
Chapter 7

Polytopes, Resultants, and
Equations

In this chapter we will examine some interesting recently-discovered con-
nections between polynomials, resultants, and the geometry of the convex
polytopes determined by the exponent vectors of the monomials appearing
in polynomials.

§1 Geometry of Polytopes

A set C in R
n is said to be convex if it contains the line segment connecting

any two points in C. If a set is not itself convex, its convex hull is the
smallest convex set containing it. We will use the notation Conv(S) to
denote the convex hull of S ⊂ R

n.
More explicitly, all the points in Conv(S) may be obtained by forming

a particular set of linear combinations of the elements in S. In Exercise 1
below, you will prove the following proposition.

(1.1) Proposition. Let S be a subset of R
n. Then

Conv(S) = {λ1s1 + · · · + λmsm : si ∈ S, λi ≥ 0,
∑m

i=1λi = 1}.

Linear combinations of the form λ1s1 + · · · + λmsm, where si ∈ S,
λi ≥ 0, and

∑m
i=1 λi = 1 are called convex combinations.

Exercise 1.
a. Show that if S = {s1, s2} then the set of convex combinations is the

straight line segment from s1 to s2 in R
n. Deduce that Proposition (1.1)

holds in this case.
b. Using part a, show that the set of all convex combinations

{λ1s1 + · · · + λmsm : si ∈ S, λi ≥ 0,
∑m

i=1λi = 1}.
is a convex subset of R

n for every S. Also show that this set contains S.
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306 Chapter 7. Polytopes, Resultants, and Equations

c. Show that if C is any convex set containing S, then C also contains the
set of part b. Hint: One way is to use induction on the number of terms
in the sum.

d. Deduce Proposition (1.1) from parts b and c.

By definition, a polytope is the convex hull of a finite set in R
n. If the

finite set is A = {m1, . . . , ml} ⊂ R
n, then the corresponding polytope can

be expressed as

Conv(A) = {λ1m1 + · · · + λlml : λi ≥ 0,
∑l

i=1λi = 1}.
In low dimensions, polytopes are familiar figures from geometry:

• A polytope in R is a line segment.
• A polytope in R

2 is a line segment or a convex polygon.
• A polytope in R

3 is a line segment, a convex polygon lying in a plane,
or a three-dimensional polyhedron.

As these examples suggest, every polytope Q has a well-defined dimension.
A careful definition of dim Q will be given in the exercises at the end of
the section. For more background on convex sets and polytopes, the reader
should consult [Zie]. Fig. 7.1 below shows a three-dimensional polytope.

For another example, let A = {(0, 0), (2, 0), (0, 5), (1, 1)} ⊂ R
2. Here,

Conv(A) is the triangle with vertices (0, 0), (2, 0), and (0, 5) since

(1.2) (1, 1) = 3
10 (0, 0) + 1

2 (2, 0) + 1
5 (0, 5)

is a convex combination of the other three points in A.
For us, the most important polytopes will be convex hulls of sets of points

with integer coordinates. These are sometimes called lattice polytopes. Thus
a lattice polytope is a set of the form Conv(A), where A ⊂ Z

n is finite. An
example of special interest to us is when A consists of all exponent vectors

Figure 7.1. A three-dimensional polytope
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appearing in a collection of monomials. The polytope Q = Conv(A) will
play a very important role in this chapter.

Exercise 2. Let Ad = {m ∈ Z
n
≥0 : |m| ≤ d} be the set of exponent

vectors of all monomials of total degree at most d.
a. Show that the convex hull of Ad is the polytope

Qd = {(a1, . . . , an) ∈ R
n : ai ≥ 0,

∑n
i=1ai ≤ d}.

Draw a picture of Ad and Qd when n = 1, 2, 3 and d = 1, 2, 3.
b. A simplex is defined to be the convex hull of n + 1 points m1, . . . , mn+1

such that m2 − m1, . . . , mn+1 − m1 are a basis of R
n. Show that the

polytope Qd of part a is a simplex.

A polytope Q ⊂ R
n has an n-dimensional volume, which is denoted

Voln(Q). For example, a polygon Q in R
2 has Vol2(Q) > 0, but if we

regard Q as lying in the xy-plane in R
3, then Vol3(Q) = 0.

From multivariable calculus, we have

Voln(Q) =
∫
· · ·

∫
Q

1 dx1 · · · dxn,

where x1, . . . , xn are coordinates on R
n. Note that Q has positive volume

if and only if it is n-dimensional. A simple example is the unit cube in R
n,

which is defined by 0 ≤ xi ≤ 1 for all i and clearly has volume 1.

Exercise 3. Let’s compute the volume of the simplex Qd from Exercise 2.
a. Prove that the map φ : R

n → R
n defined by

φ(x1, . . . , xn)=(1−x1, x1(1−x2), x1x2(1−x3), . . . , x1· · ·xn−1(1−xn))

maps the unit cube C ⊂ R
n defined by 0 ≤ xi ≤ 1 to the simplex Q1.

Hint: Use a telescoping sum to show φ(C) ⊂ Q1. Be sure to prove the
opposite inclusion.

b. Use part a and the change of variables formula for n-dimensional
integrals to show that

Voln(Q1) =
∫
· · ·

∫
C

xn−1
1 xn−2

2 · · · xn−1 dx1 · · · dxn =
1
n!

.

c. Conclude that Voln(Qd) = dn/n!.

Polytopes have special subsets called its faces. For example, a 3-
dimensional polytope in R

3 has:

• faces, which are polygons lying in planes,
• edges, which are line segments connecting certain pairs of vertices, and
• vertices, which are points.

In the general theory, all of these will be called faces. To define a face
of an arbitrary polytope Q ⊂ R

n, let ν be a nonzero vector in R
n. An
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affine hyperplane is defined by an equation of the form m · ν = −a (the
minus sign simplifies certain formulas in §3 and §4—see Exercise 3 of §3
and Proposition (4.6)). If

(1.3) aQ(ν) = − min
m∈Q

(m · ν),

then we call the equation

m · ν = −aQ(ν)

a supporting hyperplane of Q, and we call ν an inward pointing normal .
Fig. 7.2 below shows a polytope Q ⊂ R

2 with two supporting hyperplanes
(lines in this case) and their inward pointing normals.

In Exercise 13 at the end of the section, you will show that a supporting
hyperplane has the property that

Qν = Q ∩ {m ∈ R
n : m · ν = −aQ(ν)} �= ∅,

and, furthermore, Q lies in the half-space

Q ⊂ {m ∈ R
n : m · ν ≥ −aQ(ν)}.

We call Qν = Q ∩ {m ∈ R
n : m · ν = −aQ(ν)} the face of Q determined

by ν. Fig. 7.2 illustrates two faces, one a vertex and the other an edge.

Exercise 4. Draw a picture of a cube in R
3 with three supporting hyper-

planes which define faces of dimensions 0, 1, and 2 respectively. Be sure to
include the inward pointing normals in each case.

Every face of Q is a polytope of dimension less than dim Q. Vertices are
faces of dimension 0 (i.e., points) and edges are faces of dimension 1. If
Q has dimension n, then facets are faces of dimension n − 1. Assuming

Q

← Qν is an edge

← supporting
hyperplane

→Qν is a vertex

← supporting hyperplane

2

1

ν

ν inward normals

Figure 7.2. Supporting hyperplanes, inward normals, and faces
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Q ⊂ R
n, a facet lies on a unique supporting hyperplane and hence has

a unique inward pointing normal (up to a positive multiple). In contrast,
faces of lower dimension lie in infinitely many supporting hyperplanes. For
example, the vertex at the origin in Fig 7.2 is cut out by infinitely many
lines through the origin.

We can characterize an n-dimensional polytope Q ⊂ R
n in terms of

its facets as follows. If F ⊂ Q is a facet, we just noted that the inward
normal is determined up to a positive constant. Suppose that Q has facets
F1, . . . ,FN with inward pointing normals ν1, . . . , νN respectively. Each
facet Fj has a supporting hyperplane defined by an equation m · νj = −aj

for some aj . Then one can show that the polytope Q is given by

(1.4) Q = {m ∈ R
n : m · νj ≥ −aj for all j = 1, . . . , N}.

In the notation of (1.3), note that aj = aQ(νj).

Exercise 5. How does (1.4) change if we use an outward normal for each
facet?

When Q is a lattice polytope, we can rescale the inward normal νF of a
facet F so that νF has integer coordinates. We can also assume that the
coordinates are relatively prime. In this case, we say the νF is primitive.
It follows that F has a unique primitive inward pointing normal νF ∈ Z

n.
For lattice polytopes, we will always assume that the inward normals have
this property.

Exercise 6. For the lattice polygon Q of Fig. 7.2, find the inward pointing
normals. Also, if e1, e2 are the standard basis vectors for R

2, then show that
the representation (1.4) of Q is given by the inequalities

m · e1 ≥ 0, m · e2 ≥ 0, m · (−e2) ≥ −1, m · (−e1 − e2) ≥ −2.

Exercise 7. Let e1, . . . , en be the standard basis of R
n.

a. Show that the simplex Qd ⊂ R
n of Exercise 2 is given by the inequalities

m · ν0 ≥ −d, and m · νj ≥ 0, j = 1, . . . , n,

where ν0 = −e1 − · · · − en and νj = ej for j = 1, . . . , n.
b. Show that the square Q = Conv({(0, 0), (1, 0), (0, 1), (1, 1)}) ⊂ R

2 is
given by the inequalities

m · ν1 ≥ 0, m · ν2 ≥ −1, m · ν3 ≥ 0, and m · ν4 ≥ −1,

where e1 = ν1 = −ν2 and e2 = ν3 = −ν4. A picture of this appears in
Fig. 7.3 on the next page (with shortened inward normals for legibility).

One of the themes of this chapter is that there is very deep connection
between lattice polytopes and polynomials. To describe the connection, we
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Q

1

1

ν1 ν2

ν4

ν3

Figure 7.3. The unit square

will use the following notation. Let f ∈ C[x1, . . . , xn] (or, more generally,
in k[x1, . . . , xn] for any field of coefficients), and write

f =
∑

α∈Zn
≥0

cαxα.

The Newton polytope of f , denoted NP(f), is the lattice polytope

NP(f) = Conv({α ∈ Z
n
≥0 : cα �= 0}).

In other words, the Newton polytope records the “shape” or “sparsity struc-
ture” of a polynomial—it tells us which monomials appear with nonzero
coefficients. The actual values of the coefficients do not matter, however,
in the definition of NP(f).

For example, any polynomial of the form

f = axy + bx2 + cy5 + d

with a, b, c, d �= 0 has Newton polytope equal to the triangle

Q = Conv({(1, 1), (2, 0), (0, 5), (0, 0)}).
In fact, (1.2) shows that polynomials of this form with a = 0 would have
the same Newton polytope.

Exercise 8. What is the Newton polytope of a 1-variable polynomial f =∑m
i=0 cix

i, assuming that cm �= 0, so that the degree of f is exactly m?
Are there special cases depending on the other coefficients?

Exercise 9. Write down a polynomial whose Newton polytope equals the
polytope Qd from Exercise 2. Which coefficients must be non-zero to obtain
NP(f) = Qd? Which can be zero?
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We can also go the other way, from exponents to polynomials. Suppose
we have a finite set of exponents A = {α1, . . . , αl} ⊂ Z

n
≥0. Then let L(A)

be the set of all polynomials whose terms all have exponents in A. Thus

L(A) = {c1x
α1 + · · · + clx

αl : ci ∈ C}.
Note that L(A) is a vector space over C of dimension l (= the number of
elements in A).

Exercise 10.
a. If f ∈ L(A), show that NP(f) ⊂ Conv(A). Give an example to show

that equality need not occur.
b. Show that there is a union of proper subspaces W ⊂ L(A) such that

NP(f) = Conv(A) for all f ∈ L(A) \ W . This means that NP(f) =
Conv(A) holds for a generic f ∈ L(A).

Exercise 11. If Ad is as in Exercise 2, what is L(Ad)?

Finally, we conclude this section with a slight generalization of the notion
of monomial and polynomial. Since the vertices of a lattice polytope can
have negative entries, it will be useful to have the corresponding algebraic
objects. This leads to the notion of a polynomial whose terms can have
negative exponents.

Let α = (a1, . . . , an) ∈ Z
n be an integer vector. The corresponding

Laurent monomial in variables x1, . . . , xn is

xα = xa1
1 · · · xan

n .

For example, x2y−3 and x−2y3 are Laurent monomials in x and y whose
product is 1. More generally, we have

xα · xβ = xα+β and xα · x−α = 1

for all α, β ∈ Z
n. Finite linear combinations

f =
∑

α∈Zn

cαxα

of Laurent monomials are called Laurent polynomials, and the collection
of all Laurent polynomials forms a commutative ring under the obvious
sum and product operations. We denote the ring of Laurent polynomials
with coefficients in a field k by k[x±1

1 , . . . , x±1
n ]. See Exercise 15 below for

another way to understand this ring.
The definition of the Newton polytope goes over unchanged to Laurent

polynomials; we simply allow vertices with negative components. Thus any
Laurent polynomial f ∈ k[x±1

1 , . . . , x±1
n ] has a Newton polytope NP(f),

which again is a lattice polytope. Similarly, given a finite set A ⊂ Z
n,

we get the vector space L(A) of Laurent polynomials with exponents in A.
Although the introduction of Laurent polynomials might seem unmotivated
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at this point, they will prove to be very useful in the theory developed in
this chapter.

ADDITIONAL EXERCISES FOR §1

Exercise 12. This exercise will develop the theory of affine subspaces. An
affine subspace A ⊂ R

n is a subset with the property that

s1, . . . , sm ∈ A =⇒ ∑m
i=1λisi ∈ A whenever

∑m
i=1λi = 1.

Note that we do not require that λi ≥ 0. We also need the following
definition: given a subset S ⊂ R

n and a vector v ∈ R
n, the translate of S

by v is the set v + S = {v + s : s ∈ S}.
a. If A ⊂ R

n is an affine subspace and v ∈ A, prove that the translate
−v + A is a subspace of R

n. Also show that A = v + (−v + A), so that
A is a translate of a subspace.

b. If v, w ∈ A, prove that −v + A = −w + A. Conclude that an affine
subspace is a translate of a unique subspace of R

n.
c. Conversely, if W ⊂ R

n is a subspace and v ∈ R
n, then show that the

translate v + W is an affine subspace.
d. Explain how to define the dimension of an affine subspace.

Exercise 13. This exercise will define the dimension of a polytope Q ⊂
R

n. The basic idea is that the dim Q is the dimension of the smallest affine
subspace containing Q.
a. Given any subset S ⊂ R

n, show that

Aff(S) = {λ1s1 + · · · + λmsm : si ∈ S,
∑m

i=1λi = 1}
is the smallest affine subspace containing S. Hint: Use the strategy
outlined in parts b, c and d of Exercise 1.

b. Using the previous exercise, explain how to define the dimension of a
polytope Q ⊂ R

n.
c. If A = {m1, . . . , ml} and Q = Conv(A), prove that dim Q = dim W ,

where W ⊂ R
n is the subspace spanned by m2 − m1, . . . , ml − m1.

d. Prove that a simplex in R
n (as defined in Exercise 2) has dimension n.

Exercise 14. Let Q ⊂ R
n be a polytope and ν ∈ R

n be a nonzero vector.
a. Show that m · ν = 0 defines a subspace of R

n of dimension n − 1 and
that the affine hyperplane m · ν = −a is a translate of this subspace.
Hint: Use the linear map R

n → R given by dot product with ν.
b. Explain why minm∈Q(m · ν) exists. Hint: Q is closed and bounded, and

m �→ m · ν is continuous.
c. If aQ(ν) is defined as in (1.3), then prove that the intersection

Qν = Q ∩ {m ∈ R
n : m · ν = −aQ(ν)}
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is nonempty and that

Q ⊂ {m ∈ R
n : m · ν ≥ −aQ(ν)}.

Exercise 15. There are several ways to represent the ring of Laurent
polynomials in x1, . . . , xn as a quotient of a polynomial ring. Prove that

k[x±1
1 , . . . , x±1

n ] ∼= k[x1, . . . , xn, t1, . . . , tn]/〈x1t1 − 1, . . . , xntn − 1〉
∼= k[x1, . . . , xn, t]/〈x1 · · · xnt − 1〉.

Exercise 16. This exercise will study the translates of a polytope. The
translate of a set in R

n is defined in Exercise 12.
a. If A ⊂ R

n is a finite set and v ∈ R
n, prove that Conv(v + A) =

v + Conv(A).
b. Prove that a translate of a polytope is a polytope.
c. If a polytope Q is represented by the inequalites (1.4), what are the

inequalities defining v + Q?

Exercise 17. If f ∈ k[x±1
1 , . . . , x±1

n ] is a Laurent polynomial and α ∈ Z
n,

how is NP(xα f) related to NP(f)? Hint: See the previous exercise.

§2 Sparse Resultants

The multipolynomial resultant Resd1,...,dn(F1, . . . , Fn) discussed in Chap-
ter 3 is a very large polynomial, partly due to the size of the input
polynomials F1, . . . , Fn. They have lots of coefficients, especially as their
total degree increases. In practice, when people deal with polynomials of
large total degree, they rarely use all of the coefficients. It’s much more com-
mon to encounter sparse polynomials, which involve only exponents lying
in a finite set A ⊂ Z

n. This suggests that there should be a corresponding
notion of sparse resultant .

To begin our discussion of sparse resultants, we return to the implic-
itization problem introduced in §2 of Chapter 3. Consider the surface
parametrized by the equations

(2.1)

x = f(s, t) = a0 + a1s + a2t + a3st

y = g(s, t) = b0 + b1s + b2t + b3st

z = h(s, t) = c0 + c1s + c2t + c3st,

where a0, . . . , c3 are constants. This is sometimes called a bilinear surface
parametrization. We will assume

(2.2) det

⎛⎝ a1 a2 a3
b1 b2 b3
c1 c2 c3

⎞⎠ �= 0
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In Exercise 7 at the end of the section, you will show that this condition
rules out the trivial case when (2.1) parametrizes a plane.

Our goal is to find the implicit equation of (2.1). This means finding a
polynomial p(x, y, z) such that p(x, y, z) = 0 if and only if x, y, z are given
by (2.1) for some choice of s, t. In Proposition (2.6) of Chapter 3, we used
the resultant

(2.3) p(x, y, z) = Res2,2,2(F − xu2, G − yu2, H − zu2)

to find the implicit equation, where F, G, H are the homogenization of
f, g, h with respect to u. Unfortunately, this method fails for the case at
hand.

Exercise 1. Show that the resultant (2.3) vanishes identically when
F, G, H come from homogenizing the polynomials in (2.1). Hint: You
already did a special case of this in Exercise 2 of Chapter 3, §2.

The remarkable fact is that although the multipolynomial resultant from
Chapter 3 fails, a sparse resultant still exists in this case. In Exercise 2
below, you will show that the implicit equation for (2.1) is given by the
determinant

(2.4) p(x, y, z) = det

⎛⎜⎜⎜⎜⎜⎜⎝
a0 − x a1 a2 a3 0 0
b0 − y b1 b2 b3 0 0
c0 − z c1 c2 c3 0 0

0 a0 − x 0 a2 a1 a3
0 b0 − y 0 b2 b1 b3
0 c0 − x 0 c2 c1 c3

⎞⎟⎟⎟⎟⎟⎟⎠ .

Expanding this 6× 6 determinant, we see that p(x, y, z) is a polynomial of
total degree 2 in x, y and z.

Exercise 2.
a. If x, y, z are as in (2.1), show that the determinant (2.4) vanishes.

Hint: Consider the system of equations obtained by multiplying each
equation of (2.1) by 1 and s. You should get 6 equations in the 6 “un-
knowns” 1, s, t, st, s2, st2. Notice the similarity with Proposition (2.10)
of Chapter 3.

b. Next assume (2.4) vanishes. We want to prove the existence of s, t such
that (2.1) holds. As a first step, let A be the matrix of (2.4) and explain
why we can find a nonzero column vector v = (α1, α2, α3, α4, α5, α6)T

(T denotes transpose) such that Av = 0. Then use (2.2) to prove that
α1 �= 0. Hint: Write out Av = 0 explicitly and use the first three
equations. Then use the final three.

c. If we take the vector v of part b and multiply by 1/α1, we can write v
in the form v = (1, s, t, α, β, γ). Explain why it suffices to prove that
α = st.
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d. Use (2.2) to prove α = st, β = s2 and γ = sα. This will complete the
proof that the implicit equation of (2.1) is given by (2.4). Hint: In the
equations Av = 0, eliminate a0 − x, b0 − y, c0 − z.

e. Explain why the above proof gives a linear algebra method to find s, t for
a given point (x, y, z) on the surface. This solves the inversion problem
for the parametrized surface. Hint: In the notation of part b, you will
show that s = α2/α1 and t = α3/α1.

A goal of this section is to explain why a resultant like (2.4) can exist even
though the standard multipolynomial resultant (2.3) vanishes identically.
The basic reason is that although the equations (2.1) are quadratic in s, t,
they do not use all monomials of total degree ≤ 2 in s, t. The sparse
resultant works like the multipolynomial resultant of §2, except that we
restrict the exponents occurring in the equations.

For simplicity, we will only treat the special case when all of the equa-
tions have exponents lying in the same set, leaving the general case
for §6. We will also work exclusively over the field C of complex num-
bers. Thus, suppose that the variables are t1, . . . , tn, and fix a finite set
A = {m1, . . . , ml} ⊂ Z

n of exponents. Since negative exponents can occur,
we will use the Laurent polynomials

f = a1t
m1 + · · · + alt

ml ∈ L(A),

as defined in §1. Given f0, . . . , fn ∈ L(A), we get n + 1 equations in n
unknowns t1, . . . , tn:

(2.5)

f0 = a01t
m1 + · · · + a0lt

ml = 0

...

fn = an1t
m1 + · · · + anlt

ml = 0.

In seeking solutions of these equations, the presence of negative exponents
means that we should consider only nonzero solutions of (2.5). We will use
the notation

C
∗ = C \ {0}

for the set of nonzero complex numbers.
The sparse resultant will be a polynomial in the coefficents aij which

vanishes precisely when we can find a “solution” of (2.5). We put “so-
lution” in quotes because although the previous paragraph suggests that
solutions should lie in (C∗)n, the situation is actually more complicated.
For instance, the multipolynomial resultants from Chapter 3 use homo-
geneous polynomials, which means that the “solutions” lie in projective
space. The situation for sparse resultants is similar, though with a twist:
a “solution” of (2.5) need not lie in (C∗)n, but the space where it does lie
need not be P

n. For example, we will see in §3 that for equations like (2.1),
the “solutions” lie in P

1 × P
1 rather than P

2.
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To avoid the problem of where the solutions lie, we will take a conser-
vative approach and initially restrict the solutions to lie in (C∗)n. Then,
in (2.5), the coefficients give a point (aij) ∈ C

(n+1)×l, and we consider the
subset

Z0(A) = {(aij) ∈ C
(n+1)×l : (2.5) has a solution in (C∗)n}.

Since Z0(A) might not be a variety in C
(n+1)l, we use the following fact:

• (Zariski Closure) Given a subset S ⊂ C
m, there is a smallest affine

variety S ⊂ C
m containing S. We call S the Zariski closure of S.

(See, for example, [CLO], §4 of Chapter 4.) Then let Z(A) = Z0(A) be the
Zariski closure of Z0(A).

The sparse resultant will be the equation defining Z(A) ⊂ C
(n+1)l. To

state our result precisely, we introduce a variable uij for each coefficient aij.
Then, for a polynomial P ∈ C[uij], we let P (f0, . . . , fn) denote the number
obtained by replacing each variable uij with the corresponding coefficient
aij from (2.5). We can now state the basic existence result for the sparse
resultant.

(2.6) Theorem. Let A ⊂ Z
n be a finite set, and assume that Conv(A) is

an n-dimensional polytope. Then there is an irreducible polynomial ResA ∈
Z[uij] such that for (aij) ∈ C

(n+1)l, we have

(aij) ∈ Z(A) ⇐⇒ ResA(aij) = 0.

In particular, if (2.5) has a solution with t1, . . . , tn ∈ C
∗, then

ResA(f0, . . . , fn) = 0.

Proof. See [GKZ], Chapter 8.

The sparse resultant or A-resultant is the polynomial ResA. Notice that
ResA is determined uniquely up to ± since it is irreducible in Z[uij]. The
condition that the convex hull of A has dimension n is needed to ensure
that we have the right number of equations in (2.5). Here is an example of
what can happen when the convex hull has strictly lower dimension.

Exercise 3. Let A = {(1, 0), (0, 1)} ⊂ Z
2, so that fi = ai1t1 + ai2t2 for

i = 0, 1, 2. Show that rather than one condition for f1 = f2 = f3 = 0
to have a solution, there are three. Hint: See part b of Exercise 1 from
Chapter 3, §2.

We next show that the multipolynomial resultant from Chapter 3 is a
special case of the sparse resultant. For d > 0, let

Ad = {m ∈ Z
n
≥0 : |m| ≤ d}.

Also consider variables x0, . . . , xn, which will be related to t1, . . . , tn by
ti = xi/x0 for 1 ≤ i ≤ n. Then we homogenize the fi from (2.5) in the
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usual way, defining

(2.7) Fi(x0, . . . , xn) = xd
0fi(t1, . . . , tn) = xd

0fi(x1/x0, . . . , xn/x0)

for 0 ≤ i ≤ n. This gives n + 1 homogeneous polynomials Fi in the n + 1
variables x0, . . . , xn. Note that the Fi all have total degree d.

(2.8) Proposition. For Ad = {m ∈ Z
n
≥0 : |m| ≤ d}, we have

ResAd
(f0, . . . , fn) = ±Resd,...,d(F0, . . . , Fn),

where Resd,...,d is the multipolynomial resultant from Chapter 3.

Proof. If (2.5) has a solution (t1, . . . , tn) ∈ (C∗)n, then (x0, . . . , xn) =
(1, t1, . . . , tn) is a nontrivial solution of F0 = · · · = Fn = 0. This shows
that Resd,...,d vanishes on Z0(Ad). By the definition of Zariski closure, it
must vanish on Z(Ad). Since Z(Ad) is defined by the irreducible equation
ResAd

= 0, the argument of Proposition (2.10) of Chapter 3 shows that
Resd,...,d is a multiple of ResAd

. But Resd,...,d is an irreducible polynomial
by Theorem (2.3) of Chapter 3, and the desired equality follows.

Because Ad = {m ∈ Z
n
≥0 : |m| ≤ d} gives all exponents of total degree

at most d, the multipolynomial resultant Resd,...,d is sometimes called the
dense resultant, in contrast to the sparse resultant ResA.

We next discuss the structure of the polynomial ResA in more detail.
Our first question concerns its total degree, which is determined by the
convex hull Q = Conv(A). The intuition is that as Q gets larger, so does
the sparse resultant. As in §1, we measure the size of Q using its volume
Voln(Q). This affects the degree of ResA as follows.

(2.9) Theorem. Let A = {m1, . . . , ml}, and assume that every element
of Z

n is an integer linear combination of m2 −m1, . . . , ml −m1. Then, if
we fix i between 0 and n, ResA is homogeneous in the coefficients of each
fi of degree n! Voln(Q), where Q = Conv(A). This means that

ResA(f0, . . . , λfi, . . . , fn) = λn! Voln(Q)ResA(f0, . . . , fn).

Furthermore, the total degree of ResA is (n + 1)! Voln(Q).

Proof. The first assertion is proved in [GKZ], Chapter 8. As we observed
in Exercise 1 of Chapter 3, §3, the final assertion follows by considering
ResA(λf0, . . . , λfn).

For an example of Theorem (2.9), note that Ad = {m ∈ Z
n
≥0 : |m| ≤ d}

satisfies the hypothesis of the theorem, and its convex hull has volume dn/n!
by Exercise 3 of §1. Using Proposition (2.8), we conclude that Resd,...,d

has degree dn in Fi. This agrees with the prediction of Theorem (3.1) of
Chapter 3.
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We can also explain how the hypothesis of Theorem (2.9) relates to
Theorem (2.6). If the mi −m1 span over Z, they also span over R, so that
the convex hull Q = Conv(A) has dimension n by Exercise 13 of §1. Thus
Theorem (2.9) places a stronger condition on A ⊂ Z

n than Theorem (2.6).
The following example shows what can go wrong if the mi−m1 don’t span
over Z.

Exercise 4. Let A = {0, 2} ⊂ Z, so that Vol1(Conv(A)) = 2.
a. Let f0 = a01 + a02t

2 and f1 = a11 + a12t
2. If the equations f0 = f1 = 0

have a solution in (C∗)2, show that a01a12 − a02a11 = 0.
b. Use part a to prove ResA(f0, f1) = a01a12 − a02a11.
c. Explain why the formula of part b does not contradict Theorem (2.9).

Using Theorem (2.9), we can now determine some sparse resultants
using the methods of earlier sections. For example, suppose A =
{(0, 0), (1, 0), (0, 1), (1, 1)} ⊂ Z

2, and consider the equations

(2.10)

f(s, t) = a0 + a1s + a2t + a3st = 0

g(s, t) = b0 + b1s + b2t + b3st = 0

h(s, t) = c0 + c1s + c2t + c3st = 0.

The exercise below will show that that in this case, the sparse resultant is
given by a determinant:

(2.11) ResA(f, g, h) = ± det

⎛⎜⎜⎜⎜⎜⎜⎝
a0 a1 a2 a3 0 0
b0 b1 b2 b3 0 0
c0 c1 c2 c3 0 0
0 a0 0 a2 a1 a3
0 b0 0 b2 b1 b3
0 c0 0 c2 c1 c3

⎞⎟⎟⎟⎟⎟⎟⎠
Exercise 5. As above, let A = {(0, 0), (1, 0), (0, 1), (1, 1)}.
a. Adapt the argument of Exercise 2 to show that if (2.10) has a solution

in (C∗)2, then the determinant in (2.11) vanishes.
b. Adapt the argument of Proposition (2.10) of Chapter 3 to show that

ResA divides the determinant in (2.11).
c. By comparing degrees and using Theorem (2.9), show that the

determinant is an integer multiple of ResA.
d. Show that the integer is ±1 by computing the determinant when f =

1 + st, g = s and h = t.

It follows that the implicitization problem (2.1) can be solved by setting

(2.12) p(x, y, z) = ResA(f − x, g − y, h − z),

where A is as above. Comparing this to (2.3), we see from Proposition (2.8)
that Res2,2,2 corresponds to A2 = A ∪ {(2, 0), (0, 2)}. The convex hull of
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A2 is strictly larger than the convex hull of A. This explains why our earlier
attempt failed—the convex hull was too big!

We also have the following sparse analog of Theorem (3.5) discussed in
Chapter 3.

(2.13) Theorem. When A satisfies the hypothesis of Theorem (2.9), the
resultant ResA has the following properties:
a. If gi =

∑n
i=0 bijfj, where (bij) is an invertible matrix, then

ResA(g0, . . . , gn) = det(bij)n! Vol(Q)ResA(f0, . . . , fn).

b. Given indices 1 ≤ k0 ≤ · · · ≤ kn ≤ l, the bracket [k0 . . . kn] is defined
to be the determinant

[k0 . . . kn] = det(ui,kj ) ∈ Z[uij].

Then ResA is a polynomial in the brackets [k0 . . . kn].

Proof. See [GKZ], Chapter 8. As explained in the proof of Theorem (3.5)
of Chapter 3, the second part follows from the first. In §4, we will prove
that n! Vol(Q) is an integer since Q is a lattice polytope.

Exercise 6. As in Exercise 5, let A = {(0, 0), (1, 0), (0, 1), (1, 1)}. Then
prove that

(2.14) ResA(f, g, h) = [013][023] − [012][123].

Hint: Expand the determinant (2.11) three times along certain well-chosen
rows and columns.

The answer to Exercise 6 is more interesting than first meets the eye. La-
bel the points inA = {(0, 0), (1, 0), (0, 1), (1, 1)} as 0, 1, 2, 3, corresponding
to the subscripts of the coefficients in (2.10). Then the brackets appearing
in (2.14) correspond to the two ways of dividing the square Q = Conv(A)
into triangles. This is illustrated in Fig. 7.4 on the next page, where the
figure on the left corresponds to [013][023], and the one on the right to
[012][123].

The amazing fact is that this is no accident! In general, when we express
ResA as a polynomial in the brackets [k0 . . . kn], there is a very deep re-
lationship between certain terms in this polynomial and triangulations of
the polytope Q = Conv(A). The details can be found in [KSZ]. See also
[Stu4] for some nice examples.

Many of the other properties of multipolynomial resultants mentioned
in §3 and §4 have sparse analogs. We refer the reader to [GKZ, Chapter 8]
and [PS2] for further details.
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Figure 7.4. Triangulations of the unit square

Our account of sparse resultants is by no means complete, and in
particular, we have the following questions:

• When ResA(f0, . . . , fn) vanishes, the equations (2.5) should have a solu-
tion, but where? In §3, we will see that toric varieties provide a natural
answer to this question.
• What happens when the polynomials in (2.5) have exponents not lying

in the same set A? We will explore what happens in §6.
• How do we compute ResA(f0, . . . , fn)? We will (very briefly) sketch one

method in §6 and give references to other methods in the literature.
• What are sparse resultants good for? We’ve used them for implicitization

in (2.12), and applications to solving equations will be covered in §6. A
brief discussion of applications to geometric modeling, computational
geometry, vision and molecular structure can be found in [Emi2].

We should also mention that besides sparse resultants, some other types
of resultants have been studied in recent years. For example:

• The paper [BEM1] defines a notion of resultant which works for any uni-
rational variety. (A projective variety is unirational if there is a surjective
rational map from P

n to the variety.)
• When a unirational variety is a blow-up of P

n, the resultant of [BEM1] is
called a residual resultant . This is studied in [BEM2] when the center of
the blow-up is a complete intersection, and [Bus] considers what happens
when the center is a local complete intersection in P

2.
• In a different direction, consider polynomials whose Newton polytopes

are rectangles with smaller rectangles cut out of each corner. Because
we cut out rectangles, we are not using all lattice points in the convex
hull. Some interesting formulas for these resultants are given in [ZG] and
[Chi].
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ADDITIONAL EXERCISES FOR §2

Exercise 7. Let B be the 3 × 3 matrix in (2.2). In this exercise, we will
show that the parametrization (2.1) lies in a plane αx + βy + γz = δ if
and only if det(B) = 0.
a. First, if the parametrization lies in the plane αx+βy+γz = δ, then show

that Bv = 0, where v = (α, β, γ)t. Hint: If a polynomial in s, t equals
zero for all values of s and t, then the coefficients of the polynomial must
be zero.

b. Conversely, if det(B) = 0, then we can find a nonzero column vector
v = (α, β, γ)t such that Bv = 0. Show that αx + βy + γz = δ for an
appropriately chosen δ.

Exercise 8. Given A = {m1, . . . , ml} ⊂ Z
n and v ∈ Z

n, let v + A =
{v + m1, . . . , v + ml}. Explain why ResA = Resv+A. Hint: Remember that
in defining the resultant, we only use solutions of the equations (2.5) with
t1, . . . , tn ∈ C

∗.

Exercise 9. For A = {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0)}, compute ResA
using the methods of Exercise 5. Hint: Let the variables be s, t, and let the
equations be f = g = h = 0 with coefficients a0, . . . , c4. Multiply each of
the three equations by 1, s, t. This will give you a 9 × 9 determinant. The
tricky part is finding polynomials f, g, h such that the determinant is ±1.
See part d of Exercise 5.

Exercise 10. This exercise will explore the Dixon resultant introduced by
Dixon in 1908. See Section 2.4 of [Stu4] for some nice examples. Let

Al,m = {(a, b) ∈ Z
2 : 0 ≤ a ≤ l, 0 ≤ b ≤ m}.

Note that Al,m has (l + 1)(m + 1) elements. Let the variables be s, t. Our
goal is to find a determinant formula for ResAl,m

.
a. Given f, g, h ∈ L(Al,m), we get equations f = g = h = 0. Mul-

tiplying these equations by satb for (a, b) ∈ A2l−1,m−1, show that
you get a system of 6lm equations in the 6lm “unknowns” satb for
(a, b) ∈ A3l−1,2m−1. Hint: For l = m = 1, this is exactly what you did
in Exercise 1.

b. If A is the matrix of part a, conclude that det(A) = 0 whenever f =
g = h = 0 has a solution (s, t) ∈ (C∗)2. Also show that det(A) has
total degree 2lm in the coefficients of f , and similarly for g and h.

c. What is the volume of the convex hull of Al,m?
d. Using Theorems (2.6) and (2.9), show that det(A) is a constant multiple

of ResAl,m
.

e. Show that the constant is ±1 by considering f = 1 + sltm, g = sl and
h = tm. Hint: In this case, A has 4lm rows with only one nonzero entry.
Use this to reduce to a 2lm × 2lm matrix.
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§3 Toric Varieties

Let A = {m1, . . . , ml} ⊂ Z
n, and suppose that

fi = ai1t
m1 + · · · + ailt

ml , i = 0, . . . , n

are n + 1 Laurent polynomials in L(A). The basic question we want to
answer in this section is: If ResA(f0, . . . , fn) = 0, where do the equations

(3.1) f0 = · · · = fn = 0

have a solution? In other words, what does it mean for the resultant to
vanish?

For Ad = {m ∈ Z
n
≥0 : |M | ≤ d}, we know the answer. Here, we

homogenize f0, . . . , fn as in (2.7) to get F0, . . . , Fn. Proposition (2.8)
implies

ResAd
(f0, . . . , fn) = Resd,...,d(F0, . . . , Fn),

and then Theorem (2.3) of Chapter 3 tells us

(3.2) Resd,...,d(F0, . . . , Fn) = 0 ⇐⇒
{

F0 = · · · = Fn = 0
has a nontrivial solution.

Recall that a nontrivial solution means (x0, . . . , xn) �= (0, . . . , 0), i.e., a
solution in P

n. Thus, by going from (C∗)n to P
n and changing to homo-

geneous coordinates in (3.1), we get a space where the vanishing of the
resultant means that our equations have a solution.

To understand what happens in the general case, suppose that A =
{m1, . . . , ml} ⊂ Z

n
≥0, and assume that Q = Conv(A) has dimension n.

Then consider the map

φA : (C∗)n −→ P
l−1

defined by

(3.3) φA(t1, . . . , tn) = (tm1 , . . . , tml).

Note that (tm1 , . . . , tml) is never the zero vector since ti ∈ C
∗ for all i.

Thus φA is defined on all of (C∗)n, though the image of φA need not be a
subvariety of P

l−1. Then the toric variety XA is the Zariski closure of the
image of φA, i.e.,

XA = φA
(
(C∗)n

) ⊂ P
l−1.

Toric varieties are an important area of research in algebraic geometry
and feature in many applications. The reader should consult [GKZ] or
[Stu2] for an introduction to toric varieties. There is also a more abstract
theory of toric varieties, as described in [Ful]. See [Cox4] for an elementary
introduction.

For us, the key fact is that the equations fi = ai1t
m1 + · · · + ailt

ml = 0
from (3.1) extend naturally to XA. To see how this works, let u1, . . . , ul
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be homogeneous coordinates on P
l−1. Then consider the linear function

Li = ai1u1 + · · · + ailul, and notice that fi = Li ◦ φA. However, Li is not
a function on P

l−1 since u1, . . . , ul are homogeneous coordinates. But the
equation Li = 0 still makes sense on P

l−1 (be sure you understand why),
so in particular, Li = 0 makes sense on XA. Since Li and fi have the same
coefficients, we can write ResA(L0, . . . , Ln) instead of ResA(f0, . . . , fn).
Then we can characterize the vanishing of the resultant as follows.

(3.4) Theorem.

ResA(L0, . . . , Ln) = 0 ⇐⇒
{

L0 = · · · = Ln = 0
has a solution in XA.

Proof. See Proposition 2.1 of Chapter 8 of [GKZ]. This result is also
discussed in [KSZ].

This theorem tells us that the resultant vanishes if and only if (3.1) has a
solution in the toric variety XA. From a more sophisticated point of view,
Theorem (3.4) says that ResA is closely related to the Chow form of XA.

To get a better idea of what Theorem (3.4) means, we will work out two
examples. First, if Ad = {m ∈ Z

n
≥0 : |m| ≤ d}, let’s show that XAd

= P
n.

Let x0, . . . , xn be homogeneous coordinates on P
n, so that by Exercise 19

of Chapter 3, §4, there are N =
(
d+n

n

)
monomials of total degree d in

x0, . . . , xn. These monomials give a map

Φd : P
n −→ P

N−1

defined by Φd(x0, . . . , xn) = (. . . , xα, . . .), where we use all monomials xα

of total degree d. In Exercise 6 at the end of the section, you will show
that Φd is well-defined and one-to-one. We call Φd the Veronese map. The
image of Φd is a variety by the following basic fact.

• (Projective Images) Let Ψ : P
n → P

N−1 be defined by Ψ(x0, . . . , xn) =
(h1, . . . , hN ), where the hi are homogeneous of the same degree and
don’t vanish simultaneously on P

n. Then the image Ψ(Pn) ⊂ P
N−1 is a

variety.

(See §5 of Chapter 8 of [CLO].) For t1, . . . , tn ∈ C
∗, observe that

(3.5) Φd(1, t1, . . . , tn) = φAd
(t1, . . . , tn),

where φAd
is from (3.3) (see Exercise 6). Thus Φd(Pn) is a variety containing

φAd

(
(C∗)n

)
, so that XAd

⊂ Φd(Pn). Exercise 6 will show that equality
occurs, so that XAd

= Φd(Pn). Finally, since Φd is one-to-one, P
n can be

identified with its image under Φd (we are omitting some details here),
and we conclude that XAd

= P
n. It follows from Theorem (3.4) that for

homogeneous polynomials F0, . . . , Fn of degree d,

Resd,...,d(F0, . . . , Fn) = 0 ⇐⇒
{

F0 = · · · = Fn = 0
has a solution in P

n.
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Thus we recover the characterization of Resd,...,d given in (3.2).
For a second example, you will show in the next exercise that P

1 × P
1

is the toric variety where the equations (2.10) have a solution when the
resultant vanishes.

Exercise 1. Let A = {(0, 0), (1, 0), (0, 1), (1, 1)}. Then φA(s, t) =
(1, s, t, st) ∈ P

3 and XA is the Zariski closure of the image of φA. A
formula for ResA is given in (2.11).
a. Let the coordinates on P

1 × P
1 be (u, s, v, t), so that (u, s) are homoge-

neous coordinates on the first P
1 and (v, t) are homogeneous coordinates

on the second. Show that the Segre map Φ : P
1 × P

1 → P
3 defined by

Φ(u, s, v, t) = (uv, sv, ut, st) is well-defined and one-to-one.
b. Show that the image of Φ is XA and explain why this allows us to

identify P
1 × P

1 with XA.
c. Explain why the “homogenizations” of f, g, h from (2.10) are

(3.6)

F (u, s, v, t) = a0uv + a1sv + a2ut + a3st = 0

G(u, s, v, t) = b0uv + b1sv + b2ut + b3st = 0

H(u, s, v, t) = c0uv + c1sv + c2ut + c3st = 0,

and then prove that ResA(F, G, H) = 0 if and only if F = G = H = 0
has a solution in P

1 × P
1. In Exercises 7 and 8 at the end of the section,

you will give an elementary proof of this assertion.

Exercise 1 can be restated as saying that ResA(F, G, H) = 0 if and only
if F = G = H = 0 has a nontrivial solution (u, s, v, t), where nontrivial
now means (u, s) �= (0, 0) and (v, t) �= (0, 0). This is similar to (3.2),
except that we “homogenized” (3.1) in a different way, and “nontrivial”
has a different meaning.

Our next task is to show that there is a systematic procedure for homog-
enizing the equations (3.1). The key ingredient will again be the polytope
Q = Conv(A). In particular, we will use the facets and inward normals
of Q, as defined in §1. If Q has facets F1, . . . ,FN with inward pointing
normals ν1, . . . , νN respectively, each facet Fj lies in the supporting hy-
perplane defined by m · νj = −aj , and according to (1.4), the polytope Q
is given by

(3.7) Q = {m ∈ R
n : m · νj ≥ −aj for all j = 1, . . . , N}.

As usual, we assume that νj ∈ Z
n is the unique primitive inward pointing

normal of the facet Fj .
We now explain how to homogenize the equations (3.1) in the general

case. Given the representation of Q as in (3.7), we introduce new vari-
ables x1, . . . , xN . These “facet variables” are related to t1, . . . , tn by the
substitution

(3.8) ti = xν1i
1 xν2i

2 · · · xνNi

N , i = 1, . . . , n
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where νji is the ith coordinate of νj . Then the “homogenization” of
f(t1, . . . , tn) is

(3.9) F (x1, . . . , xn) =
(∏N

j=1 x
aj

j

)
f(t1, . . . , tn),

where each ti is replaced with (3.8). Note the similarity with (2.7). The
homogenization of the monomial tm will be denoted xα(m). An explicit
formula for xα(m) will be given below.

Since the inward normals νj can have negative coordinates, negative
exponents can appear in (3.8). Nevertheless, the following lemma shows
that xα(m) has no negative exponents in the case we are interested in.

(3.10) Lemma. If m ∈ Q, then xα(m) is a monomial in x1, . . . , xN with
nonnegative exponents.

Proof. Write m ∈ Z
n as m =

∑n
i=1 aiei. Since νji = νj · ei, (3.8) implies

(3.11) tm = xm·ν1
1 xm·ν2

2 · · · xm·νN

N ,

from which it follows that

xα(m) =
(∏N

j=1 x
aj

j

)
xm·ν1

1 xm·ν2
2 · · · xm·νN

N

= xm·ν1+a1
1 xm·ν2+a2

2 · · · xm·νN+aN

N .

Since m ∈ Q, (3.7) implies that the exponents of the xj are ≥ 0.

Exercise 2. Give a careful proof of (3.11).

Exercise 3. If we used +aj rather than −aj in the description of Q =
Conv(A) in (3.7), what effect would this have on (3.9)? This explains the
minus signs in (3.7): they give a nicer homogenization formula.

From the equations (3.1), we get the homogenized equations

F0 = a01x
α(m1) + · · · + a0lx

α(ml) = 0

...

Fn = an1x
α(m1) + · · · + anlx

α(ml) = 0,

where Fi is the homogenization of fi. Notice that Lemma (3.10) applies
to these equations since mi ∈ A ⊂ Q for all i. Also note that F0, . . . , Fn

and f0, . . . , fn have the same coefficients, so we can write the resultant as
ResA(F0, . . . , Fn).

Exercise 4.
a. For Ad = {m ∈ Z

n
≥0 : |m| ≤ d}, let the facet variables be x0, . . . , xn,

where we use the labelling of Exercise 3. Show that ti = xi/x0 and that
the homogenization of f(t1, . . . , tn) is given precisely by (2.7).
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b. For A = {(0, 0), (1, 0), (0, 1), (1, 1)}, the convex hull Q = Conv(A) in
R

2 is given by the inequalities

m · νs ≥ 0, m · νu ≥ −1, m · νt ≥ 0, and m · νv ≥ −1,

where e1 = νs = −νu and e2 = νt = −νv. As indicated by the labelling
of the facets, the facet variables are u, s, v, t. This is illustrated in Fig. 7.5
on the next page. Show that the homogenization of (2.10) is precisely
the system of equations (3.6).

Our final task is to explain what it means for the equations F0 = · · · =
Fn = 0 to have a “nontrivial” solution. We use the vertices of polytope
Q for this purpose. Since Q is the convex hull of the finite set A ⊂ Z

n, it
follows that every vertex of Q lies in A, i.e., the vertices are a special subset
of A. This in turn gives a special collection of homogenized monomials
which will tell us what “nontrivial” means. The precise definitions are as
follows.

(3.12) Definition. Let x1, . . . , xN be facet variables for Q = conv(A).
a. If m ∈ A is a vertex of Q, then we say that xα(m) is a vertex monomial .
b. A point (x1, . . . , xN ) ∈ C

N is nontrivial if xα(m) �= 0 for at least one
vertex monomial.

Exercise 5.
a. Let Ad and x0, . . . , xn be as in Exercise 4. Show that the vertex mono-

mials are xd
0, . . . , x

d
n, and conclude that (x0, . . . , xn) is nontrivial if and

only if (x0, . . . , xn) �= (0, . . . , 0).
b. Let A and u, s, v, t be as in Exercise 4. Show that the vertex monomials

are uv, ut, sv, st, and conclude that (u, s, v, t) is nontrivial if and only
if (u, s) �= (0, 0) and (v, t) �= (0, 0).

Q

1

1

νs νu

νv

νt

Figure 7.5. Facet normals of the unit square
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Exercises 4 and 5 show that the homogenizations used in (2.7) and (3.6)
are special cases of a theory that works for any set A of exponents. Once
we have the description (3.7) of the convex hull of A, we can read off
everything we need, including the facet variables, how to homogenize, and
what nontrivial means.

We now come to the main result of this section, which uses the facet
variables to give necessary and sufficient conditions for the vanishing of the
resultant.

(3.13) Theorem. Let A = {m1, . . . , ml} ⊂ Z
n
≥0 be finite, and assume

that Q = Conv(A) is n-dimensional. If x1, . . . , xN are the facet variables,
then the homogenized system of equations

F0 = a01x
α(m1) + · · · + a0lx

α(ml) = 0

...

Fn = an1x
α(m1) + · · · + anlx

α(ml) = 0

has a nontrivial solution in C
N if and only if ResA(F0, . . . , Fn) = 0.

Proof. Let U ⊂ C
N consist of all nontrivial points, and notice that

(C∗)N ⊂ U . Then consider the map Φ defined by

Φ(x1, . . . , xN ) = (xα(m1), . . . , xα(ml)).

Since the vertex monomials appear among the xα(mi), we see that
Φ(x1, . . . , xN ) �= (0, . . . , 0) when (x1, . . . , xN ) ∈ U . Thus Φ can be re-
garded as a map Φ : U → P

l−1. By Theorem (3.4), it suffices to prove
that the image of Φ is the toric variety XA. To prove this, we will use the
following properties of the map Φ:

(i) Φ(U) is a variety in P
l−1.

(ii) Φ
(
(C∗)N

)
is precisely φA

(
(C∗)n

)
.

Assuming (i) and (ii), we see that φA
(
(C∗)n

) ⊂ Φ(U), and since Φ(U) is
a variety, we have XA ⊂ Φ(U). Then the argument of part d of Exercise 6
shows that XA = Φ(U), as desired.

The proofs of (i) and (ii) are rather technical and use results from
[BC] and [Cox1]. Since Theorem (3.13) has not previously appeared in
the literature, we will include the details. What follows is for experts only!

For (i), note that [Cox1] implies that Φ factors

U → XQ → P
l−1,

where XQ is the abstract toric variety determined by Q (see [Ful], §1.5).
By Theorem 2.1 of [Cox1], U → XQ is a categorical quotient, and in
fact, the proof shows that it is a universal categorical quotient (because
C has characteristic 0—see Theorem 1.1 of [FM]). A universal categorical
quotient is surjective by §0.2 of [FM], so that U → XQ is surjective. This
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shows that Φ(U) is the image of XQ → P
l−1. Since XQ is a projective

variety, a generalization of the Projective Images principle used earlier in
this section implies that the image of XQ → P

l−1 is a variety. We conclude
that Φ(U) is a variety in P

l−1.
For (ii), first observe that the restriction of Φ to (C∗)N factors

(C∗)N ψ−→ (C∗)n φA−→ P
l−1

where ψ is given by (3.8) and φA is given by (3.3). To prove this, note that
by the proof of Lemma (3.11), we can write

xα(m) =
(∏N

j=1 x
aj

j

)
tm,

provided we use ψ to write tm in terms of x0, . . . , xN . It follows that

Φ(x0, . . . , xN ) =
(∏N

j=1 x
aj

j

)
φA

(
ψ(x0, . . . , xN )

)
.

Since we are working in projective space, we conclude that Φ = φA ◦ ψ.
Using Remark 8.8 of [BC], we can identify ψ with the restriction of U →

XQ to (C∗)N . It follows from [Cox1] (especially the discussion following
Theorem 2.1) that ψ is onto, and it follows that

Φ
(
(C∗)N

)
= φA

(
ψ
(
(C∗)N

))
= φA

(
(C∗)n

)
,

which completes the proof of the theorem.

The proof of Theorem (3.13) shows that the map Φ : U → XA is sur-
jective, which allows us to think of the facet variables as “homogeneous
coordinates” on XA. However, for this to be useful, we need to understand
when two points P, Q ∈ U correspond to the same point in XA. In nice
cases, there is a simple description of when this happens (see Theorem
2.1 of [Cox1]), but in general, things can be complicated. We should also
mention that facet variables and toric varieties have proved to be useful in
geometric modeling. See, for example, [CoxKM], [Kra], and [Zub].

There is a lot more that one can say about sparse resultants and toric
varieties. In Chapter 8, we will discover a different use for toric varieties
when we study combinatorial problems arising from magic squares. Toric
varieties are also useful in studying solutions of sparse equations, which we
will discuss in §5, and the more general sparse resultants defined in §6 also
have relations to toric varieties. But before we can get to these topics, we
first need to learn more about polytopes.

ADDITIONAL EXERCISES FOR §3

Exercise 6. Consider the Veronese map Φd : P
n → P

N−1, N =
(
n+d

d

)
,

as in the text.
a. Show that Φd is well-defined. This has two parts: first, you must show

that Φd(x0, . . . , xn) doesn’t depend on which homogeneous coordinates
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you use, and second, you must show that Φd(x0, . . . , xn) never equals
the zero vector.

b. Show that Φd is one-to-one. Hint: If Φd(x0, . . . , xn) = Φd(y0, . . . , yn),
then for some µ, µxα = yα for all |α| = d. Pick i such that xi �= 0 and
let λ = yi/xi. Then show that µ = λd and yj = λxj for all j.

c. Prove (3.5).
d. Prove that Φd(Pn) is the Zariski closure of φAd

(
(C∗)n

)
in P

N−1. In con-
crete terms, this means the following. Let the homogeneous coordinates
on P

N−1 be u1, . . . , uN . If a homogeneous polynomial H(u1, . . . , uN )
vanishes on φAd

(
(C∗)n

)
, then prove that H vanishes on Φd(Pn). Hint:

Use (3.5) to show that x0 . . . xnH ◦Φd vanishes identically on P
n. Then

argue that H ◦ Φd must vanish on P
n.

Exercise 7. Let A and F, G, H be as in Exercise 1. In this exercise and
the next, you will give an elementary proof that ResA(F, G, H) = 0 if and
only if F = G = H = 0 has a nontrivial solution (u, s, v, t), meaning
(u, s) �= (0, 0) and (v, t) �= (0, 0).
a. If F = G = H = 0 has a nontrivial solution (u, s, v, t), show that the

determinant in (2.11) vanishes. Hint: Multiply the equations by u and s
to get 6 equations in the 6 “unknowns” u2v, usv, u2t, ust, s2v, s2t. Show
that the “unknowns” can’t all vanish simultaneously.

b. For the remaining parts of the exercise, assume that the determinant
(2.11) vanishes. We will find a nontrivial solution of the equations F =
G = H = 0 by considering 3 × 3 submatrices (there are four of them)
of the matrix ⎛⎝ a0 a1 a2 a3

b0 b1 b2 b3
c0 c1 c2 c3

⎞⎠ .

One of the 3 × 3 submatrices appears in (2.2), and if its determinant
doesn’t vanish, show that we can find a solution of the form (1, s, 1, t).
Hint: Adapt the argument of Exercise 2 of §2.

c. Now suppose instead that

det

⎛⎝ a0 a2 a3
b0 b2 b3
c0 c2 c3

⎞⎠ �= 0.

Show that we can find a solution of the form (u, 1, 1, t).
d. The matrix of part b has two other 3× 3 submatrices. Show that we can

find a nontrivial solution if either of these has nonvanishing determinant.
e. Conclude that we can find a nontrivial solution whenever the matrix of

part b has rank 3.
f. If the matrix has rank less than three, explain why it suffices to show

that the equations F = G = 0 have a nontrivial solution. Hence we



330 Chapter 7. Polytopes, Resultants, and Equations

are reduced to the case where H is the zero polynomial, which will be
considered in the next exercise.

Exercise 8. Continuing the notation of the previous exercise, we will show
that the equations F = G = 0 always have a nontrivial solution. Write the
equations in the form

(a0u + a1s)v + (a2u + a3s)t = 0

(b0u + b1s)v + (b2u + b3s)t = 0,

which is a system of two equations in the unknowns v, t.
a. Explain why we can find (u0, s0) �= (0, 0) such that

det
(

a0u0 + a1s0 a2u0 + a3s0
b0u0 + b1s0 b2u0 + b3s0

)
= 0.

b. Given (u0, s0) from part a, explain why we can find (v0, t0) �= (0, 0)
such that (u0, s0, v0, t0) is a nontrivial solution of F = G = 0.

Exercise 9. In Exercise 8 of §2, you showed that ResA is unchanged if we
translate A by a vector v ∈ Z

n. You also know that if Q is the convex hull
of A, then v + Q is the convex hull of v + A by Exercise 16 of §1.
a. If Q is represented as in (3.7), show that v + Q is respresented by the

inequalities m · νj ≥ −aj + v · νj.
b. Explain why A and v + A have the same facet variables.
c. Consider m ∈ Q. Show that the homogenization of tm with respect to
A is equal to the homogenization of tv+m with respect to v + A. This
says that the homogenized equations in Theorem (3.13) are unchanged
if we replace A with v + A.

Exercise 10. Let x1, . . . , xN be facet variables for Q = Conv(A). We say
that two monomials xα and xβ have the same A-degree if there is m ∈ Z

n

such that

βj = αj + m · νj

for j = 1, . . . , N .
a. Show that the monomials xα(m), m ∈ Q, have the same A-degree. Thus

the polynomials in Theorem (3.13) are A-homogeneous, which means
that all terms have the same A-degree.

b. If Ad and x0, . . . , xn are as in part a of Exercise 4, show that two
monomials xα and xβ have the same Ad-degree if and only if they have
the same total degree.

c. If A and u, s, v, t are as in part b of Exercise 4, show that two monomials
ua1sa2va3ta4 and ub1sb2vb3tb4 have the same A-degree if and only if
a1 + a2 = b1 + b2 and a3 + a4 = b3 + b4.
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Exercise 11. This exercise will explore the notion of “nontrivial” given
in Definition (3.12). Let m ∈ Q = Conv(A), and let x1, . . . , xN be the
facet variables. We define the reduced monomial x

α(m)
red to be the monomial

obtained from xα(m) by replacing all nonzero exponents by 1.
a. Prove that

x
α(m)
red =

∏
m/∈Fj

xj .

Thus x
α(m)
red is the product of those facet variables corresponding to the

facets not containing m. Hint: Look at the proof of Lemma (3.10) and
remember that m ∈ Fj if and only if m · νj = −aj .

b. Prove that (x1, . . . , xN ) is nontrivial if and only if x
α(m)
red �= 0 for at

least one vertex m ∈ Q.
c. Prove that if m ∈ Q ∩ Z

n is arbitrary, then xα(m) is divisible by some
reduced vertex monomial. Hint: The face of Q of smallest dimension
containing m is the intersection of those facets Fj for which m·νj = −aj .
Then let m′ be a vertex of Q lying in this face.

d. As in the proof of Theorem (3.13), let U ⊂ C
N be the set of non-

trivial points. If (x1, . . . , xn) /∈ U , then use parts b and c to show
that (x1, . . . , xn) is a solution of the homogenized equations F0 =
· · · = Fn = 0 in the statement of Theorem (3.13). Thus the points
in C

N − U are “trivial” solutions of our equations, which explains the
name “nontrivial” for the points of U .

Exercise 12. Let A = {(0, 0), (1, 0), (0, 1), (1, 1), (2, 0)}. In Exercise 9 of
§2, you showed that ResA(f, g, h) was given by a certain 9×9 determinant.
The convex hull of A is pictured in Fig. 7.2, and you computed the inward
normals to be e1, e2,−e2,−e1−e2 in Exercise 6 of §1. Let the corresponding
facet variables be x1, x2, x3, x4.
a. What does it mean for (x1, x2, x3, x4) to be nontrivial? Try to make

your answer as nice as possible. Hint: See part b of Exercise 5.
b. Write down explicitly the homogenizations F, G, H of the polynomials

f, g, h from Exercise 9 of §2.
c. By combining parts a and b, what is the condition for ResA(F, G, H)

to vanish?

Exercise 13. In Exercise 10 of §2, you studied the Dixon resultant
ResAl,m

, where Al,m = {(a, b) ∈ Z
2 : 0 ≤ a ≤ l, 0 ≤ b ≤ m}.

a. Draw a picture of Conv(Al,m) and label the facets using the variables
u, s, v, t (this is similar to what you did in part b of Exercise 4).

b. What is the homogenization of f ∈ L(Al,m)?
c. What does it mean for (u, s, v, t) to be nontrivial?
d. What is the toric variety XAl,m

? Hint: It’s one you’ve seen before!
e. Explain how the Dixon resultant can be formulated in terms of bihomo-

geneous polynomials. A polynomial f ∈ k[u, s, v, t] is bihomogeneous of
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degree (l, m) if it is homogeneous of degree l as a polynomial in u, s and
homogeneous of degree m as a polynomial in v, t.

§4 Minkowski Sums and Mixed Volumes

In this section, we will introduce some important constructions in the
theory of convex polytopes. Good general references for this material are
[BoF], [BZ], [Ewa] and [Lei]. [Ful] and [GKZ] also contain brief expositions.
Throughout, we will illustrate the main ideas using the Newton polytopes
(see §1) of the following polynomials:

(4.1)
f1(x, y) = ax3y2 + bx + cy2 + d

f2(x, y) = exy4 + fx3 + gy.

We will assume that the coefficients a, . . . , g are all non-zero in C.
There are two operations induced by the vector space structure in R

n

that form new polytopes from old ones.

(4.2) Definition. Let P, Q be polytopes in R
n and let λ ≥ 0 be a real

number.
a. The Minkowski sum of P and Q, denoted P + Q, is

P + Q = {p + q : p ∈ P and q ∈ Q},
where p + q denotes the usual vector sum in R

n.
b. The polytope λ P is defined by

λ P = {λ p : p ∈ P},
where λ p is the usual scalar multiplication on R

n.

For example, the Minkowski sum of the Newton polytopes P1 =
NP(f1) and P2 = NP(f2) from (4.1) is a convex heptagon with vertices
(0, 1), (3, 0), (4, 0), (6, 2), (4, 6), (1, 6), and (0, 3). In Fig. 7.6, P1 is indicated
by dashed lines, P2 by bold lines, and the Minkowski sum P1 +P2 is shaded.

Exercise 1. In Fig. 7.6, show that the Minkowski sum P1 + P2 can be
obtained by placing a copy of P1 at every point of P2. Illustrate your answer
with a picture. This works because P1 contains the origin.

Exercise 2. Let
f1 = a20x

2 + a11xy + a02y
2 + a10x + a01y + a00

f2 = b30x
3 + b21x

2y + b12xy2 + b03y
3 + b20x

2 + · · · + b00

be general (“dense”) polynomials of total degrees 2 and 3 respectively.
Construct the Newton polytopes Pi = NP(fi) for i = 1, 2 and find the
Minkowski sum P1 + P2.
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P1 + P2

P1

P2

1 2 3 4 5 6

1

2

3

4

5

6

Figure 7.6. Minkowski sum of polytopes

Exercise 3.
a. Show that if f1, f2 ∈ C[x1, . . . , xn] and Pi = NP(fi), then P1 + P2 =

NP(f1 · f2).
b. Show in general that if P1 and P2 are polytopes, then their Minkowski

sum P1 + P2 is also convex. Hint: If Pi = Conv(Ai), where Ai is finite,
what finite set will give P1 + P2?

c. Show that a Minkowski sum of lattice polytopes is again a lattice
polytope.

d. Show that P + P = 2 P for any polytope P . How does this generalize?

Given finitely many polytopes P1, . . . , Pl ⊂ R
n, we can form their

Minkowski sum P1 + · · · + Pl, which is again a polytope in R
n. In §1,

we learned about the faces of a polytope. A useful fact is that faces of the
Minkowski sum P1 + · · · + Pl are themselves Minkowski sums. Here is a
precise statement.

(4.3) Proposition. Let P1, . . . , Pr ⊂ R
n be polytopes in R

n, and let P =
P1 + · · · + Pr be their Minkowski sum. Then every face P ′ of P can be
expressed as a Minkowski sum

P ′ = P ′
1 + · · · + P ′

r,

where each P ′
i is a face of Pi.
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Proof. By §1, there is a nonzero vector ν ∈ R
n such that

P ′ = Pν = P ∩ {m ∈ R
n : m · ν = −aP (ν)}.

In Exercise 12 at the end of the section, you will show that

Pν = (P1 + · · · + Pr)ν = (P1)ν + · · · + (Pr)ν ,

which will prove the proposition.

Exercise 4. Verify that Proposition (4.3) holds for each facet of the
Minkowski sum P1 + P2 in Fig. 7.6.

We next show how to compute the volume of an n-dimensional lattice
polytope P using its facets. As in §1, each facet F of P has a unique
primitive inward pointing normal νF ∈ Z

n. If the supporting hyperplane
of F is m · νF = −aF , then the formula (1.4) for P can be stated as

(4.4) P =
⋂
F
{m ∈ R

n : m · νF ≥ −aF},

where the intersection is over all facets F of P . Recall also that in the
notation of (1.3), aF = aP (νF ).

Let ν⊥
F denote the (n − 1)-dimensional subspace defined by m · νF = 0.

Then ν⊥
F ∩Z

n is closed under addition and scalar multiplication by integers.
One can prove that ν⊥

F ∩Z
n is a lattice of rank n−1, which means there are

n− 1 vectors w1, . . . , wn−1 ∈ ν⊥
F ∩ Z

n such that every element of ν⊥
F ∩ Z

n

is a unique linear combination of w1, . . . , wn−1 with integer coefficients.
We call w1, . . . , wn−1 a basis of ν⊥

F ∩ Z
n. The existence of w1, . . . , wn−1

follows from the fundamental theorem on discrete subgroups of Euclidean
spaces. Using w1, . . . , wn−1, we get the set

P = {λ1w1 + · · · + λn−1wn−1 : 0 ≤ λi ≤ 1},
which is the called a fundamental lattice parallelotope of the lattice ν⊥

F ∩Z
n.

If S is subset of R
n lying in any affine hyperplane, we can define

the Euclidean volume Voln−1(S). In particular, we can define Voln−1(F).
However, we also need to take the volume of the fundamental lattice
parallelotope P into account. This leads to the following definition.

(4.5) Definition. The normalized volume of the facet F of the lattice
polytope P is given by

Vol′n−1(F) =
Voln−1(F)
Voln−1(P)

,

where P is a fundamental lattice parallelotope for ν⊥
F ∩ Z

n.

This definition says that the normalized volume is the usual volume
scaled so that the fundamental lattice parallelotope has volume 1. In
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Exercise 13, you will show that this definition is independent of which fun-
damental lattice parallelotope we use. We should also mention the following
nice formula:

Voln−1(P) = ||νF ||,
where ||νF || is the Euclidean length of the vector νF . We omit the proof
since we will not use this result.

For example, let P2 = NP(f2) = Conv({(1, 4), (3, 0), (0, 1)}) be the
Newton polytope of the polynomial f2 from (4.1). For the facet

F = Conv({(3, 0), (0, 1)}),
we have νF = (1, 3), and the line containing F is x + 3y = 3. It is easy
to check that (3, 0) and (0, 1) are as close together as any pair of integer
points in the line x + 3y = 3, so the line segment from (3, 0) to (0, 1) is a
translate of the fundamental lattice parallelotope. It follows that

Vol′1(F) = 1.

Notice that the usual Euclidean length of F is
√

10. In general, the
normalized volume differs from the Euclidean volume.

Exercise 5. Let P2 = NP(f2) be as above.
a. Show that for the facet G = Conv({(3, 0), (1, 4)}), we have νG =

(−2,−1) and Vol′1(G) = 2.
b. Finally, for the facetH = Conv({(0, 1), (1, 4)}), show that νH = (3,−1)

and Vol′1(H) = 1.

Our main reason for introducing the normalized volume of a facet is the
following lovely connection between the n-dimensional volume of a polytope
and the (n − 1)-dimensional normalized volumes of its facets.

(4.6) Proposition. Let P be a lattice polytope in R
n, and assume that P

is represented as in (4.4). Then

Voln(P ) =
1
n

∑
F

aF Vol′n−1(F),

where the sum is taken over all facets of P .

Proof. See [BoF], [Lei] or [Ewa], Section IV.3. The formula given in these
sources is not specifically adapted to lattice polytopes, but with minor
modifications, one gets the desired result. Note also that this proposition
explains the minus sign used in the equation m · νF ≥ −aF of a supporting
hyperplane.

For an example of Proposition (4.6), we will compute the area of the
polytope P2 = NP(f2) of Exercise 5. First note that if we label the facet
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normals νF = (1, 3), νG = (−2,−1) and νH = (3,−1) as above, then P2
is defined by

m · νF ≥ 3, m · νG ≥ −6, and m · νH ≥ −1.

It follows that aF = −3, aG = 6 and aH = 1. Applying Proposition (4.6),
the area of P2 is given by

(4.7) Vol2(P2) = (1/2)(−3 · 1 + 6 · 2 + 1 · 1) = 5.

You should check that this agrees with the result obtained from the
elementary area formula for triangles.

Exercise 6. Show that the area of the polytope P1 = NP(f1) for f1 from
(4.1) is equal to 4, by first applying Proposition (4.6), and then checking
with an elementary area formula.

Proposition (4.6) enables us to prove results about volumes of lattice
polytopes using induction on dimension. Here is a nice example which is
relevant to Theorem (2.13).

(4.8) Proposition. If P ⊂ R
n is a lattice polytope, then n! Voln(P ) is an

integer.

Proof. The proof is by induction on n. Then case n = 1 is obvious, so
we may assume inductively that the result is true for lattice polytopes in
R

n−1. By Proposition (4.6), we get

n! Voln(P ) =
∑
F

aF · (n − 1)! Vol′n−1(F).

Note that aF is an integer. If we can show that (n − 1)! Vol′n−1(F) is an
integer, the proposition will follow.

A basis w1, . . . , wn−1 of the lattice ν⊥
F ∩ Z

n gives φ : ν⊥
F ∼= R

n−1 which
carries ν⊥

F ∩ Z
n ⊂ ν⊥

F to the usual lattice Z
n−1 ⊂ R

n−1. Since the funda-
mental lattice polytope P maps to {(a1, . . . , an−1) : 0 ≤ ai ≤ 1} under φ,
it follows easily that

Vol′n−1(S) = Voln−1(φ(S)),

where Voln−1 is the usual Euclidean volume in R
n−1. By translating F ,

we get a lattice polytope F ′ ⊂ ν⊥
F , and then φ(F ′) ⊂ R

n−1 is a lattice
polytope in R

n−1. Since

(n − 1)! Vol′n−1(F) = (n − 1)! Vol′n−1(F ′) = (n − 1)! Voln−1(φ(F ′)),

we are done by our inductive assumption.

Our next result concerns the volumes of linear combinations of polytopes
formed according to Definition (4.2).
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(4.9) Proposition. Consider any collection P1, . . . , Pr of polytopes in
R

n, and let λ1, . . . , λr ∈ R be nonnegative. Then

Voln(λ1P1 + · · · + λrPr)

is a homogeneous polynomial function of degree n in the λi.

Proof. The proof is by induction on n. For n = 1, the Pi = [�i, ri]
are all line segments in R (possibly of length 0 if some �i = ri). The linear
combination λ1P1 + · · ·+λrPr is the line segment [

∑
i λi�i,

∑
i λiri], whose

length is clearly a homogeneous linear function of the λi.
Now assume the proposition has been proved for all combinations of

polytopes in R
n−1, and consider polytopes Pi in R

n and λi ≥ 0. The
polytope Q = λ1P1 + · · · + λrPr depends on λ1, . . . , λr, but as long as
λi > 0 for all i, the Q’s all have the same set of inward pointing facet
normals (see Exercise 14 at the end of the section). Then, using the notation
of (1.3), we can write the formula of Proposition (4.6) as

(4.10) Voln(Q) =
∑

ν

aQ(ν)Vol′n−1(Qν),

where the sum is over the set of common inward pointing facet normals ν.
In this situation, the proof of Proposition (4.3) tells us that

Qν = λ1(P1)ν + · · · + λr(Pr)ν .

By the induction hypothesis, for each ν, the volume Vol′n−1(Qν) in (4.10)
is a homogeneous polynomial of degree n − 1 in λ1, . . . , λr (the details of
this argument are similar to what we did in Proposition (4.8)).

Turning to aQ(ν), we note that by Exercise 12 at the end of the section,

aQ(ν) = aλ1P1+···+λrPr (ν) = λ1aP1(ν) + · · · + λraPr (ν).

Since ν is independent of the λi, it follows that aQ(ν) is a homogeneous
linear function of λ1, . . . , λr. Multiplying aQ(ν) and Vol′n−1(Qν), we see
that each term on the right hand side of (4.10) is a homogeneous polynomial
function of degree n, and the proposition follows.

When r = n, we can single out one particular term in the polynomial
Voln(λ1P1 + · · ·+ λnPn) that has special meaning for the whole collection
of polytopes.

(4.11) Definition. The n-dimensional mixed volume of a collection of
polytopes P1, . . . , Pn, denoted

MVn(P1, . . . , Pn),

is the coefficient of the monomial λ1 ·λ2 · · · λn in Voln(λ1P1 + · · ·+ λnPn).
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Exercise 7.
a. If P1 is the unit square Conv({(0, 0), (1, 0), (0, 1), (1, 1)}) and P2 is the

triangle Conv({(0, 0), (1, 0), (1, 1)}), show that

Vol2(λ1P1 + λ2P2) = λ2
1 + 2λ1λ2 + 1

2 λ2
2,

and conclude that MV2(P1, P2) = 2.
b. Show that if Pi = P for all i, then the mixed volume is given by

MVn(P, P, . . . , P ) = n! Voln(P ).

Hint: First generalize part d of Exercise 3 to prove λ1P + · · · + λnP =
(λ1 + · · · + λn) P , and then determine the coefficient of λ1λ2 · · · λn in
(λ1 + · · · + λn)n.

The basic properties of the n-dimensional mixed volume are given by the
following theorem.

(4.12) Theorem.
a. The mixed volume MVn(P1, . . . , Pn) is invariant if the Pi are replaced

by their images under a volume-preserving transformation of R
n (for

example, a translation).
b. MVn(P1, . . . , Pn) is symmetric and linear in each variable.
c. MVn(P1, . . . , Pn) ≥ 0. Furthermore, MVn(P1, . . . , Pn) = 0 if one of

the Pi has dimension zero (i.e., if Pi consists of a single point), and
MVn(P1, . . . , Pn) > 0 if every Pi has dimension n.

d. The mixed volume of any collection of polytopes can be computed as

MVn(P1, . . . , Pn) =
n∑

k=1

(−1)n−k
∑

I⊂{1,...,n}
|I|=k

Voln
(∑

i∈I

Pi

)
,

where
∑

i∈I Pi is the Minkowski sum of polytopes.
e. For all collections of lattice polytopes P1, . . . , Pn,

MVn(P1, . . . , Pn) =
∑

ν

aP1(ν)MV ′
n−1((P2)ν , . . . , (Pn)ν),

where aP1(ν) is defined in (1.3) and the sum is over all primitive vectors
ν ∈ Z

n such that (Pi)ν has dimension ≥ 1 for i = 2, . . . , n. The no-
tation MV ′

n−1((P2)ν , . . . , (Pn)ν) on the right stands for the normalized
mixed volume analogous to the normalized volume in Definition (4.5):

MV ′
n−1((P2)ν , . . . , (Pn)ν) =

MVn−1((P2)ν , . . . , (Pn)ν)
Voln−1(P)

,

where P is a fundamental lattice parallelotope in the hyperplane ν⊥

orthogonal to ν.

Proof. Part a follows directly from the definition of mixed volumes, as
does part b. We leave the details to the reader as Exercise 15 below.
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The nonnegativity assertion of part c is quite deep, and a proof can be
found in [Ful], Section 5.4. This reference also proves positivity when the
Pi all have dimension n. If Pi has dimension zero, then adding the term
λiPi merely translates the sum of the other terms in λ1P1 + · · ·+ λnPn by
a vector whose length depends on λi. The volume of the resulting polytope
does not change, so that Voln(λ1P1 + · · · + λnPn) is independent of λi.
Hence the coefficient of λ1 · λ2 · · · λn in the expression for the volume must
be zero.

For part d, see [Ful], Section 5.4. Part e is a generalization of the volume
formula given in Proposition (4.6) and can be deduced from that result.
See Exercises 16 and 17 below. Proofs may also be found in [BoF], [Lei]
or [Ewa], Section IV.4. Note that by part b of the theorem, only ν with
dim (Pi)ν > 0 can yield non-zero values for MV ′

n−1((P2)ν , . . . , (Pn)ν).

For instance, let’s use Theorem (4.12) to compute the mixed volume
MV2(P1, P2) for the Newton polytopes of the polynomials from (4.1). In
the case of two polytopes in R

2, the formula of part d reduces to:

MV2(P1, P2) = −Vol2(P1) − Vol2(P2) + Vol2(P1 + P2).

Using (4.7) and Exercise 5, we have Vol2(P1) = 4 and Vol2(P2) = 5. The
Minkowski sum P1 + P2 is the heptagon pictured in Fig. 7.6 above. Its
area may be found, for example, by subdividing the heptagon into four
trapezoids bounded by the horizontal lines y = 0, 1, 2, 3, 6. Using that
subdivision, we find

Vol2(P1 + P2) = 3 + 11/2 + 23/4 + 51/4 = 27.

The mixed volume is therefore

(4.13) MV2(P1, P2) = −4 − 5 + 27 = 18.

Exercise 8. Check the result of this computation using the formula of
part e of Theorem (4.12). Hint: You will need to compute aP1(νF ), aP1(νG)
and aP1(νH), where νF , νG , νH are the inward normals to the facets F , G,H
of P2.

In practice, computing the mixed volume MVn(P1, . . . , Pn) using the
formulas given by parts d and e of Theorem (4.12) can be very time con-
suming. A better method, due to Sturmfels and Huber [HuS1] and Canny
and Emiris [EC], is given by the use of a mixed subdivision of the Minkowski
sum P1 + · · · + Pn. A brief description of mixed subdivisions will be given
in §6, where we will also give further references and explain how to obtain
software for computing mixed volumes.

Exercise 9. Let P1, . . . , Pn be lattice polytopes in R
n.

a. Prove that the mixed volume MVn(P1, . . . , Pn) is an integer.
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b. Explain how the result of part a generalizes Proposition (4.8). Hint: Use
Exercise 7.

We should remark that there are several different conventions in the
literature concerning volumes and mixed volumes. Some authors include
an extra factor of 1/n! in the definition of the mixed volume, so that
MVn(P, . . . , P ) will be exactly equal to Voln(P ). When this is done, the
right side of the formula from part d of Theorem (4.12) acquires an extra
1/n!. Other authors include the extra factor of n! in the definition of Voln
itself (so that the “volume” of the n-dimensional simplex is 1). In other
words, care should be taken in comparing the formulas given here with
those found elsewhere!

ADDITIONAL EXERCISES FOR §4

Exercise 10. Let P1, . . . , Pr be polytopes in R
n. This exercise will show

that the dimension of λ1P1 + · · · + λrPr is independent of the the λi,
provided all λi > 0.
a. If λ > 0 and p0 ∈ P , show that (1−λ)p0 + Aff(λP + Q) = Aff(P + Q).

This uses the affine subspaces discussed in Exercises 12 and 13 of §1.
Hint: (1 − λ)p0 + λp + q = λ(p + q) − λ(p0 + q) + p0 + q.

b. Conclude that dim(λP + Q) = dim(P + Q).
c. Prove that dim(λ1P1 + · · ·+λrPr) is independent of the the λi, provided

all λi > 0.

Exercise 11. Let m · ν = −aP (ν) be a supporting hyperplane of P =
Conv(A), where A ⊂ R

n is finite. Prove that

Pν = Conv({m ∈ A : m · ν = −aP (ν)}).

Exercise 12. Let aP (ν) = −minm∈P (m · ν) be as in (1.3).
a. Show that (λP )ν = λPν and aλP (ν) = λaP (ν).
b. Show that (P + Q)ν = Pν + Qν and aP+Q(ν) = aP (ν) + aQ(ν).
c. Conclude that (λ1P1 + · · · + λrPr)ν = λ1(P1)ν + · · · + λr(Pr)ν and

aλ1P1+···+λrPr (ν) = λ1aP1(ν) + · · · + λraPr (ν).

Exercise 13. Let ν⊥ be the hyperplane orthogonal to a nonzero vector
ν ∈ Z

n, and let {w1, . . . , wn−1} and {w′
1, . . . , w

′
n−1} be any two bases for

the lattice ν⊥ ∩ Z
n.

a. By expanding the w′
i in terms of the wj , show that there is an (n− 1)×

(n − 1) integer matrix A = (aij) such that w′
i =

∑n−1
i=1 aijwj for all

i = 1, . . . , n − 1.
b. Reversing the roles of the two lattice bases, deduce that A is invertible,

and A−1 is also an integer matrix.
c. Deduce from part b that det(A) = ±1.
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d. Show that in the coordinate system defined by w1, . . . , wn−1, A defines
a volume preserving transformation from ν⊥ to itself. Explain why this
shows that any two fundamental lattice parallelotopes in ν⊥ have the
same (n − 1)-dimensional volume.

Exercise 14. Fix polytopes P1, . . . , Pr in R
n such that P1 + · · ·+ Pr has

dimension n. Prove that for any positive reals λ1, . . . , λr, the polytopes
λ1P1+· · ·+λrPr all have the same inward pointing facet normals. Illustrate
your answer with a picture. Hint: If ν is an inward pointing facet normal
for P1 + · · ·+ Pr, then (P1 + · · ·+ Pr)ν has dimension n− 1. This implies
that (P1)ν + · · · + (Pr)ν has dimension n − 1 by Exercise 12. Now use
Exercise 10.

Exercise 15.
a. Using Definition (4.11), show that the mixed volume MVn(P1, . . . , Pn)

is invariant under all permutations of the Pi.
b. Show that the mixed volume is linear in each variable:

MVn(P1, . . . , λ Pi + µ P ′
i , . . . , Pn)

= λ MVn(P1, . . . , Pi, . . . , Pn) + µ MVn(P1, . . . , P
′
i , . . . , Pn)

for all i = 1, . . . , n, and all λ, µ ≥ 0 in R. Hint: When i = 1, consider
the polynomial representing Voln(λ P1 + λ′ P ′

1 + λ2P2 + · · · + λnPn)
and look at the coefficients of λλ2 · · · λn and λ′λ2 · · · λn.

Exercise 16. In this exercise, we will consider several additional proper-
ties of mixed volumes. Let P, Q be polytopes in R

n.
a. If λ, µ ≥ 0 are in R, show that Voln(λ P + µ Q) can be expressed in

terms of mixed volumes as follows:

1
n!

n∑
k=0

(
n

k

)
λkµn−kMVn(P, . . . , P, Q, . . . , Q),

where in the term corresponding to k, P is repeated k times and Q
is repeated n − k times in the mixed volume. Hint: By Exercise 7,
n! Voln(λ P + µ Q) = MVn(λ P + µ Q, . . . , λ P + µ Q).

b. Using part a, show that MVn(P, . . . , P, Q) (which appears in the term
containing λn−1µ in the formula of part a) can also be expressed as

(n − 1)! lim
µ→0+

Voln(P + µQ) − Voln(P )
µ

.

Exercise 17. In this exercise, we will use part b of Exercise 16 to prove
part e of Theorem (4.12). Replacing Q by a translate, we may assume that
the origin is one of the vertices of Q.
a. Show that the Minkowski sum P + µQ can be decomposed into: a sub-

polytope congruent to P , prisms over each facet F of P with height equal
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to µ ·aQ(ν) ≥ 0, where ν = νF , and other polyhedra with n-dimensional
volume bounded above by a constant times µ2.

b. From part a, deduce that

Voln(P + µQ) = Voln(P ) + µ
∑

ν

aQ(ν)Vol′n−1(Pν) + O(µ2).

c. Using part b of Exercise 16, show that

MVn(P, . . . , P, Q) = (n − 1)!
∑

ν

aQ(ν)Vol′n−1(Pν),

where the sum is over the primitive inward normals ν to the facets of P .
d. Now, to prove part e of Theorem (4.12), substitute

P = λ2P2 + · · · + λnPn

and Q = P1 into the formula of part c and use Exercises 7 and 15.

Exercise 18. Given polytopes P1, . . . , Pr in R
n, this exercise will show

that every coefficient of the polynomial representing

Voln(λ1P1 + · · · + λrPr)

is given by an appropriate mixed volume (up to a constant). We will use
the following notation. If α = (i1, . . . , ir) ∈ Z

r
≥0 satisfies |α| = n, then λα

is the usual monomial in λ1, . . . , λr, and let α! = i1!i2! · · · ir!. Also define

MVn(P ; α) = MVn(P1, . . . , P1, P2, . . . , P2, . . . , Pr, . . . , Pr),

where P1 appears i1 times, P2 appears i2 times, . . . , Pr appears ir times.
Then prove that

Voln(λ1P1 + · · · + λrPr) =
∑

|α|=n

1
α!

MVn(P ; α)λα.

Hint: Generalize what you did in part a of Exercise 16.

§5 Bernstein’s Theorem

In this section, we will study how the geometry of polytopes can be used
to predict the number of solutions of a general system of n polynomial (or
Laurent polynomial) equations fi(x1, . . . , xn) = 0. We will also indicate
how these results are related to a particular class of numerical root-finding
methods called homotopy continuation methods.

Throughout the section, we will use the following system of equations to
illustrate the main ideas:

(5.1)
0 = f1(x, y) = ax3y2 + bx + cy2 + d

0 = f2(x, y) = exy4 + fx3 + gy,
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where the coefficients a, . . . , g are in C. These are the same polynomials
used in §4. We want to know how many solutions these equations have.
We will begin by studying this question using the methods of Chapters 2
and 3, and then we will see that the mixed volume discussed in §4 has an
important role to play. This will lead naturally to Bernstein’s Theorem,
which is the main result of the section.

Let’s first proceed as in §1 of Chapter 2 to find the solutions of (5.1).
Since different choices of a, . . . , g could potentially lead to different num-
bers of solutions, we will initially treat the coefficients a, . . . , g in (5.1)
as symbolic parameters. This means working over the field C(a, . . . , g) of
rational functions in a, . . . , g. Using a lex Gröbner basis to eliminate y, it
is easy to check that the reduced Gröbner basis for the ideal 〈f1, f2〉 in the
ring C(a, . . . , g)[x, y] has the form

(5.2)
0 = y + p17(x)

0 = p18(x),

where p17(x) and p18(x) are polynomials in x alone, of degrees 17 and
18 respectively. The coefficients in p17 and p18 are rational functions in
a, . . . , g. Gröbner basis theory tells us that we can transform (5.2) back
into our original equations (5.1), and vice versa. These transformations will
also have coefficients in C(a, . . . , g).

Now assign numerical values in C to a, . . . , g. We claim that for “most”
choices of a, . . . , g ∈ C, (5.1) is still equivalent (5.2). This is because trans-
forming (5.1) into (5.2) and back involves a finite number of elements of
C(a, . . . , g). If we pick a, . . . , g ∈ C so that none of the denominators ap-
pearing in these elements vanish, then our transformations will still work
for the chosen numerical values of a, . . . , g. In fact, for most choices, (5.2)
remains a Gröbner basis for (5.1)—this is related to the idea of special-
ization of a Gröbner basis, which is discussed in Chapter 6, §3 of [CLO],
especially Exercises 7–9.

The equivalence of (5.1) and (5.2) for most choices of a, . . . , g ∈ C can
be stated more geometrically as follows. Let C

7 denote the affine space
consisting of all possible ways of choosing a, . . . , g ∈ C, and let P be
the product of all of the denominators appearing in the transformation of
(5.1) to (5.2) and back. Note that P (a, . . . , g) �= 0 implies that all of the
denominators are nonvanishing. Thus, (5.1) is equivalent to (5.2) for all
coefficients (a, . . . , g) ∈ C

7 such that P (a, . . . , g) �= 0. As defined in §5
of Chapter 3, this means that the two systems of equations are equivalent
generically . We will make frequent use of the term “generic” in this section.

Exercise 1. Consider the equations (5.1) with symbolic coefficients.
a. Using Maple or another computer algebra system, compute the exact

form of the Gröbner basis (5.2) and identify explicitly a polynomial P
such that if P (a, . . . , g) �= 0, then (5.1) is equivalent to a system of the
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form (5.2). Hint: One can transform (5.1) into (5.2) using the division
algorithm. Going the other way is more difficult. The Maple package
described in the section on Maple in Appendix D of [CLO] can be used
for this purpose.

b. Show that there is another polynomial P ′ such that if P ′(a, . . . , g) �= 0,
then the solutions lie in (C∗)2, where as usual C

∗ = C \ {0}.

Since (5.2) clearly has at most 18 distinct solutions in C
2, the same is true

generically for (5.1). Exercise 8 will show that for generic (a, . . . , g), p18
has distinct solutions, so that (5.1) has precisely 18 solutions in the generic
case. Then, using part b of Exercise 1, we conclude that generically, (5.1)
has 18 solutions, all of which lie in (C∗)2. This will be useful below.

We next turn to §5 of Chapter 3, where we learned about Bézout’s The-
orem and solving equations via resultants. Since the polynomials f1 and f2
have total degree 5, Bézout’s Theorem predicts that (5.1) should have at
most 5 · 5 = 25 solutions in P

2. If we homogenize these equations using a
third variable z, we get

0 = F1(x, y) = ax3y2 + bxz4 + cy2z3 + dz5

0 = f2(x, y) = exy4 + fx3z2 + gyz4.

Here, solutions come in two flavors: affine solutions, which are the solutions
of (5.1), and solutions “at∞”, which have z = 0. Assuming ae �= 0 (which
holds generically), it is easy to see that the solutions at ∞ are (0, 1, 0) and
(1, 0, 0). This, combined with Bézout’s Theorem, tells us that (5.1) has at
most 23 solutions in C

2.
Why do we get 23 instead of 18, which is the actual number? One way to

resolve this discrepancy is to realize that the solutions (0, 1, 0) and (1, 0, 0)
at ∞ have multiplicities (in the sense of Chapter 4) bigger than 1. By
computing these multiplicities, one can prove that there are 18 solutions.
However, it is more important to realize that by Bézout’s Theorem, generic
equations f1 = f2 = 0 of total degree 5 in x, y have 25 solutions in C

2.
The key point is that the equations in (5.1) are not generic in this sense—a
typical polynomial f(x, y) of total degree 5 has 21 terms, while those in
(5.1) have far fewer. In the terminology of §2, we have sparse polynomials—
those with fixed Newton polytopes—and what we’re looking for is a sparse
Bézout’s Theorem. As we will see below, this is precisely what Bernstein’s
Theorem does for us.

At this point, the reader might be confused about our use of the word
“generic”. We just finished saying that the equations (5.1) aren’t generic,
yet in our discussion of Gröbner bases, we showed that generically, (5.1)
has 18 solutions. This awkwardness is resolved by observing that generic is
always relative to a particular set of Newton polytopes. To state this more
precisely, suppose we fix finite sets A1, . . . ,Al ⊂ Z

n. Each Ai gives the set
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L(Ai) of Laurent polynomials

fi =
∑

α∈Ai

ci,αxα.

Note that we can regard each L(Ai) as an affine space with the coefficients
ci,α as coordinates. Then we can define generic as follows.

(5.3) Definition. A property is said to hold generically for Laurent poly-
nomials (f1, . . . , fl) ∈ L(A1)×· · ·×L(Al) if there is a nonzero polynomial
in the coefficients of the fi such that the property holds for all f1, . . . , fl

for which the polynomial is nonvanishing.

This definition generalizes Definition (5.6) from Chapter 3. Also ob-
serve that by Exercise 10 of §1, the Newton polytope NP (fi) of a generic
fi ∈ L(Ai) satisfies NP (fi) = Conv(Ai). Thus we can speak of generic
polynomials with fixed Newton polytopes. In particular, for polynomials of
total degree 5, Bézout’s Theorem deals with generic relative to the Newton
polytope determined by all monomials xiyj with i + j ≤ 5, while for (5.1),
generic means relative to the Newton polytopes of f1 and f2. The difference
in Newton polytopes explains why there is no conflict between our various
uses of the term “generic”.

One also could ask if resultants can help solve (5.1). This was discussed
in §5 of Chapter 3, where we usually assumed our equations had no so-
lutions at ∞. Since (5.1) does have solutions at ∞, standard procedure
suggests making a random change of coordinates in (5.1). With high prob-
ability, this would make all of the solutions affine, but it would destroy
the sparseness of the equations. In fact, it should be clear that rather than
the classical multipolynomial resultants of Chapter 3, we want to use the
sparse resultants of §2 of this chapter. Actually, we need something slightly
more general, since §2 assumes that the Newton polytopes are all equal,
which is not the case for (5.1). In §6 we will learn about more general sparse
resultants which can be used to study (5.1).

The above discussion leads to the first main question of the section.
Suppose we have Laurent polynomials f1, . . . , fn ∈ C[x±1

1 , . . . , x±1
n ] such

that f1 = · · · = fn = 0 have finitely many solutions in (C∗)n. Then we
want to know if there is a way to predict an upper bound on the number
of solutions of f1 = · · · = fn = 0 in (C∗)n that is more refined than the
Bézout Theorem bound deg(f1) · deg(f2) · · · deg(fn). Ideally, we want a
bound that uses only information about the forms of the polynomials fi

themselves. In particular, we want to avoid computing Gröbner bases
and studying the ring A = C[x1, . . . , xn]/〈f1, . . . , fn〉 as in Chapter 2,
if possible.

To see how mixed volumes enter the picture, let P1 and P2 denote the
Newton polytopes of the polynomials f1, f2 in (5.1). Referring back to
equation (4.13) from the previous section, note that the mixed volume of
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these polytopes satisfies

MV2(P1, P2) = 18,

which agrees with the number of solutions of the system (5.1) for generic
choices of the coefficients. Surely this is no coincidence! As a further test,
consider instead two generic polynomials of total degree 5. Here, the New-
ton polytopes are both the simplex Q5 ⊂ R

2 described in Exercise 2 of §1,
which has volume Vol2(Q5) = 25/2 by Exercise 3 of that section. Using
Exercise 7 of §4, we conclude that

MV2(Q5, Q5) = 2 Vol2(Q5) = 25,

so that again, the mixed volume predicts the number of solutions.

Exercise 2. More generally, polynomials of total degrees d1, . . . , dn in
x1, . . . , xn have Newton polytopes given by the simplices Qd1 , . . . , Qdn

respectively. Use the properties of mixed volume from §4 to prove that

MVn(Qd1 , . . . , Qdn) = d1 · · · dn,

so that the general Bézout bound is the mixed volume of the appropriate
Newton polytopes.

The main result of this section is a theorem of Bernstein relating the
number of solutions to the mixed volume of the Newton polytopes of the
equations. A slightly unexpected fact is that the theorem predicts the num-
bers of solutions in (C∗)n rather than in C

n. We will explain why at the
end of the section.

(5.4) Theorem (Bernstein’s Theorem). Given Laurent polynomials
f1, . . . , fn over C with finitely many common zeroes in (C∗)n, let Pi =
NP(fi) be the Newton polytope of fi in R

n. Then the number of com-
mon zeroes of the fi in (C∗)n is bounded above by the mixed volume
MVn(P1, . . . , Pn). Moreover, for generic choices of the coefficients in the
fi, the number of common solutions is exactly MVn(P1, . . . , Pn).

Proof. We will sketch the main ideas in Bernstein’s proof, and indicate
how MVn(P1, . . . , Pn) solutions of a generic system can be found. However,
proving that this construction finds all the solutions of a generic system
in (C∗)n requires some additional machinery. Bernstein uses the theory
of Puiseux expansions of algebraic functions for this; a more geometric
understanding is obtained via the theory of projective toric varieties. We
will state the relevant facts here without proof. For this and other details
of the proof, we will refer the reader to [Ber] (references to other proofs
will be given below).

The proof is by induction on n. For n = 1, we have a single Laurent poly-
nomial f(x) = 0 in one variable. After multiplying by a suitable Laurent
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monomial xa, we obtain a polynomial equation

(5.5) 0 = f̂(x) = xaf(x) = cmxm + cm−1x
m−1 + · · · + c0,

where m ≥ 0. Multiplying by xa does not affect the solutions of f(x) = 0
in C

∗. By the Fundamental Theorem of Algebra, we see that both (5.5)
and the original equation f = 0 have m roots (counting multiplicity) in C

∗

provided cmc0 �= 0. Furthermore, as explained in Exercise 8 at the end of
the section, f̂ has distinct roots when c0, . . . , cm are generic. Thus, gener-
ically, f = 0 has m distinct roots in C

∗. However, the Newton polytope
P = NP(f) is a translate of NP(f̂), which is the interval [0, m] in R. By
Exercise 7 of §4, the mixed volume MV1(P ) equals the length of P , which
is m. This establishes the base case of the induction.

The induction step will use the geometry of the Minkowski sum P =
P1 + · · · + Pn. The basic idea is that for each primitive inward pointing
facet normal ν ∈ Z

n of P , we will deform the equations f1 = · · · = fn = 0
by varying the coefficients until some of them are zero. Using the induction
hypothesis, we will show that in the limit, the number of solutions of the
deformed equations is given by

(5.6) aP1(ν) MV ′
n−1((P2)ν , . . . , (Pn)ν),

where aP1(ν) is defined in (1.3) and MV ′
n−1((P2)ν , . . . , (Pn)ν) is the nor-

malized (n − 1)-dimensional mixed volume defined in Theorem (4.12). We
will also explain how each of these solutions contributes a solution to our
original system. Adding up these solutions over all facet normals ν of P
gives the sum

(5.7)
∑

ν

aP1(ν) MV ′
n−1((P2)ν , . . . , (Pn)ν) = MVn(P1, . . . , Pn),

where the equality follows from Theorem (4.12). To complete the induction
step, we would need to show that the total number of solutions of the
original system in (C∗)n is generically equal to, and in any case no larger
than, the sum given by (5.7). The proof is beyond the scope of this book,
so we will not do this. Instead, we will content ourselves with showing
explicitly how each facet normal ν of P gives a deformation of the equations
f1 = · · · = fn = 0 which in the limit has (5.6) as its generic number of
solutions.

To carry out this strategy, let ν ∈ Z
n be the primitive inward pointing

normal to a facet of P . As usual, the facet is denoted Pν , and we know
from §4 that

Pν = (P1)ν + · · · + (Pn)ν ,

where (Pi)ν is the face (not necessarily a facet) of the Newton polytope
Pi = NP(fi) determined by ν. By §1, (Pi)ν is the convex hull of those α
minimizing ν · α among the monomials xα from fi. In other words, if the
face (Pi)ν lies in the hyperplane m · ν = −aPi(ν), then for all exponents α
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of fi, we have

α · ν ≥ −aPi(ν),

with equality holding if and only if α ∈ (Pi)ν . This means that fi can be
written

(5.8) fi =
∑

ν·α=−aPi
(ν)

ci,αxα +
∑

ν·α>−aPi
(ν)

ci,αxα.

Before we can deform our equations, we first need to change f1 slightly.
If we multiply f1 by x−α for some α ∈ P1, then we may assume that there
is a nonzero constant term c1 in f1. This means 0 ∈ P1, so that aP1(ν) ≥ 0
by the above inequality. As noted in the base case, changing f1 in this way
affects neither the solutions of the system in (C∗)n nor the mixed volume
of the Newton polytopes.

We also need to introduce some new coordinates. In Exercise 9 below,
you will show that since ν is primitive, there is an invertible n × n integer
matrix B such that ν is its first row and its inverse is also an integer matrix.
If we write B = (bij), then consider the coordinate change

(5.9) xj �→
n∏

i=1

y
−bij

i .

This maps xj to the Laurent monomial in the new variables y1, . . . , yn

whose exponents are the integers appearing in the jth column of the matrix
−B. (The minus sign is needed because ν is an inward pointing normal.)
Under this change of coordinates, it is easy to check that the Laurent
monomial xα maps to the Laurent monomial y−Bα, where Bα is the usual
matrix multiplication, regarding α as a column vector. See Exercise 10
below.

If we apply this coordinate change to fi, note that a monomial xα

appearing in the first sum of (5.8) becomes

y−Bα = y
aPi

(ν)
1 yβ2

2 · · · yβn
n

(for some integers β2, . . . , βn) since ν · α = −aPi(ν) and ν is the first row
of B. Similarly, a monomial xα in the second sum of (5.8) becomes

y−Bα = yβ1
1 yβ2

2 · · · yβn
n , β1 < aPi(ν).

It follows from (5.8) that fi transforms into a polynomial of the form

giν(y2, . . . , yn)yaPi
(ν)

1 +
∑

j<aPi
(ν)

gijν(y2, . . . , yn)yj
1.

Note also that the Newton polytope of giν(y2, . . . , yn) is equal to the image
under the linear mapping defined by the matrix B of the face (Pi)ν .
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Thus the equations f1 = · · · = fn = 0 map to the new system

(5.10)

0 = g1ν(y2, . . . , yn)yaP1 (ν)
1 +

∑
j<aP1 (ν)

g1jν(y2, . . . , yn)yj
1

0 = g2ν(y2, . . . , yn)yaP2 (ν)
1 +

∑
j<aP2 (ν)

g2jν(y2, . . . , yn)yj
1

...

0 = gnν(y2, . . . , yn)yaPn (ν)
1 +

∑
j<aPn (ν)

gnjν(y2, . . . , yn)yj
1

under the coordinate change xα �→ y−Bα. As above, the constant term of
f1 is denoted c1, and we now deform these equations by substituting

c1 �→ c1

taP1 (ν) , y1 �→ y1

t

in (5.10), where t is a new variable, and then multiplying the ith equation
by taPi

(ν). To see what this looks like, first suppose that aP1(ν) > 0. This
means that in the first equation of (5.10), c1 is the j = 0 term in the sum.
Then you can check that the deformation has the effect of leaving c1 and
the giν unchanged, and multiplying all other terms by positive powers of t.
It follows that the deformed equations can be written in the form

(5.11)

0 = g1ν(y2, . . . , yn)yaP1 (ν)
1 + c1 + O(t)

0 = g2ν(y2, . . . , yn)yaP2 (ν)
1 + O(t)

...

0 = gnν(y2, . . . , yn)yaPn (ν)
1 + O(t),

where the notation O(t) means a sum of terms each divisible by t.
When t = 1, the equations (5.11) coincide with (5.10). Also, from the

point of view of our original equations fi = 0, note that (5.11) corresponds
to multiplying each term in the second sum of (5.8) by a positive power of
t, with the exception of the constant term c1 of f1, which is unchanged.

Now, in (5.11), let t → 0 along a general path in C. This gives the
equations

0 = g1ν(y2, . . . , yn)yaP1 (ν)
1 + c1

0 = g2ν(y2, . . . , yn)yaP2 (ν)
1

...

0 = gnν(y2, . . . , yn)yaPn (ν)
1 ,
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which, in terms of solutions in (C∗)n, are equivalent to

(5.12)

0 = g1ν(y2, . . . , yn)yaP1 (ν)
1 + c1

0 = g2ν(y2, . . . , yn)

...

0 = gnν(y2, . . . , yn).

It can be shown that for a sufficiently generic original system of equations,
the equations g2ν = · · · = gnν = 0 in (5.12) are generic with respect to
B · (P2)ν , . . . , B · (Pn)ν . Hence, applying the induction hypothesis to the
last n − 1 equations in (5.12), we see that there are

MVn−1(B · (P2)ν , . . . , B · (Pn)ν)

possible solutions (y2, . . . , yn) ∈ (C∗)n−1 of these n − 1 equations. In
Exercise 11 below, you will show that

MVn−1(B · (P2)ν , . . . , B · (Pn)ν) = MV ′
n−1((P2)ν , . . . , (Pn)ν),

where MV ′
n−1 is the normalized mixed volume from Theorem (4.12).

For each (y2, . . . , yn) solving the last n − 1 equations in (5.12), there
are aP1(ν) possible values for y1 ∈ C

∗ provided g1ν(y2, . . . , yn) �= 0 and
c1 �= 0. This is true generically (we omit the proof), so that the total
number of solutions of (5.12) is

aP1(ν) MV ′
n−1((P2)ν , . . . , (Pn)ν),

which agrees with (5.6).
The next step is to prove that for each solution (y1, . . . , yn) of (5.12), one

can find parametrized solutions (y1(t), . . . , yn(t)) of the deformed equations
(5.11) satisfying (y1(0), . . . , yn(0)) = (y1, . . . , yn). This step involves some
concepts we haven’t discussed (the functions yi(t) are not polynomials in
t), so we will not go into the details here, though the discussion following
the proof will shed some light on what is involved.

Once we have the parametrized solutions (y1(t), . . . , yn(t)), we can follow
them back to t = 1 to get solutions (y1(1), . . . , yn(1)) of (5.10). Since
the inverse of the matrix B has integer entries, each of these solutions
(y1(1), . . . , yn(1)) can be converted back to a unique (x1, . . . , xn) using
the inverse of (5.9) (see Exercise 10 below). It follows that the equations
(5.12) give rise to (5.6) many solutions of our original equations.

This takes care of the case when aP1(ν) > 0. Since we arranged f1 so
that aP1(ν) ≥ 0, we still need to consider what happens when aP1(ν) = 0.
Here, c1 lies in the first sum of (5.8) for f1, so that under our coordinate
change, it becomes the constant term of g1ν . This means that instead of
(5.11), the first deformed equation can be written as

0 = g1ν(y2, . . . , yn) + O(t)
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since aP1(ν) = 0 and c1 appears in g1ν . Combined with the deformed
equations from (5.11) for 2 ≤ i ≤ n, the limit as t → 0 gives the equations

0 = giν(y2, . . . , yn)yaPi
(ν)

1 , 1 ≤ i ≤ n.

As before, the (C∗)n solutions are the same as the solutions of the equations

0 = giν(y2, . . . , yn), 1 ≤ i ≤ n.

However, one can show that g1ν is generic and hence doesn’t vanish at the
solutions of g2ν = · · · = gnν = 0. This means that generically, the t → 0
limit of the deformed system has no solutions, which agrees with (5.6).

We conclude that each facet contributes (5.6) many solutions to our
original equations, and adding these up as in (5.7), we get the mixed volume
MVn(P1, . . . , Pn). This completes our sketch of the proof.

In addition to Bernstein’s original paper [Ber], there are closely related
papers by Kushnirenko [Kus] and Khovanskii [Kho]. For this reason, the
mixed volume bound MVn(P1, . . . , Pn) on the number of solutions given in
Theorem (5.4) is sometimes called the BKK bound . A geometric interpre-
tation of the BKK bound in the context of toric varieties is given in [Ful]
and [GKZ], and a more refined version can be found in [Roj3]. Also, [HuS1]
and [Roj1] study the genericity conditions needed to ensure that exactly
MVn(P1, . . . , Pn) different solutions exist in (C∗)n. These papers use a
variety of methods, including sparse elimination theory and toric varieties.

The proof we sketched for the BKK bound uses the formula∑
ν

aP1(ν) ·MV ′
n−1((P2)ν , . . . , (Pn)ν) = MVn(P1, . . . , Pn)

from Theorem (4.12). If you look back at the statement of this theorem in
§4, you’ll see that the sum is actually taken over all facet normals ν such
that (P2)ν , . . . , (Pn)ν all have dimension at least one. This restriction on
ν relates nicely to the proof of the BKK bound as follows.

Exercise 3. In the proof of Theorem (5.4), we obtained the system (5.10)
of transformed equations. Suppose that for some i between 2 and n, (Pi)ν

has dimension zero. Then show that in (5.10), the corresponding giν consists
of a single term, and conclude that in the limit (5.12) of the deformed
equations, the last n − 1 equations have no solutions generically.

Exercise 4. Consider the equations f1 = f2 = 0 from (5.1). In this
exercise, you will explicitly construct the coordinate changes used in the
proof of Bernstein’s theorem.
a. Use the previous exercise to show that in this case, the vectors ν that

must be considered are all among the facet normals of the polytope
P2 = NP (f2). These normals, denoted νF , νG and νH, were computed
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in Exercise 5 of §4 and in the discussion preceeding that exercise. Also,
the mixed volume MV2(P1, P2) = 18 was computed in (4.13).

b. Show that aP1(νF ) = 0. Hence the term from (5.7) with ν = νF is zero.
c. For ν = νG , show that

B =
(−2 −1

1 0

)
has ν as first row. Also show that B−1 has integer entries.

d. Apply the corresponding change of variables

x �→ z2w−1, y �→ z

to (5.1). Note that we are calling the “old” variables x, y and the “new”
ones z, w rather than using subscripts. In particular, z plays the role of
the variable y1 used in the proof.

e. After substituting d �→ d/t and z �→ z/t, multiply by the appropriate
powers of t to obtain

0 = aw−3z8 + d + t6 · bw−1z2 + t6 · cz2

0 = (ew−1 + fw−3)z6 + t5 · gz.

f. Let t → 0 and count the number of solutions of the deformed system.
Show that this number equals aP1(νG )MV ′

1(G).
g. Finally, carry out steps c–f for the facet H of P2, and show we obtain

18 solutions.

Exercise 5. Use Bernstein’s theorem to deduce a statement about the
number of solutions in (C∗)n of a generic system of Laurent polynomial
equations f1 = · · · = fn = 0 when the Newton polytopes of the fi are all
equal . (This was the case considered by Khovanskii in [Kho].)

Exercise 6. Use Bernstein’s Theorem and Exercise 2 to obtain a version
of the usual Bézout theorem. Your version will be slightly different from
those discussed in §5 of Chapter 3 because of the (C∗)n restriction.

While the BKK bound tells us about the number of solutions in (C∗)n,
one could also ask about the number of solutions in C

n. For exam-
ple, for (5.1), we checked earlier that generically, these equations have
MV2(P1, P2) = 18 solutions in either C

2 or (C∗)2. However, some surprising
things happen if we change the equations slightly.

Exercise 7. Suppose that the equations of (5.1) are f1 = f2 = 0.
a. Show that generically, the equations f1 = x f2 = 0 have 18 solutions in

(C∗)2 and 20 solutions in C
2. Also show that

MV2(NP(f1), NP(x f2)) = 18.

Hint: Mixed volume is unaffected by translation.
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b. Show that generically, the equations y f1 = x f2 = 0 have 18 solutions
in (C∗)2 and 21 solutions in C

2. Also show that

MV2(NP(y f1), NP(x f2)) = 18.

This exercise illustrates that multiplying f1 and f2 by monomials changes
neither the solutions in (C∗)2 nor the mixed volume, while the number
of solutions in C

2 can change. There are also examples, not obtained by
multiplying by monomials, which have more solutions in C

n than in (C∗)n

(see Exercise 13 below). The consequence is that the mixed volume is really
tied to the solutions in (C∗)n. In general, finding the generic number of
solutions in C

n is a more subtle problem. For some recent progress in this
area, see [HuS2], [LW], [Roj1], [Roj3], and [RW]. An analysis of genericity
conditions for solutions in C

n appears in [Roj3] and an expository account
of recent work in this area (including proofs) can be found in [Roj5].

We will conclude this section with some remarks on how the BKK bound
can be combined with numerical methods to actually find the solutions of
equations like (5.1). First, recall that for (5.1), Bézout’s Theorem gives the
upper bound of 25 for the number of solutions, while the BKK bound of 18 is
smaller (and gives the exact number generically). For the task of computing
numerically all complex solutions of (5.1), the better upper bound 18 is
useful information to have, since once we have found 18 solutions, there
are no others, and whatever method we are using can terminate.

But what sort of numerical method should we use? Earlier, we discussed
methods based on Gröbner bases and resultants. Now we will say a few
words about numerical homotopy continuation methods, which give another
approach to practical polynomial equation solving. The method we will
sketch is especially useful for systems whose coefficients are known only in
some finite precision approximations, or whose coefficients vary widely in
size. Our presentation follows [VVC].

We begin with a point we did not address in the proof of Theorem (5.4):
exactly how do we extend a solution (y1, . . . , yn) of (5.12) to a parametric
solution (y1(t), . . . , yn(t)) of the deformed equations (5.11)? In general, the
problem is to “track” solutions of systems of equations such as (5.11) where
the coefficients depend on a parameter t, and the solutions are thought of
as functions of t. General methods for doing this were developed by numer-
ical analysts independently, at about the same time as the BKK bound.
See [AG] and [Dre] for general discussion of these homotopy continuation
methods. The idea is the following. For brevity, we will write a system of
equations

f1(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0

more compactly as f(x) = 0. To solve f(x) = 0, we start with a second
system g(x) = 0 whose solutions are known in advance. In some versions
of this approach, g(x) might have a simpler form than f(x). In others, as
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we will do below, one takes a known system which we expect has the same
number of solutions as f(x) = 0.

Then we consider the continuous family of systems

(5.13) 0 = h(x, t) = c(1 − t)g(x) + tf(x),

depending on a parameter t, where c ∈ C is some constant which is chosen
generically to avoid possible bad special behavior.

When t = 0, we get the known system g(x) = 0 (up to a constant).
Indeed, g(x) = 0 is often called the start system and (5.13) is called a
homotopy or continuation system. As t changes continuously from 0 to 1
along the real line (or more generally along a path in the complex plane),
suppose the rank of the Jacobian matrix of h(x, t) with respect to x:

J(x, t) =
( ∂hi

∂xj
(x, t)

)
is n for all values of t. Then, by the Implicit Function Theorem, if x0 is a
solution of g(x) = 0, we obtain a solution curve x(t) with x(0) = x0 that
is parametrized by algebraic functions of t. The goal is to determine the
values of x(t) at t = 1, since these will yield the solutions of the system
f(x) = 0 we are interested in.

To find these parametrized solutions, we proceed as follows. Since we
want h(x(t), t) to be identically zero as a function of t, its derivative
d
dt h(x(t), t) should also vanish identically. By the multivariable chain rule,
we see that the solution functions x(t) satisfy

0 =
d

dt
h(x(t), t) = J(x(t), t)

dx(t)
dt

+
∂h

∂t
(x(t), t),

which gives a system of ordinary differential equations (ODEs):

J(x(t), t)
dx(t)

dt
= − ∂h

∂t
(x(t), t)

for the solution functions x(t). Since we also know the initial value x(0) =
x0, one possible approach is to use the well-developed theory of numerical
methods for ODE initial value problems to construct approximate solu-
tions, continuing this process until approximations to the solution x(1) are
obtained.

Alternatively, we could apply an iterative numerical root-finding method
(such as the Newton-Raphson method) to solve (5.13). The idea is to take
a known solution of (5.13) for t = 0 and propagate it in steps of size ∆t
until t = 1. Thus, if we start with a solution x0 = x(0) for t = 0, we can
use it as the initial guess for solving

h(x(∆t), ∆t) = 0
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using our given numerical method. Then, once we have x(∆t), we use it as
the initial guess for solving

h(x(2∆t), 2∆t) = 0

by our chosen method. We continue in this way until we have solved
h(x(1), 1) = 0, which will give the desired solution. This method works
because x(t) is a continuous function of t, so that at the step with
t = (k + 1)∆t, we will generally have fairly good estimates for initial
points from the results of the previous step (i.e., for t = k∆t), provided ∆t
is sufficiently small.

When homotopy continuation methods were first developed, the best
commonly known bound on the number of expected solutions was the
Bézout theorem bound. A common choice for g(x) was a random dense
system with equations of the same total degrees as f(x). But many poly-
nomial systems (for instance (5.1)) have fewer solutions than general dense
systems of the same total degrees! When this is true, some of the numer-
ically generated approximate solution paths diverge to infinity as t → 1.
This is because the start equations g(x) = 0 would typically have many
more solutions than the sparse system f(x) = 0. Much computational effort
can be wasted trying to track them accurately.

As a result, the more refined BKK bound is an important tool in ap-
plying homotopy continuation methods. Instead of a random dense start
system g(x) = 0, a much better choice in many cases is a randomly cho-
sen start system for which the gi have the same Newton polytopes as the
corresponding fi:

NP(gi) = NP(fi).

Of course, the solutions of g(x) = 0 must be determined as well. Unless
solutions of some specific system with precisely these Newton polytopes
is known, some work must be done to solve the start system before
the homotopy continuation method can be applied. For this, the au-
thors of [VVC] propose adapting the deformations used in the proof of
Bernstein’s theorem, and applying a continuation method again to de-
termine the solutions of g(x) = 0. A closely related method, described
in [HuS1] and [VGC], uses the mixed subdivisions to be defined in §6.
Also, some interesting numerical issues are addressed in [HV]. Some other
recent papers on this subject include [DKK], [Li], and [Ver2]. The soft-
ware PHCpack described in [Ver1] solves systems of equations using the
polynomial homotopy continuation method described here. This package is
available at http://www2.math.uic.edu/~jan/PHCpack/phcpack.html.
Other software for polynomial homotopies is described in [Li].

The geometry of polytopes provides powerful tools for understanding
sparse systems of polynomial equations. The mixed volume is an efficient
bound for the number of solutions, and homotopy continuation methods
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give practical methods for finding the solutions. This is an active area of
research, and further progress is likely in the future.

ADDITIONAL EXERCISES FOR §5

Exercise 8. If f ∈ C[x] is a polynomial of degree n, its discriminant
Disc(f) is defined to be the resultant

Disc(f) = Resn,n−1(f, f ′),

where f ′ is the derivative of f . One can show that Disc(f) �= 0 if and only
if f has no multiple roots (see Exercises 7 and 8 of Chapter 3, §5 of [CLO]).
a. Show that the generic polynomial f ∈ C[x] has no multiple roots. Hint:

It suffices to show that the discriminant is a nonzero polynomial in the
coefficients of f . Prove this by writing down an explicit polynomial of
degree n which has distinct roots.

b. Now let p18 ∈ C(a, . . . , g)[x] be the polynomial from (5.2). To show that
p18 has no multiple roots generically, we need to show that Disc(p18) is
nonzero as a rational function of a, . . . , g. Computing this discriminant
would be unpleasant since the coefficients of p18 are so complicated. So
instead, take p18 and make a random choice of a, . . . , g. This will give a
polynomial in C[x]. Show that the discriminant is nonzero and conclude
that p18 has no multiple roots for generic a, . . . , g.

Exercise 9. Let ν ∈ Z
n be a primitive vector (thus ν �= 0 and the entries

of ν have no common factor > 1). Our goal is to find an integer n×n matrix
with integer inverse and ν as its first row. For the rest of the exercise, we
will regard ν as a column vector. Hence it suffices to find an integer n × n
matrix with integer inverse and ν as its first column.
a. Explain why it suffices to find an integer matrix A with integer inverse

such that Aν = �e1, where �e1 = (1, 0, . . . , 0)T is the usual standard
basis vector. Hint: Multiply by A−1.

b. An integer row operation consists of a row operation of the following
three types: switching two rows, adding an integer multiple of a row to
another row, and multiplying a row by ±1. Show that the elementary
matrices corresponding to integer row operations are integer matrices
with integer inverses.

c. Using parts a and b, explain why it suffices to reduce ν to �e1 using
integer row operations.

d. Using integer row operations, show that ν can be transformed to a vector
(b1, . . . , bn)T where b1 > 0 and b1 ≤ bi for all i with bi �= 0.

e. With (b1, . . . , bn)T as in the previous step, use integer row operations
to subtract multiples of b1 from one of the nonzero entries bi, i > 1,
until you get either 0 or something positive and smaller than b1.
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f. By repeatedly applying steps d and e, conclude that we can integer row
reduce ν to a positive multiple of �e1.

g. Finally, show that ν being primitive implies that the previous step gives
�e1 exactly. Hint: Using earlier parts of the exercise, show that we have
Aν = d�e1, where A has an integer inverse. Then use A−1 to conclude
that d divides every entry of ν.

Exercise 10.
a. Under the coordinate change (5.9), show that the Laurent monomial xα,

α ∈ Z
n, maps to the Laurent monomial y−Bα, where Bα is the matrix

product.
b. Show that (5.9) actually induces a one-to-one correspondence between

Laurent monomials in x and Laurent monomials in y.
c. Show that (5.9) defines a one-to-one, onto mapping from (C∗)n to itself.

Also explain how −B−1 gives the inverse mapping.

Exercise 11. Show that

MVn−1(B · (P2)ν , . . . , B · (Pn)ν) = MV ′
n−1((P2)ν , . . . , (Pn)ν),

where the notation is as in the proof of Bernstein’s Theorem.

Exercise 12. Consider the following system of three equations in three
unknowns:

0 = a1xy2z + b1x
4 + c1y + d1z + e1

0 = a2xyz2 + b2y
3 + c2

0 = a3x
3 + b3y

2 + c3z.

What is the BKK bound for the generic number of solutions in (C∗)3?

Exercise 13. Show that generically, the equations (taken from [RW])

0 = ax2y + bxy2 + cx + dy

0 = ex2y + fxy2 + gx + hy

have 4 solutions in (C∗)2 and 5 solutions in C
2.

§6 Computing Resultants and Solving Equations

The sparse resultant ResA(f1, . . . , fn) introduced in §2 requires that the
Laurent polynomials f1, . . . , fn be built from monomials using the same
set A of exponents. In this section, we will discuss what happens when we
allow each fi to involve different monomials. This will lead to the mixed
sparse resultant . We also have some unfinished business from §2, namely the
problem of computing sparse resultants. For this purpose, we will introduce
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the notion of a mixed subdivision. These will enable us not only to compute
sparse resultants but also to find mixed volumes and to solve equations
using the methods of Chapter 3.

We begin with a discussion of the mixed sparse resultant. Fix n+1 finite
sets A0, . . . ,An ⊂ Z

n and consider n + 1 Laurent polynomials fi ∈ L(Ai).
The rough idea is that the resultant

ResA0,...,An(f0, . . . , fn)

will measure whether or not the n + 1 equations in n variables

(6.1) f0(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0

have a solution. To make this precise, we proceed as in §2 and let

Z(A0, . . . ,An) ⊂ L(A0) × · · · × L(An)

be the Zariski closure of the set of all (f0, . . . , fn) for which (6.1) has a
solution in (C∗)n.

(6.2) Theorem. Assume that Qi = Conv(Ai) is an n-dimensional poly-
tope for i = 0, . . . , n. Then there is an irreducible polynomial ResA0,...,An

in the coefficients of the fi such that

(f0, . . . , fn) ∈ Z(A0, . . . ,An) ⇐⇒ ResA0,...,An(f0, . . . , fn) = 0.

In particular, if (6.1) has a solution (t1, . . . , tn) ∈ (C∗)n, then

ResA0,...,An(f0, . . . , fn) = 0.

This theorem is proved in Chapter 8 of [GKZ]. Note that the mixed sparse
resultant includes all of the resultants considered so far. More precisely, the
(unmixed) sparse resultant from §2 is

ResA(f0, . . . , fn) = ResA,...,A(f0, . . . , fn),

and the multipolynomial resultant studied in Chapter 3 is

Resd0,...,dn(F0, . . . , Fn) = ResA0,...,An(f0, . . . , fn),

where Ai = {m ∈ Z
n
≥0 : |m| ≤ di} and Fi is the homogenization of fi.

We can also determine the degree of the mixed sparse resultant. In §2, we
saw that the degree of ResA involves the volume of the Newton polytope
Conv(A). For the mixed resultant, this role is played by the mixed volume
from §4.

(6.3) Theorem. Assume that Qi = Conv(Ai) is n-dimensional for each
i = 0, . . . , n and that Z

n is generated by the differences of elements in
A0∪· · ·∪An. Then, if we fix i between 0 and n, ResA0,...,An is homogeneous
in the coefficients of fi of degree MVn(Q0, . . . , Qi−1, Qi+1, . . . , Qn). Thus

ResA0,...,An(f0, . . . , λfi, . . . , fn) =

λMVn(Q0,...,Qi−1,Qi+1,...,Qn)ResA0,...,An(f0, . . . , fn).
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A proof can be found in Chapter 8 of [GKZ]. Observe that this result
generalizes both Theorem (3.1) of Chapter 3 and Theorem (2.9) of this
chapter. There are also more general versions of Theorems (6.2) and (6.3)
which don’t require that the Qi be n-dimensional. See, for instance, [Stu3].
Exercise 9 at the end of the section gives a simple example of a sparse
resultant where all of the Qi have dimension < n.

We next discuss how to compute sparse resultants. Looking back at
Chapter 3, recall that there were wonderful formulas for the multipoly-
nomial case, but it general, computing these resultants was not easy.
The known formulas for multipolynomial resultants fall into three main
classes:

• Special cases where the resultant is given as a determinant. This includes
the resultants Resl,m and Res2,2,2 from §1 and §2 of Chapter 3.
• The general case where the resultant is given as the GCD of n + 1

determinants. This is Proposition (4.7) of Chapter 3.
• The general case where the resultant is given as the quotient of two

determinants. This is Theorem (4.9) of Chapter 3.

Do sparse resultants behave similarly? In §2 of this chapter, we gave
formulas for the Dixon resultant (see (2.12) and Exercise 10 of §2). Other
determinantal formulas for sparse resultants can be found in [CK1], [DE],
[Khe], [SZ], and [WZ], so that the first bullet definitely has sparse analogs.
We will see below that the second and third bullets also have sparse analogs.

We now introduce our main tool for computing sparse resultants. The
idea is to subdivide the Minkowski sum Q = Q0 + · · · + Qn in a special
way. We begin with what it means to subdivide a polytope.

(6.4) Definition. Let Q ⊂ R
n be a polytope of dimension n. Then a poly-

hedral subdivision of Q consists of finitely many n-dimensional polytopes
R1, . . . , Rs (the cells of the subdivision) such that Q = R1 ∪ · · · ∪ Rs and
for i �= j, the intersection Ri ∩ Rj is a face of both Ri and Rj .

For example, Fig. 7.7 below shows three ways of dividing a square into
smaller pieces. The first two are polyedral subdivisions, but the third isn’t
since R1 ∩ R2 is not a face of R1 (and R1 ∩ R3 has a similar problem).

We next define what it means for a polyhedral subdivision to be com-
patible with a Minkowski sum. Suppose that Q1, . . . , Qm are arbitrary
polytopes in R

n.

(6.5) Definition. Let Q = Q1 + · · · + Qm ⊂ R
n be a Minkowski sum

of polytopes, and assume that Q has dimension n. Then a subdivision
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R1

R2

R1

R2

R1

R2 R3

Figure 7.7. Subdividing the square

R1, . . . , Rs of Q is a mixed subdivision if each cell Ri can be written as a
Minkowski sum

Ri = F1 + · · · + Fm

where each Fi is a face of Qi and n = dim(F1) + · · · + dim(Fm). Fur-
thermore, if Rj = F ′

1 + · · · + F ′
m is another cell in the subdivision, then

Ri ∩ Rj = (F1 ∩ F ′
1) + · · · + (Fm ∩ F ′

m).

Exercise 1. Consider the polytopes

P1 = Conv((0, 0), (1, 0), (3, 2), (0, 2))

P2 = Conv((0, 1), (3, 0), (1, 4)).

The Minkowski sum P = P1 + P2 was illustrated in Fig. 7.6 of §4.
a. Prove that Fig. 7.8 on the next page gives a mixed subdivision of P .
b. Find a different mixed subdivision of P .

When we have a mixed subdivision, some of the cells making up the
subdivision are especially important.

(6.6) Definition. Suppose that R = F1+ · · ·+Fm is a cell in a mixed sub-
division of Q = Q1 + · · ·+Qm. Then R is called a mixed cell if dim(Fi) ≤ 1
for all i.

Exercise 2. Show that the mixed subdivision illustrated in Fig. 7.8 has
three mixed cells.

As an application of mixed subdivisions, we will give a surprisingly easy
formula for mixed volume. Given n polytopes Q1, . . . , Qn ⊂ R

n, we want
to compute the mixed volume MVn(Q1, . . . , Qn). We begin with a mixed
subdivision of Q = Q1 + · · · + Qn. In this situation, observe that every
mixed cell R is a sum of edges (because the faces Fi ⊂ Qi summing to R
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P = P1 + P2

1 2 3 4 5 6

1

2

3

4

5

6

R1

R2

R3

R4

R5

Figure 7.8. Mixed subdivision of a Minkowski sum

satisfy n = dim(F1) + · · · + dim(Fn) and dim(Fi) ≤ 1). Then the mixed
cells determine the mixed volume in the following simple manner.

(6.7) Theorem. Given polytopes Q1, . . . , Qn ⊂ R
n and a mixed subdi-

vision of Q = Q1 + · · · + Qn, the mixed volume MVn(Q1, . . . , Qn) is
computed by the formula

MVn(Q1, . . . , Qn) =
∑
R

Voln(R),

where the sum is over all mixed cells R of the mixed subdivision.

Proof. We will give the main idea of the proof and refer to [HuS1] for
the details. The key observation is that mixed subdivisions behave well
under scaling. More precisely, let R1, . . . , Rs be a mixed subdivision of
Q1+ · · ·+Qn, where each Ri is a Minkowski sum of faces Ri = F1+ · · ·+Fn

as in Definition (6.5). If λi > 0 for i = 1, . . . , n, then one can show that
λ1Q1 + · · · + λnQn has a mixed subdivision R′

1, . . . , R
′
s such that

R′
i = λ1F1 + · · · + λnFn.

It follows that

Voln(R′
i) = λ

dim(F1)
1 · · · λdim(Fn)

n Voln(Ri)

since n = dim(F1) + · · · + dim(Fn). Adding these up, we see that
Voln(λ1Q1 + · · · + λnQn) is a polynomial in the λi and the coefficient
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of λ1 · · · λn is the sum of the volumes of the cells Ri where each Fi has
dimension 1, that is, the mixed cells. By the definition of mixed volume,
MVn(Q1, . . . , Qn) is the sum of the volumes of the mixed cells.

Although Theorem (6.7) was known in the polytope community for some
time, it was first written up in [Bet] and discovered independently in [HuS1].
The latter includes formulas for computing the mixed volumes MVn(P, α)
from Exercise 18 of §4 in terms of certain nonmixed cells in the mixed
subdivision.

One feature which makes Theorem (6.7) useful is that the volume of a
mixed cell R is easy to compute. Namely, if we write R = F1 + · · · + Fn

as a sum of edges Fi and let �vi be the vector connecting the two vertices
of Fi, then one can show that the volume of the cell is

Voln(R) = | det(A)|,
where A is the n×n matrix whose columns are the edge vectors �v1, . . . , �vn.

Exercise 3. Use Theorem (6.7) and the above observation to compute the
mixed volume MV2(P1, P2), where P1 and P2 are as in Exercise 1.

Theorem (6.7) has some nice consequences. First, it shows that the mixed
volume is nonnegative, which is not obvious from the definition given in §4.
Second, since all mixed cells lie inside the Minkowski sum, we can relate
mixed volume to the volume of the Minkowski sum as follows:

MVn(Q1, . . . , Qn) ≤ Voln(Q1 + · · · + Qn).

By [Emi1], we have a lower bound for mixed volume as well:

MVn(Q1, . . . , Qn) ≥ n! n
√

Voln(Q1) · · ·Voln(Qn).

Mixed volume also satisfies the Alexandrov-Fenchel inequality , which is
discussed in [Ewa] and [Ful].

Exercise 4. Work out the inequalities displayed above for the polytopes
P1 and P2 from Exercise 1.

All of this is very nice, except for one small detail: how do we find mixed
subdivisions? Fortunately, they are fairly easy to compute in practice. We
will describe briefly how this is done. The first step is to “lift” the polytopes
Q1, . . . , Qn ⊂ R

n to R
n+1 by picking random vectors l1, . . . , ln ∈ Z

n and
considering the polytopes

Q̂i = {(v, li · v) : v ∈ Qi} ⊂ R
n × R = R

n+1.

If we regard li as the linear map R
n → R defined by v �→ li · v, then Q̂i is

the portion of the graph of li lying over Qi.
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Now consider the polytope Q̂ = Q̂1 + · · · + Q̂n ⊂ R
n+1. We say that a

facet F of Q̂ is a lower facet if its outward-pointing normal has a negative
tn+1-coordinate, where tn+1 is the last coordinate of R

n+1 = R
n×R. If the

li are sufficiently generic, one can show that the projection R
n+1 → R

n onto
the first n coordinates carries the lower facets F ⊂ Q̂ onto n-dimensional
polytopes R ⊂ Q = Q1 + · · ·+ Qn, and these polytopes form the cells of a
mixed subdivision of Q. The theoretical background for this construction is
given in [BS] and some nice pictures appear in [CE2] (see also [HuS1], [CE1]
and [EC]). Mixed subdivisions arising in this way are said to be coherent .

Exercise 5. Let Q1 = Conv((0, 0), (1, 0), (0, 1)) be the unit simplex in the
plane, and consider the vectors l1 = (0, 4) and l2 = (2, 1). This exercise
will apply the above strategy to create a coherent mixed subdivision of
Q = Q1 + Q2, where Q2 = Q1.
a. Write Q̂1 and Q̂2 as convex hulls of sets of three points, and then express

Q̂ = Q̂1 + Q̂2 as the convex hull of 9 points in R
3.

b. In R
3, plot the points of Q̂ found in part a. Note that such each point

lies over a point of Q.
c. Find the lower facets of Q̂ (there are 3 of them) and use this to determine

the corresponding coherent mixed subdivision of Q. Hint: When one
point lies above another, the higher point can’t lie in a lower facet.

d. Show that choosing l1 = (1, 1) and l2 = (2, 3) leads to a different
coherent mixed subdivision of Q.

It is known that computing mixed volume is #P-complete (see [Ped]).
Being #P-complete is similar to being NP-complete—the difference is
that NP-complete refers to a class of hard decision problems, while #P-
complete refers to certain hard enumerative problems. The complexity of
computing mixed volume is discussed carefully in [DGH], with some recent
developments appearing in [GuS].

There are several known algorithms for computing mixed volumes and
mixed subdivisions, some of which have been implemented in publicly
available software. In particular, software for computing mixed volumes
is available at:

• http://www-sop.inria.fr/galaad/logiciels/emiris/
soft geo.html, based on [EC] and described in [Emi3];
• http://www2.math.uic.edu/~jan/PHCpack/phcpack.html, described

in [Ver1]; and
• http://www.mth.msu.edu/~li/, based on [GL2] and [LL].

Further references for mixed volume are [GL1], [GLW], [VGC], and the
references mentioned in Section 6 of [EC].

We now return to our original question of computing the mixed sparse
resultant ResA0,...,An(f0, . . . , fn). In this situation, we have n+1 polytopes
Qi = Conv(Ai). Our goal is to show that a coherent mixed subdivision of
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the Minkowski sum Q = Q0 + · · ·+ Qn gives a systematic way to compute
the sparse resultant.

To see how this works, first recall what we did in Chapter 3. If we think
of the multipolynomial resultant Resd0,...,dn(F0, . . . , Fn) in homogeneous
terms, then the method presented in §4 of Chapter 3 goes as follows: we
fixed the set of monomials of total degree d0 + · · ·+ dn − n and wrote this
set as a disjoint union S0 ∪ · · · ∪ Sn. Then, for each monomial xα ∈ Si, we
multiplied Fi by xα/xdi

i . This led to the equations (4.1) of Chapter 3:

(xα/xdi
i )Fi = 0, xα ∈ Si, i = 1, . . . , n.

Expressing these polynomials in terms of the monomials in our set gave a
system of equations, and the determinant of the coefficient matrix was the
polynomial Dn in Definition (4.2) of Chapter 3.

By varying this construction slightly, we got determinants D0, . . . , Dn

with the following two properties:

• Each Di is a nonzero multiple of the resultant.
• For i fixed, the degree of Di as a polynomial in the coefficients of fi is

the same as the degree of the resultant in these coefficients.

(See §4 of Chapter 3, especially Exercise 7 and Proposition (4.6)). From
here, we easily proved

Resd0,...,dn = ±GCD(D0, . . . , Dn),

which is Proposition (4.7) of Chapter 3.
We will show that this entire framework goes through with little change

in the sparse case. Suppose we have exponent sets A0, . . . ,An, and as
above set Qi = Conv(Ai). Also assume that we have a coherent mixed
subdivision of Q = Q0 + · · · + Qn. The first step in computing the sparse
resultant is to fix a set of monomials or, equivalently, a set of exponents.
We will call this set E , and we define E to be

E = Z
n ∩ (Q + δ),

where δ ∈ R
n is a small vector chosen so that for every α ∈ E , there is a

cell R of the mixed subdivision such that α lies in the interior of R + δ.
Intuitively, we displace the subdivision slightly so that the lattice points lie
in the interiors of the cells.

The following exercise illustrates what this looks like in a particularly
simple case. We will refer to this exercise several times as we explain how
to compute ResA0,...,An .

Exercise 6. Consider the equations

0 = f0 = a1x + a2y + a3

0 = f1 = b1x + b2y + b3

0 = f2 = c1x
2 + c2y

2 + c3 + c4xy + c5x + c6y
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obtained by setting z = 1 in equations (2.9) from Chapter 3. If Ai is the
set of exponents appearing in fi, then ResA0,A1,A2 is the resultant Res1,1,2
considered in Proposition (2.10) of Chapter 3.
a. If we let l0 = (0, 4), l1 = (2, 1) and l2 = (5, 7), then show that we get the

coherent mixed subdivision of Q pictured in Fig. 7.9. This calculation
is not easy to do by hand—you should use a program such as qhull
(available from the Geometry Center at the University of Minnesota) to
compute convex hulls.

b. If δ = (ε, ε) for small ε > 0, show that E contains the six exponent
vectors indicated by dots in Fig. 7.9. We will think of E as consisting of
the monomials

x3y, x2y2, x2y, xy3, xy2, xy.

The reason for listing the monomials this way will soon become clear.
c. If δ = (−ε,−ε) for small ε > 0, show that E consists of 10 exponent

vectors. So different δ’s can give very different E ’s!

Now that we have E , our next task is to break it up into a disjoint union
S0 ∪ · · · ∪Sn. This is where the coherent mixed subdivision comes in. Each
cell R of the subdivision is a Minkowski sum

R = F0 + · · · + Fn,

where the Fi ⊂ Qi are faces such that n = dim(F0) + · · ·+ dim(Fn). Note
that at least one Fi must have dim(Fi) = 0, i.e., at least one Fi is a vertex.
Sometimes R can be written in the above form in several ways (we will
see an example below), but using the coherence of our mixed subdivision,
we get a canonical way of doing this. Namely, R is the projection of a

Q = Q0 + Q1 + Q2

1 2 3 4

1

2

3

4

R1

R2

R4

R5R6

R3

Q + δ

1 2 3 4

1

2

3

4

Figure 7.9. A coherent mixed subdivision and its shift
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lower facet F ⊂ Q̂, and one can show that F can be uniquely written as a
Minkowski sum

F = F̂0 + · · · + F̂n,

where F̂i is a face of Q̂i. If Fi ⊂ Qi is the projection of F̂i, then the
induced Minkowski sum R = F0 + · · · + Fn is called coherent . Now, for
each i between 0 and n, we define the subset Si ⊂ E as follows:

(6.8)
Si = {α ∈ E : if α ∈ R + δ and R = F0 + · · · + Fn is coherent,

then i is the smallest index such that Fi is a vertex}.
This gives a disjoint union E = S0∪· · ·∪Sn. Furthermore, if α ∈ Si, we let
v(α) denote the vertex Fi in (6.8), i.e., Fi = {v(α)}. Since Qi = Conv(Ai),
it follows that v(α) ∈ Ai.

Exercise 7. For the coherent subdivision of Exercise 6, show that

S0 = {x3y, x2y2, x2y}, S1 = {xy3, xy2}, S2 = {xy},
and that

xv(α) =

⎧⎨⎩ x for xα ∈ S0
y for xα ∈ S1
1 for xα ∈ S2.

(Here, we regard E and the Si as consisting of monomials rather than
exponent vectors.) Hint: The exponent vector α = (1, 3) of xy3 lies in
R2 + δ, where we are using the labelling of Fig. 7.9. If F is the lower facet
lying over R2, one computes (using a program such as qhull) that

F = edge of Q̂0 + (0, 1, 1) + edge of Q̂2

which implies that R2 = edge of Q0 +(0, 1)+ edge of Q2 is coherent. Thus
xy3 ∈ S1 and xv(α) = y, and the other monomials are handled similarly.

The following lemma will allow us to create the determinants used in
computing the sparse resultant.

(6.9) Lemma. If α ∈ Si, then (xα/xv(α))fi ∈ L(E).
Proof. If α ∈ R + δ = F0 + · · · + Fn + δ, then α = β0 + · · · + βn + δ,
where βj ∈ Fj ⊂ Qj for 0 ≤ j ≤ n. Since α ∈ Si, we know that Fi is the
vertex v(α), which implies βi = v(α). Thus

α = β0 + · · · + βi−1 + v(α) + βi+1 + · · · + βn + δ.

It follows that if β ∈ Ai, then the exponent vector of (xα/xv(α))xβ is

α − v(α) + β = β0 + · · · + βi−1 + β + βi+1 + · · · + βn + δ ⊂ Q + δ.

This vector is integral and hence lies in E = Z
n ∩ (Q + δ). Since fi is a

linear combination of the xβ for β ∈ Ai, the lemma follows.
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Now consider the equations

(6.10) (xα/xv(α))fi = 0, α ∈ Si.

We get one equation for each α, which means that we have |E| equations,
where |E| denotes the number of elements in E . By Lemma (6.9), each
(xα/xv(α))fi can be written as a linear combination of the monomials xβ

for β ∈ E . If we regard these monomials as “unknowns”, then (6.10) is a
system of |E| equations in |E| unknowns.

(6.11) Definition. Dn is the determinant of the coefficient matrix of the
|E| × |E| system of linear equations given by (6.10).

Notice the similarity with Definition (4.2) of Chapter 3. Here is a specific
example of what this determinant looks like.

Exercise 8. Consider the polynomials f0, f1, f2 from Exercise 6 and the
decomposition E = S0 ∪ S1 ∪ S2 from Exercise 7.
a. Show that the equations (6.10) are precisely the equations obtained

from (2.11) in Chapter 3 by setting z = 1 and multiplying each equa-
tion by xy. This explains why we wrote the elements of E in the order
x3y, x2y2, x2y, xy3, xy2, xy.

b. Use Proposition (2.10) of Chapter 3 to conclude that the determinant
D2 satisfies

D2 = ±a1Res1,1,2(f0, f1, f2).

This exercise suggests a close relation between Dn and ResA0,...,An . In
general, we have the following result.

(6.12) Theorem. The determinant Dn is a nonzero multiple of the mixed
sparse resultant ResA0,...,An . Furthermore, the degree of Dn as a polynomial
in the coefficients of fn is the mixed volume MVn(Q0, . . . , Qn−1).

Proof. If the equations f0 = · · · = fn = 0 have a solution in (C∗)n,
then the equations (6.10) have a nontrivial solution, and hence the coeffi-
cient matrix has zero determinant. It follows that Dn vanishes on the set
Z(A0, . . . ,An) from Theorem (6.2). Since the resultant is the irreducible
defining equation of this set, it must divide Dn. (This argument is similar
to one used frequently in Chapter 3.)

To show that Dn is nonzero, we must find f0, . . . , fn for which Dn �= 0.
For this purpose, introduce a new variable t and let

(6.13) fi =
∑

α∈Ai

tli·αxα,

where the li ∈ Z
n are the vectors used in the construction of the coherent

mixed subdivision of Q = Q0 + · · · + Qn. Section 4 of [CE1] shows that
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Dn �= 0 for this choice of the fi. We should also mention that without
coherence, it can happen that Dn is identically zero. See Exercise 10 at the
end of the section for an example.

Finally, we compute the degree of Dn as a polynomial in the coefficients
of fn. In (6.10), the coefficients of fn appear in the equations coming from
Sn, so that Dn has degree |Sn| in these coefficients. So we need only prove

(6.14) |Sn| = MVn(Q0, . . . , Qn−1).

If α ∈ Sn, the word smallest in (6.8) means that α ∈ R + δ, where R =
F0 + · · · + Fn and dim(Fi) > 0 for i = 0, . . . , n − 1. Since the dimensions
of the Fi sum to n, we must have dim(F0) = · · · = dim(Fn−1) = 1. Thus
R is a mixed cell with Fn as the unique vertex in the sum. Conversely, any
mixed cell of the subdivision must have exactly one Fi which is a vertex
(since the dim(Fi) ≤ 1 add up to n). Thus, if R is a mixed cell where Fn is
a vertex, then Z

n ∩ (R + δ) ⊂ Sn follows from (6.8). This gives the formula

|Sn| =
∑

Fn is a vertex

|Zn ∩ (R + δ)|,

where the sum is over all mixed cells R = F0 + · · ·+ Fn of the subdivision
of Q for which Fn is a vertex.

We now use two nice facts. First, the mixed cells R where Fn is a vertex
are translates of the mixed cells in a mixed subdivision of Q0 + · · ·+ Qn−1.
Furthermore, Lemma 5.3 of [Emi1] implies that all mixed cells in this
subdivision of Q0 + · · ·+Qn−1 appear in this way. Since translation doesn’t
affect volume, Theorem (6.7) then implies

MVn(Q0, . . . , Qn−1) =
∑

Fn is a vertex

Voln(R),

where we sum over the same mixed cells as before. The second nice fact is
that each of these cells R is a Minkowski sum of edges (up to translation
by the vertex Fn), so that by Section 5 of [CE1], the volume of R is the
number of lattice points in a generic small translation. This means

Voln(R) = |Zn ∩ (R + δ)|,
and (6.14) now follows immediately.

This shows that Dn has the desired properties. Furthermore, we get
other determinants D0, . . . , Dn−1 by changing how we choose the subsets
Si ⊂ E . For instance, if we replace smallest by largest in (6.8), then we get a
determinant D0 whose degree in the coefficients of f0 is MVn(Q1, . . . , Qn).
More generally, for each j between 0 and n, we can find a determinant
Dj which is a nonzero multiple of the resultant and whose degree in the
coefficients of fj is the mixed volume

MVn(Q1, . . . , Qj−1, Qj+1, . . . , Qn)
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(see Exercise 11 below). Using Theorem (6.3) of this section and the
argument of Proposition (4.7) of Chapter 3, we conclude that

ResA0,...,An(f0, . . . , fn) = ±GCD(D0, . . . , Dn).

As in Chapter 3, the GCD computation needs to be done for f0, . . . , fn

with symbolic coefficients.
Recently, D’Andrea showed that there is also a direct formula for the

resultant which doesn’t involve a GCD computation. Theorem (6.12) tells
us that Dn is the product of the resultant times an extraneous factor.
The main result of [D’An] states that the extraneous factor is the deter-
minant D′

n of a recursively computable submatrix of the matrix used to
compute Dn. This gives the formula

ResA0,...,An =
Dn

D′
n

,

which generalizes Macaulay’s formula for the dense resultant (Theorem
(4.9) of Chapter 3).

In practice, this method for computing the sparse resultant is not very
useful, mainly because the Dj tend to be enormous polynomials when the
fi have symbolic coefficients. But if we use numerical coefficients for the
fi, the GCD computation doesn’t make sense. Two methods for avoiding
this difficulty are explained in Section 5 of [CE1]. Fortunately, for many
purposes, it suffices to work with just one of the Dj (we will give an example
below), and Dj can be computed by the methods discussed at the end of
§4 of Chapter 3.

The matrices Dj are sometimes called Sylvester matrices since each en-
try is either 0 or a coefficient, just like Sylvester’s formula for the resultant
of two univariate polynomials (see (1.2) of Chapter 3). Methods for com-
puting these matrices and their variants are described in [EC], [CE1], and
[CE2], and software implementing the resulting algorithms for computing
resultants is available from:

• http://www.cs.unc.edu/~geom/MARS, described in [WEM];
• http://www-sop.inria.fr/galaad/logiciels/emiris/
soft alg.html, described in [Emi3]; and
• http://www-sop.inria.fr/galaad/logiciels/multires.html,

described in [Mou2].

In all of these methods, problems arise when the extraneous factor (i.e.,
the denominator in the resultant formula) vanishes. Methods for avoiding
these problems are discussed in [CE2], [D’AE], [Mou1], [Roj2], and [Roj4].

Sparse resultants can be also formulated using Bézout or Dixon matri-
ces. Here, the entries are more complicated combinations of the coefficients,
though the resulting matrices may be smaller. A survey of such matrices ap-
pears in [EmM], which includes many references. The paper [BU] has more
on Bézout matrices and the multires package mentioned above computes
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Bézout matrices (this package also computes the matrix M̃ of Theorem
(6.21)—see [Mou2] for examples). The Dixon formulation has been stud-
ied extensively, starting with [KSY], [KS1], and [KS2] and more recently
in [CK1] and [CK2]. Software packages related to the Dixon resultant
formulation are available at:

• http://www.cs.albany.edu/~artas/dixon/, related to [CK1] and
[CK2]; and
• http://www.bway.net/~lewis/home.html, based on the Fermat com-

puter algebra system.

It is also possible to mix Sylvester and Bézout matrices. See [CDS] for some
interesting resultant formulas of this type.

We will end this section with a brief discussion (omitting most proofs)
of how sparse resultants can be used to solve equations. The basic idea is
that given Laurent polynomials fi ∈ L(Ai), we want to solve the equations

(6.15) f1(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0.

If we assume that the fi are generic, then by Bernstein’s Theorem from §5,
the number of solutions in (C∗)n is the mixed volume MVn(Q1, . . . , Qn),
where Qi = Conv(Ai).

To solve (6.15), we can use sparse resultants in a variety of ways, similar
to what we did in the multipolynomial case studied in Chapter 3. We begin
with a sparse version of the u-resultant from §5 of Chapter 3. Let

f0 = u0 + u1x1 + · · · + unxn,

where u0, . . . , un are variables. The Newton polytope of f0 is Q0 =
Conv(A0), where A0 = {0,�e1, . . . ,�en} and �e1, . . . ,�en are the usual stan-
dard basis vectors. Then the u-resultant of f1, . . . , fn is the resultant
ResA0,...,An(f0, . . . , fn), which written out more fully is

ResA0,A1,...,An(u0 + u1x1 + · · · + unxn, f1, . . . , fn).

For f1, . . . , fn generic, one can show that there is a nonzero constant C
such that

(6.16) ResA0,...,An(f0, . . . , fn) = C
∏

p∈V(f1,...,fn)∩(C∗)n

f0(p).

This generalizes Theorem (5.8) of Chapter 3 and is proved using a sparse
analog (due to Pedersen and Sturmfels [PS2]) of Theorem (3.4) from
Chapter 3. If p = (a1, . . . , an) is a solution of (6.15) in (C∗)n, then

f0(p) = u0 + u1a1 + · · · + unan,

so that factoring the u-resultant gives the solutions of (6.15) in (C∗)n.
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In (6.16), generic means that the solutions all have multiplicity 1. If some
of the multiplicities are > 1, the methods of Chapter 4 can be adapted to
show that

ResA0,...,An(f0, . . . , fn) = C
∏

p∈V(f1,...,fn)∩(C∗)n

f0(p)m(p),

where m(p) is the multiplicity of p as defined in §2 of Chapter 4.
Many of the comments about the u-resultant from §5 of Chapter 3 carry

over without change to the sparse case. In particular, we saw in Chapter 3
that for many purposes, we can replace the sparse resultant with the deter-
minant D0. This is true in the sparse case, provided we use D0 as defined
in this section. Thus, (6.16) holds using D0 in place of the sparse resultant,
i.e., there is a constant C ′ such that

D0 = C ′ ∏
p∈V(f1,...,fn)∩(C∗)n

f0(p).

This formula is reasonable since D0, when regarded as a polynomial in the
coefficients u0, . . . , un of f0, has degree MVn(Q1, . . . , Qn), which is the
number of solutions of (6.15) in (C∗)n. There is a similar formula when
some of the solutions have multiplicities > 1.

We can also find solutions of (6.15) using the eigenvalue and eigenvector
techniques discussed in §6 of Chapter 3. To see how this works, we start
with the ring C[x±1

1 , . . . , x±1
n ] of all Laurent polynomials. The Laurent

polynomials in our equations (6.15) give the ideal

〈f1, . . . , fn〉 ⊂ C[x±1
1 , . . . , x±1

n ].

We want to find a basis for the quotient ring C[x±1
1 , . . . , x±1

n ]/〈f1, . . . , fn〉.
For this purpose, consider a coherent mixed subdivision of the Minkowski

sum Q1 + · · · + Qn. If we combine Theorem (6.7) and the proof of
Theorem (6.12), we see that if δ is generic, then

MVn(Q1, . . . , Qn) =
∑
R

|Zn ∩ (R + δ)|,

where the sum is over all mixed cells in the mixed subdivision. Thus the
set of exponents

Ê = {β ∈ Z
n : β ∈ R + δ for some mixed cell R}

has MVn(Q1, . . . , Qn) elements. This set gives the desired basis of our
quotient ring.

(6.17) Theorem. For the set Ê described above, the cosets [xβ ] for β ∈ Ê
form a basis of the quotient ring C[x±1

1 , . . . , x±1
n ]/〈f1, . . . , fn〉.

Proof. This was proved independently in [ER] and [PS1]. In the termi-
nology of [PS1], the cosets [xβ ] for β ∈ Ê form a mixed monomial basis
since they come from the mixed cells of a mixed subdivision.



372 Chapter 7. Polytopes, Resultants, and Equations

We will prove this in the following special case. Consider f0 = u0 +
u1x1 + · · · + unxn, and let A0 and Q0 be as above. Then pick a coherent
mixed subdivision of Q = Q0 + Q1 + · · · + Qn and let E = Z

n ∩ (Q + δ).
Also define Si ⊂ E using (6.8) with smallest replaced by largest . Using the
first “nice fact” used in the proof of Theorem (6.12), one can show that the
coherent mixed subdivision of Q induces a coherent mixed subdivision of
Q1 + · · · + Qn. We will show that the theorem holds for the set Ê coming
from this subdivision.

The first step in the proof is to show that

(6.18) α ∈ S0 ⇐⇒ α = v(α) + β for some v(α) ∈ A0 and β ∈ Ê .
This follows from the arguments used in the proof of Theorem (6.12). Now
let M0 be the coefficient matrix of the equations (6.10). These equations
begin with

(xα/xv(α))f0 = 0, α ∈ S0,

which, using (6.18), can be rewritten as

(6.19) xβf0 = 0, β ∈ Ê .
From here, we will follow the proof of Theorem (6.2) of Chapter 3. We

partition M0 so that the rows and columns of M0 corresponding to elements
of S0 lie in the upper left hand corner, so that

M0 =
(

M00 M01
M10 M11

)
.

By Lemma 4.4 of [Emi1], M11 is invertible for generic f1, . . . , fn since we
are working with a coherent mixed subdivision—the argument is similar to
showing D0 �= 0 in the proof of Theorem (6.12).

Now let Ê = {β1, . . . , βµ}, where µ = MVn(Q1, . . . , Qn). Then, for
generic f1, . . . , fn, we define the µ × µ matrix

(6.20) M̃ = M00 −M01M
−1
11 M10.

Also, for p ∈ V(f1, . . . , fn) ∩ (C∗)n, let pβ denote the column vector

pβ =

⎛⎜⎝ pβ1

...
pβµ

⎞⎟⎠ .

Similar to (6.6) in Chapter 3, one can prove

M̃ pβ = f0(p) pβ

because (6.19) gives the rows of M0 coming from S0.
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The final step is to show that the cosets [xβ1 ], . . . , [xβµ ] are linearly
independent. The argument is identical to what we did in Theorem (6.2)
of Chapter 2.

Using the mixed monomial basis, the next step is to find the matrix of
the multiplication map mf0 : A → A, where

A = C[x±1
1 , . . . , x±1

n ]/〈f1, . . . , fn〉
and mf0([g]) = [f0g] for [g] ∈ A. As in Chapter 3, this follows immediately
from the previous result.

(6.21) Theorem. Let fi ∈ L(Ai) be generic Laurent polynomials, and
let f0 = u0 + u1x1 + · · · + unxn. Using the basis from Theorem (6.17),
the matrix of the multiplication map mf0 : A → A defined above is the
transpose of the matrix

M̃ = M00 −M01M
−1
11 M10

from (6.20).

If we write M̃ in the form

M̃ = u0 I + u1 M̃1 + · · · + un M̃n,

where each M̃i has constant entries, then Theorem (6.21) implies that for
all i, (M̃i)T is the matrix of multiplication by xi. Thus, as in Chapter 3,
M̃ simultaneously computes the matrices of the multiplication maps by all
of the variables x1, . . . , xn.

Now that we have these multiplication maps, the methods mentioned
in Chapters 2 and 3 apply with little change. More detailed discussions
of how to solve equations using matrix methods and resultants, including
examples, can be found in [Emi1], [Emi2], [Emi3], [EmM], [ER], [Man1],
[Mou1], [Mou2], and [Roj4]. It is also possible to apply these methods to
study varieties of positive dimension. Here, a typical goal would be to find a
point in every irreducible component of the variety. Some references (which
employ a variety of approaches) are [ElM3], [KM], [Roj2], and [SVW].

We should mention that other techniques introduced in Chapter 3 can be
adapted to the sparse case. For example, the generalized characteristic poly-
nomial (GCP) from §6 of Chapter 3 can be generalized to the toric GCP
defined in [Roj4]. This is useful for dealing with the types of degeneracies
discussed in Chapter 3.

ADDITIONAL EXERCISES FOR §6

Exercise 9. Consider the following system of equations taken from [Stu3]:
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0 = f0 = ax + by

0 = f1 = cx + dy

0 = f2 = ex + fy + g.

a. Explain why the hypothesis of Theorem (6.2) is not satisfied. Hint: Look
at the Newton polytopes.

b. Show that the sparse resultant exists and is given by Res(f0, f1, f2) =
ad − bc.

Exercise 10. In Exercise 7, we defined the decomposition E = S0∪S1∪S2
using coherent Minkowski sums R = F0+F1+F2. This exercise will explore
what can go wrong if we don’t use coherent sums.
a. Exercise 7 gave the coherent Minkowski sum R2 = edge of Q0 +(0, 1)+

edge of Q2. Show that R2 = (0, 1)+edge of Q1 +edge of Q2 also holds.
b. If we use coherent Minkowski sums for Ri when i �= 2 and the non-

coherent one from part a when i = 2, show that (6.8) gives S0 =
{x3y, x2y2, x2y, xy3, xy2}, S1 = ∅ and S2 = {xy}.

c. If we compute the determinant D2 using S0, S1, S2 as in part b, show
that D2 does not involve the coefficients of f1 and conclude that D2 is
identically zero in this case. Hint: You don’t need explicit computations.
Argue instead that D2 is divisible by Res1,1,2.

Exercise 11. This exercise will discuss the determinant Dj for j < n.
The index j will be fixed throughout the exercise. Given E as usual, define
the subset Si ⊂ E to consist of all α ∈ E such that if α ∈ R + δ, where
R = F0 + · · · + Fn is coherent, then

i =
{

j if dim(Fk) > 0 ∀k �= j
min(k �= j : Fk is a vertex) otherwise.

By adapting the proof of Theorem (6.12), explain why this gives a de-
terminant Dj which is a nonzero multiple of the resultant and whose
degree as a polynomial in the coefficients of fj is the mixed volume
MVn(Q1, . . . , Qj−1, Qj+1, . . . , Qn).

Exercise 12. Prove that as polynomials with integer coefficients, we have

ResA0,...,An(f0, . . . , fn) = ±GCD(D0, . . . , Dn).

Hint: Since Dj and ResA0,...,An have the same degrees when regarded as
polynomials in the coefficients of fj , it is relatively easy to prove this over Q.
To prove that it is true over Z, it suffices to show that the coefficients of each
Dj are relatively prime. To prove this for j = n, consider the polynomials
fi defined in (6.13) and use the argument of Section 4 of [CE1] (or, for a
more detailed account, Section 5 of [CE2]) to show that Dn has a leading
coefficient 1 as a polynomial in t.
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Exercise 13. Compute the mixed sparse resultant of the polynomials

f0 = a1 + a2xy + a3x
2y + a4x

f1 = b1y + b2x
2y2 + b3x

2y + b4x

f2 = c1 + c2y + c3xy + c4x.

Hint: To obtain a coherent mixed subdivision, let l0 = (L, L2), l1 =
−(L2, 1) and l2 = (1,−L), where L is a sufficiently large positive inte-
ger. Also let δ = −(3/8, 1/8). The full details of this example, including
the explicit matrix giving D0, can be found in [CE1].

Exercise 14. In Definition (6.5), we require that a mixed subdivision of
Q1 + · · · + Qm satisfy the compatibility condition

Ri ∩ Rj = (F1 ∩ F ′
1) + · · · + (Fm ∩ F ′

m),

where Ri = F1 + · · · + Fm and Rj = F ′
1 + · · · + F ′

m are two cells in the
subdivision and Fi, F

′
i are faces of Qi. This condition is essential for the

scaling used in the proof of Theorem (6.7). To see why, consider the unit
square Q in the plane with vertices labeled v1, v2, v3, v4.
a. Show that Ri = vi + Q, 1 ≤ i ≤ 4, gives a polyhedral subdivision

of Q + Q which satisfies Definition (6.5) except for the compatibility
condition. Also show that if Theorem (6.7) applied to this subdivision,
then the mixed volume MV2(Q, Q) would be 0.

b. Show that the subdivision of part a does not scale. Hint: Consider
Q + λQ and R′

i = vi + λQ.
c. Find a mixed subdivision of Q + Q that satisfies all parts of Definition

(6.5) and draw a picture of Q + λQ to illustrate how the subdivision
scales.

This example is due to Lyle Ramshaw.




