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T
oday there is a fully developed statistical toolkit for data that come
as coordinates of named point locations or landmarks. Because all
the statistical methods require these landmarks to be homolog-
ous among the specimens under investigation it is challenging to

include information about the curves and surfaces in-between the landmarks
in the analysis. The problem is that these correspond biologically as extended
structures rather than lists of distinct points. This chapter is devoted to the
method of semilandmarks (Bookstein, 1997), which allows these homologous
curves and surfaces to be studied with the existing statistical toolkit. Informa-
tion from the interior of homogeneous tissue blocks is not accessible by these
methods.

An earlier morphometric practice uses some nonlandmark points from curves
or surfaces as if they were landmarks: the extremal points (Type III of Bookstein,
1991) that have definitions like “most anterior” or “widest point.” These
locations, however useful for traditional distance measurements, are ambiguous
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regarding the one or two coordinates “perpendicular to the ruler.” We will call
those coordinates deficient, and the points to which these coordinates belong,
semilandmarks. The methodology of semilandmarks this chapter reviews elim-
inates the confounding influence of the deficient coordinates by computing
them solely using the part of the data that is not deficient. To be specific,
they are treated as missing data and estimated, all at once, in order to min-
imize the net bending energy (see below) of the data set as a whole around
its own Procrustes average. This concept of semilandmarks appeared first in
an appendix to the Orange Book (Bookstein, 1991) and was first applied to
two-dimensional outline data in Bookstein (1997). Here we explicitly extend
the algebra to curves and surfaces in three dimensions and give practical advice
on how to collect and interpret this kind of data.

HOMOLOGY

All approaches to landmark-driven morphometrics make one fundamental
assumption: that the landmark points are homologous across specimens. The
notion of homology invoked in this assumption is not the classic biological
notion of that name, which entails similarity of structure, physiology, or devel-
opment owing to common descent (Ax, 1984; Cain, 1982; Mayr, 1963, 1975;
Remane, 1952). In this classic diction, only explicit entities of selection or
development can be considered homologous.

Since points per se are not likely to be explicit targets of selection, this criterion
is too strict—it would rule out almost any use of point coordinates in the
course of evo-devo research. Hence for some 30 years morphometrics has used
a distinct but related notion of homology, traceable perhaps to an article by
Jardine (1969), that centers on variation in the relationships among locations
of structures across samples. This notion of homology, often called geometrical
homology, is embedded in arguments that draw inferences from the appearance
of mapping functions, by which we mean the (Cartesian) transformation grid
diagrams invented by Albrecht Dürer and rediscovered by D’Arcy Thompson
early in the 20th century. The landmarks and semilandmarks that serve as data
for the methods of this chapter both arise as careful spatial samples of this
underlying mapping function.

For two-dimensional data, landmark locations from photographs or drawings
are often sufficient in number to sustain powerful statistical analysis. In three
dimensions, however, the number of truly homologous point locations is
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often very limited. On the skull, true landmarks are typically located on bony
processes, at the intersections of sutures, or at foramina (Richtsmeier et al.,
1995). But many curving structures lack punctate landmarks of this sort, and
on others candidate points cannot be declared with any assurance to correspond
across realistic ranges of variation. The method of semilandmarks begins with
structures that are known to correspond as parts (the classic biological notion
of homology), and then represents them by geometric curves or surfaces that,
in turn, generate reasonable mapping functions. In this way the biological
notion of homology has most of its power and sweep restored, as the notion
of point-landmark has proved too stringent for effective biometrics in most
three-dimensional anthropological applications.

OTHER APPROACHES

There have been earlier attempts to include information from regions lacking
landmarks in biometric analysis. Moyers and Bookstein (1979) placed
constructed landmarks using geometric combinations of defined landmarks
along lines erected at specific angles to define new landmarks, but the authors
later discarded the method because the prerequisite of homology could not
be fulfilled by these new points. Extensions of the thin-plate spline to include
curvature information can be found in Bookstein and Green (1993, see also:
Bookstein this volume) and Little and Mardia (1996). Smooth surface ana-
lysis introduced by Court Cutting, David Dean, and Fred Bookstein in 1995
(Cutting et al., 1995) combines the idea of constructed landmarks with previ-
ous work on parametric averaging of surfaces (Cutting et al., 1993) for analysis
of skull shape in a congenital syndrome, Crouzon Disease. After a thin-plate-
spline unwarping to the Procrustes average landmark configuration, equally
spaced points are declared homologous along ridge curves and geodesics, and
then evenly spaced points are declared homologous on the surface patches lof-
ted above triangles or quadrilaterals woven out of those curves. A statistical
analysis separates the total geometric signal into one part from the true land-
mark points, together with the residual. Andresen et al. (2000) automatically
capture semilandmarks using shape features by an algorithm called geometry
constrained diffusion. Ridge lines, characterized by a minimax property of
directional surface curvature, are extracted and matched in order to establish
object correspondence. The semilandmarks are mapped into Procrustes space
and analyzed using principal coordinates.
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Each of these approaches is ad-hoc or algebraically inconsistent in one or
another important way. There are some Procrustes steps, some Euclidean pro-
jection steps, some unwarping steps, and some operations of equal spacing,
under the control of no particular governing equation. It would be preferable to
have an approach that is matrix-driven at all its steps, so that in studies of modest
variation, such as characterizes most quantitative evo-devo work in vertebrate
zoology, the variation and covariation of all parameters, whether interpreted,
modelled, or discarded as nuisance or noise, can be treated together. To build
such a protocol, we exploit the very convenient fact that to the thin-plate spline
interpolant, the familiar graphical warping/unwarping operator, there is asso-
ciated a scalar quantity, the bending energy, that is a quadratic form in the
locations of the “target” landmark structure. Just as a Procrustes analysis min-
imizes the sum of squares of a set of forms in one feature space (isometric or
affine shape coordinates), so the bending energy can be used to minimize an
analogous sum of squares in the complementary feature space of bending, a sum
of squares that corresponds surprisingly well to the signals by which features
of a geometric homology map are interpreted over a wide range of applica-
tions. The combination of these two steps results in an essentially unique set of
shape coordinates for the semilandmarks describing most realistic assemblages
of landmarks, curves, and surfaces on three-dimensional forms.

WHAT IS WRONG WITH EQUIDISTANT SAMPLES?

To justify a method more complicated than equally spaced points on curves or
even triangulations of surfaces, it is necessary to show what goes wrong with
those temptingly simple alternatives.

Figure 1a shows a rectangle with one landmark in the lower left corner along
with 27 other points spaced equally around the outline. Figures 1b and 1c
show a slightly different rectangle with two different sets of semilandmarks.
In 1b the points are spaced equally along the outline whereas 1c represents
the positions that optimize the bending energy (namely, at zero, for affine
transformations). The left thin-plate spline grid in Figure 2 shows a remarkably
suggestive pattern of gradients and twists. But since they can all be made
to disappear by respacing of the semilandmarks on the outline, none of this
apparent bending is credible (in the absence of corroborative information, for
instance from histology, that some tissue sheet did indeed “turn the corner”).
The comparisons we publish, and the statistics that support them, need to apply
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Figure 1. (a) Rectangle with one landmark in the lower left corner along with 27
other points equally spaced around the outline. (b) A more elongated rectangle with
the semilandmarks still equally spaced while in (c) the positions are chosen to optimize
bending energy (see text).

Figure 2. Thin-plate splines corresponding to Figure 1. (a) Deformation grid from
the rectangle in 1a to 1b, (b) Deformation grid from the rectangle in 1a to 1c.

in the presence of this ignorance about actual spacing. The only way we can
think of to achieve this invariance is to produce the spacing as a by-product of
the statistical analysis itself.

Figure 3 shows a similar problem for outline structures that bend at large
scale. When the points are distributed on the bent form under the criterion of
equidistancy (3b), their positions relative to the corners do not correspond to
the points in (3a). A better solution is presented in 3c. Figure 4 shows that the
TPS grid from 3a to 3c is much smoother (and thus, in this application, less
misleading) than the one from 3a to 3b.

While the two generic examples of elongating or bending rectangles might
have been resolved in part by placing true landmarks at the corners and Type III
landmarks at the midpoints of the sides, in many applications Nature is less gen-
erous with sharp corners or other shape features that could serve as landmarks.
This is the case for the midline of the corpus callosum, the structure that connects
the two hemispheres of the brain. Figure 5 shows a dataset composed of corpus
callosum outlines taken from midsagittal sections of MRI scans representing
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Figure 3. (a) Form with one true landmark in the lower left corner and 31 other
points equally spaced along the outline. (b) Bent form with one true landmark (1) and
31 other points in equal spacing. (c) The position of the points now optimizes bending
energy.

Figure 4. Splines corresponding to Figure 3. (a) Deformation grid from the form in
Figures 3a and 3b. (b) Deformation grid from the form in Figures 3a and 3c.

Figure 5. Midsagittal section of an MRI scan and some corpus callosum outlines.
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normal variation of adults and children. These curves elongate and bend but
have only one landmark (rostrum).

Figure 6 shows deformation grids between the average (consensus) form
and a form with equidistant points compared with the same form captured
by semilandmarks. When the consensus is compared to the specimen with the
equidistant points, the thin-plate spline deformation grid shows strong local
shape differences. Again, there is no reason to consider these changes to be
in any way real, as they are very sensitive functions of the arbitrary spacing
assumption. By comparison, the points of the form in the lower right corner

Equidistant
consensus

Equidistant
specimen

Figure 6. Semilandmarks on the corpus callosum. Deformation grids between the
consensus form (left side) and a form with equidistant points (upper right) compared
with the same form captured by semilandmarks (lower right). Note that the strong
local shape effects suggested by the left upper thin-plate spline are an artifact of the
equidistancy; the lower left spline, reflecting the real shape difference, is much smoother.
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have been placed so as to minimize the bending energy of the interpolation
being drawn. Semilandmarks like these can then be treated as homologous,
without artifact, in many multivariate analyses, including those that attend to
local features of the spline. All those shears along the callosal outline in the upper
two grids are meaningless scientifically, regardless of their stark visual effect.
These examples typify the ways in which minimizing bending energy serves to
protect the scientist from interpreting misleading aspects of a transformation
grid in the class of applications concerning us here.

The bending energy that we are minimizing in the course of our analyses is,
of course, not itself a biological quantity. It is instead a convenient numeraire for
cutting through true ambiguity of empirical representations, rather as the least-
squares principle cuts through what would otherwise be the difficult problem
of choosing a single line to represent a data scatter. In either case, the aim
is to sequester that about which we are truly ignorant (in the linear case,
the true errors about predicted values; in the morphometric case, the true
spacing of geometric homologues along biologically homologous curves or
surfaces). The information that remains stems from the shapes to be studied;
arbitrary choices required for digitization have been cancelled out by algorithm.
The reason for choosing bending energy instead of, say, Procrustes distance or
some other elementary quantity is that in studies where biological interpret-
ation will proceed via features of the grid (rather than, for instance, in terms
of phenetic distance or some other narrowly systematic quantity), the bending
energy corresponds to the visual signal actually detected by the scientist. It is
the local contribution to the variation of second derivatives of the interpolated
mapping (see Bookstein, 1991), the rate of change of size and shape of those
little grid cells in the deformation diagram, and so is very close to a quantific-
ation of the actual information purported to demonstrate any finding claimed.
Conversely, bending energy is invariant under the operations of a Procrustes
superposition—-it doesn’t change under rescaling, translation, or rotation of
landmark sets—and so computing with it won’t interfere with the established
Procrustes part of the current geometric morphometrics toolkit.

ALGORITHM

Algebraic Preliminaries

The first two sections following assemble previously published formulas at the
core of the method here. This section presents the algebraic setup for the
thin-plate spline on landmarks and for the extension to minimizing bending
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energy over points sliding on lines, as originally set out by Bookstein (1997).
The section on Spline Relaxation on Surfaces shows the notation for the exten-
sion to surfaces and section on Flow of Computations sets out the algorithmic
cycle we actually follow, which combines these algebraic steps with Procrustes
averaging and with projection of semilandmarks from tangent structures back
down to actual curving data sets.

In 3D, let U be the function U (�r) = |r |, and consider a reference shape
(in practice, a sample Procrustes average) with landmarks Pi = (xi , yi , zi),
i = 1, . . . , k. For data in three dimensions, let U be the function Uij = U (Pi −
Pj ), and build up matrices

K =

⎛
⎜⎜⎜⎜⎝

0 U12 · · · U1k

U21 0 · · · U2k
...

...
. . .

...
Uk1 Uk2 · · · 0

⎞
⎟⎟⎟⎟⎠ , Q =

⎛
⎜⎜⎜⎜⎝

1 x1 y1 z1

1 x2 y2 z2
...

...
...

...
1 xk yk zk

⎞
⎟⎟⎟⎟⎠ , (1)

L =
(

K Q
Qt O

)
,

where O is a 4 × 4 matrix of zeros. The thin-plate spline f (P ) hav-
ing heights (values) hi at points Pi = (xi , yi , zi), i = 1, . . . , k, is the
function f (P ) = ∑k

i=1 wiU (P − Pi) + a0 + ax x + ay y + azz where
W = (

w1, . . . , wk, a0, ax , ay , az
)t = L−1H with H = (

h1, h2, . . . , hk, 0, 0, 0, 0
)t .

Then we have f (Pi) = hi , all i: f interpolates the heights hi at the
landmarks Pi . Moreover, the function f has minimum bending energy
of all functions that interpolate the heights hi in that way: the min-

imum of
∫∫∫

R3
∑ ∑

i,j=1,2,3

(
∂2f

∂xi∂xj

)2
. This integral is proportional to

−W t H = −H t
k L−1

k Hk, where L−1
k , the bending energy matrix, is the k × k

upper left submatrix of L−1, and Hk is the corresponding k-vector of
“heights”

(
h1, h2, . . . , hk

)
. For morphometric applications, this procedure is

applied separately to each Cartesian coordinate: H = (x ′
1 · · · x ′

k 0 0 0 0), then
H = (y ′

1 · · · y ′
k 0 0 0 0), then H = (z ′

1 · · · z ′
k 0 0 0 0) of a ‘target’ form.

In the application to real landmarks, the bending energy of the thin plate
spline is the global minimum of the integral squared second derivatives. In
the case of semilandmarks this same property can be used as a criterion for
optimization: The semilandmarks are allowed to slide along tangents to the
curve or surface until the bending energy between a template and a target
form is minimal. For curves, we seek the spline of one set of landmarks
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X1 . . . Xk (the template) onto another set of landmarks Y1 . . . Yk of which a
subset of m elements are semilandmarks. In the following notation, i1 . . . im

is the list of landmarks that actually slide—this is a sublist of the complete
list of landmarks/semilandmarks numbered from 1 through k—so that we
use a double notation: Yi for the ith landmark/semilandmark, but Yij for
the j th sliding landmark. Write Y 0 for the “starting positions” of all these
landmarks. The semilandmarks, Yi1 through Yim , are free to slide away
from their starting positions Y 0

ij along tangent directions vij = (vx
ij , vy

ij , vz
ij )

to the curve, while the remaining (nonsliding) landmarks cannot move
from their starting locations Y 0

i . To simplify the following equations, we
rearrange the coordinates of all the Y 0s, sliding or nonsliding, in a vec-
tor of the x-coordinates, then the y-coordinates, then the z-coordinates:
Y 0 = (Y x

1 , Y x
2 , . . . , Y x

k , Y y
1 , . . . , Y y

k , Y z
1 , . . . , Y z

k ). To describe the new posi-
tions of the m sliding landmarks Yi1 through Yim , we set out m parameters
T1 . . . Tm (T for “tangent”), so that the positions after sliding are Yij = Y 0

ij +
Tj (vx

ij , vy
ij , vz

ij ), j = 1, . . . , m. In the ordering of the vector Y 0, build up a matrix
of all these directional constraints together:

U(3k × m) : Uij , j = vx
ij

Uk+ij , j = vy
ij

U2k+ij , j = vz
ij ,

(2)

where j = 1, . . . , m, all other elements zero.
The sliding now proceeds all at once, all the Yij moving from Y 0

ij to Y 0
ij +

Tj (vx
ij , vy

ij , vz
ij ), in order to minimize the bending energy of the resulting thin-

plate spline transformation as a whole. This bending energy turns out to be

−Y t

⎛
⎜⎝L−1

k 0 0
0 L−1

k 0
0 0 L−1

k

⎞
⎟⎠ Y ≡ −Y tL−1

k Y (3)

in the notation introduced earlier in this section. It has to be minimized over
the hyperplane Y = Y 0 + UT and the solution to this weighted least squares
problem is

T = −(UtL−1
k U)−1UtL−1

k Y 0. (4)

Anatomical landmarks affect the sliding of semilandmarks, in that they appear
in the matrix L and thus determine the amount of bending energy associated
with translations along the tangent vectors Tj semilandmark by semilandmark.
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But if you have sufficiently many semilandmarks in general position (at least six
points on curves in 2D or 3D, or at least twelve on surfaces in 3D), the semiland-
marks can be made to slide “all by themselves,” without any need for landmarks
to anchor them. For a great deal more explanation of all these matters, the reader
is referred to the original journal publication of Bookstein (1997).

Spline Relaxation on Surfaces

The extension of the formalism for surfaces is straightforward: Instead of
tangent vectors the semilandmarks are allowed to slide on tangent planes. We
seek the spline of one set of landmarks X1 . . . Xk (the template) onto another set
of landmarks Y1 . . . Yk of which a sublist Yi1 . . . Yim are free to slide away from
their positions along the tangent plane to the surface spanned by two tangent
vectors vij and wij at the original position of the semilandmark. For sliding on
tangent planes Yij = Y 0

ij + T 1
j vij + T 2

j wij , where vij and wij are unit vectors
spanning the tangent plane. Corresponding to the two directions of sliding per
semilandmark, the matrix U of directional information now has two columns
per semilandmark: it becomes

U(3k × 2m) : Uij , j = vx
ij

Uk+ij , j = vy
ij

U2k+ij , j = vz
ij

Uij , j+m = wx
ij

Uk+ij , j+m = wy
ij

U2k+ij , j+m = wz
ij ,

(5)

where j = 1, . . . , m, all other elements zero.
With this matrix U, equation (4) still supplies the m by 2 matrix of

parameters T for which the corresponding semilandmark locations Yij min-
imize the bending energy (equation 3). Our actual formalism concatenates
these two matrices U, one for the curves and one for the surfaces; all the
semilandmarks, on curves or on surfaces, slide at once.

Flow of Computations

Our splined semilandmark analysis begins with any convenient selection of
semilandmarks on all the curves or surfaces of a data set. The semilandmarks
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representing any curve should be equal in number across the sample and
should begin in rough geometrical correspondence (e.g., equally spaced); those
representing a surface should be reasonably evenly and similarly spaced. Clearly
observable curves on surfaces, such as ridges, should be treated as curves instead
of surface points; clear local extremes of curvature on curves should be treated
as Type II landmarks rather than semilandmarks.

The tangents for curves can be calculated as the standardized residual vector
of the two neighboring (semi)landmarks. For surfaces the first two principal
components of the surrounding landmarks can serve as the two tangent vectors
spanning the tangent plane. If the curve or surface is strongly bent in some
regions this way of calculating the tangents may become to imprecise. Then
either the spacing of semilandmarks should be reduced which results in a
larger number of landmarks, or the calculation of tangents should be based
on additional information like a denser sampling of curve or surface points
or a parametric representation of the curvature (see also section on Data
Acquisition).

The basic algorithm we propose is then a simple alternation of a Procrustes
superimposition with a splined optimization step, each minimizing its own
specific sum of squares:

(1) Calculate tangents for each semilandmark.
(2) Relax all specimens against the first specimen.1

(3) Compute the Procrustes average configuration.
(4) Calculate new tangents.
(5) Relax all specimens against Procrustes average of step (3).
(6) Iterate (3)–(5) until convergence.

During spline relaxation the semilandmarks do not slide exactly on the curves
or surfaces but along the curves’ or surfaces’ tangent structures. Although that
reduces the computational effort because the minimization problem is now
linear, the sliding along tangents lets the semilandmarks slip off the data. After
the relaxation step these points can be placed back on the outline (Figure 7),
resulting in a better extended algorithm:

(1) Calculate tangents for each semilandmark.
(2) Relax all specimens against the first specimen.

1 There is no initial Procrustes superimposition step necessary because bending energy is invariant to
translation, scaling and rotation.
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(3) Replace each slid semilandmark by its nearest point on the (curving)
surface.

(4) Compute the Procrustes average configuration.
(5) Calculate new tangents.
(6) Relax against Procrustes consensus of step (4).
(7) Replace each slid semilandmark by its nearest point on the surface.
(8) Iterate steps (4) to (7) until convergence.

This extended algorithm should be used when sharp curvatures are present
in the data set (e.g., the splenium of the corpus callosum data set in Figures 5

Figure 7. Sliding along tangents lets the semilandmarks slip off the curve. After the
relaxation step these points can be placed back on the outline.
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and 6). When applying semilandmarks solely to rather smooth curves or surfaces
(e.g., human cranial vault) the basic algorithm usually is sufficient.

STATISTICAL ANALYSIS OF SEMILANDMARK DATA

The more semilandmarks, the better as far as the representation of a geometric
form is concerned. In general, the sampling of semilandmarks depend on the
complexity of curves or surfaces and the detail of curvature that is of interest.
Sampling experiments can help finding an “optimal” number of semilandmarks
in the sense of how much information additional landmarks would contribute.
For the human neurocranial vault we found 150–200 semilandmarks to be
a good representation.

In detailed morphometric data sets, there are far more semilandmarks than
specimens (e.g., Bookstein et al., 1999, 2003). This would ordinarily cause
a problem for parametric statistical inference, and in the case of semiland-
marks there seem to be no actual statistical models available (For instance,
Gaussian models for individual semilandmark variation, such as the familiar
Mardia-Dryden (1998), do not apply to landmarks bound to lines; notions of
independent variation at the multiple semilandmarks of a single curve or sur-
face do not apply; etc.). The conventional approach to variable-rich problems,
which is to project according to the Procrustes or similarly convenient geometry
onto a lower-dimensional empirical eigenspace, will often suffice for such classic
comparative themes as allometry or sexual dimorphism. But for more general
investigations, it is better to abandon classic statistical models altogether for the
more modern alternative that presumes nothing about data distributions at all.
Hence excess of variables over cases ends up causing no problems. To pursue
this issue (the so-called “high-P low-n issue”) would take us far outside the
limits of this chapter.

In this model-free context, surveys of empirical data sets proceed by principal
coordinates of some distance function (the familiar relative warps, for instance,
are principal coordinates for Procrustes distance). We don’t need to review these
methods here (but see e.g., Slice, this volume), as they are the backbone of
most of the Procrustes empirical findings ever published; indeed, one principal
justification for the semilandmark methods here is that they require no changes
whatever in that part of the Procrustes toolkit. Statistical inference, on the
other hand, requires a somewhat more nuanced adjustment. In our practice,
most testing goes via the randomization methods first sketched by R. A. Fisher
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and now, with the ubiquity of personal computers, perfectly practical for most
morphometric studies (Good, 2000).

In general, a permutation test deals with two sets of data vectors for the same
specimens. In anthropological applications, one vector will likely be a set of Pro-
crustes shape coordinates for some landmark/semilandmark configuration, and
the other vector might be a group i.d. code, another set of shape coordinates, or
a collection of non-morphometric measurements. Some statistic relating these
two data blocks (such as a group mean difference, or a multiple correlation)
is claimed to be interesting and informative, and we want to test this claim
against a null hypothesis of no relationship, without making any assumptions
whatever about theoretical distributions (Gaussian noise, etc.). We carry out
this challenge by considering, or sampling, all the different ways that the rows
of the first data matrix could be paired with the rows of the second (i.e., all the
permutations of one case order with respect to the other: hence the name of
the technique). For each such permutation, compute the same statistic that was
claimed interesting in the first place, and collect all the values of that pseudo-
statistic (in general there will be N ! of them, where N is the total sample size;
for a two-group comparison there will be N !/k!(N − k)! nonredundant per-
mutations) in one big histogram. Under the null hypothesis of no meaningful
association between the data blocks, the statistic you actually computed should
have been drawn randomly from this distribution. So the P -value (technically,
the α-level) of the association you actually observed is, exactly, the fraction
of this permutation distribution that equals or exceeds the statistic observed.
(The word “exact” in the preceding sentence is the same as in the “Fisher exact
test” and other familiar contexts. These methods are exact in the sense in which
all F-tests and other multivariate Gaussian-assumption approaches are merely
approximate under the same conditions.)

For a very small sample with two groups, 3 cases against 3, there are 20
possible rearrangements of the subgroups; thus the best possible P -value you
could get is 1/20, or 0.05. For 8 cases against 8, this minimum P -value is
1/12870; that is the largest data set for which we have ever computed the exact
permutation distribution. For larger samples, the universal custom is to sample
from the permutation distribution using a suitable random-number generator
(e.g., this is the alternative offered in Rohlf’s and Slice’s packages available
for free at http://life.bio.sunysb.edu/morph/). The observed data set (i.e.,
the “permutation” with the actual case order preserved between blocks) is to
be taken as the first permutation “sampled.” For this Monte-Carlo version,
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one reports an approximate P -value of m/n with s.e. of
√

m/n, where n is the
number of permutations generated and m is the total number of permutations
sampled for which the test statistic equals or exceeds the value actually observed.
The larger the value of n, the more accurate this approximation.

The power of the test varies by the choice of the test statistic. The authors
of this chapter prefer Procrustes distance; others use t -tests, F -ratios, or lower-
dimensional multivariate summaries such as T 2. While there is nothing special
about a randomization test that is applied to semilandmarks, nevertheless there
is something special about the way semilandmarks are used for these statistics.
The coordinates that would have been considered “deficient” if these points had
been used as landmarks are explicitly omitted from statistical manipulations of
the resulting Procrustes coordinates. This means, in practice, that the variables
consist of distances of the semilandmarks normal to the average curve or surface,
or their sums of squares in Procrustes superposition.

WHICH LANDMARKS SHOULD SLIDE?

Bookstein (1991) defined three classes of landmarks, based upon the amount
and quality of shape information they represent. Landmarks of TYPE I (juxta-
positions of tissues) or II (maxima of curvature) are defined in all coordinates
and should as a general rule be taken as real landmarks. TYPE III landmarks,
defined by phrases like “the most anterior” or “the farthest from,” would better
be treated, along with neighboring points, as semilandmarks. Their defini-
tions stem from distance measurements and are therefore informative just in
one direction. The other coordinates are deficient and should be estimated by
the sliding algorithm whenever using landmark based statistics. Occasionally,
however, biological questions warrant the sliding of TYPE II and even TYPE I land-
marks that lie on curves and surfaces also captured by semilandmarks. These
exceptional landmarks include points on sutures (such as frontomalare orbitale
on the orbital ridge), particularly crossing points of sutures (such as lambda or
bregma on the neurocranial vault). When the functional shape of the neuro-
cranium is of principal interest, landmarks like these should be allowed to slide.
Taken as anatomical landmarks, they yield information mainly about develop-
ment instead (i.e., how the particular neurocranium manages to realize its shape
ontogenetically or phylogenetically).

The locations of true landmark points interact with the shape of curves and
surfaces in producing the final locations of semilandmarks. Omitting landmarks
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Figure 8. To force a better homology of semilandmarks, use landmarks. (a) For the
limited landmark set shown here, minimizing the bending energy slides the semiland-
marks (hollow circles) to inappropriate positions. (b) A better set of semilandmarks arises
when an additional anatomical landmark (filled circle) is placed at the tip of the “jaw.”

when they are easily available, or spacing semilandmarks too sparsely with
respect to reliable features of curve or surface form, can produce obviously
incorrect results. Figure 8 demonstrates one of these predictable pathologies,
as semilandmarks can depart from true landmarks they should accompany or can
ignore obvious features of curving form that happen not to have been referred
to. We do not set down rules here, as in practice these problems are obvious,
once inspected, and the solutions intuitive.

DATA ACQUISITION

The algorithms described above require two kinds of data for each specimen:
coordinates of named point locations/landmarks and coordinates of a discrete
representation of curving form in-between. In principle there are three types
of data sources: discrete landmark point data, discretely sampled curve or sur-
face data, and volume image data. When data begin with image volumes, the
first step is usually the explicit location of the curves or surfaces along which
semilandmarks will be spaced. This operation is computationally demanding
and hardly possible in an algorithmic way, in spite of many experiments in the
medical imaging literature. For instance, standard methods for mesh genera-
tion fail when patches fold anyway. For a typically ad-hoc response to this, see
the surface remeshing step in Andresen et al. (2000).
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In our experience with primate crania it is faster, more accurate and less
expensive to locate samples of semilandmarks explicitly by a device like a Micro-
scribe or Polhemus digitizer that directly yields coordinate data. In particular,
one powerful source of information about surfaces is the ridge curve, the locus
of points with an extreme of surface sectional curvature in the direction per-
pendicular to the curve. Tracing ridge curves on a virtual specimen is quite
tedious, whereas tracing them on a physical specimen is relatively easy. When
the physical specimen is not available or one wants to measure internal struc-
tures and is hence obliged to use a virtual specimen, we recommend using a
software package like Edgewarp3D (Bookstein and Green, 2002) that allows
the explicit visualization of sectional curvatures. For surface-semilandmarks one
needs to extract a dense cloud of points from the volumetric information—this
surface extraction is available in many medical imaging software packages.

How to Measure?

All reasonable approaches to this praxis are constrained by the prerequisites
of the semilandmark-algorithm. Semilandmarks have to have the same counts
on every curve or surface of the assembly and have to be in the same relative
order with respect to each other and to any true landmark points that may be
present.

Curves in three dimensions: Procedures for three-dimensional curves are a
straightforward extension of those for two-dimensional curves. Although the
algebraic formalism does not require the endpoints of curves to be point
landmarks, we strongly advise that they be delimited in this way, or else semi-
landmarks might slip off the available curving data in the course of sliding along
tangent lines. To get the same number of semilandmarks in the same order on
each specimen, it is convenient to begin with points equidistantly spaced along
outline arcs, perhaps through automatic resampling of a polygonal approxima-
tion to the curve. In the case of volume image data, one can begin with points
spaced inversely to radius of curvature on a typical form, then warp them into
the vicinity of every other specimen using only true landmarks, and finally, pro-
ject them down onto the apparent curve in the image. This is how the curves
of Bookstein et al. (2002) were located.

Surfaces: Techniques for surfaces differ substantially from those for curves
in that except for planes and cylinders there is no straightforward analogue to the
notion of “equal spacing.” Along with Andresen et al. (2000), we recommend
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beginning with a hugely redundant sample of points on each surface. These can
be produced just by “scribbling” around the surface using a device such as a
Microscribe digitizer set to stream mode. Alternatively, one can use point clouds
generated by a surface scanner or extracted surfaces from volumetric data.

On one single reference specimen, we then carefully produce a mesh of far
fewer points, relatively evenly spaced, by thinning the redundant point cloud
(Figure 9). (Points should be more dense near ridges of the surface even if those
are not to be treated as curves.) The reference specimen is then warped to the
landmark configuration of another specimen. On the surface representation of
this target specimen the points nearest to the warped mesh are taken as starting
positions of the semilandmarks. This procedure is repeated for every specimen
in the data set until every specimen possesses a starting configuration for the
subsequent relaxation step.

At the same time, the other surface points of each specimen, the ones not used
as semilandmarks, continue to supply information for the sliding algorithm; the
two dominant eigenvectors of their variation in small neighborhoods around the

Figure 9. By thinning a dense, discrete representation of the surface we produce
a mesh of relatively evenly spaced points, which are then used as starting positions for
the semilandmarks (Gunz et al., 2002; Mitteroecker et al., 2004).
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semilandmarks are used to specify the vectors vij , wij of the tangent planes along
which they slide. The slid semilandmark can be projected down to the original
surface according to the quadric approximation of the surface perpendicular to
this best-fitting plane or any other parametric representation like a thin-plate
spline.

EXAMPLE

We illustrate the method of semilandmarks using a sample of 52 human crania
to study sexual dimorphism (this sample is part of the larger data set of Bernhard,
2003). On each of the 20 adult males, 20 adult females, and 12 subadults we
placed 435 landmarks: 37 anatomical landmarks, 162 semilandmarks on three-
dimensional-ridge curves, and 236 semilandmarks on surfaces. Most of the
anatomical landmarks are in the face and cranial base, with only a few on
the neurocranium. The semilandmarks are distributed on seven curves and
on the surface of the neurocranial vault. Landmarks and semilandmarks were
captured by a Microscribe G2X, and the surfaces resampled as explained in
the previous section. All data handling and statistical analysis was done using
mathematica-routines programmed by the authors.2 The data set was treated
by the basic algorithm described in the section on Flow on Computations. The
Procrustes coordinates of the resulting semilandmark locations are shown in
Figure 10.

A plot of the first pair of relative warp (RW) scores (Figure 11) shows that
the first RW represents ontogenetic development with the children at one
extreme and the male adults at the other. Figure 12 visualizes RW1 as a three-
dimensional TPS grid computed using all 435 points but drawn as if restricted to
the midsagittal plane only. There is general enlargement of the face relative to
the neurocranium, marked prognathism, and maxillary extension. Figure 13
visualizes RW2 by the effect of the corresponding TPS on the triangulated sur-
face from one single typical specimen. The effect of RW2 is mostly on relative
cranial width.

We performed a Monte Carlo permutation test to assess the statistical signific-
ance of the shape difference between adult males and adult females. Using Pro-
crustes distance as test statistic, in 116 out of 3,000 cases the distance between

2 Two-dimensional semilandmarks can conveniently be handled by existing software packages:
Bookstein & Green’s Edgewarp2D and James Rohlf’s “TPS”-programs. Three-dimensional
semilandmarks are available in Edgewarp3D (Bookstein and Green, 2002).
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Figure 10. Procrustes coordinates of 52 H. sapiens crania.

Figure 11. Scores of the first relative warp against the second for the full data set.
Individuals labelled with “inf” are children, “m” are male adults and “f” are female
adults. Note that the 75% confidence ellipse for females (dashed) lies within the male
variation (solid ellipse).

randomly relabeled groups was equal to or larger than the actual distance; hence
the significance level of the dimorphism is P ∼ 116/3, 000 ≈ 0.04. Figure 14
exaggerates this mean difference by a series of factors in both directions. Females
have higher orbits and males wider ones; females have a smaller alveolar pro-
cess, males a broader and more prognathic upper jaw; females have a somewhat
globular neurocranial shape, smaller zygomatic arches, and a less pronounced
supraorbital torus.
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Figure 12. Visualization of the first relative warp (the abscissa of Figure 11) as a
midsagittal thin-plate spline. Note the relative enlargement of the face during postnatal
development. The specimen shown is the template specimen; the effects of the grid are
exaggerated by a factor 4.5.

Figure 13. Visualization of the second relative warp as a series of unwarped specimens.

Figure 14. Visualization of sexual dimorphism of H. sapiens in a sample of 40 adult
specimens. The consensus form in the middle is unwarped to the female mean (left
side) and to the male mean (right side). The shape differences are exaggerated to ease
interpretation.
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P -values like the 0.04 reported just now won’t vary much by spacing
of evenly spaced semilandmarks, as the Procrustes distances to which they
contribute are so redundant. But changes in the coverage of a curving form
(addition or deletion of parts, or analysis first by curves and then by surfaces)
can alter the strength of statistical findings to an arbitrary extent. There is
no general solution to this problem, because a P -value is not the answer to
any sort of scientific question. As shown, however, the Procrustes methods
recommended here result in visualizations of form change in every region of an
extended structure. Statistical inferences can go forward quite well in terms of
the parts separately even when sliding is in terms of an overall bending energy
formalism such as that used here. For an example, see Marcus et al. (1999).

Figure 15 divides this empirical mean difference into a component for static
allometry (i.e., the regression of each shape coordinate upon Centroid Size) and
a remainder. The upper row shows the relocation of each of the 435 landmarks
or semilandmarks that is predicted by sexual size dimorphism; the lower row, the
remainder of the actual mean landmark or semilandmark shift between the sexes.
The difference between allometry and residual is clearest in the parietal bone,

Figure 15. Sexual dimorphism within the adult subsample, separated into allometric
and non-allometric components (see text). The differences between allometry (upper
row) and non-allometry (lower row) are most visible in the parietal bone, the zygomatic
region, the piriform aperture, and the orbits.
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the zygomatic region, the piriform aperture, and the orbits. The multivariate
shape vectors for allometry and sexual dimorphism have an angle of 76.3◦.

Figure 16 is a different decomposition of the same total sexual dimorphism
signal. The left column shows the total mean shift as a little vector at each land-
mark or semilandmark. When the female consensus configuration is warped
to the male using only the true anatomical landmarks, the true landmarks
are exactly on the average male position but the semilandmarks’ positions
are just estimated by the true ones. The middle column of Figure 16 shows
this true landmark-driven warping as little vectors—this is the technique of
Ponce de Leon and Zollikofer (2001). The picture comes close to the left
one because a lot of the information about sexual dimorphism is captured
by the traditional landmarks already. The right column shows the residuals
from the mean female configuration to the estimated male configuration
from the middle column. Notice that many regionally specific aspects of the
dimorphism—especially the parietal bosses, the lower temporal bone, the orbits,
and the alveolar process—are not accounted for by shifts of landmarks alone.
Although a major part of shape change of curves and surfaces in this sample
can be reconstructed from landmark positions only, other important local fea-
tures can be accounted for only by exploiting the additional information in
semilandmarks.

Figure 16. Sexual dimorphism shown as Procrustes residuals between adult male
and female average forms (left). Shape differences that are captured by the anatomical
landmarks (middle), and shape differences captured by semilandmarks (right) after a
landmark-driven warping. All shifts are exaggerated by a factor 5.
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