailable” as depicted in
Figure 18.14. Essentially, “available” must be represented as one value (a 1 in the
figure) and “unavailable” as another. Further, the prediction of interest is not
for the next value but rather for the duration of time that a value will remain
constant before it changes.

Predicting Grid Resource Performance Online 603

♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦
Example Machine Availability

Time step

A
va

ila
bl

e/
U

na
va

ila
bl

e
F

la
g

0
0

1

5 10 15 20 25 30

Figure 18.14. Machine availability as a time series.

To make predictions of this type, the NWS requires both the ability to meas-
ure the quantity of interest and a different set of forecasting models that are not
time series based. In the case of machine availability, we have developed an avail-
ability sensor that measures the time between machine restarts, and a process life-
time sensor that can be used to measure processor occupancy in cycle harvesting
systems like Condor [46], Entropia [18], and BOINC [10]. These new sensors,
which are part of the current system, do not rely on heartbeat messages and soft-
state registration to measure availability. Doing so would convolve the observed
host availability distribution with the distribution of network partition frequency
between the measured site and the storage location where the measurements are
captured. That is, sending a heartbeat message to a collector (an NWS memory
process, in our case) as a measure of host availability records both host failures
and failures in the network connecting the host and the collector in a way that
cannot be easily separated later. Instead, the sensors send a running accumulation
of “up time” so that the effect of missing messages due to network partition can
be filtered out of the measurement history.

Predicting machine availability requires forecasting techniques that are sub-
stantially more heavyweight than the online time series models. The mode of
operation, then, is for the NWS to archive availability measurements and calcu-
late predictions as a background task rather than on-demand, as it does for per-
formance levels.

The type of prediction is also different from what the current system gener-
ates. Our initial target is to provide availability predictions to aid process and
checkpoint scheduling. Dynamic application schedulers would like to be able to
predict when a checkpoint should be taken (so as to minimize checkpoint over-
head) and/or to decide if checkpointing is even necessary. For example, a machine
with a 99.9% guaranteed availability of 10 minutes can run a 10 minute job to
completion 999 times out of 1000 attempts without checkpointing.

This last example also illustrates the nature of the predictions that application
schedulers require. Rather than the mean time to failure, which is a useful metric
in many industrial engineering contexts, the scheduler must estimate how long a
resource will be available until the probability of failure exceeds some specified
threshold. That is, the scheduler is typically interested in a specific quantile from
the cumulative failure distribution, rather than the mean. Returning to the exam-
ple, if the 0.001 quantile of the cumulative machine availability distribution were
known, the probability that a machine would be available at least as long as the
specified duration would be 0.999. An application scheduler, then, requires a pre-
diction in the form of a quantile at a specified level of certainty corresponding to
a failure tolerance that either the application or its user is willing to accept.

Moreover, to make a reliable estimate that can be trusted at the given level of
certainty, the confidence bounds on the estimated quantile must also be deter-
mined. Any estimate that is generated from an observed sample of measurements
will include random estimation error. If statistical bounds on that error can be
calculated, the worst-case bound at the specified level of confidence should rep-
resent a conservative guarantee of availability.

We have explored both parametric and nonparametric approaches to the
problem of generating quantiles and confidence intervals on the estimated quan-
tiles using the NWS. Because of their computational complexity and because they

604 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

require efficient archival storage, we have not yet incorporated quantile estima-
tion techniques into the NWS forecasting system. Our intention is to do so at
some future release, however.

The parametric approach we have taken is to develop automatic software for
implementing Maximum Likelihood Estimation (MLE) for various candidate
models such as exponential, Pareto, and Weibull. Given a model and a historical
trace of availability, the software estimates both the MLE parameters that best
describe the data with the model, and the confidence intervals for the fitted
model. Figure 18.15 depicts a comparison of model fits for the MLE-determined
exponential, Pareto, and Weibull models using availability data gathered from the
student instructional machines located at UCSB. At UCSB, the power switch on
the machines available to all computer science students is not protected. When
using a machine from its console, students routinely “clean off” foreign processes
(owned by other students) by power cycling the machine, causing a reboot. Figure
18.5 compares the cumulative distribution of observed availability measurements
for the three models.

The dark points depict individual availability durations, and the smoothed
lines show the three different models. The Pareto model carries significantly more
weight in the tail than the data indicate. It predicts that the 0.8 quantile will occur
at approximately 8,000,000 seconds (approximately 92 days). That is, the Pareto
model predicts that 20% of the availability durations will be longer than 8,000,000
seconds. From the data, however, only two of the 1765 availability durations
lasted that long, making the Pareto overly optimistic. In contrast, the exponential
model does not predict that availability durations will last as long as they did. For
example, the 0.95 quantile from the data occurs at 2,189,875 seconds (approxi-
mately 25 days), meaning that 5% of the measured availability durations were
larger than this value. The exponential model predicts the 0.95 quantile to occur

Predicting Grid Resource Performance Online 605

Measurements

Availability Duration (Seconds)
0

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100000 200000 300000 400000 500000 600000 700000 800000
0 0 0 0 0 0 0

F
ra

ct
io

n
of

 M
ea

su
re

m
en

ts

UCSB Instructional Machines
April Through October, 2003

Weibull
Exponential
Pareto

Figure 18.15. Machine availability data and MLE exponential, Weibull, and Pareto models for
UCSB instructional machines, April through October 2003.

at 1,495,871 seconds (approximately 17 days), thereby underestimating the possi-
bility of longer durations. The Weibull model, however, fits the data so accurately
that its curve is obscured by the data themselves in Figure 18.15. For the 0.95
quantile, this model estimates the duration to be 2,234,657 seconds, missing the
measured quantile by 44,782 seconds, or a little over half a day. Maximum
Likelihood Estimation is currently the best-known automatic technique for fitting
parametric models to observed data for models with a small number of parame-
ters. Thus the Weibull model truly describes the shape of the distribution more
accurately than the Pareto or the exponential.

We have also developed software (using goodness-of-fit p-values as heuristics)
that attempts to determine the best fit automatically. We have examined other
availability contexts, including Condor [46], where jobs are terminated when a
resource owner reclaims a resource, and an Internet host availability conducted
by Long, Muir, and Golding in 1995 [31]. Perhaps surprisingly, we have found
that an MLE Weibull model fits the observed availability distributions rather
closely. Moreover, previous work with a small number of student and faculty
workstations in 2001 [25] also found Weibull models to be effective.

While the Weibull fit was clearly best in our study (see [34] for details), it did
not yield the most accurate predictions of future availability durations. The soft-
ware also generates confidence intervals on the MLE parameters it determines as
part of the model-fitting process. From these confidence intervals, it should be
possible to calculate the conservative worst-case estimate for the quantile of inter-
est. For quantile prediction, however, it is possible to use nonparametric tech-
niques to estimate a quantile, and confidence bounds for it, without specifying (or
indeed knowing) what the underlying distribution is. One such technique uses
repeated subsampling of the observed data and bootstrapping [14] to estimate the
quantile. We have developed a second nonparametric method, which we term the
Binomial Method, that is based on the binomial distribution. Table 18.1 shows a
comparison of the predictive accuracy achieved by using an MLE Weibull and its
confidence bounds, bootstrapping, and the Binomial Method to predict future
machine availability at UCSB, in the Condor pool, and in the Long, Muir, and
Golding study.

Using the first 20 measurements occurring chronologically from each machine
trace, we estimated the lower 95% confidence bound on the 0.05 quantile. This
number (which is different for each machine) is the minimum duration of time a
scheduler could depend upon for each machine with 95% confidence if the
methodology used to generate it is effective. For each data set, we identified the
individual machine traces with at least 40 measurements so that the number of
predictions made would be at least as large as the number of measurements used
to “train” the predictor. The number of machines from each data set fitting this
criterion is shown in parentheses in the left-hand column.

606 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

Table 18.1. Percentage of predictions made correctly using three different quantile estimation
methods to estimate the 0.05 quantile with 95% confidence.
Data Set MLE Weibull Bootstrapping Binomial Method
UCSB (16 machines) 56.3% 62.5% 87.5%
Condor (87 machines) 95.9% 60.2% 98.9%
Long/Muir/Golding (83 machines) 58.0% 53./;.4% 94.3%

We then record the number of future measurements that were greater than the
estimated 0.05 quantile and report them as a percentage of total number of pre-
dictions for each machine (which is greater than or equal to 20 in all cases). Thus,
this experiment depicts the empirical accuracy of each estimation method using
the first 20 measurements to predict the remaining measurements, where there are
at least 20 remaining measurements to predict. Full details from the investigation
are described in [11]. From Table 18.1, however, it is clear that the Binomial
Method is capable of making accurate, nonparametric estimates of future avail-
ability using relatively few measurements.

Thus, using the NWS, we have developed two new functionalities that will
eventually be incorporated into the distributed software base. The first is an auto-
matic modeling capability that can generate closed-form probability distributions
that “fit” empirically observed availability measurements. We believe this func-
tionality will be crucial to the development of realistic, possibly online simula-
tions of grid, peer-to-peer, and global computing systems. Second using the
Binomial Method, the NWS will be able to provide accurate predictions of future
availability levels using relatively few measurements.

9 CONCLUSIONS AND FUTURE WORK

There are several ways in which we are currently extending our work beyond
the capabilities described in the previous section. We are studying the decay in
forecast accuracy (both in terms of the forecast value and the width of the empir-
ical confidence intervals) as a function of time into the future. The current set
of NWS forecasting techniques makes predictions for the next time interval.
As such, the periodicity with which measurements are gathered defines the time
frame for which a forecast is generated. We are attempting to quantify the error
associated with multistep forecasting.

We are also investigating methodologies for automatically deriving the multi-
plicative factor that is needed to generate a given confidence range. The forecast-
ers themselves are nonparametric, but the confidence interval system requires
that the multiplicative factor be specified. We believe that the forecasting system
must be able to adapt its parameterization automatically to be truly useful in an
engineering context.

Finally, the NWS forecasting methodology does not address the problem of
translating resource performance response into an estimate of application per-
formance response. Even if resource performance forecasts were perfect, com-
posing resource performance predictions into an application performance
prediction can introduce error. To address this problem, we have been investigat-
ing ways to generate automatic correlator functions that relate resource perform-
ance forecasts to application performance [45]. The goal of this work is to combine
a small number of application performance measurements gathered via internal
instrumentation with resource performance measurements taken simultane-
ously from the resources that the application is using. From these simultaneous
application-level and resource-level measurements, we derive a correlator for the
application that can be used to predict future application performance from
resource performance only.

Predicting Grid Resource Performance Online 607

The problem of modeling and predicting resource performance is central to
Computational Grid research. Not only is it critical to effective program and sys-
tem design but also the engineering of dynamic schedulers and fault diagnosis
tools requires online access to prediction data as part of the Grid infrastructure.
While explanatory models are beginning to emerge, fast statistical techniques
applied to real-time performance measurement streams have empirically been
shown to be effective. With little added computational complexity, it is possible
to make predictions of future performance measurements and to quantify the
error associated with these predictions. The resulting prediction accuracy can be
substantially better than simply using the last observed value, or averaging — the
two most common methods of predicting future performance from historical
measurement data. In addition, it is possible to derive empirical confidence
intervals, based on forecast error, for some forms of resource performance
response. Our experience, described using a small number of representative
examples in this chapter, is that these results are general for the resource types
we have presented.

One of the unique features of Computational Grid computing is the central
role that performance prediction must play with respect to program adaptivity
and resource allocation. Despite characteristics that impede rigorous analysis
(such as nonstationarity), the work we have described in this chapter reflects
the degree to which statistical techniques have proved successful as prediction
methods in the Grid settings we have so far encountered.

ACKNOWLEDGMENTS

This work was supported, in large part, by grants from the National Science
Foundation, numbered CAREER-0093166, EIA-9975020, ANI-0213911, and
ACI-9701333. In addition, the infrastructure development for public release that
is discussed has been supported by the NSF National Partnership for Advanced
Computational Infrastructure (NPACI) and the NASA Information Power Grid
project.

REFERENCES

[1] Abilene. http://www.ucaid.edu/abilene/.
[2] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman,

S. Meder, V. Nefedova, D. Quesnal, and S. Tuecke (2002): Data management
and transfer in high performance computational grid environments. Parallel
Computing Journal, 28(5), 749–771.

[3] B. Allock, I. Foster, V. Nefedova, A. Chervenak, E. Deelman, C. Kesselman,
J. Leigh, A. Sim, and A. Shoshani (2001): High-performance remote access
to climate simulation data: A challenge problem for data grid technologies.
In Proceedings of IEEE SC’01 Conference on High-performance Computing.
http://www.globus.org/research/papers*/sc01ewa_esg_chervenak_final.pdf.

608 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

[4] M. Allen and R. Wolski. Adaptive timeout discovery using the network
weather service. In Proceedings of HPDC-11, July 2002. http://www.cs.ucsb.
edu/~rich/publications/nws-adapt.pdf.

[5] M. Allen and R. Wolski (2003): The livny and plank-beck problems:
Studies in data movement on the computational grid. In Proceedings of
SC03.

[6] H. Balakrishnan, M. Stemm, S. Seshan, and R. H. Katz (1997): Analyzing
stability in wide-area network performance. In Measurement and Modeling
of Computer Systems, pp. 2–12.

[7] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, L. J. Dennis
Gannon, K. Kennedy, C. Kesselman, D. Reed, L. Torczon, and R. Wolski
(2001): The GrADS project: Software support for high-level grid applica-
tion development. International Journal of High-performance Computing
Applications, 15(4), 327–344.

[8] F. Berman, G. Fox, and T. Hey (2003): Grid Computing: Making the Global
Infrastructure a Reality. Wiley and Sons.

[9] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao (1996):
Application level scheduling on distributed heterogeneous networks. In
Proceedings of Supercomputing.

[10] The BOINC project. http://boinc.berkeley.edu.
[11] J. Brevik, D. Nurmi, and R. Wolski (2004): Quantifying machine avail-

ability in networked and desktop grid systems. In Proceedings of
CCGrid04.

[12] H. Casanova, G. Obertelli, F. Berman, and R. Wolski (2000): The
AppLeS Parameter Sweep Template: User-Level Middleware for the
+Grid. In Proceedings of IEEE SC’00 Conference on High-performance
Computing.

[13] W. Chrabakh and R. Wolski. GrADSAT: A Parallel SAT Solver for the
Grid. In Proceedings of IEEE SC03, November 2003.

[14] H. Cramer (1946): Mathematical Methods of Statistics. Princeton
University Press.

[15] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman (2001): Grid
information services for distributed resource sharing. In Proceedings 10th
IEEE Symp. on High Performance Distributed Computing.

[16] C. Dovrolis, D. Moore, and P. Ramanathan (2001): What do packet disper-
sion techniques measure? In Proceedings of Infocom.

[17] A. Downey (1999): Using pchar to estimate internet link characteristics. In
Proceedings of ACM SIGCOMM.

[18] The Entropia Home Page. http://www.entropia.com.
[19] I. Foster and C. Kesselman (1997): Globus: A metacomputing infrastruc-

ture toolkit. International Journal of Supercomputer Applications.
[20] I. Foster and C. Kesselman (1998): The Grid: Blueprint for a New

Computing Infrastructure. Morgan Kaufmann Publishers.
[21] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid:

An open grid services architecture for distributed systems integration.
http://www.globus.org/research/papers/ogsa.pdf.

[22] Globus. http://www.globus.org.

Predicting Grid Resource Performance Online 609

[23] GrADS. http://hipersoft.cs.rice.edu/grads.
[24] C. Granger and P. Newbold (1986): Forecasting Economic Time Series.

Academic Press.
[25] T. Heath, R. Martin, and T. Nguyen (2001): The shape of failure. In

Proceedings of the First Workshop on Evaluating and Architecting System
Dependability.

[26] The iperf tool: http://dast.nlanr.net/Projects/Iperf.
[27] V. Jacobson (1988): Congestion avoidance and control. In Proceedings of

SIGCOMM ‘88, 18.
[28] R. Jones. The netperf tool: http://www.netperf.org/netperf/NetperfPage.html.
[29] C. Krintz and R. Wolski (2001): Nwsalarm: A tool for accurately detecting

degradation in expected performance of grid resources. In Proceedings of
CCGrid01.

[30] W. E. Leland, M. S. Taqq, W. Willinger, and D. V. Wilson (1993): On the
self-similar nature of Ethernet traffic. In D. P. Sidhu, editor, ACM SIG-
COMM, pp. 183–193, San Francisco, California.

[31] D. Long, A. Muir, and R. Golding (1995): A longitudinal survey of internet
host reliability. In 14th Symposium on Reliable Distributed Systems, pp. 2–9.

[32] The nsf middleware initiative – http://www.nsf-middleware.org.
[33] New ttcp: http://www.leo.org/~elmar/nttcp.
[34] D. Nurmi, J. Brevik, and R. Wolski (2005): Modeling machine availability in

enterprise and wide-area distributed computing environments. Proceedings of
European Conference on Parallel Computing (EUROPAR) August, 2005.

[35] The network weather service home page – http://nws.cs.ucsb.edu.
[36] V. Paxon and S. Floyd (1997): Why we don’t know how to simulate the

internet. In Proceedings of the Winder Communication Conference, also cite-
seer.nj.nec.com/paxon97why.html.

[37] V. Paxson and S. Floyd. Wide area traffic: the failure of Poisson modeling.
IEEE/ACM Transactions on Networking, 3(3), 226–244.

[38] A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche, and
S. Vadhiyar (2001): Numerical libraries and the grid. In Proceedings of
IEEE SC’01 Conference on High-performance Computing.

[39] The planetLab home page. http://www.planet-lab.org.
[40] J. S. Plank, S. Atchley, Y. Ding, and M. Beck (2002): Algorithms for high

performance, wide-area, distributed file downloads. Technical Report UT-
CS-02-485, Department of Computer Science, University of Tennessee.
http://www.cs.utk.edu/~plank/plank/papers/CS-02-485.html.

[41] P. Primet, R. Harakaly, and F. Bonnassieux (2002): Experiments of net-
work throughput measurement and forecasting using the network weather
service. In Workshop on Global and Peer-to-Peer Computing on Large Scale
Distributed Systems.

[42] M. Ripeanu, A. Iamnitchi, and I. Foster (2001): Cactus application:
Performance predictions in a grid environment. In Proceedings of European
Conference on Parallel Computing (EuroPar) 2001.

[43] N. Spring and R. Wolski (1998): Application level scheduling: Gene
sequence library comparison. In Proceedings of ACM International
Conference on Supercomputing 1998.

610 Rich Wolski, Graziano Obertelli, Matthew Allen, Daniel Nurmi, et al.

[44] M. Swany and R. Wolski (2002): Building performance topologies for com-
putational grids. In Proceedings of Los Alamos Computer Science Institute
(LACSI) Symposium, 2002.

[45] M. Swany and R. Wolski (2002): Multivariate resource performance fore-
casting in the network weather service. In Proceedings of IEEE SC’02
Conference on High-performance Computing.

[46] T. Tannenbaum and M. Litzkow (1995): The condor distributed processing
system. Dr. Dobbs Journal.

[47] The TeraGrid Home Page. http://www.teragrid.org.
[48] S. Vazhkudai, J. Schopf, and I. Foster (2002): Predicting the performance of

wide-area data transfers. In Proceedings of IEEE International Parallel and
Distributed Parallel Systems Conference.

[49] R. Wolski (1998): Dynamically forecasting network performance using the
network weather service. Cluster Computing, 1, 119–132.

[50] R. Wolski (2003): Experiences with predicting resource performance on-
line in computational grid settings. ACM SIGMETRICS Performance
Evaluation Review, 30(4), 41–49.

[51] R. Wolski, J. Brevik, C. Krintz, G. Obertelli, N. Spring, and A. Su (2001):
Writing programs that run everyware on the computational grid. IEEE
Transactions on Parallel and Distributed Systems, 12(10), 1066–1080.

[52] R. Wolski, N. Spring, and J. Hayes (1999): The network weather service.
A distributed resource performance forecasting service for metacomputing.
Future Generation Computer Systems, 15(5–6), 757–768.

[53] Y. Zhang, N. Du, V. Paxson, and S. Shenker (2001): The constancy of inter-
net path properties. In Proceedings of ACM SIGCOMM Internet
Measurement Workshop.

Predicting Grid Resource Performance Online 611

Chapter 19

PERVASIVE COMPUTING: ENABLING
TECHNOLOGIES AND CHALLENGES
Mohan Kumar and Sajal K Das
The University of Texas at Arlington

Reducing the complexity of daily life and enhancing human quality of life
have been two of the main objectives of computing and communication tech-
nologies. Pervasive computing has emerged as a significant research area that will
herald the development of user-centric and service-oriented technologies. The
Internet is one important step toward making pervasive computing a reality.
Through the pervasive Internet, it is possible to access information and net-
worked services anytime, anywhere. The rapid advances made in wireless mobile
communications have provided an additional degree of freedom—mobility—to
users of computing and communication services. The ubiquitous presence of
embedded devices, wearable computers, sensor networks, and radio frequency
identification (RFID) tags have also made it possible to deploy computing and
communication nodes and services, thus enabling pervasive computing environ-
ments that aim at providing “what you want, when you want it, how you want it,
and where you want it” kinds of services to users and applications. Several impor-
tant challenges need to be tackled to realize the goals of pervasive computing.
In this chapter, we give an overview of various enabling technologies and enu-
merate some of the challenges of pervasive computing. Several ongoing projects
related to this topic are also discussed.

1 INTRODUCTION AND MOTIVATION

Recent advances in computer hardware (including embedded systems), com-
munications technologies, mobile ad hoc and sensor networks, software agents,
and middleware technologies have been mainly responsible for the emergence of
pervasive computing as an exciting area of research with a wide variety of appli-
cations. Pervasive computing encompasses many existing areas in computer sci-
ence and engineering, such as wireline and wireless communication networks,

mobile and distributed computing, embedded computing, agent technologies,
middleware, situation-aware computing, and human–computer interfaces.
Pervasive computing is about providing “what you want, where you want it, when
you want it, and how you want it” services to users, applications, and devices.
Pervasive computing paradigms can help meet the challenges encountered in myr-
iad applications in almost all areas of human activity – military, security, trans-
portation, healthcare and telemedicine, crisis management, manufacturing and
maintenance, education, entertainment, and others. In pervasive computing envi-
ronments, hardware and software entities are expected to function autonomously,
continually, correctly, and often proactively.

Various enabling technologies such as sensors (e.g., UC Berkeley Motes
Sensor Network Platform), Radio Frequency ID (RFID) tags, intelligent appli-
ances, embedded processors, wearable computers, handheld computers, and cell
phones will continue to play vital roles in improving human quality of life
through the advancement of pervasive computing applications. Tiny intelligent
sensors have made it possible to deploy ubiquitous services and thus create smart
environments. RFID tags allow subtle integration of objects (e.g., commodities in
a superstore or supply-chain management, mechanical objects on an industry
floor) into the computing environment. The advances in Internet technologies
have allowed us to access information and services in a transparent manner.
Additionally, tremendous progress in wireless communications and mobile com-
puting have made “anytime, anywhere” computing and information availability
a reality. In the following section, we give an overview of the following tech-
nologies: (1) the Internet, (2) mobile and wireless communications, (3) sensor
networks, and (4) RFID technology.

The advent of advanced technologies and their associated software tools have
resulted in the emergence of several applications. Consider the following three
application scenarios to understand where we are headed:

Scenario 1 [15]: A car-accident victim in critical condition needs immediate
attention by medical and other personnel who are in geographically distributed
locations. Timely and automated actions by ambulance personnel, doctors, and
hospital personnel, and their effective collaboration, are essential to save the vic-
tim’s life. Devices around the victim, such as a street camera, cellular phone, and
pocket PC, collaborate to exchange sensory data, recognize the occurrence of an
extraordinary event (in this case an accident), and contact an ambulance service.
The ambulance, upon arrival, interfaces with the hospital, medical, and other per-
sonnel to accomplish the tasks required to save the patient reliably, efficiently, and
in a timely manner. In order to accomplish the life-saving mission in this context,
real-time collaboration must be established dynamically and autonomously.

Scenario 2: A soldier’s personal digital assistant (PDA) contains information
about the terrain, strategies, vital data, enemy positions, up-to-date commands
from his commander, and shared data with peers. The PDA’s connection to the
wireless Internet is intermittent and not continuous. It is necessary to provide the
PDA with the most relevant data all the time from nearby support stations based
on the soldier’s current position and the events happening around him. From time
to time, the soldier may request new information or advice. The soldier (and his
PDA) needs to coordinate with other soldiers (via their PDAs) as well as their
command center (a PC or laptop).

614 Mohan Kumar and Sajal K. Das

Scenario 3: John Smith, a medical surgeon, takes his lunch at the cafeteria.
While walking to the cafeteria, he makes notes on his handheld device about a
patient he just visited. It is his habit to watch live basketball games and see high-
lights (and scores) of finished games on his handheld device while at lunch. At the
cafeteria, he receives messages and vital information from other doctors, patients,
students, and nurses. He also requests the patient records system for the latest
patient histories. On some days, he consults remotely with his patients: he listens
to sounds and examines images and data provided by remote consultation
machines, patients, and nurses. On his walk back to the clinic, he watches his
daughter practice soccer at school. All on his PDA!

The aforementioned scenarios use existing basic component technologies—
laptops, handhelds devices, street cameras, cell phones, car computers, image and
voice recognition systems, and so forth. But the required software and middle-
ware to enable such applications seem difficult to implement. Researchers are still
discovering new mechanisms and software/middleware paradigms to glue all
these component technologies together. A careful analysis indicates that the
above scenarios are based on several challenging technical requirements, includ-
ing intelligent proactive services; guaranteed quality of service (QoS) and avail-
ability of communication channels; adequate authentication and security
mechanisms; seamless interaction among heterogeneous entities; the presence of
ubiquitous computing devices in the environment; and the like. Thus, despite the
advances in hardware and/or communications-related enabling technologies, per-
vasive computing faces many systems issues and challenges that must be tackled.
Exploiting available computing devices, communication technologies, and soft-
ware services all the time and everywhere to enhance the quality of human life,
ensure security, and utilize resources optimally is a key issue in making pervasive
computing possible. To reach this goal, we must address research challenges such
as (1) heterogeneity and interoperability, (2) proactiveness and transparency,
(3) location-awareness and mobility, and (4) privacy and security. We will discuss
these in Section 3 of this chapter.

Several projects in pervasive computing are under way in various universities
and research laboratories worldwide. Section 4 discusses a few of these: the Aura
project at the Carnegie Mellon University; the Gaia project at the University of
Illinois, Urbana Champaign; the Oxygen project at the Massachusetts Institute of
Technology; and the PICO and MavHome projects at the University of Texas at
Arlington.

2 ENABLING TECHNOLOGIES

Recent years have witnessed significant progress on the technology front to
improve human quality of life. The Internet, Due to its pervasiveness, is perhaps
the prime contributor to this progress. Mobile and wireless communications have
further made it possible to access and exploit Internet-based services anytime
anywhere. Additionally, the emergence of sensor networks and RFIDs has
enabled us to inject (or distribute) computing capabilities into objects (mechani-
cal, biological, environmental, chemical, etc.) that were traditionally considered
to be passive physical objects. The integration of these technologies has led to the

Pervasive Computing: Enabling Technologies and Challenges 615

ubiquitous presence of computing elements and therefore the all-pervasive
Internet and other network-based services.

2.1 The Internet

The Internet has indeed been a great revelation to application designers, serv-
ice providers, business organizations, and individual users. The tremendous
growth of the Internet is due to advances in (1) computer architectures, (2) com-
munication networks, and (3) middleware and application software development.
In addition, several technologies such as TCP/IP, Mobile IP, wireless access net-
works (such as GSM and CDMA) and optical communications, and MEMS
(Micro Electro-Mechanical Sensors), as well as software and programming lan-
guage initiatives such as Java, software agents, and middleware tools, are playing
critical roles in the wide applicability of the Internet.

Today, in most homes (in the developed and developing countries), the
Internet is considered to be an essential service, just like the television or tele-
phone. For business organizations and industries, the Internet is as important as
electricity or telephone service. Many of the applications and services we see
today are based on the world wide web (WWW), which is a distributed repository
of vast information. With a few exceptions, the Internet is mostly a source of
static information that can be accessed on demand.

However, the Internet is not geared for handling dynamically changing infor-
mation, and it is not a good model for addressing scalability, adaptability, and
flexibility issues. Moreover, sustained collaborative interaction and performance
(e.g., QoS) for the entire duration of an operation is required to meet the
demands of many current applications in telemedicine, defense, transportation,
manufacturing, and other areas that employ the Internet. The question is: can the
Internet model meet the demands posed by such applications? Furthermore, in the
current model of the Internet, all processing tasks are carried out at the edge of
the network. The principal reasons for this situation are: (1) current solutions are
application specific or reactive and thus not scalable, and (2) Internet’s best effort
end-to-end QoS makes no guarantees about when and whether data will be deliv-
ered at all. Therefore, there is a need for transparent but ubiquitous services that
can handle dynamic information, act instantly, ensure correct behavior, make
immediate decisions, and perhaps prevent undesirable events from happening.

2.2 Mobile and wireless communications

The increased demand for mobility and flexibility in our daily lives has led to
the development of wireless LANs (WLANs) and cellular networks. Today
WLANs can offer users high bit rates to meet the requirements of bandwidth-
consuming services such as video conferences, streaming video, etc. Wireless
LANs can be broadly classified into two categories: ad hoc wireless LANs and
wireless LANs with infrastructure. In ad hoc networks, several wireless nodes join
together to establish peer-to-peer communication. Each client communicates
directly with the other clients within the network. The ad hoc mode is designed
such that only clients within transmission range of each other can communicate.
If a client in an ad hoc network wishes to communicate outside of the cell, a

616 Mohan Kumar and Sajal K. Das

member of the cell operates as a gateway and performs routing. They typically
require no administration. Networked nodes share their resources without a
central server.

In wireless LANs with infrastructure, there is a high-speed wired or wireless
backbone. Wireless nodes access the wired backbone through access points that
allow the wireless nodes to share the available network resources efficiently. Prior
to communicating data, the wireless clients and access points must establish a
relationship, or an association. In mobile systems, an ongoing connection
between a Mobile Host (MH) and a corresponding Access Point (AP) is trans-
ferred from one access point to the other through a process called handoff.
Handoff occurs during cell boundary crossing, weak signal reception, and QoS
deterioration in the current cell. Present handoff mechanisms are based only on
signal strength and do not take into account the load of the new cell. There is no
negotiation of QoS characteristics with the new AP to ensure smooth carryover
from the old AP to the new AP. Several methods have been proposed by
researchers to ensure seamless handoff in mobile environments.

Since wireless devices need to be small and wireless networks are bandwidth
limited, some of the key challenges to the use of wireless networks in pervasive
computing environments are data rate enhancements, low power networking,
security, radio signal interference, and system interoperability. Improving the cur-
rent data rates to support future high-speed applications is essential, especially if
multimedia services are to be provided. Data rate is a function of various factors
such as the data compression algorithm, interference mitigation through error-
resilient coding, power control, and the data transfer protocol. With the recent
proliferation of outdoor wireless networks and the advent of Free Space Optics
(FSO) or wireless optical communications, we are heading in the right direction
in terms of data rate requirements. The size and battery power limitations of
wireless mobile devices place a limit on the range and throughput that can be sup-
ported by a wireless LAN. The complexity and hence the power consumption of
wireless devices vary significantly depending on the kind of spread spectrum tech-
nology being used to implement the wireless LAN.

A critical factor in pervasive computing is the power consumption associated
with wireless communications among resource limited devices. New algorithms
have been devised to conserve energy by minimizing wireless communications
[20]. Further, the mobility of users increases security concerns in a wireless net-
work. Current wireless networks employ authentication and data encryption
techniques on the air interface to provide security for their users.

2.3 Sensor networks

Sensor networks enable us to observe and interact with the physical world in
real time and, allow users to monitor the environment, and also to take appro-
priate actions. Such pervasive instrumentation will be of great value in a range of
applications such as security, telemedicine, transportation, crisis management,
etc. Thus, sensor networks readily extend to monitoring interactions among hard-
ware and software entities in ubiquitous computing environments. The sensor nodes
and their networks are expected to provide sensory services to applications/users
continually and autonomously. However, sensor nodes are often low-resource

Pervasive Computing: Enabling Technologies and Challenges 617

devices with limited CPU power, memory, battery power, and low bandwidth
wireless communication channels. Therefore, it is extremely important for sensors
to conserve their energy (battery power) in order to prolong their active longevity
as well as the lifetime of the entire network. In a sensing application, the observer
is interested in monitoring the behavior of a phenomenon under some specified
performance requirements (e.g., accuracy or delay). In a typical sensor network,
the individual sensors sample or gather local values (measurements), aggregate
them in a meaningful way, and then disseminate information as needed to other
sensors and eventually to the observer. The measurements taken by the sen-
sors are mostly discrete samples of the physical phenomenon under observation,
subject to individual sensor measurement accuracy as well as its location.

Although sensor networks share many of the challenges of traditional wire-
less networks, including limited energy and bandwidth and error-prone channels,
communication in sensor networks may not typically be end-to-end. More specif-
ically, the function of the sensor network may be to report information regarding
the observed phenomenon to an observer who is not necessarily aware of the net-
work infrastructure and individual sensors as an end point of communica-
tion. Furthermore, energy in sensor networks is more severely limited than in
other wireless networks due to the nature of the sensing devices and the diffi-
culty in recharging their batteries. The energy constraint in sensor networks
indeed imposes serious challenges in hardware design as well as in communication
protocols.

In a pervasive computing framework, tracking of objects (e.g., persons, goods,
chemical and biological agents) is extremely important and can be facilitated by
using smart devices such as active and passive sensors, motion detectors, RFID
tags, digital camera, surveillance equipment, and so on. Such a framework deals not
only with the information captured by task-specific sensors, but also with that han-
dled by deployable networks of heterogeneous MEMS (micro-electro-mechanical
systems) multisensor nodes (e.g., portable optical or chemical sensors) that com-
municate via wireless RF and are connected to the Internet backbone. Data
coming from these sources need to be aggregated after appropriate transforma-
tion and then stored in a specialized server for intelligent decision making. The
major design and research challenges in sensor networks include (1) power con-
servation of mobile sensors, (2) coding and compression of multimedia signals,
(3) data fusion to reduce data communication complexity, (4) cooperation among
heterogeneous sensor nodes, (5) flexibility on the security level to match the appli-
cation needs so as to conserve critical resources, (6) scalability, self-organizing,
and self-learning of sensor nodes, (7) trust and security decisions based on the
utility for the application, keeping mobility and volatility as transparent as
possible, and (8) protecting the network from external and internal intrusion.

There are multiple ways for a sensor network to achieve its accuracy and delay
requirements, and a well-designed network should meet these requirements while
optimizing the energy usage and providing fault tolerance. By studying the com-
munication patterns systematically, the sensor network designer should be able to
choose the infrastructure and communication protocols that provide the best
combination of performance, robustness, efficiency, and low cost of deployment.

Applications such as sensor fusion, simulation, and remote manipulation,
allow users to “see” composite images constructed by fusing information obtained

618 Mohan Kumar and Sajal K. Das

from a number of sensors. Thus, sensors might be viewed as offering network-
based services that can be browsed by authorized users. The network may partic-
ipate in synthesizing the query (for example, by filtering some sensor data or
aggregating data). Nodes along the path can take an active role in information
dissemination and processing. In this respect, sensor networks are similar to an
active network. Application-specific in-network data processing is essential to
maximize the performance of sensor networks.

2.4 RFID technology

Radio frequency identification (RFID) is an automatic data capture (ADC)
technology that comprises data tokens/tags and mobile scanners/readers
equipped with an antenna. The reader detects the presence of an RFID tag within
its range. The frequency varies from very low (10–30 KHz) to very high (30–300
GHz). The RFID tags are attached or embedded in objects and programmed with
data that identify the object. RFID tags can be read only or a read/write type. The
emergence of RFID tags has created an opportunity to enable large numbers of
passive objects with no embedded computing resources to be identified and
tracked in a networking environment. For example, the nuts and bolts required to
assemble a machine part on a manufacturing floor can be tracked with the help
of such tags. The use of proxy agents and surrogate services makes it possible to
incorporate passive physical objects into any pervasive computing environment.
The major challenges include (1) the development of middleware for incorpora-
tion of tagged objects into the computing environment, (2) exploiting RFID tags
to extract context information, (3) provisioning services, and (4) combining
RFID tag information with other sources of information.

2.5 Middleware technologies

Traditionally, agents have been employed to work on behalf of users, devices,
and applications [3]. In addition, agents can be effectively used to provide trans-
parent interfaces between disparate entities in the environment, thus enhancing
invisibility. Agent interaction and collaboration are critical to the development of
an effective middleware for pervasive computing. Software agents in the middle-
ware can be deployed to overcome the limitations of hundreds and thousands of
resource-limited devices.

Service discovery is described as the process of discovering software
processes/agents, hardware devices, and services. The role of service discovery in
pervasive computing is to provide environment awareness to devices and device
awareness to the environment. Service provisioning, advertisement, and service
discovery are the important components of this module. Although service dis-
covery in mobile environments has been addressed in existing work, service
discovery in pervasive computing is still in its infancy. Existing service discovery
mechanisms include JINI and Salutation, as well as the International Naming
System (INS) [1].

Several new embedded devices and sensors are being developed in the industry
and in research laboratories. The architecture of the Berkeley sensor motes and the
TinyOS operating system are very good examples of devices and technologies

Pervasive Computing: Enabling Technologies and Challenges 619

developed for use with embedded networked sensors. The challenge here is to
design devices that are tiny (disappear into the environment), consume little or no
power (perhaps powered by ambient pressure, light, or temperature), and com-
municate seamlessly with other devices, humans, and services through a simple
all-purpose communication protocol.

Understanding of device and network technologies is important to create a
seemingly uniform computing space in heterogeneous environments. The back-
bone network will probably continue to be the Internet for some time. The chal-
lenge is to overcome the Internet’s end-to-end architecture and at the same time
to allow flexible interactions among network devices, services, and users.

Mobile computing devices have limited resources, are likely to be discon-
nected, and are required to react (transparently) to frequent changes in the envi-
ronment. Mobile users desire anytime anywhere access to information while on
the move. Typically, a wireless interface is required for communication among the
mobile devices. The wireless interface can be a wireless LAN, a cellular network,
an ad hoc network, a satellite network, or a combination thereof. Techniques
developed for routing, multicasting, caching, and data access in mobile environ-
ments should also be extended to pervasive environments. A pervasive environment
comprises numerous invisible devices, anonymous users, and ubiquitous services.
Development of effective middleware tools to mask the heterogeneous wireless
networks and mobility effects is a challenge.

Provisioning uniform services regardless of location is a vital component of
mobile computing. The challenge here is to provide context-aware services in an
adaptive fashion, in a form that is most appropriate to the location as well as to
the situation under consideration.

3 CHALLENGES OF PERVASIVE COMPUTING

3.1 Heterogeneity and interoperability

Today’s computing world is replete with numerous types of devices, operating
systems, and networks. Cooperation and collaboration among various devices
and software entities is necessary for pervasive computing. At the same time, the
overheads introduced by adaptation software should be minimal and scalable.
While it is almost unthinkable to have homogeneous devices and software, it is,
however, possible to build software bridges across various entities to ensure inter-
operability. But then the following question arise: How many such bridges should
we create? What about the overheads introduced by the bridges? The Oxygen
project [23] envisions the use of uniform hardware and network devices to enable
smooth interoperability. The limitations of low resource hardware can be over-
come by exploiting the concepts of agents and services. The challenge is to
develop effective and flexible middleware tools that mask uneven conditions and
to develop portable and lightweight application software.

Network QoS for delivering information and QoS for provisioning services are
critical to pervasive computing. For example, in Scenario 1 described earlier, if
real-time collaboration is necessary between the ambulance personnel and the
doctors in the hospital, multimedia streaming over heterogeneous communication

620 Mohan Kumar and Sajal K. Das

systems must be realized. Such streaming must meet stringent QoS requirements,
or else it will be useless. Defining QoS for pervasive computing applications
will be a significant challenge to meet. Pervasive computing environments will
definitely require service providers to address QoS issues.

3.2 Proactivity and Transparency

The development of computing tools such as the handoff operation in mobile
systems have been, in general, reactive or interactive. On the other hand, the
“human in the loop” has its limits, since the number of networked computers will
surpass the number of users in the near future. Users of pervasive computing
applications may wish to receive “what I want” information and services in a
transparent fashion. A thought-provoking paper on active networks [21] envi-
sions a majority of computing devices in the future as being proactive. Proactivity
can be provided by the effective use of overlay networks. Active networks can be
used to enhance network infrastructure for pervasive computing, ensure network
management on a just-in-time basis, and provide privacy and trust [11].

Today, most computing and communication services are also reactive in
nature. Most proactive services available today are usually obtrusive and often
useless (the online paper clip and pop-up messages are good examples). Ideally,
proactive services should be user/application specific and unobtrusive, and must
ensure efficient utilization of resources. These requirements can be best described
by considering our Scenario 3. Firstly, Dr. Smith’s profile must be on his cafete-
ria’s server so that the server can send appropriate information to his device. For
example, the server can receive the doctor’s schedule a priori from his PDA and
determine whether he would be consulting with his patients, his students, or his
colleagues. If his schedule is not busy, he may be interested in receiving news or
music. Video streaming presented by the proactive server in the cafeteria to the
doctor’s handheld computer must meet certain QoS requirements in terms of res-
olution and clarity, brightness, timeliness, etc. In Scenario 1, the cell phone, the
PDA and the camera all observe the occurrence of extraordinary events, interact,
and make proactive decisions. It will be necessary for users to negotiate QoS to
suit their profiles and applications. For example, in Scenario 3, the challenge is
how to define proactivity in general and how to tailor proactivity to specific users.

Associated challenges include (1) how to leverage research work in the areas
of situation-aware computing, device/user/application profiling, and software
agents to enhance proactivity in existing computing devices and (2) how to exploit
active network technology to overcome the end-to-end to limitations of the
Internet to provide just-in-time services? Profiling can be effectively employed to
ensure appropriate proactive services in pervasive systems [12].

3.3 Location Awareness and Mobility

Models of twenty-first century ubiquitous computing scenarios [22] depend not
only on the development of capability-rich mobile devices (such as web-phones
or wearable computers) but also on the development of automated machine-to-
machine computing technologies, whereby devices interact with their peers and the
networking infrastructure, often without explicit operator control. To emphasize the

Pervasive Computing: Enabling Technologies and Challenges 621

fact that devices must be imbued with an inherent consciousness about their cur-
rent location and surrounding environment, this computing paradigm is also
called sentient [12] or context-aware computing. “Context-awareness” is one of the
key characteristics of applications under this intelligent computing model.
If devices can exploit emerging technologies to infer the current activity state of
the user (e.g., whether the user is walking or driving, or whether he/she is at office,
at home, or in a public environment) and the characteristics of their environment
(e.g., the nearest Spanish-speaking ATM), then these devices can intelligently
manage both the information content and the means of information distribution.

Location awareness has been perhaps the most widely investigated context,
since the current (or future) location of users strongly influences their informa-
tion needs. Applications in computing and communications utilize such location
information in two distinct ways [9]:

Location-Aware Computing. In this category, the information obtained by a
mobile device or user varies with location changes. The most common goal on the
network side is to automatically retrieve the current or anticipated neighborhood
of the mobile user (for appropriate resource provisioning), while on the device
side, the typical goal is to discover appropriate local resources. As an example of
this category, we can consider the case where mobile users would be automatically
provided with local navigation maps (e.g., floor plans in a museum that the user
is currently visiting), which are automatically updated as the device changes its
current position. For example, in Scenario 1, knowledge of the accident location
is critical to providing appropriate responses—to direct the ambulance or to pro-
vide network connections via available wireless routers. Similarly, in Scenario 3,
appropriate information can be sent to the doctor’s device from the closest server
if his current location is known or can be predicted.

Location-Independent Computing. In this case, the network endeavors to pro-
vide mobile users with a set of consistent applications and services that do not
depend on the specific location of the users or on the access technology employed
to connect to the backbone information infrastructure. Information about the
user’s location is required only to ensure the appropriate redirection of global
resources to the device’s current point of attachment. Such applications are not
usually interested in the users’ absolute location but only in their point of attach-
ment to the communication infrastructure. An example is cellular telephony,
where mobility management protocols are used to provide a mobile user with
ubiquitous and location-independent access.

While location-independent computing applications have a fairly mature his-
tory, location-aware computing is still at an early stage. Innovative prototypes of
location-aware computing environments are still largely experimental and are
geared towards specific target environments. The location support systems of dif-
ferent prototypes, as a result, have been mostly autonomous and have always
remained at the disposal of the system designers. It is, however, important to real-
ize that the full potential of location-aware computing can be harnessed only if
we develop a globally consistent location management architecture that caters to
the needs of both location-aware and location-independent applications and that
allows the retrieval and manipulation of location information obtained by a
wide variety of component technologies. This is an important challenge, since

622 Mohan Kumar and Sajal K. Das

location-aware and location-independent applications typically face significantly
different scalability concerns. In general, location-aware applications do not pose
many scalability issues, since they primarily involve local interactions. However,
scalability is a critical concern for location-independent network services, which
must support access to distributed content by a much larger user set.

In [9], we surveyed the various ways in which context-aware pervasive com-
puting applications are likely to exploit and manage location information, and we
used this understanding to debate whether a universal location management infra-
structure should store location information in a topology-dependent (symbolic)
or topology-independent (geometric) format. A detailed analysis of both loca-
tion-aware and location-independent applications reveals three important points:
(1) different systems and prototypes use a wide variety of location resolution
technologies, (2) a significant number of location-based applications are prima-
rily interested in resolving the location of a mobile node only relative to the con-
nectivity infrastructure, and (3) obtaining geographical location coordinates
requires varying levels of hardware that are absent in many pervasive devices.
It seems more preferable for the universal location management infrastructure
to manipulate location information in a structured, symbolic form. In cases
where geographical coordinates are needed, these may be obtained through the
use of access-specific technologies or via appropriate mapping. In the following,
we enumerate the objectives of pervasive computing from the viewpoint of the
desirable features of a universal location management infrastructure. In particu-
lar, we believe that location prediction, location translation, signaling optimality,
and location privacy are four “must-haves” in a practical pervasive computing
infrastructure.

Recall that the basic goal of pervasive computing is to develop technologies
that allow smart devices to automatically adapt to changing environments and
contexts, making the environment largely imperceptible to the user. The set of
candidate applications and their underlying technologies is, however, anything
but uniform! Developing a uniform location management infrastructure is thus a
challenging task. In the following, we identify five location-related features that a
universal architecture must support.

3.3.1 Interoperability across Multiple Technologies and Resolutions

Current prototypes for pervasive applications typically choose a specific loca-
tion tracking technology that is suitable for their individual needs. Uniform
location management architectures must be capable of translating the location
coordinates obtained by such systems into a universal format that can be utilized
by various application contexts. For example, cellular-based mobile communica-
tions will primarily need to resolve the location of a mobile device only up to the
point of network attachment. Fleet management and tracking applications may,
however, require explicit geometric information. The mobility management infra-
structure should thus be capable of efficiently translating such location informa-
tion between different representations, and also at different granularities (e.g.,
mobile commerce applications advertising e-coupons may not be interested in the
precise hotel room where a given user is located).

Pervasive Computing: Enabling Technologies and Challenges 623

3.3.2 Prediction of Future Location

Predicting the user’s future location is often the key to developing smart per-
vasive services. For example, the ATIS active database can be triggered more intel-
ligently by predicting the most likely routes and by warning the client about
adverse road conditions along those routes. Prediction of an individual’s future
position in the indoor office can be very helpful in aggressive teleporting (e.g., sup-
porting follow-me applications). In addition to this explicit service-oriented need
for prediction, there is also an implicit need for predictive mobility tracking from
the viewpoint of network infrastructure. In several location-independent comput-
ing scenarios, the network must meet stringent performance and latency bounds
as it ensures uninterrupted access to global information and services, even as the
users change their locations. For example, in order to provide quality of service
(QoS) guarantees for multimedia traffic (such as video or audio conferencing) in
cellular networks, appropriate bandwidth reservations must be made between the
hand-held terminal and the serving base station (BS), as well as between the BS
and the backbone network. To meet strict bounds on the handoff delay, the net-
work must also proactively reserve resources at the cells where the mobile is likely
to move. Since many of the tracking technologies do not themselves offer such
predictive capabilities, the infrastructure must be capable of constructing such
predictive patterns based on the collective or individual movement histories.

3.3.3 Location Fusion and Translation

In certain pervasive computing scenarios, location tracking is achieved
through the combination of multiple technologies and access infrastructures. For
example, an office application can resolve the location of a user at different levels
of granularity using different technologies. As an example, the specific building
could be identified through the current wireless LAN cell where the mobile cur-
rently resides, whereas an additional ultrasonic system (such as Cricket) [17] may
be used to identify the precise orientation and room location of the mobile user.
Since the user’s complete location reference is obtained only by combining these
distinct location management protocols/systems, our global location manage-
ment framework must efficiently fuse and merge location information from two or
more distinct network technologies.

The intelligent management of vertical (or intersystem) handoff, on the other
hand, often requires the ability to translate the mobility and location-related
information from one frame of reference to another. For example, when a user
switches from a wireless LAN to an overlaid personal communication systems
(PCS) network, the system must be able to translate the mobility patterns and
location prediction attributes from one system to the other, independent of the
representation format utilized by each individual network.

3.3.4 Scalable and Near-Optimal Signaling Traffic

The desire for provably optimal location update and paging strategies in cel-
lular networks is not new. There has indeed been a great deal of work on efficient
location management strategies. The world of pervasive devices is soon expected

624 Mohan Kumar and Sajal K. Das

to see a quantum jump in the number of mobile nodes (from millions of cell
phones to billions of autonomous pervasive devices) and an even greater varia-
tion in their capability (such as power or memory). We must therefore develop
efficient and near-optimal signaling mechanisms that minimize any unnecessary
signaling load on both the devices and the networking infrastructure.

3.3.5 Security and Privacy of Location Information

Security and privacy management is a key challenge in pervasive networking
environments. Notwithstanding the availability of advanced devices and location
resolution technologies, users will not embrace a pervasive computing model until
a scalable infrastructure is in place to appropriately protect such location infor-
mation. The problem is not one of simply making such location information
either visible or invisible to specific networks; we must allow the user to dynami-
cally configure the scope of location visibility, possibly in multiple representa-
tion formats, to individual pervasive services and applications. For example, a
user may wish to expose his precise GPS coordinates to emergency response
applications (such as 911) but only a much coarser view (say at a granularity of
20 miles) to automobile insurance companies trying to monitor his driving pro-
file. Alternatively, the user may want to specify his network point of attach-
ment (symbolic information) but not his precise in-building location (geometric
coordinates) to a pervasive enterprise application.

In a series of works [4, 5, 10, 18], we have developed an information-theoretic
framework for effective location prediction with optimal signaling cost in wireless
mobile networks. In particular, we have shown how the LeZi-update algorithm [4,
5] uses an adaptive learning technique to optimize the signaling associated with
location update and paging in a symbolic domain. By treating the movement of
a mobile device as a sequence of strings generated according to a stationary dis-
tribution, our novel algorithm is able to efficiently store a mobile’s entire move-
ment history and also to predict future locations with asymptotically optimal
cost. A symbolic representation of location data allows the management infra-
structure to deal with an extremely heterogeneous set of networking technologies
that possess a wide variety of underlying physical layer and location sensor tech-
nologies. Indeed, the ability to accommodate device heterogeneity and technolog-
ical diversity is a key to the success of a universal location management scheme.
Moreover, we have shown that symbolic information is more amenable to storage
and manipulation across heterogeneous databases, and can be exploited to pro-
vide necessary functions such as location prediction, location fusion, and location
privacy. We have also designed a “hierarchical LeZi-update” algorithm that per-
mits efficient translation of location profiles between heterogeneous systems [13].

4 PERVASIVE COMPUTING PROJECTS

4.1 Aura

Designed for distraction-free pervasive computing, the Aura project [24]
focuses on human attention, thus creating an environment that adapts to the

Pervasive Computing: Enabling Technologies and Challenges 625

user’s context and needs. To accomplish this goal, the Aura research spans vari-
ous individual technologies such as task-driven computing, energy-aware adapta-
tion, intelligent networking, resource opportunism, multifidelity computation,
nomadic data access, wearable computers, wireless communication, multimodal
user interface adaptability, data and network adaptability, software composition,
proxies/agents, collaboration, and smart space. Underlying this diversity, Aura
applies two broad concepts, namely, proactivity and self-tuning. Proactivity is a
system layer’s ability to anticipate requests from a higher layer, whereas self-
tuning allows layers to adapt by observing the demands made on them and
adjusting their performance and resource usage characteristics accordingly.

The Aura architecture includes already developed but much modified systems
such as Odyssey [16] and Coda [14], and other new system components such as
Spectra and Prism. Odyssey provides resource monitoring and application-aware
adaptation, and Coda supports nomadic, disconnectable, and bandwidth-
adaptive file access. Spectra is an adaptive remote execution mechanism that uses
contexts to decide how best to execute the remote call. Prism is a new system layer
that is responsible for capturing and managing user intentions. Prism, also called
the task layer, sits above individual applications and services but below the user,
providing high-level support for proactivity and self-tuning.

To amplify the capabilities of a resource-limited mobile client and thus to
improve user experiences, Aura applies cyber foraging. The idea is to dynamically
augment the computing resources of a wireless mobile computer by exploiting a
wired hardware infrastructure. A surrogate (hardware in the wired infrastructure)
assists the mobile computer temporarily. Cyber foraging helps define many chal-
lenges such as proactivity for tracking user intent, adaptation for matching the
demand and supply of a resource, context awareness to modify its behavior based
on the user’s state and surrounding, and balancing of proactivity and transparency.

4.2 Oxygen

The goal of the Oxygen project [23] is pervasive human-centered computing
based on bringing abundant computations and communications as pervasive and
free as air naturally into people’s lives. This approach combines integrated user
and system technologies that make it easier for people to do more by doing less,
wherever they may be.

System technologies include devices, networks and software. Devices tech-
nologies provide intelligent space through environmental devices (E21s) that are
embedded in homes, offices, and cars to sense and support a local-area computa-
tional and communication back-plane. Handheld devices (H21s) are person-
centered devices equipped with perceptual transducers, and they can reconfigure
themselves through software into many useful appliances in response to speech
commands. Flexible, decentralized networks called N21s connect dynamically
changing configurations of self-identifying mobile and stationary devices to form
collaborative regions. The Oxygen software architecture can adapt to changes, as
it relies on control and planning abstractions that provide mechanisms for
change.

Oxygen’s user technologies directly address human needs. These are percep-
tual technologies such as the spoken language and visual interaction, and other

626 Mohan Kumar and Sajal K. Das

user technologies including knowledge access, automation, and collaboration that
help users perform a wide variety of tasks they want to accomplish in the ways
they would to do them like. Speech and vision technologies enable the user to
communicate with Oxygen as if they are interacting with another person, thus
saving time and effort. Multimodal integration increases the effectiveness of these
perceptual technologies. Knowledge access supports improved access to informa-
tion customized to the needs of people, applications, and software systems.
Automation offers natural, easy-to-use, customizable, and adaptive mechanisms
for automating and tuning repetitive mundane information functions and control
of the physical environment. For example, Oxygen allows users to create scripts
that control devices such as doors or heating systems according to their tastes.
Collaboration forms spontaneous collaborative regions that accommodate the
needs of mobile people and computations and maintains the collaboration con-
text using knowledge access and automation. It provides support for recording
and archiving speech and video fragments from meetings, and for linking these
fragments to issues, summaries, keywords, and annotations.

4.3 PICO

The Pervasive Information Community Organization (PICO) is a middleware
framework that enhances existing Internet-based services [15] with the goal of
meeting the demands of time-critical applications such as telemedicine, military,
and crisis management. PICO provides automated, continual unobtrusive serv-
ices and proactive real-time collaborations among devices and software agents in
a dynamic heterogeneous environment. PICO deals with the creation of mission-
oriented dynamic computing communities that perform tasks on behalf of users
and devices autonomously. It comprises two basic building blocks: software enti-
ties called delegents (intelligent delegates) and hardware devices, called camileuns
(connected, adaptive, mobile, intelligent, learned, efficient, ubiquitous nodes).
The concept of PICO extends the current notion of pervasive computing, that is,
that computers are everywhere [22]. Its novelty lies in creating communities of
delegents that collaborate proactively to handle dynamic information, provide
selective content delivery, and facilitate application interface. In addition, dele-
gents representing low-resource devices have the ability to carry out tasks
remotely.

In general, the devices in a pervasive environment provide the services of
which they are capable. However, it is necessary to capture the device characteris-
tics in terms of hardware and software and the services they can provide. In the
PICO framework, a camileun captures the functional entities of a device. It is an
abstract logical representation of a device and provides a link between a device
and delegent(s). A camileun is described by the tuple of C = <Cid,F,H > where Cid
is the camileun identifier, F is the set of functionalities, and H is the set of system
characteristics.

A delegent provides encapsulation, interface, delegation, adaptation, and
manageability for the camileun, user, or application with which it is associated.
A delegent encapsulates one or more functional units of a camileun. A delegent
is goal directed and works by itself or in a community. A delegent responds
to sensory inputs, events in the community, and events within itself, and takes

Pervasive Computing: Enabling Technologies and Challenges 627

appropriate actions based on a set of rules. Delegents work in a community envi-
ronment where they interact with other delegents and their environments. The
modeling of delegents is described here. Delegents not only make camileuns adap-
tive to their surrounding environments but also condition them to overcome
uneven capabilities of various collaborating camileuns. The set of operational
rules, R, defines how a delegent responds to events when it is in a certain state.
The operation rules include community engagement, communication, and migra-
tion of delegents. Events can be internal or external to the delegents. Each rule
consists of a pair of conditional facts and actions.

A community is a collection of one or more delegents working together
towards a common goal. Communication and collaboration are essential to the
operations of a community, which provides a framework for collaboration and
coordination among delegents. A delegent provides a common interface to com-
municate or collaborate with other delegents. Devices are capable of providing
services to users and applications. The PICO concept allows the representation of
various devices through their respective delegents, who collaborate with each
other to provide integrated services.

Communities in PICO are formed either statically or dynamically. Static com-
munities, also called service provider communities, are created to provide services
in various applications. Dynamic communities are created in response to the
occurrence of extraordinary events in the environment. Once a community is
formed, its delegents collaborate to carry out the goal of the community.

4.4 MavHome Smart Home

In [7], we defined a smart environment as one that is able to acquire and
apply knowledge about its inhabitants and their surroundings in order to adapt
to the inhabitants and meet the goals of comfort and efficiency. These capabili-
ties rely upon effective prediction and intelligent decision making with the help
of such technologies as robotics, wireless and sensor networking, mobile com-
puting, databases, machine learning and multimedia technologies. With these
capabilities, a smart home can adaptively control many aspects of the environ-
ment such as climate, water, lighting, maintenance, and multimedia entertain-
ment. Intelligent automation of these activities can reduce the amount of
interaction required by the inhabitants, reduce energy consumption and other
potential wastages, and provide a mechanism for ensuring the health and safety
of the environment occupants [6].

In the MavHome project [8], smart home capabilities are organized into an
agent-based software architecture that seamlessly connects needed components
while allowing improvements to be made to any of the supporting technologies.
The technologies in the MavHome are separated into four cooperating layers. The
physical layer contains the environment hardware, including devices, transducers,
and network equipment. The communication layer exchanges information between
agents. The information layer collects information and generates inferences useful
for making decisions. The decision layer selects actions for the agent to execute.
The MavHome software components are connected using a CORBA interface.

Because controlling an entire house is a very large and complex learning and
reasoning problem, the problem is decomposed into reconfigurable subareas or

628 Mohan Kumar and Sajal K. Das

tasks. Thus, the physical layer for one agent may in actuality represent another
agent somewhere in the hierarchy, which is capable of executing the task selected
by the requesting agent.

Perception of the state of the smart home is a bottom-up process. Sensors
monitor the environment (e.g., lawn moisture level) and, if necessary, transmit the
information to another agent through the communication layer. The database
records the information in the information layer, updates its learned concepts and
predictions accordingly, and alerts the decision layer to the presence of new data.
During action execution, information flows top down. The decision layer selects
an action (e.g., run the sprinklers) and relates the decision to the information
layer. After updating the database, the communication layer routes the action to
the appropriate effector to execute. If the effector is actually another agent, the
agent receives the command through its effector as perceived information and
must decide upon the best method of executing the desired action. Specialized
interface agents allow interaction with users, robots, and external resources such
as the wireless network or the Internet. Agents can communicate with each other
using a hierarchical flow. As compared with other projects related to smart
homes, MavHome is unique in combining a multitude of technologies from arti-
ficial intelligence, machine learning, wireless mobile networking, sensors, data-
bases, robotics, and multimedia computing to create a smart home that acts as an
intelligent agent.

5 CONCLUSIONS

In this chapter, we have presented an overview of the enabling technologies
for the emergence of pervasive computing and communication infrastructures.
While the Internet will perhaps continue to be the backbone of pervasive com-
puting, the tremendous advances in wireless mobile communications allow the
creation of ubiquitous networks with very little effort and insignificant cost
Moreover, wireless communications offer users the luxury of mobility and pro-
vide connectivity on the move. Sensor networks, RFID tags, and embedded
devices also help in the deployment of environments that are replete with com-
puting and communicating services. Heterogeneous devices and networks, inter-
operability among disparate entities, and mobility and security will continue to
challenge pervasive computing researchers.

REFERENCES

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, The design
and implementation of an intentional naming system, ACM SIGOPS
Operating Systems Review, Proceedings of the Seventeenth ACM Symposium
on Operating Systems Principles, 33(5), 186–201.

[2] G. Banavar, J. Beck, and E. Gluzberg (2000): Challenges: An application
model for pervasive computing, in Proceedings of 6th Annual International
Conference on Mobile Computing and Networking (MOBICOM 2000),
pp. 266–274, Boston, MA, USA.

Pervasive Computing: Enabling Technologies and Challenges 629

[3] P. Bellavista, A.Corradi, C. Stefanelli (2000): A mobile agent infrastructure
for the mobility support, Proceedings of the 2000 ACM Symposium on
Applied Computing, pp. 239–245.

[4] A. Bhattacharya and S. K. Das (1999): LeZi-update: An information-theo-
retic approach to track mobile users in PCS networks, Proc. 6th Annu. ACM
Int. Conf. on Mobile Computing and Networking (MobiCom), pp. 1–12.

[5] A. Bhattacharya and S. K. Das (2002): Lezi-update: An information-theo-
retic framework for personal mobility tracking in PCS networks,
ACM/Kluwer Wireless Networks Journal, 8(2-3), 121–135.

[6] D. J. Cook and S. K. Das (2003): Health monitoring in an agent-based smart
home, International Conf. on Aging, Disability and Independence (ICADI),
Washington, Dec.

[7] D. J. Cook and S. K. Das (eds) (2004): Smart Environments: Architectures,
Protocols and Applications, John Wiley, to appear.

[8] S. K. Das, D. J. Cook, A. Bhattacharya, E. O. Heierman, and T.-Y. Lin
(2002): The role of prediction algorithms on the MavHome smart home
architectures, IEEE Wireless Communications (Special Issue on Smart
Homes), 9(6), 77–84, Dec.

[9] S. K. Das, A. Bhattacharya, A. Roy, and A. Misra (2003): managing location
in ‘universal’ location-aware computing, Handbook of Wireless Internet
(Eds. B. Furht and M. Ilyas), Chapter 17, pp. 407–425, CRC Press.

[10] S.K. Das and C. Rose (2004): Coping with uncertainty in mobile wireless
networks, Proceedings of 15th IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), Barcelona, Spain,
Sept (Invited Paper).

[11] W.M. Farmer, J.D. Guttman, and V. Swarup (1996): Security for mobile
agents, issues and requirements, Proceedings NISSC’96 National Information
Systems Security Conf., pp. 591–597, Baltimore, MD, October.

[12] A. Hopper (1999): Sentient computing, The Royal Society Clifford Patterson
Lecture, http://www.uk.research.att.com/~hopper/publications.html.

[13] R. Kambalakatta, M. Kumar, and S. K. Das, Profile based caching to
enhance data availability in push/pull mobile environments, International
Conference on Mobile and Ubiquitous Computing, MobiQuitous 2004,
Boston, August 22–25, Boston, USA.

[14] J.J. Kistler and M. Satyanarayanan (1992): Disconnected Operation in the
Coda File System, ACM Trans. Comp. Sys. 5(1), February.

[15] M. Kumar, B. Shirazi, S. K. Das, M. Singhal, B. Sung, and D. Levine (2003):
Pervasive Information Communities Organization PICO: A middleware
framework for pervasive computing, IEEE Pervasive Computing, 72–79.

[16] L.B. Mummert, M.R. Ebling, and M. Satyanarayanan (1995): Exploring
weak connectivity for mobile file access, Proc. 15th ACM Symp. Op. Sys.
Principles, Copper Mountain Resort, CO, December.

[17] N. B. Priyantha, A. Chakraborty, H. Balakrishnan (2000): The Cricket loca-
tion-support system, Proceedings of the 6th Annual International Conference
on Mobile Computing and Networking, August, pp. 32–43.

[18] A. Roy, S. K. Das, and A. Misra (2004): Exploiting information theory for
adaptive mobility and resource management in future cellular networks,

630 Mohan Kumar and Sajal K. Das

IEEE Wireless Communications (Special Issue on Mobility and Resource
Management), Aug, to appear.

[19] M. Satyanarayanan (2001): Pervasive computing: vision and challenges,
IEEE Personal Computing.

[20] E. Shih, P. Bahl, and M.J. Sinclair (2002): Wake on wireless: an event driven
energy saving strategy for battery operated devices, Proceedings of the 8th
Annual International Conference on Mobile Computing and Networking,
pp. 160–171.

[21] D.L. Tenenhouse (2000): Proactive computing, Communications of the ACM
43:5 (May).

[22] M. Weiser (1991): The computer for the 21st century, Scientific American,
265(3), 94–104.

[23] http://oxygen.lcs.mit.edu/
[24] http://www-2.cs.cmu.edu/~aura/
[25] http://www.cse.uta.edu/~pico@cse
[26] http://ailab.uta.edu/mavhome/

Pervasive Computing: Enabling Technologies and Challenges 631

Chapter 20

INFORMATION DISPLAY
Peter Eades,1,2 Seokhee Hong,1,2 Keith Nesbitt,3

and Masahiro Takatsuka1,2

1University of Sydney,
2National ICT Australia,
3Charles Sturt University, Australia

Recent increases in the size of available datasets have created a strong demand
for new ways of displaying information. This chapter describes some recent
research into information display.

Visualization is the process of generating a picture of a dataset. The data,
which may be numerical, ordinal or nominal, is mapped onto visual variables so
that they can be visually inspected. The visual variables determine the shapes and
appearances of pictorial icons representing the data. These pictures are then
placed on a display screen. The main challenge is to convey as much information
as possible when these icons are displayed.

In many cases, the data are modeled as a graph, and the visualization process
is called Graph Drawing. Section 1 of this chapter describes new methods for
drawing graphs, aimed at coping with very large data sets.

The underlying display technology for visualization is undergoing rapid
changes. In Section 2 we describe some of these new display technologies. These
changes take information display beyond the visual; new methods for showing
information using the nonvisual senses are described in Section 3.

1 NEW METHODS FOR DRAWING VERY
LARGE GRAPHS

Much of the information and data in real-world applications consists of enti-
ties and the relationships between the entities, and thus can be modeled mathe-
matically as graphs. For example, traditional entity-relationship diagrams and
UML diagrams in software engineering can be modeled as graphs. Biological data
such as phylogenies can be modeled as trees, PPI (Protein–Protein Interaction)

networks can be modeled as graphs, and metabolic (or biochemical) pathways
can be modeled as directed graphs. Network data, such as webgraphs, and social
network data can be modeled as undirected and directed graphs.

Graph drawing aims to construct good drawings (that is, visualizations, or lay-
outs) of graphs in two or three dimensions. As the examples given above indicate,
Graph drawing systems can be used in many applications such as software visu-
alization, bioinformatics visualization, VLSI design, network data visualization,
and social network visualization.

The main challenge in graph drawing is to design efficient algorithms and
methods for computing good geometric representations of graphs automatically.
There is a great deal of literature in graph drawing, and this research area has
been growing for the last decade. Several books are available; see [67, 77, 79, 85].
There is an annual symposium on graph drawing that brings together mathe-
maticians, computer theoreticians, and practitioners.

Further, many fundamental algorithms in graph drawing have been success-
fully developed and implemented by researchers and software developers. As a
result, graph drawing systems and commercial software products are available.
These include GraphViz from AT&T, GDToolkit, AGD, Graphlet, TomSawyer
Software, and ILOG. For details, see the recent book on graph drawing software
[77]. These products are successfully used for software engineering, network data
analysis, and visual analysis of bioinformatics data.

The methods and algorithms for graph drawing can be roughly partitioned on
the types of graphs, edge representations and aesthetic criteria.

The main types of graphs are trees (rooted trees or free trees), planar graphs,
undirected graphs, and directed graphs.

Edges may be represented as straight-line segments, polylines, or orthogonal
polylines (of horizontal and vertical line segments). Directed edges normally have
arrowheads.

Aesthetic criteria are objective functions for optimization, defining “good”
visualization of graphs. In general, they measure the readability of a drawing.
Sometimes they relate to a specific application domain. For example, when draw-
ing organization charts for a work group, it is important for the boss to be at
the top of the page. On the other hand, there are a number of criteria that are
independent of the application domain; the most important are the following:

● Minimizing the number of edge crossings

● Minimizing the drawing area (thus maximizing the resolution for a fixed-size
screen)

● Maximizing the number of symmetries

● Minimizing the number of bends (in a polyline drawing)

● Minimizing the total edge length

● Uniform edge length

● Good aspect ratio, that is, balancing the width and the height

● Maximizing angular resolution, that is, ensuring that two edges adjacent to a
vertex are drawn with enough angular difference

634 Peter Eades, Seokhee Hong, Keith Nesbitt, and Masahiro Takatsuka

Unfortunately, achieving these aesthetic criteria is very difficult. For example, the
problem of constructing a drawing of a general graph with a minimum number of
edge crossings is NP-hard. This also holds for most of the other aesthetic criteria.

However, many efficient polynomial time algorithms have been developed for
restricted classes of graphs, such as trees and planar graphs.

Also, many practical heuristic approaches have been successfully developed
for general graphs. The best known of these heuristic approaches are the spring
algorithms (or force directed methods) for undirected graphs and the Sugiyama (or
layered drawing) method for directed graphs. For an overview of each method, see
[67]. Both spring methods and Sugiyama methods are popular and widely used in
many applications. In the remainder of this section, we describe very recent force-
directed methods.

In general, spring algorithms use a physical analogy for graph drawing. For
example, the edges of graphs can be replaced by springs to define attractive forces
between the two vertices, and repulsive forces can be defined for each pair of ver-
tices to guarantee that they are not drawn too close to each other. Then the sys-
tem tries to achieve the minimum energy state (or equilibrium state), where the
sum of all forces acting on each vertex becomes zero.

Due to the simplicity of the method and the reasonable quality of the drawing,
many variations on the spring algorithm have been developed over the last two
decades. Early examples include the spring embedder by Eades [68], forces using
graph theoretic distance by Kamada and Kawai [78], and a magnetic spring algo-
rithm by Sugiyama and Misue [86]. These methods differ slightly in terms of the
force model and the method to reach equilibrium. For some comparison, see [67].

However, these early methods exhibit relatively high running time, iteratively
computing O(⎜V ⎜2) forces, where ⎜V ⎜ represents the number of vertices in the
graph. This limits the size of graphs that such methods can handle in practice: in
1984 Eades reported a limit of about 50 vertices [68], and with 2004 technology
these methods can handle a few hundred vertices. For larger graphs, either the
quality is poor or the run-time is unacceptable for real-time visualization.

The size of data in practical applications has also grown in the early twenty-
first century. For instance, the size of webgraphs is typically measured in the mil-
lions. Hence, the scalability of spring algorithms has been a challenging problem.

Recently, many new methods have been successfully developed to solve the
problem of drawing very large graphs. Here we briefly describe the main ideas
and results. In particular, we review four different approaches:

● Multilevel approach for the force-directed method

● Force-directed method using geometric clustering

● High-dimensional approach

● Spectral method

1.1 Multilevel approach

Walshaw presents a heuristic that uses a multilevel technique combined with a
force-directed method [87, 88]. The main idea is to apply a kind of combinatorial
clustering (or graph partitioning) method to gradually reduce the size of the

Information Display 635

graph. If the size becomes small enough, then we can draw the small graph to
produce an initial drawing. Then we gradually refine the drawing using a simple
interpolation technique and a force-directed method to obtain a drawing of the
original graph. More specifically, the multilevel process works as follows.

The first step is to group pairs of vertices to form clusters, using a fast heuris-
tic for matching. Then the clusters define a new coarsened graph. This step is
repeated until the size of the graph falls below some threshold. The second step
is to draw the coarsened graph with a random initial drawing. The final step is to
successively refine the drawing of the coarsened graph to get a drawing of the
original graph, using a simple interpolation technique together with a modified
version of the Fruchterman and Reingold force directed method [70].

It is claimed that the running time at each level is approximately O(⎜V ⎜ + ⎜E ⎜)
for sparse graphs. However, the total running time may depend on the number of
levels of the multilevel process.

The method can compute both two- and three-dimensional drawings, and
experimental results have been demonstrated with a number of examples from a
few hundred vertices up to 225,000 vertices. The method works very fast, in par-
ticular, for 2D drawings of sparse graphs; for example, it takes around 30 seconds
for 10,000 vertices. It may takes 10 minutes for the largest graph. For details of
experimental results, see [87, 88].

Figure 20.1 shows two examples produced by the method [87]. Figure 20.1a is
a drawing of a graph with ⎜V ⎜ = 4970 and ⎜E ⎜ = 7400. It takes about 14 seconds.
Figure 20.1b shows a drawing of the graph sierpinski10, which has ⎜V ⎜ = 88575
and ⎜E ⎜ = 177147. It takes about 217 seconds.

Similar ideas were independently used by a number of authors, including
Hadany and Harel [74], Harel and Koren [75, 76], and Gajer, Goodrich, and
Koburov [71].

Harel and Koren [75, 76] used a multiscale technique, with a version of the
algorithm of Kamada and Kawai [78]. Their method computes a sequence of
improved approximations of the final drawing. Each approximation allows ver-
tices to deviate from their final place by an extent limited by a decreasing con-
stant. As a result, the drawing can be computed using increasingly coarse
representations of the graph, where closely drawn vertices are collapsed into a

636 Peter Eades, Seokhee Hong, Keith Nesbitt, and Masahiro Takatsuka

(a) (b)

Figure 20.1. (a) Drawing of graph with 4970 vertices; (b) drawing of sierpinski10 [87].

single vertex. Each drawing in the sequence is generated quickly, performing a
local beautification step on the previously generated drawing. This method can
handle up to a few thousand vertices. For details, see [75, 76].

Gajer, Goodrich, and Koburov also used a similar multidimensional technique
for drawing large graphs [71]. The algorithm is implemented as a system called
GRIP [72]. For details, see [71, 72].

1.2 Graph drawing using geometric clustering

Another force-directed approach using geometric clustering is presented by
Quigley and Eades [83]. The algorithm is an extension of the Barnes–Hut hierar-
chical space decomposition method [63] to forced directed graph drawing. The
main idea is to use a decomposition tree to approximate the force computation
between each pair of vertices. Roughly speaking, these pairs approximate forces
between vertices based on geometric clustering, defined by the decomposition tree.
More specifically, the forces between close vertices are computed by the standard
direct repulsion between two vertices, whereas the forces between distant vertices
are computed using a geometric clustering induced by the decomposition tree.

Quigley and Eade’s method uses a recursive space decomposition, which
induces a geometric clustering of the vertices, and in fact it also induces a graph-
theoretic clustering. This graph-theoretic clustering is then used in a force-
directed algorithm, and this in turn improves the graph-theoretic clustering.
Iterating this process improves both the drawing and the clustering; this process
can be useful in applications.

The method was implemented in two and three dimensions using quad-trees
and oct-trees [83]. Similar types of decomposition trees can also be used.

The claimed running time to compute the forces (that is, on one level) is
approximately O(⎜E ⎜ + ⎜V ⎜log ⎜V ⎜). Example outputs are illustrated in
Figure 20.2 [83].

1.3 A high-dimensional approach

We now describe more recent methods by Harel and Koren [76] for drawing
very large graphs using high-dimensional embedding. The main idea of this
method is first to draw a graph in very high dimensions (say 50) and then to proj-
ect the embedding into two or three dimensions.

Information Display 637

Figure 20.2. Graph with 2500 vertices on level 6 and the lowest level of the decomposition
tree [83].

For the first step, drawing a graph in m dimensions, Harel and Koren choose
m pivot vertices that are almost uniformly distributed on the graph, using an
approximation algorithm of the k-center problem. Then the ith coordinate of
each vertex is computed based on the graph-theoretic distance from the pivot
vertex pi using breadth-first search. This approach gives a rough but quick initial
layout.

For the second step, they use principal component analysis (PCA) to choose a
good projection of m-dimensional drawing into two or three dimensions. This
method transforms a number of correlated variables into a smaller number of
uncorrelated variables called principal components. The first principal component
represents as much variability of the data as possible. Using only the first few
principal components, PCA can reduce the dimensions of the data, maintaining
the maximum possible variance (see [69]).

More specifically, Harel and Koren compute the first k eigenvectors of the
covariance matrix (these correspond to the largest eigenvalues) using a simple
power-iteration method [89]. Finally, they perform the projection using the direc-
tion of the eigenvectors. For details, see [76].

The claimed running time is O(⎜V ⎜+⎜E ⎜), and the authors report that the
method is rather independent of the structure of the graph (unlike the classical
force-directed methods). They present experimental results with graphs of 105

vertices drawn in a few seconds, and 106 vertices drawn in a minute. Indeed, this
method is much faster than the force-directed methods described in the previous
sections.

In terms of the quality of the drawings, the method gives reasonable results.
However, due to the limitations of linear projections, the 2D drawings have
poorer quality compared with those produced by classical force-directed meth-
ods. Two sample outputs are illustrated in Figure 20.3 [76]. Figure 20.3 shows the
drawing of the crack graph with 10,240 vertices and 30,380 edges; this drawing
took 0.3 seconds.

For very sparse graphs such as trees, the method does not perform well in
terms of the quality of the drawing. Harel and Koren also report that sometimes
it is aesthetically better to choose different eigenspaces. The PCA method raises
the possibility of creating graph drawing systems that browse views of the graph
using different projections onto eigenspaces.

638 Peter Eades, Seokhee Hong, Keith Nesbitt, and Masahiro Takatsuka

Figure 20.3. Drawings of (a) a 100×100 grid with opposite corners connected, and (b) the crack
graph [76].

1.4 Spectral method

Spectral methods form part of the toolbox of algebraic graph theory [66] and
have been used in many applications such as graph partitioning. The most widely
used techniques use eigenvalues and eigenvectors of the adjacency matrix or
Laplacian matrix of the graph.

The spectral graph drawing method was firstly introduced by Hall [73].
Recently, variations have been presented by a number of authors. We briefly
review the main idea.

A simple spectral layout method that uses eigenvectors of the Laplacian
matrix of a graph is described in [65,90]. Here, the eigenvectors are computed
using a simple power iteration method. The layout method has been used for web-
graphs and social network data. For details, see [90].

More sophisticated spectral methods for drawing large graphs are presented
by Koren et al. [81, 82] and Koren [80].

ACE (Algebraic multigrid Computation of Eigenvectors) constructs a drawing
of a graph using eigenvectors of the Laplacian. More specifically, the problem is
reduced to minimizing a quadratic energy function, which can be expressed as a
generalized eigenvalue problem. They authors present a very fast method for min-
imizing Hall’s energy function [73] using a multiscale approach. For details, see
Koren, Carmel, and Harel [81, 82].

It s claimed that ACE can draw graphs with 100,000 vertices in about 2 sec-
onds and graphs of millions of vertices in a minute. However, the authors report
that the running time of ACE depends more on the structure of the graph than
on the high-dimensional approach. Figure 20.4 shows some results. Figure 20.4a
shows the drawing of a folded 100 × 100 grid with 10,000 vertices and 18,713
edges. Figure 20.4b shows the drawing of a graph with 4,970 vertices and 7,400
edges. Figure 20.4c shows the drawing of the crack graph, with 10,240 vertices
and 30,380 edges. Figure 20.4d shows the drawing of the 4elt graph, with 15,606
vertices and 45,878 edges. Figure 20.4e and 20.4f show the drawings of the
dwa512 graph, with 512 vertices and 1,004 edges, drawn using a different choice
of eigenvectors.

Koren [80] further extends the spectral approach to graph drawing using
degree-normalized eigenvectors, which have some aesthetic advantages. He pres-
ents an algorithm for computing the degree-normalized eigenvectors quickly. For
details, see [80].

1.5 Remarks

We conclude this section with a summary and some remarks on future
research directions.

In this section, we briefly discuss current research in graph drawing, concen-
trating on drawing very large undirected graphs. Several algorithms are available,
and we can roughly divide them into two approaches: the fast force-directed
methods combined with either a multilevel approach, graph theoretic clustering,
or geometric clustering; and spectral approaches that use eigenvectors of matri-
ces associated with the graph. The first approach can handle a few thousand ver-
tices, and the second approach can handle millions of vertices.

Information Display 639

It should be noted that these new methods are not currently mature and need
extensive evaluation. Some are beginning to be adopted into commercial tools,
but at the time of this writing, commercial success has not been achieved. In par-
ticular, many authors present experimental results with sparse graphs and with
regular structures, thus resulting in good quality drawing quickly. However, few
of these methods have been evaluated with real-world data sets with dense graphs
and irregular structure. With few exceptions, data such as webgraphs, PPI net-
works, and social network data have not been thoroughly tested.

Further, there has been no attempt to compare these methods formally. Hence,
it would be interesting to conduct an extensive comparison of different
approaches for drawing large graphs with real-world data sets.

Furthermore, it may be essential to modify these methods to produce a good-
quality drawing of domain-specific data, since many networks and graphs in the
real world exhibit special properties. For example, social networks [65] and bio-
chemical pathways [84] exhibit special properties that may be exploited by con-
straints in force-directed methods. For the properties of special networks, see [64].
This is a challenging topic requiring further research.

Finally, users of real-world applications need good navigation methods to
accompany the static visualization so that they can interact with the visualiza-
tions for further investigation based on their own interests or insights. Thus,
future research also should include the design of good navigation methods that
support efficient and effective interaction methods for the users. This area is also
related to the dynamic visualizations of graphs, since graphs and networks in the
real world are inherently dynamic and thus always changing.

640 Peter Eades, Seokhee Hong, Keith Nesbitt, and Masahiro Takatsuka

(f)(e)(d)

(a) (b) (c)

Figure 20.4. Examples of the drawings produced by ACE [81]. See text for details.

2 NEW VISUALIZATION TOOLS
AND TECHNOLOGIES

This section will discuss various visual technologies that are relatively inex-
pensive but are effective in increasing the accessibility and the amount of infor-
mation being presented to a user on a screen. This section will also present
current issues in utilizing and integrating such technologies to improve the capa-
bilities of visualization.

2.1 High-resolution displays

Due to the marked advances of modern computing technologies, many com-
modity computer graphics hardware have achieved significant increases in perform-
ance and capability, including hardware accelerations of various three-dimensional
computer graphics functions [33]. In 2004, many graphics cards commonly sup-
port a pixel resolution ranging from 1,024 × 768 pixels to 1,600 × 1,200 pixels, and
further improvements are expected.

In the field of visualization (including both scientific and information visual-
ization), the amount of data being displayed continues to increase, corresponding
to the rapid progress of communication and computing technologies.
Furthermore, these technological advances now allow scientists and engineers to
push the boundaries of data analysis and simulation processes, resulting in the
massive amount of data that needs to be visually inspected. In order to display
such a large amount of information on a screen, the display system needs a large
number of pixels.

Even with the modern commodity computer graphics hardware technologies,
it is extremely difficult to provide a high-resolution display capability while main-
taining real-time interactivities and three-dimensional complex geometry. In
order to achieve super high-resolution displays with inexpensive commodity
graphics hardware, Humphreys et al. introduced WireGL [35]. WireGL allows
OpenGL rendering commands to be distributed across a cluster of inexpensive
commodity graphics cards. This technology was rolled into a new project named
Chromium [35]. The novel improvements in Chromium were (1) to provide a
mechanism not requiring a user to execute an OpenGL application without mod-
ifications, and (2) to introduce a Stream Processing Unit (SPU) structure. Once a
stream of OpenGL-rendering commands is intercepted by the core module of
WireGL, these commands are distributed across a network of graphics hardware
by the SPU.

Many distributed rendering or tiled display systems have been developed
based on chromium technologies [36–41]. For example, NCSA at the University
of Illinois [36], the Visualization Group at the Pennsylvania State University [37],
and the ViSLAB at the University of Sydney [38] (see Figure 20.5) have developed
and packaged chromium-based tiled display systems for scientific visualization.
The VIEWS development group at LLNL has developed a parallel rendering sys-
tem using chromium as well as Distributed Multi-headed X (DMX) technologies.
With this system, not only the 3D graphics rendered by OpenGL but also other
X-windows’ widgets can be rendered in a distributed fashion [39].

Information Display 641

Although chromium technology successfully provides distributed-rendering/
tiled-display capability, it heavily relies on a fast local network (such as Gigabit
Ethernet or Mirinet). Since chromium requires the transmission of many primi-
tive geometry objects over the network, there would be a bottleneck if it were
deployed over a cluster of computers on a LAN or a low-bandwidth network.
Furthermore, it would be very challenging to provide this distributed rendering
service to remotely situated client machines rather than to a tiled display system
directly connected to the chromium cluster. In response to this challenge, Bethel
et al. have combined chromium technology with a multithreaded scene graph
framework [40, 41]. By providing a parallelizable scene graph framework, the
rendering process was accelerated by using scene-specific knowledge; this allows
the system to reduce the number of geometry objects to be transmitted over the
network.

2.2 Augmented displays

One approach to increasing the amount of information conveyed through
visualization is to increase the number of visual variables. This approach includes
increasing the number of pixels (as described above) and the complexity of pic-
torial icons used to represent the information. Another approach is to present
such pictures within other more information-rich environments. When a piece of
information is presented in a context, the contextual information could be used
to enhance the original representation and to add extra pieces of information.
As a result, the visualization presented in a certain contextual environment could
provide more information than the pictures alone can present.

Augmented Reality [42–46] and Mixed Reality [47–50] use various information
and computing technologies (such as computer graphics, real-time range findings,
and human–machine interfaces) to seamlessly integrate the virtual and real-world
environments. Research in these fields has been driven by the need to improve the

642 Peter Eades, Seokhee Hong, Keith Nesbitt, and Masahiro Takatsuka

Figure 20.5. A large tiled display being used in scientific visualization (ViSLAB, The University
of Sydney).

human interface of the computing facilities. The general objective of such
research activities is to enhance the human–machine interfaces and user experi-
ences by complementary combinations of the real-world environment and the
information/computing technologies.

When visualization of some datasets is required, a user is engaged in inspect-
ing and analyzing the data. The process of data analysis often involves other
types of information (such as paper documents, real-world experimental items,
and conversational information among colleagues through intense collaboration),
all of which exist outside visualized data spaces. Augmented display systems
allow visualized information and tangible real-world items to coexist in the same
user interaction spaces.

The Digital Desk uses a physical desk surface as a projection screen, allowing
a user to inspect and interact with the visualized information and the physical
object side by side. All user interactions are detected by various sensors, such as
stroke sensors and a passive camera, and are communicated back to the visual-
ized information [42]. Feirer et al. developed a knowledge-based augmented real-
ity named KARMA [43]. This system utilized a see-through type Head Mounted
Display to merge the visualization and real-world spaces.

The above Augmented Reality systems intend to place the visualized informa-
tion in an environment along with real-world entities. The Mixed Reality system,
on the other hand, attempts to place the information, typically images, of the
real-world entities in the visualized space. For example, Kanade’s Virtualized
Reality system obtains three-dimensional information about real-world objects
through multiple-camera passive range finders, and then places the 3D informa-
tion in the virtual information space [49].

The Augmented and Mixed Reality systems mentioned above rely on a single
visual display such as a desktop surface display or a head-mounted display. The
visualization and interaction spaces are usually defined and constrained by this
single display device. In order to increase the availability and accessibility of the
visualized information and to free a user from spatial constraints, the Everywhere
Display project at IBM uses the Multisurface Display Projector to turn nonteth-
ered surfaces into interactive display surfaces [46]. This type of system makes
visualized data available and accessible anywhere and anytime, and has great
potential to significantly improve how a user interacts with the visualized
information.

2.3 Integration of visual technologies

The advances in information and communication technologies have resulted
in many research projects that utilize them to create Computer-Supported
Collaborative Work (CSCW) and Computer-Mediated Communication (CMC) in
order to support local and remote collaboration. The marked improvements of
various advanced visual technologies, as mentioned above, suggest that these new
visually enabled technologies must be reevaluated and exploited as core tech-
nologies mediating the collaboration processes.

Many visually enabled CSCW or CMC systems [51–59] are designed based on
the concept of WYSIWIS (What You See Is What I See) [60] and WYSIWID
(What You See Is What I Do). Many such systems utilize large screen displays,

Information Display 643

including workbench style displays and “natural” user interfaces [53–57], and
some of them are commercially available. However, both the hardware and soft-
ware of these systems are designed and developed to support local intense col-
laboration. Hence, they fall short in supporting remote intense collaboration.
Moreover, many of these systems are still confined to wired input devices that are
electro-mechanically or acoustically tracked. Some of the more natural user inter-
faces (such as DiamondTouch [55]) are touch-based interfaces, which require the
screen to be touched before any tracking is possible.

The user interaction and communication models of such systems are, however,
still based on Norman’s gulf model [61]. According to this model, there are two
information-processing devices (a computer and a user) connected to each other.
The results of computation are passed on to a user via visual and audio output
devices. The information from a user is transmitted to the computer through
input devices such as a keyboard and mouse.

Norman explained various difficulties of using such systems based on the con-
cept of a “gulf,” which prevents a smooth transition between these two informa-
tion-processing units. This model is useful in explaining the conventional
interaction within computing systems. However, in real life, we interact with
external objects and pieces of information in a more direct manner. Moreover,
when networked interactive systems mediate intense collaboration between mul-
tiple parties, a new gulf is introduced between those systems. Therefore, the devel-
opment of more intuitive user interfaces based on direct manipulation with the
help of pervasive user input devices is the major challenge to developing a better
visually enabled CSCW system.

Figure 20.6 illustrates a collaborative access table (CAT), which uses a passive-
range, finder-based natural user input device. A horizontal display, for the com-
puter output, is on the table surface. Cameras capture images of the hands and
face of the user, who stands or sits on the left. The system utilizes a stereo range

644 Peter Eades, Seokhee Hong, Keith Nesbitt, and Masahiro Takatsuka

Figure 20.6. A prototype of a CAT (built by Takatsuka, Eades, and students at the University
of Sydney).

finder in order to track the user’s hands in a 3D space. By tracking the user’s hand
and fingertip in the 3D space, the system replaces the mouse clicking function
with a simple tapping action on the display surface. In this manner, a user does
not have to learn other hand gestures in order to interact with information on the
screen.

The uses of various communication-related computing technologies have been
studied as the medium of intense local and remote user interactions. A number of
computer-based technologies are available to support such systems (such as
email, www, on-line chat, and video conferencing). Most of these technologies
have been used simply to connect remotely located systems [52]. Hence, disparate
users still have to interact with shared information through completely
disparate user interaction spaces. The question is whether such technologies are
effectively used to provide seamless collaboration. Without careful design and
appropriate evaluations, such systems could add an extra “gulf” rather than filling
the “gulf” of remoteness.

A clear understanding of the mechanisms of remote intense collaboration
and the establishment of a computational framework based on shared visual-
ized information to support the collaboration are the challenges in this field. The
successful development of such a visually enabled collaboration system could
enhance conventional office management, as well as research management/
collaboration, and could help other research partners better understand each
other’s activities.

3 BEYOND THE VISUAL: MULTISENSORY
DISPLAY

While the majority of work with abstract data displays has focused on the
visual sense, there is also increasing interest in displaying abstract data across a
wider range of human senses. Many data sets are characterized by their large size
and multiattributed nature. By employing multisensory feedback, the goal is to
widen the bandwidth between human and computer. With multisensory inter-
faces, the user can potentially perceive and assimilate multiattributed information
more effectively (see Figure 20.7). By mapping different attributes of the data to
different senses, such as the visual, auditory, and haptic (touch) sense, it may be
possible to better understand large data sets.

This section will consider the display of abstract data using the alternative
senses of audition and haptics. This introduction will progress to a consideration
of integrating visual, auditory, and haptic displays. The section will then conclude
with a discussion of the difficult issues encountered when designing multisensory
displays.

3.1 Sound displays

Auditory displays can use sound parameters such as pitch, duration, timbre,
and loudness to convey information to the user [1]. All these sound parameters
can be controlled in the sound-generation process. The auditory sense is less
adept than vision at localizing the position of sounds in space [2]. Nonetheless,

Information Display 645

the position of sound is a further parameter that can be used when designing
information displays (see Figure 20.8).

A three-dimensional sound display can be achieved in two ways. One
approach uses a spatially distributed array of speakers to generate what is called
a sound field simulation [3]. The alternative approach is called perceptual synthe-
sis. In this approach, the synthesized sound can be displayed on simple hardware
such as a pair of headphones or loudspeakers. However, perceptual synthesis also
requires an appropriate model of the user’s head and ear shape, called the Head-
Related Transfer Function. These functions incorporate the human perceptual

646 Peter Eades, Seokhee Hong, Keith Nesbitt, and Masahiro Takatsuka

OUTPUT SENSE INPUT

Color
Lighting

Transparency
Shape

Text
Position visual

Eye-gaze direction
Head position
Head orientation

Force Feedback
Vibration
Texture

Tactile Display
Body Motion
Temperature

Pain
haptic

Keyboard
Mouse (2D, 3D)
Props
Phantom
Body Position
Gestures

Speech
Pitch

Timbre
Loudness

Rhythm
Direction auditory

Sound
Speech

Figure 20.7. Multisensory user interfaces enable a number of different channels of input and
output between the user and the computer.

Figure 20.8. A user predicts stock market direction using a combined 3D visual and spatialized
auditory display of stock market data [32].

Photo courtesy of CSIRO, Mathematical and Information Science, Canberra.

cues for sound localization into a source signal [3]. The models are complex, user
specific, and difficult to generate [4].

The evolving field of study that focuses on displaying abstract data using
sound is called Information Sonification. The term information sonification implies
a mapping from the data attributes to the sound parameters [2]. When there is no
such mapping, the term audification is used. Audification describes the direct play-
ing of data as sound [2]. A good example of audification is the playing back of
seismic events recorded from an earthquake [5].

In some sample applications of information sonification, sound has been used
to assist in debugging software [6], to display scatter plots [7], to help understand
parallel program performance [8], and to display computational fluid dynamics
data [9].

Sound displays have also been combined with visual displays. For example,
auditory signals based on a geiger-counter metaphor were used to display attrib-
utes of data collected from a petroleum well [10]. The user of this system could
probe attributes of the well data with a sound tool while viewing a visual model
of the petroleum well. Sound has also been used to display physiological param-
eters such as respiratory rate, body temperature, and heart rate, in conjunction
with a visual readout of the same data [11].

3.2 Haptic displays

The word haptic derives from the Greek and means to grasp. The sense of
touch differs from vision and hearing in that it relies on action from the user to
generate the stimuli. For example, a person must tap against a surface to feel its
hardness or move a hand across a surface to feel its texture.

In the real world, the haptic sense is typically used for exploring and handling
objects. Exploration tasks involve the extraction of object properties such as
shape, mass, and texture and also provide a sense of contact, position, and
motion. Handling tasks are dominated by user motor actions such as grasping
and object manipulation. For the user, haptic actions require a synergy of sensory
exploration and motor manipulation [12].

Direct contact and displacement of the skin with an object provides tactile
information, commonly described as touch. However, the human haptic system
senses both tactile and kinesthetic information when touching an object [13].
Kinesthetic information provides the sense of position and motion of our limbs
and joints. Current tactile displays are inadequate for use in real applications;
however, it is possible to integrate force-feedback displays into current virtual
environment systems [12]. For example, many platforms use the commercially
available Phantom™ force-feedback device [14]. These displays can mimic a range
of haptic sensations that the user senses through a combination of tactile and
kinesthetic receptors.

The term information haptization is used when the sense of touch is used to
display abstract data. The term information tactilization has also been suggested
[15]. The word haptic refers to both the tactile and kinesthetic components of
touch. Since most interactions involving the sense of touch rely on a combination
of both tactile and kinesthetic feedback, the term information haptization is more
general.

Information Display 647

Although information haptization is a very new domain, some interesting
applications have been developed. One of the first uses of force to display infor-
mation was the GROPE project at the University of North Carolina [16]. This
display was designed to assist users in molecular docking studies. Haptics has
been used to display soil properties such as density, cohesion, and angle of inter-
nal friction by allowing the user to move a simulated plough blade through vari-
ous sandy soils [17]. Force feedback was used to display a small set of properties
such as static friction and surface deviations [18]. This approach allowed the user
to feel surface textures on simulated surfaces. For example, in this way, different
grades of sandpaper can be simulated. In turn, haptics properties such as surface
texture, momentum, and compliance have been used to display attributes of stock
market data [19] (see Figure 20.9).

In the stock market application, a haptic display is combined with a visual dis-
play. The same approach was also used in a control interface developed for a scan-
ning probe microscope [20]. In this application, the user can feel the height and
friction of the surface. As well as receiving this haptic information, the user also
receives visual data from the surface height and color. In another application,
force was used to help seismic interpreters look for patterns in geophysical data
[21]. In this system, force feedback helped the user feel subtle features in the
seismic data.

3.3 Designing multisensory displays

The term multisensory implies that “more than one sensory modality is used to dis-
play the environment” [1]. If the goal of multisensory display is to widen the human-
to-computer bandwidth, then it is important that we strive to display different data

648 Peter Eades, Seokhee Hong, Keith Nesbitt, and Masahiro Takatsuka

Figure 20.9. The Haptic Workbench incorporates a 3D visual display with the Phantom force-
feedback device [14]. This device allows the user to feel attributes such as price momentum on
a stock market chart [19].

Photo courtesy of: CSIRO, Mathematical and Information Science, Canberra.

attributes to different senses. This type of display has been characterized as a
complementary display [22, 23].

Designing complementary displays seems a simple enough goal, yet often the
senses can interact. For example, using sound in conjunction with haptics can
alter the perceived stiffness of a surface [24]. So when a hard sound is played on
contact, the surface is reported as being harder than when a soft sound is
played—despite the fact that, in each case, the same haptic model is used to rep-
resent the surface contact. Likewise, changing the visual representation of the
object can alter the perceived haptic stiffness of a spring. Thick visual represen-
tations of a spring feel stiffer than thinner ones, despite the same force being
required to compress the spring [12].

Given the problems with multisensory interactions, is it wise to focus only on
the visual display of abstract information? After all, some suggest that vision is
the dominant sense. While it is true that vision is highly detailed and well suited
to comparing objects arranged in space, it is equally true that hearing is effective
for monitoring sounds from all directions, even when the source of the sound is
not visible. Touch, as has been shown, does equally well as vision at discriminat-
ing texture [25]. Morton suggests that haptic texture cues may be more perceptu-
ally prominent than visual texture cues when both sources of information are
present [25].

Welch and Warren go further: “The dominance of vision is wrong” [26]. In fact,
different senses are well suited for different kinds of tasks. The problem is that it
is not altogether clear what types of abstract data to display to each sense.
To address this issue, the designer of a multisensory display must consider the
physiological, perceptual, and cognitive capability of each sense.

Understanding the physiology of each sense helps in understanding its per-
formance capabilities and bandwidth. For example, the range of colors that the
eye can see or the frequency of sounds that can be heard are limited by the under-
lying physiology. Perception is dependent on physiology, but multiple levels of
neural processing also influence it. For example, the same wavelength of light can
appear to be a different color depending on the background color [27]. This dif-
ference is a result of the way nerves from the visual receptor cells are organized
rather than the actual physiology of the eye’s receptors.

The influence of higher neural processes on sensory perception is a general
principle and can also be illustrated with hearing and touch [28]. For example,
two similar sound frequencies can sound the same and the ability to distinguish
them may depend on the musical training of the listener [29]. When displaying a
haptic surface with force feedback, the display can give the impression of objects
with a soft surface if the display frequency is low [12].

Cognition issues are also important when designing a display to recognize pat-
terns. For example, the haptic sense may not be as useful for remembering com-
plex patterns as the auditory sense. Some users may be more adept at using a
particular sense, especially as attention to any single sense can influence perform-
ance with that sense [30]. Apart from attention, expectations, context, and knowl-
edge can all influence what we see, hear, and feel [30].

Apart from physiological, perceptual, and cognitive concerns, the designer of
multisensory displays must also consider the tasks of the intended user, charac-
teristics of the data themselves, and specifics of the intended display hardware.

Information Display 649

Although some attempts have been made to better characterize the design of
visual displays [15], auditory displays [31], and even multisensory displays [32],
much more theoretical work still needs to occur in these areas.

4. CONCLUSION

This chapter has described some of the new algorithms and technologies for
information display. In most cases, these are untested outside universities and
research laboratories. However, it is clear that a number of them will eventually find
their way into commercial tools. As more novel concepts in information display are
invented and tested, the way that we perceive information will be changed.

REFERENCES

[1] R. Stuart (1996): The Design of Virtual Environments. New York,
McGraw-Hill.

[2] G. Kramer (1994): An Introduction to Auditory Display. Auditory Display:
Sonification, Audification and Auditory Interfaces. Addison-Wesley.

[3] M. J. Evans, A. I. Tew, J. A. S. Angus (1997): Spatial Audio
Teleconferencing—Which Way is Better? International Conference on
Auditory Display, Palo Alto, California.

[4] E. M. Wenzel, M. Arruda, D. S. Kistler, and F. L. Wightman (1993):
Localization using nonindividualized head-related transfer functions.
Journal of the Acoustical Society of America, 94, 111–123.

[5] C. Hayward (1994): Listening to the Earth Sing. Auditory Display:
Sonification, Audification and Auditory Interfaces. G. Kramer, Addison-
Wesley, pp. 369–404.

[6] D. H. Jameson (1994): Sonnet: Audio-Enhanced Monitoring and
Debugging. Auditory Display: Sonification, Audification and Auditory
Interfaces. G. Kramer, Addison-Wesley, pp. 253–266.

[7] T. M. Madhyastha and D. A. Reed (1994): A Framework for Sonification
Design. Auditory Display: Sonification, Audification and Auditory
Interfaces. G. Kramer, Addison-Wesley, pp. 267–290.

[8] J. A. Jackson and J. M. Francioni (1994): Synchronization of Visual and
Aural Parallel Program Performance Data. Auditory Display: Sonification,
Audification and Auditory Interfaces. G. Kramer, Addison-Wesley,
pp. 291–306.

[9] K. McCabe and A. Rangwalla (1994): Auditory Display of Computational
Fluid Dynamics Data. Auditory Display: Sonification, Audification and
Auditory Interfaces. G. Kramer, Addison-Wesley, pp. 327–340.

[10] S. Barass and B. Zehner (2000): Responsive Sonification of Well-logs.
International Conference on Auditory Display, Atlanta, Georgia, USA.

[11] W. T. Fitch and G. Kramer (1994): Sonifying the Body Electric: Superiority
of an Auditory over a Visual Display in a Complex, Multivariate System.
Auditory Display: Sonification, Audification and Auditory Interfaces.
G. Kramer, Addison-Wesley, pp. 307–326.

650 Peter Eades, Seokhee Hong, Keith Nesbitt, and Masahiro Takatsuka

[12] M. A. Srinivasan and C. Basdogan (1997): Haptics in Virtual Environments:
Taxonomy, Research Status, and Challenges. Computer & Graphics 21(4)
393–404.

[13] N. I. Durlach and A. S. Mavor, (ed) (1995): Virtual Reality: Scientific
and Technological Challenges. Washington, D. C. National Academy
Press.

[14] J. K. Salsibury and M. A. Srinivasan (1997): Phantom-Based Haptic
Interaction with Virtual Objects. Computer Graphics and Applications 17(5),
6–10.

[15] S. K. Card, J. D. Mackinlay, and B. Shneiderman, (ed): (1999): Information
Visualization. Readings in Information Visualization. San Francisco,
California, Morgan Kaufmann.

[16] J. J. Batter and F. P. J. Brooks (1972): GROPE-1. IFIP ‘71.
[17] D. F. Green and J. K. Salsibury (1998): Soil Simulation with a PHANToM.

The Third PHANToM User’s Group Workshop, Cambridge, Massachusetts,
USA, MIT.

[18] D. F. Green (1997): Texture Sensing and Simulation Using the PHANToM:
Towards Remote Sensing of Soil Properties. The Second PHANToM User’s
Group Workshop, Cambridge, Massachusetts, USA, MIT.

[19] K. Nesbitt (2002): Experimenting with Haptic Attributes for Display of
Abstract Data. Eurohaptics 2002 International Conference, Edinburgh,
Scotland.

[20] A. Seeger, J. Chen, and R. M. Taylor (1997): Controlling Force Feedback
Over a Network. The Second PHANToM User’s Group Workshop,
Cambridge, Massachusetts, USA, MIT.

[21] J. P. McLaughlin and B. J. Orenstein (1997): Haptic Rendering of 3D
Seismic Data. The Second PHANToM User’s Group Workshop, Cambridge,
Massachusetts, USA, MIT.

[22] M. R. McGee, P. D. Gray, and S. A. Brewster (2000): Communicating with
feeling. First Workshop on Haptic Human–Computer Interaction.

[23] L. Y. Pao and D. A. Lawrence (1998): Synergistic Visual/Haptic Computer
Interfaces. Japan/USE/Vietnam Workshop on Research and Education in
Systems, Computation and Control Engineering.

[24] D. E. DiFranco, G. L. Beauregard, and M. A. Srinivasan (1997): The
Effects of Auditory Cues on the Haptic Perception of Stiffness in Virtual
Environments. ASME Dynamic Systems and Control Division.

[25] A. H. Morton (1982): Visual and Tactile Texture Perception: Intersensory
Co-operation. Perception & Pyschophysics 31, 339–344.

[26] R. B. Welch and D. H. Warren (1980): Immediate Perceptual Response to
Intersensory Discrepancy. Psychological Bulletin 88(3), 638–667.

[27] J. Itten (1970): The Elements of Color. New York, USA, Van Nostrand
Reinhold.

[28] R. Sekuler and R. Blake (1990): Perception. New York, McGraw-Hill.
[29] G. Kramer, B. Walker, et al. (1997): Sonification Report: Status of the

Field and Research Agenda, Prepared for the National Science
Foundation by members of the International Community for Auditory
Display.

[30] E. B. Goldstein (1989): Sensation and Perception, Brooks/Cole.

Information Display 651

[31] S. Barass (1997): Auditory Information Design. Computer Science.
Canberra, Australian National University.

[32] K. Nesbitt (2003): Designing Multi-sensory Displays for Abstract Data,
School of IT, University of Sydney.

[33] NVIDIA (2003): http://www.nvidia.com.
[34] ATI (2003): http://www.ati.com.
[35] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Hanrahan,

(2001): WireGL: A scalable graphics system for clusters. Proceedings of
SIGGRAPH 2001, 129–140, August.

[36] G. Humphreys, et al. (2002): Chromium: A Stream-Processing Framework
for Interactive Rendering on Clusters, Proceedings of the 29th Annual
Conference on Computer Graphics and interactive techniques, ACM Press,
New York, NY, USA.

[37] NCSA, Display Wall-in-a-Box. (2003): http://www.ncsa.uiuc.edu/TechFocus/
Deployment/DBox/overview.html.

[38] PSU, The Pennsylvania State University, High Resolution Tiled Display
Wall (2003) http://gears.aset.psu.edu/viz/facilities/displaywall.

[39] ViSLAB, The University of Sydney (2003) http://www.vislab.usyd.edu.au
[40] ASCI VIEWS Visualization project (2003) http://www.llnl.gov/icc/sdd/img/

infrastructures.shtml.
[41] E. W. Bethel, et al. (2002): Combining a Multithreaded Scene Graph

System with a Tiled Display Environment, Proceedings of the 2002
IS&T/SPIE Conference on Electronic Imaging and Technology, The
Engineering Reality of Virtual Reality.

[42] E. W. Bethel, et al. (2003): Sort-First Distributed Memory Parallel
Visualization and Rendering, Proceedings of IEEE Symposium on Parallel
and Large-Data Visualization and Graphics, pp. 41–50.

[43] P. Wellnerr (1993): Interacting with Paper on the Digital Desk,
Communications of the ACM, 36(7), 87–96.

[44] S. Feiner, B. Macintyre, and D. Seligmann (1993): Knowledge-based
Augmented Reality, Communications of the ACM, 36(7): 53–62.

[45] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre
(2001): Recent Advances in Augmented Reality. IEEE Comp. Graph. & App,
21(6), 34–47.

[46] A. Fuhrmann, et al. (1998): Collaborative Visualization in Augmented
Reality, IEEE Computer Graphics and Applications, 18(4), 54–59.

[47] C. Pinhanez (2001): Using a Steerable Projector and a Camera to Transform
Surfaces into Interactive Displays, CHI 2001, March/April, 369–370.

[48] P. Milgram and F. Kishino (1994): A taxonomy of mixed reality virtual dis-
plays, IEICE Transactions on Information and Systems (Special Issue on
Networked Reality), E77-D(12): 1321–1329.

[49] P. Milgram and H. Colquhoun, Jr. (1999): A Taxonomy of Real and
Virtural World Display Integration (Mixed Reality; (eds) Yuichi Ohta and
Hideyuki Tamura), Ohmsha Ltd. & Springer-Verlag, pp. 5–30.

[50] T. Kanade, et al. (1999): Virtualized Reality – Digitizing a 3D Time-
Varying Event As Is and in Real Time, (Mixed Reality; (eds) Yuichi Ohta
and Hideyuki Tamura), Ohmsha Ltd. & Springer-Verlag, pp. 41–57.

652 Peter Eades, Seokhee Hong, Keith Nesbitt, and Masahiro Takatsuka

[51] M. Hirose, et al. (1999): Building a Virtual World from the Real World
(Mixed Reality – Merging Real and Virtual Worlds; (eds) Yuichi Ohta and
Hideyuki Tamura), Ohmsha.

[52] R. A. May, II (1999): HI-SPACE: A Next Generation Workspace
Environment, Washington State University, Department of Electrical
Engineering and Computer Science, May.

[53] H. Ishii and N. Miyake (1991): Towards an Open Shared Workspace –
Computer and Video Fusion Approach of Teamworkstation,
Communications of the ACM, 34(12), 37–50.

[54] S. Coquillart and G. Wesche (1999): The Virtual Palette and the Virtual
Remote Control Panel: A Device and an Interaction Paradigm for the
Responsive Workbench. In IEEE Virtual Reality ‘99 Conference (VR’99),
Houston.

[55] P. H. Dietz and D. L. Leigh (2001): DiamondTouch: A Multi-User Touch
Technology. In ACM Symposium on User Interface Software and
Technology (UIST), pp. 219–226.

[56] B. Leibe, T. Stanner, W. Ribarsky, Z. Wartell, D. Krum, B. Singletary, and
L. Hodges (2000): The Perspective Workbench: Towards Spontaneous
and Natural Interaction in Semi-Immersive Virtual Environments. In
IEEE Virtual Reality 2000 Conference (VR’2000), pp. 13–20. New
Brunswick, NJ.

[57] I. Rauschert, P. Agrawal, S. Fuhrmann, I. Brewer, H. Wang, R. Sharma,
G. Cai, and A. MacEachren (2002): Designing a Human-Centered,
Multimodal GIS Interface to Support Emergency Management. In 10th
ACM Symposium on Advances in Geographic Information Systems (ACM
GIS’02), Washington, DC, USA.

[58] A. F. Seay, D. Krum, W. Ribarsky, and L. Hodges (1999): Multimodal
Interaction Techniques for the Virtual Workbench. In Proceeding of CHI’99.

[59] P. L. Schmalstieg, L. M. Encarnacao, and Z. Szalavar (1999): Using
Transparent Props for Interaction with Virtual Table. In Syposium on
Interactive 3D Graphics (I3DG’99), Atlanta.

[60] R. Raskar, et al. (1998): The Office of the Future: A Unified Approach to
Image-Based Modeling and Spatially Immersive Displays, SIGGRAPH 98,
Orlando, Florida.

[61] M. Stefik, et al. (1986): WYSIWIS Revised – Early Experiences with Multi-
user Interfaces, CSCW’86, pp. 276–290.

[62] D. A. Norman (1986): Cognitive Engineering (User Centered System Design;
(eds) D. A. Norman and S. W. Draper), Lawrence Erlbaum Associates.

[63] J. Barnes and P. Hut (1986): A Hierarchical O(nlogn) Force-Calculation
Algorithm: Nature 324(4), 446–449.

[64] S. Bornholdt and H. G. Schuster, (ed) (2003): Handbook of Graphs and
Networks: From the Genome to the Internet. Wiley-VCH.

[65] U. Brandes and D. Wagner (2003): Visone -Analysis and Visualization
of Social Networks: Graph Drawing Software: pp. 321–340. Springer
Verlag.

[66] F. R. K. Chung (1997): Spectral Graph Theory: CBMS Reg. Conf. Ser.
Math. 92. American Mathematical Society.

Information Display 653

[67] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis (1999): Graph
Drawing: Algorithms for the Visualization of Graphs: Prentice-Hall.

[68] P. Eades (1984): A Heuristic for Graph Drawing. Congresses Numerantium 42,
149–160.

[69] B. S. Everitt and G. Dunn, (1991): Applied Multivariate Data Analysis:
Arnold.

[70] T. Fruchterman and E. Reingold (1991): Graph Drawing by Force-Directed
Placement. Software-Practice and Experience 21(11), 1129–1164.

[71] P. Gajer, M. T. Goodrich, and S. G. Kobourov (2000): A Multi-dimensional
Approach to Force-Directed Drawings of Large Graphs. Proceedings of
Graph Drawing 2000: Lecture Notes in Computer Science 1984: pp. 211–221:
Springer Verlag.

[72] P. Gajer and S. G. Kobourov (2002): GRIP: Graph Drawing with
Intelligent Placement. Journal of Graph Algorithms and Applications 6(3),
203–224.

[73] K. M. Hall (1970): An r-dimensional Quadratic Placement Algorithm.
Management Science 17, 219–229.

[74] R. Hadany and D. Harel (2001): A Multi-Scale Method for Drawing
Graphs Nicely. Discrete Applied Mathematics 113, 3–21.

[75] D. Harel and Y. Koren (2002): A Fast Multi-Scale Method for Drawing
Large Graphs: Proceedings of Graph Drawing 2000: Lecture Notes in
Computer Science 1984: Springer Verlag: 183-196 (2000) (Journal version:
Journal of Graph Algorithms and Applications 6(3), 179–202.

[76] D. Harel and Y. Koren (2002): Graph Drawing by High-Dimensional
Embedding: Proceedings of Graph Drawing 2002: Lecture Notes in
Computer Science 2528: Springer Verlag, pp. 207–219.

[77] M. Junger and P. Mutzel, (ed) (2003): Graph Drawing Software: Springer
Verlag.

[78] T. Kamada and S. Kawai (1989): An Algorithm for Drawing General
Undirected Graphs. Information Processing Letters 31, 7–15.

[79] M. Kaufmann and D. Wagner, (ed) (2001): Drawing Graphs: Methods and
Models: Lecture Notes in Computer Science Tutorial 2025: Springer Verlag.

[80] Y. Koren (2003): On Spectral Graph Drawing: Proceedings of COCOON
2003: Lecture Notes in Computer Science 2697: Springer Verlag, pp. 496–508.

[81] Y. Koren, L. Carmel, and D. Harel (2002): ACE: A Fast Multiscale
Eigenvectors Computation for Drawing Huge Graphs: Proceedings of
IEEE Symposium on Information Visualization (InfoVis) 2002: 137–144

[82] Y. Koren, L. Carmel, and D. Harel (2003): Drawing Huge Graphs by
Algebraic Multigrid Optimization. Multiscale Modeling and Simulation 1(4),
645–673, SIAM.

[83] A. Quigley and P. Eades (2000): FADE: Graph Drawing, Clustering, and
Visual Abstraction: Proceedings of Graph Drawing 2000: Lecture Notes in
Computer Science 1984: pp. 183–196: Springer Verlag.

[84] F. Schreiber (2002): High Quality Visualization of Biochemical Pathways in
BioPath. Silico Biology 2(2), 59–73.

[85] K. Sugiyama (2002): Graph Drawing and Applications for Software and
Knowledge Engineers: World Scientific.

654 Peter Eades, Seokhee Hong, Keith Nesbitt, and Masahiro Takatsuka

[86] K. Sugiyama, and K. Misue (1995): Graph Drawing by Magnetic Spring
Model. Journal of Visual Languages and Computing 6(3): 217–231.

[87] C. Walshaw (2000): A Multilevel Algorithm for Force-Directed Graph
Drawing. Proceedings of Graph Drawing 2000: Lecture Notes in Computer
Science 1984: pp. 171–182: Springer Verlag.

[88] C. Walshaw (2003): A Multilevel Algorithm for Force-Directed Graph
Drawing. Journal of Graph Algorithms and Applications 7(3), 53–85.

[89] D. S. Watkins (1991): Fundamentals of Matrix Computations: John Wiley.
[90] B. Brandes and S. Cornelsen (2003): Visual Ranking of Link Structures.

Journal of Graph Algorithms and Applications 7(2), 181–201.

Information Display 655

Chapter 21

BIOINFORMATICS
Srinivas Aluru
Iowa State University

1 INTRODUCTION

Ever since the structure of DNA was discovered in the early 1950s, biology has
been steadily transforming into a discipline that relates essential life processes to
underlying biomolecular data. This discovery has stimulated the growth of
molecular biology, the study of how biomolecular sequences influence the func-
tioning of organisms. These developments have brought biology closer to com-
puter science. In many ways, the underlying mechanisms are similar to what we
employ in building and programming computers. The characteristics of a life
form are coded in its DNA (program), which is processed in each cell (executed)
to produce the proteins (outputs) that carry out most of the essential life
processes. The field holds immense potential for future discoveries that are unri-
valed in significance, such as the possibility of treating diseases and engineering
improved crops by altering the genetic composition.

The need to discover biomolecular sequences, to relate those sequences to their
structure and function, and to understand evolutionary history through sequence
homology (similarity) detection has resulted in a number of interesting problems
for computer scientists and led to the development of bioinformatics. Broadly
defined, bioinformatics or computational biology is the study of computational
methods for furthering biological discovery and applying information technology
to solving the problems of biological relevance. The field has experienced an
explosive growth in the last two decades, and the accumulated knowledge and
importance of the field has reached a stage in which successful advanced gradu-
ate programs are being developed to train bioinformaticists. While it is impossible
to attempt a comprehensive coverage of this field in a short amount of space, this
chapter is intended to provide both a sense of the breadth of the field and a
focused study of specific applications, particularly in computational genomics.

2 OVERVIEW OF BIOINFORMATICS

In this section, we present some basic concepts in molecular biology that are
essential for understanding the remainder of the chapter, and we also outline a
number of computational challenges in bioinformatics. The reader should keep in
mind that the discussion is purposefully oversimplified and should refer to a stan-
dard textbook [2, 65] for full details.

2.1 Basics of Molecular Biology

In bioinformatics, we are typically concerned with two types of biomolecular
data: DNA (deoxyribonucleic acid) sequences and protein sequences. A DNA
molecule is a sequence made of simpler molecules known as nucleotides. Each
nucleotide consists of a deoxyribose sugar molecule, a phosphate group attached
to the 5′-carbon of the sugar molecule, and a base attached to the 1′-carbon of
the sugar molecule. The different nucleotides are differentiated by the differences
in the bases—Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). For
computational purposes, a DNA sequence can be represented as a string over the
alphabet S = {A, C, G, T}, specifying each nucleotide by the first letter of its
name. The sequence is formed by phosphodiester bonds between consecutive
nucleotides: the 5′-carbon of one nucleotide is linked to the 3′-carbon of the pre-
vious nucleotide through the phosphate group. Thus, one end of the sequence has
a free 5′ end and the other end has a free 3′ end, giving a directionality to the mol-
ecule. It is customary to write a DNA molecule as the sequence of nucleotides
from the 5′ end to the 3′ end.

DNA sequences naturally occur as double-stranded molecules, i.e., two
sequences of nucleotides attached to each other. The two strands are held
together by hydrogen bonds between bases of the corresponding nucleotides. Two
types of base pairings are possible – A with T, involving two hydrogen bonds; and
G with C, involving three hydrogen bonds. For a given nucleotide in one strand,
the corresponding nucleotide in the complementary strand is given by the pairing
A ↔ T and C ↔ G. The two complementary strands also exhibit opposite direc-
tionality. Because of these properties, a double-stranded DNA molecule can be
accurately described as the sequence of one of its strands from its 5′-end to the
3′-end. Note that this would mean two equivalent strings describing the same
DNA molecule. One string (or strand) can be obtained from the other by a reverse
complementation operation, which refers to reversing the string and replacing A
with T, T with A, C with G, and G with C. The length of a DNA sequence is
measured in units called base pairs (bp), where a base pair refers to a pair of cor-
responding nucleotides on the two strands of a DNA sequence.

DNA is established as the vehicle for passing hereditary genetic information.
The complementarity relation between the two strands of a DNA sequence indi-
cates that one strand is sufficient to recover the entire sequence. This mechanism
makes DNA self-replicating. Several different terms are used to describe DNA
sequences, depending on the role played by particular DNA sequences or the
scale at which these sequences are viewed. The term genome refers to the entire
genetic constitution within the nucleus of a cell of a eukaryotic organism (organ-
ism whose cells have nuclei) or within a cell of a prokaryotic organism (organisms

658 Srinivas Aluru

whose cells do not have nuclei). During cell division, the genome is duplicated
using the self-replicating mechanism to provide a copy for each resulting cell. The
genome is organized into one or more chromosomes, where each chromosome is
a continuous strand of DNA. A gene is a contiguous stretch of DNA along a
chromosome that codes for a protein. A promoter is a DNA sequence typically
located upstream of a gene to aid in its expression. Significant length scales are
exhibited in the sizes of genomes. Viruses have the smallest of the genomes, e.g.,
the virus Bacteriophage λ has an approximate size of 50,000 bp. Bacterial
genomes are typically 100 times as large or more. Humans, mice, and maize have
genomes about 3 × 109 bp in size. Plants are known to have some of the largest
genomes. For example, the Lily plant has a genome about 100 × 109 bp long.

An important function of DNA sequences is to code for protein sequences.
Like DNA sequences, proteins are also sequences of simpler molecules, in this
case amino acid residues. An amino acid consists of a central carbon atom known
as a-carbon, connected to a hydrogen atom, a carboxyl group, an amino group,
and a side chain. It is the side chains that distinguish the twenty different amino
acids that constitute protein sequences. Amino acid residues are typically denoted
by a three-letter abbreviation of their names, such as Gly for Glycine and Val for
Valine. For computational purposes, we will use a single letter alphabet of size
twenty and depict protein sequences as strings over this alphabet.

The mechanism by which a gene codes for a protein is as follows: First, a copy
of the gene (or portions of it intended to code for a protein sequence) is made as
an RNA (ribonucleic acid) molecule, called messenger RNA, or mRNA for short.
Similar to DNA, mRNA is a sequence of nucleotides except that Uracil (U) is
used instead of Thymine (T). A codon is a consecutive triplet of nucleotides in the
mRNA sequence that codes for an amino acid. The many-to-one mapping
between the 64 possible codons and the twenty amino acids has been discovered
and is common across species (see Table 21.1). Three codons correspond to a
STOP signal. The translation typically starts with the codon AUG, which codes
for the amino acid methanine, and continues until a STOP signal is encountered.
The copying of DNA to mRNA is called transcription, and the production of
protein from mRNA is called translation. Together, this process is popularly
known as the central dogma in molecular biology.

Proteins are responsible for carrying out most of the essential life processes.
For example, they act as tissue building blocks (structural proteins) and as cata-
lysts to speed up biochemical reactions (enzymes); they carry out oxygen trans-
port and conduct antibody defense. The three-dimensional structure of proteins
is critical to their function. Complex regulatory mechanisms guide the gene-
expression process, which together with other factors will ultimately determine
the amount of production of the corresponding protein. Multiple forms of the
same gene, known as alleles, cause differences in genotype (genetic difference)
between individuals, which will eventually translate into differences in pheno-
type (observable differences, such as color of eyes). Certain variations in a gene
sequences may lead to low or nonfunctional proteins and may cause genetic dis-
eases or increase susceptibility to diseases. These differences often arise due to a
change in the nucleotide in a single position, also called a single nucleotide poly-
morphism (SNP). Developing a database of SNPs along the genome is considered
vital to pharmaceutical research. Variations within the genome across different

Bioinformatics 659

individuals of the same species are very small compared with the length of the
genome. For instance, all humans are expected to show over 99.9% identity at
the genome level. A typical high-level organism contains several tens of thousands
of genes. Genes are conserved across species, and species that are evolutionarily
closer exhibit significant gene homologies.

Several experimental procedures have been designed to complement the
molecular biological discoveries summarized above. DNA sequences that are sev-
eral hundred base pairs long can be read using an experimental procedure known
as Sanger’s method. A number of recombinant DNA techniques have been devel-
oped. These include (1) inserting foreign DNA into bacterial genomes for the pur-
pose of cloning, (2) amplifying DNA sequences using the polymerase chain
reaction (PCR) method, which corresponds to exponential growth via doubling,
(3) artificially converting mRNA sequences to the corresponding DNA sequences,
called complementary DNA or cDNA sequences, and (4) testing for the presence of
a particular DNA sequence by using its complementary strand. These and other
experimental techniques have been used to deduce DNA and protein sequence
data from a plethora of organisms. Such data are deposited in public databases
such as GenBank (http://www.ncbi.nlm.nih.gov) and PDB (http://www.pdb.org).
Exponential growth in the size of such databases has necessitated computational
methods for accessing and analyzing sequence data.

2.2 Computational Challenges

Computational methods and the use of software have become integral parts
of a biologist’s toolkit. Their use is pervasive, encompassing the discovery, analy-
sis, and interpretation of biological data, aiding in the discovery of biological
knowledge, and helping utilize this knowledge in applications in biotechnology

660 Srinivas Aluru

Table 21.1 The genetic code mapping a consecutive triplet of nucleotides (codon) to the
corresponding amino acid. Note that multiple codons code for the same amino acid. With the
exception of Ser, the first two positions of the codons that code for the same amino acid are
identical.

Second Position
First position U C A G Third position

Phe(F) Ser(S) Tyr(Y) Cys(C) U
U Phe(F) Ser(S) Tyr(Y) Cys(C) C

Leu(L) Ser(S) Stop Stop A
Leu(L) Ser(S) Stop Trp(W) G
Leu(L) Pro(P) His(H) Arg(R) U

C Leu(L) Pro(P) His(H) Arg(R) C
Leu(L) Pro(P) Gln(Q) Arg(R) A
Leu(L) Pro(P) Gln(Q) Arg(R) G
Ile(I) Thr(T) Asn(N) Ser(S) U

A Ile(I) Thr(T) Asn(N) Ser(S) C
Ile(I) Thr(T) Lys(K) Arg(R) A

Met(M) Thr(T) Lys(K) Arg(R) G
Val(V) Ala(A) Asp(D) Gly(G) U

G Val(V) Ala(A) Asp(D) Gly(G) C
Val(V) Ala(A) Glu(E) Gly(G) A
Val(V) Ala(A) Glu(E) Gly(G) G

and medicine. A systematic study of this interdisciplinary research field has led to
a number of important subareas within bioinformatics, some of which are
described below.
1. Alignments and Database Search. Alignment methods are intended to discover

homologies (similarities) of interest between DNA or protein sequences.
Alignment algorithms are used to query databases to discover homologous
sequences, discover homologous genes within or across species, identify com-
mon motifs across multiple protein sequences, and identify overlapping
sequences.

2. Genome Sequencing. While laboratory sequencing techniques can read DNA
sequences several hundred base pairs long, genome sizes of higher organisms
are more than a millionfold larger in size. The approach used for genome
sequencing is to derive an appropriate number (tens of millions for human
and mouse genomes) of random fragments of sequenceable size from the
genome. Once these fragments are sequenced, computational methods are
designed to assemble the fragments to derive the genome sequence.

3. Gene Identification and Annotation. An important first step in understanding
the genome of an organism is to identify the locations and structures of its
genes and to identify the role of the corresponding protein products (annota-
tion). Computational approaches designed for this problem include ab initio
gene prediction methods using hidden Markov models, alignment programs
using gene transcriptions such as mRNA and cDNA sequences, and close
comparison of related species to identify conserved regions.

4. Comparative Genomics. Genome comparisons are useful in identifying con-
served genes, promoters, and other sequences; validating and annotating of
genome assemblies; and understanding evolutionary histories. Comparative
genomics also throws light on genome rearrangements and fast-evolving
viruses.

5. Gene Expression Analysis. DNA microarrays facilitate profiling of the expres-
sion levels of tens of thousands of genes in a single experiment. Such infor-
mation is used in identifying coregulated genes, inferring gene regulatory
networks, identifying genes whose abnormality causes specific diseases, study-
ing developmental genetics, etc.

6. Phylogenetic Analysis. The study of the evolution of sequences and species
and the deciphering of the evolutionary history connecting known and extinct
species is called phylogenetics.

7. Protein Structure Prediction. The three-dimensional structure of a protein is
crucial to its function. The ability of a deformed protein molecule to fold back
into its native configuration without external assistance led to the hypothesis
that the structure is determined by the sequence itself. Computationally deter-
mining the structure of a protein from its sequence is considered a “holy-
grail” problem in bioinformatics. A corresponding problem is that of inverse
protein folding, the problem of finding a protein sequence that will fold into a
desired three-dimensional structure.

8. Structural Homologies and Docking. While sequence homologies often translate
into structure homologies, the converse need not be true. Furthermore, preser-
vation of important structural motifs is sufficient for functional similarity
despite differences in other parts of the structure. While sequence alignment

Bioinformatics 661

algorithms are used because of their ease and simplicity, detection of struc-
tural homologies and structure-based database searches would be the eventual
goal for protein sequences. Similarly, an understanding of protein docking is
useful in designing proteins for the effective administration of drugs.
The above list is not meant to be exhaustive but is intended to convey the

breadth, importance, and interesting nature of the research problems in bioinfor-
matics and computational biology. Computational techniques have already
become an integral part of biological discoveries, and this trend will continue in
the future. In the remainder of this chapter, we will focus on specific research
problems in an attempt to convey the flavor and excitement of this interdiscipli-
nary research field and the challenging applications it provides for computer sci-
ence research. We will begin with problems in computational genomics. For a
high-level view of the role of algorithmic research in computational genomics, the
reader is referred to Karp’s recent keynote address [56].

3 BASIC TOOLS OF COMPUTATIONAL GENOMICS

3.1 Alignments

Global Sequence Alignments

Consider the problem of determining whether two DNA sequences are evolu-
tionarily related and detecting the extent of homology (similarity) between them.
To model this problem computationally, one must understand the evolutionary
mechanisms that could change DNA sequences. Two types of events are of pri-
mary interest: mutation, a process that results in substitution of one nucleotide
with another; and DNA insertions/deletions, which cause insertion/deletion of a
contiguous subsequence. Suppose that DNA sequence A is changed to DNA
sequence B through some substitution, insertion, and deletion operations. The
homology between sequences A and B can be shown by writing one sequence
below the other to clearly indicate matching nucleotides and substitutions. An
insertion used in transforming A into B (referred to as an insertion in A) is shown
by a sequence of gaps in A corresponding to the inserted subsequence in B.
Similarly, a deletion in A is shown by a sequence of gaps in B corresponding to
the deleted subsequence in A. For example, Figure 21.1 shows an alignment of
DNA sequences ATGTCGA and AGAATCTA obtained by deleting the second
base, inserting AA after the third base, and substituting T for the sixth base in
ATGTCGA.

In order to measure the significance of homology shown by an alignment, a
scoring scheme is introduced. The idea is to reward matches and penalize substi-
tutions and insertions/deletions, abbreviated indels. A higher score indicates a bet-
ter alignment. Since the same sequences could be represented using different
alignments, the scoring mechanism also provides a way to evaluate how good an
alignment is. Thus, the alignment problem can be formulated as a problem of
finding the highest scoring alignment between two sequences. The highest score,
or optimal score, becomes a measure of the homology between the two sequences.

662 Srinivas Aluru

The above ideas can be formalized as follows: Let S be the alphabet, and let
‘−’ denote the gap. A score function f : S × S → � prescribes the score for any
column in the alignment that does not contain a gap. Scores of columns involv-
ing gaps are determined by an affine gap penalty function: for a maximal con-
secutive sequence of k gaps, a penalty of h + gk is applied. Thus, the first gap in
a maximal sequence is charged h + g, while the rest of the gaps are charged g
each. The term h is called the gap opening penalty, and the term g is called gap
extension penalty. If h = 0, the penalty function is called a constant gap penalty
function. The score of the alignment is the sum of scores over all the columns.
The alignment in Figure 21.1 is scored using the simple scoring function,
defined as

(,)
, , ,

, , ,f c c
c c c c
c c c c

5
51 2

1 2 1 2

1 2 1 2!

!

!
=

=

-

R
R*

and an affine gap penalty function that penalizes a maximal sequence of gaps of
length k with a penalty of 4 + k. Then the alignment has a total score of 9.

Let A = a1 a2 ... am and B = b1 b2 ... bn be two sequences. An optimal alignment
of A and B is computed using a dynamic programming approach. The algorithm
uses three tables T1, T2, and T3, each of size (m + 1) × (n + 1). An entry [i, j] in
each table corresponds to the score for optimally aligning a1a2 ... ai with b1 b2 ...
bj, but with the following conditions: In T1, only alignments in which ai is aligned
with bj are considered. In T2, bj must be aligned with “−”, and in T3, ai must be
aligned with “−.” Once the tables are computed, the optimal score for aligning A
with B is given by the maximum of T1[m, n], T2 [m, n], and T3 [m, n].

The top row and leftmost column of each table are initialized to −∞, except in
the following cases (1 ≤ i ≤ m; 1 ≤ j ≤ n):

[,]

[,] ()

[,] ()

T

T j h gj

T i h gi

0 0 0

0

0

1

2

3

=

= - +

= - +

A score of −∞ is used to indicate that the alignment is invalid. Consider the
task of computing T1 [i, j] for some i ≥ 1 and j ≥ 1. The last column of the align-
ment contains ai aligned with bj, which gets a score of f (ai, bj). The remaining por-
tion of the alignment must be an optimal alignment between a1 a2 ... ai −1 and b1
b2... bj - 1. This is given by the maximum of T1 [i −1, j −1], T2 [i −1, j −1], and T3
[i −1, j −1], which can be computed in constant time if these entries are already
available. Similar reasoning gives rise to the following recurrence equations:

[,] (,)
[,]
[,]
[,]

maxT i j f a b
T i j
T i j
T i j

1 1
1 1
1 1

i j1

1

2

3

= +

- -

- -

- -

Z

[

\

]]

]]
(1)

Bioinformatics 663

A T G T C G A
A G T C T A

5 −5 5 −6 5 5 −5 5

−
−
A A

−

Figure 21.1. An alignment between DNA sequences ATGTCGA and AGAATCTA using a score
of 5 for a match, −5 for a substitution, 4 for a gap opening penalty, and 1 for a gap extension
penalty.

[,]

[,] ()

[,]

[,] ()

maxT i j

T i j g h

T i j g

T i j g h

1

1

1
2

1

2

3

=

- - +

- -

- - +

Z

[

\

]]

]]
(2)

[,]

[,] ()

[,] ()

[,]

maxT i j

T i j g h

T i j g h

T i j g

1

1

1
3

1

2

3

=

- - +

- - +

- -

Z

[

\

]]

]]
(3)

The tables can be filled row by row or column by column. Either way, when a
table entry is computed, the entries needed to compute it are already available.
As each table entry can be computed in constant time, the algorithm runs in O(mn)
time. The tables can be used not only to find the optimal score but also to retrieve
one or all optimal alignments. To do this, for each table entry that is being filled, a
pointer is maintained that points to the appropriate table entry that resulted in the
highest score among all alternatives being considered. If multiple alternatives
result in the same highest score, pointers are maintained linking to each of the cor-
responding table entries. An optimal alignment is recovered from right to left by
following the trail of pointers from a highest entry among T1[m, n], T2[m, n], and
T3[m, n] to the top left corner of one of the tables. This procedure is often called
traceback. As each pointer causes a move to the previous row or column or both,
an optimal alignment can be retrieved in O(m + n) time. By enumerating all possi-
ble paths, all optimal alignments can be enumerated if desired.

Space and Time Reduction Techniques

The time and space requirements of the just-described algorithm for comput-
ing sequence alignments are both O(mn). The space requirement can be reduced
to O(m + n) using Hirschberg’s technique [43, 76] while increasing the run-time by
at most a factor of 2. First, note that the entries required for computing row i of
the tables T1, T2, and T3 depend only on row i − 1 of the tables. By discarding a
row as soon as the next row is computed based on it, the space used per table can
be reduced to O(n) (O(min(m, n)) by choosing B to be smaller of the two input
sequences). The total space required for the algorithm is reduced to O(m + n),
including the space for storing the input sequences. It is still possible to determine
the optimal score because only the last entry of the last row of each of the tables
is required to compute it. The only problem with this approach is that the ability
to perform traceback and retrieve an optimal alignment is lost. From the biolo-
gist’s perspective, alignments are crucial.

Hirschberg’s strategy uses divide-and-conquer to find both the optimal score
and an optimal alignment using only O(m + n) space. Let Ar = am am −1 ... a2a1 and
Br = bnbn − 1 ... b2, b1 denote the reverse of sequences A and B, respectively.
Similarly, let T1

r, T2
r, and T3

r denote tables defined similar to T1, T2, and T3 except
that entry [i,j] corresponds to an alignment between amam−1 ... ai and bn, bn −1 ... bj,
i.e., Tr [i, j] denotes the score of an optimal alignment between amam−1 ... ai and bn,

bn−1, bj , where ai is aligned with bj, etc. Let k m
2= 5 ?. Compute row k of T1, T2, and

T3, and row k + 1 of T1
r, T2

r, and T3
r. This is equivalent to filling the top half of

the rows of the tables T1, T2, and T3 and the bottom half of the rows of the tables

664 Srinivas Aluru

T1
r, T2

r, and T3
r. Using the space-saving strategy of discarding previously com-

puted rows, the required rows can be computed in O(mn) time and O(m + n)
space.

Consider an optimal alignment of A and B. Partition the alignment into two
parts by separating the alignment immediately after the column containing ak.
The first part is an alignment between a1a2 ...ak and b1 b2 ... bj for some j, and the
second part is an alignment between ak+1ak +2 ... am and bj+1 bj+2 ... bn. Because of
affine gap penalties, these need not be optimal alignments, but they would be of
the type captured by row k of T1, T2, and T3, and row k + 1 of T1

r, T2
r, and T3

r.
The value of j and the optimal score can be computed by choosing a value of j
that maximizes

[,] ([,], [,], [,])

[,] ([,], [,] , [,])

[,] ([,], [,], [,])

max

max

max

max

T k j T k j T k j T k j

T k j T k j T k j h T k j

T k j T k j T k j T k j h

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

r r r

r r r

r r r

1 1 2 3

2 1 2 3

3 1 2 3

+ + + + + + +

+ + + + + + + +

+ + + + + + + +

Z

[

\

]]

]]

The reason for adding h when combining T2[k, j] and T2
r[k +1, j+1] or when

combining T3[k, j] and T3
r[k +1, j +1] is to avoid charging a gap opening penalty

twice, once at the beginning and once at the end of a maximal sequence of gaps. Let
T [k, j] denote the maximum of T1[k,j], T2[k,j], and T3[k,j], and let Tr[k + 1, j + 1]
denote the maximum of T1

r[k + 1, j + 1], T2
r[k + 1, j + 1], and T3

r[k + 1, j + 1]. The
above equation can be simplified to

[,] [,]

[,] [,]

[,] [,]

max

T k j T k j

T k j T k j h

T k j T k j h

1 1

1 1

1 1

r

r

r
2 2

3 3

+ + +

+ + + +

+ + + +

Z

[

\

]]

]]

Once the partitioning of an optimal alignment with respect to the middle of
sequence A is found, this procedure is applied recursively to each partition. The
recursive decomposition is continued until one of the sequences has a single char-
acter, which is then solved directly. This leads to the recurrence

(,) () , ,t m n O mn t m j t m n j2 2= + + -] g5 ?c cm m
where t(k, j) denotes the run-time for aligning two sequences of lengths k and j,
respectively. Solving the recurrence shows that the run-time is O(mn).

Hirshberg’s strategy greatly reduces the space required for aligning sequences,
making it feasible to perform alignments on very large sequences. Moreover, this
strategy confers great practical benefit even for modest-sized sequences because
the entire space required may fit in cache memory. While this technique resolves
the space problem, the quadratic run-time poses a problem for aligning very large
sequences or for carrying out a large number of alignments on short sequences,
as is required in many applications. Asymptotically faster sequence alignment
algorithms that improve run-time complexity by a log factor have been designed
[19, 68]. However, their practical benefits are unclear, and they are rarely used by
practitioners.

In most cases, one is interested in an alignment only if a “good” alignment
exists, i.e., if the sequences exhibit homology. Consider two sequences of equal
length. The ideal score for aligning these sequences occurs when the sequences are
identical, yielding a match in every position of the alignment. The quality of an

Bioinformatics 665

alignment can be measured by its score as a percentage of the ideal score. For
simplicity, assume that each match is rewarded by the same score, and assume
also a constant gap penalty function, where each gap position is penalized by the
same amount. Consider a band in the dynamic programming table around the
main diagonal consisting of k diagonals above and below it. Any solution that
crosses this k-band must have at least k + 1 gaps in either sequence and has to
miss at least that many matches, limiting the maximum score possible to no more

than (n
k1 3 1

-
-) fraction of the ideal score. If we are interested in an optimal

alignment only if the score is above a certain threshold percentage, the threshold
can be used to compute the value of k. For example, if 90% is desired, k can be

chosen to be approximately n
30 . The search space can then be limited to a band

of this size without loss of optimal solution if its score is higher than the thresh-
old. The run-time is reduced to O(kn). Such limits can be established for more
elaborate scoring schemes and for aligning sequences of different lengths. For a
more clever scheme that operates in O(kn) time without a predetermined thresh-
old by using trial and error on k with exponentially doubling values, see [29].

Local Alignments

Given two sequences A and B, the local alignment problem is to find a subse-
quence of A and a corresponding subsequence of B that exhibit significant
homology. Algorithmically, it makes sense to study global alignments first, but
the types of alignments used predominantly by biologists are local alignments.
Normally, a homologous sequence that is being sought may be a part of a larger
DNA sequence, in which case local alignment must be used. In addition, there are
several problems that require local alignments. For instance, conserved motifs in
protein sequences often indicate structural similarity and functional similarity.
When comparing two versions of a conserved gene across species, it is sufficient
for the parts of the gene (exons) that code for protein to be homologous.

The local alignment problem is computationally modeled as follows: A local
alignment between A and B is a global alignment between a subsequence of A
and a subsequence of B, scored as presented before. The local alignment problem
between sequences A and B is to find an alignment between a subsequence of A
and a subsequence of B that results in the highest possible score over all such pos-
sible alignments and subsequences [87, 89]. As in the case of global alignments,
this problem can be solved using dynamic programming. As before, tables T1, T2,
and T3 are created, but with the following difference: An entry [i, j] in each table
is used to store the highest score of an alignment between a suffix of a1 a2 ... ai
and a suffix of b1 b2 ... bj, with the same restriction on matching ai and bj as before.
Alignment of empty suffixes is valid in T1, and is assigned a score of 0. Therefore,
Equation (1) is modified in the following way, and Equations (2) and (3) remain
the same.

[,] (,)

[,]

[,]

[,]
maxT i j f a b

T i j

T i j

T i j

1 1

1 1

1 1

0

i j1

1

2

3
= +

- -

- -

- -

Z

[

\

]
]]

]
]]

666 Srinivas Aluru

The maximum score in T1 is the optimal score. An optimal alignment is retrieved
by performing a traceback from a maximum entry in T1 until a score of 0 is
reached. Thus, the local alignment problem can also be solved in O(mn) time.

It is difficult to apply Hirschberg’s method to this algorithm to achieve a
reduction in space. The following technique was invented by Huang [45] to facil-
itate space reduction. The algorithm consists of three steps:
1. Compute the optimal local alignment score as before, but only keep track of

a largest entry and its position ([i, j]) as the tables are filled. Rows are dis-
carded as soon as they are used in computing other rows to save space. This
identifies the end of an optimal local alignment.

2. Run a global alignment algorithm on aiai − 1 ... a1 and bj bj − 1 ... b1 to locate
a largest entry, which corresponds to the beginning ([k, l]) of a subsequence
alignment that ends at [i, j]. Once again, discard rows as soon as they are no
longer needed and remember a largest entry seen so far. This identifies the
beginning of an optimal local alignment whose end is discovered in step (1).

3. Run Hirschberg’s space-saving global alignment algorithm between subse-
quences ak ak + 1 ... ai and bl bl + 1 ... bj.
Alignments are one of the most thoroughly studied problem areas in compu-

tational biology, dating back to the 1970 introduction of the first global align-
ment algorithm by Needleman and Wunsch in the context of protein sequence
homology [77]. A further study of sequence alignment algorithms can be con-
ducted by referring to the classic text of Sankoff and Kruskal [85]. A good por-
tion of several recent texts in computational biology are devoted to the study of
alignment algorithms [22, 37, 71, 81, 87, 96]. Nevertheless, alignments continue to
be an active area of research. An important problem area that is not covered here
is that of multiple sequence alignments. While pairwise sequence alignments are
a fundamental tool used in many computational genomics applications, multiple
sequence alignments of a family of related proteins to infer conserved motifs is
perhaps the most prevalent direct use of alignments by molecular biologists. Even
within pairwise alignments, there are a number of more complex problems,
including spliced alignments [66], syntenic alignments [47], and DNA–protein
alignments [34, 49, 59, 99]. The sensitivity of an optimal alignment to the partic-
ular choice of parameter values used is studied as parametric sequence align-
ments [27, 38, 78]. To enable fast pairwise alignments for very large sequences,
parallel methods have been developed [7, 23, 44, 62, 83].

3.2 Exact Matches

Another standard tool used in computational genomics applications is the
identification of exact matching substrings between sequences. Due to evolution-
ary mechanisms that alter biomolecular sequences and errors introduced by exper-
imental processes, one is rarely interested in exact matches as an end in themselves.
Exact matches play a role because they are typically fast—requiring linear time as
opposed to the quadratic time of alignment algorithms. As an example, consider
the task of finding good local alignments between a query sequence and a data-
base consisting of hundreds of thousands of sequences. It is computationally
expensive to do as many pairwise local alignments. If we are interested in a pair-
wise alignment only if it exhibits significant homology, such an alignment should

Bioinformatics 667

also contain regions of exact matches. For instance, if an aligning region of 100 bp
length contains at most four positions of difference, there should be at least an
exact match of length 20 in this region. Exact matches can be used as a filter to
eliminate large number of pairs that would not yield a good local alignment by
performing alignments only on pairs that have an exact matching region larger
than a determined threshold. It is in this spirit that many problems related to exact
matches find applications in bioinformatics. Below, we provide a brief introduc-
tion to three data structures frequently used in computational genomics.

Lookup Tables

A lookup table is a simple data structure that keeps track of the positions of
occurrences of substrings of a prespecified length in one or more strings. Lookup
tables are used in a number of important bioinformatic tools, including such pop-
ular programs as BLAST [4, 5] for database searches and CAP3 [48] for genome
assembly.

Let S denote the alphabet, and let w denote a prespecified length. The lookup
table is an array LT of size ⎜S ⎜ w, corresponding to the ⎜S ⎜w possible substrings of
length w. Let f : S → {0, 1, ... ⎜S ⎜ − 1} be the one-to-one function such that
f(c) = j − 1 if c is the jth lexicographically smallest character. For the purpose of the
lookup table, any arbitrary ordering of the characters can be taken as lexicographic
ordering. Using f, a substring of length w can be treated as a w-digit number in a
base ⎜S ⎜ system and converted to its decimal equivalent. We use the notation F(a)
to denote the decimal number corresponding to a w-long substring a .

Each entry in the lookup table LT points to a linked list of specific locations
within the input set of strings where the substring corresponding to the index for
the entry occurs. Let s be a string of length n. It is easy to construct the lookup

table for s in O n
w
+Rb l time. First, create and initialize each entry to a null list

in O
w

Rb l time. Then insert substrings one at a time. First compute index =

F(s[1..w]) in O(w) time. Insert the position 1 in the linked list corresponding to
LT [index]. Using the identity

([]) (([] ([])) ()F s k k w F s k k w f s k f s1 1
w

k w
1

1#f f+ + + = + - +R R
-

+ +

F(s [k + 1..k + w + 1]) can be computed from F(s[k..k + w]) in O(1) time. Since
each starting position 1...n − w + 1 occurs in a linked list, the total size of all
linked lists is O(n) (typically n >> w). Thus, the size of the lookup table data

structure is O n
w
+Rb l. The lookup table can be easily generalized to a set of

strings. Let S = {s1, s2, ..., sk} be a set of k strings of total length N. To cre-
ate the corresponding lookup table, substrings from each of the strings are
inserted in turn. A location in a linked list now consists of a pair giving the
string number and the position of the substring within the string. The space and

run-time required for constructing the lookup table is O N
w
+Rb l.

A lookup table is conceptually a very simple data structure to understand and
implement. Once the lookup table for a database of strings is available, given a
query string of length w, all occurrences of it in the database can be retrieved in

668 Srinivas Aluru

O(w + k) time, where k is the number of occurrences. The main problem with this
data structure is its dependence on an arbitrary predefined substring of length w. If
the query string is of length l > w, the lookup table does not provide an efficient way
of retrieving all occurrences of the query string in the database. Nevertheless, lookup
tables are widely used in bioinformatics due to their simplicity and ease of use.

Suffix Trees and Suffix Arrays

Suffix trees and suffix arrays are versatile data structures fundamental to
string processing applications. Let s′ denote a string over the alphabet S. Let $ ∉
S be a unique termination character, and s = s′ $ be the string resulting from
appending $ to s′ . We use the following notation: ⎪s⎪ denotes the size of s, s[i]
denotes the ith character of s, and s[i..j] denotes the substring s[i]s [i + 1] ... s [j].
Let suffi = s[i]s[i + 1] ... s[⎪s⎪] be the suffix of s starting at ith position.

The suffix tree of s, denoted ST(s) or simply ST, is a compacted tree of all suf-
fixes of string s. Let ⎪s⎪ = n. It has the following properties:
1. The tree has n leaves, labeled 1 ... n, one corresponding to each suffix of s.
2. Each internal node has at least two children.
3. Each edge in the tree is labeled with a substring of s.
4. The concatenation of edge labels from the root to the leaf labeled i is suffi.
5. The labels of the edges connecting a node with its children start with different

characters.
The paths from the root to the leaves corresponding to the suffixes suffi and

suffj coincide up to their longest common prefix, at which point they bifurcate. If
a suffix of the string is a prefix of another, longer suffix, the shorter suffix must
end in an internal node instead of a leaf, as desired. It is to avoid this possibility
that the unique termination character is added to the end of the string. Keeping
this in mind, we use the notation ST(s′) to denote the suffix tree of the string
obtained by appending $ to s′ . Throughout this chapter, “$” is taken to be the
lexicographically smallest character.

Since each internal node has at least two children, an n-leaf suffix tree has at
most n − 1 internal nodes. Because of property (5), the maximum number of
children per node is bounded by ⎪∑⎪ + 1. Except for the edge labels, the size of
the tree is O(n). In order to allow a linear space representation of the tree, each
edge label is represented by a pair of integers denoting the starting and ending
positions, respectively, of the substring describing the edge label. If the edge
lable corresponds to a repeat substring, the indices corresponding to any occur-
rence of the substring may be used. The suffix tree of the string mississippi is
shown in Figure 21.2. For convenience of understanding, we show the actual
edge labels.

Let v be a node in the suffix tree. Let path-label(v) denote the concatenation of
edge labels along the path from root to node v. Let string-depth(v) denote the
length of path-label(v). To differentiate this with the usual notion of depth, we use
the term tree-depth of a node to denote the number of edges on the path from
root to the node. Note that the length of the longest common prefix between two
suffixes is the string depth of the lowest common ancestor of the leaf nodes cor-
responding to the suffixes. A repeat substring of string S is right-maximal if there
are two occurrences of the substring that are succeeded by different characters in

Bioinformatics 669

the string. The path label of each internal node in the suffix tree corresponds to
a right-maximal repeat substring and vice versa.

Suffix trees can be generalized to multiple strings. The generalized suffix tree
of a set of strings S = {s1, s2,..., sk}, denoted GST(S) or simply GST, is a com-
pacted tree of all suffixes of each string in S. We assume that the unique termi-
nation character $ is appended to the end of each string. A leaf label now consists
of a pair of integers (i, j), where i denotes the suffix from string si and j denotes
the starting position of the suffix in si. Similarly, an edge label in a GST is a sub-
string of one of the strings. It is represented by a triplet of integers (i, j, l), where
i denotes the string number and j and l denote the starting and ending positions
of the substring in si, respectively. For convenience of understanding, we will con-
tinue to show the actual edge labels. Note that two strings may have identical suf-
fixes. This situation is compensated for by allowing leaves in the tree to have
multiple labels. If a leaf is multiply labeled, each suffix should come from a dif-
ferent string. If N is the total number of characters of all strings in S, the GST
has at most N leaf nodes and takes up O(N) space.

Suffix trees are useful in solving many problems involving exact matching in
optimal run-time bounds. Moreover, in many cases, the algorithms are very sim-
ple to design and understand. For example, consider the problem of determining
if a pattern P occurs in text T over a constant-sized alphabet. Note that if P
occurs starting from position i in T, then P is a prefix of suffi in T. Thus, P occurs
in T if and only if P matches an initial part of a path from root to a leaf in ST(T).

670 Srinivas Aluru

1 34 67

8 910

11

r

v w

y z

$

$

i p
s

i is
i

$

p
i
$

5

x

2

p
p

i
$

p
p

i
$ s

s
i
p
p
i
$

$

p
p
i

$

s
s
i
p
p
i
$

p
p

i
$

s
s
i
p
p
i
$

s
s
i

12

u

12 11 58 2 1 10 9 7 4 6 3

0 1 41 0 0 1 0 2 1 3

SA

Lcp

m
i
s
s
i
s
s
i
p
p
i

Figure 21.2. Suffix tree, suffix array, and Lcp array of the string mississippi. The suffix links in
the tree are given by x → z → y → u → r, v → r, and w → r.

Traversing from the root matching characters in P, this can be determined in
O P` j time, independent of T ’s length. As another application, consider the prob-
lem of finding a longest common substring of a pair of strings. Once the GST of
the two strings is constructed, the path-label of an internal node with the largest
string depth that contains at least one leaf from each string is the answer.

Suffix trees were invented by Weiner [97], who also presented a linear time algo-
rithm to construct them for a constant-sized alphabet. A more space-economical
linear-time construction algorithm is given by McCreight [69], and a linear-time
online construction algorithm was invented by Ukkonen [94]. A unified view of
these three suffix tree construction algorithms can be found in [33]. Farach [25]
presented the first linear-time algorithm for strings over integer alphabets. The
construction complexity for various types of alphabets is explored in [26].

The space requirement of suffix trees is a cause for concern in many large-
scale applications. Manber and Myers [67] introduced suffix arrays as a space-
efficient alternative to suffix trees. The suffix array of a string s = s′$, denoted
SA(s) or simply SA, is a lexicographically sorted array of all suffixes of s. Each
suffix is represented by its starting position in s. SA[i] = j iff suffj is the ith lexico-
graphically smallest suffix of s. The suffix array is often used in conjunction with
an array termed the Lcp array, : Lcp[i] contains the length of the longest common
prefix between the suffix in SA[i] and SA[i + 1]. The suffix and Lcp arrays of the
string mississippi are shown in Figure 21.2. Suffix arrays can also be generalized
to multiple strings to contain the sorted order of all suffixes of a set of strings (see
Figure 21.3). For linear-time suffix array construction algorithms, see [55, 58].
Techniques for using suffix arrays as a substitute for suffix trees can be found in
[1]. Further space reduction can be achieved by the use of compressed suffix trees
and suffix arrays and other data structures [28, 36].

Bioinformatics 671

$

$

$

$

$ $

$

$

GSA

m

a

p

l

e

ap

l

e
l
e

e

l

p
l

e
e

(s2,2)

(s1,5)

(s2,5)

(s1,4)

(s2,4)

(s2,1) (s1,3)

(s2,3)

(s1,2)
(s1,1)

p

p

l

e

(s1,6)

(s2,6) s1 : apple

s2 : maple

(s1,6) (s2,2) (s1,5) (s2,5) (s1,4) (s2,4) (s2,1) (s1,3) (s2,3) (s1,2)(s1,1)

Figure 21.3. Generalized suffix tree and generalized suffix array of strings apple and maple.

4 APPLICATIONS

4.1 Database Search

Perhaps the most frequently used bioinformatic application is that of search-
ing a database of sequences for homology to a given query sequence. When a new
sequence is obtained in the laboratory, the first step in understanding the
sequence is often to carry out a database search against as many known sequences
as possible. This is important because sequence homology very often translates
into functional similarity and immediately provides a way of understanding the
newly obtained sequence. To facilitate such searches, large database collections
have been developed that include various types of DNA and protein sequences
ranging from gene and protein sequences to entire genomes. The most compre-
hensive such repository in the United States is maintained at the National Center
for Biotechnology Information (NCBI; part of National Institutes of Health
(NIH)). They have also developed a suite of database search programs commonly
known as BLAST, the Basic Local Alignment Search Tool [4, 5]. This collection
of programs constitutes the bioinformatic tools most commonly used by molecu-
lar biologists. These programs are engineered for speed and employ complex sta-
tistics to determine and output the statistical relevance of the generated
alignments. The underlying algorithms are not necessarily perfect or optimal.
Although we make some BLAST-specific references in some cases, the treat-
ment provided here is more in terms of the issues involved in developing a search
program and some computational ways of addressing them.

In principle, a local alignment query can be answered by running a local align-
ment algorithm on the query sequence and on each of the sequences in the data-
base. The total run-time of such a naive algorithm is proportional to the product
of the query sequence length and database size, and is clearly prohibitive and
wasteful. Significant savings are realized by first focusing on identifying data-
base sequences that share short exact matching regions with the query, and then
processing only such sequences further. We begin with a brief description of the
scoring methods employed in practice.

Scoring Schemes

The alignment scoring schemes presented so far relied on simple reward or
penalty based on match or mismatch, respectively. In practice, elaborate scoring
schemes are constructed to reflect the realities of evolutionary manipulations or
functional similarities which the generated alignments are expected to capture.
These are developed in the context of aligning protein sequences [3] and are applied
to DNA sequence comparison in [90]. Recall that there are twenty different amino
acid residues constituting protein sequences. Rather than use a simple match score
and mismatch penalty, a symmetric 20 × 20 matrix is defined to capture the appro-
priate scores for every possible pair of amino acid residues that may be part of an
alignment. The rationale for individualized scores come from preferential substitu-
tion of certain types of amino acids. For instance, six of the twenty amino acids are
hydrophobic, and substituting one for another is likely to still preserve the protein

672 Srinivas Aluru

function. Thus, a high score is awarded for such a substitution, in contrast to when
a hydrophilic amino acid is substituted for a hydrophobic one. The most commonly
used scoring matrices are the PAM [20] and BLOSUM [42] matrices.

Dayhoff introduced the notion of Percent Accepted Mutation (PAM) to
quantify evolutionary changes within protein sequences. A PAM unit is the
amount of evolution that will, on average, change 1% of the amino acids within
a protein sequence. A 20 × 20 transition probability matrix M is defined such that
M[i, j] captures the probability of amino acid i changing to amino acid j within 1
PAM evolutionary distance. Longer evolutionary distance probabilities can be
determined by computing an appropriate exponent of the matrix—M100 gives the
matrix for 100 units etc. The score for a PAMk matrix is defined by PAMk[i, j]

= 10 log [,]
p

M i j
j

k

, where pj is the probability of random occurrence of amino acid

j. Smaller evolutionary distances are used for finding short, strong local align-
ments, while longer evolutionary distances are used for detecting weak, long
spanning alignments.

The BLOSUM matrices, short for Block Substitution Matrices, are con-
structed based on local multiple sequence alignments of protein sequences from
a related family. BLOSUM matrices are based on the minimum percentage iden-
tity of the aligned protein sequences used in deriving them – for instance, the
standard BLOSUM62 matrix corresponds to alignments exhibiting at least 62%
identity. Thus, larger numbered matrices are used to align closely related
sequences and smaller numbered matrices are used for more distantly related
ones. Scores in a BLOSUM matrix are log-odds scores measuring the logarithm
of the ratio of the likelihood of two amino acids appearing in an alignment on
purpose and the likelihood of the two amino acids appearing by chance. A score
in a BLOSUM matrix B is defined as

[,] logB i j f f
p1
i j

ij
=
m

where pij is the probability of finding amino acids i and j aligned in a homologous
alignment, and fi and fj denote the probability of occurrence of i and j, respec-
tively, in protein sequences. The scaling factor λ is used for convenience to gener-
ate scores that can be conveniently rounded off to integers. The BLOSUM62
matrix is the default matrix used by the BLAST suite of programs, and is shown
in Table 21.2.

As for gaps, affine gap penalty functions are used because insertion or dele-
tion of a subsequence is evolutionarily more likely than several consecutive indi-
vidual base mutations. By using matrices and gap penalty functions derived either
directly, based on evolutionary processes, or indirectly, based on knowledge of
what types of alignments are biologically satisfactory, it is expected that the align-
ments generated using computer algorithms reflect biological reality.

Finding exact matches

The first step in query processing is to find database sequences that share an
exact matching subsequence with the query sequence. For convenience, the pro-
grams designed often look for matches of a fixed length. For instance, BLAST uses
a length of 11 for DNA alignments and a length of 3 for protein alignments. When

Bioinformatics 673

such an exact length is used (say, w), a lookup table provides a natural and conven-
ient way to find the matches. The lookup table is constructed to index all substrings
of length w occurring in database sequences and stored a priori. When a query is
issued, all w-length substrings of it are extracted. For each substring, the lookup
table entry indexed by it immediately points to the database sequences that contain
this substring. Note that in a purely random sequence, the chance of finding a DNA
sequence of length 11 is 1 in 411 > 4 × 106, and the chance of finding an amino
acid sequence of length 3 is 1 in 203 = 8,000. In the protein-to-protein version of
BLAST, the program does not look for exact matches but rather identifies sub-
strings that may be different than the query substring as long as their nongapped
alignment has a score above a specified threshold, as per the amino acid substitu-
tion matrix used. In addition, BLAST avoids certain substrings that are known to
occur commonly, but the user has the option to request that this filter be turned off.

Generating Alignments

Once a subset of database sequences is identified using exact matches as
above, an alignment of each sequence with the query sequence is generated and
displayed. This can be done by using full-scale dynamic programming, as
explained earlier. In practice, the alignment is obtained by anchoring it at the
matching region found and extending it in either direction. As a practical heuris-
tic, the alignment is not continued so as to explore all options, but is stopped once
the score falls off a certain amount from the peak score seen.

4.2 Genome Sequencing

Genome sequencing refers to the deciphering of the exact order of nucleotides
that make up the genome of an organism. Since the genome contains all the genes

674 Srinivas Aluru

Table 21.2. The BLOSUM62 matrix.
A R N D C Q E G H I L K M F P S T W Y V

A 4 −1 −2 −2 0 −1 −1 0 −2 −1 −1 −1 −1 −2 −1 1 0 −3 −2 0
R −1 5 0 −2 −3 1 0 −2 0 −3 −2 2 −1 −3 −2 −1 −1 −3 −2 −3
N −2 0 6 1 −3 0 0 0 1 −3 −3 0 −2 −3 −2 1 0 −4 −2 −3
D −2 −2 1 6 −3 0 2 −1 −1 −3 −4 −1 −3 −3 −1 0 −1 −4 −3 −3
C 0 −3 −3 −3 9 −3 −4 −3 −3 −1 −1 −3 −1 −2 −3 −1 −1 −2 −2 −1
Q −1 1 0 0 −3 5 2 −2 0 −3 −2 1 0 −3 −1 0 −1 −2 −1 −2
E −1 0 0 2 −4 2 5 −2 0 −3 −3 1 −2 −3 −1 0 −1 −3 −2 −2
G 0 −2 0 −1 −3 −2 −2 6 −2 −4 −4 −2 −3 −3 −2 0 −2 −2 −3 −3
H −2 0 1 −1 −3 0 0 −2 8 −3 −3 −1 −2 −1 −2 −1 −2 −2 2 −3
I −1 −3 −3 −3 −1 −3 −3 −4 −3 4 2 −3 1 0 −3 −2 −1 −3 −1 3
L −1 −2 −3 −4 −1 −2 −3 −4 −3 2 4 −2 2 0 −3 −2 −1 −2 −1 1
K −1 2 0 −1 −3 1 1 −2 −1 −3 −2 5 −1 −3 −1 0 −1 −3 −2 −2
M −1 −1 −2 −3 −1 0 −2 −3 −2 1 2 −1 5 0 −2 −1 −1 −1 −1 1
F −2 −3 −3 −3 −2 −3 −3 −3 −1 0 0 −3 0 6 −4 −2 −2 1 3 −1
P −1 −2 −2 −1 −3 −1 −1 −2 −2 −3 −3 −1 −2 −4 7 −1 −1 −4 −3 −2
S 1 −1 1 0 −1 0 0 0 −1 −2 −2 0 −1 −2 −1 4 1 −3 −2 −2
T 0 −1 0 −1 −1 −1 −1 −2 −2 −1 −1 −1 −1 −2 −1 1 5 −2 −2 0
W −3 −3 −4 −4 −2 −2 −3 −2 −2 −3 −2 −3 −1 1 −4 −3 −2 11 2 −3
Y −2 −2 −2 −3 −2 −1 −2 −3 2 −1 −1 −2 −1 3 −3 −2 −2 2 7 −1
V 0 −3 −3 −3 −1 −2 −2 −3 −3 3 1 −2 1 −1 −2 −2 0 −3 −1 4

of the organism along with promoter and enhancer sequences that play critical
roles in the expression and amount of expression of genes, the genome of an
organism servers as a blueprint for what constitutes the species itself. Knowledge
of the genome sequence serves as a starting point for many exciting research chal-
lenges – determining genes and their locations and structures, understanding
genes involved in complex traits and genetically inherited diseases, gene regula-
tion studies, genome organization and chromosomal structure and organization
studies, finding evolutionary conservation and genome evolution mechanisms,
etc. Such fundamental understanding can lead to high-impact applied research in
genetically engineering plants to produce desirable traits and in designing drugs
targeting genes whose malfunction causes diseases. Over the past one and a half
decades, concerted research efforts and significant financial resources directed
towards genome sequencing have led to the sequencing of many genomes, start-
ing from the Haemophilus influenzae genome sequenced in 1995 [30] to the more
recent sequencing of the complex human and mouse genomes [16, 17, 95]. At
present, the complete genomes of over 1,000 viruses and over 100 microbes are
known. Arabidopsis thaliana is the first plant genome to be sequenced, rice
genome sequencing is at an advanced stage, and sequencing of the maize genome
is currently under way.

The basic underlying technology facilitating genome sequencing is the DNA
sequencing methodology developed by Sanger et al. [84]. This method allows lab-
oratory sequencing of a DNA molecule of length about 500 bp. However, even
bacterial genomes are about 3 to 4 order of magnitudes larger, and the genomes
of higher organisms such as human and mouse are about 7 orders of magnitude
larger. To sequence a large target DNA molecule, a sufficient number of smaller
overlapping fragments of sequenceable size are derived from it and independently
sequenced. Once the fragments are sequenced, overlaps are used to computation-
ally assemble the target DNA sequence. This process is called the shotgun
sequencing approach, and the corresponding computational problem is called
fragment assembly. In the whole-genome shotgun approach, the target DNA is
the entire genome itself. Another alternative is to partition the genome into large
DNA sequences of a size on the order of 100, 000 bp whose locations along the
genome are known from techniques such as physical mapping. Each of these
large DNA sequences is then deciphered using the shotgun sequencing approach.
While whole-genome shotgun sequencing is quicker, it is computationally more
challenging to perform whole-genome assembly than to assemble a few hundred
thousand base-pair-long target sequences. However, such whole-genome shotgun
assemblies have been carried out for the human and the mouse. For the remain-
der of this section, we focus on the fragment assembly problem.

FRAGMENT ASSEMBLY

Consider a target DNA sequence to be assembled using the shotgun sequenc-
ing approach. We assume that a large number of copies of the same target
sequence are available (either as samples or via cloning methods using bacterial
artificial chromosomes). Copies of the target sequence are sheared in segments of
a defined length and cloned into a plasmid vector for sequencing. Plasmids are

Bioinformatics 675

circular DNA molecules that contain genes conferring antibiotic resistance and a
pair of promoter sequences flanking a site where a DNA sequence can be inserted
for replication. The sheared segments are inserted into plasmids and injected into
bacteria, a process that allows them to be replicated along with bacteria. The bac-
teria can be killed using an antibiotic to extract copies of the inserts for sequenc-
ing. The inserts are typically a few thousand base pairs long, and about 500 bp
from each end can be sequenced using Sanger’s method. This not only gives two
fragments from random locations of the target DNA sequence but also gives the
approximate distance between their locations, since the size of the insert can be
determined. These distances, known as forward-reverse constraints because the
two fragments will be on different strands of the genome [48], are crucial in ensur-
ing correct assembly.

Early work on developing the foundations of fragments assembly was carried
out by Lander, Myers, Waterman, and others [57, 63, 73, 74]. A number of frag-
ment assembly programs were developed [15, 35, 46, 48, 49, 79, 91]. Based on the
experiences gained from these efforts, a new generation of assembly programs
have recently been developed for handling whole-genome shotgun sequencing [12,
41, 47, 50, 72, 75]. The discussion provided here is not meant to represent any one
particular program but rather is intended to give highlights of the issues involved
in fragment assembly and some algorithmic means of handling them.

The primary information available to assemble fragments is the overlap
between fragments that span intersecting intervals of the target sequence. DNA
sequencing is not error free, but the error rates are quite tolerable, with high-qual-
ity sequencing averaging under 1%. Also, the error rates tend to be higher at either
end of the sequenced fragment. If the target DNA sequence is not unique—for
example, if genomes of several individuals are sampled for diversity—then there
are naturally occurring variations that show up in fragments as well. Due to the
presence of experimental errors and other differences, potential overlaps between
fragments must be investigated using alignment algorithms. It is computationally
infeasible to run them on every pair of fragments in a reasonable time frame. On
the other hand, the differences are small enough that a good alignment should
have exact matching regions. Thus, pairs of fragments that have sufficiently long
exact matches are identified, and alignments are carried out only on such pairs.
We term these pairs as promising pairs. Genomes are known to contain repeats –
these range from a large number of copies of short repeating sequences to repeats
or tandem repeats of genes that are present in multiple copies to boost the pro-
duction of the corresponding protein. Repeats mislead assembly software since
fragments coming from different parts of the genome may overlap. This is where
forward-reverse constraints are useful. In the following, we describe in more
detail the computational aspects of shotgun assembly.

Determining the number of fragments

Let ⎪G⎪ denote the length of the target DNA sequence G, and let l denote the
average size of a fragment. Let n denote the number of fragments to be derived.

The coverage ratio x implied by this sampling is defined as x G
nl
e e

= . Intuitively, the

coverage should be sufficient so that overlaps between fragments provide enough

676 Srinivas Aluru

information for assembly. It is not possible to guarantee that the fragments will
provide complete coverage of G. In that case, the fragment assembly program is
expected to generate a number of contigs (contiguous subsequences) correspon-
ding to the disjoint regions of G that can be deciphered from the fragments.
Hence, fragment assembly is also known as contig assembly. Under the assump-
tion that the starting position in G corresponding to a fragment is uniformly dis-
tributed over the length of G, the expected number of contigs and the fraction of
G covered by the contigs can be estimated [63]. A coverage of 4.6 is enough to
cover 99% of G, and a coverage of 6.9 is sufficient to cover 99.9% of G. As an
example, the mouse genome shotgun sequence data consists of 33 million frag-
ments. Assuming an average fragment length of 500 and a 3 billion bp genome,
the coverage ratio works out to be 5.5. To quickly sequence such a large number
of fragments, several high-throughput sequencing machines are typically used.

Finding promising pairs

In a random shotgun sequencing approach using a constant coverage factor
(approximately 5–7 in practice), it is easy to see that the number of overlapping
pairs of sequences is linear in n, provided that repeats do not have an over-
whelming presence in the genome. Thus, identifying promising pairs based on
exact matches potentially reduces the number of pairwise alignments from O(n2)
to O(n). Most assembly software programs use the lookup table data structure to
identify pairs. First, a lookup table is constructed for all the input fragments and
their complementary strands using a fixed substring length w. Each entry in the
lookup table points to a list of fragments that contain a fixed w-long substring
indexing the entry. Thus, every pair of fragments drawn from this list shares a w-
long substring. Once a pair is identified, the detected w-long match is extended in
either direction to uncover a maximal common substring. Some programs further
extend the matching region by allowing a small number of errors. One problem
with the lookup table is that a pair of fragments having a maximal common sub-
string of l > w bases will have (l − w + 1) common substrings of length w within
that region. This may cause multiple considerations of the same pair based on the
same region, and it is important to find ways of avoiding this possibility. A more
elegant strategy using suffix trees will be outlined later.

Aligning promising pairs

Each promising pair is aligned using a pairwise alignment algorithm. Two
types of alignments – containments and suffix–prefix overlaps – are of interest,
as shown in Figure 21.4. It is typical to reduce alignment time by first anchoring
the alignment based on the already found matching region, and extending the
alignment at both ends using banded dynamic programming. If one fragment is
contained in the other, the shorter fragment need not be used for further overlap
computation or in determining which other fragments will be in the same con-
tig. It is, however, used in determining the contig sequence. Based on the align-
ment score, a measure of overlap strength can be associated with each aligned
pair.

Bioinformatics 677

Creating contig layouts

This step consists of identifying all the fragments that determine a contig and
the layout of these fragments with respect to the contig. One way to do this is to
employ a greedy heuristic and consider all good overlaps in decreasing order of
overlap strength. The next pair is added to the layout if it does not conflict with
the layout determined so far. Forward-reverse constraints can be used to resolve
conflicts as well. Another way to address contig layout is to use a graph model,
with nodes representing fragments and edges representing good overlaps. Each
connected component can then be a contig.

Assembly of contigs

Once the layout of each contig is determined, the exact sequence of the con-
tig is computed by using alignments on the layout. Ideally, one would want a mul-
tiple sequence alignment of all the overlapping sequences, but this is time
consuming. The pairwise alignments computed earlier can be used to draw the
layout, and a simple scheme such as majority voting can be used to determine the
base at each location of the contig.

Generating Scaffolds

A scaffold is an ordered collection of one or more contigs. Such an order
between contigs can be determined with the help of any available forward-reverse
constraints between a pair of fragments, one from each contig. This process
allows ordering of some contigs, although there are no overlapping fragments
connecting them, and also allows the determination of the approximate distance
between the contigs. It is possible to use targeted techniques to fill the gaps later.

The above description is meant to be a generic description of the various
phases in genome assembly and the computational challenges in each phase.
Clearly, the diverse available genome assembly programs employ different strate-
gies. A modular open-source assembler is currently being developed by the
AMOS consortium (http://www.cs.jhu.edu/~genomics/AMOS).

678 Srinivas Aluru

b … d a … d

b … c

s

d

a … c

a
s

s

s�

s�

s

s

s�

s�

c

b

(a) (b)

s9

Figure 21.4. The figure shows the pairwise alignment strategy of extending a common substring
match at both ends. Also shown are the four types of alignments of interest and their corre-
sponding optimal paths in the dynamic programming table.

4.3 Expressed Sequence Tag Clustering

Expressed Sequence Tags (ESTs) are DNA sequences experimentally derived
from expressed portions of genes. They are obtained as follows: A cell mechanism
makes a copy of a gene as an RNA molecule, called the premessenger RNA, or
pre-mRNA for short. Genes are composed of alternating segments called exons
and introns. The introns are spliced out from the pre-mRNA, and the resulting
molecule is called mRNA. The mRNA essentially contains the coded recipe for
manufacturing the corresponding protein. Molecular biologists collect mRNA
samples and, using them as templates, synthetically manufacture DNA molecules.
These are known as complementary DNA molecules, or cDNAs for short. Due to
the limitations of the experimental processes involved and due to breakage of
sequences in chemical reactions, several cDNAs of various lengths are obtained
instead of just full-length cDNAs. Part of the cDNA fragments, of average length
about 500–600 bp, can be sequenced with Sanger’s method. The sequencing can
be done from either end. The resulting sequences are called ESTs (Expressed
Sequence Tags). For a simplified diagrammatic illustration, see Figure 21.5.

It is important to note that the genes sampled by ESTs and the frequency of
sampling depend on the expression levels of the various genes. The EST cluster-
ing problem is to partition the ESTs according to the (unknown) gene source they
come from. This process is useful in several ways, some of which are outlined
below:

● Gene Identification: Genome sequencing is only a step towards the goal of
identifying genes and finding the functions of the corresponding proteins.
ESTs provide the necessary clues for gene identification.

● Gene Expression Studies: In EST sequencing, genes that are expressed more
will result in more ESTs. Thus, the number of ESTs in a cluster indicates the
level of expression of the corresponding gene.

● Differential Gene Expression: ESTs collected from various organelles of an
organism (such as the leaf, root, and shoot of a plant) reveal the expression
levels of genes in the respective organelles and provide clues to their possible
function.

● SNP Identification: The same gene is present in slight variations, known as
alleles, among different members of the same species. Many of these alleles
differ in a single nucleotide, and some of these differences are the cause of
genetic diseases. ESTs from multiple members of a species help identify such
disease-causing single nucleotide polymorphisms, or SNPs.

Bioinformatics 679

genomic
DNA

mRNA

ESTS

exon1 exon2 exon3intron1 intron2

exon1 exon2 exon3

39
5939

59

Figure 21.5. A simplified diagrammatic illustration of genomic DNA, mRNA, and ESTs.

● Design of Microarrays: Microarrays, also called DNA chips, are a recent dis-
covery allowing gene expression studies of thousands of genes simultaneously.
ESTs can be used in designing microarrays to detect the level of expression of
the corresponding genes.

EST clustering is an actively pursued problem of current interest [18, 32, 39,
53, 60, 61, 64, 70, 82, 98]. ESTs are fairly inexpensive to collect and represent a
major source of DNA sequence information currently available. A repository of
ESTs collected from various organisms is maintained at the National Center for
Biotechnology Information (http://www.nicb.nlm.nih.gov/dbEST).

If the genome of the organism is available and small, the individuals ESTs can
be directly aligned with the genome to determine clustering. However, this situa-
tion is rarely the case. As with fragment assembly, the potential overlaps between
ESTs from the same gene provide the primary information available for EST clus-
tering. For this reason, fragment assembly software is often used for EST cluster-
ing, though there are some subtle differences between the two problems that need
to be carefully addressed. One important difference is that ESTs do not sample
the gene space uniformly at random, but rather the sampling rate is proportional
to the gene expression. It is quite common to have a few very large clusters con-
taining as many as 10% of the input ESTs and to have thousands of single EST
clusters. Because of this nonuniform sampling, the number of overlapping pairs
can be as high as W(n2) and are observed to be such in practice. This overlap con-
siderably slows down standard lookup table-based fragment assembly software
when applied to EST clustering problems. Furthermore, the space required to
store potential overlapping pairs or promising pairs is quadratic, limiting the
effectiveness of the software to much smaller data sets.

A suffix tree-based solution can be designed to address these problems [52],
and such a solution could be important even for genome assembly when the sam-
pling is purposefully nonuniform [24]. The basic idea is to build a GST of all
ESTs and their complementary strands. Common substrings between ESTs can
be identified by shared paths in the suffix tree. However, the power of this method
lies in directly identifying maximal common substrings and avoiding the genera-
tion of pairs based on parts of maximal common substrings. Moreover, the pairs
can be generated in nonascending order of the maximal common substring length
on an as-needed basis, without having to store any pairs generated so far. This
approach will reduce the memory required from quadratic to linear. Below we
outline the various steps in EST clustering based on this strategy.

ON-DEMAND PAIR GENERATION

Let the term promising pair refer to a pair of strings that have a maximal com-
mon substring of length at least equal to a threshold value y. The goal of the on-
demand pair generation algorithm is to report promising pairs on-the-fly, in the
nonincreasing order of maximal common substring length. A pair is generated
as many times as the number of maximal substrings common to the pair. The
algorithm operates on the following idea: If two strings share a maximal common
substring a, then the leaves corresponding to the suffixes of the strings starting

680 Srinivas Aluru

with a will be present in the subtree of the node with path-label a. Thus the algo-
rithm can generate the pair at that node.

A substring a of a string is said to be left-extensible (alternatively, right-
extensible) by character c if c is the character to the left (alternatively, right) of a
in the string. If the substring is a prefix of the string, then it is said to be left-
extensible by λ, the null character. Let leaf-set(v) denote the suffixes in the subtree
under v. Based on the characters immediately preceding these suffixes, they are
partition into five sets, lA(v), lC (v), lG (v), lT (v) and lλ(v), collectively referred to as
lsets(v). The algorithm for generation of pairs is given in Figure 21.6. The nodes
in GST with string-depth ≥ y are sorted in nonincreasing order of string depth
and are processed in that order. The lsets at leaf nodes are computed directly from
the leaf labels. The set of pairs generated at node v is denoted by Pv. If v is a leaf,
a cartesian product of each of the lsets at v corresponding to A, C, G, T, λ with
every other lset of v corresponding to a different character is computed. In addi-
tion, a cartesian product of lλ(v) with itself is computed. The union of these carte-
sian products is taken to be Pv. If v is an internal node, a cartesian product of
each lset corresponding to A, C, G, T, λ of each child of v with every other lset
corresponding to a different character in every other child node is computed. In
addition, a cartesian product of the lset corresponding to λ of each child node
with each of the lsets corresponding to λ of every other child node is computed.

Bioinformatics 681

Algorithm 1 Pair Generation

GeneratePairs
1. Compute the string-depth of all nodes in the GST.
2. Sort nodes with string-depth ≥ ψ in non-increasing order of string-depth.
3. For each node v in that order

IF v is a leaf THEN
ProcessLeaf (v)

ELSE
ProcessInternalNode(v)

ProcessLeaf(Leaf: v)
1. Compute

() (), (,) , <. .P l v l v c c c c c cs t or(,)v c c c c i j i j i ji j i j
, # 6= = = m

ProcessInternalNode(Internal Node: v)
1. Compute

,

P

k l m c c c cor1
(,) (,)v u u c c c k c l k l i j

i j i j

k l i j i j
, ,

!# #

=

= =m

() (), (,), (,) ,. .l u l u u u c c s t# 6 6

2. Create all lsets at v by computing:
For each ci ∈ ∑ ∪ {λ} do

() (),l v l u k m1c u c ki k i
, # #=

Figure 21.6. Algorithm for generation of promising pairs.

The union of these cartesian products is taken to be Pv. The lset for a particular
character at v is obtaining by taking a union of the lsets for the same character at
the children of v.

A pair generated at a node v is discarded if the string corresponding to the
smaller EST id number is in complemented form. This avoids duplicates such as
generating both (ei, ej) and ($ \bar e_i, \bar e_j $) or generating both (ei, ejr) and
(,e ei jr) for some 1 ≤ i, j ≤ n. Thus, without loss of generality, we denote a pair by
(s, s′), where s = ei and s′ is either ej or ejr for some i < j. The relative orderings of
the characters in ∑ ∪ {λ} and the child nodes avoid generation of both (s, s′) and
(s′, s) at the same node.

In summary, if v is a leaf,

Pv = {(s, s′) ⎪ s ∈ lci
(v), s′ ∈ lcj (v), ci, cj ∈ ∑ ∪{λ}, ((ci < cj) ∨ (ci = cj = λ))}

and if v is an internal node,

(,) (), (), , , < ,(() ())}P s s s l u s l u c c u u c c c cv c k c l i j k l i j i ji j
, 0!! ! != = =m mRl l

CLUSTERING STRATEGY

Consider a partition of the input ESTs into subsets (also called clusters) on
which the following two standard operations are supported: Find(ei) returns the
cluster containing ei, and Union(A, B) creates a new cluster combining the clus-
ters A and B. These operations can be supported efficiently using a standard
Union-Find algorithm [92]. To begin with, each EST is in a separate subset of the
partition. At some point during the clustering, let (ei, ej) be the next EST pair gen-
erated by the on-demand pair generation algorithm. If Find(ei) = Find(ej), the two
ESTs are already in the same cluster and they need not be aligned. Otherwise, an
alignment test is performed. If the test succeeds, the clusters containing ei and ej
are merged. Otherwise, they are left as they were. This process is continued until
all promising pairs are exhausted. Note that the number of union operations that
can be performed is O(n), while the number of pairs can be W (n2). That means
there are O(n) pairs that can lead to the right answer, though one does not know
a priori what these pairs would be. The order in which promising pairs are
processed does not affect the outcome but does impact the alignment work per-
formed. The least amount of work is performed when each alignment test is a
success until the final set of clusters is formed. At this point, no new promising
pairs generated will need to be aligned. Thus, based on the intuition that longer
exact matches more likely lead to successful alignments, the particular order in
which promising pairs are generated should bring enormous savings in execution
time.

4.4 Comparative Genomics

Comparative genomics is the comparison and analysis of two or more
genomes or of very large genomic fragments to gain insights into molecular biol-
ogy and evolution. Comparative genomics is valuable because there is significant

682 Srinivas Aluru

commonality between genomes of species that may appear very different on the
surface. Moreover, coding sequences tend to be conserved in evolution, making
comparative genomics a viable tool to discover coding sequences in a genome by
merely comparing it with a genome of a related species and identifying the com-
mon parts. For instance, approximately 99% of human genes have a counterpart
in mice. Based on a study of nearly 13,000 such genes, it has been found that the
encoded proteins have a median amino-acid identity of 78.5% [14]. Learning
about the subtle genomic differences between humans and mice is a starting point
for understanding how these differences contribute to the vast differences
between the two species (brain size, for example), and ultimately help us under-
stand how genomes confer the distinctive properties of each species through these
subtle differences.

Genome comparisons can be classified into three broad categories, depending
on the relationships between the genomes being compared. In each case, a wealth
of information can be gained about identifying key functional elements of the
genome or subtle differences that have significant implications, some of which are
highlighted below:

Individuals from the same species

A single nucleotide difference in a gene can cause a nonfunctional gene (i.e.,
no protein product) or give rise to a malfunctioning protein that could have seri-
ous consequences to health and tissue functioning. Such differences, known as
single nucleotide polymorphisms (SNPs), are the cause of genetically inherited
diseases such as sickle cell anemia, cystic fibrosis, and breast cancer. They are also
known to be responsible for striking hereditarily passed-on differences, including
height, brain development and facial structure. Comparative genomics is a valu-
able tool to reveal SNPs, to help us understand the genetic basis for important
diseases, and to serve as the foundation for developing treatments.

Closely related species or conserved regions across species

Closely related species such as different types of microbes can have remark-
ably different properties, and comparative genomics can help provide the clues
that differentiate them. The United States Department of Energy has been sup-
porting research into microbial genomes because of the ability of microbes to
survive under extreme conditions of temperature, pressure, darkness, and even
radiation. Understanding microbial genomes could enable far-reaching applica-
tions such as the cleanup of toxic waste and the development of biosensors. In the
category of closely related species, we include species whose genomes are so
closely related that a traditional alignment algorithm is capable of elucidating the
genomic alignment, even though it may not be computationally advantageous to
do so because of the sizes of the sequences. Certain genomic segments across
more distantly related species may also have this property, where not only the
genes are conserved but also the gene order is also conserved. Comparative
genomics study of such regions, known as syntenic regions, are carried out
between humans and mice [8, 13, 21, 47].

Bioinformatics 683

Relatively more distant species

Comparing the genomes of two species is not just a question of applying stan-
dard alignment algorithms to sequences much larger in scale. Although most
genes may have counterparts across the two genomes, the order is not preserved
on a global scale, which is a requirement for classical alignment algorithms to be
useful. For instance, it is established that by breaking the human genome into
approximately 150 pieces and rearranging the pieces, one can build a good
approximation to the mouse genome. Genomic comparisons require taking into
account such genomic rearrangements, which include differences in the number
of repeats, reversals, translocations, fusions, and fissions of chromosomes [80].
Once such global alignment algorithms are developed and applied, alignments
between syntenic blocks can be carried out.

Our discussion of computational methods for comparative genomics will fol-
low the above-mentioned classification. We first describe how alignment algo-
rithms can be extended to solve this problem when it is known that both genes
and gene order are preserved. We then describe faster techniques for whole-
genome alignments of closely related species.

Alignment-Based Methods

Consider the alignment of two large genomic sequences. If these are from dif-
ferent species, we expect that we are at least dealing with syntenic regions that
contain orthologous genes in the same gene order. The order is important for an
alignment algorithm to be useful. While the order is not necessary for a gene to
play its role, evolution does tend to preserve gene order across these large blocks
called syntenic regions. It is only when such an assumption is valid that a direct-
alignment algorithm can be designed for genome comparisons.

Even when gene order is preserved, there are differences between a standard
alignment and what is required for genomic comparisons. While the genes may be
preserved, large intergenic regions may be different. Even when genes are con-
served, this may largely apply only to coding regions. Since introns do not partic-
ipate in the translation of a gene to its corresponding protein product,
conservation of exons alone is sufficient to create a highly similar protein prod-
uct. When aligning two large genomic sequences, it is important to focus on the
alignment of regions of similarity and not to penalize for mismatching regions
that should not be aligned in the first place. This process can be modeled as the
problem of finding an ordered list of subsequences of one sequence that is highly
similar to a corresponding ordered list of subsequences from the other sequence.
We refer to this problem as the syntenic alignment problem.

The syntenic alignment problem can be formalized as follows: Let A = a1a2
... am and B = b1b2 ... bn be two sequences. A subsequence A′ of A is said to pre-
cede another subsequence A′′ of A, written "A A'l , if the last character of A′
occurs strictly before the first character of A′′ in A. An ordered list of subse-
quences of A, (A1, A2, ..., Ak) is called a chain if ...A A Ak1 2' ' . The syntenic
alignment problem for sequences A and B is to find a chain (A1, A2, ..., Ak) of
subsequences in A and a chain (B1, B2, ..., Bk) of subsequences in B such that
the score

684 Srinivas Aluru

(,) ()score A B k 1i i
i

k
d

1
- -

=

!* 4
is maximized (see Figure 21.7).
The function score(Ai, Bi) corresponds to the optimal score for the global

alignment of Ai and Bi using scores for matches, penalties for mismatches, and an
affine gap penalty function, as described earlier. The parameter d is a large
penalty aimed at preventing alignment of short subsequences that occur by
chance and not because of any biological significance. Intuitively, we are inter-
ested in finding an ordered list of matching subsequence pairs that correspond to
conserved exons. One can think of the subsequence between Ai and Ai+1 and the
subsequence between Bi and Bi+1 as an unmatched subsequence pair. The penalty
d can be viewed as corresponding to an unmatched subsequence pair. For a small
alphabet size, given a character in an unmatched subsequence, there is a high
probability of finding the same character in the corresponding unmatched subse-
quence. In the absence of the penalty d, using these two characters as another
matched subsequence pair would increase the score of the syntenic alignment.
The penalty d serves to avoid declaring such irrelevant matching subsequences as
part of the syntenic alignment, and its value should be chosen carefully by con-
sidering the length of the shortest exons that we expect. Setting d too low
increases the chance of substrings, which are too short to be exons, to be consid-
ered as matching subsequences. Setting d too high prevents short matching exons
from being recognized as matching subsequences.

Based on the problem definition, the syntenic alignment of two sequences
A = a1a2 ... am and B = b1b2 ... bn can be computed by dynamic programming.
Basically, we compute the syntenic alignment between every prefix of A and every
prefix of B. We compute four tables C, D, I, and H of size (m+1) × (n+1). Entry
[i,j] in each table corresponds to the optimal score of a syntenic alignment
between a1a2 ... ai and b1b2 ... bj, subject to the following conditions:

● In C, ai is matched with bj.

● In D, ai is matched with a gap.

● In I, a gap is matched with bj.

● In H, either ai or bj is part of an unmatched subsequence.

It follows from these definitions that the tables can be computed using the fol-
lowing recurrence equations:

Bioinformatics 685

A1

B1 B2 B3

A2 A3

Figure 21.7. An illustration of the Syntenic alignment problem.

[,] (,)

[,]

[,]

[,]

[,]

maxC i j f a b

C i j

D i j

I i j

H i j

1 1

1 1

1 1

1 1

i j= +

- -

- -

- -

- -

Z

[

\

]
]]

]
]]

[,]

[,] ()

[,]

[,] ()

[,] ()

maxD i j

C i j g h

D i j g

I i j g h

H i j g h

1

1

1

1

=

- - +

- -

- - +

- - +

Z

[

\

]
]]

]
]]

[,]

[,] ()

[,] ()

[,]

[,] ()

maxI i j

C i j g h

D i j g h

I i j g

H i j g h

1

1

1

1

=

- - +

- - +

- -

- - +

Z

[

\

]
]]

]
]]

[,]

[,]

[,]

[,]

[,]

[,]

[,]

maxH i j

C i j d

I i j d

C i j d

D i j d

H i j

H i j

1

1

1

1

1

1

=

- -

- -

- -

- -

-

-

Z

[

\

]
]
]
]

]
]
]
]

Prior to computation, the top row and left column of each table should be ini-
tialized. In table H, the top row is initialized using the penalty d. The top row of
I and the leftmost column of D are initialized using the affine gap penalty func-
tion. The rest of the initialization entries are set to −∞. After the computation,
the maximum value in C [m, n], D [m, n], I [m, n], or H [m, n] gives the optimal
score. Using traceback, an optimal syntenic alignment can be reproduced.

Before computing the syntenic alignment, it is important to screen the input
sequences for interspersed repeats and low-complexity subsequences using a pro-
gram such as RepeatMasker [88]. Similar regions consisting of such subsequences
are functionally less important than other matches but show strong sequence sim-
ilarity. In the presence of repeats and low complexity subsequences, the alignment
algorithm gives priority to aligning such sequences and may miss aligning the
more important subsequences.

The main advantage of the alignment method is that it guarantees finding an
optimal solution and is capable of detecting weak similarities. However, its quad-
ratic run-time makes it difficult to apply this method for very large sequences. To
alleviate this difficulty, Futamura et al. [31] parallelized the syntenic alignment
algorithm. The program produced a syntenic alignment of a gene-rich region on
human chromosome 12 (12p13; length 222, 930 bp; GenBank Accession U47924)
with the corresponding syntenic region on mouse chromosome 6 (length 227, 538
bp; GenBank Accession AC002397) in about 24 minutes on a 64-processor
Myrinet cluster with Pentium 1.26GHZ processors. This region contains 17 genes

686 Srinivas Aluru

[8], and most of the coding regions are identified by the program as 154 matching
ordered subsequence pairs spanning 43, 445bp with an average identity of 79%.

Fast Genome Comparison Methods

A number of fast comparison algorithms have been developed for comparing
very large-scale DNA sequences from closely related species or syntenic regions
from more distantly related species [13, 21, 51, 86]. Generally, these methods per-
form fast identification of significant local similarities using exact matches. Then
alignments are used to extend these similarities or to close gaps in alignments
made up of only exact matches. Our presentation here closely follows the work of
Delcher et al. [21], who developed the MUMmer program for aligning whole
genomes.

MUMmer works on the assumption that long exact matching regions are part
of the genomic alignment. This assumption is exploited by identifying unique
maximal common substrings between the two sequences called MUMs
(Maximum Unique Matches), using them to anchor the alignment, and then fur-
ther exploring the regions between every pair of consecutive MUMs. The algo-
rithm is composed of the following steps:
1. Fast identification of large MUMs using a suffix tree
2. Computing an ordered sequence of pairs of MUMs to anchor the alignment
3. Aligning regions between consecutive MUMs recursively by using shorter

MUMs or dynamic programming-based tools
The first step is the identification of maximal unique matches. To this end, a

generalized suffix tree of the two input sequences A and B is constructed in linear
time. A maximal common substring that occurs only once in each input sequence
corresponds to the path-label of an internal node that has exactly two leaf chil-
dren, one from each of A and B. However, it is possible that a suffix of such a max-
imal common substring is also unique and corresponds to a node with similar
properties. Recall that the path-label of an internal node in a suffix tree is already
right maximal. To ensure that it is left maximal, one only needs to check to make
sure that each suffix in the subtree of the node has a different previous character.
Thus, a scan of the suffix tree to identify internal nodes with two leaf children and
eliminate those that are not left maximal yields the MUMs in linear time. Only
MUMs that are larger than a user-specified threshold length are identified to avoid
anchoring the alignment on relatively short MUMs that may occur by coincidence.

It may not be possible to use all the MUMs so discovered in anchoring the
alignment. A pair of MUMs may cross, allowing the inclusion of only one of
them in any viable alignment. To identify a large set of MUMs that does not con-
tain any such pairwise conflicts, the following method is used: the MUMs are first
sorted according to their position in genomic sequence A and are labeled 1, 2, ...
k in that order, where k is the number of MUMs. The same labeling is applied to
the corresponding MUMs on genomic sequence B. A longest increasing subse-
quence of MUM along B is then sought. This can be solved by a variation of the
Longest Increasing Subsequence (LIS) problem [37] that takes into account
the lengths of the MUMs so that what is maximized is the total lengths of all the
selected MUMs and not the number of MUMs. This can be done in O(k log k)
time.

Bioinformatics 687

Once the alignment is anchored using the selected MUMs, one is left with the
task of aligning the regions between every consecutive pair of MUMs. The chief
advantage of this strategy is the quick decomposition of the original problem into
several smaller subproblems. While this should considerably reduce the run-time
even if each of the subproblems is addressed using an alignment algorithm such
as syntenic alignment, further computational savings can be obtained by recurs-
ing on this strategy using shorter MUM threshold length. Also, certain special
cases can be readily identified that can be treated separately. Three such special
cases are identified here:

● Two MUM pairs separated by a single differing nucleotide – This is classified
as a SNP.

● Two MUMs that are consecutive along one genome but are separated in the
other – The subsequence separating the two MUMs is treated as an insert.

● Overlapping MUMs – If the intervals spanned by two MUMs along both
genomes overlap, this is an indication of a tandem repeat (repeats that occur
consecutively with no intervening sequences) separating the two MUMs. The
genome that has fewer occurrences of the tandem repeats will restrict the
lengths of the MUMs and causes the two flanking matching regions to be
identified as two different MUMs.

Once the special cases are identified, the remaining gaps in alignment can be
filled by using quadratic time alignment algorithms. If these regions are long
enough, a recursive application of MUMs strategy can be applied while eventu-
ally closing the remaining gaps using alignment. This method should produce
fairly accurate alignments in very short amounts of time. For example, Delcher et
al. report alignment of the same human chromosome 12p13 and mouse chromo-
some 6 syntenic regions described earlier in just 30 seconds [21].

Genomic Rearrangements

The previous algorithms are useful in aligning very closely related genomes
where gene order is largely preserved or syntenic regions across genomes within
which gene order is preserved. To extend comparative genomics beyond that,
computational modeling of genomic rearrangements is needed. Such rearrange-
ments are useful in hypothesizing the relative evolutionary distance between two
species and also in identifying syntenic regions that can be aligned using previ-
ously described methods. A simple way to model this problem is to consider each
genome as consisting of essentially the same set of genes. Each gene is also given
an orientation depending on the genomic strand on which it appears. This can be
modeled by placing a plus sign in front of each gene that appears on one of the
strands and choosing a minus sign for the genes appearing on the complementary
strand. Genomic rearrangements are modeled as inversions, where inversion of a
stretch of the genome is represented by reversing the sequence of genes contained
in it and reversing the sign of each gene. The distance between the genomes is
then measured as the minimum number of inversions required to convert one
genome into the other. These important methods are not described here due to
space limitations, largely because the underlying algorithms are different from the

688 Srinivas Aluru

exact match and alignment-based methodologies that this chapter is focused on.
The interested reader is referred to [9–11, 40, 54, 80, 93].

5 CONCLUSIONS AND FUTURE CHALLENGES

This chapter has aimed at providing a brief introduction to bioinformatics
and conveying the flavor of research in computational genomics to readers with
little or no familiarity with bioinformatics. The volume of research results that
have accumulated so far in bioinformatics and the large number of researchers
engaged in research in this area indicate that this field is no longer in its infancy.
In fact, it is difficult to provide complete coverage of this area in a medium-sized
textbook. The approach taken in this chapter has been to provide a bird’s-eye
view of computational genomics by looking at a number of challenging research
problems in a holistic and integrated manner by focusing on the underlying fun-
damentals. It is hoped that this approach enabled the coverage of the material in
reasonable depth within the scope of a chapter and provided enough under-
standing to spark the reader’s curiosity. The large number of references provided
should serve as a starting point for further investigation. For a fairly comprehen-
sive treatment, including recent research directions in bioinformatics and compu-
tational biology, the reader is referred to [6].

Many computational challenges remain in bioinformatics, promising decades
of interesting work for researchers in this area. Within computational genomics,
some of the main challenges can be summarized as (1) sequencing the genomes of
many more organisms, (2) understanding the genes and their structure and func-
tion within each organism, (3) developing capabilities to compare and analyze a
large number of genomes collectively, (4) constructing evolutionary relationships
between all known species, known as the tree-of-life project, (5) using gene expres-
sion studies to understand gene interactions, (6) inferring complex protein inter-
action pathways and networks, and (7) understanding gene regulatory behaviour
as related to its impact on developmental genetics. Computational structure biol-
ogy is another exciting area that is not covered in this chapter. Computational
determination of protein structure from its amino acid sequence is often men-
tioned as the “holy grail” problem in bioinformatics. Finding sequences that fold
into desired structures and understanding the mechanisms of protein–protein
docking and protein–drug docking are considered vital to pharmaceutical
research. Developing structure databases to enable the search for structural
homologies is a difficult problem to address, but may well end up showing that
current sequence-based alignment strategies are pursued for computational con-
venience. Remarkable discoveries await research in computational medicine. One
promising area of research is personalized medicine, where an understanding of
the complex relationships between the genetic composition of an individual and
his or her tendency to develop diseases and response to drugs is expected to lead
to the design of targeted treatments with tremendous health care benefits.
Progress in solving many such challenges facing modern biology and medicine can
only be made by interdisciplinary teams of researchers. Computation will remain
an integral part of most potential discoveries and should provide exciting applied
problems for computing researchers to work on for decades to come.

Bioinformatics 689

REFERENCES

[1] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch (2004): Replacing suffix trees
with enhanced suffix arrays. Journal of Discrete Algorithms, 2.

[2] B. Alberts, A. Hohnson, J. Lewis, M. Raff, K. Roberts, and P. Walter (2002):
Molecular Biology of the Cell. Garland Science, New York, NY.

[3] S.F. Altschul (1991): Amino acid substitution matrices from an information
theory perspective. Journal of Molecular Biology, 219:555–565.

[4] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman (1990):
Basic local alignment search tool. Journal of Molecular Biology, 215(3),
403–410.

[5] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and
D.J. Lipman (1997): Gapped BLAST and PSI-BLAST: A new generation of
protein database search programs. Nucleic Acids Research, 25, 3389–3402.

[6] S. Aluru, (ed) (2005): Handbook of Computational Molecular Biology. CRC
Press, Boca Raton, FL.

[7] S. Aluru, N. Futamura, and K. Mehrotra (2003): Parallel biological
sequence comparison using prefix computations. Journal of Parallel and
Distributed Computing, 63(3), 264–272.

[8] M.A. Ansari-Lari, J.C. Oeltjen, S. Schwartz, Z. Zhang, D.M. Muzny, J. Lu,
J.H. Gorrell, A.C. Chinault, J.W. Belmont, W. Miller, and R.A. Gibbs (1998):
Comparative sequence analysis of a gene-rich cluster at human chromosome
12p13 and its syntenic region in mouse chromosome 6. Genome Research, 8,
29–40.

[9] D.A. Bader, B. M.E. Moret, and M. Yan (2001): A linear-time algorithm for
computing inversion distance between two signed permutations with an
experimental study. Journal of Computational Biology, 8(5), 483–491.

[10] V. Bafna and P.A. Pevzner (1995): Sorting by reversals: genome rearrange-
ments in plant organelles and evolutionary history of X chromosome.
Molecular Biology and Evolution, 12, 239–246.

[11] V. Bafna and P.A. Pevzner (1996): Genome rearrangements and sorting by
reversals. SIAM Journal on Computing, 25(2), 272–289.

[12] S. Batzoglou, D. Jaffe, K. Stanley, J. Butler, et al. (2002): ARACHNE:
A wholegenome shotgun assembler. Genome Research, 12, 177–189.

[13] S. Batzoglou, L. Pachter, J.P. Mesirov, B. Berger, and E.S. Lander (2000):
Human and mouse gene structure: comparative analysis and application to
exon prediction. Genome Research, 10, 950–958.

[14] M.S. Boguski (2002): Comparative genomics: the mouse that roared. Nature,
420, 515–516.

[15] J.K. Bonfield, K. Smith, and R. Staden. (1995): A new DNA sequence
assembly program. Nucleic Acids Research, 24, 4992–2999.

[16] International Human Genome Sequencing Consortium (2001): Initial
sequencing and analysis of the human genome. Nature, 409, 860–921.

[17] Mouse Genome Sequencing Consortium (2002): Initial sequencing and
comparative analysis of the mouse genome. Nature, 420, 520–562.

[18] E. Coward, S. A. Haas, and M. Vingron. (2002): SpliceNest: visualizing gene
structure and alternative splicing based on EST clusters. Trends in Genetics,
18(1), 53–55.

690 Srinivas Aluru

[19] M. Crochemore, G.M. Landau, and Z. Ziv-Ukelson (2002): A subquadratic
sequence alignment algorithm for unrestricted cost metrics. In Proc.
Symposium on Discrete Algorithms, pp. 679–688.

[20] M.O. Dayhoff, R. Schwartz, and B.C. Orcutt (1978): Atlas of Protein
Sequence and Structure, volume 5. A model of evolutionary change in pro-
teins: matrices for detecting distant relationships, pp. 345–358. National
Biomedical Research Foundation.

[21] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. While, and
S.L. Salzberg (1999): Alignment of whole genomes. Nucleic Acids Research,
27, 228–233.

[22] R. Durbin, S.R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids.

[23] E.W. Edmiston, N.G. Core, J.H. Saltz, and R.M. Smith (1988): Parallel pro-
cessing of biological sequence comparison algorithms. International Journal
of Parallel Programming, 17(3), 259–275.

[24] S. Emrich, S. Aluru, Y. Fu, T. Wen, et al. (2004): A strategy for assembling
the maize (zea mays L.) genome. Bioinformatics, 20, 140–147.

[25] M. Farach (1997): Optimal suffix tree construction with large alphabets. In
38th Annual Symposium on Foundations of Computer Science, pp. 137–143.
IEEE.

[26] M. Farach-Colton, P. Ferragina, and S. Muthukrishnan (2000): On the sort-
ing-complexity of suffix tree construction. Journal of the Association of
Computing Machinery, 47.

[27] D. Fernández-Baca, T. Seppalainen, and G. Slutzki (2002): Bounds for para-
metric sequence comparison. Discrete Applied Mathematics, 118, 181–198.

[28] P. Ferragina and G. Manzini (2000): Opportunistic data structures with
applications. In 41th Annual Symposium on Foundations of Computer
Science, pp. 390–398. IEEE.

[29] J. Fickett (1984): Fast optimal alignment. Nucleic Acids Research, 12(1),
175–179.

[30] R.D. Fleischmann, M.D. Adams, O. White, R.A. Clayton, et al. (1995):
Whole-genome random sequencing and assembly of haemophilus influenzae
rd. Science, 269(5223), 496–512.

[31] N. Futamura, S. Aluru, and X. Huang (2003): Parallel syntenic alignments.
Parallel Processing Letters, 13, 689–703.

[32] C. Gemund, C. Ramu, B. A. Greulich, and T. J. Gibson (2001): Gene2EST:
a BLAST2 server for searching expressed sequence tag (EST) databases with
eukaryotic gene-sized queries. Nucleic Acids Research 29, 1272–1277.

[33] R. Giegerich and S. Kurtz (1997): From Ukkonen to McCreight and Weiner:
A unifying view of linear-time suffix tree construction. 19:331–353.

[34] O. Gotoh (2000): Homology-based gene structure prediction: simplified
matching algorithm using a translated codon (tron) and improved accuracy
by allowing for long gaps. Bioinformatics, 16(3), 190–202.

[35] P. Green (1996): http://www.mbt.washington.edu/phrap.docs/phrap.html.
[36] R. Grossi and J.S. Vitter (2000): Compressed suffix arrays and suffix trees

with applications to text indexing and string matching. In Symposium on the
Theory of Computing, pp. 397–406. ACM.

[37] D. Gusfield (1997): Algorithms on Strings Trees and Sequences. New York.

Bioinformatics 691

[38] D. Gusfield, K. Balasubramaniam, and D. Naor (1994): Parametric opti-
mization of sequence alignment. Algorithmica, 12, 312–326.

[39] S. A. Haas, T. Beissbarth, E. Rivals, A. Krause, and M. Vingron (2000):
GeneNest: automated generation and visualization of gene indices. Trends in
Genetics, 16(11), 521–523.

[40] S. Hannenhalli and P.A. Pevzner (1999): Transorming cabbage into turnip:
polynomial algorithm for sorting signed permutations by reversals. Journal
of the Association for Computing Machinery, 46(1), 1–27.

[41] P. Havlak, R. Chen, K.J. Durbin, A. Egan, Y.R. Ren, and X.Z. Song (2004):
The Atlas genome assembly system. Genome Research, 14(4):721–732.

[42] S. Henikoff and J.G. Henikoff (1992): Amino acid substitution matrices
from protein blocks. Proc. National Academy of Sciences, 89, 10915–10919.

[43] D.S. Hirschberg (1975): A linear space algorithm for computing maximal
common subsequences. Communications of the ACM, 18(6), 341–343.

[44] X. Huang (1989): A space-efficient parallel sequence comparison algorithm
for a message-passing multiprocessor. International Journal of Parallel
Programming, 18(3), 223–239.

[45] X. Huang (1990): A space-efficient algorithm for local similarities. Computer
Applications in the Biosciences, 6(4), 373–381.

[46] X. Huang (1992): A contig assembly program based on sensitive detection of
fragment overlaps. Genomics, 14, 18–25.

[47] X. Huang and K. Chao (2003): A generalized global alignment algorithm.
Bioinformatics, 19(2), 228–233.

[48] X. Huang and A. Madan (1999): CAP3: A DNA sequence assembly pro-
gram. Genome Research, 9(9), 868–877.

[49] X. Huang and J. Zhang (1996): Methods for comparing a DNA sequence with
a protein sequence. Computer Applications in Biosciences, 12(6), 497–506.

[50] D.B. Jaffe, J. Butler, S. Gnerre, and E. Mauceli, et al. (2003): Whole-genome
sequence assembly for mammalian genomes: ARACHNE2. Genome
Research, 13, 91–96.

[51] N. Jareborg, E. Birney, and R. Durbin (1999): Comparative analysis of non-
coding regions of 77 orthologous mouse and human gene pairs. Genome
Research, 9, 815–824.

[52] A. Kalyanaraman, S. Aluru, V. Brendel, and S. Kothari (2003): Space and
time efficient parallel algorithms and software for EST clustering. IEEE
Transactions on Parallel and Distributed Systems, 14.

[53] Z. Kan, E. C. Rouchka, W. R. Gish, and D. J. States (2001): Gene structure
prediction and alternative splicing analysis using genomically aligned ESTs.
Genome Research, 11, 889–900.

[54] H. Kaplan, R. Shamir, and R.E. Tarjan (2000): A faster and simpler algo-
rithm for sorting signed permutations by reversals. SIAM Journal on
Computing, 29(3), 880–892.

[55] J. Kärkkäinen and P. Sanders (2003): Simpler linear work suffix array con-
struction. In International Colloquium on Automata, Languages and
Programming, to appear.

[56] R.M. Karp (2003): The role of algorithmic research in computational genomics.
In Proc. IEEE Computational Systems Bioinformatics, pp. 10–11. IEEE.

692 Srinivas Aluru

[57] J. Kececioglu and E. Myers (1995): Combinatorial algorithms for DNA
sequence assembly. Algorithmica, 13(1-2), 7–51.

[58] P. Ko and S. Aluru (2003): Space-efficient linear-time construction of suffix
arrays. In 14th Annual Symposium, Combinatorial Pattern Matching.

[59] P. Ko, M. Narayanan, A. Kalyanaraman, and S. Aluru (2004): Space con-
serving optimal DNA-protein alignment. In Proc. IEEE Computational
Systems Bioinformatics, pp. 80–88.

[60] A. Krause, S. A. Haas, E. Coward, and M. Vingron (2002): SYSTERS,
GeneNest, SpliceNest: Exploring sequence space from genome to protein.
Nucleic Acids Research, 30.

[61] A. Krause, J. Stoye, and M. Vingron (2000): The SYSTERS protein sequence
cluster set. Nucleic Acids Research, 28, 270–272.

[62] E. Lander, J.P. Mesirov, and W. Taylor (1988): Protein sequence comparison
on a data parallel computer. In Proc. International Conference on Parallel
Processing, pp. 257–263.

[63] E.S. Lander and M.S. Waterman (1988): Genomic mapping by fingerprint-
ing random clones: a mathematical analysis. Genomics, 2, 231–239.

[64] F. Liang, I. Holt, G. Pertea, S. Karamycheva, S. Salzberg, and J. Quackenbush
(2000): An optimized protocol for analysis of EST sequences. Nucleic Acids
Research, 28(18), 3657–3665.

[65] H.F. Lodish, A. Berk, P. Matsudaira, C.A. Kaiser, M. Krieger, M.P. Scott,
S.L. Zipursky, and J. Darnell (2003): Molecular Cell Biology. W.H. Freeman
and Company, New York, NY.

[66] P. A. Pevzner M. S. Gelfand, and A. Mironov (1996): Gene recognition via
spliced alignment. Proc. National Academy of Sciences, 93, 9061–9066.

[67] U. Manber and G. Myers (1993): Suffix arrays: a new method for on-line
search. SIAM Journal on Computing, 22, 935–48.

[68] W.J. Masek and M.S. Paterson (1980): A faster algorithm for comput-
ing string edit distances. Journal of Computer and System Sciences, 20,
18–31.

[69] E. M. McCreight (1976): A space-economical suffix tree construction algo-
rithm. Journal of the ACM, 23, 262–72.

[70] B. Modrek and C. Lee (2002): A genomic view of alternative splicing. Nature
Genetics, 30, 13–19.

[71] D.W. Mount (2001): Bioinformatics: Sequence and Genome Analysis. Cold
Spring Harbor Laboratory.

[72] J.C. Mullikin and Z. Ning (2003): The phusion assembler. Genome Research,
13, 81–90.

[73] E. Myers (1994): Advances in Sequence Assembly, chapter in Automated
DNA Sequencing and Analysis Techniques (C. Ventner, ed), pp. 231–238.
Academic Press Limited.

[74] E.W. Myers (1995): Toward simplifying and accurately formulating fragment
assembly. Journal of Computational Biology, 2(2), 275–290.

[75] E.W. Myers, G.G. Sutton, A.L. Delcher, I.M. Dew, et al. (2000): A whole
genome assembly of drosophila. Science, 287(5461), 2196–2204.

[76] E.W. Myers and W. Miller (1988): Optimal alignments in linear space.
Computer Applications in the Biosciences, 4(1), 11–17.

Bioinformatics 693

[77] S.B. Needleman and C.D. Wunsch (1970): A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology, 48, 443–453.

[78] L. Patcher and B. Strumfels (2004): Parametric inference for biological
sequence analysis. Proc. National Academy of Sciences, to appear.

[79] H. Peltola, H. Soderlund, and E. Ukkonen (1984): SEQAID: a DNA
sequence assembly program based on a mathematical model. Nucleic Acids
Research, 12, 307–321.

[80] P. Pevzner and G. Tesler (2003): Transforming men into mice: the Nadeau-
Taylor chromosomal breakage model revisted. In Proc. International
Conference on Research in Computational Molecular Biology (RECOMB),
pp. 247–256. ACM.

[81] P.A. Pevzner (2000): Computational Molecular Biology: An Algorithmic
Approach. MIT Press.

[82] J. Quackenbush, J. Cho, D. Lee, F. Liang, I. Holt, S. Karamycheva,
B. Parvizi, G. Pertea, R. Sultana, and J. White (2001): The TIGR gene
indices: analysis of gene transcript sequences in highly sampled eukaryotic
species. Nucleic Acids Research, 29, 159–164.

[83] S. Rajko and S. Aluru (2004): Space and time optimal parallel sequence
alignments. IEEE Transactions on Parallel and Distributed Systems, 15(11).

[84] F. Sanger, S. Nicklen, and A.R. Coulson (1977): DNA sequencing with char-
interminating inhibitors. Proc. National Academy of Sciences, 74, 5463–5467.

[85] D. Sankoff and J.B. Kruskal (1983): Time Warps, String Edits, and
Macromolecules: the Theory and Practice of Sequence Comparison.
Reading, MA.

[86] S. Schwartz, Z. Zhang, K. Frazer, A. Smit, C. Riemer, J. Bouck, R. Gibbs,
R. Hardison, and W. Miller (2000): PipMaker-a web server for aligning two
genomic DNA sequences. Genome Research, 10, 577–586.

[87] J. Setubal and J. Meidanis (1997): Introduction to Computational Molecular
Biology. PWS Publishing Company, Boston, MA.

[88] A. Smit and P. Green (1999): http://ftp.genome.washington.edu/RM/Repeat
Masker.html, 1999.

[89] T.F. Smith and M.S. Waterman (1981): Identification of common molecular
subsequences. Journal of Molecular Biology, 147, 195–197.

[90] D.J. States, W. Gish, and S.F. Altschul (1991): Improved sensitivity of nucleic
acid database searches using application-specific scoring matrices. Methods,
3, 66–70.

[91] G. Sutton, O. White, M. Adams, and A. Kerlavage (1995): TIGR assembler:
A new tool for asembling large shotgun sequencing projects. Genome Science
and Technology, 1, 9–19.

[92] R.E. Tarjan (1975): Efficiency of a good but not linear set union algorithm.
Journal of the ACM, 22(2), 215–225.

[93] G. Tesler (2002): Efficient algorithms for multichromosomal genome
rearrangements. Journal of Computer and System Sciences, 65, 587–609.

[94] E. Ukkonen (1995): On-line construction of suffix-trees. 14, 249–60.
[95] J.C. Venter, M.D. Adams, E.W. Myers, P.W. Li, et al. (2001): The sequence of

the human genome. Science, 291(5507), 1304–1351.

694 Srinivas Aluru

[96] M.S. Waterman (1995): Introduction to Computational Biology: Maps,
Sequences and Genomes. Chapman and Hall, London.

[97] P. Weiner (1973): Linear pattern matching algorithms. In 14th Symposium on
Switching and Automata Theory, pp. 1–11.

[98] R. Yeh, L. P. Lim, and C. B. Burge (2001): Computational inference of
homologous gene structures in the human genome. Genome Research, 11,
803–816.

[99] Z. Zhang, W. R. Pearson, and W. Miller (1997): Aligning a DNA sequence
with a protein sequence. Journal of Computational Biology, pp. 339–49.

Bioinformatics 695

Chapter 22

NOISE IN FOREIGN EXCHANGE MARKETS
George G. Szpiro
Jerusalem
Israel

“Noise makes financial markets possible, but also makes them
imperfect.”

—Fischer Black

This chapter employs a new technique to compare the level of noise in finan-
cial markets. The data that are analyzed consist of high-frequency time series of
three foreign exchange markets. It is shown that noise in the Dollar–Deutschmark
series is least intense, that the Yen–Dollar market has about 10 percent more
noise, and that there is about 70 percent more noise in the Deutschmark–Yen time
series. On average, the noise level is higher in the late summer and fall than in the
winter. The differentials may be related to the amount of news and the timing of
its arrival.

1 INTRODUCTION

Noise, omnipresent in realistic models of nature, is generally considered a nui-
sance because it keeps researchers from completely explaining natural phenom-
ena and prevents practitioners from making exact predictions. In economics this
is more true than in the exact sciences, where conditions can be controlled and
experiments can be shielded from outside influences. On the other hand, in eco-
nomic and in financial markets, noise may be one of the reasons that profits can
be made. [2]; [21].

Usually the variance that remains after the effects of all variables of the model
have been taken into account is defined as noise. This remainder is considered to
be due to variables that are unknown, or that are disregarded by the model: exter-
nal shocks, random fluctuations, or the arrival of new information. Market

behavior is often described and studied by using autoregressive models with
noise,1

xt = f (xt−1, xt −2, ..., x t−n) + et. (1)

When confronted with a time-series of observed financial or economic data,
the usual procedure is to specify a model, f(xt−1, xt−2, ..., xt−n), and then to define
noise as the unexplained remainder. Hence, in a fully specified autoregressive
time-series, noise is due to factors other than xt−j. While there exist relatively sim-
ple methods to estimate and fit linear models to time series, the problem of model
specification becomes especially difficult when the data-generating process may
be nonlinear.

Recently a new method has been proposed that reverses the process [25]
instead of first specifying a model and then defining noise as the remaining
variance, the technique permits the measurement of noise even before a linear
or nonlinear autoregressive model is specified. All that is required in this case
is that the noise’s distribution be known. By adapting a method borrowed from
theoretical physics—specifically, a well-known algorithm for the determination
of the dimension of a chaotic system [14]—the size of the noise can be com-
puted. But we can go one step further. When not only the structure of the
model is unknown but, also one has no knowledge about the noise’s distribu-
tion, the levels of noise in different time series can still be compared, and their
relative intensities can be inferred. The only prerequisite in this case is that the
noises have the same distributions, and this is the only assumption made in this
chapter.

One drawback is that massive amounts of data are needed. Therefore, this
chapter applies the methodology to high-frequency time series from foreign
exchange markets (containing between several hundred thousand and 1.5 million
data points). The intensity of the noise levels in three markets is compared, and
then possible differences between months of the year and days of the week are
investigated. As will be shown, evidence exists that the noise level is higher in the
late summer and fall than in the winter. No significant differences were found for
the days of the week.

This chapter provides a first attempt at comparing the amount of noise in
financial time series. It does not try to explain the reasons why the level of noise
in one series is higher or lower than in another. Further research about the inten-
sity of noise, its timing, and its causes (e.g., arrival of new information, external
shocks) is warranted.

The next section explains the difference between two types of noise and dis-
cusses the related problem of the tick size in foreign exchange quotes. Section 3
gives a brief description of the method used to measure noise. This method is
related to techniques used to search for nonlinear dynamics and “strange attrac-
tors” that may underlie financial and economic time-series.2 Section 4 examines

698 George G. Szpiro

1This can be justified by Takens’ embedding theorem [27], which states that the lagged values of
one variable suffice to characterize the dynamics of a multivariable system.
2Some studies that attempted to discover nonlinearities in the foreign exchange rates include
Hsieh [16], Meese and Rose [18], Guillaume [15], Evertsz [11], Mizrach [19], Cecen and Erkal
[6], and Brooks [5]. On the role of “chartists,” who search for simple patterns in one

the database, and Section 5 presents the results. Section 6 concludes with a brief
summary of findings and suggestions for further research.

2 MEASUREMENT NOISE VERSUS DYNAMIC
NOISE, FINITE TICK SIZES

In experimental science, say, in physics or chemistry, one distinguishes between
two types of noise: dynamic noise and measurement noise [20]. The first, dynamic
noise δ, derives from outside influences that enter the model,

xt = f (xt −1 + dt), (2)

while the latter, measurement noise µ, is due to the finite resolution of the
measuring apparatus or to roundoff errors [23],

().

x y

y f ywhere
t t t

t t 1

= +

=

n

-

(3)

Some attempts have been made to distinguish between the two (e.g., [24]). In
economics and finance, it is generally believed that the latter noise presents few
problems, since the resolution of the measurements is small relative to the numer-
ical values involved. The cost of high-priced goods is generally given to the near-
est dollar; for low-priced goods, the dollar is divided into cents. Stock prices are
quoted in eighths of dollars; national accounts data involving trillion dollar fig-
ures are often given to the nearest million. Exchange-rate data are also quite accu-
rate: the Dollar–Deutschmark exchange rate, for example, is given to four digits
after the comma. Hence, with a DM/$ rate of, say, 1.4111, the precision is on the
order of 0.007 percent.

Even though price quotes are generally quite precise, they are nevertheless
finite. Indeed, the number of possible prices for a good or a commodity must be
limited, because if there were an infinite number of pricing possibilities – say, all
rational numbers between some upper and lower limits – buyers and sellers would
have great difficulty matching their bids. Hence markets can only exist if there is
a convention to meet at a finite number of prices. As pointed out above, the cost
of a good is usually determined in dollars and cents. If this resolution is too
coarse, market participants agree on ticks of, say, tenths or hundreths of a cent.
For high-priced goods, on the other hand, dollars and cents may provide too
many pricing possibilities for the market, and a convention evolves to trade only
at prices rounded to the next five, ten, or hundred units of the currency. The
shares of the Swiss newspaper “Neue Zürcher Zeitung,” for example, priced at
around $40,000, are traded at intervals of 250 Francs (about $180) by market
makers in Switzerland.

The size of the tick, seemingly minute when compared to the price of the com-
modity, does present problems for research, however. In Figure 22.1, we create a

Noise in Foreign Exchange Markets 699

dimension, see Allen and Taylor [1]. Engle et al. [10] and Goodhart [13], for example, deal with
news in the foreign exchange market. For a survey of the recent literature on exchange rate eco-
nomics, see Taylor [28].

large sample of two-dimensional vectors from the $-DM data3 and plot the xt+1-
values against their xt-values. (In technical parlance, we embed the time series into
two-dimensional space.)4 The pattern that emerges, the so-called “compass rose,”
was discovered by Crack and Ledoit [7] and further analyzed by Szpiro [26]. As
these authors showed, the pattern arises because of the discreteness of the quotes,
i.e., the finite resolution of the prices. Finite tick-sizes may lead particular tests to
indicate the existence of structure when, in fact, there is none. The problem is
compounded by the fact that for such tests – and the method to measure noise
uses a variant of such a test – one needs to “embed” the time series in high dimen-
sions. (See Section 3.) As is well known, the lengths of objects generally expand
when they are projected upwards into higher dimensions. In fact, the distance
between two points grows on average with √ d, where d is the dimension. Hence,
for d=50, the effect of measurement errors increases about sevenfold. In conclu-
sion, it may safely be assumed that noise in financial markets consists of both
measurement and dynamic noise.

700 George G. Szpiro

−0.00075

−0.00075
−0.0005

−0.00025
0

0.00025
0.0005

0.00075
0.001−0.001

−0.0005

−0.00025

0

0.00025

0.0005

0.00075

0.001

Figure 22.1. The Compass Rose (250,000 points of the $-DM data) (x-axis: xt, y-axis: xt+1)

3Of the 1,472,241 observations, approximately every sixth vector was used, to give a sample-size
of 250,000.
4The somewhat visible predominance of points in the North–West and South–East directions is
due to the negative correlation between consecutive observations in high-frequency data. [13, 3].

3 CHAOS, DIMENSION, AND MEASUREMENT
OF NOISE

The proposed technique [25] borrows from mathematical physics. Specifically,
an algorithm is employed that was suggested by Grassberger and Procaccia [14]
to measure the dimension of a chaotic system by embedding it in increasingly high
dimensions.5 To illustrate the technique, let us assume a very low-dimensional sys-
tem and dynamical noise that is uniformly distributed in [−M,+M]. We embed the
data into two-dimensional space, take a reference point, and count all neighbors
that are contained within a circle of radius r. Let us call this number C2(r). Now
we move to three-dimensional space. When “unfolding” the attractor, we realize
that in three-dimensional space the nearest neighbors in the circle are actually
downward projections of points that are contained in a cylinder above the circle.
The as-yet unknown height M of this cylinder corresponds to the noise level. Let
us count the neighbors that are contained in a ball around the reference point and
call this number C3(r). Since the volume of the cylinder is 2Mpr2, and the volume
of the ball is 4/3pr3, the ratio of the number of points in two-dimensional space
to those in three-dimensional space gives an indication as to the noise level.
In this case, we have

()

()

C r M r

C r r

and2

3
4

2
2

3
3

=

=

r

r
(4)

Computing the ratio, we get

()
()

()C r
C r

r M
r

3
2

,
2

3
2 3= =h (5)

We now run a homogenous regression between the ratio h2,3(r) and the
radius r:

h2,3 (r) = gr. (6)

From the last two equations it follows that the level of noise, M, can be com-
puted as

/ .M 2 3
= c (7)

By adding and subtracting 1.96 standard errors of the γ-estimates, an approx-
imate 95 percent confidence interval can be determined for the estimated noise
level. For reasons that will not be discussed here,6 the regressions are actually run
with both r and r2 as independent variables, and of course the technique must be
applied in dimensions much higher than just two or three. As was pointed out
above, if the noise distribution is unknown, the numerical results per se have no
meaning, but nevertheless do provide an index of the amount of noise present.

Noise in Foreign Exchange Markets 701

5The algorithm is also used in a test that was devised to search for nonlinearities and chaos in
economic time series [4]. There have been numerous attempts to determine whether a chaotic
system underlies the data-generating process of financial or economic time series. [22, 12, 16]
6See Szpiro [25] for a more detailed description of the method.

Hence, the method can be used to compare relative intensities of noise in differ-
ent time series, even if the noise’s distribution is unknown.

When plotting the results of the computations against the embedding dimen-
sion, we will see high levels of noise at first that decrease as dimension increases,
and that finally converge to a constant level. The reason for this phenomenon is
that in a low-embedding dimension, several “strings” of the system are superim-
posed on each other, but the system “unfolds” when one moves to higher dimen-
sions [29]. In the present study of the foreign exchange markets, we run the
regressions with twenty r-values – for embedding dimensions 1 to 50 – starting
with the smallest sphere that contains at least 105 data points.

4 DATA

The data for this study consist of the foreign exchange rates in three markets
for the time period October 1st, 1992, to September 30th, 1993: the
Dollar–German Mark ($–DM), the German Mark–Yen (DM–Y), and the
Yen–Dollar (Y–$) markets. The data do not consist of actual trades, but of bid
and ask quotes, the means of which will serve as proxies for actual trades. The
quotes were collected by Olsen & Associates, who made it available to the aca-
demic community.7 The log-differences of the mean between the bid and the ask
price were calculated.8 The series for the $–DM market consists of 1,472,241
entries (mean 0.00992, variance 835.2, and skewness 531.7). The Y–$ series has
570,814 entries (−0.02152, 2594.6, −1324.0), and the DM–Y series has 158,979
entries (−0.17354, 3615.1, −23174.0).

An argument could be made to use only data at specified points in time—say,
at five-minute intervals—or to employ “business time” to filter the data [8]. The
present study uses every observation in the series (i.e., “quote time”), the reason
being that a higher frequency of quotes implies more hectic activity or, in
other words, a speeding up of time. Furthermore, there seems to be no empirical
evidence for intraquote dynamics of any relevance [11].

From the time-series x1, x2, x3, ... we derive k-dimensional vectors 〈x1, x2, ...,
xk〉, 〈x2, x3, ..., xk+1Ò, etc., and compute the Euclidean distance between them, for
dimensions 1 to 50. A total of (n-k)(n-k-1)/2 pairs could be calculated, but we make
do with a sample, albeit a large one. For the $–DM series, the interpair distances of
every vector with every 100th other vector were calculated; in the Y–$, every 15th vec-
tor was used; and in the DM–Y, distances were calculated with 4/5ths of the possible
vectors. This sampling ensured that an equal amount of pairs (approximately 1010)
was used in each market to compute the amount of noise.9 The pairs were grouped
into spheres with radii between 1 and 150. For each embedding dimension, regres-
sions (Eq. 6) were run for twenty consecutive spheres, starting with the smallest one
that contained at least 105 pairs.

702 George G. Szpiro

7Olsen & Associates Ltd., Research Institute for Applied Economics, Zürich.
8The results are multiplied by 105 in order to receive numerical values that are more manageable.
9The method is very computer intensive. The calculation of the 10 billion interpair distances in
embedding dimensions 1 to 50, and their grouping into spheres, took more than 200 hours on a
Pentium-133 computer for each of the three series.

5 FINDINGS

In Figure 22.2, the results of the noise measurements for the three markets are
depicted. Let us recall that since we do not know the distribution of the underly-
ing noise, the numerical values only give an indication as to the relative levels of
noise in the three markets, i.e., they represent indexes. As expected, the noise esti-
mates are high in the low embedding dimension, but then gradually decrease as
the embedding dimension increases. We see in the figure that in all three examples
the estimates eventually converge.10 From the evidence we conclude that the
$–DM market has a noise index of 12.2 (95 percent confidence interval: ±0.2), the
Y–$ market a level of 13.5 (±0.1), and the DM–Y market a level of 20.7 (±0.1).
In other words, with the least noisy $–DM market as a baseline, we may conclude
that the Y–$ market has about 10 percent more noise, and that there is about 70
percent more noise in the DM–Y time-series.

For comparison purposes, the identical operations are performed with time
series whose entries have the same distribution as the original series but whose
order is random. The results for the scrambled time series can serve as a bench-
mark. [4] The only difference in the scrambled series is the removal of any possi-
ble structure that existed in the order of the original entries. In Figure 22.3, the
estimated noise levels for the scrambled series are presented. Even for low embed-
ding dimensions, these are much higher than in the original series. For the $–DM
market, the level is about 35 (±0.3), and for the other two markets it lies above 45
(±0.5 and ±0.4). Hence, by scrambling the entries, two to three times as much
noise was introduced into the series as there was in the original data.

Noise in Foreign Exchange Markets 703

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Embedding Dimension

N
o

is
e

L
ev

el

$-DM

Y-$

DM-Y

Figure 22.2. Levels of noise in three FX markets

10Convergence occurs above an embedding dimension of about 35, which would indicate that
the time series have dimensions of not more than 17 [29]. However, such dimension estimates
may be questioned. [9].

Let us now turn to more narrow data and compute the noise level within each
month of the year, for each of the three markets. Figure 22.4 plots the develop-
ment of the measured levels of noise against the embedding dimension. Again,
the estimates converge,11 and in Figure 22.5 a summary of the results is presented
for embedding dimension 20. On average, the noise level for the months
November to January is lower than for the period July to October. A tentative

704 George G. Szpiro

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Embedding Dimension

N
o

is
e

L
ev

el

$-DM

Y-$

DM-Y

Figure 22.3. Levels of noise in scrambled time series

DM-$

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Embedding Dimension

N
o

is
e

L
ev

el

1 3

(a)
5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Figure 22.4. Noise level in intramonth data

11For some months the calculations were not made for all embedding dimensions up to 50, since
there was not a sufficient number of spheres that contain a minimum of 105 points. The confi-
dence intervals are again very narrow and won’t be given.

explanation of this phenomenon could be that more information arrives during
the late summer and fall than during the winter.

A comparison between Figures 22.2 and 22.5 shows that the estimates for the
single months lie above the results for the whole years (for embedding dimension
20). It may seem surprising that the noise levels, as measured in the monthly data,
do not average out to the noise level for the year as a whole. The answer to this
puzzle goes to the heart of the nature of noise. The latter is generally defined as
the data’s variance that is not explained by a certain model. With a better model,
unexplained variance decreases, and the data have less noise. In the method used
in this chapter, vectors of the time series are compared with previous vectors, and
similarities (i.e., closeness in the Euclidean norm) are sought. If one time series is
a small subseries of the other, it is more difficult to find similar vectors. On the
other hand, the longer the time series, the better known does the underlying struc-
ture become. Hence noise decreases. The time series of the data for single months

Noise in Foreign Exchange Markets 705

(b)

Y-$

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Embedding Dimension

N
o

is
e

L
ev

el

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 35 37 39 41 43 45 47 49

(c)

DM-Y

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Embedding Dimension

N
o

is
e

L
ev

el

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Figure 22.4. Noise level in intramonth data

gives less opportunity to “learn” the structure, and a larger part of the data’s vari-
ance is identified as noise. Incidentally, the reason why an approximately equal
number of pairs is used for all markets in the estimations of the noise level for the
full year was to counteract this effect.

Finally, we turn to intraday data. The noise level for 258 weekdays for the
$–DM data is estimated and depicted in Figure 22.6.12 Visual inspection does not

706 George G. Szpiro

Figure 22.5. Noise level in intramonth data (Embedding dimension = 20)

10

15

20

25

30

35

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

N
o

is
e

L
ev

el
DM-Y

Y-$
Average

$-DM

12There were no quotes for two Fridays during the year, 25th of December and 1st of January.
For the following analysis, interpolated values were entered for these days.

10.0

15.0

20.0

25.0

30.0

Figure 22.6. Noise level intraday data (Embedding dimension = 20; Mondays indicated by
rectangles)

reveal any significant pattern, and the average noise levels for the days of the week
do not differ significantly. However, a common thread may nevertheless run
through the days of the week. A plot of the first ten autocorrelations reveals
strong “seasonality” for the fifth lag: r = 0.496 (see Figure 22.7). This suggests
that the noise on a certain day of the week is correlated somehow to the same
weekday’s noise of the previous week. Autocorrelation is especially strong for
Tuesdays and Wednesdays (r = 0.519 and 0.501, respectively). Possible reasons
for this phenomenon may be that external shocks (of unknown origin) occur on
certain weekdays, or that information arrives at specific times during the week.
Further research is warranted.

6 CONCLUSIONS

This chapter employs a new technique to compare the levels of noise present in
different time series. Since the method requires very long series, high-frequency
data from foreign exchange markets are used. It is shown that of the three markets
analyzed, the $–DM market has the least amount of noise, the Y–$ market has
about 10 percent more noise, and there is about 70 percent more noise in the
DM–Y time series. We also see that, on average, there is less noise during the win-
ter than during the late summer and fall. Intraday data show some autocorrela-
tion for the days of the week. The amount of noise may be related to the amount
of news that arrives at certain times during the week, during the months, or in
various markets.

The analysis presented in this chapter is meant to be an attempt at the com-
parative study of noise. It does not provide explanations as to why the level of
noise in one series is higher or lower than in another. Further research about the
intensity of noise and related issues, for example, the arrival and assimilation of
new information, is warranted.

Noise in Foreign Exchange Markets 707

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Lag

A
ut

oc
or

re
la

tio
n

1 2 3 4 5 6 7 8 9 10

Figure 22.7. Autocorrelation for noise level in intraday data (Embedding dimension = 20)

REFERENCES

[1] A.L. Helen and P.M. Taylor (1990): Charts, noise and fundamentals in the
foreign exchange markets, Economic J. 100, 49–59.

[2] F. Black (1986): Noise, J. Finance 41, 529–543.
[3] T. Bollerslev and I. Domowitz (1993): Trading patterns and prices in the

interbank foreign exchange market, J. Finance 48, 1421–1449.
[4] A. Brock, W.A.D. Hsieh, and B. LeBaron (1991): Nonlinear Dynamics,

Chaos, and Instability, MIT Press, Cambridge.
[5] C. Brooks (1997): Linear and non-linear (non)-forecastability of high-fre-

quency exchange rates, J. Forecasting 16, 125–145.
[6] A. Aydin Cecen and C. Erkal (1996): Distinguishing between stochastic and

deterministic behavior in foreign exchange rate returns: further evidence,
Economics Letters 51, 323–329.

[7] T.F. Crack and O. Ledoit (1996): Robust structure without predictability:
the compass rose pattern of the stock market, J. Finance 51, 751–762.

[8] M. M. Dacarogna, U. A. Müller, R. J. Nagler, R. B. Olsen, and O. V. Pictet
(1993): A geographical model for the daily and weekly seasonal volatility in
the FX market, J. International Money and Finance 12, 413–438.

[9] J.-P. Eckmann and D. Ruelle (1992): Fundamental limitations for estimat-
ing dimensions and Lyapounov exponents in dynamical systems, Physica D
56, 185–187.

[10] R. F. Engle, T. Ito, and W. L. Lin (1990): Meteor showers or heat waves?
Heteroskedastic intra-dayly volatility in the foreign exchange market,
Econometrica 58, 525–542.

[11] J.G. Carl Evertsz (1996): Self-similarity of high-frequency USD-DEM
exchange rates, in Proceedings of the HFDF Conference 1996, Olsen &
Associates Ltd., Research Institute for Applied Economics, Zürich.

[12] M. Frank and T. Stengos (1989): Measuring the strangeness of gold and sil-
ver rates of return, Review of Economic Studies 56, 553–567.

[13] C. A. E. Goodhart and L. Figiuoli (1991): Every minute counts in financial
markets, J. International Money and Finance 10, 24–52.

[14] P. Grassberger and I. Procaccia (1983): Characterization of strange attrac-
tors, Physical Review Letters 50, 346–349.

[15] M. Dominique Guillaume (1994): A low-dimensional fractal attractor in
the foreign exchange markets?, working paper, Olsen & Associates Ltd.,
Research Institute for Applied Economics, Zürich.

[16] A. David Hsieh (1989): Testing for non-linear dependence in daily foreign
exchange rates, J. Business 62, 339–368.

[17] _____, (1991): Chaos and nonlinear dynamics: application to financial mar-
kets, J. Finance 46, 1839–1877.

[18] A.R. Meese and K.A. Rose (1991): An empirical assessment of non-linear-
ities in models of exchange rate determination, Review of Economic Studies
58, 603–619.

[19] B. Mizrach (1996): Determining delay times for phase space reconstruction
with application to the FF/DM exchange rate, J. Economic Behavior and
Organization 30, 369–381.

708 George G. Szpiro

[20] M. Möller, W. Lange, F. Mitschke, N. B. Abraham, and U. Hübner (1989):
Errors from digitizing and noise in estimating attractor dimension, Physics
Letters A 138, 176–182.

[21] F. Palomino (1996): Noise trading in small markets, J. Finance 51,
1537–1550.

[22] J. Scheinkman and B. LeBaron (1989): Nonlinear dynamics and stock
returns, J. Business 62, 311–337.

[23] G.G. Szpiro (1993a): Cycles and circles in roundoff errors, Physical Review
E 47, 4560–4563.

[24] G.G. Szpiro (1993b): Measuring dynamical noise in dynamical systems,
Physica D 65, 289–299.

[25] G.G. Szpiro (1997): Noise in unspecified, non-linear time series,
J. Econometrics 78, 229–255.

[26] G.G. Szpiro (1998): Tick size, the compass rose and market nanostructure,
J. Banking and Finance 22, 1559–1570.

[27] F. Takens (1981): Detecting strange attractors in turbulence, in D. Rand
and L. Young (eds), Dynamical Systems and Turbulence, Lecture Notes in
Mathematics, Springer Verlag 898, 366–381.

[28] M.P. Taylor (1995): The economics of exchange rates, J. Economic
Literature 33, 13–47.

[29] H. Whitney (1944): The self-intersection of a smooth n-manifold in 2n-
space, Ann. Mathematics 45, 220–246.

Noise in Foreign Exchange Markets 709

(1+1)-ES algorithm, 117
(µ+1)-ES, 118
(µ+γ)-ES, 118
(µγ)-ES, 118
Abbreviations, 23
Abstraction, 398

relaxing, 398–399
Accelerated Strategic Computing

Initiative (ASCI), 516, 518
Accuracy

simplicity v., 221–222
ACE. See Algebraic multigrid

Computation of Eigenvectors
ACID properties, 84
ACID transactions, 559
Acousto-optical devices

reconfiguration using, 325
Action potential, 439f
Action sets, 137
Activation frames, 14
Active walker models, 78
Adaptive noise cancellation, 178–179
Adaptive systems

EH and, 393–394
Add/remove, 587
Additive task-allocation functions

(ATAF)
benefits of, 34
constructor, 34

Address/event representation, 463
Adiabatic algorithms, 271, 272
Adiabatic quantum computing, 270–272

run time of, 270
Adjacency matrix, 639
Advertisement, 555
Aesthetic criteria

in graph drawing, 634
Affine gap penalty function, 663

Aggregation, 227
AIS, 48–49
ALD. See Atomic layer deposition
Algebraic multigrid Computation of

Eigenvectors (ACE), 639
drawings produced by, 640f

Algorithm conjoin, 99
Algorithm Evolution Diagram, 51
Aliasing, 302
Alignment methods, 661

generating, 674
local, 666–667
space reduction techniques in, 664–666
time reduction techniques in, 664–666

Alignments
global sequence, 662–664

Alleles, 116
ALU. See Arthmetic-logic unit
Amdahl’s Law, 377
Amorphous computers, 403
Ant colony paradigm

UMPP and, 96
Antennas, 397
Anti-machine paradigm, 358, 372

KressArray and, 375f
APPB. See Array processors with

Pipelined Buses
Application mapping, 361f
Application Programming Interface

(API), 537
Apriori, 47, 49–50
Apriori-gen, 53, 67
AprioriHybrid, 49–50
AprioriTid, 47, 49–50, 59
ARM++, 47, 52

CmpApr and, 56–58
execution times for, 71f
FilterApr and, 59–64

INDEX

712 Index

ARM++ (Continued)
for association rules, 56
itemset combination in, 67–68
mining association and, 51–52
no partitioning in, 65–66
partition phase, 65
performance analysis, 68–69
TID-list data size in, 67
transactions scale-up, 74

AROB. See Array with reconfigurable
optical buses

Array processors with Pipelined Buses
(APPB), 328

Array with reconfigurable optical buses
(AROB), 328

ArrayApr, 48
counting in, 54–56
Hash table, 52–54
itemset storage, 53
Itemset-counter table, 52–54
Sibling table, 52–54

ART1, 164–166
ART2, 166
Arithmetic-logic unit (ALU), 287
Artificial Neural Networks, 388,

392, 393
generic, 148
introduction to, 147
single-layer perceptron, 149

AS407-408
ASCI. See Accelerated Strategic

Computing Initiative
ASIC emulators, 351, 354
asM. See Auto-sequencing memory

modules
Asynchronous atomic update, 84
ATAF. See Additive task-allocation

functions
Atomic layer deposition (ALD), 483
Atomic Transactions, 560
Attributes, 98
Audification, 647
Augmented displays, 642–643
Augmented reality, 642
Aura

pervasive computing and, 625–626
Auto-associative networks, 156f

training data for, 157t
with three nodes, 157f

Auto-sequencing memory modules (asM),
364

Availability Monitor, 583

Axon hillock, 438
depolarization on, 439f

Back-propagation algorithm, 167–170
Baldwin effect, 113
Bandura, Albert, 192
Bandwidth, 523

of different interconnects, 528f
Base System, 535
Basic Local Alignment Search Tool

(BLAST), 672
Bayesian interface

randomized grid, 91–92
Bayesian optimization algorithm, 134
Behavior, circuit, 404
Bernoullicity, 87
Bernstein-Vazironi algorithm, 263n13
Best effort, 584
BHR. See Branch history register
BHT. See Branch history table
Binary particle swarms, 202–203
Binary strings, 122
Bio-inspired software, 388
Bioinformatics

alignment generation in, 674
applications, 672–675
clustering strategy, 681–682
computational methods, 660–662
database searches and, 672
ESTs in, 679–682
exact matches, 673–674
fragment assembly and, 675–678
genome sequencing and, 674–675
introduction to, 657
molecular biology and, 658–660
on-demand pair generation in, 680–681
scoring schemes and, 672–673

Biology, molecular, 658–660
Biomimicry, 78
Biomorphs, 210
BIST. See Built-in self-test
Bit-flip error, 274
Black box, 261
BLAST. See Basic Local Alignment

Search Tool
BLOSUM matrix, 673 62, 674t
BOINC, 604
Boltzmann machine, 442–443
Boolean functions, 152
Bootstrapping, 606
Bottleneck

von Neumann, 343

BPEL
basic activities, 563

BPEL4WS. See Business Process
Execution Language for Web
Service

BPMI. See Business Process Management
Initiative

BPML. See Business Process
Management Language

Branch history register (BHR), 303–304
Branch history table (BHT), 302–303
Branch predication, 304
Branch prediction, 301–304

non-speculative bypass of control
dependencies, 304–305

speculative bypass of control depend-
encies, 301–304

Branch target buffer (BTB), 302–303
Breeder GA, 127
Brent’s Scheduling Principle, 7
Brevik method, 606
BSP. See Bulk synchronous parallel
BTB. See Branch target buffer
Bucket-Brigade systems, 137

UMPP and, 92–93
Building-block filtering phase, 133
Built-in self-test (BIST), 395, 397
Bulk synchronous parallel (BSP),

11, 320
Business Activity, 560
Business Process Execution Language for

Web Service (BPEL4WS), 562–565
Business Process Management Initiative

(BPMI), 565–566
Business Process Managment Language

(BPML), 565–566
Business protocols, 563
Business-to-Business (B2B) Web Service,

567–568
Business-to-Customer (B2C) Web Service,

553
frameworks, 560–562

Butterfly networks, 6
Bypass of control dependencies,

301–304
nonspeculative, 304–305
speculative, 301–304

Bypass of data dependencies
nonspeculative, 307–308
speculative, 306–307

Bypassing
load, 299

C-means clustering, 234–235
Caches, 298

blocks, 301
connectivity, 586f
hits, 298
misses, 298
NWS, 585
trace, 305–306
victim, 300–301

Calder-bank-Shor-Steane (CSS) codes,
277–278

Camileuns, 627, 628
Candidate comparison, 52, 57

of itemsets, 68
subset comparison and, 70–73

Candidate_compare, 57
Canonical algorithm, 188

origins of, 193
pseudocode representation of, 190t

Capture percentages
for CPU availability, 598f
for TCP/IP throughput, 598f

Carbon nano-tube field effect transistors,
485–487

Case Based Reasoning, 401
CAT. See Collaborative access table
Cell neuron membrane, 436f
Cells, 147

activation states of, 147–148
Cellular Automata, 485, 494
Cellular Neural Networks (CNN), 485
Center of area (COA), 225
Center of sum (COS), 225
Central dogma of molecular biology, 659
Change rules, 188
Changed-gbest values, 201
Chaos, 87, 701–702
Chomskiian hierarchy, 86
Chromium, 641
Chromosomes, 93, 116, 390, 659
CISC (complex instruction set computer),

291
performance analysis of, 291–292
RISC v., 289

Classifier systems
fuzzy, 232
UMPP and, 92–93

Clerc, Maurice, 198, 213
Clients, 31
Clio, 369
Clique skills

NWS, 584

Index 713

Clock speeds, 576
Clocking mechanism, 501
Closed systems, 84–85
Closed-world assumption, 84–85, 102
Cluster applications, 540–547
Cluster architecture, 522f

RMS, 533f
Cluster computing

communication software and, 523–531
interconnection technology and, 523–531
introduction to, 521–523
RMS, 533–536

Cluster programming models, 536–540
examples of, 537f

cluster1, 56
cluster2, 56
cluster3, 56
Clustering, 1

bioinformatics and, 681–682
challenges in, 12
FCM, 234–235
fuzzy system design using, 245–247
K-means, 162, 233–234
Kohonen, 163–164
mountain, 235
nearest-neighbor, 246–247
parallelizing via, 7–8
platform, 11–12
sophisticated responses, 12
subtracting, 235–236
via cycle-stealing, 17–20
via worksharing, 20–29

CMI. See Collaboration Management
Infrastructure

CMOS chips, 477, 512
CmpApr, 47, 52

ARM++ and, 56–58
comparisons for, 73
execution times for, 70f, 73

CNN. See Cellular Neural Networks
COA. See Center of area
Coarse-grain arrays, 367–368
Coarse-grain morphware, 350
Coda, 626
Code subspace, 274
Codons, 659
Coello, Coello, 200
Coevolution, 111, 114
Coevolutionary GAs

cooperative, 131
distributed, 132–133
loosely coupled, 132

Cognitive dissonance theory, 192
Cognitive processes, 192
Collaboration Management

Infrastructure (CMI), 568
Collaborative access table (CAT), 644
Collaborative computing, 1
Commodity interconnects, 526
Commodity off-the-shelf (COTS), 350,

352, 522
Communication software

cluster computing and, 523–531
Communicators, 539
Commutative systems, 82
Comparative genomics, 661, 682–689

alignment-based, 684–687
fast genome, 687–688
genomics rearrangements, 688–689

Compass Rose, 700f
Compensation handlers, 563
Competent GAs, 133–134

Bayesian optimization algorithm, 134
fast messy, 133–134
gene expression messy, 134
linkage learning, 134
ordering messy, 133–134

Competition, 114
Competition mechanisms

in GAs, 126
Complement, 223

reverse, 658
Complementary displays, 649
Composite services, 554
Computation phase, 10
Computation-dag, 7
Computational basis, 256
Computational genomics

basic tools of, 662–671
exact matches in, 667–671

Computational grid
in internet computing, 29

Computational requirements, 373f
Computer architecture

future trends in, 312–313
introduction to, 287–289

Computer science (CS), 343
morphware and, 373–379

Computer systems
common model of, 344f

Computer-Supported Collaborative Work
(CSCW), 643

Computing
quantum v. classical, 256–260

714 Index

Concatenation of codes, 275, 279
Concurrent Read Concurrent Write

(CRCW)
electro-optical rating, 333f
electro-optical routing, 332

Condor, 534, 604
Confidence

bounds, 604
in mining association, 46–47
intervals, 595
range, 596f

Configurable Logic Block, 351
Configurable XPUs, 362f
Configuration, 347
Configuration memory, 346
Configware, 350

cocompilation, 368–369
downloading, 346
flowware/software cocompilation,

367f
introduction to, 343–345
terminology, 347f

Congestions, 9
Conjoin, 98

algorithm, 99
self-assembly and, 99

Connect boxes, 351
Conrad’s Lock-Key paradigm

UMPP and, 97
Consensus, 191

individual, 408
Conservation laws, 28
Constant gap penalty, 663
Constant-time ERCW algorithms,

321–322
Context, 418
Contigs, 677

assembly of, 678
layouts, 678

Control dependencies
parallelism and, 294–295

Controllers
fuzzy, 231

Convergence
controlling, 197–199

Cooperation, 114
Coordination language, 537
Coordination phase, 10
Copyl replicate, 101
Cornfield vectors, 195
COS. See Center of sum
COTS. See Commodity off-the-shelf

Coulomb blockage effect, 488
Coulomb oscillations, 487
Counting

in ArrayApr, 54–56
Covariance matrix, 638
CPI

reducing, 292–293
cpuMonitor, 583
CRCW. See Concurrent Read Concurrent

Write
Crossbar architectures, 322–323

electro-optical, 323
matrix, 322–323
single, 499

Crossbar networks, 500–501
Crossover, 120, 209, 390

one-point, 391
single-point, 120

Crossover masks, 121
Crowding, 123, 128
CSCW. See Computer-Supported

Collaborative Work
CSS codes. See Calder-bank-Shor-Steane
cXML, 561
Cyber foraging, 626
Cycle-stealing

cluster computing via, 17–20
Cycles, 298
Cytoplasmic determinants, 416

Dag-depth, 14
Darwinian evolution, 112, 210

as life-cycle of population, 113f
Data clustering algorithms, 233–247
Data density, 235
Data dependencies

parallelism and, 294–295
Data mining, 45–46. See also Mining

association
models, 46
tasks and algorithms, 46

Data path synthesis system (DPSS), 363,
369

Data scheduling, 362
Data stream-driven computing, 344
Data streams, 364–367
Data-output dependence, 83
Database Management Systems (DBMS),

537
Database searches

bioinformatics and, 672
Grover’s algorithm for, 264–266

Index 715

Dataflow
machines, 373
parallelizing using, 8

DBMS. See Database Management
Systems

de Bruijn networks, 6, 10
de Vries, Hugo, 112
Decision makers, 177

fuzzy, 230
Decoherence, 275
Decomposition strategies, 515
Deflecting layer, 317
Deflection unit

ORM, 330
Defuzzification, 225

approaches to, 226f
COA, 225
COS, 225
LOM, 226
MOM, 226
SOM, 226

Degree-normalized eigenvectors, 639
Delbruck, Tobi, 466
Delegants, 627, 628
Delta rule, 442, 455

back-propagated, 443–444
Dendrites, 464
Dense wavelength division multiplexing

(DWDM), 326–327
Density measures, 236
Dependencies

control, 294–295, 301–305
data, 294–295, 306–308
flow, 294
name, 294
nonspeculative bypass of control,

304–305
speculative bypass of control,

301–304
Depolarization, 435, 438

on axons, 439f
Design crisis, 344, 346f
Design flow

embedded, 366f
Design innovation

EH and, 396–397
Design principles, 401
Design space, 358
Design technology

complex, 401–403
Deterministic computation, 117, 128

defining, 81

Deterministic iterative computations
defining, 81

Deutsch algorithm, 261–262
circuit of, 271f

Deutsch-Jozsa algorithm, 262–263
circuit of, 263f

DiamondTouch, 644
Differential evolution (DE), 207,

272n28
Differential gene expression, 679
Diffusion model, 130
Digital Desk, 643
Digital micromirror device (DMD),

335
Digital Sky Survey, 518
Digital system classification, 372f
Digital-analogue convertor (DAC), 452
Dijkstra’s Guarded Command Program,

81
Dilation, 9
DiPSO (discrete particle swarm

optimization), 203
Dirac notation, 256n5
Directed acyclic graph, 7
Disconnections, 570
Discrete adaptive stochastic optimization,

102–103
applications of, 104–105
example of, 103–104

diskMonitor, 583
Dissonance, 193
Distributional bias, 124
DiVincenzo criteria, 280f
DNA computing, 78
DNA sequences, 658, 660
Domain Name Server (DNS), 541
Dominant sequences, 8
Double strands, 101
Download arrival times, 602f
DPSS. See Data path synthesis system
DSE for Multimedia Processors

(DSEMMP), 369
Dual code, 277
DWDM. See Dense wavelength division

multiplexing
Dynamic model differentiation

NWS, 588–589
Dynamic noise

measurement noise v., 699–700
Dynamic orchestration

of web services, 569
Dynamic RAM (dRAM), 452

716 Index

Dynamic reconfiguration, 354, 377
Dynamic representations

EH and, 414
Dynamic state machine (DSM), 399
Dynamically Reconfigurable Architecture

for Mobile Systems (DReAM), 368
Dynamically reconfigurable architectures,

324–325
acousto-optical devices, 325
optical mesh using mirrors, 324–325

Earthquake Simulation, 543–544
propagating waves in, 546f

Easy problems, 254
Eberhart, Russ, 194, 196, 198, 200
Electronics, 465
eCO, 561
EDA. See Electronic design automation
Edge representations

in graph drawing, 634
Education

morphware in, 357–358
eFLow, 568
Ego, 209
EH. See Evolvable hardware
Electrical routing

ORM, 331
Electrically erasable programmable ROM

(EEPROM), 452
Electro-optical crossbar, 323
Electro-optical routing

CRCW, 332
EREW, 332
ORM, 331

Electrode-molecule-electrode (EME)
devices, 479

Electrodynamics
quantum, 281

Electronic Business using XML
(ebXML), 566–567

Electronic design automation (EDA), 344,
366, 388

Elitism, 123, 127, 391
Elitist models, 94
Embedding, 9–10
Emergence, 87
Emitted Coupled Logic (ECL) chips, 512
Empirical confidence intervals, 595–599
Enabling dependence (ED)

in UMPP, 83
Enabling technologies, 615–620

internet, 616

Enabling technologies (Continued)
middleware technologies, 619–620
mobile and wireless communications,

616–617
RFID, 619
sensor networks, 617–618

Encapsulation, 627
Encoding

GAs, 122–123
Energy, 159
Entanglement, 283
Entanglement distillation, 256
Entropia, 604
Environment

defining, 81
EP. See Evolutionary programming
Episodes

in cycle stealing, 19
Equijoins, 98
ERCW algorithms

constant-time, 321–322
ERCW PRAM, 320
EREW PRAM, 320
EREW. See Exclusive Read Exclusive

Write
Ergodicity, 86
Error back-propagation training

algorithm, 242
Error bars

NWS, 592–593
Error correction

code subspace, 274
quantum, 260, 273–279

Error subspace, 274
ES. See Evolutionary strategies
ESTs. See Expressed sequence tags
Ethernet, 526, 530

gigabit, 527, 531
Etree method

of generating octree meshes, 545f
Euclid’s algorithm, 267
Eurkaryotic organisms, 658
Event handlers, 563
Everywhere display, 643
Evolution

Baldwin effect, 113
darwinian, 112, 210
differential, 207–208
extrinsic, 389
function level, 411–412
increased complexity, 413
intrinsic, 389

Index 717

Evolution (Continued)
Lamarckian, 111–112
mixtrinsic, 407

Evolutionary algorithms, 78, 114–116
(µ+1)-ES, 118
(µ+γ)-ES, 118
computational schemes of, 115f

Evolutionary circuit design, 417–419
Evolutionary computation, 111, 114

particle swarms and, 207–209
Evolutionary design systems, 416–417
Evolutionary electronics. See Evolvable

hardware (EH)
Evolutionary optimization

UMPP and, 94–95
Evolutionary platforms

criteria for, 420–421
Evolutionary programming (EP), 114, 136
Evolutionary Programming conference,

197
Evolutionary strategies (ES), 114,

116–117, 207
(1+1)-ES, 117
(µγ)-ES, 118
advanced, 119–120
order of selection in, 119f
with self-adaptation, 118–119

Evolvable hardware (EH), 358–359, 387
adaptive systems and, 393–394
aspects of, 389f
complex design technologies and,

401–403
design innovation and, 396–397
development of, 414–415
dynamic representations and, 414
evolutionary circuit design and,

417–419
evolvability of, 410–421
examples of, 390–392
fault-tolerant systems and, 394–396
function level evolution and, 411–412
generalization across input vectors,

404–405
generalization across operating environ-

ments, 405–408
incremental learning and, 412–413
inherent generalization, 409–410
innovation in, 398–403
low-cost hardware design and, 392–393
neutral networks and, 412–413
new technologies and, 402–403
origins of, 388f

Evolvable hardware (EH) (Continued)
performance of, 410–421
platform research and, 419–421
platforms, 421–422
poorly specified problems and, 393
programmable logic abstractions and,

400–401
relaxing abstractions in, 398–399
representations and, 410–411

Evolvable morphware (EM), 358–359
Evolving mesh-dag, 32
Exact matches, 667–671

in bioinformatics, 673–674
in suffix arrays, 669–671
in suffix trees, 669–671
lookup tables and, 668–669

Excitable membrane, 435
implementing, models, 465

Exclusive Read Exclusive Write (EREW),
320–321

electro-optical routing, 332
Expected work production

maximizing, 19–20
Expert systems, 176–177
Expiration, 580
Exploitation, 114, 188, 398, 403
Exploration, 188
Explosion

controlling, 197–199
Expressed sequence tags (ESTs), 679–682
Extraction, 101
Extrinsic evolution, 389

Factorization
Shor’s algorithm and, 266

Fast fourier transform (FFT), 2268
Fast genome comparison methods,

687–688
Fault handlers, 563
Fault-tolerance, 359

EH and, 394–396
in nanotechnology designs, 502
population, 409

Fault-tolerant quantum computation,
278–279

Fault-tolerant recovery, 278
Feed-forward neural networks, 444f
Fetch-execute cycle, 288
Feynman, Richard, 255
Fiber-guided optical interconnects,

326–329
Field-effect transistors (FETs), 485

718 Index

Field-programmable analogue arrays
(FPAAs), 450

Field-programmable gate arrays
(FPGAs), 350, 406, 408, 417, 450

Field-reconfigurable Custom Computing
Machines (FCCM), 349

Field-Reconfigurable Gate Arrays
(FRGAs), 350

application development support,
356–359

applications of, 354–356
commercially available, 351–354
CPUs, 359
island architecture, 353f
scalability problem, 360f

FIFO worksharing protocols, 24, 28
filesystemMonitor, 583
FilterApr, 47, 52, 64, 67

ARM++ and, 59–64
comparisons for, 73
execution times for, 70f, 71f, 73
Partition and, 74–75
scalability, 75
subset transformation, 62–64
transaction transformation, 59–62

filterCount(), 64
Fine-grain morphware, 350–360
Finishing indexing, 22
Finite state machines (FSMs), 136
First-order logic

properties of, 84–85
Fitness, 191
Fitness function, 390
Fitness sharing, 128
FitzHugh-Nagumo equations, 448
Fixed points

of workstealing systems, 16–17
Fixed-gbest values, 201
Fleming, John Ambrose, 387
Flexible instruction set extensions, 349
Flocking

particle swarms, 195–196
Flow dependencies, 294
Flow variables

fuzzy membership function for, 238f
Flowware, 362–363

cocompilation, 368–369
configware/software cocompilation,

367f
languages, 364–367, 371f

Focused ion beam (FIB), 450
Forecast deviation, 594

Forecasting errors, 594–595
empirical confidence intervals, 595–599

Foreign exchange markets
data on, 702
findings in, 703–707
introduction to, 697–698
noise levels in, 703f

Forward-reverse constraints, 676
Forwarding

load, 300
Fourier Transforms, 528
FPGAs. See Field-programmable gate

arrays
Fragment assembly

aligning pairs, 677–678
bioinformatics and, 675–678
contig assembly, 678
contig layouts, 678
finding pairs, 677
fragment numbers in, 676–677
scaffold generation, 678

Frame-shifts, 125
Free Space Optics (FSO), 617
Free-space optical interconnects, 322–325
FRGAs

switches and blocks used in, 348f
FRGAs. See Field-Reconfigurable Gate

Arrays
Frontier sets, 48
FT-A benchmark

NPB, 529f
speedup for, 530f

Full custom IC’s, 345
Fully informed particle swarm (FIPS),

205, 206
Function level evolution, 411–412
Fuzzification, 224–225

of variables, 225f, 227f, 228f
Fuzzy applications, 247
Fuzzy C-means clustering (FCM),

234–235
Fuzzy classifiers, 232
Fuzzy controllers, 231
Fuzzy decision makers, 230
Fuzzy Logic, 221

set-theoretic operations, 223
Fuzzy Logic Toolbox Demos, 237
Fuzzy membership functions

for Cold and Hot variables, 239f
for flow variables, 238f
for Temp variable, 238f

Fuzzy numbers, 222

Index 719

Fuzzy operations, 223f
Fuzzy patches

fuzzy rules from, 239
Fuzzy principles

multivalue algebra, 221
numbers, 222
probability v. possibility, 222
sets, 222
simplicity v. accuracy, 221–222

Fuzzy robot navigator, 248–249, 249f
Fuzzy rules, 224

composition of, 232f
for systems, 228t, 241t
from fuzzy patches, 239
generation, 236–237
tuning, 240

Fuzzy sets, 222
nearest-neighbor clustering and,

246–247
Fuzzy systems, 224–232

adaptive, 246
clustering and, 245–247
flow rate signals and, 240f
generic, 224f
identification, 248f
initial parameters, 243–244
Mamdani, 226–228
nonlinear dynamic system identifica-

tion and, 247–248
recursive least squares and, 244–245
rules for, 228t, 241t
Sugeno, 228–230
tuning, 240–241

Gallium asenide (GaAs) technology,
323

Gap extension penalty, 663
Gap opening penalty, 663
Gate sizes

current and future, 478f
Gaussian particle swarms, 206–207
gbest topology, 188, 196, 204

changed, 201
fixed, 201

GDToolkit, 634
GenBank Accession, 686–687
Gene expression analysis, 661, 679
Gene identification, 661, 679
Gene regulatory networks (GRNs), 416
General errors, 274
General Purpose Adaptive Simulator

(GPAS), 542

Generalization, 392, 396
across input vectors, 404–405
across operating environments,

405–408
inherent, 409–410

Generator matrix, 277
Generators, 418
Generic expert systems, 177f
Genes, 659
Genetic algorithms, 78, 114, 202–203,

210, 390
algorithms, 128
breeder, 127
CHC, 127
coevolutionary, 128, 131–133
competent, 128, 133–134
competition mechanisms in, 126
crossover in, 124–125
diffusion model, 130
encoding, 122–123
GAVaPS, 128
GENOCOP, 127
hierarchical genetic strategy, 130
hierarchical parallel, 130
hybrid, 127
island model, 129–130
local search, 126–127
MOEAs, 128
mutations in, 125
operators of selection in, 121f
order of selection in, 120f
parallel, 128–130
population manipulation in, 123–124
representations, 122–123
selection in, 124
simple, 120
single-population master-slaves model,

128–129
social psychology and, 194–195
steady-state, 127
UMPP and, 93–94
variants of, 127–128

Genetic code mapping, 660t
Genetic drift, 412
Genetic engineering, 101
Genetic programming, 78, 114, 134–135

individuals and crossover in, 135f
order of selection in, 135f
UMPP and, 94

Genetic variation, 112
GENOCOP, 127
Genome, 658

720 Index

Genome sequencing, 661
bioinformatics and, 674–675

Genomic rearrangements, 688–689
Genotype-phenotype mapping, 122
Genotypes, 112, 116, 415
Geometric clustering

graph drawing using, 637
Gigabit Ethernet, 527, 531
GigaNet, 527
Global sequence alignments, 662–664
Google Search Engine, 541–542

query-serving architecture, 542f
Google Web Servers (GWS), 541
Gottesman-Knill theorem, 258, 278
Gover operators, 265
Gradient descent training

fuzzy systems and, 240–241
Grand Challenge Applications (GCA),

540
GRAPE, 355
Graph codes, 278
Graph drawing, 633

aesthetic criteria in, 634
edge representations in, 634
fundamental algorithms in, 634
geometric clustering, 637
high-dimensional approach to,

637–638
methods for large, 633–640
multilevel approach to, 635–637
spectral methods of, 639–640
with 2500 vertices, 637f
with 4970 vertices, 636f

Graph separation, 8
Graph states, 278
Graphlet, 634
GraphViz, 634
Gray code, 122
Grid Application Development Software

(GrADS), 597
Grid computing (GC), 29, 517

coping with factual unreliability, 33–35
coping with temporal unreliability,

31–33
defining, 517
factual unpredictability in, 30–31
RMS, 533–534
temporal unpredictability in, 30

Grid performance services
grid performance tools v., 599–601

Grid performance tools
v. grid performance services, 599–601

Grid resource performance
forecasting requirements, 577–578
introduction to, 575–576
NWS architecture and, 579–588

GridFTP, 602
GROMACS, 529, 530
GROPE, 648
Ground state energy, 270
Grover’s database search algorithm,

264–266, 272
Guests, 9

H3D-QCA architecture, 335, 336f
Hadamard gate, 258, 264
Halt, 587
Halting problems, 254n1
Hamilton Path Problem (HPP), 100
Hamiltonian, 270, 271, 272

local, 273
Hamming code, 276
Hamming distance, 123
Handlers, 563
Haptic displays, 647–648, 648f
Hard problems, 254
Hardware evolution. See Evolvable

hardware (EH)
Hardware implementation, 463

neural models and, 449–467
Hash table, 52–54
Hash tree structure, 54
Head mounted display, 643
Head-Related Transfer Function,

646–647
Hermitean operators, 88
Heterogeneity

in pervasive computing, 620–621
Hiblert space, 273
Hidden RAM, 349
Hidden subgroup problems, 267
Hierarchical clique, 586f
Higgins, 192
High-performance computing (HPC),

354–355, 540
current, 513–514
future trends in, 515–516
historical perspective, 511–512
programming models, 514–515
science and engineering impacted by,

518–519
High-resolution displays, 641–642
HiHCoHP model, 22, 24
Hilber space, 256n6

Index 721

HNOW models, 20
comparing, 21

HNOW-Exploitation Problem, 21, 22
abstraction of, 26
pipelined, 25
solving, 25–26
variants of, 28–29

HNOW-Rental Problem, 21, 29
HNOW-Utilization Problem, 21, 26–27

solving, 28–29
Hodgkin-Huxley equations, 448
Holland, John, 120
Hopfield’s model, 159–160, 442–443

training data for, 159t
Hoskins, Dough, 198
Host-parasite interactions, 114
Hosts, 9, 586
Houston Automatic Spooling Priority

(HASP), 521
Hubble Space Telescope, 518
Hybrid architecture, 329–334
Hypercomputers, 253n1
Hypercubes, 6
Hypernetwork Model, 319
Hyperpolarization, 435, 438

Identification, 101
Identification systems

fuzzy, 248f
ILOG, 634
Image rendering, 545–547
Immunocomputing, 78

UMPP and, 97–98
Implication, 227
In-order issue policy, 297
Incircuit execution, 351
Increased complexity evolution, 413
Incremental learning

EH and, 412–413
Indels, 662
Indestructibility

of evolutionary platforms, 420
Indexing

finishing, 22
startup, 22

Individual, 208–209
Influence

particle swarms, 203–206
Information Sonification, 647
Information-theoretic frameworks, 625
Inhibit dependence (ID)

in UMPP, 83

Initial parameters
in fuzzy systems, 243–244

Initialization phase, 133
Innovation

in EH, 398–403
Input vectors

generalization across, 404–405
Instability

defining, 82
Instruction fetch, 377f

trace cache, 305–306
Instruction scheduling, 362
Instruction set architecture, 289

actions of, 289t
Instruction streams, 343
Instruction-streams, 344
Integrated Parallel Accurate Reservoir

Simulator (IPARS), 543
Intelligent Concurrent Object-oriented

Synthesis (ICOS), 369
Interaction rule, 189
Interconnection networks

bandwidth of, 528f
latency of, 528f
types of, 6, 7f

Interconnection technologies
cluster computing and, 523–531
comparisons of, 525t
examples of, 524t

Internet computing, 1, 3–4, 616
challenges in

tempora
coping with factual unreliability,

33–35
coping with temporal unreliability,

31–33
factual unpredictability in, 30–31
platforms, 29–30
temporal unpredictability in, 30
unreliability of, 4

Internet throughput, 591f, 601f
Interoperability

across multiple technologies, 623–624
in pervasive computing, 620–621

Interrupts, 19
Intersection, 223
Intrinsic evolution, 389
Invariants, 88
Ion channels, 436f
Irreversibility

defining, 82
Island model, 129–130

722 Index

Issue policy
in-order, 297
out-of-order, 297

Item-list Ideal, 74
Itemset combination

ARM++, 67–68
Itemset-counter table, 52–54
Iterative dynamics

of UMPP, 90–91
Iterative learning, 158

JavaGroups, 539
JavaSpaces, 538
Job Entry System (JES), 521
Job structure, 8

K-band, 666
K-flow, 87
K-means clustering, 162, 233–234

results of, 163f
KEEP_ALIVE, 600
Killer-applications, 521
Killer-microprocessors, 521
Killer-networks, 521
Killer-tools, 521
Knapsack problems, 122
Knowledge discovery, 45–46
Known-Risk models, 18
Kohonen clustering, 163–164

classification results for, 165
output topology of, 163f

Kohonen mapping network, 446
KressArray Xplorer, 369, 370f

antimachine mapped with, 375f

L-extensions, 48
Lamarckian evolution, 111–112
Landscaping rule, 96
Langmuir-Blodgett (LB) technique, 479
Laplacian matrix, 639
Largest of maximum (LOM), 226
Last Value predictors, 593
Latané, Bibb, 194
Latency, 11

of different interconnects, 528f
lbest topology, 188, 196, 204
LCS. See Learning classifier systems
Leaky integrate-and-fire model, 447–448,

459
unit, 447f

Learning, 208
social, 209

Learning classifier systems (LCS), 114,
136–138

anticipatory, 138
concept of, 137f

Learning systems
neural models and, 441–442

Learning Vector Quantization (LVQ)
basic structure of, 164f
defining, 173
learning algorithm, 173–175
subclass association of, 164f

Learning vector quantization (LVQ),
445–446

Libra, 535–536
Life functions, 18, 19
Ligation, 100
Linda tuplespace, 537–548
Linear Algebra Libraries, 519
Linear array with a reconfigurable

pipelined bus system (LARPBS),
328–329

Linear auto-associative learning, 156–158
Links, 147, 563
LINPACK benchmark, 513
Linux clusters, 527
Lloyd’s metaphor, 273
Load balancing, 5
Load bypassing, 299
Load forwarding, 300
LoadLeveler, 534–535
Local alignments, 666–667
Local frequent itemsets, 50
Local search algorithms

in GAs, 126–127
Local-area networks (LAN), 1
Locality, 2, 6

spatial, 298
temporal, 298
value, 306

Location awareness, 622
Location fusion, 624
Location management architecture,

622–623
Location prediction, 624
Location privacy, 625
Location translation, 624
Location-aware computing, 622
Location-independent computing, 622
Lock-in-place mechanisms, 260
Lock-key paradigms, 79, 98–99
Loftus, Elizabeth, 192
Log, 587

Index 723

LogP models, 11
Lookup tables (LUTs), 400

exact matches and, 668–669
Loop transformations, 369
Low-cost hardware

automatic design of, 392–393
LSF, 534–535
LSF Batch, 535
LSF Multicluster, 535
LU-A benchmark

NPB, 529f
speedup for, 530f

LUT
implementation, 352f

LVQ. See Learning Vector Quantization

Machine availability, 603f
MLE exponential and, 605f

Machine paradigms, 369–373
illustrating, 372f

Magnetic spring algorithm, 635
Maintenance, Repair, and Operating

(MRO), 561
Mamdani systems, 226–228

flow diagram for, 229f
salary, 227f
shower, 238f
surface view of, 229f

Mapping networks
Kohonen, 446

Markov chain Monte Carlo (MCMC), 78
UMPP and, 91–92

Markov Chain Monte Carlo-based
Bayesian inference, 77

Massively Parallel Processors (MPPs),
512, 513

Match sets, 137
Mating restriction mechanisms, 128
Matrix crossbars, 322–323
MavHome Smart Home

pervasive computing and, 628–629
Maximum Likelihood Estimation (MLE),

605
machine availability and, 605f

McCulloch-Pitts model, 440–441
Mean of maximum (MOM), 226
Mean square error (MSE) algorithms,

160–161
Measurement noise

dynamic noise v., 699–700
Membrane

circuits and, 437f

Membrane computing, 78
UMPP and, 97–98

Memes
in particle swarms, 209–211

Memory, 579, 587
NWS, 581–582

Memory buffer, 310
Memory bus, 349
Memory gap, 298–299
Memory technology

VLSI, 452–453
Memory, high-performance

policies and additions for, 299–301
memorySpeedMonitor, 583
MEMS. See Micro-electro-mechanical-

systems
Mendel, Gregor, 112
Merge, 102
Meshlike networks, 6
Message Passing Interface (MPI), 519,

523, 536, 538–539, 545
communicators, 539

Message queues, 538
Message-passing multiprocessors, 2, 5
Metal-organic chemical vapor deposition

(MOCVD), 483
METEOR-S, 571
Metric entropy machines

positive, 86
zero, 86

Micro-electro-mechanical-systems
(MEMS), 334–335, 494, 616

multisensor nodes, 618
Microarrays, 680
Middleware technologies, 619–620
Minimum-allele-reserve-keeper, 125
Mining association, 46–47

AIS and, 48–49
ARM++, 51–52
confidence in, 46–47
support in, 46–47

Mixed reality, 642
Mixing, 87
Mixtrinsic evolution, 407
Mobile communications, 616–617
Mobile environments

web services in, 570–571
Mobile hosts (MH), 617
Mobility, 613

in pervasive computing, 621–622
Molecular beam epitaxy (MBE), 483
Molecular biology, 658–660

724 Index

Molecular chemical transactions,
101–102

Molecular computing
challenges of, 502

Molecular DNA computation, 99–100
Molecular multiset data structure,

100–101
Molecular quantum computers, 281
Molecular self-assembly, 496–497
Molecular switches, 481–483
Molecular-based computing models

nanotechnology, 492–493
Molecular-switch tunnel junctions

(MSTJ), 481–482
Monitors

NWS, 583
Monotonic systems, 82
Moore’s law, 373f, 387, 434, 478, 516

peak performance and, 512f
physical limits of, 255

Moore, Gordon, 255, 511
MOPSO (multiobjective particle swarm

optimization), 200
Morphware, 345–349

acronyms, 345f
alternative applications, 349f
application development support,

356–359
applications of, 354–356
coarse grain, 350, 359–373
computing sciences and, 373–379
configware, 345f
evolvable, 358–359
fine-grain, 350–360
in education, 357–358
in innovative applications, 358–359
introduction to, 343–345
terminology, 347f

Morris-Lecar equations, 448
Mountain clustering, 235
Mountain function, 235
MPI. See Message Passing Interface
MPICH, 539
mRNA, 659
Multicomparment neurons, 464
Multilayer learning, 167
Multilayer perceptron, 150–152

basic structure of, 150f
functional representation of, 152–153

Multilevel approach
to graph drawing, 635–637

Multilevel atomicity, 94

Multilevel caches, 298–299
Multimodal random problem generator,

202–203
Multiobjective evolutionary algorithms

(MOEAs), 128
Multiobjective optimization

in particle swarm research, 199–200
Multiple instruction issue, 295–297
Multiple Particle Filter approach, 92
Multiple-Instruction, Multiple-Data

(MIMD), 536
Multiple-Instruction, Single-Data

(MISD), 536
Multiplexed fiber

arrays using, 327–328
Multiprocessors, 1

message-passing, 2
platforms, 5
shared-memory, 2

Multiscale architecture design
hierarchical, 495f
nanoscale and, 493–496

Multiscale technique, 636
Multisensor nodes

MEMS, 618
Multisensory display, 645–650

designing, 648–649
user interfaces, 646f

Multistage fiber interconnection net-
works, 326–327

Multisurface display projector, 643
Multithread computation, 13
Multithreaded architecture, 309–312

simultaneous, 311–312
speculative, 309–311

Multivalue algebra, 221
MUMmer, 687–688
Mutations, 117, 120, 390

in GAs, 125
point, 391
single-bit, 120

Myelinization, 439, 464n2
Myrinet, 526

Name dependencies, 294
Nameserver, 579

NWS, 580–581
Nano-electro-mechanical systems

(NEMS), 335
Nanoscale, 335, 403

multiscale architecture and,
493–496

Index 725

Nanoscale technology
design issues, 501–503
introduction to, 477–480
molecular-based computing models,

492–493
quantum-based computing modules,

490–491
spin-based computing models, 491–492
switching elements in, 480–490

Nanotubes (NTs), 485
National Partnership for Advanced

Computational Infrastructure
(NPACI), 575

National Science Foundation, 575
Native services, 554
Natural joins, 98
Natural selection, 112
Near-optimal signaling traffic, 624–625
Nearest-neighbor clustering

fuzzy system design using, 246–247
Negative differential resistance

switching devices with, 483–485
Neighborhood best, 189
Neighbors, 27
Network emulations, 9–11

computation phase, 10
coordination phase, 10

Network heterogeneity, 601–603
Network Interface Cards (NIC), 523, 527
Network processors, 349
Network topology

RBF, 170–171
Network Weather Service (NWS), 577

architecture of, 579–588
cache, 585–586
clique skills, 584
design considerations, 584–586
development and deployment of,

599–603
dynamic model differentiation, 588–589
error bars, 592–593
examples of, 590–595
forecasting errors, 594–595
forecasting methodology, 588–590
forecasts of, 591f, 592f
grid performance tools and services,

599–601
measurements of, 594f, 595f
memory, 581–582
monitors, 583
nameservers, 580–581
network heterogeneity, 601–603

Network Weather Service (NWS)
(Continued)

overview of, installations, 579f
periodic skills, 584
sensors, 582–583
user interface, 586–588

Networks of workstations (NOWS). See
Clusters

Neural models
complex, implementation, 463–466
detailed, 448
hardware implementation and, 449–467
implementation techniques, 450t
implementing, in silicon, 433–434
implementing, simple time-free,

454–458
learning in, 448–449
self-organizing, 445
simple, 440–446
time and, 446–449
VLSI implementation of, 450–451

Neural networks
applications, 176
biased structures of, 148f
controllers, 177f
feed-forward, 444f
inputs and outputs of, 148f
output for, 156f
perceptron, 155f
truth tables of, 148t
two-layer, 168f
unbiased structures of, 148f

Neuromorphic Architecture, 485
examples of, 496f

Neuromorphic Architecture design,
496–497

Neurons, real, 435–440. See also Point
neurons; Spiking neurons

Neurons, time-free
developed hardware for, 457–458
synapses for, 455–456

Neurotransmitters, 437
Neutral networks

EH and, 412–413
Next-line prefetching, 309
Niches, 111, 113–114
Niching algorithms, 128
No free lunch theorem, 138
No-cloning theorem, 259
Noise, foreign market

autocorrelation for, 707f
chaos and, 701–702

726 Index

Noise, foreign market (Continued)
data, 702
dimension and, 701–702
findings in, 703–707
in intramonth data, 704f, 705f, 706f
in scrambled time series, 704f
intraday data, 706f
introduction to, 697–699
measurement of, 701–702
measurement v. dynamic, 699–700

Noise-cancellation networks, 178–179
input and target signals for, 179f
performance and error signal of, 180

Nonequilibrium systems, 87, 95
Nonlinear dynamic systems

fuzzy systems and, 247–248
Nonmonotonic systems, 82
Nontermination

defining, 82
North American Industry Classification

System (NAICS), 558
NP-Hardness, 26
NPB

FT-A benchmark, 529f
LU-A benchmark, 529f

Nuclear magnetic resonance (NMR),
280

quantum computing, 282–283
Numerical Aerodynamic Simulation

(NAS)
nwsActivity, 581
nwsControl, 581
nwsHost, 580
nwsSeries, 581
nwsSkill, 581

Object class
NWS, 580–581

OCPC. See Optical communication paral-
lel Computer model

simulation algorithms, 319–322
Octree meshes

etree method of, 545f
Odyssey, 626
Oligonucleotides, 100
OMC. See Optical model of computation
On-demand pair generation, 680–681
One-way quantum computation, 278
Online training, 177
Opcode, 290
Open Grid Services Architecture

(OGSA), 517

Open systems, 85–87
simulating, 88

Open-world hypothesis, 78, 102
OpenGL, 641
OpenPBS, 535
Operating environments

generalization across, 405–406
Opposition dependence (OD)

in UMPP, 83
Optical computing

abstract models of, 316
introduction to, 315–316

Optical interconnects
fiber-guided, 326–329
free-space, 322–325

Optical mesh
using mirrors, 324–325

Optical methods
quantum, 280

Optical model of computation (OMC),
317–319

schematic of, 318f
simulation algorithms, 319–322

Optical quantum computers, 281
Optical Reconfigurable Mesh, 316
Optical reconfigurable mesh (ORM),

329–330
deflection unit of, 330
electrical routing in, 330–331
electro-optical routing, 331–333
optical routing in, 330, 331
processing unit of, 329–330
schematic of, 330f

Optical routing
ORM, 331

Optimal EREW algorithms, 320–321
Optimal Postcasts, 593
Oracle, 261
ORM. See Optical reconfigurable

mesh
Oscilatory chemical reactions

UMPP and, 95–96
Out-of-order issue policy, 297
Outsourcing agreements, 554
Overhead, 11
OWL, 571
Oxygen project

pervasive computing and, 626–627

PACT XPP, 363f
PAM matrix, 673
Parallel computing, 1

Index 727

Parallel processing
reconfigurable computing v., 376–378

Parallel slack, 11
Parallel Virtual Machine (PVM), 539–540
Parallelism, 7, 82

branch predication and, 304–305
branch prediction and, 301–304
competitive, 84
control dependencies and, 294–295
cooperative, 84
data, 93, 514–515
data dependencies and, 294–295
high-performance memory and,

299–301
memory gap and, 298–299
multilevel caches in, 298–299
multiple instruction issue in, 295–297
pipeline, 93
pipelining and, 292–294
prefetching, 308–309
task, 514–515
value prediction, 306–307
vector, 93

Parallelizing
using dataflow techniques, 8
via partitioning, 8

Parameter Sweep, 540
Parameterized models, 11
Parent-oriented schedules, 32
Pareto model, 605
Pareto sets, 199, 213
Parity check matrix, 276
Partial differential equations (PDE), 519
Partially commutative systems, 82
Particle filters, 92
Particle swarms

applications of, 212
binary, 202–203
canonical algorithm, 189
constants, 189
convergence and, 197–199
defining, 187
dynamic problems, 201–202
evaluation of, 191
evolution of, 196–197
evolutionary computation and, 207–209
explosion and, 197–199
exteriorizing, 211
flocking, 195–196
fully informed, 205
future of, 212
Gaussian, 206–207

Particle swarms (Continued)
general characteristics of, 188–189
influence, 203–206
initialization, 189
memes in, 209–211
multiobjective optimization in, 199–200
neighborhood best, 189
optimization, 187
origins of canonical, 193
points to test in, 190–191
schooling, 195–196
social psychology and genetic algo-

rithms, 194–195
sociocognitive metaphors, 191–193
theory, 214
topology, 203–206
tweaking, 213

Partition algorithm, 50, 59, 67, 69
ARM++ in, 65
comparisons, 74–75
execution time, 74
FilterApr and, 74–75
scalability, 75

Partition approach, 47
Partitioned optical passive stars (POPS),

327
Partitioning

parallelizing via, 7–8
Partner Link Types, 563
Paths, 9
Pattern history table (PHT), 303–304
Pauli gates, 258
Pauli groups, 277
pbest topology, 196
PE, 320–321

labeling, 321f
Pebble games, 31

rules of, 32
Pell’s equation, 270
Per transmission costs, 25
Perceptrons, 441–442

learning single-layer models, 154–155
multilayer, 150–153
single layer, 149
training sets for, 156t

Perceptual synthesis, 646
Performance Application Programmers

Interface (PAPI), 519
Performance growth, 515f
Performance prediction

introduction to, 575–577
NWS architecture and, 579–588

728 Index

Performance prediction (Continued)
requirements for, 577–578
resource characteristics, 603–607

Periodic skills
NWS, 584

Pervasive computing
aura and, 625–626
heterogeneity in, 620–621
interoperability in, 620–621
introduction to, 613–615
MavHome Smart Home, 628–629
mobility in, 621–622
Oxygen project and, 626–627
PICO and, 627–628
proactivity in, 621
transparency in, 621

Pervasive Information Community
Organization (PICO), 627–628

Petroleum Reservoir Simulation,
542–543

Phase, 203
Phase flip errors, 274
Phase gates, 258
Phenotypes, 112, 116, 390, 415
Phi, 197, 198
Phylogenetic analysis, 661
Physical behavior, 399
Physiologist’s Friend chip, 466
Ping, 587
Pipe networks, 362–363
Pipelining, 501

parallelism and, 292–294
Placement software, 351
Platform research

EH in, 419–421
Platform Space Explorers (PSEs), 369
Platforms

EH and, 421
PLD. See Programmable Logic Device
Pleiades architecture, 368
Point mutation, 391
Point neurons, 447

implementation of, 459–460
models, 448

Pollack’s Law, 374f
Population fault-tolerance (PFT), 409
Population manipulation

in GAs, 123–124
Population overlaps, 123
Population sets, 137
Portability, 407
Portable Batch System (PBS), 535

Portable Extensible Toolkit for Scientific
Computation (PETSc), 543

Portable performance, 519
Positive metric entropy machines, 86–87
Possibility

probability v., 222
Possible subset items (PSI), 62–63
Possible transaction items, 60, 63
Postcasting, 589, 590
Postsynaptic potentiation, 437
Potential bias, 124
Potentiation

long-term, 440
postsynaptic, 437

PRAM algorithm, 319, 320
ERCW, 320
EREW, 320

Predator-prey interactions, 114
Predicate registers, 304
Predictability, 3–4
Prefetching, 308–309

next-line, 309
Prefix comparison, 130
Pressure

selection, 203
Principal component analysis (PCA), 638
Prism, 626
Privacy

in web service, 569–570
location information and, 625

Proactivity
in pervasive computing, 621

Probability
possibility v., 222

Procedure worksteal, 14–15, 17
performance of, 16

Process-based integration
in web services, 567–568

Processing layer, 317
Processor bus, 349
Processor design, 514f
Processor numbers, 11
Program counter (PC), 288
Program shells, 78
Programmable Arithmetic Device for

DSP (PADDI), 358
Programmable logic abstractions, 400–401
Programmable Logic Device (PLD), 351,

389, 407
Prokaryotic organisms, 658
Promise algorithms, 262
Promoters, 659

Index 729

Propagating waves
in earthquake simulation, 546f

Proportional selection, 120
Protein Explorer, 543–544

block diagram of, 544f
Protein interaction model, 419f
Protein structure prediction, 661
Pseudocode

of canonical algorithm, 190t
PSTSWM, 526n1, 529
Pulse-based neuron implementations,

458–463

QCA. See Quantum cellular automata
QFT. See Quantum fourier transform
QOS. See Quality of Service
Quality of Service (QOS), 615

web services and, 570–571
Quantiles, 604

estimation methods using, 606t
Quantum adiabatic theorem, 271
Quantum algorithms, 260–264, 269–270
Quantum cellular automata (QCA), 335,

490
Quantum computers, 253, 403

adiabatic, 270–272
building, 279–283
circuit model of, 257–258
classical computers and, 256–260
computational tasks and, 254
fault-tolerating, 278–279
future perspectives on, 282–283
molecular, 281
NMR, 282–283
one-way, 278
optical, 281
programming, 259–260
read-out and probabilistic nature of,

257
silicon-based nuclear spin, 282
small, 255–256
solid-state approaches to, 282
universal, 272

Quantum dots, 282, 489, 491f
regular arrays of, 497–498

Quantum electrodynamics, 281
Quantum error correction, 260, 273–279

CSS codes, 277–278
introductory example of, 274–275
Shor code, 275–276
stabilizer codes, 277–278
Steane code, 276–277

Quantum fourier transform (QFT)
in Shor’s algorithm, 266
Shor’s algorithm and, 268–269

Quantum mechanics, 253
Quantum modular exponentiation,

269–270
Quantum optical methods, 280–281
Quantum parallelism, 480

qubits and, 256–257
Quantum random walks, 270
Quantum simulators, 255
Quantum systems

simulation of, 254–255, 272–273
Quantum-based computing modules

nanotechnology, 490–491
Qubits, 253

quantum parallelism and, 256–257

Radial Basis Function (RBF), 444, 455
basic structure of, 171f
defining, 170
network topology, 170–171
training algorithms, 171–172
typical data sets for, 173f

Radio frequency identification (RFID),
610, 613, 614, 618

RAM-based machine paradigms,
349–350

Random graph models, 78
Random key, 133–134
Ranking, 124
Rapid prototyping, 351, 354
RBF. See Radial Basis Function
RDF, 571
Read operation

CRCW, 333
Read-out process

of quantum computers, 257
Ready deque, 14
Real sensory systems, 434
Real-value functions, 152

neural models corresponding to,
154f

neural networks implementing, 153f
truth table for, 153t

Recombination, 207, 209
Reconfigurable Architecture Workstation

(RAW), 368, 376
Reconfigurable Data Path Arrays

(rDPAs), 359–360, 363, 367
Reconfigurable Gate Arrays (rGAs),

350–351

730 Index

Reconfiguration, 347
dynamic, 354
of accelerators, 349
of evolutionary platforms, 420
parallel processing v., 376–378
self, 357

Recursive least squares
fuzzy system design using, 244–245

Reduced instruction set computer. See
RISC

Register, 587
Registration, 580
Relational database model, 98–99
Relocatability, 359
Reorder buffers (ROB), 295
RepeatMasker, 686
Repetition encoding, 274
Representations, 116

dynamic, 414
EH, 410–411

Resonance
stochastic, 403

Resonant-tunneling diodes (RTD), 483,
484

energy levels of, 484f
Resource availability, 576
Resource characteristics

measuring and predicting, 603–607
Resource management systems (RMS)

cluster computing, 533–536
examples of, 534t

Restarts, 115
in GAs, 127

Retro emulation, 355
Return address stack (RAS), 304
Reverse complementation, 658
Rewards, 137
RFID. See Radio frequency identification
RISC (reduced instruction set computer),

289–290, 512
CISC v., 289
performance analysis of, 291–292

RMS. See Resource management
systems

Robot path planning, 178
optimal, 178f
with deep U-traps, 179f

RosettaNet, 561
Rotor stacking problem, 122
Roulette wheel, 120, 124
Routing congestion, 351
Routing software, 351

Rule-based systems
stochastic, 88–89
types of, 82

Run-Time Reconfiguration (RTR), 356

Sample data
classification answers for, 161f

Scaffolds
generation of, 678

Scalability, 359, 623
Scalable orchestration

of web services, 569
Scalable traffic, 624–625
Scaling problems, 124
Scanning tunneling microscope (STM),

479
Schooling

particle swarms, 195–196
Schrödinger equation
SCI, 526, 527, 531
Scoring schemes

bioinformatics and, 672–673
Search space, 390
Security, 625
Selection, 208

in GAs, 124
tournament, 124
truncation, 124

Selection pressure, 124, 203
Selective amplify, 101
Self-adaptation, 209

evolution strategies with, 118–119
Self-assembled structures, 497–501

images of, 498f
Self-assembly

conjoin and, 99
molecular, 498–499

Self-organized criticality, 80
Self-organizing systems, 445–446
Self-reconfigurating designs, 357
SELF-SERV, 568
Semantic web services, 571
Sensor networks, 617–618
Sensors, 579, 614

NWS, 582–583
Serial program, parallel subsystem

(SPPS), 536, 539
Server Daemon, 535
Service advertisement, 555
Service composition, 562
Service provider communities, 628
Set oriented mining (SETM), 49

Index 731

Set-theoretic operations, 223
complement, 223
intersection, 223
union, 223

SET. See Single-electron transistors
SGE, 535
SGI, 514
Shared-memory multiprocessors, 2, 5

distributed, 5–6
Shönhagen-Strassen algorithm, 269n27
Shor code, 275–276

9 qubit, 275
encoding circuits of, 279f

Shor’s algorithm, 254n3, 255, 264
classical part, 266, 267–268
efficient implementation of, 267
exponential speed-up in, 266–267
joining pieces together in, 269–270
QFT for period-finding, 266

Shor, Peter, 254
Shower system, 237f

Mamdani, 238f
Si-Based SRAM cell, 484

characteristics of, 484f
Sibling table, 52–54
Signal coding

VLSI, 451–452
Silicon

implement neuron models in, 433–434
Silicon technology crisis, 344
Simian, 545–546
Simon’s algorithm, 263–264
Simple neuron models, 440–446
Simple Object Access Protocol (SOAP),

556–557
Simplicity

accuracy v., 221–222
Simulated annealing, 369
Simulating quantum systems, 272–273
Simultaneous multithreading, 311–312
Single crossbars, 499
Single nucleotide polymorphism (SNP),

659–660, 683
identification, 679

Single System Image (SSI), 530
achieving, 532t
at operating system level, 531–533
defining, 531

Single-electron transistors (SET), 487–489
inverters, 488f

Single-Instruction, Multiple-Data
(SIMD), 536

Single-layer perceptron, 149
Hopfield’s model for learning, 159–160
iterative learning, 158
linear auto-associative learning,

156–158
MSE algorithms for learning, 160–161
multioutput, 150f
perceptron learning, 154–155
supervised learning, 154
widow-Hoff rule and, 161–162

Single-population master-slaves model,
128–129

Single-stuck-at (SSA) faults, 408
Single-walled carbon nanotubes (SWNT),

499, 500f
Single-Instruction, Single-Data (SISD),

536
Skill, 587
SMPs. See Symmetric multiprocessors
SNP. See Single nucleotide polymorphism
SoC. See System on chip
Social evolution, 208
Social learning, 209
Social psychology

genetic algorithms and, 194–195
Sociocognition, 192
Sociocognitive metaphors

particle swarms and, 191–193
Sociometry, 188, 206
Soft computation, 78
Soft CPUs, 359
Software languages, 371f
Software-defined ratio, 360f360
Solution space, 390
Sound displays, 645–647
Sound field simulation, 646
Space domain, 347
Space reduction techniques

in alignments, 664–666
Species, 111, 113–114
Species Adaptation Genetic Algorithm

(SAGA), 412
Specification

defining, 81
Spectra, 626
Spectral methods

of graph drawing, 639–640
Speculative multithreaded processors,

309–311
Speedups

for FT-A benchmark, 530f
for LU-A benchmark, 530f

732 Index

SPICE, 407, 408
Spiking neurons

hardware, 465–466
implementing, 458–463
interconnecting, 463
pulse-based implementations of,

458–459
synapses for, 461–463

Spin-based computing models
nanotechnology, 491–492

Spin-based logic NAND gate, 492
Spins, 489–490
Splitting factors, 63
SPPS. See Serial program, parallel subsys-

tem
Spring algorithms, 635
Spring embedder, 635
Sprouting, 130
SSI. See Single System Image
Stabilizer codes, 277–278
Stacks, 14
Start/stop, 587
startMonitor, 583
Startup indexing, 22
Stastical homogeneity, 86
State vectors, 259n7
Static RAM (sRAM), 452
Steady-state reproduction, 123, 127
Steane code

7-qubit, 276
encoding circuits of, 279f
error correction of, 276–277

Stepping rule, 96
Stigmergy, 78
Stochastic approximation algorithm, 104
Stochastic marked point processes, 78
Stochastic optimization

discrete adaptive, 102–105
Stochastic resonance, 403
Stochastic rule-based paradigm, 88–89

UMPP properties and, 89–90
Stochastic selection, 120
Stochastic universal selection, 124
Stochasticity, 87
Stockpile Stewardship Program (SSP),

518
Strean Processing Unit (SPU), 641
Strong Church-Turling thesis, 254n3
Structural homologies, 661
Structure, circuit, 404
Structured activities, 563
Structured Configware Design, 359

Subgroup problems
hidden, 267

Subset comparison, 57
candidate comparison and, 70–73
transform transactions and, 73

Subset transformation, 59
FilterApr, 62–64

Subset_transform, 63–64
Subtracting clustering, 235–236
Success probability, 271
Suffix arrays

exact matches in, 669–671
generalized, 671f

Suffix trees
exact matches in, 669–671
generalized, 671f

Sugeno systems, 228–230
flow diagram of, 231f
overview of, 230f
surface view of, 231f

Sugiyama method, 635
Sum, 102
Sum of maximum (SOM), 226
Superclique, 585
Supercomputers, 511
Superconducting quantum interference

devices (SQUID), 282
Superposition, 256
SuperScalar processors, 295–296
Supersystolic array, 362, 363
Superthreaded Architecture (STA), 310,

311
Support

in mining association, 46–47
Swarm intelligence

defining, 187, 191
Swarm paradigm

UMPP and, 96
Switch boxes, 351
Switchable molecules

graphical representations of, 482f
Switching elements

in nanotechnology, 480–490
molecular, 481–483
negative differential resistance, 483–485

Symmetric multiprocessors (SMPs), 512,
514, 521, 522

Symmetry breaking, 2, 5
Synapses, 147, 436–437

arrangement of, 456f
excitatory, 438
for spiking neurons, 461–463

Index 733

Synapses (Continued)
for time-free neurons, 455–456
inhibitory, 438
ionotropic, 438f

Syntenic alignment problem, 686f
Synthetic data sets, 71t
System

defining, 81
System identification, 247–248
System on chip (SoC), 343, 376
Systolic arrays, 8, 365f

Tactilization, 647
Takens’ embedding theorem, 698n1
Task arrivals, 16
Task-allocation functions (TAF), 34
Taxonomy, 378–379
TCP/IP throughput

capture percentages for, 598f
TCP/IP traces, 590
tcpConnectMonitor, 583
tcpMessageMonitor, 583
Temp variable

fuzzy membership function for, 238f
Tensor products, 256
TeraGrid, 602
Termination

defining, 81
Termination conditions, 115, 116
Test, 587
Thomson’s VLSI model, 318
Threads, 13–14
Threshold theorems, 279
Throughputs

internet, 591f, 601f
of workstation P, 27–28

Tick sizes, 699–700
Time division multiplexing (TDM), 326
Time domain, 347, 351
Time reduction techniques

in alignments, 664–666
Timeshares, 29
Timestamps, 580
Toffoli gates, 278
TomSawyer Software, 634
Top500 results

extrapolation of, 516f
performance growth of, 515f
processor design, 514f

Topology
gbest, 188, 196, 201, 204
lbest, 188, 196, 204

Topology (Continued)
particle swarms, 203–206
pbest, 196

Tournament selection, 124
Trace cache, 305–306
Traceroute data, 590
Training algorithms, 171–172
Training data

auto-associative networks, 157t
Hopfield’s model, 159t
inseparable, 160f
sample, 178f

Transaction Processing Monitors (TPM),
537

Transaction transformation, 59
FilterApr, 59–62
filters, 60f
list data size, 67
possible items for, 61f

Transaction’s ID (TID), 49, 50
performance of, 66–67

Transaction_transform, 60–61, 61–62
Transcription, 659
Transform transactions

subsets and, 73
Translation, 659
Transparency

in pervasive computing, 621
Traveling Salesman Problem (TSP), 118
Tredennick, Nick, 372f
Tree-dags, 32
Tree-optimization problems, 122
Trotter’s formula, 273
Truncation selection, 124
Truth tables

for real-value functions, 153t
Tuples, 537–548, 570
Two-layer networks, 168f
Two-member ES, 117
Two-member tournament selection, 390

Ubiquitous computing, 621–622
UMPP. See Unified multiset program-

ming paradigm
Unified multiset programming paradigm

(UMPP), 78
ant colony paradigm and, 96
classifier/bucket-brigade systems and,

92–93
computational features of, 79–80
Conrad’s Lock-Key paradigm and, 97
ED in, 83

734 Index

Unified multiset programming paradigm
(UMPP) (Continued)

evolutionary optimization and, 94–95
genetic algorithms and, 93–94
genetic programming and, 94
ID in, 83
immunocomputing and, 97–98
iterative dynamics of, 90–91
MCMC and, 91–92
membrane computing and, 97–98
OD in, 83
oscillatory chemical reactions and,

95–96
properties of, 89–90
randomized grid Bayesian interface

and, 91–92
structure of, 79
swarm paradigm, 96

Union, 223
Universal Description Discovery and

Integration (UDDI), 558
Universal gates, 258

array, 259
Universal location management infra-

structure, 623
Universal Standard Products and Services

Code System (UNSPSC), 558
Unsupervised learning, 162

ART1, 164–166
ART2, 166
K-means clustering, 162
Kohonen clustering, 163–164

Useful behavior, 399

Value prediction, 306–307
Value reuse, 307–308
Value reuse table (VRT), 308
Vectors, 512
VEPSO (vector-evaluated particle swarm

organization), 200
Very Large Scale IC’s (VLSI), 315–316,

317, 319, 461, 466, 488–489
abstract models of, 316
analogue v. digital, 451–454
memory technologies, 452–453
neural models and, 450–451
signal coding, 451–452
simple arithmetic operations, 453–454
Thomson’s, 318

VHDL, 358
Vibrational modes, 281
Victim caches, 300–301

Vigilance factors, 165
Virtual Interface Architecture (VIA), 523
Virtualized reality, 643
Visualization, 633

augmented displays, 642–643
high-resolution displays, 641–642
integration of technologies, 643–645
new tools for, 641–645

VLIW (very-long instruction word)
processors, 295–296

VLSI. See Very Large Scale IC’s
VLSIO computing, 319
Vmax, 197, 198, 213
Von Neumann architecture, 287

basic components of, 288f
Von Neumann bottleneck, 343
Von Neumann machine paradigm, 343,

346, 358, 372
Von Neumann processors, 349f
Von Neumann, John, 287, 343

Warsaw Simulation System, 194
Watson-Crick complements (WCC), 100
Wavefront array, 363
Wavelength division multiplexing

(WDM), 326
Web Service

basic concepts of, 554–555
business process execution language for,

562–565
composition and orchestration, 562
dependable integration of, 569
development life cycle, 554
in mobile environments, 570–571
infrastructure, 555–560
introduction to, 553–554
optimal QoS-driven, 570–571
orchestration, 569
overview of stack, 555f
privacy in, 569–570
process-based integration in,

567–568
semantic, 571

Web Service Choreography Interface
(WSCI), 565

Web Service Coordination, 559–560
Web Service Description Language

(WSDL), 557–558, 563
Web Service Policy, 560
Web Service Reliability, 559
Web Service Security, 558–559
Web Service Transaction, 559–560

Index 735

Web Services Conversation Language
(WSCL), 567

Web Services Modeling Framework
(WSMF), 571

Web-based computing, 29, 30
coping with factual unreliability, 33–35
coping with temporal unreliability, 31–33
factual unpredictability in, 30–31
temporal unpredictability in, 30

Weibull model, 606
Widow-Hoff rule, 161–162
WireGL, 641
Wireless communications, 616–617
Wireless LANS (WLANs), 616
Wolfram classes, 90–91
Work allocations

fractional, 22–23
Worksharing

cluster computing via, 20–29
Workstation P

computation rates of, 27
throughputs of, 27–28

Workstations, rented, 22
timeline for, 23

Workstealing
cluster computing via, 13–17
fixed points of, 16–17
procedure, 14–15
systems, 15–16

Write operation
CRCW, 332–333

xCBL, 561
XOR gates, 400
XPUs

configurable, 362f

Zadeh, Lotfi, 221
Zero metric entropy machines, 86
Zero tests, 102

736 Index

