
Chapter 9

Algebraic Coding Theory

In this chapter we will discuss some applications of techniques from compu-
tational algebra and algebraic geometry to problems in coding theory. After
a preliminary section on the arithmetic of finite fields, we will introduce
some basic terminology for describing error-correcting codes. We will study
two important classes of examples—linear codes and cyclic codes—where
the set of codewords possesses additional algebraic structure, and we will
use this structure to develop good encoding and decoding algorithms.

§1 Finite Fields

To make our presentation as self-contained as possible, in this section we
will develop some of the basic facts about the arithmetic of finite fields. We
will do this almost “from scratch,” without using the general theory of field
extensions. However, we will need to use some elementary facts about finite
groups and quotient rings. Readers who have seen this material before may
wish to proceed directly to §2. More complete treatments of this classical
subject can be found in many texts on abstract algebra or Galois theory.

The most basic examples of finite fields are the prime fields Fp = Z/〈p〉,
where p is any prime number, but there are other examples as well. To
construct them, we will need to use the following elementary fact.

Exercise 1. Let k be any field, and let g ∈ k[x] be an irreducible poly-
nomial (that is, a non-constant polynomial which is not the product of
two nonconstant polynomials in k[x]). Show that the ideal 〈g〉 ⊂ k[x] is a
maximal ideal. Deduce that k[x]/〈g〉 is a field if g is irreducible.

For example, let p = 3 and consider the polynomial g = x2 + x + 2 ∈
F3[x]. Since g is a quadratic polynomial with no roots in F3, g is irreducible
in F3[x]. By Exercise 1, the ideal 〈g〉 is maximal, hence F = F3[x]/〈g〉 is a
field. As we discussed in Chapter 2, the elements of a quotient ring such as
F are in one-to-one correspondence with the possible remainders on division

451



452 Chapter 9. Algebraic Coding Theory

by g. Hence the elements of F are the cosets of the polynomials ax + b,
where a, b are arbitrary in F3. As a result, F is a field of 32 = 9 elements.

To distinguish more clearly between polynomials and the elements of our
field, we will write α for the element of F represented by the polynomial x.
Thus every element of F has the form aα + b for a, b ∈ F3. Also, note that
α satisfies the equation g(α) = α2 + α + 2 = 0.

The addition operation in F is the obvious one: (aα + b) + (a′α + b′) =
(a + a′)α + (b + b′). As in Chapter 2 §2, we can compute products in F by
multiplication of polynomials in α, subject to the relation g(α) = 0. For
instance, you should verify that in F

(α + 1) · (2α + 1) = 2α2 + 1 = α

(recall that the coefficients of these polynomials are elements of the field
F3, so that 1 + 2 = 0). Using this method, we may compute all the powers
of α in F, and we find

(1.1)
α2 = 2α + 1 α3 = 2α + 2
α4 = 2 α5 = 2α
α6 = α + 2 α7 = α + 1,

and α8 = 1. For future reference, we note that this computation also shows
that the multiplicative group of nonzero elements of F is a cyclic group of
order 8, generated by α.

The construction of F in this example may be generalized in the fol-
lowing way. Consider the polynomial ring Fp[x], and let g ∈ Fp[x] be an
irreducible polynomial of degree n. The ideal 〈g〉 is maximal by Exercise
1, so the quotient ring F = Fp[x]/〈g〉 is a field. The elements of F may be
represented by the cosets modulo 〈g〉 of the polynomials of degree n− 1 or
less: an−1x

n−1 + · · · + a1x + a0, ai ∈ Fp. Since the ai are arbitrary, this
implies that F contains pn distinct elements.

Exercise 2.
a. Show that g = x4 + x + 1 is irreducible in F2[x]. How many elements

are there in the field F = F2[x]/〈g〉?
b. Writing α for the element of F represented by x as above, compute all

the distinct powers of α.
c. Show that K = {0, 1, α5, α10} is a field with four elements contained in

F.
d. Is there a field with exactly eight elements contained in F? Are there

any other subfields? (For the general pattern, see Exercise 10 below.)

In general we may ask what the possible sizes (numbers of elements) of
finite fields are. The following proposition gives a necessary condition.

(1.2) Proposition. Let F be a finite field. Then |F| = pn where p is some
prime number and n ≥ 1.



§1. Finite Fields 453

Proof. Since F is a field, it contains a multiplicative identity, which we
will denote by 1 as usual. Since F is finite, 1 must have finite additive order:
say p is the smallest positive integer such that p · 1 = 1 + · · · + 1 = 0
(p summands). The integer p must be prime. (Otherwise, if p = mn with
m, n > 1, then we would have p · 1 = (m · 1)(n · 1) = 0 in F. But since F is
a field, this would imply m · 1 = 0, or n · 1 = 0, which is not possible by the
minimality of p.) We leave it to the reader to check that the set of elements
of the form m · 1, m = 0, 1, . . . , p − 1 in F is a subfield K isomorphic to
Fp. See Exercise 9 below.

The axioms for fields imply that if we consider the addition operation
on F together with scalar multiplication of elements of F by elements from
K ⊂ F, then F has the structure of a vector space over K. Since F is a finite
set, it must be finite-dimensional as a vector space over K. Let n be its
dimension (the number of elements in any basis), and let {a1, . . . , an} ⊂ F

be any basis. Every element of F can be expressed in exactly one way as a
linear combination c1a1 + · · · + cnan, where c1, . . . , cn ∈ K. There are pn

such linear combinations, which concludes the proof.

To construct finite fields, we will always consider quotient rings Fp[x]/〈g〉
where g is an irreducible polynomial in Fp[x]. There is no loss of generality
in doing this—every finite field can be obtained this way. See Exercise 11
below.

We will show next that for each prime p and each n ≥ 1, there exist
finite fields of every size pn by counting the irreducible polynomials of fixed
degree in Fp[x]. First note that it is enough to consider monic polynomials,
since we can always multiply by a constant in Fp to make the leading
coefficient of a polynomial equal 1. There are exactly pn distinct monic
polynomials xn + an−1x

n−1 + · · ·+ a1x + a0 of degree n in Fp[x]. Consider
the generating function for this enumeration by degree: the power series in
u in which the coefficient of un equals the number of monic polynomials
of degree n, namely pn. This is the left hand side in (1.3) below. We treat
this as a purely formal series and disregard questions of convergence. The
formal geometric series summation formula yields

(1.3)
∞∑

n=0

pnun =
1

1 − pu
.

Each monic polynomial factors uniquely in Fp[x] into a product of monic
irreducibles. For each n, let Nn be the number of monic irreducibles of
degree n in Fp[x]. In factorizations of the form g = g1 · g2 · · · gm where the
gi are irreducible (but not necessarily distinct) of degrees ni, we have Nni

choices for the factor gi for each i. The total degree of g is the sum of the
degrees of the factors.



454 Chapter 9. Algebraic Coding Theory

Exercise 3. By counting factorizations as above, show that the number
of monic polynomials of degree n (i.e. pn) can also be expressed as the
coefficient of un in the formal infinite product

(1 + u + u2 + · · · )N1 · (1 + u2 + u4 + · · · )N2 · · · =
∞∏

k=1

1
(1 − uk)Nk

,

where the equality between the left- and right-hand sides comes from the
formal geometric series summation formula. Hint: The term in the product
with index k accounts for factors of degree k in polynomials.

Hence combining (1.3) with the result of Exercise 3, we obtain the
generating function identity

(1.4)
∞∏

k=1

1
(1 − uk)Nk

=
1

1 − pu
.

(1.5) Proposition. We have pn =
∑

k|n kNk, where the sum extends
over all positive divisors k of the integer n.

Proof. Formally taking logarithmic derivatives and multiplying the re-
sults by u, from (1.4) we arrive at the identity

∑∞
k=1 kNkuk/(1 − uk) =

pu/(1 − pu). Using formal geometric series again, this equality can be
rewritten as

∞∑
k=1

kNk(uk + u2k + · · · ) = pu + p2u2 + · · · .

The proposition follows by comparing the coefficients of un on both sides
of this last equation.

Exercise 4. (For readers with some background in elementary number
theory.) Use Proposition (1.5) and the Möbius inversion formula to derive
a general formula for Nn.

We will show that Nn > 0 for all n ≥ 1. For n = 1, we have N1 = p
since all x− β, β ∈ Fp are irreducible. Then Proposition (1.5) implies that
N2 = (p2 − p)/2 > 0, N3 = (p3 − p)/3 > 0, and N4 = (p4 − p2)/4 > 0.

Arguing by contradiction, suppose that Nn = 0 for some n. We may
assume n ≥ 5 by the above. Then from Proposition (1.5),

(1.6) pn =
∑

k|n,0<k<n

kNk.

We can estimate the size of the right-hand side and derive a contradiction
from (1.6) as follows. We write �A� for the greatest integer less than or
equal to A. Since Nk ≤ pk for all k (the irreducibles are a subset of the



§1. Finite Fields 455

whole collection monic polynomials), and any positive proper divisor k of
n is at most �n/2�, we have

pn ≤ �n/2�
�n/2�∑
k=0

pk.

Applying the finite geometric sum formula, the right-hand side equals

�n/2�(p�n/2�+1 − 1)/(p − 1) ≤ �n/2�p�n/2�+1.

Hence

pn ≤ �n/2�p�n/2�+1.

Dividing each side by p�n/2�, we obtain

pn−�n/2� ≤ �n/2�p.
But this is clearly false for all p and all n ≥ 5. Hence Nn > 0 for all n, and
as a result we have the following fact.

(1.7) Theorem. For all primes p and all n ≥ 1, there exist finite fields
F with |F| = pn.

From the examples we have seen and from the proof of Theorem (1.7),
it might appear that there are several different finite fields of a given size,
since there will usually be more than one irreducible polynomial g of a given
degree in Fp[x] to use in constructing quotients Fp[x]/〈g〉. But consider the
following example.

Exercise 5. By Proposition (1.5), there are (23 − 2)/3 = 2 monic ir-
reducible polynomials of degree 3 in F2[x], namely g1 = x3 + x + 1, and
g2 = x3+x2+1. Hence K1 = F2[x]/〈g1〉 and K2 = F2[x]/〈g2〉 are two finite
fields with 8 elements. We claim, however, that these fields are isomorphic.
a. Writing α for the coset of x in K1 (so g1(α) = 0 in K1), show that

g2(α + 1) = 0 in K1.
b. Use this observation to derive an isomorphism between K1 and K2 (that

is, a one-to-one, onto mapping that preserves sums and products).

The general pattern is the same.

(1.8) Theorem. Let K1 and K2 be two fields with |K1| = |K2| = pn.
Then K1 and K2 are isomorphic.

See Exercise 12 below for one way to prove this. Because of (1.8), it
makes sense to adopt the uniform notation Fpn for any field of order pn,
and we will use this convention for the remainder of the chapter. When
we do computations in Fpn , however, we will always use an explicit monic
irreducible polynomial g(x) of degree n as in the examples above.



456 Chapter 9. Algebraic Coding Theory

The next general fact we will consider is also visible in (1.1) and in the
other examples we have encountered.

(1.9) Theorem. Let F = Fpn be a finite field. The multiplicative group of
nonzero elements of F is cyclic of order pn − 1.

Proof. The statement about the order of the multiplicative group is clear
since we are omitting the single element 0. Write m = pn−1. By Lagrange’s
Theorem for finite groups ([Her]), every element β ∈ F \ {0} is a root of
the polynomial equation xm = 1, and the multiplicative order of each is
a divisor of m. We must show there is some element of order exactly m
to conclude the proof. Consider the prime factorization of m, say m =
qe1
1 · · · qek

k . Let mi = m/qi. Since the polynomial xmi − 1 has at most mi

roots in the field F, there is some βi ∈ F such that βmi
i �= 1. In Exercise 6

below, you will show that γi = β
m/q

ei
i

i has multiplicative order exactly qei
i

in F. It follows that the product γ1γ2 · · · γk has order m, since the qei
i are

relatively prime.

Exercise 6. In this exercise you will supply details for the final two claims
in the proof of Theorem (1.9).

a. Using the notation from the proof, show that γi = β
m/q

ei
i

i has multi-

plicative order exactly qei
i in F. (That is, show that γ

q
ei
i

i = 1, but that
γk

i �= 1 for all k = 1, . . . , qei
i − 1.)

b. Let γ1, γ2 be elements of a finite abelian group. Suppose that the orders
of γ1 and γ2 (n1 and n2 respectively) are relatively prime. Show that
the order of the product γ1γ2 is equal to n1n2.

A generator for the multiplicative group of Fpn is called a primitive el-
ement . In the fields studied in (1.1) and in Exercise 2, the polynomials g
were chosen so that their roots were primitive elements of the correspond-
ing finite field. This will not be true for all choices of irreducible g of a
given degree n in Fp[x].

Exercise 7. For instance, consider the polynomial g = x2 + 1 in F3[x].
Check that g is irreducible, so that K = F3[x]/〈g〉 is a field with 9 elements.
However the coset of x in K is not a primitive element. (Why not? what is
its multiplicative order?)

For future reference, we also include the following fact about finite fields.

Exercise 8. Suppose that β ∈ Fpn is neither 0 nor 1. Then show that∑pn−2
j=0 βj = 0. Hint: What is (xpn−1 − 1)/(x − 1)?

To conclude this section, we indicate one direct method for performing
finite field arithmetic in Maple. Maple provides a built-in facility (via the



§1. Finite Fields 457

mod operator) by which polynomial division, row operations on matrices,
resultant computations, etc. can be done using coefficients in finite fields.
When we construct a quotient ring Fp[x]/〈g〉 the coset of x becomes a root
of the equation g = 0 in the quotient. In Maple, the elements of a finite field
can be represented as (cosets of) polynomials in RootOf expressions (see
Chapter 2, §1). For example, to declare the field F8 = F2[x]/〈x3 + x + 1〉,
we could use

alias(alpha = RootOf(x^3 + x + 1));

Then polynomials in alpha represent elements of the field F8 as before.
Arithmetic in the finite field can be performed as follows. For instance,
suppose we want to compute b3 + b, where b = α + 1. Entering

b := alpha + 1;
Normal(b^3 + b) mod 2;

yields

alpha2 + alpha + 1.

The Normal function computes the normal form for the element of the
finite field by expanding out b3 + b as a polynomial in α, then finding the
remainder on division by α3 + α + 1, using coefficients in F2.

A technical point: You may have noticed that the Normal function name
here is capitalized . There is also an uncapitalized normal function in Maple
which can be used for algebraic simplification of expressions. We do not
want that function here, however, because we want the function call to be
passed unevaluated to mod, and all the arithmetic to be performed within
the mod environment. Maple uses capitalized names consistently for un-
evaluated function calls in this situation. Using the command normal(b^3
+ b) mod 2 would instruct Maple to simplify b3 + b, then reduce mod 2,
which does not yield the correct result in this case. Try it!

ADDITIONAL EXERCISES FOR §1

Exercise 9. Verify the claim made in the proof of Proposition (1.2) that
if F is a field with pn elements, then F has a subfield

K = {0, 1, 2 · 1, . . . , (p − 1) · 1}
isomorphic to Fp.

Exercise 10. Using Theorem (1.9), show that Fpn contains a subfield Fpm

if and only if m is a divisor of n. Hint: By (1.9), the multiplicative group
of the subfield is a subgroup of the multiplicative cyclic group Fpm \ {0}.
What are the orders of subgroups of a cyclic group of order pm − 1?



458 Chapter 9. Algebraic Coding Theory

Exercise 11. In this exercise, you will show that every finite field F can
be obtained (up to isomorphism) as a quotient F ∼= Fp[x]/〈g〉 for some irre-
ducible g ∈ Fp[x]. For this exercise, we will need the fundamental theorem
of ring homomorphisms (see e.g., [CLO] Chapter 5, §2, Exercise 16). Let F

be a finite field, and say |F| = pn (see Proposition (1.2)). Let α be a prim-
itive element for F (see (1.9)). Consider the ring homomorphism defined
by

ϕ : Fp[x] → F

x �→ α.

a. Explain why ϕ must be onto.
b. Deduce that the kernel of ϕ must have the form ker(ϕ) = 〈g〉 for some

irreducible monic polynomial g ∈ k[x]. (The monic generator is called
the minimal polynomial of α over Fp.)

c. Apply the fundamental theorem to show that

F ∼= Fp[x]/〈g〉.

Exercise 12. In this exercise, you will develop one proof of Theorem (1.8),
using Theorem (1.9) and the previous exercise. Let K and L be two fields
with pn elements. Let β be a primitive element for L, and let g ∈ Fp[x] be
the minimal polynomial of β over Fp, so that L ∼= Fp[x]/〈g〉 (Exercise 11).
a. Show that g must divide the polynomial xpn − x in Fp[x]. (Use (1.9).)
b. Show that xpn − x splits completely into linear factors in K[x]:

xpn − x =
∏
α∈K

(x − α).

c. Deduce that there is some α ∈ K which is a root of g = 0.
d. From part c, deduce that K is also isomorphic to Fp[x]/〈g〉. Hence,

K ∼= L.

Exercise 13. Find irreducible polynomials g in the appropriate Fp[x],
such that Fp[x]/〈g〉 ∼= Fpn , and such that α = [x] is a primitive element in
Fpn for each pn ≤ 64. (Note: The cases pn = 8, 9, 16 are considered in the
text. Extensive tables of such polynomials have been constructed for use
in coding theory. See for instance [PH].)

Exercise 14. (The Frobenius Automorphism) Let Fq be a finite field. By
Exercise 10, Fq ⊂ Fqm for each m ≥ 1. Consider the mapping F : Fqm →
Fqm defined by F (x) = xq.
a. Show that F is one-to-one and onto, and that F (x + y) = F (x) + F (y)

and F (xy) = F (x)F (y) for all x, y ∈ Fqm . (In other words, F is an
automorphism of the field Fqm .)

b. Show that F (x) = x if and only if x ∈ Fq ⊂ Fqm .



§2. Error-Correcting Codes 459

For readers familiar with Galois theory, we mention that the Frobenius
automorphism F generates the Galois group of Fqm over Fq—a cyclic group
of order m.

§2 Error-Correcting Codes

In this section, we will introduce some of the basic standard notions from
algebraic coding theory. For more complete treatments of the subject, we
refer the reader to [vLi], [Bla], or [MS].

Communication of information often takes place over “noisy” channels
which can introduce errors in the transmitted message. This is the case
for instance in satellite transmissions, in the transfer of information within
computer systems, and in the process of storing information (numeric data,
music, images, etc.) on tape, on compact disks or other media, and retriev-
ing it for use at a later time. In these situations, it is desirable to encode
the information in such a way that errors can be detected and/or corrected
when they occur. The design of coding schemes, together with efficient
techniques for encoding and decoding (i.e. recovering the original message
from its encoded form) is one of the main goals of coding theory.

In some situations, it might also be desirable to encode information in
such a way that unauthorized readers of the received message will not be
able to decode it. The construction of codes for secrecy is the domain of
cryptography , a related but distinct field that will not be considered here.
Interestingly enough, ideas from number theory and algebraic geometry
have assumed a major role there as well. The book [Kob] includes some
applications of computational algebraic geometry in modern cryptography.

In this chapter, we will study one specific type of code, in which all in-
formation to be encoded consists of strings or words of some fixed length k
using symbols from a fixed alphabet, and all encoded messages are divided
into strings called codewords of a fixed block length n, using symbols from
the same alphabet. In order to detect and/or correct errors, some redun-
dancy must be introduced in the encoding process, hence we will always
have n > k.

Because of the design of most electronic circuitry, it is natural to consider
a binary alphabet consisting of the two symbols {0, 1}, and to identify the
alphabet with the finite field F2. As in §1, strings of r bits (thought of as
the coefficients in a polynomial of degree r− 1) can also represent elements
of a field F2r , and it will be advantageous in some cases to think of F2r

as the alphabet. But the constructions we will present are valid with an
arbitrary finite field Fq as the alphabet.

In mathematical terms, the encoding process for a string from the mes-
sage will be a one-to-one function E : F

k
q → F

n
q . The image C =

E(F k
q ) ⊂ F

n
q is referred to as the set of codewords, or more succinctly

as the code. Mathematically, the decoding operation can be viewed as a



460 Chapter 9. Algebraic Coding Theory

function D : F
n
q → F

k
q such that D ◦ E is the identity on F

k
q . (This is ac-

tually an over-simplification—most real-world decoding functions will also
return something like an “error” value in certain situations.)

In principle, the set of codewords can be an arbitrary subset of F
n
q .

However, we will almost always restrict our attention to a class of codes
with additional structure that is very convenient for encoding and decoding.
This is the class of linear codes. By definition, a linear code is one where
the set of codewords C forms a vector subspace of F

n
q of dimension k.

In this case, as encoding function E : F
k
q → F

n
q we may use a linear

mapping whose image is the subspace C. The matrix of E with respect to
the standard bases in the domain and target is often called the generator
matrix G corresponding to E.

It is customary in coding theory to write generator matrices for linear
codes as k × n matrices and to view the strings in F

k
q as row vectors w.

Then the encoding operation can be viewed as matrix multiplication of a
row vector on the right by the generator matrix, and the rows of G form
a basis for C. As always in linear algebra, the subspace C may also be
described as the set of solutions of a system of n − k independent linear
equations in n variables. The matrix of coefficients of such a system is
often called a parity check matrix for C. This name comes from the fact
that one simple error-detection scheme for binary codes is to require that
all codewords have an even (or odd) number of nonzero digits. If one bit
error (in fact, any odd number of errors) is introduced in transmission, that
fact can be recognized by multiplication of the received word by the parity
check matrix H = ( 1 1 · · · 1 )T . The parity check matrix for a linear
code can be seen as an extension of this idea, in which more sophisticated
tests for the validity of the received word are performed by multiplication
by the parity check matrix.

Exercise 1. Consider the linear code C with n = 4, k = 2 given by the
generator matrix

G =
(

1 1 1 1
1 0 1 0

)
.

a. Show that since we have only the two scalars 0, 1 ∈ F2 to use in making
linear combinations, there are exactly four elements of C:

(0, 0)G = (0, 0, 0, 0), (1, 0)G = (1, 1, 1, 1),

(0, 1)G = (1, 0, 1, 0), (1, 1)G = (0, 1, 0, 1).
b. Show that

H =

⎛⎜⎜⎝
1 1
1 0
1 1
1 0

⎞⎟⎟⎠
is a parity check matrix for C by verifying that xH = 0 for all x ∈ C.



§2. Error-Correcting Codes 461

Exercise 2. Let F4 = F2[α]/〈α2 + α + 1〉, and consider the linear code C
in F

5
4 with generator matrix(

α 0 α + 1 1 0
1 1 α 0 1

)
.

How many distinct codewords are there in C? Find them. Also find a parity
check matrix for C. Hint: Recall from linear algebra that there is a general
procedure using matrix operations for finding a system of linear equations
defining a given subspace.

To study the error-correcting capability of codes, we need a measure
of how close elements of F

n
q are, and for this we will use the Hamming

distance. Let x, y ∈ F
n
q . Then the Hamming distance between x and y is

defined to be
d(x, y) = |{i, 1 ≤ i ≤ n : xi �= yi}|.

For instance, if x = (0, 0, 1, 1, 0), and y = (1, 0, 1, 0, 0) in F
5
2 , then

d(x, y) = 2 since only the first and fourth bits in x and y differ.
Let 0 denote the zero vector in F

n
q and let x ∈ F

n
q be arbitrary. Then

d(x, 0), the number of nonzero components in x, is called the weight of x
and denoted wt(x).

Exercise 3. Verify that the Hamming distance has all the properties of a
metric or distance function on F

n
q . (That is, show d(x, y) ≥ 0 for all x, y

and d(x, y) = 0 if and only if x = y, the symmetry property d(x, y) =
d(y, x) holds for all x, y, and the triangle inequality d(x, y) ≤ d(x, z) +
d(z, y) is valid for all x, y, z.)

Given x ∈ F
n
q , we will denote by Br(x) the closed ball of radius r (in

the Hamming distance) centered at x:

Br(x) = {y ∈ F
n
q : d(y, x) ≤ r}.

(In other words, Br(x) is the set of y differing from x in at most r
components.)

The Hamming distance gives a simple but extremely useful way to mea-
sure the error-correcting capability of a code. Namely, suppose that every
pair of distinct codewords x, y in a code C ⊂ F

n
q satisfies d(x, y) ≥ d for

some d ≥ 1. If a codeword x is transmitted and errors are introduced, we
can view the received word as z = x + e for some nonzero error vector e.
If wt(e) = d(x, z) ≤ d − 1, then under our hypothesis z is not another
codeword. Hence any error vector of weight at most d − 1 can be detected.

Moreover if d ≥ 2t + 1 for some t ≥ 1, then for any z ∈ F
n
q , by

the triangle inequality, d(x, z) + d(z, y) ≥ d(x, y) ≥ 2t + 1. It follows
immediately that either d(x, z) > t or d(y, z) > t, so Bt(x) ∩ Bt(y) = ∅.
As a result the only codeword in Bt(x) is x itself. In other words, if an error
vector of weight at most t is introduced in transmission of a codeword, those



462 Chapter 9. Algebraic Coding Theory

errors can be corrected by the nearest neighbor decoding function

D(x) = E−1(c), where c ∈ C minimizes d(x, c)

(and an “error” value if there is no unique closest element in C).
From this discussion it is clear that the minimum distance

d = min{d(x, y) : x �= y ∈ C}
is an important parameter of codes, and our observations above can be
summarized in the following way.

(2.1) Proposition. Let C be a code with minimum distance d. All error
vectors of weight ≤ d− 1 can be detected. Moreover, if d ≥ 2t + 1, then all
error vectors of weight ≤ t can be corrected by nearest neighbor decoding.

Since the minimum distance of a code contains so much information, it
is convenient that for linear codes we need only examine the codewords
themselves to determine this parameter.

Exercise 4. Show that for any linear code C the minimum distance d is
the same as minx∈C\{0} |{i : xi �= 0}| (the minimum number of nonzero
entries in a nonzero codeword). Hint: Since the set of codewords is closed
under vector sums, x − y ∈ C whenever x and y are.

The Hamming codes form a famous family of examples with interesting
error-correcting capabilities. One code in the family is a code over F2 with
n = 7, k = 4. (The others are considered in Exercise 11 below.) For this
Hamming code, the generator matrix is

(2.2) G =

⎛⎜⎜⎝
1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

⎞⎟⎟⎠ .

For example w = (1, 1, 0, 1) ∈ F
4
2 is encoded by multiplication on the right

by G, yielding E(w) = wG = (1, 1, 0, 1, 0, 0, 1). From the form of the first
four columns of G, the first four components of E(w) will always consist of
the four components of w itself.

The reader should check that the 7 × 3 matrix

(2.3) H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1
1 0 1
1 1 0
1 1 1
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠



§2. Error-Correcting Codes 463

has rank 3 and satisfies GH = 0. Hence H is a parity check matrix for
the Hamming code (why?). It is easy to check directly that each of the
15 nonzero codewords of the Hamming code contains at least 3 nonzero
components. This implies that d(x, y) is at least 3 when x �= y. Hence the
minimum distance of the Hamming code is d = 3, since there are exactly
three nonzero entries in row 1 of G for example. By Proposition (2.1),
any error vector of weight 2 or less can be detected, and any error vector
of weight 1 can be corrected by nearest neighbor decoding. The following
exercise gives another interesting property of the Hamming code.

Exercise 5. Show that the balls of radius 1 centered at each of the words
of the Hamming code are pairwise disjoint, and cover F

7
2 completely. (A

code C with minimum distance d = 2t + 1 is called a perfect code if the
union of the balls of radius t centered at the codewords equals F

n
q .)

Generalizing a property of the generator matrix (2.2) noted above, encod-
ing functions with the property that the symbols of the input word appear
unchanged in some components of the codeword are known as systematic
encoders. It is customary to call those components of the codewords the in-
formation positions. The remaining components of the codewords are called
parity checks. Systematic encoders are sometimes desirable from a practical
point of view because the information positions can be copied directly from
the word to be encoded; only the parity checks need to be computed. There
are corresponding savings in the decoding operation as well. If information
is systematically encoded and no errors occur in transmission, the words
in the message can be obtained directly from the received words by simply
removing the parity checks. (It is perhaps worthwhile to mention again at
this point that the goal of the encoding schemes we are considering here is
reliability of information transmission, not secrecy!)

Exercise 6. Suppose that the generator matrix for a linear code C has
the systematic form G = (Ik | P ), where Ik is a k × k identity matrix, and
P is some k × (n − k) matrix. Show that

H =
( −P

In−k

)
is a parity check matrix for C.

We will refer to a linear code with block length n, dimension k, and
minimum distance d as an [n, k, d] code. For instance, the Hamming code
given by the generator matrix (2.2) is a [7,4,3] code.

Determining which triples of parameters [n, k, d] can be realized by codes
over a given finite field Fq and constructing such codes are two important
problems in coding theory. These questions are directly motivated by the



464 Chapter 9. Algebraic Coding Theory

decisions an engineer would need to make in selecting a code for a given
application. Since an [n, k, d] code has qk distinct codewords, the choice of
the parameter k will be determined by the size of the collection of words
appearing in the messages to be transmitted. Based on the characteristics
of the channel over which the transmission takes place (in particular the
probability that an error occurs in transmission of a symbol), a value of
d would be chosen to ensure that the probability of receiving a word that
could not be correctly decoded was acceptably small. The remaining ques-
tion would be how big to take n to ensure that a code with the desired
parameters k and d actually exists. It is easy to see that, fixing k, we can
construct codes with d as large as we like by taking n very large. (For
instance, our codewords could consist of many concatenated copies of the
corresponding words in F

k
q .) However, the resulting codes would usually be

too redundant to be practically useful. “Good” codes are ones for which
the information rate R = k/n is not too small, but for which d is relatively
large. There is a famous result known as Shannon’s Theorem (for the pre-
cise statement see, e.g., [vLi]) that ensures the existence of “good” codes in
this sense, but the actual construction of “good” codes is one of the main
problems in coding theory.

Exercise 7. In the following exercises, we explore some theoretical results
giving various bounds on the parameters of codes. One way to try to pro-
duce good codes is to fix a block length n and a minimum distance d, then
attempt to maximize k by choosing the codewords one by one so as to keep
d(x, y) ≥ d for all distinct pairs x �= y.
a. Show that b = |Bd−1(c)| is given by b =

∑d−1
i=0

(
n
i

)
(q − 1)i for each

c ∈ F
n
q .

b. Let d be a given positive integer, and let C be a subset C ⊂ F
n
q (not

necessarily a linear code) such that d(x, y) ≥ d for all pairs x �= y in
C. Assume that for all z ∈ F

n
q \ C, d(z, c) ≤ d − 1 for some c ∈ C.

Then show that b · |C| ≥ qn (b as in part a). This result gives one form
of the Gilbert-Varshamov bound . Hint: An equivalent statement is that
if b · |C| < qn, then there exists some z such that every pair of distinct
elements in C ∪ {z} is still separated by at least d.

c. Show that if k satisfies b < qn−k+1, then an [n, k, d] linear code exists.
Hint: By induction, we may assume that an [n, k − 1, d] linear code C
exists. Using part b, consider the linear code C ′ spanned by C and z,
where the distance from z to any word in C is ≥ d. Show that C ′ still
has minimum distance d.

d. On the other hand, show that for any linear code d ≤ n − k + 1. This
result is known as the Singleton bound . Hint: Consider what happens
when a subset of d−1 components is deleted from each of the codewords.

Many other theoretical results, including both upper and lower bounds
on the n, k, d parameters of codes, are also known. See the coding theory
texts mentioned at the start of this section.



§2. Error-Correcting Codes 465

We now turn to the encoding and decoding operations. Our first obser-
vation is that encoding is much simpler to perform for linear codes than
for arbitrary codes. For a completely arbitrary C of size qk there would
be little alternative to using some form of table look-up to compute the
encoding function. On the other hand, for a linear code all the information
about the code necessary for encoding is contained in the generator matrix
(only k basis vectors for C rather than the whole set of qk codewords),
and all operations necessary for encoding may be performed using linear
algebra.

Decoding a linear code is also correspondingly simpler. A general method,
known as syndrome decoding , is based on the following observation. If c =
wG is a codeword, and some errors e ∈ F

n
q are introduced on transmission

of c, the received word will be x = c + e. Then cH = 0 implies that
xH = (c + e)H = cH + eH = 0 + eH = eH. Hence xH depends only on
the error. The possible values for eH ∈ F

n−k
q are known as syndromes, and

it is easy to see that the syndromes are in one-to-one correspondence with
the cosets of C in F

n
q (or elements of the quotient space F

n
q /C ∼= F

n−k
q ),

so there are exactly qn−k of them. (See Exercise 12 below.)
Syndrome decoding works as follows. First, a preliminary calculation is

performed, before any decoding. We construct a table, indexed by the pos-
sible values of the syndrome s = xH, of the element(s) in the corresponding
coset with the smallest number of nonzero entries. These special elements
of the cosets of C are called the coset leaders.

Exercise 8. Say d = 2t + 1, so we know that any error vector of weight t
or less can be corrected. Show that if there are any elements of a coset of C
which have t or fewer nonzero entries, then there is only one such element,
and as a result the coset leader is unique.

If x ∈ F
n
q is received, we first compute the syndrome s = xH and

look up the coset leader(s) � corresponding to s in our table. If there is
a unique leader, we replace x by x′ = x − �, which is in C (why?). (If
s = 0, then � = 0, and x′ = x is itself a codeword.) Otherwise, we report
an “error” value. By Exercise 8, if no more than t errors occurred in x,
then we have found the unique codeword closest to the received word x
and we return E−1(x′). Note that by this method we have accomplished
nearest neighbor decoding without computing d(x, c) for all qk codewords.
However, a potentially large collection of information must be maintained
to carry out this procedure—the table of coset leader(s) for each of the
qn−k cosets of C. In cases of practical interest, n − k and q can be large,
so qn−k can be huge.

Exercise 9. Compute the table of coset leaders for the [7,4,3] Ham-
ming code from (2.2). Use syndrome decoding to decode the received word
(1, 1, 0, 1, 1, 1, 0).



466 Chapter 9. Algebraic Coding Theory

Here is another example of a linear code, this time over the field F4 =
F2[α]/〈α2 + α + 1〉. Consider the code C with n = 8, k = 3 over F4 defined
by the generator matrix:

(2.4) G =

⎛⎝ 1 1 1 1 1 1 1 1
0 0 1 1 α α α2 α2

0 1 α α2 α α2 α α2

⎞⎠ .

Note that G does not have the systematic form we saw above for the
Hamming code’s generator matrix. Though this is not an impediment to
encoding, we can also obtain a systematic generator matrix for C by row-
reduction (Gauss-Jordan elimination). This corresponds to changing basis
in C; the image of the encoding map E : F

3
4 → F

8
4 is not changed. It is

a good exercise in finite field arithmetic to perform this computation by
hand. It can also be done in Maple as follows. For simplicity, we will write
a for α within Maple. To work in F4 we begin by defining a as a root of
the polynomial x2 + x + 1 as above.

alias(a=RootOf(x^2+x+1)):

The generator matrix G is entered as

m :=array(1..3, 1..8, [[1, 1, 1, 1, 1, 1, 1, 1],

[0, 0, 1, 1, a, a, aˆ2, aˆ2], [0, 1, a, aˆ2, a, aˆ2, a, aˆ2]]) :

Then the command

mr := Gaussjord(m) mod 2;

will perform Gauss-Jordan elimination with coefficients treated as elements
of F4. (Recall Maple’s capitalization convention for unevaluated function
calls, discussed in §1.) The result should be⎛⎝ 1 0 0 1 a a + 1 1 0

0 1 0 1 1 0 a + 1 a
0 0 1 1 a a a + 1 a + 1

⎞⎠ .

Note that a2 is replaced by its reduced form a + 1 everywhere here.
In the reduced matrix, the second row has five nonzero entries. Hence

the minimum distance d for this code is ≤ 5. By computing all 43− 1 = 63
nonzero codewords, it can be seen that d = 5. It is often quite difficult
to determine the exact minimum distance of a code (especially when the
number of nonzero codewords, qk − 1, is large).

To conclude this section, we will develop a relationship between the min-
imum distance of a linear code and the form of parity check matrices for
the code.

(2.5) Proposition. Let C be a linear code with parity check matrix H. If
no collection of δ − 1 distinct rows of H is a linearly dependent subset of
F

n−k
q , then the minimum distance d of C satisfies d ≥ δ.



§2. Error-Correcting Codes 467

Proof. We use the result of Exercise 4. Let x ∈ C be a nonzero codeword.
From the equation xH = 0 in F

n−k
q , we see that the components of x are

the coefficients in a linear combination of the rows of H summing to the
zero vector. If no collection of δ − 1 distinct rows is linearly dependent,
then x must have at least δ nonzero entries. Hence d ≥ δ.

ADDITIONAL EXERCISES FOR §2

Exercise 10. Consider the formal inner product on F
n
q defined by

〈x, y〉 =
n∑

i=1

xiyi

(a bilinear mapping from F
n
q × F

n
q to Fq; there is no notion of positive-

definiteness in this context). Given a linear code C, let

C⊥ = {x ∈ F
n
q : 〈x, y〉 = 0 for all y ∈ C},

the subspace of F
n
q orthogonal to C. If C is k-dimensional, then C⊥ is a

linear code of block length n and dimension n − k known as the dual code
of C.
a. Let G = (Ik | P ) be a systematic generator matrix for C. Determine a

generator matrix for C⊥. How is this related to the parity check matrix
for C? (Note on terminology: Many coding theory texts define a parity
check matrix for a linear code to be the transpose of what we are calling
a parity check matrix. This is done so that the rows of a parity check
matrix will form a basis for the dual code.)

b. Find generator matrices and determine the parameters [n, k, d] for the
duals of the Hamming code from (2.2), and the code from (2.4).

Exercise 11. (The Hamming codes) Let q be a prime power, and let
m ≥ 1. We will call a set S of vectors in F

m
q a maximal pairwise linearly

independent subset of F
m
q if S has the property that no two distinct el-

ements of S are scalar multiples of each other, and if S is maximal with
respect to inclusion. For each pair (q, m) we can construct linear codes C
by taking a parity check matrix H ∈ Mn×m(Fq) whose rows form a max-
imal pairwise linearly independent subset of F

m
q , and letting C ⊂ F

n
q be

the set of solutions of the system of linear equations xH = 0. For instance,
with q = 2, we can take the rows of H to be all the nonzero vectors in F

k
2

(in any order)—see (2.3) for the case q = 2, k = 3. The codes with these
parity check matrices are called the Hamming codes.
a. Show that if S is a maximal pairwise linearly independent subset of F

m
q ,

then S has exactly (qm − 1)/(q − 1) elements. (This is the same as the
number of points of the projective space P

m−1 over Fq.)
b. What is the dimension k of a Hamming code defined by an n×m matrix

H?



468 Chapter 9. Algebraic Coding Theory

c. Write down a parity check matrix for a Hamming code with q = 3,
k = 2.

d. Show that the minimum distance of a Hamming code is always 3,
and discuss the error-detecting and error-correcting capabilities of these
codes.

e. Show that all the Hamming codes are perfect codes (see Exercise 5
above).

Exercise 12. Let C be an [n, k, d] linear code with parity check matrix
H. Show that the possible values for yH ∈ F

n−k
q (the syndromes) are

in one-to-one correspondence with the cosets of C in F
n
q (or elements of

the quotient space F
n
q /C ∼= F

n−k
q ). Deduce that there are qn−k different

syndrome values.

§3 Cyclic Codes

In this section, we will consider several classes of linear codes with even
more structure, and we will see how some of the algorithmic techniques in
symbolic algebra we have developed can be applied to encode them. First
we will consider the class of cyclic codes. Cyclic codes may be defined in
several ways—the most elementary is certainly the following: A cyclic code
is a linear code with the property that the set of codewords is closed under
cyclic permutations of the components of vectors in F

n
q . Here is a simple

example.
In F

4
2 , consider the [4, 2, 2] code C with generator matrix

(3.1) G =
(

1 1 1 1
1 0 1 0

)
from Exercise 1 in §2. As we saw there, C contains 4 distinct codewords.
The codewords (0, 0, 0, 0) and (1, 1, 1, 1) are themselves invariant under all
cyclic permutations. The codeword (1, 0, 1, 0) is not itself invariant: shifting
one place to the left (or right) we obtain (0, 1, 0, 1). But this is another
codeword: (0, 1, 0, 1) = (1, 1)G ∈ C. Similarly, shifting (0, 1, 0, 1) one place
to the left or right, we obtain the codeword (1, 0, 1, 0) again. It follows that
the set C is closed under all cyclic shifts.

The property of invariance under cyclic permutations of the components
has an interesting algebraic interpretation. Using the standard isomorphism
between F

n
q and the vector space of polynomials of degree at most n − 1

with coefficients in Fq:

(a0, a1, . . . , an−1) ↔ a0 + a1x + · · · + an−1x
n−1

we may identify a cyclic code C with the corresponding collection of polyno-
mials of degree n−1. The right cyclic shift which sends (a0, a1, . . . , an−1) to
(an−1, a0, a1, . . . , an−2) is the same as the result of multiplying the poly-



§3. Cyclic Codes 469

nomial a0 + a1x + · · · + an−1x
n−1 by x, then taking the remainder on

division by xn − 1.

Exercise 1. Show that multiplying the polynomial p(x) = a0 + a1x +
· · · + an−1x

n−1 by x, then taking the remainder on division by xn − 1
yields a polynomial whose coefficients are the same as those of p(x), but
cyclically shifted one place to the right.

This suggests that when dealing with cyclic codes we should consider the
polynomials of degree at most n − 1 as the elements of the quotient ring
R = Fq[x]/〈xn− 1〉. The reason is that multiplication of f(x) by x followed
by division gives the standard representative for the product xf(x) in R.
Hence, from now on we will consider cyclic codes as a vector subspaces of
the ring R which are closed under multiplication by the coset of x in R.
Now we make a key observation.

Exercise 2. Show that if a vector subspace C ⊂ R is closed under mul-
tiplication by [x], then it is closed under multiplication by every coset
[h(x)] ∈ R.

Exercise 2 shows that cyclic codes have the defining property of ideals
in a ring. We record this fact in the following proposition.

(3.2) Proposition. Let R = Fq[x]/〈xn − 1〉. A vector subspace C ⊂ R is
a cyclic code if and only if C is an ideal in the ring R.

The ring R shares a nice property with its “parent” ring Fq[x].

(3.3) Proposition. Each ideal I ⊂ R is principal, generated by the coset
of a single polynomial g of degree n− 1 or less. Moreover, g is a divisor of
xn − 1 in Fq[x].

Proof. By the standard characterization of ideals in a quotient ring (see
e.g. [CLO] Chapter 5, §2, Proposition 10), the ideals in R are in one-to-one
correspondence with the ideals in Fq[x] containing 〈xn − 1〉. Let J be the
ideal corresponding to I. Since all ideals in Fq[x] are principal, J must be
generated by some g(x). Since xn − 1 is in J , g(x) is a divisor of xn − 1 in
Fq[x]. The ideal I = J/〈xn − 1〉 is generated by the coset of g(x) in R.

Naturally enough, the polynomial g in Proposition (3.3) is called a
generator polynomial for the cyclic code.

Exercise 3. Identifying the 4-tuple (a, b, c, d) ∈ F
4
2 with [a + bx + cx2 +

dx3] ∈ R = F2[x]/〈x4 − 1〉, show that the cyclic code in F
4
2 with generator



470 Chapter 9. Algebraic Coding Theory

matrix (3.1) can be viewed as the ideal generated by the coset of g = 1+x2

in R. Find the codewords of the cyclic code with generator 1 + x in R.

The Reed-Solomon codes are one particularly interesting class of cyclic
codes used extensively in applications. For example, a clever combination
of two of these codes is used for error control in playback of sound record-
ings in the Compact Disc audio system developed by Philips in the early
1980’s. They are attractive because they have good burst error correcting
capabilities (see Exercise 15 below) and also because efficient decoding al-
gorithms are available for them (see the next section). We will begin with
a description of these codes via generator matrices, then show that they
have the invariance property under cyclic shifts.

Choose a finite field Fq and consider codes of block length n = q − 1
constructed in the following way. Let α be a primitive element for Fq (see
Theorem (1.9) of this chapter), fix k < q, and let Lk−1 = {∑k−1

i=0 ait
i :

ai ∈ Fq} be the vector space of polynomials of degree at most k−1 < q−1
in Fq[t]. We make words in F

q−1
q by evaluating polynomials in Lk−1 at the

q − 1 nonzero elements of Fq. By definition

(3.4) C = {(f(1), f(α), . . . , f(αq−2)) ∈ F
q−1
q : f ∈ Lk−1}

is a Reed-Solomon code, sometimes denoted by RS(k, q). C is a vector
subspace of F

q−1
q since it is the image of the vector space Lk−1 under the

linear evaluation mapping

f �→ (f(1), f(α), . . . , f(αq−2)).

Generator matrices for Reed-Solomon codes can be obtained by taking
any basis of Lk−1 and evaluating to form the corresponding codewords. The
monomial basis {1, t, t2, . . . , tk−1} is the simplest. For example, consider
the Reed-Solomon code over F9 with k = 3. Using the basis {1, t, t2} for
L3, we obtain the generator matrix

(3.5) G =

⎛⎝ 1 1 1 1 1 1 1 1
1 α α2 α3 α4 α5 α6 α7

1 α2 α4 α6 1 α2 α4 α6

⎞⎠ ,

where the first row gives the values of f(t) = 1, the second row gives the
values of f(t) = t, and the third gives the values of f(t) = t2 at the nonzero
elements of F9 (recall, α8 = 1 in F9). For all k < q, the first k columns
of the generator matrix corresponding to the monomial basis of Lk−1 give
a submatrix of Vandermonde form with nonzero determinant. It follows
that the evaluation mapping is one-to-one, and the corresponding Reed-
Solomon code is a linear code with block length n = q − 1, and dimension
k = dim Lk−1.

The generator matrix formed using the monomial basis of Lk−1 also
brings the cyclic nature of Reed-Solomon codes into sharp focus. Observe
that each cyclic shift of a row of the matrix G in (3.5) yields a scalar



§3. Cyclic Codes 471

multiple of the same row. For example, cyclically shifting the third row one
space to the right, we obtain

(α6, 1, α2, α4, α6, 1, α2, α4) = α6 · (1, α2, α4, α6, 1, α2, α4, α6).

Exercise 4. Show that the other rows of (3.5) also have the property that
a cyclic shift takes the row to a scalar multiple of the same row. Show that
this observation implies this Reed-Solomon code is cyclic. Then generalize
your arguments to all Reed-Solomon codes. Hint: Use the original definition
of cyclic codes—closure under all cyclic shifts. You may wish to begin by
showing that the cyclic shifts are linear mappings on F

n
q .

We will give another proof that Reed-Solomon codes are cyclic below,
and also indicate how to find the generator polynomial. However, we pause
at this point to note one of the other interesting properties of Reed-Solomon
codes. Since no polynomial in Lk−1 can have more than k − 1 zeroes in
Fq, every codeword in C has at least (q − 1) − (k − 1) = q − k nonzero
components (and some have exactly this many). By Exercise 4 of §2, the
minimum distance for a Reed-Solomon code is d = q − k = n − k + 1.
Comparing this with the Singleton bound from part d of Exercise 7 from §2,
we see that Reed-Solomon codes have the maximum possible d for the block
length q − 1 and dimension k. Codes with this property are called MDS
(maximum distance separable) codes in the literature. So Reed-Solomon
codes are good in this sense. However, their fixed, small block length relative
to the size of the alphabet is sometimes a disadvantage. There is a larger
class of cyclic codes known as BCH codes which contain the Reed-Solomon
codes as a special case, but which do not have this limitation. Moreover,
a reasonably simple lower bound on d is known for all BCH codes. See
Exercise 13 below and [MS] or [vLi] for more on BCH codes.

Next, we will see another way to show that Reed-Solomon codes are
cyclic that involves somewhat more machinery, but sheds additional light
on the structure of cyclic codes of block length q− 1 in general. Recall from
Proposition (3.3) that the generator polynomial of a cyclic code of block
length q − 1 is a divisor of xq−1 − 1. By Lagrange’s Theorem, each of the
q − 1 nonzero elements of Fq is a root of xq−1 − 1 = 0, hence

xq−1 − 1 =
∏

β∈F ∗
q

(x − β)

in Fq[x], where F
∗
q is the set of nonzero elements of Fq. Consequently, the

divisors of xq−1 − 1 are precisely the polynomials of the form
∏

β∈S(x− β)
for subsets S ⊂ F

∗
q . This is the basis for another characterization of cyclic

codes.

Exercise 5. Show that a linear code of dimension k in R = Fq[x]/〈xq−1−
1〉 is cyclic if and only if the codewords, viewed as polynomials of degree at



472 Chapter 9. Algebraic Coding Theory

most q − 2, have some set S of q − k− 1 common zeroes in F
∗
q . Hint: If the

codewords have the elements in S as common zeroes, then each codeword
is divisible by g(x) =

∏
β∈S(x − β).

Using this exercise, we will now determine the generator polynomial of a
Reed-Solomon code. Let f(t) =

∑k−1
j=0 ajt

j be an element of Lk−1. Consider
the values ci = f(αi) for i = 0, . . . , q − 2. Using the ci as the coefficients
of a polynomial as in the discussion leading up to Proposition (3.2), write
the corresponding codeword as c(x) =

∑q−2
i=0 cix

i. But then substituting
for ci and interchanging the order of summation, we obtain

(3.6)

c(α�) =
q−2∑
i=0

ciα
i�

=
k−1∑
j=0

aj

⎛⎝q−2∑
i=0

αi(�+j)

⎞⎠ .

Assume that 1 ≤ � ≤ q − k − 1. Then for all 0 ≤ j ≤ k − 1, we have
1 ≤ �+j ≤ q−2. By the result of Exercise 8 of §1, each of the inner sums on
the right is zero so c(α�) = 0. Using Exercise 5, we have obtained another
proof of the fact that Reed-Solomon codes are cyclic, since the codewords
have the set of common zeroes S = {α, α2, . . . , αq−k−1}. Moreover, we
have the following result.

(3.7) Proposition. Let C be the Reed-Solomon code of dimension k and
minimum distance d = q − k over Fq. Then the generator polynomial of C
has the form

g = (x − α) · · · (x − αq−k−1) = (x − α) · · · (x − αd−1).

For example, the Reed-Solomon codewords corresponding to the three
rows of the matrix G in (3.5) above are c1 = 1 + x + x2 + · · · + x7,
c2 = 1+αx+α2x2+· · ·+α7x7, and c3 = 1+α2x+α4x2+α6x4+· · ·+α6x7.
Using Exercise 8 of §1, it is not difficult to see that the common roots of
c1(x) = c2(x) = c3(x) = 0 in F9 are x = α, α2, . . . , α5, so the generator
polynomial for this code is

g = (x − α)(x − α2)(x − α3)(x − α4)(x − α5).

Also see Exercise 11 below for another point of view on Reed-Solomon and
related codes.

From the result of Proposition (3.2), it is natural to consider the following
generalization of the cyclic codes described above. Let R be a quotient ring
of Fq[x1, . . . , xm] of the form

R = Fq[x1, . . . , xm]/〈xn1
1 − 1, . . . , xnm

m − 1〉



§3. Cyclic Codes 473

for some n1, . . . , nm. Any ideal I in R will be a linear code closed under
products by arbitrary h(x1, . . . , xn) in R. We will call any code obtained
in this way an m-dimensional cyclic code.

Note first thatH = {xn1
1 −1, . . . , xnm

m −1} is a Gröbner basis for the ideal
it generates, with respect to all monomial orders. (This follows for instance
from Theorem 3 and Proposition 4 of Chapter 2, §9 of [CLO].) Hence
standard representatives for elements of R can be computed by applying
the division algorithm in Fq[x1, . . . , xm] and computing remainders with
respect to H. We obtain in this way as representatives of elements of R all
polynomials whose degree in xi is ni − 1 or less for each i.

Exercise 6. Show that as a vector space,

R = Fq[x1, . . . , xm]/〈xn1
1 − 1, . . . , xnm

m − 1〉 ∼= F
n1·n2···nm
q .

Multiplication of an element of R by x1, for example, can be viewed as
a sort of cyclic shift in one of the variables. Namely, writing a codeword
c(x1, . . . , xn) ∈ I as a polynomial in x1, whose coefficients are polynomials
in the other variables: c =

∑n1−1
j=0 cj(x2, . . . , xn)xj

1, multiplication by x1,
followed by division by H yields the standard representative x1c = cn1−1 +
c0x1 + c1x

2
1 + · · ·+ cn1−2x

n1−1
1 . Since c ∈ I this shifted polynomial is also

a codeword. The same is true for each of the other variables x2, . . . , xm.
In the case m = 2, for instance, it is customary to think of the codewords

of a 2-dimensional cyclic code either as polynomials in two variables, or as
n1×n2 matrices of coefficients. In the matrix interpretation, multiplication
by x1 then corresponds to the right cyclic shift on each row, while multi-
plication by x2 corresponds to a cyclic shift on each of the columns. Each
of these operations leaves the set of codewords invariant.

Exercise 7. Writing F4 = F2[α]/〈α2 +α+1〉, the ideal I ⊂ F4[x, y]/〈x3−
1, y3 − 1〉 generated by g1(x, y) = x2 + α2xy + αy, g2(x, y) = y + 1 gives
an example of a 2-dimensional cyclic code with n = 32 = 9. As an exercise,
determine k, the vector space dimension of this 2-dimensional cyclic code,
by determining a vector space basis for I over F4. (Answer: k = 7. Also
see the discussion following Theorem (3.9) below.) The minimum distance
of this code is d = 2. Do you see why?

To define an m-dimensional cyclic code, it suffices to give a set of gener-
ators {[f1], . . . , [fs]} ⊂ R for the ideal I ⊂ R. The corresponding ideal J
in Fq[x1, . . . , xm] is

J = 〈f1, . . . , fs〉 + 〈xn1−1
1 − 1, . . . , xnm−1

m − 1〉.
Fix any monomial order on Fq[x1, . . . , xm]. With a Gröbner basis G =
{g1, . . . , gt} for J with respect to this order we have everything necessary to



474 Chapter 9. Algebraic Coding Theory

determine whether a given element of R is in I using the division algorithm
in Fq[x1, . . . , xm].

(3.8) Proposition. Let R, I, J, G be as above. A polynomial h(x1, . . . , xn)
represents an element of I in R if and only if its remainder on division by
G is zero.

Proof. This follows because I = J/〈xn1−1
1 − 1, . . . , xnm−1

m − 1〉 and
standard isomorphism theorems (see Theorem 2.6 of [Jac]) give a ring
isomorphism

R/I ∼= Fq[x1, . . . , xm]/J.

See Exercise 14 below for the details.

An immediate consequence of Proposition (3.8) is the following system-
atic encoding algorithm for m-dimensional cyclic codes using division with
respect to a Gröbner basis. One of the advantages of m-dimensional cyclic
codes over linear codes in general is that their extra structure allows a very
compact representation of the encoding function. We only need to know
a reduced Gröbner basis for the ideal J corresponding to a cyclic code to
perform systematic encoding. A Gröbner basis will generally have fewer
elements than a vector space basis of I. This frequently means that much
less information needs to be stored. In the following description of a sys-
tematic encoder, the information positions of a codeword will refer to the k
positions in the codeword that duplicate the components of the element of
F

k
q that is being encoded. These will correspond to a certain subset of the

coefficients in a polynomial representative for an element of R. Similarly,
the parity check positions are the complementary collection of coefficients.

(3.9) Theorem. Let I ⊂ R = Fq[x1, . . . , xm]/〈xn1
1 − 1, . . . , xnm

m − 1〉
be an m-dimensional cyclic code, and let G be a Gröbner basis for the
corresponding ideal J ⊂ Fq[x1, . . . , xm] with respect to some monomial
order. Then there is a systematic encoding function for I constructed as
follows.
a. The information positions are the coefficients of the nonstandard mono-

mials for J in which each xi appears to a power at most ni − 1.
(Non-standard monomials are monomials in 〈LT(J)〉.)

b. The parity check positions are the coefficients of the standard monomi-
als. (The standard monomials are those not contained in 〈LT(J)〉.)

c. The following algorithm gives a systematic encoder E for I:

Input: the Gröbner basis G for J ,

w, a linear combination of nonstandard monomials

Output: E(w) ∈ I



§3. Cyclic Codes 475

Uses: Division algorithm with respect to given order

w := wG (the remainder on division)

E(w) := w − w

Proof. The dimension of R/I as a vector space over Fq is equal to the
number of standard monomials for J since R/I ∼= Fq[x1, . . . , xm]/J . (See
for instance Proposition 4 from Chapter 5, §3 of [CLO].) The dimension of I
as a vector space over Fq is equal to the difference dim R−dim R/I. But this
is the same as the number of nonstandard monomials for J , in which each
xi appears to a power at most ni− 1. Hence the span of those monomials is
a subspace of R of the same dimension as I. Let w be a linear combination
of only these nonstandard monomials. By the properties of the division
algorithm, w is a linear combination of only standard monomials, so the
symbols from w are not changed in the process of computing E(w) = w−w.
By Proposition (3.8), the difference w − w is an element of the ideal I, so
it represents a codeword. As a result E is a systematic encoding function
for I.

In the case m = 1, the Gröbner basis for J is the generator polynomial
g, and the remainder w is computed by ordinary 1-variable polynomial
division. For example, let F9 = F3[α]/〈α2 + α + 2〉 (α is a primitive ele-
ment by (1.1)) and consider the Reed-Solomon code over F9 with n = 8,
k = 5. By Proposition (3.7), the generator polynomial for this code is
g = (x− α)(x− α2)(x− α3), and {g} is a Gröbner basis for the ideal J in
F9[x] corresponding to the Reed-Solomon code. By Theorem (3.9), as in-
formation positions for a systematic encoder we can take the coefficients of
the nonstandard monomials x7, x6, . . . , x3 in an element of F9[x]/〈x8 − 1〉.
The parity check positions are the coefficients of the standard monomials
x2, x, 1. To encode a word w(x) = x7 + αx5 + (α + 1)x3, for instance, we
divide g into w, obtaining the remainder w. Then E(w) = w − w. Here
is a Maple session performing this computation. We use the method dis-
cussed in §§1,2 for dealing with polynomials with coefficients in a finite
field. First we find the generator polynomial for the Reed-Solomon code as
above, using:

alias(alpha = RootOf(t^2 + t + 2));
g := collect(Expand((x-alpha)*(x-alpha^2)*

(x-alpha^3) mod 3,x);

This produces output

g := x3 + alpha x2 + (1 + alpha)x + 2 alpha + 1.

Then

w := x^7 + alpha*x^5 + (alpha + 1)*x^3:
(w - Rem(w,g,x)) mod 3;



476 Chapter 9. Algebraic Coding Theory

yields output as follows

x7 + alpha x5 + (1 + alpha)x3 + 2(2 + 2 alpha)x2 + x + 2.

After simplifying the coefficient of x2 to α + 1, this is the Reed-Solomon
codeword.

Next, we consider the 2-dimensional cyclic code in Exercise 7. Recall
I ⊂ R = F4[x, y]/〈x3 − 1, y3 − 1〉 generated by g1(x, y) = x2 + α2xy +
αy, g2(x, y) = y+1. Take F4 = F2[α]/〈α2 +α+1〉 and note that −1 = +1
in this field. Hence x3 − 1 is the same as x3 + 1, and so forth. As above,
we must consider the corresponding ideal

J = 〈x2 + α2xy + αy, y + 1, x3 + 1, y3 + 1〉
in F4[x, y]. Applying Buchberger’s algorithm to compute a reduced lex
Gröbner basis (x > y) for this ideal, we find

G = {x2 + α2x + α, y + 1}.
As an immediate result, the quotient ring F4[x, y]/J ∼= R/I is 2-
dimensional, while R is 9-dimensional over F4. Hence I has dimension
9 − 2 = 7. There are also exactly two points in V(J). According to The-
orem (3.9), the information positions for this code are the coefficients of
x2, y, xy, x2y, y2, xy2, x2y2, and the parity checks are the coefficients of
1, x. To encode w = x2y2 for example, we would compute the remain-
der on division by G, which is x2y2G

= α2x + α then subtract to obtain
E(w) = x2y2 + α2x + α.

Gröbner basis computations in polynomial rings over finite fields may be
done with Maple’s Groebner and Ore algebra packages as follows. For ex-
ample, to compute the example above, we would first load the Ore algebra
and Groebner packages, then define the polynomial ring using

A:= poly algebra(x,y,a,characteristic=2, alg relations={a^2+a+1});
(This defines a ring A which is isomorphic to F4[x, y]. Here a is the primitive
element for F4 and the idea is the same as in our earlier computations with a
variable aliased as a root of a given irreducible polynomial. However, that
method and the mod environment are not compatible with the Gröbner
basis routines.) Then define the lex order as follows.

TL:=termorder(A,plex(x,y,a));

(Note that a is included.) Finally, if we declare

J:=[x^2+a^2*x*y+a*y,y+1,x^3+1,y^3+1];

then the command

gbasis(J,TL);

will do the Gröbner basis computation in the ring A. Other computer
algebra systems such as Singular and Macaulay 2 can handle these
computations.



§3. Cyclic Codes 477

ADDITIONAL EXERCISES FOR §3

Exercise 8. Let C be a cyclic code in R = Fq[x]/〈xn − 1〉, with monic
generator polynomial g(x) of degree n − k, so that the dimension of C
is k. Write out a generator matrix for C as a linear code, viewing the
encoding procedure of Theorem (3.9) as a linear map from the span of
{xn−k, xn−k+1, . . . , xn−1} to R. In particular show that every row of the
matrix is determined by the first row, i.e. the image E(xn−k). This gives
another way to understand how the cyclic property reduces the amount of
information necessary to describe a code.

Exercise 9. This exercise will study the dual of a cyclic code of block
length q − 1 or (q − 1)m more generally. See Exercise 10 from §2 for the
definition of the dual of a linear code. Let R = Fq[x]/〈xq−1 − 1〉 as in the
discussion of Reed-Solomon codes.
a. Show that if f(x) =

∑q−2
i=0 aix

i and h(x) =
∑q−2

i=0 bix
i represent

any two elements of R, then the inner product 〈a, b〉 of their vec-
tors of coefficients is the same as the constant term in the product
f(x)h(x−1) = f(x)h(xq−2) in R.

b. Let C be a cyclic code in R. Show that the dual code C⊥ is equal to
the collection of polynomials h(x) such that f(x)h(x−1) = 0 (product
in R) for all f(x) ∈ C.

c. Use part b to describe the generator polynomial for C⊥ in terms of the
generator g(x) for C. Hint: recall from the proof of Proposition (3.3)
that g(x) is a divisor of xq−1 − 1 =

∏
β∈F ∗

q
(x − β). The generator

polynomial for C⊥ will have the same property.
d. Extend these results to m-dimensional cyclic codes in

Fq[x1, . . . , xm]/〈xq−1
i − 1 : i = 1, . . . , m〉.

Exercise 10. This exercise discusses another approach to the study of
cyclic codes of block-length q − 1, which recovers the result of Exercise 5
in a different way. Namely, consider the ring R = Fq[x]/〈xq−1 − 1〉. The
structure of the ring R and its ideals may be studied as follows.
a. Show that

(3.10)
ϕ : R → F

q−1
q

c(x) �→ (c(1), c(α), . . . , c(αq−2))

defines a bijective mapping, which becomes an isomorphism of rings if
we introduce the component-wise product

(c0, . . . , cq−2) · (d0, . . . , dq−2) = (c0d0, . . . , cq−2dq−2)

as multiplication operation in F
q−1
q . (The mapping ϕ is a discrete ana-

logue of the Fourier transform since it takes polynomial products in



478 Chapter 9. Algebraic Coding Theory

R—convolution on the coefficients—to the component-wise products in
F

q−1
q .)

b. Show that the ideals in the ring F
q−1
q (with the component-wise prod-

uct) are precisely the subsets of the following form. For each collection
of subscripts S ⊂ {0, 1, . . . , q − 2}, let

IS = {(c0, . . . , cq−2) : ci = 0 for all i ∈ S}.
Then each ideal is equal to IS for some S.

c. Using the mapping ϕ, deduce from part b and Proposition (3.2) that
cyclic codes in R are in one-to-one correspondence with subsets S ⊂
{0, 1, . . . , q − 2}, or equivalently subsets of the nonzero elements of the
field, F

∗
q . Given a cyclic code C ⊂ R, the corresponding subset of F

∗
q is

called the set of zeroes of C. For Reed-Solomon codes the set of zeroes
has the form {α, . . . , αq−k−1} (a “consecutive string” of zeroes starting
from α).

Exercise 11.
a. By constructing an appropriate transform ϕ analogous to the map

in (3.10), or otherwise, show that the results of Exercise 10 may be
modified suitably to cover the case of m-dimensional cyclic codes of
block length n = (q − 1)m. In particular, an m-dimensional cyclic
code I in Fq[x1, . . . , xm]/〈xq−1

1 − 1, . . . , xq−1
m − 1〉 is uniquely spec-

ified by giving a set of zeroes—the points of V(J)—in (F ∗
q )m =

V(xq−1
1 − 1, . . . , xq−1

m − 1). (Readers of Chapter 2 should compare with
the discussion of finite-dimensional algebras in §2 of that chapter.)

b. Consider the 2-dimensional cyclic code I in F9[x, y]/〈x8 − 1, y8 − 1〉
generated by g(x, y) = x7y7 + 1. What is the dimension of I (i.e., the
parameter k)? What is the corresponding set of zeroes in (F ∗

9 )2?

Exercise 12. In this exercise, we will explore the relation between the
zeroes of a cyclic code and its minimum distance. Let α be a primitive
element of Fq. Consider a cyclic code C of length q− 1 over Fq and suppose
that there exist � and δ ≥ 2 such that the δ − 1 consecutive powers of α:

α�, α�+1, . . . , α�+δ−2

are distinct roots of the generator polynomial of C.
a. By considering the equations c(α�+j) = 0, j = 0, . . . , δ− 2, satisfied by

the codewords (written as polynomials), show that the vectors

(1, α�+j, α2(�+j), . . . , α(q−2)(�+j)),

can be taken as columns of a parity check matrix H for C.
b. Show that, possibly after removing common factors from the rows, all

the determinants of the (δ− 1)× (δ− 1) submatrices of H formed using
entries in these columns are Vandermonde determinants.



§3. Cyclic Codes 479

c. Using Proposition (2.5), show that the minimum distance d of C satisfies
d ≥ δ.

d. Use the result of part c to rederive the minimum distance of a Reed-
Solomon code.

Exercise 13. (The BCH codes) Now consider cyclic codes C of length
qm − 1 over Fq for some m ≥ 1.
a. Show that the result of Exercise 12 extends in the following way. Let α

be a primitive element of Fqm , and suppose that there exist � and δ ≥ 2
such that the δ − 1 consecutive powers of α:

α�, α�+1, . . . , α�+δ−2

are distinct roots of the generator polynomial g(x) ∈ Fq[x] of C. Show
that C has minimum distance d ≥ δ.

b. The “narrow-sense” q-ary BCH code BCHq(m, t) is the cyclic code over
Fq whose generator polynomial is the least common multiple of the
minimal polynomials of α, α2, . . . , α2t ∈ Fqm over Fq. (The minimal
polynomial of β ∈ Fqm over Fq is the nonzero polynomial of minimal
degree in Fq[u] with β as a root.) Show the the minimum distance of
BCHq(m, t) is at least 2t + 1. (The integer 2t + 1 is called the designed
distance of the BCH code.)

c. Construct the generator polynomial for BCH3(2, 2) (a code over F3).
What is the dimension of this code?

d. Is it possible for the actual minimum distance of a BCH code to be
strictly larger than its designed distance? For example, show using
Proposition (2.5) that the actual minimum distance of the binary BCH
code BCH2(5, 4) satisfies d ≥ 11 even though the designed distance
is only 9. Hint: Start by showing that if β ∈ F2m is a root of a poly-
nomial p(u) ∈ F2[u], then so are β2, β4, . . . , β2m−1

. Readers familiar
with Galois theory for finite fields will recognize that we are apply-
ing the Frobenius automorphism of F2m over F2 from Exercise 14 of §1
repeatedly here.

Exercise 14. Prove Proposition (3.8).

Exercise 15. Reed-Solomon codes are now commonly used in situations
such as communication to and from deep-space exploration craft, the CD
digital audio system, and many others where errors tend to occur in
“bursts” rather than randomly. One reason is that Reed-Solomon codes
over an alphabet F2r with r > 1 can correct relatively long bursts of errors
on the bit level, even if the minimum distance d is relatively small. Each
Reed-Solomon codeword may be represented as a string of (2r − 1)r bits,
since each symbol from F2r is represented by r bits. Show that a burst of
r� consecutive bit errors will change at most � + 1 of the entries of the



480 Chapter 9. Algebraic Coding Theory

codeword, viewed as elements of F2r . So if � + 1 ≤ �(d − 1)/2�, a burst
error of length r� can be corrected. Compare with Proposition (2.1).

§4 Reed-Solomon Decoding Algorithms

The syndrome decoding method that we described in §2 can be applied
to decode any linear code. However, as noted there, for codes with large
codimension n − k, a very large amount of information must be stored to
carry it out. In this section, we will see that there are much better methods
available for the Reed-Solomon codes introduced in §3—methods which ex-
ploit their extra algebraic structure. Several different but related decoding
algorithms for these codes have been considered. One well-known method
is due to Berlekamp and Massey (see [Bla]). With suitable modifications,
it also applies to the larger class of BCH codes mentioned in §3, and it
is commonly used in practice. Other algorithms paralleling the Euclidean
algorithm for the GCD of two polynomials have also been considered. Our
presentation will follow two papers of Fitzpatrick ([Fit1], [Fit2]) which
show how Gröbner bases for modules over polynomial rings (see Chapter 5)
can be used to give a framework for the computations involved. Decoding
algorithms for m-dimensional cyclic codes using similar ideas have been
considered by Sakata ([Sak]), Heegard-Saints ([HeS]) and others.

To begin, we introduce some notation. We fix a field Fq and a primitive
element α, and consider the Reed-Solomon code C ⊂ Fq/〈xq−1 − 1〉 given
by a generator polynomial

g = (x − α) · · · (x − αd−1)

of degree d − 1. By Proposition (3.7), we know that the dimension of C
is k = q − d, and the minimum distance of C is d. For simplicity we will
assume that d is odd: d = 2t + 1. Then by Proposition (2.1), any error
vector of weight t or less should be correctable.

Let c =
∑q−2

j=0 cjx
j be a codeword of C. Since C has generator polyno-

mial g(x), this means that in Fq[x], c is divisible by g. Suppose that c is
transmitted, but some errors are introduced, so that the received word is
y = c + e for some e =

∑
i∈I eix

i. I is called the set of error locations and
the coefficients ei are known as the error values. To decode, we must solve
the following problem.

(4.1) Problem. Given a received word y, determine the set of error lo-
cations I and the error values ei. Then the decoding function will return
E−1(y − e).

The set of values Ej = y(αj), j = 1, . . . , d− 1, serves the same purpose
as the syndrome of the received word for a general linear code. (It is not
the same thing though—the direct analog of the syndrome would be the



§4. Reed-Solomon Decoding Algorithms 481

remainder on division by the generator. See Exercise 7 below.) First, we
can determine whether errors have occurred by computing the values Ej. If
Ej = y(αj) = 0 for all j = 1, . . . , d− 1, then y is divisible by g. Assuming
the error vector has a weight at most t, y must be the codeword we intended
to send. If some Ej �= 0, then there are errors and we can try to use the
information included in the Ej to solve Problem (4.1). Note that the Ej

are the values of the error polynomial for j = 1, . . . , d − 1:

Ej = y(αj) = c(αj) + e(αj) = e(αj),

since c is a multiple of g. (As in Exercise 10 from §3, we could also think
of the Ej as a portion of the transform of the error polynomial.) The
polynomial

S(x) =
d−1∑
j=1

Ejx
j−1

is called the syndrome polynomial for y. Its degree is d − 2 or less. By
extending the definition of Ej = e(αj) to all exponents j we can also
consider the formal power series

(4.2) E(x) =
∞∑

j=1

Ejx
j−1.

(Since αq = α, the coefficients in E are periodic, with period at most q,
and consequently E is actually the series expansion of a rational function
of x; see (4.3) below. One can also solve the decoding problem by finding
the recurrence relation of minimal order on the coefficients in E. For the
basics of this approach see Exercise 6 below.)

Suppose we knew the error polynomial e. Then

Ej =
∑
i∈I

ei(αj)i =
∑
i∈I

ei(αi)j .

By expanding in formal geometric series, E(x) from (4.2) can be written
as

(4.3)

E(x) =
∑
i∈I

eiα
i

(1 − αix)

=
Ω(x)
Λ(x)

,

where

Λ =
∏
i∈I

(1 − αix)



482 Chapter 9. Algebraic Coding Theory

and

Ω =
∑
i∈I

eiα
i
∏
j �=i
j∈I

(1 − αjx).

The roots of Λ are precisely the α−i for i ∈ I. Since the error locations
can be determined easily from these roots, we call Λ the error locator
polynomial . Turning to the numerator Ω, we see that

deg(Ω) ≤ deg(Λ) − 1.

In addition,

Ω(α−i) = eiα
i

∏
j �=i,j∈I

(1 − αjα−i) �= 0.

Hence Ω has no roots in common with Λ. From this we deduce the im-
portant observation that the polynomials Ω and Λ must be relatively
prime.

Similarly, if we consider the “tail” of the series E,

(4.4)
E(x) − S(x) =

∞∑
j=d

⎛⎝∑
i∈I

ei(αi)j

⎞⎠ xj−1

= xd−1 · Γ(x)
Λ(x)

,

where

Γ =
∑
i∈I

eiα
id

∏
j �=i
j∈I

(1 − αjx).

The degree of Γ is also at most deg(Λ) − 1.
Combining (4.3) and (4.4), and writing d− 1 = 2t we obtain the relation

(4.5) Ω = ΛS + x2tΓ.

For some purposes, it will be more convenient to regard (4.5) as a
congruence. The equation (4.5) implies that

(4.6) Ω ≡ ΛS mod x2t.

Conversely, if (4.6) holds, there is some polynomial Γ such that (4.5) holds.
The congruence (4.6), or sometimes its explicit form (4.5), is called the key
equation for decoding.

The derivation of the key equation (4.6) assumed e was known. But now
consider the situation in an actual decoding problem, assuming an error
vector of weight at most t. Given the received word y, S is computed.
The key equation (4.6) is now viewed as a relation between the known



§4. Reed-Solomon Decoding Algorithms 483

polynomials S, x2t, and the unknowns Ω, Λ. Suppose a solution (Ω, Λ) of
the key equation is found, which satisfies the following degree conditions:

(4.7)
{

deg(Λ) ≤ t
deg(Ω) < deg(Λ)

and in which Ω, Λ are relatively prime. We claim that in such a solution Λ
must be a factor of xq−1 − 1, and its roots give the inverses of the error
locations. This is a consequence of the following uniqueness statement.

(4.8) Theorem. Let S be the syndrome polynomial corresponding to a
received word y with an error of weight at most t. Up to a constant mul-
tiple, there exists a unique solution (Ω, Λ) of (4.6) that satisfies the degree
conditions (4.7), and in which Ω and Λ are relatively prime.

Proof. As above, the actual error locator Λ and the corresponding Ω give
one such solution. Let (Ω, Λ) be any other. From the congruences

Ω ≡ ΛS mod x2t

Ω ≡ ΛS mod x2t,

multiplying the second by Λ, the first by Λ and subtracting, we obtain

ΩΛ ≡ ΩΛ mod x2t.

Since the degree conditions (4.7) are satisfied for both solutions, both sides
of this congruence are actually polynomials of degree at most 2t − 1, so it
follows that

ΩΛ = ΩΛ.

Since Λ and Ω are relatively prime, and similarly for Λ and Ω, Λ must
divide Λ and vice versa. Similarly for Ω and Ω. As a result, Λ and Λ differ
at most by a constant multiple. Similarly for Ω and Ω, and the constants
must agree.

Given a solution of (4.6) for which the conditions of Theorem (4.8) are
satisfied, working backwards, we can determine the roots of Λ = 0 in F

∗
q ,

and hence the error locations—if α−i appears as a root, then i ∈ I is an
error location. Finally, the error values can be determined by the following
observation.

Exercise 1. Let (Ω, Λ) be the solution of (4.6) in which the actual error
locator polynomial Λ (with constant term 1) appears. If i ∈ I, show that

Ω(α−i) = αieiχi(α−i),

where χi =
∏

j �=i(1 − αjx). Hence we can solve for ei, knowing the error
locations. The resulting expression is called the Forney formula for the
error value.



484 Chapter 9. Algebraic Coding Theory

Theorem (4.8) and the preceding discussion show that solving the decod-
ing problem (4.1) can be accomplished by solving the key equation (4.6).
It is here that the theory of module Gröbner bases can be applied to good
effect. Namely, given the integer t and S ∈ Fq[x], consider the set of all
pairs (Ω, Λ) ∈ Fq[x]2 satisfying (4.6):

K = {(Ω, Λ) : Ω ≡ ΛS mod x2t}.

Exercise 2. Show that K is a Fq[x]-submodule of Fq[x]2. Also show that
every element of K can be written as a combination (with polynomial
coefficients) of the two generators

(4.9) g1 = (x2t, 0) and g2 = (S, 1).

Hint: For the last part it may help to consider the related module

K = {(Ω, Λ, Γ) : Ω = ΛS + x2tΓ}
and the elements (Ω, Λ, Γ) = (x2t, 0, 1), (S, 1, 0) in K.

The generators for K given in (4.9) involve only the known polynomials
for the decoding problem with syndrome S. Following Fitzpatrick, we will
now show that (4.9) is a Gröbner basis for K with respect to one monomial
order on Fq[x]2. Moreover, one of the special solutions (Λ, Ω) ∈ K given
by Theorem (4.8) is guaranteed to occur in a Gröbner basis for K with
respect to a second monomial order on Fq[x]2. These results form the basis
for two different decoding methods that we will indicate.

To prepare for this, we need to begin by developing some preliminary
facts about submodules of Fq[x]2 and monomial orders. The situation here
is very simple compared to the general situation studied in Chapter 5. We
will restrict our attention to submodules M ⊂ Fq[x]2 such that the quotient
Fq[x]2/M is finite-dimensional as a vector space over Fq. We will see below
that this is always the case for the module K with generators as in (4.9).
There is a characterization of these submodules that is very similar to the
Finiteness Theorem for quotients k[x1, . . . , xn]/I from Chapter 2, §2.

(4.10) Proposition. Let k be any field, and let M be a submodule of k[x]2.
Let > be any monomial order on k[x]2. Then the following conditions are
equivalent:
a. The k-vector space k[x]2/M is finite-dimensional.
b. 〈LT>(M)〉 contains elements of the form xue1 = (xu, 0) and xve2 =

(0, xv) for some u, v ≥ 0.

Proof. Let G be a Gröbner basis for M with respect to the monomial
order >. As in the ideal case, the elements of k[x]2/M are linear combina-
tions of monomials in the complement of 〈LT>(M)〉. There is a finite number



§4. Reed-Solomon Decoding Algorithms 485

of such monomials if and only if 〈LT>(M)〉 contains multiples of both e1
and e2.

Every submodule we consider from now on in this section will satisfy the
equivalent conditions in (4.10), even if no explicit mention is made of that
fact.

The monomial orders that come into play in decoding are special cases
of weight orders on Fq[x]2. They can also be described very simply “from
scratch” as follows.

(4.11) Definition. Let r ∈ Z, and define an order >r by the following
rules. First, xmei >r xnei if m > n and i = 1 or 2. Second, xme2 >r xne1
if and only if m + r ≥ n.

For example, with r = 2, the monomials in k[x]2 are ordered by >2 as
follows:

e1 <2 xe1 <2 x2e1 <2 e2 <2 x3e1 <2 xe2 <2 x4e1 <2 · · · .

Exercise 3.
a. Show that >r defines a monomial order on k[x]2 for each r ∈ Z.
b. How are the monomials in k[x]2 ordered under >−2?
c. Show that the >0 and >−1 orders coincide with TOP (term over posi-

tion) orders as introduced in Chapter 5 (for different orderings of the
standard basis).

d. Are the POT (position over term) orders special cases of the >r orders?
Why or why not?

Gröbner bases for submodules with respect to the >r orders have very
special forms.

(4.12) Proposition. Let M be a submodule of k[x]2, and fix r ∈ Z. As-
sume 〈LT>r(M)〉 is generated by xue1 = (xu, 0) and xve2 = (0, xv) for
some u, v ≥ 0. Then a subset G ⊂ M is a reduced Gröbner basis of M with
respect to >r if and only if G = {g1 = (g11, g12), g2 = (g21, g22)}, where
the gi satisfy the following two properties:
a. LT(g1) = xue1 (in g11), and LT(g2) = xve2 (in g22) for u, v as above.
b. deg(g21) < u and deg(g12) < v.

Proof. Suppose G is a subset of M satisfying conditions a,b. By a, the
leading terms of the elements of G generate 〈LT(M)〉, so by definition G
is a Gröbner basis for M . Condition b implies that no terms in g1 can be
removed by division with respect to g2 and vice versa, so G is reduced.
Conversely, if G is a reduced Gröbner basis for M with respect to >r it
must contain exactly two elements. Numbering the generators g1 and g2 as
above condition a must hold. Finally b must hold if G is reduced. (Note,



486 Chapter 9. Algebraic Coding Theory

fixing the leading terms in g1 and g2 implies that the other components
satisfy deg(g12) + r < u and deg(g21) ≤ v + r.)

An immediate, but important, consequence of Proposition (4.12) is the
following observation.

(4.13) Corollary. Let G = {(S, 1), (x2t, 0)} be the generators for the
module K of solutions of the key equation in the decoding problem with
syndrome S. Then G is a Gröbner basis for K with respect to the order
>deg(S).

Note LT>deg(S)((S, 1)) = (0, 1) = e2, so the module of solutions of the key
equation always satisfies the finiteness condition from Proposition (4.10).
We leave the proof of Corollary (4.13) as an exercise for the reader.

The final general fact we will need to know is another consequence of the
definition of a Gröbner basis. First we introduce some terminology.

(4.14) Definition. Let M be a nonzero submodule of k[x]2. A minimal
element of M with respect to a monomial order > is a g ∈ M \ {0} such
that LT(g) is minimal with respect to >.

For instance, from (4.13), (S, 1) is minimal with respect to the order
>deg(S) in 〈(S, 1), (x2t, 0)〉 since

e2 = LT((S, 1)) <deg(S) LT((x2t, 0)) = x2te1,

and these leading terms generate 〈LT(K)〉 for the >deg(S) order.

Exercise 4. Show that minimal elements of M ⊂ k[x]2 are unique, up to
a nonzero constant multiple.

As in the example above, once we fix an order >r, a minimal element for
M with respect to that order is guaranteed to appear in a Gröbner basis
for M with respect to >r.

(4.15) Proposition. Fix any >r order on k[x]2, and let M be a sub-
module. Every Gröbner basis for M with respect to >r contains a minimal
element of M with respect to >r.

We leave the easy proof to the reader. Now we come to the main point.
The special solution of the key equation (4.6) guaranteed by Theorem (4.8)
can be characterized as the minimal element of the module K with respect
to a suitable order.

(4.16) Proposition. Let g = (Ω, Λ) be a solution of the key equation
satisfying the degree conditions (4.7) and with components relatively prime



§4. Reed-Solomon Decoding Algorithms 487

(which is unique up to constant multiple by Theorem (4.8)). Then g is a
minimal element of K under the >−1 order.

Proof. An element g = (Ω, Λ) ∈ K satisfies deg(Λ) > deg(Ω) if and only
if its leading term with respect to >−1 is a multiple of e2. The elements of
K given by Theorem (4.8) have this property and have minimal possible
deg(Λ), so their leading term is minimal among leading terms which are
multiples of e2.

Aiming for a contradiction now, suppose that g is not minimal, or
equivalently that there is some nonzero h = (A, B) in K such that
LT(h) <−1 LT(g). Then by the remarks above, LT(h) must be a multiple of
e1, that is, it must appear in A, so

(4.17) deg(Λ) > deg(A) ≥ deg(B).

But both h and g are solutions of the key equation:

A ≡ SB mod x2t

Ω ≡ SΛ mod x2t.

Multiplying the second congruence by B, the first by Λ, and subtracting,
we obtain

(4.18) ΛA ≡ BΩ mod x2t.

We claim this contradicts the inequalities on degrees above. Recall that
deg(Λ) ≤ t and deg(Ω) < deg(Λ), hence deg(Ω) ≤ t − 1. But from (4.17),
it follows that deg(A) ≤ t− 1. The product on the left of (4.18) has degree
at most 2t − 1, and the product on the right side has degree strictly less
than the product on the left. But that is absurd.

Combining (4.16) and (4.15), we see that the special solution of the key
equation that we seek can be found in a Gröbner basis for K with respect to
the >−1 order. This gives at least two possible ways to proceed in decoding.

1. We could use the generating set

{(S, 1), (x2t, 0)}
for K, apply Buchberger’s algorithm (or a suitable variant adapted to
the special properties of modules over the one variable polynomial ring
Fq[x]), and compute a Gröbner basis for K with respect to >−1 directly.
Then the minimal element g which solves the decoding problem will
appear in the Gröbner basis.

2. Alternatively, we could make use of the fact recorded in Corollary (4.13).
Since G = {(S, 1), (x2t, 0)} is already a Gröbner basis for K with respect
to another order, and Fq[x]2/M is finite-dimensional over Fq, we can use
an extension of the FGLM Gröbner basis conversion algorithm from §3
of Chapter 2 (see [Fit2]) to convert {(S, 1), (x2t, 0)} into a Gröbner basis



488 Chapter 9. Algebraic Coding Theory

G′ for the same module, but with respect to the >−1 order. Then as in
approach 1, the minimal element in K will be an element of G′.

Yet another possibility would be to build up to the desired solution of
the key equation inductively, solving the congruences

Ω ≡ ΛS mod x�

for � = 1, 2, . . . , 2t in turn. This approach gives one way to understand the
operations from the Berlekamp-Massey algorithm mentioned above. See
[Fit1] for a Gröbner basis interpretation of this method.

Of the two approaches detailed above, a deeper analysis shows that the
first approach is more efficient for long codes. But both are interesting from
the mathematical standpoint. We will discuss the second approach in the
text to conclude this section, and indicate how the first might proceed in the
exercises. One observation we can make here is that the full analog of the
FGLM algorithm need not be carried out. Instead, we need only consider
the monomials in Fq[x]2 one by one in increasing >−1 order and stop on
the first instance of a linear dependence among the remainders of those
monomials on division by G. Here is the algorithm (see [Fit2], Algorithm
3.5). It uses a subalgorithm called nextmonom which takes a monomial u
and returns the next monomial after u in Fq[x]2 in the >−1 order. (Since
we will stop after one element of the new Gröbner basis is obtained, we do
not need to check whether the next monomial is a multiple of the leading
terms of the other new basis elements as we did in the full FGLM algorithm
in Chapter 2.)

(4.19) Proposition. The following algorithm computes the minimal ele-
ment of the module K of solutions of the key equation with respect to the
>−1 order.

Input: G = {(S, 1), (x2t, 0)}
Output: (Ω, Λ) minimal in K = 〈G〉 with respect to >−1

Uses: Division algorithm with respect to G, using >deg(S) order ,

nextmonom

t1 := (0, 1); R1 := t1
G

done := false

WHILE done = false DO

tj+1 := nextmonom(tj)

Rj+1 := tj+1
G

IF there are ci ∈ Fq with Rj+1 =
∑j

i=1 ciRi THEN



§4. Reed-Solomon Decoding Algorithms 489

(Ω, Λ) := tj+1 −
j∑

i=1

citi

done := true

ELSE

j := j + 1

Exercise 5. Prove that this algorithm always terminates and correctly
computes the minimal element of K = 〈G〉 with respect to >−1. Hint: See
the proof of Theorem (3.4) in Chapter 2; this situation is simpler in several
ways, though.

We illustrate the decoding method based on this algorithm with an
example. Let C be the Reed-Solomon code over F9, with

g = (x − α)(x − α2)(x − α3)(x − α4),

and d = 5. We expect to be able to correct any error vector of weight 2 or
less. We claim that

c = x7 + 2x5 + x2 + 2x + 1

is a codeword for C. This follows for instance from a Maple computation
such as this one. After initializing the field (a below is the primitive element
α for F9), setting c equal to the polynomial above, and g equal to the
generator,

Rem(c,g,x) mod 3;

returns 0, showing that g divides c.
Suppose that errors occur in transmission of c, yielding the received word

y = x7 + αx5 + (α + 2)x2 + 2x + 1.

(Do you see where the errors occurred?) We begin by computing the syn-
drome S. Using Maple, we find y(α) = α + 2, y(α2) = y(α3) = 2, and
y(α4) = 0. For example, the calculation of y(α) can be done simply by
initializing the field, defining y as above, then computing

Normal(subs(x=a,y)) mod 3;

So we have

S = 2x2 + 2x + α + 2.

By Theorem (4.8), we need to consider the module K of solutions of the
key equation

Ω ≡ ΛS mod x4.



490 Chapter 9. Algebraic Coding Theory

By Corollary (4.13), G = {(x4, 0), (2x2 + 2x + α + 2, 1)} is the reduced
Gröbner basis for K with respect to the order >2. Applying Proposition
(4.19), we find

t1 = (0, 1) R1 = (x2 + x + 2α + 1, 0)

t2 = (1, 0) R2 = (1, 0)

t3 = (0, x) R3 = (x3 + x2 + (2α + 1)x, 0)

t4 = (x, 0) R4 = (x, 0)

t5 = (0, x2) R5 = (x3 + (2α + 1)x2, 0).

Here for the first time we obtain a linear dependence:

R5 = −(αR1 + (α + 1)R2 + 2R3 + (α + 1)R4).

Hence,

αt1 + (α + 1)t2 + 2t3 + (α + 1)t4 + t5 = (α + 1 + (α + 1)x, α + 2x + x2)

is the minimal element (Ω, Λ) of K that we are looking for.
The error locations are found by solving

Λ(x) = x2 + 2x + α = 0.

Recall, by definition Λ =
∏

i∈I(1−αix) has constant term 1, so we need to
adjust constants to get the actual error locator polynomial and the correct
Ω to use in the determination of the error values, using the Forney formula
of Exercise 1. Dividing by α, we obtain Λ = (α + 1)x2 + (2α + 2)x + 1.
By factoring, or by an exhaustive search for the roots as in

for j to 8 do
Normal(subs(x = a^j,Lambda) mod 3;

end do;

we find that the roots are x = α3 and x = α6. Taking the exponents of
the inverses gives the error locations: (α3)−1 = α5 and (α6)−1 = α2, so
the errors occurred in the coefficients of x2 and x5. (Check the codeword c
and the received word y above to see that this is correct.) Next, we apply
Exercise 1 to obtain the error values. We have

Ω = (1/α)((α + 1)x + α + 1) = (α + 2)x + α + 2.

For the error location i = 2, for instance, we have χ2(x) = 1 − α5x, and

e2 =
Ω(α−2)

α2χ2(α−2)

= α + 1.

This also checks. The error value e5 = α + 1 is determined similarly; to
decode we subtract e = (α + 1)x5 + (α + 1)x2 from y, and we recover the
correct codeword.



§4. Reed-Solomon Decoding Algorithms 491

In the Exercises below, we will consider how (part of) a direct calcu-
lation of the Gröbner basis for K with respect to >−1 can also be used
for decoding. Other applications of computational commutative algebra to
coding theory are discussed in [dBP1] and [dBP2].

ADDITIONAL EXERCISES FOR §4

Exercise 6. Let (Ω, Λ) be any solution of the congruence (4.6), where S
is the syndrome polynomial for some correctable error.
a. Writing Λ =

∑t
i=0 Λix

i and S =
∑2t

j=1 Ejx
j−1 show that (4.6) yields

the following system of t homogeneous linear equations for the t + 1
coefficients in Λ:

(4.20)
t∑

k=0

ΛkEt+�−k = 0

for each � = 1, . . . , t.
b. Assuming no more than t errors occurred, say in the locations given

by a set of indices I, Et+�−k =
∑

i∈I eiα
i(t+�−k) for some polynomial

e(x) with t or fewer nonzero terms. Substitute in (4.20) and rearrange
to obtain

(4.21)
0 =

t∑
k=0

ΛkEt+�−k

=
∑
i∈I

eiΛ(α−i)αi(t+�).

c. Show that the last equation in (4.21) implies that Λ(α−i) = 0 for all
i ∈ I, which gives another proof that Λ divides Λ. Hint: The equations
in (4.21) can be viewed as a system of homogeneous linear equations in
the unknowns eiΛ(α−i). The matrix of coefficients has a notable special
form. Also, ei �= 0 for i ∈ I.

Solving the decoding problem can be rephrased as finding the linear
recurrence relation (4.20) of minimal order for the Ej sequence. The
coefficients Λk then give the error locator polynomial.

Exercise 7. A direct analog of syndrome decoding for Reed-Solomon codes
might begin by computing the remainder on division of a received word y by
the generator, giving an expression y = c + R, where c is a codeword. How
is the remainder R related to the error polynomial e? Is this c necessarily
the nearest codeword to y? (There is another decoding method for Reed-
Solomon codes, due to Welch and Berlekamp, that uses R rather than
the syndrome S. It can also be rephrased as solving a key equation, and
Gröbner bases can be applied to solve that equation also.)



492 Chapter 9. Algebraic Coding Theory

Exercise 8. Prove Corollary (4.13).

Exercise 9. Prove Proposition (4.15). Hint: Think about the definition of
a Gröbner basis.

Exercise 10. Consider the Reed-Solomon code over F9 with generator
polynomial g = (x− α)(x− α2) (d = 3, so this code is 1 error-correcting).
Perform computations using Proposition (4.19) to decode the received
words

y(x) = x7 + αx5 + (α + 2)x3 + (α + 1)x2 + x + 2,

and

y(x) = x7 + x6 + αx5 + (α + 1)x3 + (α + 1)x2 + x + 2α.

What are the solutions of Λ = 0 in the second case? How should the
decoder handle the situation?

Exercise 11. In this and the following exercise, we will discuss how a
portion of a direct calculation of the Gröbner basis for K with respect to
>−1 starting from the generating set {g1, g2} = {(x2t, 0), (S, 1)} can also
be used for decoding. Consider the first steps of Buchberger’s algorithm.
Recall that S has degree 2t − 1 or less.
a. Show that the first steps of the algorithm amount to applying the 1-

variable division algorithm to divide S into x2t, yielding an equation
x2t = qS + R, with a quotient q of degree 1 or more, and a remainder R
that is either 0 or of degree smaller than deg S. This gives the equation

(x2t, 0) = q(S, 1) + (R,−q).

b. Deduce that g2 and g3 = (R,−q) also generate the module K, so g1 can
actually be discarded for the Gröbner basis computation.

c. Proceed as in the Euclidean algorithm for polynomial GCD’s (see e.g.
[CLO], Chapter 1, §5), working on the first components. For instance,
at the next stage we find a relation of the form

(S, 1) = q1(R,−q) + (R1, q1q + 1).

In the new module element, g4 = (R1, q1q + 1), the degree of the first
component has decreased, and the degree of the second has increased.
Show that after a finite number of steps of this process, we will produce
an element (Ω, Λ) of the module K whose second component has degree
greater than the degree of the first, so that its >−1 leading term is a
multiple of e2.

d. Show that the element obtained in this way is a minimal element K with
respect to >−1. Hint: It is easy to see that a minimal element could be
obtained by removing any factors common to the two components of



§4. Reed-Solomon Decoding Algorithms 493

this module element; by examining the triple (Ω, Λ, Γ) obtained as a
solution of the explicit form of the key equation: Ω = ΛS + x2tΓ, show
that in fact Ω and Λ are automatically relatively prime.

Exercise 12. Apply the method from Exercise 11 to the decoding problem
from the end of the text of this section. Compare your results with those of
the other method. Also compare the amount of calculation needed to carry
out each one. Is there a clear “winner”?

Exercise 13. Apply the method from Exercise 11 to the decoding
problems from Exercise 10.




