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INTRODUCTION

The quantification of human proportions has a long history. As far back
as the Middle Kingdom (c. 1986–1633 BC), Egyptian artisans used square
grids and standard proportions to produce consistent depictions of human
(and other) figures, even establishing different formulae for males and
females (Robins, 1994) (Figure 1). The German anatomist Johann Sigis-
mund Elsholtz formalized the scientific measurement of living individuals,
“anthropometry,” in his 1654 Doctoral dissertation (Kolar and Salter, 1996),
and his particular interest in symmetry would appeal to many present-
day anthropologists and general biologists. From the 19th century to the
present day, the measurement and analysis of human beings and their
skeletal remains have been a central theme in anthropology, though not
always with beneficent motivation (e.g., Gould, 1981). During this time,
anthropologists have often taken advantage of the state-of-the-art in stat-
istical methodology, but they have not been just passive consumers of
technological innovation. Indeed, pervasive interest in our own species,
its artifacts, and our closest relatives has motivated and contributed much
to the development of statistical methods that are now taken for gran-
ted in areas far afield from anthropology. The early work of the biometric
laboratory established by Galton and Pearson bears witness to the vital
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Figure 1. Nakht and wife (New Kingdom: c. 1570–1070 BC). Note same number
of gridlines (18) from soles of feet to hairline and different waist heights for male and
female figures. Grid completed from surviving traces. Drawing by Ann S. Fowler in
Robins (1994). Reproduced by permission of the author.

interplay between the development of statistical methodology and anthropolo-
gical research (e.g., Mahalanobis, 1928, 1930; Morant, 1928, 1939; Pearson,
1903, 1933).

This dynamic interaction between physical anthropology and statistical devel-
opment continues today as new methods of shape analysis are inspired by
anthropological problems. In turn, the availability of new morphometric tools
opens new avenues of research or offers more powerful alternatives to tradi-
tional methods. The current volume provides a snapshot of this state of affairs
in the early 21st century. Contributions include speculations on new directions
in morphometrics, the development and extension of tools for shape analysis,
and illustrations of how the latest morphometric methods have provided better
and more powerful means to address basic research questions.
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In this introductory chapter, I have tried to provide an overview of the basic
terminology, concepts, and methods relating to the vast field that is modern
morphometrics. My intention is to both relieve individual authors of having to
reiterate methodological summaries and to provide an accessible introduction
to students and researchers new to the field. Additional information to any
level of technical detail can be found through the cited literature. Adams et al.
(2004) provide a similar summary from a slightly different perspective. The
reviews by Bookstein (1993, 1996) and Reyment (1996) include interesting
and valuable historic components in addition to useful technical information.

We begin with some definitions.

DEFINITIONS

The field of morphometrics brings with it a plethora of terms and concepts that
are seldom part of a biological, or even mathematical, curriculum. Slice et al.
(1996) and the updated online version available at the Stony Brook website
(see below) provide definitions of many of these. Here we present only the
most fundamental terms necessary for an appreciation of modern morphometric
methods.

Shape—the geometric properties of an object that are invariant to location,
scale, and orientation.

Shape is the property about which we are most concerned here, and the
definition contains two important points. The first is that we are interested in
the geometric properties of an object. By focusing on geometry, we exclude
properties, such as color and texture, that would otherwise meet the invariance
requirements set out above (but see the Chapter 2 by Bookstein and Chapter 7
by Prossinger, this volume).

The second point is the invariance to location, scale, and orientation. By this
we confine ourselves to geometric properties that do not change if the position
or orientation of the specimen changes and, furthermore, would not change
with the magnification or reduction of the object. This can be achieved either by
the use of invariant measures, such as distance ratios or angles, or through meth-
ods that register all data into a common coordinate system, for example, the
Procrustes superimpositions. In the latter case, the parameters for location, ori-
entation, and scale built into the superimposition models are referred to as nuis-
ance parameters. This is, in fact, only a technical designation as the relationship
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between shape and these other sources of variation, especially and usually size,
may be of scientific interest and not just sources of annoyance. Morphometri-
cians use the term form to refer to data containing only size and shape.

Size measure—any positive, real-valued measure of an object that scales as a
positive power of the geometric scale of the form.

For the most part, we are concerned here with linear measures of size, say
g(X), that can be characterized by:

g(aX) = ag(X)

X is our data, g(X) is our size measure, and a is some magnification factor. This
equation means that if we compute our size measure for our original data and
for the same data scaled by some factor, a, the size measure for the scaled data
will be a times that of the original data. In more concrete terms, if we multiply
our data by a factor of two, a proper, linear size measure will be doubled.

Size has long been recognized as an important component of the compar-
ison of structures (e.g., Burnaby, 1966; Huxley, 1932; Mosimann, 1970). It
tends to dominate the variability between sexes, populations, species, and even
individuals, and the researcher is interested in methods for separating size vari-
ation from that due to other factors. Even though the above provides a precise
definition for what is a proper size variable, there are any number of measures
that are consistent with that definition, but each may behave differently in the
presence of shape variation. For instance, the distance between two well-defined
points on an object is a proper size measure, but for the same data set, differ-
ent distances could indicate no changes, increases, or decreases in size when
individuals or groups differ in shape. The question of which size measure to
use is only partially answerable in that under certain circumstances some size
measures have optimal properties that can be used to argue for their use, for
example, centroid size described below. In other situations, or depending upon
the ultimate research focus, a case can be made for other measures, for example,
the cube root of body weight in allometry studies.

Shape variable—any geometric measure of an object that is invariant to the
location, scale, and orientation of the object.

Shape variables are the grist for the analytical mill that will be used to answer
research questions. Coordinates of well-defined points, sufficient sets of dis-
tances between such points, the coordinates of points used to sample an outline,
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and angular differences used to encode the arc of a curve are all proper shape
variables so long as they possess, or have been processed to achieve, the requisite
invariances and capture geometric information about the structures for which
they have been defined.

Geometric morphometrics—the suite of methods for the acquisition, pro-
cessing, and analysis of shape variables that retain all of the geometric
information contained within the data.

Geometric morphometrics brings together all of the acquisition, processing,
analysis, and display methods for the study of shape that is characteristic of
modern morphometric methods. Generally attributed to Les Marcus, to whom
this volume is dedicated, and first used in print, perhaps, by Rohlf and Marcus
(1993), this term is specifically meant to represent those methods that rigor-
ously adhere to the exhaustive acquisition and analysis of shape information as
defined above. This distinguishes these methods from what have been referred
to as “traditional” morphometric methods that do not necessarily capture or
retain sufficient information to reconstruct the spatial relationships among
structures by which the measurements are defined. A key benefit to the use
of geometric morphometric methods is that since all geometric information is
retained throughout a study, results of high-dimensional multivariate analyses
can be mapped back into physical space to achieve appealing and informative
visualizations that are frequently not possible with alternative methods. The
current volume is filled with examples.

MORPHOMETRIC DATA

The specific variables used in a morphometric analysis are chosen based on the
question being investigated, the material under study, the equipment available
for data acquisition, and to a greater or lesser extent the biases or experience
of the researcher. However, there are several general classes of variables that
are most frequently used for shape analysis. These classes each have their own
benefits and/or limitations and admit different types of processing, analysis, and
interpretation. Many of these are illustrated in Figure 2 and discussed below.

One thing that these different types of variables have in common is the
assumption of the identity of data recorded for each individual, for example, the
width of my head is the “same” variable as the width of your head. This implicit
sameness of measurements may apply to individual variables, like head width,
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Figure 2. Morphometric data. Distances, angles, outlines, and landmarks: b.—
bregma, n.—nasion, pr.—prosthion, ba.— basion, o.—opisthion, i.—inion, l.—lambda.
See text for details.

but must sometimes be extended to suites of variables, such as an ordered series
of points recorded along a curve where several variables (the coordinates of the
points) are used to characterize a single structure of interest. This distinction
has implications in the processing of data and the interpretation of results. This
issue is discussed in greater detail as it arises in subsequent sections.

Distances, Ratios, and Angles

Distances are perhaps the oldest and most familiar variables used for morpho-
metric analysis. They are measured by ruler, caliper, or other specialized device
either between well-defined points, such as nasion, basion, and prosthion illus-
trated in Figure 2, or according to some rule, such as maximum cranial breadth
(Howells, 1973). They may be linear, straight-line distances, or they may be
curvilinear as, for example, the arclength of the frontal bone indicated by the
dashed line in the figure.

Distances have the advantage of being inherently independent of orientation
and position. Size is the only information that must be removed from a set
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of distances to achieve an analysis of shape. One way to meet this invariance
is through the use of ratios or indices that encode the relative magnitudes of
two distances. In Figure 2, one could use as a variable for shape analysis the
ratio of the distance between nasion and basion, “d(n-ba),” to the distance
between prosthion and basion, “d(pr-ba),” (×100). This is called the gnathic,
or alveolar, index (e.g., Howells, 1989; Hanihara, 2000) and encodes some
information about the shape of the face. However, it also introduces the statist-
ical shortcomings associated with ratios (Atchley and Anderson, 1978; Atchley
et al., 1976; Pearson, 1897).

A significant problem with distances is that unless they are carefully selected,
one may not be able to determine the relative locations of all the endpoints
of the measurements, and thus, they can omit information about the shape
of the structure. In the current example, the distances between nasion and
basion and between prosthion and basion (and their ratio) lack information
about the positions of nasion and prosthion relative to each other. In fact,
there are any number of face shapes that could have same nasion–basion and
prosthion–basion distances. A way to address this deficiency is to add to our
variables the angle formed by nasion–basion–prosthion, as shown in the figure
as “theta(n-ba-pr).” Angles have the quite desirable property of being invari-
ant not only to location and orientation as are distances, but also are invariant
to size. The combination of the two distances and the angle fixes the relat-
ive positions of the three points up to a reflection, but mixing variables of
different units may cause problems in multivariate analyses (like principal com-
ponents analysis discussed below) that utilize information about the variances
and covariances of variables. In such cases, one must resort to the standard-
ization of the data and the analysis of correlations (not covariances). This
introduces another level of abstraction between the analysis and the original
specimens.

A better solution would be the addition of another distance variable—the dis-
tance between nasion and prosthion. This new set of three distances completely
fixes the relative positions of the three points up to a reflection, is invariant to
position and orientation, but still contains size information.

A shortcoming of both these solutions is that the selection of a sufficient set
of variables to fix the shape of a structure becomes more difficult and tedious as
the number of anatomical points or distance definitions increases. There is also
the additional, unfortunate situation that such data (even if carefully selected to
fix geometry) might yield multivariate summaries (sets of distances) of anatomy
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that are impossible to realize in space of the original data, that is, in two or three
dimensions (Lele and Richtsmeier, 2001; Rao and Suryawanshi, 1996).

Landmark Coordinates

Cartesian coordinates are another type of data that can address many of the
problems of distances and angles, but they introduce new ones of their own.
They are, in fact, a special set of distances—signed distances of specified points
from a set of mutually perpendicular axes. When these points are anatomical
structures on a specimen, they are often called landmarks and are frequently
the same points used to define traditional distances or angles.

The collection of landmark coordinates can proceed either by the direct
recording of point locations on the specimen using specialized digitizing hard-
ware or by the use of software operating on representations of the specimen like
digital images (two dimensional) or medical imaging data (three dimensional).

Figure 2 shows a number of landmarks familiar to physical anthropologists,
but as presented their coordinates are undefined. We must first establish a
coordinate system with respect to which we can record the positions of the land-
marks. Once recorded, the advantages and efficiency of coordinates become
apparent as every possible distance and every possible angle that could be
defined using these landmarks can be computed using classical geometry and
elementary trigonometry.

The analysis of landmark coordinates has its own problems, however. These
arise because it is difficult, if not impossible, to define a biologically meaningful
set of axes with which to record them. Attempting to define such axes with
respect to anatomy, such as in the use of the Frankfurt orientation, nonlin-
early transfers variability in the anatomical structures used to define the axes to
the landmark coordinates. Instead, coordinate data are usually collected with
respect to some convenient, but arbitrary, axes, and these axes are unique with
respect to individual specimens. Coordinates so obtained thus have encoded in
them orientation and location both with respect to the different axes used in
their collection, and, equivalently, the different positioning of the specimens
during data collection. The estimation and extraction of these nuisance para-
meters are important steps in modern, coordinate-based morphometrics, and
various approaches to this problem are discussed below.

Besides the fundamental problem of coordinate comparability, landmark
coordinates also differ in the quality of the information they encode. This has
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been codified to a degree by Bookstein’s (1991) classification of landmarks as
Type I, II, or III. Type I landmarks are those defined with respect to discrete
juxtapositions of tissues, such as triple points of suture intersections, Type II
landmarks are curvature maxima associated with local structures usually with
biomechanical implications, and Type III landmarks are extremal points, like
the endpoints of maximum length, breadth, etc., defined with respect to some
distant structure. Of these, the two- or three-dimensional locations of Types
I and II are most often fully defined with respect to local morphology, and
all dimensions are more-or-less biologically informative. Type III landmarks,
however, are “deficient” in that they contain meaningful information only in
line with the remote defining structure. Variation orthogonal to this direction
has a substantial arbitrary component. A similar situation arises in the analysis
of outlines discussed later.

Landmark coordinates afford us the opportunity to examine two topics that
are more difficult to consider when dealing with other types of morphometric
data. The first is the importance of triangles. Triangles, triplets of points, are
the simplest geometric structure to have shape. A single point has only location,
and a line segment defined by the two endpoints is completely described by its
location, orientation, and length (size). Triangles have all of these attributes
plus an additional component that is shape.

The second topic made more accessible by landmark coordinates is the con-
sideration of the dimensionality of shape variation, that is, the number of
dimensions (degrees of freedom) necessary to represent shapes. The triangle’s
simplicity makes it a good starting point. Any triangle in a plane requires only
six numbers (the coordinates) for its complete geometric description. One
degree of freedom is attributable to translation along each axis, one to scal-
ing, and another to orientation. This results in 6 − 2 − 1 − 1 = 2 degrees
of freedom for variation in shape. Note that with only two dimensions left
to encode shape we have a chance to graphically explore the structure of this
space. This is one reason triangles are such an important part of research into
shape theory.

Since the number of nuisance parameters are fixed for planar configurations,
the general formula for the dimensionality of shape variation for p points in
two dimensions is 2p − 2 − 1 − 1 = 2p − 4. For three dimensional data the
formula is 3p − 3 − 3 − 1 = 3p − 7, where we have three dimensions in which
to translate, three angles of rotation, but still one scale parameter to estimate.
To be completely general, the dimensionality of shape variation for an arbitrary
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number of points, p, in any number of dimensions, k, is pk −k −k(k −1)/2−1.
We return to this topic in our discussion of shape spaces.

Outlines

Some anatomical structures, like brow ridges, orbital rims, or the foramen
magnum, do not lend themselves to characterization by well-defined, dis-
crete landmarks. They are, instead, partial or complete boundaries of another
structure or traces of local maximum surface curvature that are continuous,
one-dimensional features.

Such curve or outline data are usually represented by ordered sets of discrete
point coordinates. These can be superficially similar to landmark data, but they
are conceptually quite different. It is the entire underlying continuous structure
that is to be compared across specimens and not the individual points used to
characterize the outline. This deceptive similarity is even more reinforced when
equal numbers of points are used to sample individual outlines. In fact, the
coordinates of outline points only contain one piece of useful information—
the position of the outline in the region around the sample point relative to its
position at similar surrounding points.

This distinction usually requires special methods of analysis, and different
methods are available for different types of outlines. In general, outlines can
be classified as simple or complex, where simple outlines can be expressed as
a single-valued function of some other variable, say y = f (x), and complex
outlines cannot. Outlines can also be closed or open, where closed outlines
have no beginning or end and can be traced repeatedly without lifting the
pencil or reversing direction on the outline, while open outlines have distinct
starting and ending points. Rohlf (1990) provides a good survey of outline data
and earlier methods for their analysis.

Two types of outlines are shown in Figure 2. The arc between bregma and
nasion is the mid-sagittal profile of the frontal bone and could be treated as an
open, simple curve. The mid-sagittal outline of the entire cranium in the figure
would be a complex, closed outline.

Surfaces

Surfaces, two-dimensional regions within some defined boundaries, are not
simple extensions of outlines. An immediate problem introduced in the
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transition from the analysis of outlines to that of surfaces is that the concept
of the one-dimensional ordering of sample points is lost. Thus, the analysis
of surfaces requires unique morphometric methods that are few. Niewoehner
(Chapter 13, this volume) uses projected grids to construct sets of points
with which to sample surfaces, and the chapter by Gunz et al. in this volume
(Chapter 3) provides some new possibilities for analyzing surfaces within the
superimposition framework established for landmarks.

TRADITIONAL METHODS

The bulk of biological literature dealing with shape analysis has used methods
that are today called “traditional” morphometrics (Marcus, 1990). These meth-
ods are characterized by the application of multivariate statistical procedures to
collections of distances, distance ratios, and/or angles gathered to sample the
shape of an object. Thus, such approaches are also known by the appellation
“multivariate morphometrics” (Blackith and Reyment, 1971).

As described earlier, the distances, ratios, and angles used in traditional, or
multivariate, morphometrics more often than not fail to encode all of the geo-
metric information about the biological structures by which they are defined.
Without recording and maintaining this geometry, morphometric analyses can-
not provide an exhaustive assessment of shape variability or differences and
may unnecessarily neglect important, but unanticipated, geometric relation-
ships among the structures under investigation. Furthermore, such incomplete
analyses make it difficult to produce graphical depictions of results that can be
related to the actual physical specimens.

Bookstein et al. (1985) attempted to remedy these limitations with the devel-
opment of the truss—a systematic series of measurements designed to fix the
geometry (up to a reflection) of the anatomical landmarks. Another method
for dealing with the same problem is to simply analyze all possible distances
between the landmarks of interest. This is the basis for the Euclidean Distance
Matrix Analysis (EDMA) methods described in the section on coordinate-free
methods.

SUPERIMPOSITION-BASED MORPHOMETRICS

The deficiencies of distance- and angle-based morphometrics can be addressed
by the direct analysis of the coordinates of the landmarks by which traditional
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measurements are, or could be, defined. Raw coordinates, however, also con-
tain information about the location, orientation, and size of the configuration
of landmarks that must be factored out or subtracted off to achieve an analysis
of shape. Proper geometric morphometric methods do not simply discard the
information in these nuisance parameters, but, rather, sequester it (a phrase
due to Bookstein) into a separate suite of non-shape variables available for later
consideration.

One way of partitioning the total variation of raw coordinate data into shape
and non-shape components is by superimposing all of the configurations within
a common reference system and scaling them to a common size. Various ways
to do this are described in the following sections.

The data used to illustrate some of the methods are presented in Figure 3 (left)
that shows a set of five landmarks on a gorilla scapula whose two-dimensional
coordinates were recorded from scanned photographs (provided by Andrea
Taylor) using tpsDig (Rohlf, 2001). The complete data set consists of coordin-
ates for 52 male and 42 female adult, west African lowland gorillas, and we seek to
compare sexes with respect to scapular shape. Taylor and Slice (Chapter 14, this
volume) use similar data (though not exactly the same landmarks) to investigate
biomechanical predictions of scapular shape in Pan and Gorilla.

Two-Point Registration

There are any number of ways one could define measures of size, location,
and orientation for a particular set of landmark coordinate data. For two-
dimensional data one could simply specify the coordinates of one landmark
to define location and the length and direction of a line segment, or baseline,
between that point and another to define orientation and scale. This is the
“two-point registration” extensively developed by Bookstein (1986, 1991). It
is also often called base-line registration or edge-matching.

The operations involved in the two-point registration of planar configura-
tions can be expressed quite concisely in complex notation (Bookstein, 1991),
but here and throughout this chapter I use the more general matrix notation
that is readily extended to three- and higher-dimensional data. Let

X =
⎡
⎢⎣x1 y1

x2 y2

x3 y3

⎤
⎥⎦
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Figure 3. Data used to illustrate various morphometric methods. Left, gorilla scapula
and landmarks. Right, boths males (circles, n = 52) and females (triangles, n = 42)
superimposed using two-point registration with landmarks 1 and 3 as the baseline.
Mean triangles between extremal angles shown for males (dotted) and females (dashed).
Superimposition done with Morpheus et al. (Slice, 1998). Plot generated with R
(http://www.r-project.org).

be the x and y coordinates of the three labeled vertices of a triangle, and let
us specify that we will use points in the first and second position for our regis-
tration. Subtracting off location as encoded in the coordinates of the first point
we get

X′ = X − 1t

=
⎡
⎢⎣x1 y1

x2 y2

x3 y3

⎤
⎥⎦ −

⎡
⎢⎣1

1
1

⎤
⎥⎦ [

x1 y1

]
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=
⎡
⎢⎣x1 y1

x2 y2

x3 y3

⎤
⎥⎦ −

⎡
⎢⎣x1 y1

x1 y1

x1 y1

⎤
⎥⎦

=

⎡
⎢⎢⎣

0 0
x2 − x1 = x ′

2 y2 − y1 = y ′
2

x3 − x1 = x ′
3 y3 − y1 = y ′

3

⎤
⎥⎥⎦

Next, we rotate the baseline so that it is in some standard alignment that is
usually taken to be coincident with the positive x-axis:

X′′ = X′Ht =

⎡
⎢⎢⎣

0 0
x ′′

2 0

x ′′
3 y ′′

3

⎤
⎥⎥⎦

H =
[

cos θ sin θ

− sin θ cos θ

]

θ = cos−1
((

x′
2 · e1

)
/

(√
x′

2 · x′
2
√

e1 · e1

))

x′
2 =

[
x ′

2 y ′
2

]t

e1 =
[
1 0

]t

Finally, we divide by the length of the baseline, which because of the
standardizations so far, is simply x ′′

2 :

X′′′ = 1
x ′′

2
X′′ =

⎡
⎢⎣

0 0
1 0

x ′′
3/x ′′

2 = x ′′′
3 y ′′

3/y ′′
2 = y ′′′

3

⎤
⎥⎦

These operations are applied separately to all triangles in a sample. Notice
that after these transformations, the coordinates of the first two landmarks are
fixed at (0, 0) and (0, 1) for any triangle in the sample. Thus, all informa-
tion about the shape of a triangle is encoded in the coordinates of the third
landmark (x ′′′

3 , y ′′′
3 ). These are known as Bookstein coordinates or Bookstein

shape coordinates for triangles. However, this same method was used by Galton
(1907) to characterize facial profiles.

For more than three landmarks, one simply extends the rows of the X and 1
matrix and applies the same transformations to any additional landmarks. For
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each additional landmark, the dimensionality of the shape variation is increased
by two, since the number of dimensions lost due to the standardizations is fixed.

One might ask, how does the choice of baseline effect the resulting shape
coordinates and can such effects impact the findings of the analysis? As Book-
stein (1991) points out, for small shape variation the use of different baselines
effects mainly translations, rotations, and rescalings of the scatter of shape
coordinates that will not effect multivariate statistical analysis. The magnitude of
the rescaling effect is a function of the relative lengths of alternative baselines,
and problems do occur for baselines approaching zero length. Rohlf (2000)
showed, for instance, that the power of statistical tests for group differences is
severely reduced when the landmarks defining the baseline are nearly coincident.
This is not a serious problem in practice, since investigators are likely to make
more reasonable choices of baseline that span the object under consideration.

It is somewhat difficult to extend the Bookstein coordinates to three-
dimensional data. One possibility was implemented by Slice (1994) and
described by Dryden and Mardia (1998). This involves the specification of
a third point to establish a baseplane. The data are then transformed, as before,
so that the first point is situated on the origin and the vector between first
and second points is coincident with the positive x axis. Finally, the config-
urations are rotated such that the plane defined by the three base points is
coincident with the x , y plane with the third point on the positive side of the y
axis. The algebra is a bit more complicated than in the two-dimensional case,
but the principles remain the same. These operations result in the variation
at the third landmark not being completely removed, yet it is not fully three
dimensional, either. There can be up to two dimensions of variation at this
point, and the interpretation of such results becomes much more difficult. As a
result, this method of three-dimensional shape variable construction has been
little used.

An example of using two-point registration to construct Bookstein shape
coordinates is illustrated in Figure 3 (right), that shows the registration of
the sample of male and female gorilla scapula data mentioned above. The tri-
angle between the extreme angles is highlighted, but the entire five-landmark
suite of data can be analyzed through the coordinates of the three non-baseline
points. Apparent differences between male and female lowland gorillas can
be seen in the differences in the locations of sex-specific scatter at the various
landmarks.
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Procrustes Superimposition

Instead of using just one or two landmarks to estimate the requisite parameters,
one might consider methods to incorporate information from all of the land-
marks in a configuration. This is the basis for the most widely used method in
geometric morphometrics today—the Procrustes superimposition. Major the-
oretical investigations into Procrustes-based methods are due to David Kendall
(1984, 1985, 1989), who was motivated, in part, by questions in archeology
(Kendall and Kendall, 1980). Specifically, it was proposed that megalithic sites
in England were linearly situated. The statistical question, then, is how can one
tell if sets of points are more linearly arranged than one would expect from
random placement, and Kendall’s approach was to develop the theoretical con-
structs to test if triangles formed by triplets of these points (sites) were flatter
than expected by chance. Since there is no obvious correspondence between
sites like there is in anatomical landmarks, Kendall’s investigations included a
component allowing for the permutation of vertices.

Kendall’s work resulted in the deep and elegant mathematical results that
form the basis of much of modern shape theory. Kendall’s and Bookstein’s
research intersected in Bookstein’s (1986) Statistical Science paper for which
Kendall was a discussant. Goodall (1991) provides an extensive treatment of the
practical and theoretical aspects of the Procrustes methods, and Small (1996)
and Dryden and Mardia (1998) are recent statistical texts.

Much theoretical work on Procrustes methods is due to Kendall, but much
applied work preceded his endeavors. The earliest known matrix formulation
of the two object Procrustes method is due to Mosier (1939) for psychomet-
ric application. The matrix formulation of Generalized Procrustes Analysis (see
below) for superimposing samples was set forth by Gower (1975), who was con-
cerned with comparing the multivariate scoring of carcasses by meat inspectors.
Similar algebraic and geometric comparisons of landmark configurations for
anthropological purposes were used by Sneath (1967), and Cole (1996) points
out that the earliest use of this technique was, in fact, suggested by the eminent
anthropologist Franz Boas (1905) to address shortcomings of the Frankfurt
orientation.

Procrustes superimposition is a least-squares method that estimates the para-
meters for location and orientation that minimize the sum of squared distances
between corresponding points on two configurations. A least-squares estimate
for scale is also available, but its use does not lead to symmetric results between
configurations of different sizes, so all specimens are most often scaled to a
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standard size. When the least-squares estimate of scale is used, the analysis is
called a full Procrustes analysis. It is termed a partial Procrustes analysis in the
usual case when configurations are scaled to a common size. The square root
of the sum of squared coordinate differences after superimposition is a measure
of the shape difference between configurations.

For a particular configuration of p landmarks in k dimensions written as a p×k
matrix, X1, we model difference in coordinate values relative to a mean-centered
reference configuration of corresponding landmarks, X0, by

X1 = 1
r1

(X0 + E1)Ht
1 + 1t1,

indicating that numerical values in X1 differ from those in X0 by scaling, 1/r1,
rotation, Ht

1, translation, t1, and actual shape differences, E1, which would
include measurement error. 1 is a p × 1 matrix of ones. Some rearrangement
leads to

r1(X1 − 1t1)H1 = X0 + E1

that exposes the shape differences in E1. The estimates of the requisite
parameters are

tt
1 = 1

p
Xt

11 = (x̄1, ȳ1)t ,

H1 = V1�1Ut
1, where Xt

1X0 = U1D1Vt
1,

and

r1 = 1√
tr

(
(X1 − 1t1)1(X1 − 1t1)

) = 1
CS1

It can be shown fairly easily (Boas, 1905; Sneath, 1967) that to superimpose
two configurations to minimize the sum of squared distances between land-
marks one need only translate the configurations so that the average coordinate
in each dimension is the same for both specimens. The exact coordinates of
the average location are irrelevant, so both configurations are centered on the
origin as indicated in the t1 vector above.

H1 is an orthogonal matrix that rigidly rotates the X1 configuration about
the origin to minimize the sum of squared distances between its landmarks and
the corresponding landmarks of X0. It is computed as the product of three
matrices, of which U and V are derived from the singular value decomposition
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of the product of the transpose of X1 and X0. The matrix � is a diagonal matrix
with positive and negative ones along the diagonal, each having the same sign
as the corresponding element of D1, which is also diagonal. This substitution is
to prevent any stretching of X1 to achieve a better (in a least-squares sense) fit to
X0—the non-unity elements of D1 correspond to stretching or compression. As
expressed, the rotation could also effect a reflection to improve fit. If such is not
desired, H1 must be tested to see if it is reflecting (has a negative determinant)
and adjusted accordingly (change the sign of the diagonal element of � in the
same position as that of the smallest value of D1).

The scalar, r1, is the scale factor and is most frequently computed as the
inverse of the configuration’s centroid size (CS). Each configuration involved in
an analysis is similarly scaled so that all configurations have a standard size—unit
CS. CS is used because small, circular, random variation at individual landmarks
does not generate a correlation between shape and this measure of size (Book-
stein, 1991). It is also the length of the vector containing all of a centered
specimen’s landmark coordinates written out as a pk row or column.

The above formulae can all be derived using matrix notation, and they apply
to two-, three-, or higher-dimensional configurations of landmarks. One simply
appends columns to the various Xi and other matrices to allow for the additional
coordinates.

So far, the discussion has focused on the superimposition of one configur-
ation of landmarks onto another, specified configuration. Such fitting of two
specimens has been called ordinary Procrustes analysis, OPA (Goodall, 1991).
Researchers, though, are usually interested in the analysis of samples of more
than two specimens. In such cases, it is usual to relate members of a sample to
their mean. The problem is that meaningful mean coordinates cannot be com-
puted prior to superimposition and superimposition requires knowledge of the
mean configuration. The solution to this is an iterative process in which any
specimen is initially selected to stand for the mean. All of the configurations in
the sample are fit to that reference, then a new mean is computed as the arith-
metic average location of the individual landmarks in the sample and scaled to
unit CS. The process is repeated, fitting the sample to the new estimate, and it
is guaranteed to produce monotonically decreasing sum-of-squared deviations
of the sample configurations around the estimated mean (Gower, 1975). The
procedure is terminated when this sum-of-squares no longer decreases by some
critical value or, equivalently, when the change in mean estimate from one iter-
ation to the next is deemed negligible. The term used for the fitting of a sample
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onto an iteratively computed mean is generalized Procrustes analysis (GPA)
(Gower, 1975), and it is the superimposition method used for most geometric
morphometric studies.

Figure 4 shows the effects of the separate translation, scaling, and rota-
tion steps of a GPA on the gorilla data. The triangles between the extreme
angles of the scapulae are highlighted in the last panel for later reference,
but the superimposition was based on all five landmarks. In general, one can
see a “condensation” of the original variability into nearly circular, apparently
unstructured variation around the mean landmark locations as the superimpos-
ition translates, scales, then rotates the configurations to minimize their sum of
squared differences to the iteratively computed mean. Also, one can see subtle
differences between the males and females in average landmark location that
suggests sexual dimorphism in scapula shape (tested and visualized below). Both
sexes were fit to the grand mean by generalized Procrustes superimposition, and
the sex-specific means computed separately afterwards.

In this volume (Chapter 9), McKeown and Jantz compare the results of
coordinate-based, generalized Procrustes analysis with those of traditional,
distance-based data in the investigation of spatio-temporal affinities in samples
of Native American crania.

Resistant Fit

One criticism of the Procrustes superimposition is of its use of a least-squares cri-
terion in estimating the translation and rotation parameters (Seigel and Bensen,
1982). If one or a few landmarks are greatly displaced relative to the others in
one specimen or in one sample, these localized differences would inflate the
squared distance between configurations. The least-squares Procrustes meth-
ods, therefore, spread such large local differences across all of the landmarks
to produce a number of smaller differences. This is called the Pinocchio effect
referring to the shape of the puppet’s head before and after lying. The only real
difference would be in the length of the nose, but a Procrustes superimposition
would suggest differences over the entire head.

An approach developed to help identify local differences is resistant fitting
(Rohlf and Slice, 1990; Seigel and Bensen, 1982; Slice, 1993a, 1996). These
are methods based on the use of medians or medians of medians (repeated
medians) to estimate the translation, scale, and rotation parameters for super-
imposition. Seigel and Benson (1982) describe the method for pairs of two
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Figure 4. Generalized Procrustes superimposition of the scapula data. Upper left, raw
data as digitized. Upper right, data after translation to the origin. Lower left, translated
data after scaling to unit CS. Lower right, translated and scaled data after least-squares
rotation of individual specimens to their iteratively-computed sample mean. Mean tri-
angles between extremal landmarks shown for males (dotted) and females (dashed).
Superimposition done with Morpheus et al. (Slice, 1998). Plots generated with R
(http://www.r-project.org).



Modern Morphometrics 21

dimensional configurations, Rohlf and Slice (1990) extend the method to allow
for the generalized resistant fitting of two-dimensional data, and Slice (1993a,
1996) develops methods for the generalized resistant fitting of three and higher
dimensional samples based on similar work for two configurations by Siegel and
Pinkerton (1982). Dryden and Mardia (1998) discuss other alternatives.

Despite its intuitive appeal, the median-based results do no allow nearly
as sophisticated a theoretical development as the Procrustes methods (e.g.,
Dryden Mardia, 1998; Kendall, 1984, 1985; Small, 1996). The current con-
sensus is that the Procrustes methods are to be preferred for use in statistical
analysis. The resistant methods, though, can still be useful, especially through
the comparison of the results of Procrustes and resistant superimpositions
(e.g., Slice, 1996) and, like two-point registration, can be used for suggest-
ive visualizations after statistical analyses based on Procrustes methods have
been performed.

SHAPE SPACES

The square root of the sum of squared differences of corresponding landmark
coordinates in two (partial) Procrustes-superimposed figures is equivalent to
the distance between the tips of the two vectors containing all of the land-
mark coordinates for each of the two configurations. Given this “Procrustes
distance,” it is possible to ask about the geometry of a space in which the
distance between all points representing shapes is that same distance. Such an
inquiry was a major component of the theoretical work of Kendall (1984, 1985)
who was able to fully describe the geometry of what is generally referred to as
“Kendall’s shape space.”

Some of Kendall’s key results are that the shape space of planar triangles is
two-dimensional, but that it is non-Euclidean (curved) and isometric to the
surface of a sphere of radius 1

2 . This is consistent with our earlier conclusion
about the dimensionality of the shape space for triangles obtained by counting
degrees of freedom. Because of the spherical geometry of shape space, Kendall
and other mathematicians often prefer to work with great-circle, or Riemannian,
distance, ρ, instead of the straight-line, or chord, partial Procrustes distance,
d, but there is a simple relationship between the two, ρ = 2 sin−1(d/2) for
two-dimensional configurations (Kendall, 1984).

An important corollary of Kendall’s results for planar triangles is that it is
possible to visualize shape space for such data. Figure 5 shows Kendall’s shape
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Figure 5. Representation of Kendall’s shape space for triangles. Left, 2,000 random
triangles generated by normal displacement of vertices from the origin. Right, 94 gorilla
scapulae. Males and females not distinguished. Scale bar is 0.5 units. Plots created with
tpsTri (Rohlf, 2002).

space for triangles. The plot on the left illustrates one of his other results—that
triangles generated by the independent, normal displacement of points from the
origin are uniformly distributed in shape space (Kendall, 1984). The positions
of 2,000 such points are shown. The right plot illustrates another import-
ant point—that the biological variability of interest to researchers is usually
concentrated in a relatively small area of shape space. The right panel shows
the positions of the triangles formed by the extreme angles of the 94 gorilla
scapulae. This is an important feature of biological material for the statistical
analysis of shape data. It is also interesting to note that Bookstein shape coordin-
ates are a special, stereographic projection of points in Kendall’s shape space
(Small, 1996).

Kendall’s results are based on the shape distance between two configurations
of landmarks. The situation is somewhat different for the generalized Procrustes
analysis, where multiple configurations in a sample are fit to in iteratively-
computed mean (Slice, 2001). In that case, the geometry of superimposed
planar triangles is that of a hemisphere of unit radius. The key difference in
the two geometries arises from the fact that in Kendall’s shape space the dis-
tances between all points are Procrustes distances. With GPA, the specimens
are individually superimposed onto the consensus. Only distances between indi-
vidual specimens and the consensus equal the Procrustes distance on the GPA
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Figure 6. The generalized Procrustes hemisphere for triangles. Data are the same as
in the previous figure. Scale bar is 0.5 units. Plots created with tpsTri (Rohlf, 2002).

hemisphere. Distances between specimens do not. For more than three land-
marks in two dimensions, the geometry of GPA space is still the surface of a
hyper-hemisphere. Like Kendall’s shape space, though, the geometry for con-
figurations in three or more dimensions is likely to be much more complicated
(Dryden and Mardia, 1993; Small, 1996).

The GPA spaces for the random triangles and gorilla scapulae are illustrated
in Figure 6. Rohlf (1999a) and Slice (2001) discuss the simple relationship
between the Kendall’s shape space, the GPA hemisphere, and various projec-
tions into linear tangent spaces (see section on Multivariate analysis). These
relationships, however, hold only for planar triangles (Slice, 2001).

MULTIVARIATE ANALYSIS

The purpose of the superimposition methods is to register landmark configura-
tions in a common coordinate system in which the coordinates of the landmarks
can be used as shape variables. This is not an end in itself, but provides the
researcher with suitable data to explore the structure of shape variation, assess
the significance of differences in mean shapes, relate the observed variation to
extrinsic factors, and the like. For this, the whole suite of multivariate methods
familiar to traditional morphometrics is available for the analysis of differences
and variation in superimposed landmark coordinates. For these methods, the
student of morphometrics is free to consult standard texts on multivariate
statistics, such as Johnson and Wichern (1982) or Krzanowski (1988). One
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especially useful text is Carroll and Green (1997) that focuses on the geometric
interpretation of multivariate analyses. This nicely compliments the geometric
theme at the core of modern morphometric analysis.

There is one caveat in the application of parametric multivariate methods to
Procrustes-processed data. The theory underlying many multivariate methods
assumes a linear, Euclidean space. We have seen, though, that the geometry
of Kendall’s shape space and that of generalized Procrustes analysis is non-
linear, thereby violating this key assumption. One way around this problem
is to analyze not the Procrustes coordinates, but their projection into a linear
space tangent either to Kendall’s shape space or the Procrustes hemisphere.
Rohlf (1999a) and Slice (2001) describe and assess various projections (see
also Dryden and Mardia, 1998 and Small, 1996). In general, an orthogonal
projection from the GPA hemisphere to a linear space tangent at the sample
mean seems to best preserve the distances between specimens, though for the
relatively small variation found in most biological samples any of the reason-
able alternative projections does a fairly decent job and, conversely, using no
projection does not violate the assumptions of a linear space too badly.

Singleton in this volume (Chapter 15) uses principal components analysis
and regression of Procrustes-superimposed landmarks to investigate allometric,
functional, and phylogentic aspects of the shape of masticatory structures in
cercopithicines.

An alternative to parametric methods with their restrictive assumptions is the
use of nonparametric, randomization tests to effect similar tests (Bookstein,
1997). See, for instance, Manly (1997) for a discussion of randomization
and related non-parametric tests. In the case of the gorilla data used so far,
differences in mean shape between male and female gorillas are significant
for both Bookstein’s shape coordinates (p = 0.001) and GPA coordinates
(p = 0.001) when judged by a simple randomization test that compares the
observed between-group sum-of-squares to the same value for 999 random
shufflings of group membership. Sex accounted for about 12% of total sample
variation in Bookstein shape coordinates (Figure 3) and about 11% in GPA
coordinates (Figure 4, lower right).

Similar permutation tests are used here by Wescott and Jantz (Chapter 10)
to document recent, secular change in the craniofacial shape of Black and White
Americans, and Bastir et al. (Chapter 12) use randomized version of partial least-
squares analysis (Bookstein, 1991) to examine the integration of the cranium
and mandible in hominoids.
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VISUALIZATION

Once one has superimposed the configurations, computed means, quantified
variation, and/or assessed significant differences or associations, one can take
advantage of a geometric approach to morphometrics to generate visualiza-
tions of differences, associations, variability, etc. in the space of the original
specimens. There are several ways to do this.

Vector Plots

Perhaps the simplest method for visualizing the results of a geometric morpho-
metric analysis is with vector plots. This is done by taking the coordinates of
the landmarks of a key configuration, say, a grand mean or the mean of one
group in a two-group comparison, and drawing vectors from the landmark
locations on that configuration to points specified by the results of your stat-
istical analysis. For instance, say you are comparing two mean shapes, X̄1 and
X̄2, which have been computed after fitting the members of both samples to
their joint grand mean. The relevant vectors for display might then be the
difference vectors between the two groups, �X̄1,2 = X̄2 − X̄1. One would
then plot the landmarks of X̄1 and draw vectors from them to the points
X̄1 + �X̄1,2. Note that these will be just the locations of the points of X̄2.
One can also exaggerate (or diminish) differences by multiplying the displace-
ment matrix by some appropriate factor, for example, 2�X̄1,2 would double
the difference between the two groups, but preserve the direction of the dif-
ferences. For more than two groups one could plot all pairwise differences
as vector differences or plot the differences between group means and the
grand mean.

This type of plot is shown in Figure 7 where the shape difference between
average male and female gorilla scapula from a five-landmark GPA are shown.
The reference configuration is that of the average male, and the vectors (their
length multiplied by a factor of two) point in the direction of the shape of the
average female.

The machinery of geometric morphometrics and linear statistical analysis
make it equally easy to plot results from analyses more complicated than
mean comparisons. The results of familiar multivariate analyses like prin-
cipal components analysis, canonical variates analysis, etc. are expressed as
linear combinations of the original variables—the superimposed landmark
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Figure 7. Difference between male and female gorilla scapulae shown as vectors
(magnified ×2). Open circles are mean male landmark coordinates. Solid circles are
mean female coordinates. Plot created with Morpheus et al. (Slice, 1998).

coordinates. Furthermore, these results are usually in the form of vectors scaled
to unit length. To visualize, say, the shape variability captured by the principal
component axis associated with the largest amount of variation (usually called
the 1st principal component, the one with the largest eigenvalue), one takes the
grand mean configuration and adds to it the coefficients of the first PC to gen-
erate the positions of the vector tips as described previously. The position of the
tips of these vectors corresponds to the shape of a configuration displaced one
unit in the positive direction along the first principal component (It is often not
appreciated, but the positive/negative directions of individual components are
perfectly interchangeable. They are defined only up to reflection). Likewise, the
coefficients from a multiple regression of shape onto some other variables can be
used to generate the predicted shape for any value of the independent variables,
and this can be used as to define the tips in a morphometric vector plot.

One problem with vector plots is that it becomes irresistibly tempting to
discuss them in terms of individual points moving or being displaced. Such
statements are not justifiable simply on the basis of the plots, and this kind of
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information is generally unknowable given landmark coordinate data. Consider
two triangles of different shapes. Which landmarks in one are in different relative
locations compared to the other? One cannot say. The procedures used for shape
analysis examine shape differences in their totality, not one landmark position
at a time. So, is there a graphical device that can take into account the relative
positions of all the landmarks? Yes, the thin-plate spline.

Thin-Plate Splines

The thin-plate spline was adapted for use in morphometrics by Bookstein (1989,
1991). It addresses both the problem of integrating information about the
relative locations of all landmarks and the classic problem posed by D’Arcy
Thompson (1942) of expressing shape differences between two specimens as
a global mapping of the Cartesian space of one specimen into that of another.
This latter goal, in fact, has a much longer history with Renaissance artists like
Albrecht Dürer using deformed grids to express normal variation and methods
of pictorial caricature (Bookstein, 1996b).

The theoretical justification for the method is rather complicated, but the
algebra is relatively straightforward. First, one configuration, usually a group
or grand mean, is used as a reference and the differences between the landmark
locations and those of another specimen, the target, along each coordinate axis
are processed separately. That is, one computes the required parameters for the
differences in x coordinates between the two specimens, then the y coordinates,
and so on. For each coordinate dimension, the differences between the two
configurations are treated as displacements at right angles out of the plane of
the reference configuration (for the two-dimensional case). The equations so
derived are then recombined to express the totality of differences between the
two configurations (Figure 8).

To achieve this, we need the coefficients for the equation:

f (x , y) = a1 + ax x + ay y +
p∑

i=1

wiU
(
(xi , yi) − (x , y)

)
(1)

This function maps a pair of coordinates, (x , y), to a scalar incorporating inform-
ation about the possesive proximity to each of the p reference landmarks. What
we seek are the coefficients such that that scalar at the positions of the landmarks
in the reference configuration equals the heights above or below the plane that,
in turn, correspond to the coordinate differences between the reference and the
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Figure 8. Construction of the thin-plate spline deformation grid. Shown in the upper,
left are two five-landmark configurations differing only in the right and upward displace-
ment of the central landmark on the target configuration. To produce a deformation grid
for the difference, interpolation formulae are computed separately for the x displace-
ment (upper, right) and the y displacement (lower, left), then combined (lower, right).
Note, this construction works even though the configurations are not in Procrustes
alignment. Plots created with Morpheus et al. (Slice, 1998).

target. Note that although we set this as a condition for the above equation, the
resulting formula can still be applied to any position in the plane of the refer-
ence to interpolate heights at points not coincident with reference landmarks.
With the addition of one more condition—that the resultant surface be the
least bent of any surface passing through the specified heights at the locations
of the reference landmarks—the derived surface will be the thin-plate spline.
This specification comes from engineering where the equation is used to model
the deformation of an infinite, infinitely-thin metal plate, hence the name.

To compute the coefficients for a configuration of p points in k = 2 dimen-
sions meeting our requirements, we begin with the construction of a partitioned
matrix:

L =
[

Pp×p Qp×3

Qt
p×3 03×3

]
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where P is symmetric with zeros on the diagonal and off-diagonal elements
pi,j = pj ,i = U (ri,j ) = r2

i,j ln(r2
i,j ), where ri,j is the Euclidean distance between

points i and j of the reference specimen. Q is a matrix of the landmark coordin-
ates of the reference specimen augmented by an initial column of ones, and 0
is a matrix of zeros.

The required coefficients are obtained from the equation:

L−1Yp+3,1 = (w|a1, ax , ay )
t (2)

where Y is the vector of differences between the reference and the target spe-
cimen along the axis currently being considered (the constraints placed on the
equation mentioned earlier) augmented by three zeros at the end. The indi-
vidual elements of w are the wi in the earlier equation. Each is associated with
one (the ith) landmark on the reference configuration.

We are now free to use Equation (1) and the new coefficients to compute
the height of the surface at any point in the plane of the reference. As required,
heights at reference landmarks will equal differences between the reference
and the target configuration along the coordinate axis under consideration,
and heights at other positions will be interpolated so that the resulting surface
has minimal bending. For application in morphometric visualization, we then
assemble the heights, separately computed with different coefficients for each
coordinate axis, into displacement vectors for a given point in the plane of the
reference.

To use this information to achieve the thin-plate spline plots seen throughout
this book, one constructs a grid of square cells over the reference configuration
and computes the interpolated displacement vectors for points on the gridlines.
Redrawing the connections between the displaced points results in the thin-
plate spline plot (Figure 8). It is important that the initial grid cells be square
so that deviations from “squareness” can be interpreted as oriented stretching
within the cells of the resulting spline plot. This is not a mathematical require-
ment. It is just harder to assess how a cell has changed in a plot if you are unsure
of its initial shape and distinguishing between initial rectangles and resultant
quadrilaterals is more difficult than spotting deviations from squareness.

Note that this construction has no prerequisites about the superimposition of
the reference and the target configurations. The construction is also very robust
and can represent extreme shape differences beyond any to be encountered in
anthropological research. The only exception is that the formulae “blow up”
if two points are coincident on the reference, but distinct on the target. This
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is perceived as a “tearing” of the thin-plate spline model. In biological terms
such a situation would represent the genesis of a new biological feature through
either evolution or development. Bookstein and Smith (2000) proposes the use
of “creases” to model such occurrences.

The wi used in the thin-plate spline provide the coordinates of an individual
specimen with respect to the eigenvectors of the bending energy matrix (see the
section on “Warps” below)—the upper, left p ×p submatrix of L−1 (Bookstein,
1991). These eigenvectors are a set of orthonormal axes for local, or non-affine,
components of shape differences with respect to the reference configuration.
The remainder of the total shape difference between an individual specimen
and the reference is the global, affine, or uniform shape difference. These are
those differences that can be characterized as stretching or compressing the
space in orthogonal directions. Such transformations have the properties that
they leave parallel lines parallel and affect the local space precisely the same
way everywhere, hence the term global (Figure 9, upper right and lower left).
In contrast, the local shape differences represented by the eigenvectors of the
bending energy matrix encode different compressions, expansions, displace-
ments, or reorientations of local regions of the space (Figure 9, lower right).
The wi encode the local difference between shapes, but use of such scores in
the analysis of total shape difference requires the quantification of the affine
component, as well.

Bookstein (1996a) presented a method to compute the affine terms for
two-dimensional data based on the Procrustes metric, but this method does
not extend easily to higher-dimensional configurations. Recently, Rohlf and
Bookstein (2003) have presented more general, complimentary approaches to
quantifying affine variation. One is based on the Burnaby-like projection of data
(Burnaby, 1966) into a space orthogonal to that of local variation. The other
is based on the linear regression of a specimen onto the consensus or reference
that is similar to the affine least-squares fitting described in Rohlf and Slice
(1990). Regardless of the form of computation, the concatenation of the vari-
ables for purely affine shape differences with those for local variation provides
a linear space suitable for the application of standard, parametric multivariate
statistical tests.

The discussion so far has been modeled differences in two-dimensional
configurations as deviations out of the plane of the reference. The situ-
ation is a little different, but not by much, for generating thin-plate splines
for three-dimensional configurations. Here the model is less-intuitive, with
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Figure 9. Affine transformations (upper, right and lower, left) are global in the sense
that they involve only a simple stretching/compression in orthogonal directions and are
the same everywhere in the space. Non-affine, or local, deformations involve twisting,
stretching, and shifting of small regions as shown in the lower, right. An exact posi-
tion must be specified to discuss the effects of such deformations. Plots created with
Morpheus et al. (Slice, 1998).

coordinate-wise differences being considered as orthogonal displacements out
of the volume of the reference specimen, but it is identical in spirit to the
two-dimensional case. Some adjustment is also needed in the U function,
which becomes |ri,j | to achieve the requisite minimization (Bookstein, 1991,
appendix 1).

Figure 10 shows a thin-plate spline mapping the shape of the average male
gorilla scapula landmarks onto those of the average female gorilla. This figure
was generated using the average male gorilla landmark locations as the refer-
ence in the thin-plate spline equations and the average male–average female
difference vectors (×2) in the Y matrix in Equation 2. One can now appreciate
the regional expansions, rotations, etc. taking into account the relative positions
of all landmarks simultaneously. As with vector plots, any reasonable source of
displacements can be used to generate the splines. For instance, one can spline
an average configuration using the coefficients of a principal component or the
coordinates of a predicted configuration based on a regression analysis.
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Figure 10. Thin-plate spline deformation grid showing the difference between mean
male and female gorilla scapulae (magnified ×2) as a transformation of the male scapula.
Vectors are also shown. Compare with Figure 7. Plot created with Morpheus et al. (Slice,
1998).

The thin-plate spline mapping can also be used in other ways. For instance, it
can be used to associate other information, such as pixel intensity, in the space
around the landmarks of the target configuration with specific locations in the
space of the reference. In this way, images associated with individual specimens
can be used to construct an average image associated with the reference. This
method of image “unwarping” is used by Gharaibeh (Chapter 5, this volume)
in his study of the geometric effects of head orientation in the anthropometric
analysis of archival photographs.

WARPS, WARPS, AND MORE WARPS

Researchers new to the world of geometric morphometrics are often confused
by unfamiliar terminology. One especially noteworthy case is that of the vari-
ous “warps” that are often referred to in the literature and derive from the
thin-plate spline formulation just discussed. There are principal warps, partial
warps, relative warps, and singular warps.
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Principal warps are the eigenvectors of the bending energy matrix, which is
the upper, left p × p submatrix of the L−1 matrix used to compute the coeffi-
cients for the thin-plate spline. This matrix encodes the local aspects of shape
differences, and its eigenvectors are linear combinations of orthogonal displace-
ments of the landmarks of the reference configuration ordered by the energy
required to fit the hypothetical metal sheet to those displacements. That is, the
first principal warp associated with the largest eigenvalue (bending energy) is
the most local deformation of the reference configuration. The second requires
the most energy of deformations geometrically orthogonal to the first, and so
on. A key feature of the principal warps is that they are functions of the ref-
erence configuration alone. They are computed without using any other data
configurations, and therefore, carry no information about the sample other
than vaguely through the contributions of sample configurations to the mean
(if the reference used is the sample mean).

Partial warps are pairs or triplets of principal warps used to encode differ-
ences between individual specimens and the reference. The scores on these
warps or axes come in multiples since real coordinate axes (x , y , and z) are
modeled separately in the thin-plate spline computations. The partial warp
scores are the scores for each individual for each coordinate for each principal
warp axis, and taken together, the partial warps provide an orthogonal basis
for the space of non-affine shape variation. The scores, themselves, are shape
variables.

Relative warps are linear combinations of the partial warps and affine com-
ponents computed to decompose total shape variability into uncorrelated,
variance-maximizing variables. In more familiar terms, the relative warps are
the principal components of sample variability in shape space with respect to
the partial warp and affine scores. Rohlf (1993) describes how this principal
component analysis can be tuned to emphasize larger- or smaller-scaled shape
variation if the researcher has a reason for doing so.

Recent additions to the morphometric jargon are the singular warps. There
are pairs of covariance-maximizing linear combinations of two sets of variables
observed on individuals. One or both sets can be shape variables, and in the
case of the former, the second set can be environmental or other variables the
researcher wishes to relate to shape (Bookstein et al., 2003).

EXTENSIONS TO PROCRUSTES ANALYSIS

The combination of multivariate Procrustes analysis, multivariate statistics,
and thin-plate spline visualizations is what Bookstein (1993, 1996b) called
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the “Morphometric synthesis.” It also represents the foundation of most
coordinate-based analyses to be found in the literature to date. Still, there are a
number of current or potential elaborations that are likely to take the approach
beyond the now-familiar comparison of mean shapes or the regression of shape
on size or extrinsic factors like temperature or epoch. These are mentioned only
briefly here, but this economy should not be taken to represent any limitation
on the potential of these methods in morphometrics.

One intriguing area of research is that of asymmetry (Palmer, 1996; Palmer
and Strobeck, 1986) in which the differences in the relative size of two sides of a
bilaterally symmetric structure or bilateral structures of an individual organism
are examined across populations. The idea is that in the absence of develop-
mental instability, environmental perturbations, or within-organism substrate
competition, organisms should manifest perfect symmetry. Deviations from
perfect symmetry, therefore, can give insight into developmental programs,
environmental stress, and/or other putative factors. Such variation can be
divided into various classes such as: directional asymmetry—where one side
always differs in the same way, antisymmetry—where one side differs by some
degree, but which side is more-or-less random, and fluctuating asymmetry—
where variations are random with respect to the average shape or form. The
latter is often interpreted as an indicator of environmental perturbation, but to
get to that component, other types of asymmetry must either be partitioned
out or discounted.

An early investigation of asymmetry using geometric morphometrics is that of
Smith et al. (Bookstein, 1991; Smith et al., 1997), who partition shape variation
in right and left honey bee wings into fluctuating and directional compon-
ents. Klingenberg and McIntyre (1998) and Klingenberg and Zaklan (2000)
analyze asymmetry in fly wings using standard MANOVA methods applied to
Procrustes coordinates. Mardia et al. (2000) and Kent and Mardia (2001)
present a comprehensive methodology for the analysis of asymmetry entirely
within the Procrustes geometry, though this has yet to find its way into general
morphometric use.

Kimmerle and Jantz (Chapter 11, this volume) use MANOVA methods and
regression to examine trends in asymmetry in the crania of both sexes of whites
and blacks in the United States. An alternative to the Procrustes framework for
the analysis of asymmetry is the use of Euclidean Distance Matrix Analysis (see
the section on Coordinate-free methods) presented in the current volume by
Richtsmeier et al. (Chapter 8).
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The Procrustes methods are restricted by their requirement of named (in
most cases) landmarks and the assumption of equipotent information in all
coordinate directions. As indicated by Bookstein’s landmark classification, this
is not always the case. To address this restriction, Bookstein (1991, 1997) pro-
posed sliding such two-dimensional semi-landmarks in the uninformative direc-
tion(s) to enhance the relative contribution of informative variability. Bookstein
et al. (1999) uncover some rather surprising results using this approach. They
find that the inner, midsagittal profile of the frontal bone is invariant with
respect to shape between modern and archaic humans. Furthermore, it is nearly
indistinguishable in these groups from that of Australopithicines or Pan! In the
current volume, Gunz et al. (Chapter 3) extend the method of sliding landmarks
both to two-dimensional curves embedded in three-dimensions (space curves)
and to the analysis of surfaces. Relevant formulae for these and Bookstein’s
original two-dimensional case are found there as well.

Quantitative genetics is another area in which the integration of modern
morphometric techniques could have a significant impact. Procrustes-derived
shape variables have been used by Klingenberg et al. (2001) and Klingenberg
and Leary (2001) to explore quantitative trait loci and the relationship between
genetic and phenotypic covariance using similar data. Monteiro et al. (2002)
investigate the heritability of shape using Procrustes shape variables.

COORDINATE-FREE METHODS

It has been suggested that the Procrustes and other registration-based methods
are undesirable since they involve a distinct and unnecessary superimposition
step after which analyses involve an inestimable coordinate covariance structure
(e.g., Lele and Richtsmeier, 2001). To avoid this, several “coordinate-free”
approaches have been suggested that utilize variables that are invariant to orient-
ation and location within a specific coordinate system (size may be factored out
separately). Rao and Suryawanshi (1996, 1998) suggested the use of sufficient
sets of interior angles between landmarks and combinations of interlandmark
distances as variables to quantify and analyze shape. The early truss methods of
Bookstein et al. (1985) would also be included in this category.

The most widely used method of this school, however, is based on Euclidean
Distance Matrix Analysis, or EDMA (Lele and Cole, 1995, 1996; Lele and
Richtsmeier, 1991, 2001). The Euclidean Distance Matrix (EDM), or Form
Matrix (FM) is simply a symmetric, p × p matrix in which the off-diagonal
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elements, ei,j = ej ,i , are the Euclidean distances between landmarks i and j .
Diagonal elements are zero, and in practice, only one set of off-diagonals is
used for statistical testing. These measurements are a highly redundant set of
variables that completely fix the geometry of the landmarks up to a reflection
and are invariant to any choice of orthogonal basis vectors with respect to which
the original coordinates might have been collected. Note that, while invariant
to location and orientation, such an assemblage still contains size information
that must be partialled out if a pure shape analysis is desired.

Analysis proceeds via the pairwise comparison of EDMs, which might be
two configurations or mean EDMs for two groups. Mean form matrices can
be computed using the method of moments (Stoyan, 1990; Lele, 1993), but
there is a problem in that the resulting average interpoint distances might not
represent a physically realizable structure. Lele (1993) suggests one “flattens”
the estimates back into image/physical space by using only the first two/three
eigenvectors of the mean form matrix scaled by their associated eigenvalues.

The developers have proposed several methods for the statistical assessment
of pairs of EDMs. In its first incarnation, EDMA I (Lele and Richtsmeier,
1991), ratios of corresponding distances in the two EDMs are used to con-
struct a relative form difference matrix (rFDM). If the two configurations are
precisely the same, these values will be all unity, and if the two differ only by
size, the elements will be some constant value. It is seldom the case that con-
figurations will be identical, so the authors proposed a non-parametric test for
shape differences. The test statistic, T , is the ratio of the largest ratio in the
rFDM to the smallest. The significance of T is assessed relative to confidence
limits obtained from bootstrap resampling of the two populations (Richtsmeier
and Lele, 1993). Lele and Cole (1995, 1996) proposed another approach for
heteroscedastic samples, EDMA II, that uses the test statistic, Z , the maximum
absolute value of the arithmetic difference of elements in two EDMs. The signi-
ficance of Z is tested by a parametric bootstrap procedure in which on generates
normally distributed samples with the same mean shape and covariance struc-
ture as the original samples and determines if the resulting confidence limits on
Z contain zero. To achieve a shape, instead of form, analysis, EDMs in EDMA
II may be scaled by some user-specified measure of size, for example, baseline
length or CS (Lele and Cole, 1995, 1996).

The relative merit of EDMA vs. the Procrustes approaches has been one
of the more contentious issues of modern morphometrics. The proponents of
EDMA (Lele, 1993; Lele and McCulloch, 2002; Lele and Richtsmeier, 2001)
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argue that the use of inestimable landmark covariance matrices and inconsist-
ent mean and covariance estimates are serious problems with Procrustes-based
methods (“consistency” is a statistical term meaning that as the sample size goes
to infinity, the estimated value converges in probability on the true value). Rohlf
(1999b, 2000, 2003) compared a number of morphometric methods includ-
ing EDMA and GPA using simulations of random triangles generated with
independent, isotropic error. He found the EDMA methods introduced arti-
factual covariance structure into randomly generated samples (Rohlf, 1999b),
had a more complicated and structured power surface (Rohlf, 2000), and for
realistic sample sizes, produced more biased mean estimates (Rohlf, 2003).
EDMA supporters counter that the simplistic models of isotropic error are not
representative of real-world data sets (Lele and Richtsmeier, 1990) and reject
the power comparisons as being artifactual and lacking valid, analytical support
(Richtsmeier, personal communication).

Lele and Richtsmeier (2001) is a comprehensive outline of the case for
EDMA and with contributions from Cole, provides extensions of the EDMA
approach to the study of growth, classification, clustering, asymmetry, molecu-
lar structures and phylogenetics. In this volume, Richtsmeier et al. present an
EDMA-based method for the study of asymmetry using a mouse model for
Trisomy 21, Down syndrome.

OUTLINE METHODS

The differences between outline data and landmark coordinates usually require
special consideration, and different methods are available for different types
of outlines (see Rohlf, 1990). One method of particular importance in
morphometrics is elliptic Fourier analysis (EFA) (Kuhl and Giardina, 1982)
for two-dimensional, closed contours. This method does not require evenly
spaced sample points or equal numbers of points across specimens, can handle
arbitrarily complex outlines, provides parameterization of the entire outline,
and includes optional standardizations for size, location, orientation, and digit-
izing starting point to support the analysis of shape. In general, though, one
would like to seamlessly combine outline and landmark data in a single analysis.
An outline might pass through bona fide landmarks, or it could have structur-
ally associated landmarks nearby. In Chapter 6, this volume, Baylac and Frieß
combine EFA and GPA to study the effects of cranial deformation using partial
and complete cranial outlines and landmarks.
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Another possibility is to develop a common framework for the joint analysis
of landmarks and outlines. McNulty (Chapter 16, this volume) uses equally
spaced sample points between anatomical landmarks on brow ridges superim-
posed using only the anatomical landmarks to quantify supraorbital morphology
in extant and fossil hominoids. The sliding landmarks method developed by
Bookstein (e.g., 1997) allows sample points to slide along tangents to the out-
line in a Procrustes analysis in order to reduce uninformative variation in that
direction. Their use in analyzing curves in three-dimension is discussed by Gunz
et al. in Chapter 3, this volume. Reddy et al. (Chapter 4) present a modification
of the sliding landmark method to take advantage of the usually high density
of initial sample points collected when quantifying such curves, and apply the
method to the study the Neanderthal “bun.”

FRACTALS

The concept of a fractal is an interesting one with many potential applications
in biology (Slice, 1993b), including physical anthropology. In general, a fractal
is “a set for which the Hausdorff-Besicovitch dimension strictly exceeds the
topological dimension” (Mandelbrot, 1983). Such sets can be point sets or
outlines or surfaces or volumes, and all possess a distinguishing property call
self-similarity (see Feder, 1988; Peitgen and Saupe, 1988). This means that
some geometric aspect of the set is repeated at different scales. The similarity
may be exact, with larger-scale features being composed of smaller-scale copies
of a fundamental structure, or statistical, where scale-adjusted variability at all
scales is similar. The implication of such self-similarity for morphometrics is
great. One finds, for instance, that genuinely fractal closed outlines have an
infinite perimeter since no matter how small a measurement scale is used the
perimeter never “smoothes out” into a two-dimensional Euclidean curve (Slice,
1993b). The characterization of a biological structure in the form of the fractal
dimensions, d, can be used to quantify the complexity of a shape over some
finite range of measurement scales.

Structures amenable to such analysis include complex sutures like those in
ammonite shells and cervid skulls examined by Long (1985). The comparison
of the fractal dimensions of sutures from a more accurate tracing was used
by Palmqvist (1997) to challenge the previous hominid affinities of the Orce
skull fragment supported by Gilbert and Palmqvist (1995). In this volume,
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Prossinger (Chapter 7) argues for the fractal nature of frontal sinuses and
presents a plausible model for the development and modeling of such structures.

FINAL COMMENTS

This chapter has been a rather fast-paced and necessarily superficial over-
view of the large and growing field of modern shape analysis with a slight
bias toward applications in physical anthropology. It is hoped that this will
provide readers having relatively little exposure to morphometric methods
with sufficient information to follow and appreciate subsequent chapters.
Newcomers are not expected to master, or necessarily fully grasp, all of
the subtleties and mathematical details summarized here, but at least they
will have been exposed to the material. If, as is likely, these same read-
ers want to learn more about the methods and begin to use them in their
own research, the references cited herein will provide a good place to start.
In addition, a number of user-friendly resources are available to enhance
their education. One is the morphometrics website at the State University
of New York at Stony Brook (http://life.bio.sunysb.edu/morph) developed
and maintained by F. James Rohlf. The site contains free, downloadable soft-
ware for data acquisition and morphometric analysis, downloadable data sets,
and a morphometrics bulletin board, bibliographies, book reviews, and links
to other sites. A second valuable resource is the morphometric mailing list,
morphmet, started by Les Marcus. Over four hundred people from around
the world are subscribers and are inevitably willing to assist others. Sub-
scription information can be found at the Stony Brook morphometrics site,
http://life.bio.sunysb.edu/morph/morphmet.html.
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