
Chapter 4

Computation in Local Rings

Many questions in algebraic geometry involve a study of local properties of
varieties, that is, properties of a single point, or of a suitably small neigh-
borhood of a point. For example, in analyzing V(I) for a zero-dimensional
ideal I ⊂ k[x1, . . . , xn], even when k is algebraically closed, it some-
times happens that V(I) contains fewer distinct points than the dimension
d = dim k[x1, . . . , xn]/I. In this situation, thinking back to the conse-
quences of unique factorization for polynomials in one variable, it is natural
to ask whether there is an algebraic multiplicity that can be computed
locally at each point in V(I), with the property that the sum of the multi-
plicities is equal to d. Similarly in the study of singularities of varieties, one
major object of study is local invariants of singular points. These are used
to distinguish different types of singularities and study their local structure.
In §1 of this chapter, we will introduce the algebra of local rings which is
useful for both these types of questions. Multiplicities and some invariants
of singularities will be introduced in §2. In §3 and §4, we will develop al-
gorithmic techniques for computation in local rings parallel to the theory
of Gröbner bases in polynomial rings. Applications of these techniques are
given in §5.

In this chapter, we will often assume that k is an algebraically closed
field containing Q. The results of Chapters 2 and 3 are valid for such fields.

§1 Local Rings

One way to study properties of a variety V is to study functions on the
variety. The elements of the ring k[x1, . . . , xn]/I(V ) can be thought of as
the polynomial functions on V . Near a particular point p ∈ V we can also
consider rational functions defined at the point, power series convergent
at the point, or even formal series centered at the point. Considering the
collections of each of these types of functions in turn leads us to new rings
that strictly contain the ring of polynomials. In a sense which we shall make
precise as we go along, consideration of these larger rings corresponds to
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138 Chapter 4. Computation in Local Rings

looking at smaller neighborhoods of points. We will begin with the following
example. Let V = kn, and let p = (0, . . . , 0) be the origin. The single
point set {p} is a variety, and I({p}) = 〈x1, . . . , xn〉 ⊂ k[x1, . . . , xn].
Furthermore, a rational function f/g has a well-defined value at p provided
g(p) �= 0.

(1.1) Definition. We denote by k[x1, . . . , xn]〈x1,...,xn〉 the collection of all
rational functions f/g of x1, . . . , xn with g(p) �= 0, where p = (0, . . . , 0).

The main properties of k[x1, . . . , xn]〈x1,...,xn〉 are as follows.

(1.2) Proposition. Let R = k[x1, . . . , xn]〈x1,...,xn〉. Then
a. R is a subring of the field of rational functions k(x1, . . . , xn) containing

k[x1, . . . , xn].
b. Let M = 〈x1, . . . , xn〉 ⊂ R (the ideal generated by x1, . . . , xn in R).

Then every element in R \ M is a unit in R (i.e., has a multiplicative
inverse in R).

c. M is a maximal ideal in R, and R has no other maximal ideals.

Proof. As above, let p = (0, . . . , 0). Part a follows easily since R is closed
under sums and products in k(x1, . . . , xn). For instance, if f1/g1 and f2/g2
are two rational functions with g1(p), g2(p) �= 0, then

f1/g1 + f2/g2 = (f1g2 + f2g1)/(g1g2).

Since g1(p) �= 0 and g2(p) �= 0, g1(p) · g2(p) �= 0. Hence the sum is an
element of R. A similar argument shows that the product (f1/g1) · (f2/g2)
is in R. Finally, since f = f/1 is in R for all f ∈ k[x1, . . . , xn], the
polynomial ring is contained in R.

For part b, we will use the fact that the elements in M = 〈x1, . . . , xn〉
are exactly the rational functions f/g ∈ R such that f(p) = 0. Hence if
f/g /∈ M , then f(p) �= 0 and g(p) �= 0, and g/f is a multiplicative inverse
for f/g in R.

Finally, for part c, if N �= M is an ideal in R with M ⊂ N ⊂ R, then
N must contain an element f/g in the complement of M . By part b, f/g
is a unit in R, so 1 = (f/g)(g/f) ∈ N , and hence N = R. Therefore M
is maximal. M is the only maximal ideal in R, because it also follows from
part b that every proper ideal I ⊂ R is contained in M .

Exercise 1. In this exercise you will show that if p = (a1, . . . , an) ∈ kn

is any point and

R = {f/g : f, g ∈ k[x1, . . . , xn], g(p) �= 0},
then we have the following statements parallel to Proposition (1.2).
a. R is a subring of the field of rational functions k(x1, . . . , xn).
b. Let M be the ideal generated by x1 − a1, . . . , xn − an in R. Then every

element in R \ M is a unit in R (i.e., has a multiplicative inverse in R).
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c. M is a maximal ideal in R, and R has no other maximal ideals.

An alternative notation for the ring R in Exercise 1 is

R = k[x1, . . . , xn]〈x1−a1,...,xn−an〉,

where 〈x1 − a1, . . . , xn − an〉 is the ideal I({p}) in k[x1, . . . , xn], and in R
we allow denominators that are not elements of this ideal.

In the following discussion, the term ring will always mean a commuta-
tive ring with identity. Every ring has maximal ideals. As we will see, the
rings that give local information are the ones with the property given by
part c of Proposition (1.2) above.

(1.3) Definition. A local ring is a ring that has exactly one maximal
ideal.

The idea of the argument used in the proof of part c of the proposition
also gives one general criterion for a ring to be a local ring.

(1.4) Proposition. A ring R with a proper ideal M ⊂ R is a local ring
if every element of R \ M is a unit in R.

Proof. If every element of R \ M is a unit in R, the unique maximal
ideal is M . Exercise 5 below asks you to finish the proof.

Definition (1.1) above is actually a special case of a general procedure
called localization that can be used to construct many additional examples
of local rings. See Exercise 8 below. An even more general construction
of rings of fractions is given in Exercise 9. We will need to use that
construction in §3 and §4.

We also obtain important examples of local rings by considering functions
more general than rational functions. One way such functions arise is as
follows. When studying a curve or, more generally, a variety near a point,
one often tries to parametrize the variety near the point. For example, the
curve

x2 + 2x + y2 = 0

is a circle of radius 1 centered at the point (−1, 0). To study this curve
near the origin, we might use parametrizations of several different types.

Exercise 2. Show that one parametrization of the circle near the origin
is given by

x =
−2t2

1 + t2
, y =

2t
1 + t2

.

Note that both components are elements of the local ring k[t]〈t〉.
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In this case, we might also use the parametrization in terms of
trigonometric functions:

x = −1 + cos t, y = sin t.

The functions sin t and cos t are not polynomials or rational functions, but
recall from elementary calculus that they can be expressed as convergent
power series in t:

sin t =
∞∑

k=0

(−1)kt2k+1/(2k + 1)!

cos t =
∞∑

k=0

(−1)kt2k/(2k)! .

In this case parametrizing leads us to consider functions more general than
polynomials or rational functions.

If k = C or k = R, then we can consider the set of convergent power
series in n variables (expanding about the origin)

(1.5)
k{x1, . . . , xn} =

{∑
α∈Zn

≥0
cαxα : cα ∈ k and the series

converges in some neighborhood of 0 ∈ kn
}
.

With the usual notion of addition and multiplication, this set is a ring (we
leave the verification to the reader; see Exercise 3). In fact, it is not difficult
to see that k{x1, . . . , xn} is also a local ring with maximal ideal generated
by x1, . . . , xn.

No matter what field k is, we can also consider the set k[[x1, . . . , xn]] of
formal power series

(1.6) k[[x1, . . . , xn]] =
{∑

α∈Zn
≥0

cαxα : cα ∈ k
}
,

where, now, we waive the condition that the series need converge. Alge-
braically, a formal power series is a perfectly well defined object and can
easily be manipulated—one must, however, give up the notion of evaluating
it at any point of kn other than the origin. As a result, a formal power series
defines a function only in a rather limited sense. But in any case we can
define addition and multiplication of formal series in the obvious way and
this makes k[[x1, . . . , xn]] into a ring (see Exercise 3). Formal power series
are also useful in constructing parametrizations of varieties over arbitrary
fields (see Exercise 7 below).

At the beginning of the section, we commented that the three rings
k[x1, . . . , xn]〈x1,...,xn〉, k{x1, . . . , xn}, and k[[x1, . . . , xn]] correspond to
looking at smaller and smaller neighborhoods of the origin. Let us make
this more precise. An element f/g ∈ k[x1, . . . , xn]〈x1,...,xn〉 is defined not
just at the origin but at every point in the complement of V(g). The do-
main of convergence of a power series can be a much smaller set than the
complement of a variety. For instance, the geometric series 1 + x + x2 + · · ·
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converges to the sum 1/(1 − x) ∈ k[x]〈x〉 only on the set of x with |x| < 1
in k = R or C. A formal series in k[[x1, . . . , xn]] is only guaranteed to con-
verge at the origin. Nevertheless, both k{x1, . . . , xn} and k[[x1, . . . , xn]]
share the key algebraic property of k[x1, . . . , xn]〈x1,...,xn〉.

(1.7) Proposition. k[[x1, . . . , xn]] is a local ring. If k = R or k = C

then k{x1, . . . , xn} is also a local ring.

Proof. To show that k[[x1, . . . , xn]] is a local ring, consider the ideal
M = 〈x1, . . . , xn〉 ⊂ k[[x1, . . . , xn]] generated by x1, . . . , xn. If f /∈ M ,
then f = c0 + g with c0 �= 0, and g ∈ M . Using the formal geometric series
expansion

1
1 + t

= 1 − t + t2 + · · · + (−1)ntn + · · · ,
we see that

1
c0 + g

=
1

c0(1 + g/c0)

= (1/c0)
(
1 − g/c0 + (g/c0)2 + · · · ).

In Exercise 4 below, you will show that this expansion makes sense as
an element of k[[x1, . . . , xn]]. Hence f has a multiplicative inverse in
k[[x1, . . . , xn]]. Since this is true for every f /∈ M , Proposition (1.4) implies
that k[[x1, . . . , xn]] is a local ring.

To show that k{x1, . . . , xn} is also a local ring, we only need to show
that the formal series expansion for 1/(c0 + g) gives a convergent series.
See Exercise 4.

All three types of local rings share other key algebraic properties with
rings of polynomials. See the exercises in §4. By considering the power
series expansion of a rational function defined at the origin, as in the proof
above, we have k[x1, . . . , xn]〈x1,...,xn〉 ⊂ k[[x1, . . . , xn]]. In the case k = R

or C, we also have inclusions:

k[x1, . . . , xn]〈x1,...,xn〉 ⊂ k{x1, . . . , xn} ⊂ k[[x1, . . . , xn]].

In general, we would like to be able to do operations on ideals in these
rings in much the same way that we can carry out operations on ideals in
a polynomial ring. For instance, we would like to be able to settle the ideal
membership question, to form intersections of ideals, compute quotients,
compute syzygies on a collection of elements, and the like. We will return
to these questions in §3 and §4.

ADDITIONAL EXERCISES FOR §1

Exercise 3. The product operations in k[[x1, . . . , xn]] and k{x1, . . . , xn}
can be described in the following fashion. Grouping terms by total degree,
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rewrite each power series

f(x) =
∑

α∈Z
n
≥0

cαxα

as
∑

n≥0 fn(x), where

fn(x) =
∑

α∈Z
n
≥0

|α|=n

cαxα

is a homogeneous polynomial of degree n. The product of two series f(x)
and g(x) is the series h(x) for which

hn = fng0 + fn−1g1 + · · · + f0gn.

a. Show that with this product and the obvious sum, k[[x1, . . . , xn]] is a
(commutative) ring (with identity).

b. Now assume k = R or k = C, and suppose f, g ∈ k{x1, . . . , xn}. From
part a, we know that sums and products of power series give other formal
series. Show that if f and g are both convergent on some neighborhood
U of (0, . . . , 0), then f + g and f · g are also convergent on U .

Exercise 4. Let h ∈ 〈x1, . . . , xn〉 ⊂ k[[x1, . . . , xn]].
a. Show that the formal geometric series expansion

1
1 + h

= 1 − h + h2 − h3 + · · ·

gives a well-defined element of k[[x1, . . . , xn]]. (What are the homoge-
neous components of the series on the right?)

b. Show that if h is convergent on some neighborhood of the origin, then
the expansion in part a is also convergent on some (generally smaller)
neighborhood of the origin. (Recall that

1
1 + t

= 1 − t + t2 − t3 + · · ·

is convergent only for t satisfying |t| < 1.)

Exercise 5. Give a complete proof for Proposition (1.4).

Exercise 6. Let F be a field. A discrete valuation of F is an onto mapping
v : F \ {0} → Z with the properties that
1. v(x + y) ≥ min{v(x), v(y)}, and
2. v(xy) = v(x) + v(y).

The subset of F consisting of all elements x satisfying v(x) ≥ 0, together
with 0, is called the valuation ring of v.

a. Show that the valuation ring of a discrete valuation is a local ring. Hint:
Use Proposition (1.4).
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b. For example, let F = k(x) (the rational function field in one variable),
and let f be an irreducible polynomial in k[x] ⊂ F . If g ∈ k(x), then
by unique factorization in k[x], there is a unique expression for g of the
form g = fa · n/d, where a ∈ Z, and n, d ∈ k[x] are not divisible by
f . Let v(g) = a ∈ Z. Show that v defines a discrete valuation on k(x).
Identify the maximal ideal of the valuation ring.

c. Let F = Q, and let p be a prime integer. Show that if g ∈ Q, then by
unique factorization in Z, there is a unique expression for g of the form
g = pa · n/d, where a ∈ Z, and n, d ∈ Z are not divisible by p. Let
v(g) = a ∈ Z. Show that v defines a discrete valuation on Q. Identify
the maximal ideal of this valuation ring.

Exercise 7. (A Formal Implicit Function Theorem) Let f(x, y) ∈ k[x, y]
be a polynomial of the form

f(x, y) = yn + c1(x)yn−1 + · · · + cn−1(x)y + cn(x),

where ci(x) ∈ k[x]. Assume that f(0, y) = 0 has n distinct roots ai ∈ k.
a. Starting from y

(0)
i (x) = ai, show that there is a unique ai1 ∈ k such

that y
(1)
i (x) = ai + ai1x satisfies

f(x, y
(1)
i (x)) ≡ 0 mod 〈x2〉.

b. Show that if we have a polynomial y
(�)
i (x) = ai + ai1x + · · · + ai�x

�,
that satisfies

f(x, y
(�)
i (x)) ≡ 0 mod 〈x�+1〉,

then there exists a unique ai,�+1 ∈ k such that

y
(�+1)
i (x) = y

(�)
i (x) + ai,�+1x

�+1

satisfies

f(x, y
(�+1)
i (x)) ≡ 0 mod 〈x�+2〉.

c. From parts a and b, deduce that there is a unique power series yi(x) ∈
k[[x]] that satisfies f(x, yi(x)) = 0 and yi(0) = ai.

Geometrically, this gives a formal series parametrization of the branch of
the curve f(x, y) passing through (0, ai): (x, yi(x)). It also follows that
f(x, y) factors in the ring k[[x]][y]:

f(x, y) =
n∏

i=1

(y − yi(x)).

Exercise 8. Let R be an integral domain (that is, a ring with no zero-
divisors), and let P ⊂ R be a prime ideal (see Exercise 8 of Chapter 1, §1
for the definition, which is the same in any ring R). The localization of R
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with respect to P , denoted RP , is a new ring containing R, in which every
element in R not in the specified prime ideal P becomes a unit. We define

RP = {r/s : r, s ∈ R, s /∈ P},
so that RP is a subset of the field of fractions of R.
a. Using Proposition (1.4), show that RP is a local ring, with maximal

ideal M = {p/s : p ∈ P, s /∈ P}.
b. Show that every ideal in RP has the form IP = {a/s : a ∈ I, s /∈ P},

where I is an ideal of R contained in P .

Exercise 9. The construction of RP in Exercise 8 can be generalized in
the following way. If R is any ring, and S ⊂ R is a set which is closed under
multiplication (that is, s1, s2 ∈ S implies s1 · s2 ∈ S), then we can form
“fractions” a/s, with a ∈ R, s ∈ S. We will say two fractions a/s and b/t
are equivalent if there is some u ∈ S such that u(at − bs) = 0 in R. We
call the collection of equivalence classes for this relation S−1R.
a. Show that forming sums and products as with ordinary fractions gives

well-defined operations on S−1R.
b. Show that S−1R is a ring under these sum and product operations.
c. If R is any ring (not necessarily an integral domain) and P ⊂ R is a

prime ideal, show that S = R \ P is closed under multiplication. The
resulting ring of fractions S−1R is also denoted RP (as in Exercise 8).

Exercise 10. Let R = k[x1, . . . , xn] and I = 〈f1, . . . , fm〉 be an ideal in
R. Let M = 〈x1, . . . , xn〉 be the maximal ideal of polynomials vanishing
at the origin and suppose that I ⊂ M .
a. Show that the ideal M/I generated by the cosets of x1, . . . , xn in R/I

is a prime ideal.
b. Let IRM denote the ideal generated by the fi in the ring RM , and

let (R/I)M/I be constructed as in Exercise 8. Let r/s ∈ RM , let [r], [s]
denote the cosets of the numerator and denominator in R/I, and let [r/s]
denote the coset of the fraction in RM/IRM . Show that the mapping

ϕ : RM/IRM → (R/I)M/I

[r/s] �→ [r]/[s]

is well defined and gives an isomorphism of rings.

Exercise 11. Let R = k[x1, . . . , xn]〈x1,...,xn〉. Show that every ideal I ⊂
R has a generating set consisting of polynomials f1, . . . , fs ∈ k[x1, . . . , xn].

Exercise 12. (Another interpretation of k{x1, . . . , xn}) Let k = R or C

and let U ⊂ kn be open. A function f : U → k is analytic if it can be
represented by a power series with coefficients in k at each point of U . One
can prove that every element of k{x1, . . . , xn} defines an analytic function
on some neighborhood of the origin. We can describe k{x1, . . . , xn} in
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terms of analytic functions as follows. Two analytic functions, each defined
on some neighborhood of the origin, are equivalent if there is some (smaller)
neighborhood of the origin on which they are equal. An equivalence class
of analytic functions with respect to this relation is called a germ of an
analytic function (at the origin).
a. Show that the set of germs of analytic functions at the origin is a ring

under the usual sum and product of functions.
b. Show that this ring can be identified with k{x1, . . . , xn} and that the

maximal ideal is precisely the set of germs of analytic functions which
vanish at the origin.

c. Consider the function f : R → R defined by

f(x) =
{

e−1/x2
if x > 0

0 if x ≤ 0.

Show that f is C∞ on R, and construct its Taylor series, expanding
at a = 0. Does the Taylor series converge to f(x) for all x in some
neighborhood of 0 ∈ R?

If k = R, the example given in part c shows that the ring of germs of
infinitely differentiable real functions is not equal to k{x1, . . . , xn}. On
the other hand, it is a basic theorem of complex analysis that a complex
differentiable function is analytic.

§2 Multiplicities and Milnor Numbers

In this section we will see how local rings can be used to assign local
multiplicities at the points in V(I) for a zero-dimensional ideal I. We will
also use local rings to define the Milnor and Tjurina numbers of an isolated
singular point of a hypersurface.

To see what the issues are, let us turn to one of the most frequent com-
putations that one is called to do in a local ring, that of computing the
dimension of the quotient ring by a zero-dimensional ideal. In Chapter 2, we
learned how to compute the dimension of k[x1, . . . , xn]/I when I is a zero-
dimensional polynomial ideal. Recall how this works. For any monomial
order, we have

dim k[x1, . . . , xn]/I = dim k[x1, . . . , xn]/〈LT(I)〉,
and the latter is just the number of monomials xα such that xα /∈ 〈LT(I)〉.
For example, if

I = 〈x2 + x3, y2〉 ⊂ k[x, y],

then using the lex order with y > x for instance, the given generators form
a Gröbner basis for I. So

dim k[x, y]/I = dim k[x, y]/〈LT(I)〉 = dim k[x, y]/〈x3, y2〉 = 6.
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The rightmost equality follows because the cosets of 1, x, x2, y, xy, x2y form
a vector space basis of k[x, y]/〈x3, y2〉. The results of Chapter 2 show that
there are at most six common zeros of x2 + x3 and y2 in k2. In fact, from
the simple form of the generators of I we see there are precisely two distinct
points in V(I): (−1, 0) and (0, 0).

To define the local multiplicity of a solution of a system of equations,
we use a local ring instead of the polynomial ring, but the idea is much
the same as above. We will need the following notation. If I is an ideal
in k[x1, . . . , xn], then we sometimes denote by Ik[x1, . . . , xn]〈x1,...,xn〉 the
ideal generated by I in the larger ring k[x1, . . . , xn]〈x1,...,xn〉.

(2.1) Definition. Let I be a zero-dimensional ideal in k[x1, . . . , xn],
so that V(I) consists of finitely many points in kn, and assume that
(0, 0, . . . , 0) is one of them. Then the multiplicity of (0, 0, . . . , 0) as a point
in V(I) is

dimk k[x1, . . . , xn]〈x1,...,xn〉/Ik[x1, . . . , xn]〈x1,...,xn〉.

More generally, if p = (a1, . . . , an) ∈ V(I), then the multiplicity of p, de-
noted m(p), is the dimension of the ring obtained by localizing k[x1, . . . , xn]
at the maximal ideal M = I({p}) = 〈x1 − a1, . . . , xn − an〉 corresponding
to p, and taking the quotient:

dim k[x1, . . . , xn]M/Ik[x1, . . . , xn]M .

Since k[x1, . . . , xn]M is a local ring, it is easy to show that the quo-
tient k[x1, . . . , xn]M/Ik[x1, . . . , xn]M is also local (see Exercise 6 below).
The intuition is that since M is the maximal ideal of p ∈ V(I), the ring
k[x1, . . . , xn]M/Ik[x1, . . . , xn]M should reflect the local behavior of I at
p. Hence the multiplicity m(p), which is the dimension of this ring, is a
measure of how complicated I is at p. Theorem (2.2) below will guarantee
that m(p) is finite.

We can also define the multiplicity of a solution p of a specific system
f1 = · · · = fs = 0, provided that p is an isolated solution (that is, there
exists a neighborhood of p in which the system has no other solutions).
From a more sophisticated point of view, this multiplicity is sometimes
called the local intersection multiplicity of the variety V(f1, . . . , fs) at p.
However, we caution the reader that there is a more sophisticated notion of
multiplicity called the Hilbert-Samuel multiplicity of I at p. This is denoted
e(p) and is discussed in [BH], Section 4.6.

Let us check Definition (2.1) in our example. Let R = k[x, y]〈x,y〉 be
the local ring of k2 at (0, 0) and consider the ideal J generated by the
polynomials x2 + x3 and y2 in R. The multiplicity of their common zero
(0, 0) is dim R/J .

Exercise 1. Notice that x2 + x3 = x2(1 + x).
a. Show that 1 + x is a unit in R, so 1/(1 + x) ∈ R.
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b. Show that x2 and y2 generate the same ideal in R as x2 + x3 and y2.
c. Show that every element f ∈ R can be written uniquely as f = g/(1 +

h), where g ∈ k[x, y] and h ∈ 〈x, y〉 ⊂ k[x, y].
d. Show that for each f ∈ R, the coset [f ] ∈ R/〈x2, y2〉R is equal to the

coset [g(1 − h + h2)], where g, h are as in part c.
e. Deduce that every coset in R/〈x2, y2〉R can be written as [a + bx + cy +

dxy] for some unique a, b, c, d ∈ k.

By the result of Exercise 1,

dim R/J = dim R/〈x2, y2〉R = 4.

Thus the multiplicity of (0, 0) as a solution of x2 + x3 = y2 = 0 is 4.
Similarly, let us compute the multiplicity of (−1, 0) as a solution of this

system. Rather than localizing at the prime ideal 〈x + 1, y〉, we change
coordinates to translate the point (−1, 0) to the origin and compute the
multiplicity there. (This often simplifies the calculations; we leave the fact
that these two procedures give the same results to the exercises.) So, set
X = x + 1, Y = y (we want X and Y to be 0 when x = −1 and y = 0)
and let S = k[X, Y ]〈X,Y 〉. Then x2 + x3 = (X − 1)2 + (X − 1)3 =
X3 − 2X2 + X and y2 = Y 2 and we want to compute the multiplicity
of (0, 0) as a solution of X3 − 2X2 + X = Y 2 = 0. Now we note that
X3 − 2X2 + X = X(1 − 2X + X2) and 1/(1 − 2X + X2) ∈ S. Thus,
the ideal generated by X and Y 2 in S is the same as that generated by
X3 − 2X + X and Y 2 and, therefore,

dim S/〈X3 − 2X2 + X, Y 2〉S = dim S/〈X, Y 2〉S = 2.

Again, the equality on the right follows because the cosets of 1, Y are a basis
of S/〈X, Y 2〉. We conclude that the multiplicity of (−1, 0) as a solution of
x3 + x2 = y2 = 0 is 2.

Thus, we have shown that the polynomials x3 + x2 and y2 have two
common zeros, one of multiplicity 4 and the other of multiplicity 2. When
the total number of zeros is counted with multiplicity, we obtain 6, in
agreement with the fact that the dimension of the quotient ring of k[x, y]
by the ideal generated by these polynomials is 6.

Exercise 2.
a. Find all points in V(x2 − 2x + y2, x2 − 4x + 4y4) ⊂ C

2 and compute
the multiplicity of each as above.

b. Verify that the sum of the multiplicities is equal to

dim C[x, y]/〈x2 − 2x + y2, x2 − 4x + 4y4〉.
c. What is the geometric explanation for the solution of multiplicity > 1

in this example?
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Before turning to the question of computing the dimension of a quotient
of a local ring in more complicated examples, we will verify that the total
number of solutions of a system f1 = · · · = fs = 0, counted with multiplic-
ity, is the dimension of k[x1, . . . , xn]/I when k is algebraically closed and
I = 〈f1, . . . , fs〉 is zero-dimensional. In a sense, this is confirmation that
our definition of multiplicity behaves as we would wish. In the following
discussion, if {p1, . . . , pm} is a finite subset of kn, and Mi = I({pi}) is the
maximal ideal of k[x1, . . . , xn] corresponding to pi, we will write

k[x1, . . . , xn]Mi = {f/g : g(pi) �= 0} = Oi

for simplicity of notation.

(2.2) Theorem. Let I be a zero-dimensional ideal in k[x1, . . . , xn] (k
algebraically closed) and let V(I) = {p1, . . . , pm}. Then, there is an
isomorphism between k[x1, . . . , xn]/I and the direct product of the rings
Ai = Oi/IOi, for i = 1, . . . , m.

Proof. For each i, i = 1, . . . , m, there are ring homomorphisms

ϕi : k[x1, . . . , xn] → Ai

f �→ [f ]i,

where [f ]i is the coset of f in the quotient ring Oi/IOi. Hence we get a
ring homomorphism

ϕ : k[x1, . . . , xn] → A1 × · · · × Am

f �→ ([f ]1, . . . , [f ]m).

Since f ∈ I implies [f ]i = 0 ∈ Ai for all i, we have I ⊂ ker(ϕ).
So to prove the theorem, we need to show first that I = ker(ϕ) (by
the fundamental theorem on ring homomorphisms, this will imply that
im(ϕ) ∼= k[x1, . . . , xn]/I), and second that ϕ is onto.

To prepare for this, we need to establish three basic facts. We use the
notation f ≡ g mod I to mean f − g ∈ I.

(2.3) Lemma. Let Mi = I({pi}) in k[x1, . . . , xn].
a. There exists an integer d ≥ 1 such that (∩m

i=1Mi)d ⊂ I.
b. There are polynomials ei ∈ k[x1, . . . , xn], i = 1, . . . , m, such that∑m

i=1 ei ≡ 1 mod I, eiej ≡ 0 mod I if i �= j, and e2
i ≡ ei mod I.

Furthermore, ei ∈ IOj if i �= j and ei − 1 ∈ IOi for all i.
c. If g ∈ k[x1, . . . , xn] \ Mi, then there exists h ∈ k[x1, . . . , xn] such that

hg ≡ ei mod I.

Proof of the Lemma. Part a is an easy consequence of the Nullstel-
lensatz. We leave the details to the reader as Exercise 7 below.

Turning to part b, Lemma (2.9) of Chapter 2 implies the existence of
polynomials gi ∈ k[x1, . . . , xn] such that gi(pj) = 0 if i �= j, and gi(pi) = 1
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for each i. Let

(2.4) ei = 1 − (1 − gd
i )d,

where d is as in part a. Expanding the right-hand side of (2.4) with the
binomial theorem and canceling the 1s, we see that ej ∈ Md

i for j �= i. On
the other hand, (2.4) implies ei − 1 ∈ Md

i for all i. Hence for each i,∑
j

ej − 1 = ei − 1 +
∑
j �=i

ej

is an element of Md
i . Since this is true for all i,

∑
j ej − 1 ∈ ∩m

i=1M
d
i .

Because the Mi are distinct maximal ideals, Mi + Mj = k[x1, . . . , xn]
whenever i �= j. It follows that ∩m

i=1M
d
i = (∩m

i=1Mi)d (see Exercise 8
below). Hence

∑
j ej − 1 ∈ (∩m

i=1Mi)d ⊂ I. Similarly, eiej ∈ ∩m
i=1M

d
i =

(∩m
i=1Mi)d ⊂ I whenever i �= j, and the congruence e2

i ≡ ei mod I now
follows easily (see Exercise 9 below). This implies ei(ei − 1) ∈ IOj for all
i, j. If i �= j, then ei − 1 is a unit in Oj since ei(pj) = 0. Thus ei ∈ IOj .
The proof that ei − 1 ∈ IOi follows similarly using ei(pi) = 1.

For part c, by multiplying by a constant, we may assume g(pi) = 1.
Then 1− g ∈ Mi, and hence taking h = (1 + (1− g) + · · ·+ (1− g)d−1)ei,

hg = h(1 − (1 − g)) = (1 − (1 − g)d)ei = ei − (1 − g)dei.

Since (1 − g)d ∈ Md
i and ei ∈ Md

j for all j �= i, as shown above, we have
(1 − g)dei ∈ I by part a, and the lemma is established.

We can now complete the proof of Theorem (2.2). Let f ∈ ker(ϕ), and
note that that kernel is characterized as follows:

ker(ϕ) = {f ∈ k[x1, . . . , xn] : [f ]i = 0 for all i}
= {f : f ∈ IOi for all i}
= {f : there exists gi /∈ Mi with gif ∈ I}.

For each of the gi, by part c of the lemma, there exists some hi such that
higi ≡ ei mod I. As a result, f ·∑m

i=1 higi =
∑m

i=1 hi(gif) is an element of
I, since each gif ∈ I. But on the other hand, f ·∑m

i=1 higi ≡ f ·∑i ei ≡
f mod I by part b of the lemma. Combining these two observations, we see
that f ∈ I. Hence ker(ϕ) ⊂ I. Since we proved earlier that I ⊂ ker(ϕ), we
have I = ker(ϕ).

To conclude the proof, we need to show that ϕ is onto. So let
([n1/d1], . . . , [nm/dm]) be an arbitrary element of A1 × · · · × Am, where
ni, di ∈ k[x1, . . . , xn], di /∈ Mi, and the brackets denote the coset in Ai.
By part c of the lemma again, there are hi ∈ k[x1, . . . , xn] such that
hidi ≡ ei mod I. Now let F =

∑m
i=1 hiniei ∈ k[x1, . . . , xn]. It is easy to

see that ϕi(F ) = [ni/di] for each i since ei ∈ IOj for i �= j and ei−1 ∈ IOi

by part b of the lemma. Hence ϕ is onto.

An immediate corollary of this theorem is the result we want.
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(2.5) Corollary. Let k be algebraically closed, and let I be a zero-
dimensional ideal in k[x1, . . . , xn]. Then dim k[x1, . . . , xn]/I is the number
of points of V(I) counted with multiplicity. Explicitly, if p1, . . . , pm are the
distinct points of V(I) and Oi is the ring of rational functions defined at
pi, then

dim k[x1, . . . , xn]/I =
∑m

i=1 dimOi/IOi =
∑m

i=1m(pi).

Proof. The corollary follows immediately from the theorem by taking
dimensions as vector spaces over k.

A second corollary tells us when a zero-dimensional ideal is radical.

(2.6) Corollary. Let k be algebraically closed, and let I be a zero-
dimensional ideal in k[x1, . . . , xn]. Then I is radical if and only if every
p ∈ V(I) has multiplicity m(p) = 1.

Proof. If V(I) = {p1, . . . , pm}, then Theorem (2.10) of Chapter 2 shows
that dim k[x1, . . . , xn]/I ≥ m, with equality if and only if I is radical.
By Corollary (2.5), this inequality can be written

∑m
i=1 m(pi) ≥ m. Since

m(pi) is always ≥ 1, it follows that
∑m

i=1 m(pi) ≥ m is an equality if and
only if all m(pi) = 1.

We next discuss how to compute multiplicities. Given a zero-dimensional
ideal I ⊂ k[x1, . . . , xn] and a polynomial f ∈ k[x1, . . . , xn], let mf be
multiplication by f on k[x1, . . . , xn]/I. Then the characteristic polynomial
det(mf − uI) is determined by the points in V(I) and their multiplicities.
More precisely, we have the following result.

(2.7) Proposition. Let k be an algebraically closed field and let I be a
zero-dimensional ideal in k[x1, . . . , xn]. If f ∈ k[x1, . . . , xn], then

det(mf − uI) = (−1)d
∏

p∈V(I)

(u − f(p))m(p),

where d = dim k[x1, . . . , xn]/I and mf is the map given by multiplication
by f on k[x1, . . . , xn]/I.

Proof. Let V(I) = {p1, . . . , pm}. Using Theorem (2.2), we get a diagram:

k[x1, . . . , xn]/I ∼= A1 × · · · × Am

mf

⏐⏐� ⏐⏐� mf

k[x1, . . . , xn]/I ∼= A1 × · · · × Am

where mf : A1× · · · ×Am → A1× · · · ×Am is multiplication by f on each
factor. This diagram commutes in the same sense as the diagram (5.19) of
Chapter 3.
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Hence we can work with mf : A1 × · · · × Am → A1 × · · · × Am. If
we restrict to mf : Ai → Ai, it suffices to show that det(mf − uI) =
(−1)m(pi)(u − f(pi))m(pi). Equivalently, we must show that f(pi) is the
only eigenvalue of mf on Ai.

To prove this, consider the map ϕi : k[x1, . . . , xn] → Ai defined in the
proof of Theorem (2.2), and let Qi = ker(ϕi). In Exercise 11 below, you
will study the ideal Qi, which is part of the primary decomposition of I. In
particular, you will show that V(Qi) = {pi} and that k[x1, . . . , xn]/Qi

∼=
Ai. Consequently, the eigenvalues of mf on Ai equal the eigenvalues of mf

on k[x1, . . . , xn]/Qi, which by Theorem (4.5) of Chapter 2 are the values
of f on V(Qi) = {pi}. It follows that f(pi) is the only eigenvalue, as
desired.

The ideas used in the proof of Proposition (2.7) make it easy to determine
the generalized eigenvectors of mf . See Exercise 12 below for the details.

If we know the points p1, . . . , pm of V(I) (for example, we could find
them using the methods of Chapters 2 or 3), then it is a simple matter to
compute their multiplicities using Proposition (2.7). First pick f so that
f(p1), . . . , f(pm) are distinct, and then compute the matrix of mf relative
to a monomial basis of k[x1, . . . , xn]/I as in Chapters 2 or 3. In typical
cases, the polynomials generating I have coefficients in Q, which means
that the characteristic polynomial det(mf − uI) is in Q[u]. Then factor
det(mf − uI) over Q, which can easily be done by computer (the Maple
command is factor). This gives

det(mf − uI) = hm1
1 · · · hmr

r ,

where h1, . . . , hr are distinct irreducible polynomials over Q. For each
pi ∈ V(I), f(pi) is a root of a unique hj , and the corresponding exponent
mj is the multiplicity m(pi). This follows from Proposition (2.7) and the
properties of irreducible polynomials (see Exercise 13). One consequence is
that those points of V(I) corresponding to the same irreducible factor of
det(mf − uI) all have the same multiplicity.

We can also extend some of the results proved in Chapter 3 about resul-
tants. For example, the techniques used to prove Theorem (2.2) give the
following generalization of Proposition (5.8) of Chapter 3 (see Exercise 14
below for the details).

(2.8) Proposition. Let f1, . . . , fn ∈ k[x1, . . . , xn] (k algebraically
closed) have total degrees at most d1, . . . , dn and no solutions at ∞. If
f0 = u0 + u1x1 + · · · + unxn, where u0, . . . , un are independent variables,
then there is a nonzero constant C such that

Res1,d1,...,dn(f0, . . . , fn) = C
∏

p∈V(f1,...,fn)

(
u0 + u1a1 + · · · + unan

)m(p)
,

where a point p ∈ V(f1, . . . , fn) is written p = (a1, . . . , an).
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This tells us that the u-resultant of Chapter 3, §5, computes not only
the points of V(f1, . . . , fn) but also their multiplicities. In Chapter 3, we
also studied the hidden variable method , where we set xn = u in the equa-
tions f1 = · · · = fn = 0 and regard u as a constant. After homogenizing
with respect to x0, we get the resultant Resx0,...,xn−1(F̂1, . . . , F̂n) from
Proposition (5.9) in Chapter 3, which tells us about the xn-coordinates of
the solutions. In Chapter 3, we needed to assume that the xn-coordinates
were distinct. Now, using Proposition (2.8), it is easy to show that when
f1, . . . , fn have no solutions at ∞,

(2.9)
Res1,d1,...,dn(u − xn, f1, . . . , fn) = Resx0,...,xn−1(F̂1, . . . , F̂n)

= C
∏

p∈V(f1,...,fn)

(
u − an

)m(p)

where p ∈ V(f1, . . . , fn) is written p = (a1, . . . , an). See Exercise 14 for
the proof.

The formulas given in (2.9) and Proposition (2.8) indicate a deep relation
between multiplicities using resultants. In fact, in the case of two equations
in two unknowns, one can use resultants to define multiplicities. This is
done, for example, in Chapter 8 of [CLO] and Chapter 3 of [Kir].

Exercise 3. Consider the equations

f1 = y2 − 3 = 0

f2 = 6y − x3 + 9x,

and let I = 〈f1, f2〉 ⊂ k[x, y].
a. Show that these equations have four solutions with distinct x coordi-

nates.
b. Draw the graphs of f1 = 0 and f2 = 0. Use your picture to explain

geometrically why two of the points should have multiplicity > 1.
c. Show that the characteristic polynomial of mx on C[x, y]/I is u6−18u4+

81u2 − 108 = (u2 − 3)2(u2 − 12).
d. Use part c and Proposition (2.7) to compute the multiplicities of the

four solution points.
e. Explain how you would compute the multiplicities using Res(f1, f2, y)

and Proposition (2.8). This is the hidden variable method for com-
puting multiplicities. Also explain the meaning of the exponent 3 in
Res(f1, f2, x) = (y2 − 3)3.

Besides resultants and multiplicities, Theorem (2.2) has other interest-
ing consequences. For instance, suppose that a collection of n polynomials
f1, . . . , fn has a single zero in kn, which we may take to be the origin. Let
I = 〈f1, . . . , fn〉. Then the theorem implies

(2.10) k[x1, . . . , xn]/I ∼= k[x1, . . . , xn]〈x1,...,xn〉/Ik[x1, . . . , xn]〈x1,...,xn〉.
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This is very satisfying, but there is more to the story. With the above
hypotheses on f1, . . . , fn, one can show that most small perturbations of
f1, . . . , fn result in a system of equations with distinct zeroes, each of which
has multiplicity one, and that the number of such zeroes is precisely equal to
the multiplicity of the origin as a solution of f1 = · · · = fn = 0. Moreover,
the ring k[x1, . . . , xn]/I turns out to be a limit, in a rather precise sense,
of the set of functions on these distinct zeroes. Here is a simple example.

Exercise 4. Let k = C so that we can take limits in an elementary sense.
Consider the ideals It = 〈y − x2, x3 − t〉 where t ∈ C is a parameter.
a. What are the points in V(It) for t �= 0? Show that each point has

multiplicity 1, so Ai
∼= k for each i.

b. Now let t → 0. What is V(I0) and its multiplicity?
c. Using the proof of Theorem (2.2), work out an explicit isomorphism

between C[x, y]/It, and the product of the Ai for t �= 0.
d. What happens as t → 0? Identify the image of a general f in C[x, y]/I0,

and relate to the image of f in the product of Ai for t �= 0.

Local rings give us the ability to discuss what’s happening near a
particular solution of a zero-dimensional ideal. This leads to some rich
mathematics, including the following.

• As explained in Exercise 11, the isomorphism A ∼= A1×· · ·×Am of The-
orem (2.2) is related to primary decomposition. A method for computing
this decomposition using the characteristic polynomial of a multiplication
map is discussed in [Mon] and [YNT].
• The local ring Ai can be described in terms of the vanishing of certain

linear combinations of partial derivatives. This is explained in [MMM1],
[MMM2], [Möl], and [MöS], among others.
• When the number of equations equals the number of unknowns as in

Chapter 3, the ring A is a complete intersection. Some of the very deep al-
gebra related to this situation, including Gorenstein duality , is discussed
in [ElM2].

The book [Stu5] gives a nice introduction to the first two bullets. The
reader should also consult [YNT] for many other aspects of the ring A
and [Rou] for an interesting method of representing the solutions and their
multiplicities.

We also remark that we can compute multiplicities by passing to the for-
mal power series ring or, in the cases k = R or C, to the ring of convergent
power series. More precisely, the following holds.
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(2.11) Proposition. Let I ⊂ k[x1, . . . , xn] be a zero-dimensional ideal
such that the origin is a point of V(I) of multiplicity m. Then

m = dim k[x1, . . . , xn]〈x1,...,xn〉/Ik[x1, . . . , xn]〈x1,...,xn〉
= dim k[[x1, . . . , xn]]/Ik[[x1, . . . , xn]].

If, moreover, k = R or C, so that we can talk about whether a power series
converges, then

m = dim k{x1, . . . , xn}/Ik{x1, . . . , xn}
as well.

To see the idea behind why this is so, consider the example we looked at
in Exercise 1 above. We showed that dim k[x, y]〈x,y〉/〈x2 + x3, y2〉 = 4 by
noting that in k[x, y]〈x,y〉, we have

〈x2 + x3, y2〉 = 〈x2, y2〉
because 1/(1 + x) ∈ k[x, y]〈x,y〉. As in §1, we can represent 1/(1 + x) as
the formal power series 1 − x + x2 − x3 + x4 − · · · ∈ k[[x, y]] and then

(x2 + x3)(1 − x + x2 − x3 + x4 − · · ·) = x2

in k[[x, y]]. This shows that, in k[[x, y]], 〈x2 + x3, y2〉 = 〈x2, y2〉. It follows
that

dim k[[x, y]]/〈x2, y2〉 = 4

(as before, the four monomials 1, x, y, xy form a vector space basis of
k[[x, y]]/〈x2, y2〉). If k = C, the power series 1 − x + x2 − x3 + x4 − · · ·
is convergent for x with |x| < 1, and precisely the same reasoning shows
that 〈x2 + x3, y2〉 = 〈x2, y2〉 in k{x, y} as well. Therefore,

dim k{x, y}/〈x2, y2〉k{x, y} = 4.

It is possible to prove the proposition by generalizing these observations,
but it will be more convenient to defer it to §5, so that we can make use of
some additional computational tools for local rings.

We will conclude this section by introducing an important invariant in
singularity theory—the Milnor number of a singularity. See [Mil] for the
topological meaning of this integer. One says that an analytic function
f(x1, . . . , xn) on an open set U ⊂ C

n has a singularity at a point p ∈ U
if the n first-order partial derivatives of f have a common zero at p. We
say that the singular point p is isolated if there is some neighborhood of
p containing no other singular points of f . As usual, when considering a
given singular point p, one translates p to the origin. If we do this, then
the assertion that the origin is isolated is enough to guarantee that

dim C{x1, . . . , xn}/〈∂f/∂x1, . . . , ∂f/∂xn〉 < ∞.
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Here, we are using the fact that in a neighborhood of the origin, any analytic
function can be represented by a convergent power series. Thus f and its
partial derivatives can be regarded as elements of C{x1, . . . , xn}.

(2.12) Definition. Let f ∈ C{x1, . . . , xn} have an isolated singularity
at the origin. The Milnor number of the singular point, denoted µ, is given
by

µ = dim C{x1, . . . , xn}/〈∂f/∂x1, . . . , ∂f/∂xn〉.

In view of Proposition (2.11), if the function f is a polynomial, the Milnor
number of a singular point p of f is just the multiplicity of the common
zero p of the partials of f .

Exercise 5. Each of the following f(x, y) ∈ C[x, y] has an isolated
singular point at (0, 0). For each, determine the Milnor number by
computing

µ = dim C[[x, y]]/〈∂f/∂x, ∂f/∂y〉.
a. f(x, y) = y2 − x2 − x3.
b. f(x, y) = y2 − x3.
c. f(x, y) = y2 − x5.

In intuitive terms, the larger the Milnor number is, the more complicated
the structure of the singular point is. To conclude this section, we mention
that there is a closely related invariant of singularities called the Tjurina
number, which is defined by

τ = dim k[[x1, . . . , xn]]/〈f, ∂f/∂x1, . . . , ∂f/∂xn〉.
Over any field k, the Tjurina number is finite precisely when f has an
isolated singular point.

ADDITIONAL EXERCISES FOR §2

Exercise 6. If p ∈ V(I) and M = I({p}) is the maximal ideal of p, then
prove that k[x1, . . . , xn]M/Ik[x1, . . . , xn]M is a local ring. Also show that
the dimension of this ring, which is the multiplicity m(p), is≥ 1. Hint: Show
that the map k[x1, . . . , xn]M/Ik[x1, . . . , xn]M → k given by evaluating a
coset at p is a well-defined linear map which is onto.

Exercise 7. Using the Nullstellensatz, prove part a of Lemma (2.3).

Exercise 8. Let I and J be any two ideals in a ring R such that I +J = R
(we sometimes say I and J are comaximal).
a. Show that IJ = I ∩ J .
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b. From part a, deduce that if d ≥ 1, then Id ∩ Jd = (I ∩ J)d.
c. Generalize part b to any number of ideals I1, . . . , Ir if Ii + Ij = R

whenever i �= j.

Exercise 9. Show that if ei are the polynomials constructed in (2.4) for
part b of Lemma (2.3), then e2

i ≡ ei mod I. Hint: Use the other two
statements in part b.

Exercise 10. In this exercise, we will use Theorem (2.2) to give a new
proof of Theorem (4.5) of Chapter 2. Let Ai be the local ring Oi/IOi as
in the proof of Theorem (2.2). For f ∈ k[x1, . . . , xn], let mf : Ai → Ai be
multiplication by f . Also, the coset of f in Ai will be denoted [f ]i.
a. Prove that mf is a vector space isomorphism if and only if [f ]i ∈ Ai is

invertible; i.e., there is [g]i ∈ Ai such that [f ]i[g]i = [1]i.
b. Explain why [f ]i is in the maximal ideal of Ai if and only if f(pi) = 0.
c. Explain why each of the following equivalences is true for a polynomial

f ∈ k[x1, . . . , xn] and λ ∈ C: λ is an eigenvalue of mf ⇔ mf−λ is not
invertible⇔ [f − λ]i ∈ Ai is not invertible⇔ [f − λ]i is in the maximal
ideal of Ai ⇔ f(p) = λ. Hint: Use parts a and b of this exercise and
part b of Exercise 1 from §1.

d. Combine part c with the isomorphism k[x1, . . . , xn]/I ∼= A1× · · · ×Am

and the commutative diagram from Proposition (2.7) to give a new proof
of Theorem (4.5) of Chapter 2.

Exercise 11. (Primary Decomposition) Let I be a zero-dimensional ideal
with V(I) = {p1, . . . , pm}. This exercise will explore the relation be-
tween the isomorphism A = k[x1, . . . , xn]/I ∼= A1 × · · · × Am and the
primary decomposition of I. More details on primary decomposition can
be found in [CLO], Chapter 4, §7. We begin with the homomorphism
ϕi : k[x1, . . . , xn] → Ai defined by ϕ(f) = [f ]i ∈ Ai (this is the nota-
tion used in the proof of Theorem (2.2)). Consider the ideal Qi defined
by

Qi = ker(ϕi) = {f ∈ k[x1, . . . , xn] : [f ]i = [0]i in Ai}.
We will show that the ideals Q1, . . . , Qm give the primary decomposition
of I. Let Mi = I({pi}).
a. Show that I ⊂ Qi and that Qi = {f ∈ k[x1, . . . , xn] : there exists u in

k[x1, . . . , xn] \Mi such that u · f ∈ I}.
b. If g1, . . . , gm are as in the proof of Theorem (2.2), show that for j �= i,

some power of gj lies in Qi. Hint: Use part a and the Nullstellensatz.
c. Show that V(Qi) = {pi} and conclude that

√
Qi = Mi. Hint: Use part

b and the Nullstellensatz.
d. Show that Qi is a primary ideal , which means that if fg ∈ Qi, then

either f ∈ Qi or some power of g is in Qi. Hint: Use part c. Also, Ai is
a local ring.



§2. Multiplicities and Milnor Numbers 157

e. Prove that I = Q1 ∩ · · · ∩ Qm. This is the primary decomposition of I
(see Theorem 7 of [CLO], Chapter 4, §7).

f. Show that k[x1, . . . , xn]/Qi
∼= Ai. Hint: Show that ϕi is onto using the

proof of Theorem (2.2).

Exercise 12. (Generalized Eigenspaces) Given a linear map T : V → V ,
where V is a finite-dimensional vector space, a generalized eigenvector of
λ ∈ k is a nonzero vector v ∈ V such that (T − λI)m(v) = 0 for some
m ≥ 1. The generalized eigenspace of λ is the space of the generalized
eigenvectors for λ. When k is algebraically closed, V is the direct sum of its
generalized eigenspaces (see Section 7.1 of [FIS]). We will apply this theory
to the linear map mf : A → A to see how the generalized eigenspaces of
mf relate to the isomorphism A ∼= A1 × · · · × Am of Theorem (2.2).
a. In the proof of Proposition (2.7), we proved that f(pi) is the only eigen-

value of mf : Ai → Ai. Use this to show that the generalized eigenspace
of mf is all of Ai.

b. If f(p1), . . . , f(pm) are distinct, prove that the decomposition of A =
k[x1, . . . , xn]/I into a direct sum of generalized eigenspaces for mf is
precisely the isomorphism A ∼= A1 × · · · × Am of Theorem (2.2).

Exercise 13.
a. If h ∈ Q[u] is irreducible, prove that all roots of h have multiplicity one.

Hint: Compute hred.
b. Let h ∈ Q[u] be irreducible and let λ ∈ C be a root of h. If g ∈ Q[u]

and g(λ) = 0, prove that h divides g. Hint: If GCD(h, g) = 1, there are
polynomials A, B ∈ Q[u] such that Ah + Bg = 1.

c. If h1 and h2 are distinct irreducible polynomials in Q[u], prove that h1
and h2 have no common roots.

d. Use parts a and c to justify the method for computing multiplicities
given in the discussion following Proposition (2.7).

Exercise 14. Prove Proposition (2.8) and the formulas given in (2.9).
Hint: Use Exercise 12 and Proposition (5.8) of Chapter 3.

Exercise 15.
a. Let �1, . . . , �n be homogeneous linear polynomials in k[x1, . . . , xn] with

V(�1, . . . , �n) = {(0, . . . , 0)}. Compute the multiplicity of the origin as
a solution of �1 = · · · = �n = 0.

b. Now let f1, . . . , fn generate a zero-dimensional ideal in k[x1, . . . , xn],
and suppose that the origin is in V(f1, . . . , fn) and the Jacobian matrix

J =
(
∂fi/∂xj

)
has nonzero determinant at the origin. Compute the multiplicity of the
origin as a solution of f1 = · · · = fn = 0. Hint: Use part a.
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Exercise 16. We say f ∈ C[x1, . . . , xn] has an ordinary double point at
the origin 0 in C

n if f(0) = ∂f/∂xi(0) = 0 for all i, but the matrix of
second-order partial derivatives is invertible at 0:

det(∂2f/∂xi∂xj)
∣∣
(x1,...,xn)=(0,...,0) �= 0.

Find the Milnor number of an ordinary double point. Hint: Use Exercise 15.

Exercise 17. Let I be a zero-dimensional ideal in k[x1, . . . , xn] and let
p = (a1, . . . , an) ∈ V(I). Let X1, . . . , Xn be a new set of variables,
and consider the set I ⊂ k[X1, . . . , Xn] consisting of all f(X1 + a1, . . . ,
Xn + an) where f ∈ I.
a. Show that I is an ideal in k[X1, . . . , Xn], and that the origin is a point

in V(I).
b. Show that the multiplicity of p as a point in V(I) is the same as the

multiplicity of the origin as a point in V(I). Hint: One approach is to
show that

ϕ : k[x1, . . . , xn] → k[X1, . . . , Xn]

f(x1, . . . , xn) �→ f(X1 + a1, . . . , Xn + an)

defines an isomorphism of rings.

§3 Term Orders and Division in Local Rings

When working with an ideal I ⊂ k[x1, . . . , xn], for some purposes
we can replace I with its ideal of leading terms 〈LT(I)〉. For example,
if I is zero-dimensional, we can compute the dimension of the quo-
tient ring k[x1, . . . , xn]/I by using the fact that dim k[x1, . . . , xn]/I =
dim k[x1, . . . , xn]/〈LT(I)〉. The latter dimension is easy to compute since
〈LT(I)〉 is a monomial ideal—the dimension is just the number of monomi-
als not in the ideal). The heart of the matter is to compute 〈LT(I)〉, which
is done by computing a Gröbner basis of I.

A natural question to ask is whether something similar might work in a
local ring. An instructive example occurred in the last section, where we
considered the ideal I = 〈x2 + x3, y2〉. For R = k[x, y]〈x,y〉 or k[[x, y]] or
k{x, y}, we computed dim R/IR by replacing I by the monomial ideal

Ĩ = 〈x2, y2〉.
Note that Ĩ is generated by the lowest degree terms in the generators
of I. This is in contrast to the situation in the polynomial ring, where
dim k[x, y]/I was computed from 〈LT(I)〉 = 〈x3, y2〉 using the lex leading
terms.

To be able to pick out terms of lowest degree in polynomials as leading
terms, it will be necessary to extend the class of orders on monomials we
can use. For instance, to make the leading term of a polynomial or a power
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series be one of the terms of minimal total degree, we could consider what
are known as degree-anticompatible (or anti-graded) orders. By definition
these are orders that satisfy

(3.1) |α| < |β| =⇒ xα > xβ .

We still insist that our orders be total orderings and be compatible with
multiplication. As in Definition (2.1) of Chapter 1, being a total ordering
means that for any α, β ∈ Z

n
≥0, exactly one of the following is true:

xα > xβ , xα = xβ , or xα < xβ .

Compatibility with multiplication means that for any γ ∈ Z
n
≥0, if xα > xβ ,

then xα+γ > xβ+γ . Notice that property (3.1) implies that 1 > xi for all
i, 1 ≤ i ≤ n. Here is a first example.

Exercise 1. Consider terms in k[x].
a. Show that the only degree-anticompatible order is the antidegree order:

1 > x > x2 > x3 > · · · .
b. Explain why the antidegree order is not a well-ordering.

Any total ordering that is compatible with multiplication and that
satisfies 1 > xi for all i, 1 ≤ i ≤ n is called a local order . A degree-
anticompatible order is a local order (but not conversely—see Exercise 2
below).

Perhaps the simplest example of a local order in n variables is degree-
anticompatible lexicographic order, abbreviated alex , which first sorts by
total degree, lower degree terms preceding higher degree terms, and which
sorts monomials of the same total degree lexicographically.

(3.2) Definition (Antigraded Lex Order). Let α, β ∈ Z
n
≥0. We say

xα >alex xβ if

|α| =
n∑

i=1

αi < |β| =
n∑

i=1

βi,

or if

|α| = |β| and xα >lex xβ .

Thus, for example, in k[x, y], with x > y, we have

1 >alex x >alex y >alex x2 >alex xy >alex y2 >alex x3 >alex · · · .
Similarly one defines degree-anticompatible reverse lexicographic, or

arevlex, order as follows.
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(3.3) Definition (Antigraded Revlex Order). Let α, β ∈ Z
n
≥0. We

say xα >arevlex xβ if

|α| < |β|, or |α| = |β| and xα >revlex xβ .

So, for example, we have

1 >arevlex x >arevlex y >arevlex z >arevlex x2 >arevlex

xy >arevlex y2 >arevlex xz >arevlex yz >arevlex z2 >arevlex · · · .
Degree-anticompatible and local orders lack one of the key properties

of the monomial orders that we have used up to this point. Namely, the
third property in Definition (2.1) from Chapter 1, which requires that a
monomial order be a well-ordering relation, does not hold. Local orders
are not well-orderings. This can be seen even in the one-variable case in
Exercise 1 above.

In §4 of this chapter, we will need to make use of even more general
orders than degree-anticompatible or local orders. Moreover, and somewhat
surprisingly, the whole theory can be simplified somewhat by generalizing
at once to consider the whole class of semigroup orders as in the following
definition.

(3.4) Definition. An order > on Z
n
≥0 or, equivalently, on the set of

monomials xα, α ∈ Z
n
≥0 in k[x1, . . . , xn] or any of the local rings

k[x1, . . . , xn]〈x1,...,xn〉, k{x1, . . . , xn}, or k[[x1, . . . , xn]], is said to be a
semigroup order if it satisfies:
a. > is a total ordering on Z

n
≥0;

b. > is compatible with multiplication of monomials.

Semigroup orders include the monomial orders, which have the additional
well-ordering property, as well as local orders and other orders which do
not. Since the property of being a well-ordering is often used to assert that
algorithms terminate, we will need to be especially careful in checking that
procedures using semigroup orders terminate.

Recall that in §2 of Chapter 1 we discussed how monomial orders can be
specified by matrices. If M is an m× n real matrix with rows w1, . . . , wm,
then we define xα >M xβ if there is an � ≤ m such that α · wi = β · wi

for i = 1, . . . , � − 1, but α · w� > β · w�. Every semigroup order can be
described by giving a suitable matrix M . The following exercise describes
the necessary properties of M and gives some examples.

Exercise 2.
a. Show that >M is compatible with multiplication for every matrix M as

above.
b. Show that >M is a total ordering if and only if ker(M) ∩ Z

n
≥0 =

{(0, . . . , 0)}.
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c. Show that the lex monomial order with x1 > x2 > · · · > xn is the
order >I , where I is the n × n identity matrix.

d. Show that the alex order is the order >M defined by the matrix

M =

⎛⎜⎜⎜⎝
−1 −1 · · · −1

0 −1 · · · −1
...

...
. . .

...
0 0 · · · −1

⎞⎟⎟⎟⎠ .

e. Show that the arevlex order is the order >M for

M =

⎛⎜⎜⎜⎜⎜⎝
−1 −1 · · · −1 −1

0 0 · · · 0 −1
0 0 · · · −1 0
...

... ··· ...
...

0 −1 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠ .

f. Find a local order that is not degree-anticompatible. Hint: What is it
about the corresponding matrices that makes alex and arevlex degree-
anticompatible, resp. local?

If f =
∑

α cαxα ∈ k[x1, . . . , xn] is a polynomial and > is a semi-
group order, we define the multidegree, the leading coefficient, the leading
monomial, and the leading term of f exactly as we did for a monomial
order:

multideg(f) = max{α ∈ Z
n
≥0 : cα �= 0}

LC(f) = cmultideg(f)

LM(f) = xmultideg(f)

LT(f) = LC(f) · LM(f).

In addition, each semigroup order > defines a particular ring of fractions
in k(x1, . . . , xn) as in Exercise 9 of §1 of this chapter. Namely, given >, we
consider the set

S = {1 + g ∈ k[x1, . . . , xn] : g = 0, or LT>(g) < 1}.
S is closed under multiplication since if LT>(g) < 1 and LT>(g′) < 1, then
(1 + g)(1 + g′) = 1 + g + g′ + gg′, and LT(g + g′ + gg′) < 1 as well by the
definition of a semigroup order.

(3.5) Definition. Let > be a semigroup order on monomials in the ring
k[x1, . . . , xn] and let S = {1 + g : LT(g) < 1}. The localization of
k[x1, . . . , xn] with respect to > is the ring

Loc>(k[x1, . . . , xn]) = S−1k[x1, . . . , xn] = {f/(1 + g) : 1 + g ∈ S}.
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For example, if > is a monomial order, then there are no nonzero mono-
mials smaller than 1 so S = {1} and Loc>(k[x1, . . . , xn]) = k[x1, . . . , xn].
On the other hand, if > is a local order, then since 1 > xi for all i,

{g : g = 0, or LT>(g) < 1} = 〈x1, . . . , xn〉.
Hence, for a local order, we have that S is contained in the set of units in
k[x1, . . . , xn]〈x1,...,xn〉 so Loc>(k[x1, . . . , xn]) ⊂ k[x1, . . . , xn]〈x1,...,xn〉. But
in fact, by adjusting constants between the numerator and the denominator
in a general f/h ∈ k[x1, . . . , xn]〈x1,...,xn〉, it is easy to see that f/h =
f ′/(1 + g) for some 1 + g ∈ S. Hence if > is a local order, then

Loc>(k[x1, . . . , xn]) = k[x1, . . . , xn]〈x1,...,xn〉.

The next two exercises give some additional, more general, and also
quite suggestive examples of semigroup orders and their associated rings of
fractions.

Exercise 3. Using >alex on the x-terms, and >lex on the y-terms, define
a mixed order >mixed by xαyβ >mixed xα′

yβ′
if either yβ >lex yβ′

, or
yβ = yβ′

and xα >alex xα′
.

a. Show that >mixed is a semigroup order and find a matrix M such that
>mixed = >M .

b. Show that >mixed is neither a well-ordering, nor degree-anticompatible.
c. Let g ∈ k[x1, . . . , xn, y1, . . . , ym]. Show that 1 >mixed LT>mixed

(g) if
and only if g depends only on x1, . . . , xn, and is in 〈x1, . . . , xn〉 ⊂
k[x1, . . . , xn].

d. Let R = k[x1, . . . , xn, y1, . . . , ym]. Deduce that Loc>mixed
(R) is the

ring k[x1, . . . , xn]〈x1,...,xn〉[y1, . . . , ym], whose elements can be written
as polynomials in the yj , with coefficients that are rational functions of
the xi in k[x1, . . . , xn]〈x1,...,xn〉.

Exercise 4. If we proceed as in Exercise 3 but compare the x-terms first,
we get a new order defined by >mixed′ by xαyβ >mixed′ xα′

yβ′
if either

xα >alex xα′
, or xα = xα′

and yβ >lex yβ′
.

a. Show that >mixed′ is a semigroup order and find a matrix U such that
>mixed′=>U .

b. Show that >mixed′ is neither a well-ordering, nor degree-anticompatible.
c. Which elements f ∈ k[x1, . . . , xn, y1, . . . , yn] satisfy 1 >mixed′

LT>mixed′ (f)?
d. What is Loc>mixed′ (k[x1, . . . , xn, y1, . . . , ym])?

Note that the order >mixed from Exercise 3 has the following elimination
property : if xα >mixed xα′

yβ′
, then β′ = 0. Equivalently, any monomial

containing one of the yj is greater than all monomials containing only
the xi. It follows that if the >mixed leading term of a polynomial depends
only on the xi, then the polynomial does not depend on any of the yj .
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We will return to this comment in §4 after developing analogs of the divi-
sion algorithm and Gröbner bases for general term orders, because this is
precisely the property we need for elimination theory.

Given any semigroup order > on monomials in k[x1, . . . , xn], there is a
natural extension of > to Loc>(k[x1, . . . , xn]), which we will also denote
by >. Namely, if 1 + g ∈ S as in Definition (3.5), the rational function
1/(1+g) is a unit in Loc>(k[x1, . . . , xn]), so it shouldn’t matter in defining
the leading term of f/(1 + g). For any h ∈ Loc>(k[x1, . . . , xn]), we write
h = f/(1 + g) and define

multideg(h) = multideg(f)

LC(h) = LC(f)

LM(h) = LM(f)

LT(h) = LT(f).

Exercise 5. Write A = k[x1, . . . , xn] and let h ∈ A.
a. Show that multideg(h), LC(h), LM(h), LT(h) are well-defined in Loc>(A)

in the sense that if h = f/(1+g) = f ′/(1+g′), then multideg(h), LC(h),
LM(h), LT(h) will be the same whether f or f ′ is used to compute them.

b. Let r ∈ R be defined by the equation

h = LT(h) + r.

Show that either r = 0 or LT(r) < LT(h).

In Exercise 8, you will show that if > is a local order, then ev-
ery nonempty subset has a maximal element. This allows us to define
multideg(h), LC(h), LM(h), LT(h) when h ∈ k[[x1, . . . , xn]] (or h ∈
k{x1, . . . , xn} if k = R or C). Moreover, in this case, the multidegree and
leading term of h = f/(1 + g) ∈ k[x1, . . . , xn]〈x1,...,xn〉 agree with what
one obtains upon viewing h as a power series (via the series expansion of
1/(1 + g)).

The goal of this section is to use general semigroup orders to develop
an extension of the division algorithm in k[x1, . . . , xn] which will yield
information about ideals in R = Loc>(k[x1, . . . , xn]). The key step in the
division algorithm for polynomials is the reduction of a polynomial f by a
polynomial g. If LT(f) = m · LT(g), for some term m = cxα, we define

Red (f, g) = f − m g,

and say that we have reduced f by g. The polynomial Red (f, g) is just what
is left after the first step in dividing f by g—it is the first partial dividend.
In general, the division algorithm divides a polynomial by a set of other
polynomials by repeatedly reducing the polynomial by members of the set
and adding leading terms to the remainder when no reductions are possible.
This terminates in the case of polynomials because successive leading terms
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form a strictly decreasing sequence, and such sequences always terminate
because a monomial order is always a well-ordering.

In the case of a local order on a power series ring, one can define Red (f, g)
exactly as above. However, a sequence of successive reductions need no
longer terminate. For example, suppose f = x and we decide to divide f
by g = x − x2, so that we successively reduce by x − x2. This gives the
reductions:

f1 = Red (f, g) = x2

f2 = Red (f1, g) = x3

...

fn = Red (fn−1, g) = xn+1,

and so on, which clearly does not terminate. The difficulty, of course, is
that under the antidegree order in k[x]〈x〉 or k[[x]], we have the infinite
strictly decreasing sequence of terms x > x2 > x3 > · · ·.

We can evade this difficulty with a splendid idea of Mora’s. When divid-
ing fi by g, for instance, we allow ourselves to reduce not just by g, but
also by the result of any previous reduction. That is, we allow reductions
by f itself (which we can regard as the “zeroth” reduction), or by any of
f1, . . . , fi−1. More generally, when dividing a set of polynomials or power
series, we allow ourselves to reduce by the original set together with the
results of any previous reduction. So, in our example, where we are divid-
ing f = x by g = x − x2, the first reduction is f1 = Red (f, g) = x2. For
the next reduction, we allow ourselves to reduce f1 by f as well as g. One
checks that

Red (f1, f) = Red (x2, x) = 0,

so that we halt. Moreover, this reduction being zero implies x2 = xf .
If we combine this with the equation f = 1 · g + x2 which gives f1 =
Red (f, g) = x2, we obtain the relation f = g + xf, or (1 − x)f = g. This
last equation tells us that in k[x]〈x〉, we have

f =
1

1 − x
g.

In other words, the remainder on division of f by g is zero since x and
x − x2 = x(1 − x) generate the same ideal in k[x]〈x〉 or k[[x]].

Looking at the above example, one might ask whether it would always
suffice to first reduce by g, then subsequently reduce by f . Sadly, this
is not the case: it is easy to construct examples where the sequence of
reductions does not terminate. Suppose, for example, that we wish to divide
f = x + x2 by g = x + x3 + x5.

Exercise 6. Show that in this case too, f and g generate the same ideal
in k[[x]] or k[x]〈x〉.
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Reducing f by g and then subsequently reducing the results by f0 = f
gives the sequence

f1 = Red (f, g) = x2 − x3 − x5

f2 = Red (f1, f) = −2x3 − x5

f3 = Red (f2, f) = 2x4 − x5

f4 = Red (f3, f) = −3x5

f5 = Red (f4, f) = 3x6

f6 = Red (f5, f) = −3x7,

and so on, which again clearly does not terminate. However, we get
something which does terminate by reducing f5 by f4:

f5 = Red (f4, f) = 3x6

f̃6 = Red (f5, f4) = 0.

From this, we can easily give an expression for f :

f = 1 · g + (x − 2x2 + 2x3 − 3x4) · f + f5.

However, we also have

f5 = 3x6 = 3x5 · x = 3x5 · x + x2

1 + x
=

3x5

1 + x
f.

Backsubstituting this into the previous equation for f and multiplying by
1 + x, we obtain

(1 + x)f = (1 + x)g + (1 + x)(x − 2x2 + 2x3 − 3x4)f + 3x5f.

Then moving xf to the right-hand side gives an equation of the form

f = (unit) · g + (polynomial vanishing at 0) · f.

This, of course, is what we want according to Exercise 6; upon transposing
and solving for f , we have f = (unit) · g.

Our presentation will now follow the recent book [GrP], which describes
the algorithms underlying the latest version of the computer algebra sys-
tem Singular. We will introduce this system in the next section. Since we
deal with orders that are not well-orderings, the difficult part is to give a
division process that is guaranteed to terminate. The algorithm and termi-
nation proof from [GrP] use a clever synthesis of ideas due to Lazard and
Mora, but the proof is (rather amazingly) both simpler and more general
than Mora’s original one. Using reductions by results of previous reduc-
tions as above, Mora developed a division process for polynomials based
on a local order. His proof used a notion called the écart of a polynomial, a
measurement of the failure of the polynomial to be homogeneous, and the
strategy in the division process was to perform reductions that decrease
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the écart. This is described, for instance, in [MPT]. Also see Exercise 11
below for the basics of this approach. Lazard had shown how to do the
same sort of division by homogenizing the polynomials and using an ap-
propriate monomial order defined using the local order. In implementing
Singular, the authors of [GrP] found that Mora’s algorithm could be made
to work for any semigroup order. The same result was found independently
by Gräbe (see [Grä]). Theorem (3.10) below gives the precise statement.

To prepare, we need to describe Lazard’s idea mentioned above. We will
specify the algorithm by using the homogenizations of f and the fi with
respect to a new variable t. If g ∈ k[x1, . . . , xn] is any polynomial, we
will write gh for the homogenization of g with respect to t. That is, if
g =

∑
α cαxα and d is the total degree of g, then

gh =
∑
α

cαtd−|α|xα.

(3.6) Definition. Each semigroup order > on monomials in the xi extends
to a semigroup order >′ on monomials in t, x1, . . . , xn in the following way.
We define taxα >′ tbxβ if either a + |α| > b + |β|, or a + |α| = b + |β| and
xα > xβ .

In Exercise 12 below, you will show that >′ is actually a monomial order
on k[t, x1, . . . , xn].

By the definition of >′, it follows that if ta > ta
′
xβ for some a, a′, β with

a = a′ + |β|, then 1 > xβ . Hence, writing R = Loc>(k[x1, . . . , xn]),

(3.7) ta > ta
′
xβ and a = a′ + |β| ⇒ 1 + xβ is a unit in R.

It is also easy to see from the definition that if g ∈ k[x1, . . . , xn], then
homogenization takes the >-leading term of g to the >′-leading term of gh—
that is, LT>′(gh) = taLT>(g), where a = d− |multideg>(g)|. Conversely, if
G is homogeneous in k[t, x1, . . . , xn], then dehomogenizing (setting t = 1)
takes the leading term LT>′(G) to LT>(g), where g = G|t=1.

Given polynomials f, f1, . . . , fs and a semigroup order >, we want to
show that there is an algorithm (called Mora’s normal form algorithm) for
producing polynomials h, u, a1, . . . , as ∈ k[x1, . . . , xn], where u = 1 + g
and LT(g) < 1 (so u is a unit in Loc>(k[x1, . . . , xn])), such that

(3.8) u · f = a1f1 + · · · + asfs + h,

where LT(ai)LT(fi) ≤ LT(f) for all i, and either h = 0, or LT(h) ≤ LT(f)
and LT(h) is not divisible by any of LT(f1), . . . , LT(fs).

Several comments are in order here. First, note that the inputs
f, f1, . . . , fs, the remainder h, the unit u, and the quotients a1, . . . , as in
(3.8) are all polynomials. The equation (3.8) holds in k[x1, . . . , xn], and as
we will see, all the computations necessary to produce it also take place in a
polynomial ring. We get a corresponding statement in Loc>(k[x1, . . . , xn])
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by multiplying both sides by 1/u:

f = (a1/u)f1 + · · · + (as/u)fs + (h/u).

By Exercise 11 of §1, restricting to ideals generated by polynomials entails
no loss of generality when we are studying ideals in k[x1, . . . , xn]〈x1,...,xn〉 =
Loc>(k[x1, . . . , xn]) for a local order >. But the major reason for re-
stricting the inputs to be polynomials is that that allows us to specify
a completely algorithmic (i.e., finite) division process. In k[[x1, . . . , xn]]
or k{x1, . . . , xn}, even a single reduction—computing Red (f, g)—would
take infinitely many computational steps if f or g were power series with
infinitely many non-zero terms.

Second, when dividing f by f1, . . . , fs as in (3.8), we get a “remainder”
h whose leading term is not divisible by any of the LT(fi). In contrast, if
we divide using the division algorithm of Chapter 1, §2, we get a remainder
containing no terms divisible by any of the LT(fi). Conceptually, there
would be no problem with removing a term not divisible by any of the
LT(fi) and continuing to divide. But as in the first comment, this process
may not be finite.

On the surface, these differences make the results of the Mora normal
form algorithm seem weaker than those of the division algorithm. Even so,
we will see in the next section that the Mora algorithm is strong enough
for many purposes, including local versions of Buchberger’s criterion and
Buchberger’s algorithm.

Instead of working with the f, fi, h, ai, and u directly, our statement of
the algorithm will work with their homogenizations, and with the order >′

from Definition (3.6). Let F = fh and Fi = fh
i for i = 1, . . . , s. We first

show that there are homogeneous polynomials U, A1, . . . , An such that

(3.9) U · F = A1F1 + · · · + AsFs + H,

where LT(U) = ta for some a,

a + deg(F ) = deg(Ai) + deg(Fi) = deg(H)

whenever Ai, H �= 0. Note that since U is homogeneous, if LT(U) = ta,
then by (3.7) when we set t = 1, the dehomogenization u is a unit in
Loc>(k[x1, . . . , xn]). The other conditions satisfied by U, A1, . . . , As, H are
described in the following theorem.

(3.10) Theorem (Homogeneous Mora Normal Form Algorithm).
Given nonzero homogeneous polynomials F, F1, . . . , Fs in k[t, x1, . . . , xn]
and the monomial order >′ extending the semigroup order > on monomials
in the xi, there is an algorithm for producing homogeneous polynomials
U, A1, . . . , As, H ∈ k[t, x1, . . . , xn] satisfying

U · F = A1F1 + · · · + AsFs + H,
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where LT(U) = ta for some a,

a + deg(F ) = deg(Ai) + deg(Fi) = deg(H)

whenever Ai, H �= 0, taLT(F ) ≥′ LT(Ai)LT(Fi), and no LT(Fi) divides
tbLT(H) for any b ≥ 0.

Proof. We give below the algorithm for computing the remainder H.
(The computation of the Ai and U is described in the correctness argument
below.) An important component of the algorithm is a set L consisting of
possible divisors for reduction steps. As the algorithm proceeds, this set
records the results of previous reductions for later use, according to Mora’s
idea.

Input: F, F1, . . . , Fs ∈ k[t, x1, . . . , xn] homogeneous and nonzero
Output: H as in the statement of Theorem (3.10)

H := F ; L := {F1, . . . , Fs}; M := {G ∈ L : LT(G)|LT(taH) for some a}
WHILE (H �= 0 AND M �= ∅) DO

SELECT G ∈ M with a minimal
IF a > 0 THEN

L := L ∪ {H}
H := Red(taH, G)
IF H �= 0 THEN

M := {G ∈ L : LT(G)|LT(taH) for some a}
We claim that the algorithm terminates on all inputs and correctly

computes H as described in the statement of the theorem.
To prove termination, letMj denote the monomial ideal

〈LT(L)〉 = 〈LT(G) : G ∈ L〉 ⊂ k[t, x1, . . . , xn]

after the jth pass through the WHILE loop (j ≥ 0). The loop either leaves
L unchanged or adds the polynomial H. Thus

Mj ⊂ Mj+1.

Notice that when H is added to L, LT(H) does not lie inMj , for if it did,
then we would have

LT(G)|LT(H)

for some G ∈ L. Thus LT(G)|LT(t0H), which would contradict our choice
of H since a was chosen to be minimal, yet adding H to L requires a > 0.
It follows that Mj ⊂ Mj+1 is a strict inclusion when a new element is
added to L during the jth pass.

Since the polynomial ring k[t, x1, . . . , xn] satisfies the ascending chain
condition on ideals, there is some N such that MN = MN+1 = · · ·.
By what we just proved, it follows that no new elements are added to L
after the Nth pass through the WHILE loop. Thus, from this point on,
the algorithm continues with a fixed set of divisors L, and at each step a
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reduction takes place decreasing the >′-leading term of H. Since >′ is a
monomial order on k[t, x1, . . . , xn], the process must terminate as in the
proof of the usual division algorithm.

To prove correctness, observe that the algorithm terminates when H = 0
or M = ∅. In the latter case, {F1, . . . , Fs} ⊂ L tells us that LT(Fi) doesn’t
divide LT(tbH) = tbLT(H) for any 1 ≤ i ≤ s and b ≥ 0. Thus H has the
correct divisibility properties when it is nonzero.

It remains to show that H satisfies an identity of the form (3.9) with
LT(U) = ta. We will count passes through the WHILE loop starting at
j = 0 and let Hj be the value of H at the beginning of the jth pass
through the loop (so H0 = F at the start of the 0th pass). We will prove
by induction on j ≥ 0 that we have identities of the form

(3.11) UkF = A1,kF1 + · · · + As,kFs + Hk, 0 ≤ k ≤ j,

where Uk and Ai,k are homogeneous with

LT(Uk) = tak

such that ak+deg(F ) = deg(Ai,k)+deg(Fi) = deg(Hk) and, for 0 < k ≤ j,

(3.12) ak−1 ≤ ak and tak LT(Hk−1) >′ tak−1LT(Hk).

Since H0 = F , setting U0 = 1 and Al,0 = 0 for all l shows that ev-
erything works for j = 0. Now assume j > 0. We need to prove that the
polynomial Hj+1 produced by the jth pass through the loop satisfies the
above conditions.

If no LT(G) divides tbLT(Hj) for any b ≥ 0 and G ∈ L, then the algorithm
terminates with Hj and we are done. Otherwise some G ∈ L satisfies
LT(G)|LT(taHj) with a minimal. Hence there is a term M such that

LT(taHj) = M LT(G).

There are two possibilities to consider: either G = Fi for some i, or G = H�

for some � < j.
If G = Fi for some i, and a is chosen as above, then Hj+1 =

Red(taHj , Fi) means that

taHj = M Fi + Hj+1.

If we multiply the equation (3.11) with k = j by ta and substitute, then
we obtain

taUjF = taA1,jF1 + · · · + taAs,jFs + taHj

= taA1,jF1 + · · · + taAs,jFs + M Fi + Hj+1.

Taking Uj+1 = taUj and

Al,j+1 =
{

taAl,j if l �= i
taAl,j + M if l = i,
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we get an expression of the form (3.11) with k = j + 1. Also note that
LT(Uj+1) = ta+aj .

On the other hand, if G is a result H� of a previous reduction, then
Hj+1 = Red(taHj , H�) means that

taHj = M H� + Hj+1.

Now take (3.11) with k = j (resp. k = �) and multiply by ta (resp. M).
Subtracting gives the equation

(taUj −M U�)F = (taA1,j −M A1,�)F1 + · · ·+(taAs,j −M As,�)Fs +Hj+1.

Setting Uj+1 = taUj−M U� and Al,j+1 = taAl,j−M Al,�, we see that (3.11)
holds for k = j + 1. As for LT(Uj+1), note that (3.12) implies taj LT(H�) >′

ta�LT(Hj) since � < j. Thus

ta+aj LT(H�) = tataj LT(H�) >′ tata�LT(Hj) = ta�LT(taHj) = ta�M LT(H�),

which gives ta+aj >′ ta�M. Using LT(Uj) = taj and LT(U�) = ta� , we obtain

LT(Uj+1) = LT(taUj − M U�) = ta+aj .

Finally, note that LT(Uj+1) = ta+aj in both cases, so that aj+1 = a +
aj ≥ aj . Also

LT(taHj) >′ LT(Hj+1)

since Hj+1 is a reduction of taHj . From here, it is straightforward to show
that (3.12) holds for k = j + 1. This completes the induction and shows
that H has the required properties.

To finish the proof, we need to show that

a + deg(F ) = deg(Ai) + deg(Fi) and taLT(F ) ≥′ LT(Ai)LT(Fi)

when Ai �= 0. You will do this in Exercise 13.

Next, we claim that after homogenizing, applying the homogeneous Mora
normal form algorithm, and dehomogenizing, we obtain an expression (3.8)
satisfying the required conditions. Here is the precise result.

(3.13) Corollary (Mora Normal Form Algorithm). Suppose that
f, f1, . . . , fs ∈ k[x1, . . . , xn] are nonzero and > is a semigroup order on
monomials in the xi. Then there is an algorithm for producing polynomials
u, a1, . . . , as, h ∈ k[x1, . . . , xn] such that

uf = a1f1 + · · · + asfs + h,

where LT(u) = 1 (so u is a unit in Loc>(k[x1, . . . , xn])), LT(ai)LT(fi) ≤
LT(f) for all i with ai �= 0, and either h = 0, or LT(h) is not divisible by
any LT(fi).

Proof. See Exercise 14.
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Exercise 7. Carry out the Mora normal form algorithm dividing f =
x2 + y2 by f1 = x − xy, f2 = y2 + x3 using the alex order in k[x, y].

In Loc>(k[x1, . . . , xn]), we get a version of the Mora algorithm that
doesn’t require f to be a polynomial. Recall from Exercise 5 that LT(f)
makes sense for any nonzero f ∈ Loc>(k[x1, . . . , xn]).

(3.14) Corollary. Let > be a semigroup order on monomials in the
ring k[x1, . . . , xn] and let R = Loc>(k[x1, . . . , xn]). Let f ∈ R and
f1, . . . , fs ∈ k[x1, . . . , xn] be nonzero. Then there is an algorithm for
computing h, a1, . . . , as ∈ R such that

f = a1f1 + · · · + asfs + h,

where LT(ai)LT(fi) ≤ LT(f) for all i with ai �= 0, and either h = 0, or
LT(h) ≤ LT(f) and LT(h) is not divisible by any of LT(f1), . . . , LT(fs).

Proof. If we write f in the form f ′/u′ where f ′, u′ ∈ k[x1, . . . , xn] and
u′ is a unit in R, then dividing f ′ by f1, . . . , fs via Corollary (3.13) gives

u · f ′ = a′
1f1 + · · · + a′

sfs + h′,

where u, h′, a′
1, . . . , a

′
s are as in the corollary. Also observe that LT(h′) ≤

LT(h) follows from LT(a′
i)LT(fi) ≤ LT(f ′). Since the leading term of a unit is

a nonzero constant (see Exercise 2), dividing a polynomial by a unit doesn’t
affect the leading term (up to multiplication by a nonzero constant). Thus,
dividing the above equation by the unit u u′ gives

f = a1f1 + · · · + asfs + h,

where ai = a′
i/(uu′), h = h′/(uu′) clearly have the required properties.

In the next section, we will use the Mora normal form algorithm to extend
Buchberger’s algorithm for Gröbner bases to ideals in local rings.

ADDITIONAL EXERCISES FOR §3

Exercise 8. Let > be a local order on monomials in k[x1, . . . , xn]〈x1,...,xn〉
and k[[x1, . . . , xn]].
a. Show that every nonempty set of monomials has a maximal element

under >. Hint: Define >r by xα >r xβ if and only if xα < xβ . Use
Corollary 6 of Chapter 2, §4 of [CLO] to prove that >r is a well-ordering.

b. Use part a to define multideg(h) and LT(h) for h ∈ k[[x1, . . . , xn]].
c. Let i : k[x1, . . . , xn]〈x1,...,xn〉 ↪→ k[[x1, . . . , xn]] denote the inclusion

obtained by writing each h ∈ k[x1, . . . , xn]〈x1,...,xn〉 in the form f/(1+g)
and then expanding 1/(1 + h) in a formal geometric series. Show that
multideg(h) = multideg(i(h)).
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d. Deduce that

LM>(h) = LM>(i(h)), LC>(h) = LC>(i(h)), and LT>(h) = LT>(i(h)).

Exercise 9. In the homogeneous Mora normal form algorithm (3.10),
suppose that h = 0 after dehomogenizing. Show that f belongs to the
ideal generated by f1, . . . , fs in the ring R = Loc>(k[x1, . . . , xn]). Is the
converse always true?

Exercise 10. How should the homogeneous Mora normal form algorithm
(3.10) be extended to return the quotients Ai and the unit U as well as the
polynomial H? Hint: Use the proof of correctness.

Exercise 11. This exercise describes the way Mora based the original
version of the normal form algorithm (for local orders) on the écart of a
polynomial. Let g �= 0 ∈ k[x1, . . . , xn], and write g as a finite sum of
homogeneous nonzero polynomials of distinct total degrees:

g =
k∑

i=1

gi, gi homogeneous,

with deg(g1) < · · · < deg(gk). The order of g, denoted ord(g), is the total
degree of g1. The total degree of g, denoted deg(g) is the total degree of gk.
The écart of g, denoted E(g), is the difference of the degree of g and the
order of g:

E(g) = deg(g) − ord(g).

By convention, we set E(0) = −1. Thus E(g) ≥ −1 for all g. (The word
écart is French for “difference” or “separation”—clearly a good description
of the meaning of E(g)!)
a. Let > be a local order and let f and g be two nonzero polynomials such

that LT(g) divides LT(f). Then show that

E(Red (f, g)) ≤ max(E(f), E(g)).

b. In the one-variable case, part a gives a strategy that guarantees termi-
nation of division. Namely, at each stage, among all the polynomials by
which we can reduce, we reduce by the polynomial whose écart is least.
Show that this will ensure that the écarts of the sequence of partial
dividends decreases to zero, at which point we have a monomial which
can be used to reduce any subsequent partial dividend to 0.

c. Apply this strategy, reducing by the polynomial with the smallest pos-
sible écart at each step, to show that g divides f in k[x]〈x〉 in each of
the following cases.
1. g = x + x2 + x3, f = x2 + 2x7. Note that there is no way to produce

a sequence of partial dividends with strictly decreasing écarts in this
case.
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2. g = x + x2 + x3, f = x + x2 + x3 + x4. Note that after producing
a monomial with the first reduction, the écart must increase.

Exercise 12. Let > be a semigroup order on monomials in k[x1, . . . , xn]
and extend to >′ on monomials in t, x1, . . . , xn as in the text: define
taxα >′ tbxβ if either a + |α| > b + |β| or a + |α| = b + |β|, but xα > xβ .
a. Show that >′ is actually a monomial order on k[t, x1, . . . , xn].
b. Show that if > = >M for an m× n matrix M , then >′ is the order >M ′

where M ′ is the (m + 1) × (n + 1) matrix⎛⎜⎜⎜⎝
1 1 · · · 1
0
... M
0

⎞⎟⎟⎟⎠ .

Exercise 13. Prove that at every stage of the homogeneous Mora normal
form algorithm from Theorem (3.10), the polynomials U, A1, . . . , As, H are
homogeneous and satisfy the conditions

a + deg(F ) = deg(Ai) + deg(Fi) = deg(H)

taLT(F ) ≥′ LT(Ai)LT(Fi)

whenever Ai, H �= 0.

Exercise 14. Prove Corollary (3.13) using the homogeneous polynomials
produced by the homogeneous Mora normal form algorithm described in
the proof of Theorem (3.10). Hint: See the paragraph following (3.7).

Exercise 15. In [GrP], Mora’s original notion of écart (described in
Exercise 11) is modified to create a version of the Mora normal form algo-
rithm which works directly with the polynomial ring k[x1, . . . , xn] and the
semigroup order >. Define the écart of f ∈ k[x1, . . . , xn] to be

ecart(f) = deg(f) − deg(LT(f)).

Given nonzero polynomials f, f1, . . . , fs ∈ k[x1, . . . , xn], prove that the
remainder h from Corollary (3.13) is produced by the following algorithm.

h := f ; L := {f1, . . . , fs}; M := {g ∈ L : LT(g)|LT(h)}
WHILE (h �= 0 AND M �= ∅) DO

SELECT g ∈ M with ecart(g) minimal
IF ecart(g) > ecart(h) THEN

L := L ∪ {h}
h := Red(h, g)
IF h �= 0 THEN

M := {g ∈ L : LT(g)|LT(h)}
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§4 Standard Bases in Local Rings

In this section, we want to develop analogs of Gröbner bases for ideals in
any one of our local rings R = k[x1, . . . , xn]〈x1,...,xn〉, R = k{x1, . . . , xn},
or R = k[[x1, . . . , xn]]. Just as for well-orderings, given an ideal I in R,
we define the set of leading terms of I, denoted LT(I), to be the set of all
leading terms of elements of I with respect to >. Also, we define the ideal
of leading terms of I, denoted 〈LT(I)〉, to be the ideal generated by the set
LT(I) in R. Also just as for ideals in polynomial rings, it can happen that
I = 〈f1, . . . , fs〉 but 〈LT(I)〉 �= 〈LT(f1), . . . , LT(fs)〉 for an ideal I ⊂ R.
By analogy with the notion of a Gröbner basis, we make the following
definition.

(4.1) Definition. Let > be a semigroup order and let R be the ring of
fractions Loc>(k[x1, . . . , xn]) as in Definition (3.5), or let > be a local
order and let R = k[[x1, . . . , xn]] or k{x1, . . . , xn}. Let I ⊂ R be an
ideal. A standard basis of I is a set {g1, . . . , gt} ⊂ I such that 〈LT(I)〉 =
〈LT(g1), . . . , LT(gt)〉.

In the literature, the term “standard basis” is more common than
“Gröbner basis” when working with local orders and the local rings
R = k[x1, . . . , xn]〈x1,...,xn〉, k[[x1, . . . , xn]], or k{x1, . . . , xn} so we use that
terminology here.

Every nonzero ideal in these local rings has standard bases. As a result,
there is an analog of the Hilbert Basis Theorem for these rings: every ideal
has a finite generating set. The proof is the same as for polynomials (see
Exercise 2 of Chapter 1, §3 and Exercise 2 below). Moreover, the Mora
normal form algorithm—Corollary (3.13)—is well behaved when dividing
by a standard basis. In particular, we obtain a zero remainder if and only
if f is in the ideal generated by the standard basis (see Exercise 2).

However, in order to construct algorithms for computing standard bases,
we will restrict our attention once more to ideals that are generated in
these rings by collections of polynomials. Most of the ideals of interest
in questions from algebraic geometry have this form. This will give us
algorithmic control over such ideals. For example, we obtain a solution of
the ideal membership problem for ideals generated by polynomials in the
local rings under consideration.

Given polynomial generators for an ideal, how can we compute a stan-
dard basis for the ideal? For the polynomial ring k[x1, . . . , xn] and Gröbner
bases, the key elements were the division algorithm and Buchberger’s algo-
rithm. Since we have the Mora algorithm, we now need to see if we can carry
Buchberger’s algorithm over to the case of local or other semigroup orders.
That is, given a collection f1, . . . , fs of polynomials, we would like to find
a standard basis with respect to some local order of the ideal 〈f1, . . . , fs〉
they generate in a local ring R. More generally, one could also look for
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algorithms for computing standard bases of ideals in Loc>(k[x1, . . . , xn])
for any semigroup order.

It is a pleasant surprise that the ingredients fall into place with no dif-
ficulty. First, the definition of S-polynomials in this new setting is exactly
the same as in k[x1, . . . , xn] (see Definition (3.2) of Chapter 1), but here
we use the leading terms with respect to our chosen semigroup order.

Next, recall that Buchberger’s algorithm consists essentially of forming
S-polynomials of all elements in the input set F = {f1, . . . , fs} of poly-
nomials, finding remainders upon division by F , adding to F any nonzero
remainders, and iterating this process (see §3 of Chapter 1). Since we have
the Mora normal form algorithm, whose output is a sort of remainder on
division, we can certainly carry out the same steps as in Buchberger’s algo-
rithm. As with any algorithm, though, we have to establish its correctness
(that is, that it gives us what we want) and that it terminates.

In the case of well-orders, correctness of Buchberger’s algorithm is guar-
anteed by Buchberger’s criterion, which states that a finite set G is a
Gröbner basis if and only if the remainder upon division by G of every
S-polynomial formed from pairs of elements of G is 0 (see Chapter 1, §3).

The following theorem gives analogs of Buchberger’s criterion and
Buchberger’s algorithm for the ring of a semigroup order.

(4.2) Theorem. Let S ⊂ k[x1, . . . , xn] be finite, let > be any semigroup
order, and let I be the ideal in R = Loc>(k[x1, . . . , xn]) generated by S.
a. (Analog of Buchberger’s Criterion) S = {g1, . . . , gt} is a standard basis

for I if and only if applying the Mora normal form algorithm given in
Corollary (3.13) to every S-polynomial formed from elements of the set
S yields a zero remainder.

b. (Analog of Buchberger’s Algorithm) Buchberger’s algorithm, using the
Mora normal form algorithm in place of the usual polynomial division
algorithm, computes a polynomial standard basis for the ideal generated
by S, and terminates after finitely many steps.

Proof. Let f
S,Mora

be the remainder h computed by Corollary (3.13) on
division of f by S. If S is a standard basis of I, then since S(gi, gj) ∈ I for

all i, j, Exercise 2 implies that S(gi, gj)
S,Mora

= 0 for all i, j.

Conversely, we need to show that S(gi, gj)
S,Mora

= 0 for all i, j
implies that S is a standard basis, or equivalently that 〈LT(I)〉 =
〈LT(g1), . . . , LT(gt)〉, using the order >. We will give the proof in the special
case when > is degree-anticompatible, meaning that |α| > |β| ⇒ xα < xβ .
Examples are the orders >alex or >arevlex from Definitions (3.2) and (3.3).
Given f ∈ I = 〈g1, . . . , gt〉, we prove that LT(f) ∈ 〈LT(g1), . . . , LT(gt)〉 as
follows. Consider the nonempty set

Sf = {max{LT(aigi)} : a1, . . . , as ∈ R satisfy f =
∑t

i=1aigi}.
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For a general semigroup order, we can’t claim that Sf has a minimal
element, even though Sf is bounded below by LT(f). However, in Exer-
cise 3, you will show that this is true for degree-anticompatible orders.
Hence we can let δ = min Sf . From here, the rest of the argument that
LT(f) ∈ 〈LT(g1), . . . , LT(gt)〉 is a straightforward adaptation of the proof
of Theorem 6 of Chapter 2, §6 of [CLO] (you will verify this in Exercise 4).
This proves Buchberger’s criterion for degree-anticompatible orders. The
general case requires an analysis of the syzygy module of g1, . . . , gs (see
Theorem 2.5.9 of [GrP] for the details).

For part b, observe that the usual proof that Buchberger’s algorithm
terminates and yields a Gröbner basis depends only on the ascending chain
condition for polynomial ideals (applied to the chain of monomial ideals
generated by the leading terms of the “partial bases” constructed as the
algorithm proceeds—see the proof of Theorem 2 of [CLO], Chapter 2, §2).
It does not require that the order used for the division process be a well-
order. It follows that, replacing each ordinary remainder computation by a
computation of the remainder from Mora’s algorithm, we get an algorithm
that terminates after a finite number of steps. Moreover, on termination,
the result gives a standard basis for I by part a.

The Mora normal form algorithm and standard basis algorithms using lo-
cal orders or more general semigroup orders > are not implemented directly
in the Gröbner basis packages in Maple or Mathematica. They could be
programmed directly in those systems, however, using the homogenization
process and the order >′ from Definition (3.6). Alternatively, according to
Lazard’s original idea, the standard Buchberger algorithm could be applied
to the homogenizations of a generating set for I. This approach is sketched
in Exercise 5 below and can be carried out in any Gröbner basis implemen-
tation. Experience seems to indicate that standard basis computation with
Mora’s normal form algorithm is more efficient than computation using
Lazard’s approach, however. The CALI package for REDUCE does con-
tain an implementation of Buchberger’s algorithm using semigroup orders
including local orders.

There is also a powerful package called Singular described in [GrP] and
available via the World Wide Web from the University of Kaiserslautern
(see the Singular homepage at http://www.singular.uni-kl.de/) that
carries out these and many other calculations. In particular, Singular is
set up so that local orders, monomial orders (well-orderings), and mixed
orders can be specified in a unified way as >M orders for integer matrices
M . This means that it can be used for both Gröbner and standard basis
computations. Here is a very simple Singular session computing a standard
basis of the ideal generated by

x5 − xy6 + z7, xy + y3 + z3, x2 + y2 − z2
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in R = k[x, y, z]〈x,y,z〉 using the alex order, and computing the multiplicity
of the origin as a solution of the corresponding system of equations.

> ring r = 32003, (x,y,z), Ds;
> ideal i = x5-xy6+z7, xy+y3+z3, x2+y2-z2;
> ideal j=std(i);
4(2)s5.8-s(2)s9..s(3).10.---sH(11)
product criterion:8 chain criterion:7
> j;
j[1]=x2+y2-1z2
j[2]=xy+y3+z3
j[3]=y3-1yz2-1xy3-1xz3
j[4]=xz4-1y6+2y4z2-1y3z3+2yz5-1xy6+z7
j[5]=y2z4-1z6+xy6-2xy4z2+xy3z3-2xyz5+x2y6-1xz7
j[6]=yz7
j[7]=z9
> vdim(j);
24

Singular can work either with a finite field of coefficients or with k = Q

or a finite extension of Q. The first line here defines the characteristic of the
field, the ring variables, and the monomial order. The Ds is an abbreviation
for the alex order, which could also be specified by a matrix as follows

> ring r = 32003, (x,y,z), ((-1,-1,-1),(0,-1,-1),(0,0,-1));

as in Exercise 2 of §3. The ideal I is defined by the three polynomials above,
J contains the standard basis (seven polynomials in all), and the vdim
command computes the dimension of dim R/〈LT(J)〉. For more information
about this very flexible package, we refer the interested reader to [GrP].

We’ve already commented on how standard bases enable one to solve
the ideal membership problem in local rings, just as Gröbner bases solve
the corresponding problem in polynomial rings. Another important use of
Gröbner bases is the computation of dim k[x1, . . . , xn]/I when this dimen-
sion is finite. For the local version of this result, we will use the following
terminology: given a local order > and an ideal I in one of the local
rings k[x1, . . . , xn]〈x1,...,xn〉, k[[x1, . . . , xn]] or k{x1, . . . , xn}, we say that
a monomial xα is standard if

xα /∈ 〈LT(I)〉.
Then we have the following result about standard monomials.

(4.3) Theorem. Let R be one of the local rings k[x1, . . . , xn]〈x1,...,xn〉,
k[[x1, . . . , xn]] or k{x1, . . . , xn}. If I ⊂ R is an ideal and > is a local
order, then the following are equivalent.
a. dim R/I is finite.
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b. dim R/〈LT(I)〉 is finite.
c. There are only finitely many standard monomials.

Furthermore, when any of these conditions is satisfied, we have

dim R/I = dim R/〈LT(I)〉 = number of standard monomials

and every f ∈ R can be written uniquely as a sum

f = g + r,

where g ∈ I and r is a linear combination of standard monomials. In
addition, this decomposition can be computed algorithmically when R =
k[x1, . . . , xn]〈x1,...,xn〉.

Proof. We first prove a⇒ c. Suppose that xα(1), . . . , xα(m) are standard
monomials with m > dim R/I. It follows easily that there is a nontrivial
linear combination

f =
�∑

i=1

cix
α(i) ∈ I, ci ∈ k.

Then LT(f) ∈ 〈LT(I)〉 implies that some xα(i) ∈ 〈LT(I)〉, which is im-
possible since xα(i) is standard. This shows that the number of standard
monomials is bounded above by dim R/I.

For c ⇒ a, suppose that R = k[x1, . . . , xn]〈x1,...,xn〉. Then Exercise 11
of §1 implies that I is generated by polynomials, which means that we can
compute a polynomial standard basis G of I. Now take f ∈ R and divide
f by G using Corollary (3.14) to obtain

f = g1 + h1,

where g1 ∈ I and either h1 = 0 or LT(h1) /∈ 〈LT(G)〉 = 〈LT(I)〉 (since G is
a standard basis) and LT(f) ≥ LT(h1). Note that we are using the extension
of LT to R studied in Exercise 5 of §3.

If h1 �= 0, let LT(h1) = c1x
α(1), c1 ∈ k, c1 �= 0. Thus xα(1) is standard

and, by Exercise 5 of §3, h1 = c1x
α(1) +r1, where r1 = 0 or xα(1) > LT(r1).

If r1 �= 0, then applying the above process gives

r1 = g2 + h2 = g2 + c2x
α(2) + r2

with g2 ∈ I, xα(2) standard, and r2 = 0 or xα(2) > LT(r2). If we combine
this with the formula for f , we obtain

f = g1 + h1 = g1 + c1x
α(1) + r1 = (g1 + g2) + c1x

α(1) + c2x
α(2) + r2,

where g1 + g2 ∈ I, xα(1), xα(2) standard, and xα(1) > xα(2) > LT(r2) if
r2 �= 0. We can continue this process as long as we have nonzero terms to
work with. However, since there are only finitely many standard monomials,
this process must eventually terminate, which shows that f has the form
g + r described in the statement of the theorem. We will leave it for the
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reader to prove uniqueness and describe an algorithm that carries out this
process (see Exercise 6 below). It follows that the cosets of the standard
monomials give a basis of R/I, proving

dim R/I = number of standard monomials

when R = k[x1, . . . , xn]〈x1,...,xn〉.
When R = k{x1, . . . , xn} or R = k[[x1, . . . , xn]], if we assume that we

can perform the Mora Normal Form Algorithm on inputs from R, then the
above argument applies for any f ∈ R. The details of how this works will
be discussed in Exercise 2 below. This completes the proof of c ⇒ a and
the final assertions of the theorem.

It remains to prove b ⇔ c. This follows immediately from what we have
already proved since I and 〈LT(I)〉 have the same standard monomials.

When R = k[[x1, . . . , xn]] or R = k{x1, . . . , xn}, there are more pow-
erful versions of Theorem (4.3) that don’t assume that dim R/〈LT(I)〉 is
finite. In these situations, the remainder r is an infinite series, none of
whose terms are in 〈LT(I)〉. See, for example, [Hir] or [MPT]. However, for
R = k[x1, . . . , xn]〈x1,...,xn〉, it is possible to find ideals I ⊂ R where nice
remainders don’t exist (see [AMR], Example 2).

ADDITIONAL EXERCISES FOR §4

Exercise 1. In this exercise and the next, we will show that every ideal
I in one of our local rings R has standard bases, and derive consequences
about the structure of R. Let > be any local order on R.
a. Explain why 〈LT(I)〉 has a finite set of generators.
b. For each xα(i), i = 1, . . . , t, in a finite set of generators of 〈LT(I)〉, let

gi ∈ I be an element with LT(gi) = xα(i). Deduce that G = {g1, . . . , gt}
is a standard basis for I.

Exercise 2. If we ignore the fact that infinitely many computational steps
are needed to perform reductions on power series in k[[x1, . . . , xn]] or
k{x1, . . . , xn}, then the Mora Normal Form Algorithm can be performed
with inputs that are not polynomials. Hence we can assume that the Mora
algorithm works for R, where R is either k[[x1, . . . , xn]] or k{x1, . . . , xn}.
a. Let G be a standard basis for an ideal I ⊂ R. Show that we obtain a

zero remainder on division of f by G if and only if f ∈ I.
b. Using part a, deduce that every ideal I ⊂ R has a finite basis. (This is

the analog of the Hilbert Basis Theorem for k[x1, . . . , xn].)
c. Deduce that the ascending chain condition holds for ideals in R. Hint:

See Exercise 13 of §2 of Chapter 5.

Exercise 3. Let > be a degree-anticompatible order on one of our local
rings R. Show that any nonempty set of monomials S that is bounded
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below (meaning that there exists a monomial xα such that xβ ≥ xα for all
xβ ∈ S) has a smallest element.

Exercise 4. Carry out the proof of the analog of Buchberger’s Criterion
for degree-anticompatible orders, using Exercise 3 and the discussion before
the statement of Theorem (4.2).

Exercise 5. This exercise discusses an alternative method due to Lazard
for computing in local rings. Let >′ be the order in k[t, x1, . . . , xn] from
Definition (3.6). Given polynomials f1, . . . , fs, let fh

1 , . . . , fh
s be their

homogenizations in k[t, x1, . . . , xn], and let G be a Gröbner basis for
〈fh

1 , . . . , fh
s 〉 with respect to the >′ consisting of homogeneous polynomi-

als (such Gröbner bases always exist—see Theorem 2 in Chapter 8, §3 of
[CLO], for instance). Show that the dehomogenizations of the elements of
G (that is, the polynomials in k[x1, . . . , xn] obtained from the elements of
G by setting t = 1) are a standard basis for the ideal generated by F in
the local ring R with respect to the semigroup order >.

Exercise 6. Let I ⊂ R = k[x1, . . . , xn]〈x1,...,xn〉 be an ideal such that
dim R/〈LT(I)〉 is finite for some local order on R. Describe an algorithm
which for the input f ∈ R computes the remainder r from Theorem (4.3).

§5 Applications of Standard Bases

We will consider some applications of standard bases in this section. The
multiplicity, and Milnor and Tjurina number computations we introduced
in §2 can be carried out in an algorithmic fashion using standard bases. We
begin by using Theorem (4.3) to prove Proposition (2.11), which asserts
that if I is a zero-dimensional ideal of k[x1, . . . , xn] such that 0 ∈ V(I),
then the multiplicity of 0 is

(5.1)

dim k[x1, . . . , xn]〈x1,...,xn〉/Ik[x1, . . . , xn]〈x1,...,xn〉
= dim k[[x1, . . . , xn]]/Ik[[x1, . . . , xn]]

= dim k{x1, . . . , xn}/Ik{x1, . . . , xn},
where the last equality assumes k = R or C. The proof begins with the
observation that by Theorem (2.2), we know that

dim k[x1, . . . , xn]〈x1,...,xn〉/Ik[x1, . . . , xn]〈x1,...,xn〉 < ∞.

By Theorem (4.3), it follows that this dimension is the number of standard
monomials for a standard basis S for I ⊂ k[x1, . . . , xn]〈x1,...,xn〉. However,
S is also a standard basis for Ik[[x1, . . . , xn]] and Ik{x1, . . . , xn} by Buch-
berger’s criterion. Thus, for a fixed local order, the standard monomials are
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the same no matter which of the local rings R we are considering. Then
(5.1) follows immediately from Theorem (4.3).

This gives an algorithm for computing multiplicities. Exercises 2 and 3
below give some nice examples. In the same way, we can compute the Milnor
and Tjurina numbers defined in §2 (see Exercise 4).

Standard bases in local rings have other geometric applications as well.
For instance, suppose that V ⊂ kn is a variety and that p = (a1, . . . , an)
is a point of V . Then the tangent cone to V at p, denoted Cp(V ), is defined
to be the variety

Cp(V ) = V(fp,min : f ∈ I(V )),

where fp,min is the homogeneous component of lowest degree in the poly-
nomial f(x1 + a1, . . . , xn + an) obtained by translating p to the origin (see
part b of Exercise 17 of §2). A careful discussion of tangent cones, including
a Gröbner basis method for computing them, can be found in Chapter 9,
§7 of [CLO]. However, standard bases give a more direct way to compute
tangent cones than the Gröbner basis method. See Exercise 5 below for an
outline of the main ideas.

Here is another sort of application, where localization is used to con-
centrate attention on one irreducible component of a reducible variety. To
illustrate the idea, we will use an example from Chapter 6, §4 of [CLO]. In
that section, we showed that the hypotheses and the conclusions of a large
class of theorems in Euclidean plane geometry can be expressed as polyno-
mial equations on the coordinates of points specified in the construction of
the geometric figures involved in their statements. For instance, consider
the theorem which states that the diagonals of a parallelogram ABCD in
the plane intersect at a point that bisects both diagonals (Example 1 of
[CLO], Chapter 6, §4). We place the vertices A, B, C, D of the parallelogram
as follows:

A = (0, 0), B = (u, 0), C = (v, w), D = (a, b),

and write the intersection point of the diagonals AD and BC as N = (c, d).
We think of the coordinates u, v, w as arbitrary; their values determine the
values of a, b, c, d. The conditions that ABCD is a parallelogram and N is
the intersection of the diagonals can be written as the following polynomial
equations:

h1 = b − w = 0

h2 = (a − u)w − bv = 0

h3 = ad − cw = 0

h4 = d(v − u) − (c − u)w = 0,

as can the conclusions of the theorem (the equalities between the lengths
AN = DN and BN = CN)
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g1 = a2 − 2ac − 2bd + b2 = 0

g2 = 2cu − 2cv − 2dw − u2 + v2 + w2 = 0.

Since the geometric theorem is true, we might naively expect that the
conclusions g1 = g2 = 0 are satisfied whenever the hypothesis equations
h1 = h2 = h3 = h4 = 0 are satisfied. If we work over the algebraically
closed field C, then the Strong Nullstellensatz shows that our naive hope
is equivalent to

gi ∈ I(V(h1, h2, h3, h4)) =
√
〈h1, h2, h3, h4〉.

However, as the following exercise illustrates, this is unfortunately not true.

Exercise 1. Use the radical membership test from [CLO], Chapter 4, §2
to show that

g1, g2 /∈
√
〈h1, h2, h3, h4〉 ⊂ C[u, v, w, a, b, c, d].

Thus neither conclusion g1, g2 follows directly from the hypothesis equa-
tions.

In fact, in [CLO], Chapter 6, §4 we saw that the reason for this was
that the variety V(h1, h2, h3, h4) ⊂ C

7 defined by the hypotheses is ac-
tually reducible, and the conclusion equations gi = 0 are not identically
satisfied on several of the irreducible components of H. The points on the
“bad” components correspond to degenerate special cases of the configu-
ration A, B, C, D, N such as “parallelograms” in which two of the vertices
A, B, C, D coincide. In [CLO], Chapter 6, §4 we analyzed this situation very
carefully and found the “good” component of H, on which the conclusions
g1 = g2 = 0 do hold. Our purpose here is to point out that what we did
in [CLO] can also be accomplished more easily by localizing appropriately.

Note that taking (u, v, w) = (1, 1, 1) gives an “honest” parallelogram.
If we now translate (1, 1, 1) to the origin as in Exercise 17 of §2, and
write the translated coordinates as (U, V, W, a, b, c, d), the hypotheses and
conclusions become

h1 = b −W − 1 = 0

h2 = (a − U − 1)(W + 1) − b(V + 1) = 0

h3 = ad − c(W + 1) = 0

h4 = d(V − U) − (c − U − 1)(W + 1)

g1 = a2 − 2ac − 2cd + b2 = 0

g2 = 2c(U + 1) − 2c(V + 1) − 2d(W + 1) − (U + 1)2

+ (V + 1)2 + (W + 1)2 = 0.

Using Singular, we can compute a standard basis for the ideal generated
by the hi in the localization R = Q[U, V, W ]〈U,V,W 〉[a, b, c, d] as follows.
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> ring r = 0, (a,b,c,d,U,V,W), (Dp(4),Ds(3));
> ideal i = b-W-1, (a-U-1)*(W+1)-b*(V+1), ad-c*(W+1), d*(V-U)-
(c-U-1)*(W+1);
> ideal j = std(i);
> j;
j[1]=a+aW-1b-1bV-1-1U-1W-1UW
j[2]=b-1-1W
j[3]=c+cW+dU-1dV-1-1U-1W-1UW
j[4]=2d+2dU+2dW+2dUW-1-1U-2W-2UW-1W2-1UW2

The first line sets up the ring R by specifying the coefficient field k = Q

and a mixed order on the variables as in Exercise 3 of §3 of this chapter, with
alex on the variables U, V, W , ordinary lex on a, b, c, d, and all monomials
containing a, b, c, d greater than any monomial in U, V, W alone. If we now
apply the Mora algorithm from Corollary (3.13), which is provided in the
Singular command reduce, we find that both conclusions are actually in
the ideal generated by h1, h2, h3, h4 in R.

> poly g=a2-2ac-2bd+b2;
> poly h=reduce(g,j);
> h;
0
> poly m = 2c*(U+1)-2c*(V+1)-2d*(W+1)-(U+1)^2+(V+1)^2+(W+1)^2;
> poly n = reduce(m,j);
> n;
0

This shows that locally near the point with (u, v, w) = (1, 1, 1) on the
variety V(h1, h2, h3, h4), the conclusions do follow from the hypotheses.
Using the mixed order in the Mora algorithm, we have an equation

u · g1 = a1h1 + · · · + a4h4,

where u ∈ Q[U, V, W ] is a unit in Q[U, V, W ]〈U,V,W 〉, and a similar equation
for g2. In particular, this shows that Proposition 8 of Chapter 6, §4 of [CLO]
applies and the conclusions g1, g2 follow generically from the hypotheses
hi, as defined there.

Along the same lines we have the following general statement, showing
that localizing at a point p in a variety V implies that we ignore components
of V that do not contain p.

(5.2) Proposition. Let I ⊂ k[x1, . . . , xn] and suppose that the origin in
kn is contained in an irreducible component W of V(I). Let f1, . . . , fs ∈
k[x1, . . . , xn] be a standard basis for I with respect to a local order, and let
g ∈ k[x1, . . . , xn]. If the remainder of g on division by F = (f1, . . . , fs)
using the Mora algorithm from Corollary (3.13) is zero, then g ∈ I(W )
(but not necessarily in I).
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Proof. If the remainder is zero, the Mora algorithm yields an equation

u · g = a1f1 + · · · + asfs,

where u ∈ k[x1, . . . , xn] is a unit in k[x1, . . . , xn]〈x1,...,xn〉. Since W ⊂
V(I), u · g is an element of I(W ). But W is irreducible, so I(W ) is a prime
ideal, and hence u ∈ I(W ) or g ∈ I(W ). The first alternative is not possible
since u(0) �= 0. Hence g ∈ I(W ).

It is natural to ask if we can carry out operations on ideals in local rings
algorithmically in ways similar to the Gröbner basis methods reviewed
in Chapter 1 for ideals in polynomial rings. In the final part of this sec-
tion, we will show that the answer is yes when R = k[x1, . . . , xn]〈x1,...,xn〉.
Since many of the proofs in the polynomial case use elimination, we first
need to study elimination in the local context. The essential point will
be to work the new ring k[x1, . . . , xn]〈x1,...,xn〉[t], whose elements can be
thought of first as polynomials in t whose coefficients are elements of
k[x1, . . . , xn]〈x1,...,xn〉.

In this situation, if we have an ideal I ⊂ k[x1, . . . , xn]〈x1,...,xn〉[t], the
basic problem is to find the intersection

I0 = I ∩ k[x1, . . . , xn]〈x1,...,xn〉.

Note that I0 is analogous to an elimination ideal of a polynomial ideal. This
elimination problem can be solved using a local order > on the local ring
to construct a suitable semigroup order on S = k[x1, . . . , xn]〈x1,...,xn〉[t] as
follows (see [AMR] and [Grä] for the details).

(5.3) Definition. An elimination order on S is any semigroup order >elim

on the monomials on S defined in the following way. Let > be a local order
in k[x1, . . . , xn]〈x1,...,xn〉. Then define

tkxα >elim tlxβ

for k, l ∈ Z≥0, and α, β ∈ Z
n
≥0 if and only if k > l, or k = l and

α > β. In other words, an elimination order is a product order combin-
ing the degree order on powers of t and the given local order > on xα in
k[x1, . . . , xn]〈x1,...,xn〉.

Elimination orders on S are neither local nor well-orders. Hence, the
full strength of the Mora algorithm for general semigroup orders is needed
here. We have the following analog of the Elimination Theorem stated in
Chapter 2, §1.

(5.4) Theorem (Local Elimination). Fix an elimination order >elim

on S = k[x1, . . . , xn]〈x1,...,xn〉[t]. Let I ⊂ S be an ideal, and let G be a
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polynomial standard basis for I with respect to >elim. Then

G ∩ k[x1, . . . , xn] = {g ∈ G : LT(g) does not contain t}
and this is a standard basis of I0 = I ∩ k[x1, . . . , xn]〈x1,...,xn〉.

Proof. Let G = {g1, . . . , gt} be a standard basis of I and G0 = {g ∈ G :
LT(g) does not contain t}. By the definition of >elim, the condition that
LT(g) does not contain t implies that g does not contain t. Since G0 ⊂ I0,
we need only show that if f ∈ I0 ∩ k[x1, . . . , xn], then f can be written as
a combination of elements in G0 with coefficients in k[x1, . . . , xn]〈x1,...,xn〉.
Since f ∈ I and {g1, . . . , gt} is a standard basis of I, the Mora algorithm
gives an expression

f = a1g1 + · · · + atgt

(see Exercise 2 of §4), where LT(f) ≥ LT(aigi) for all ai �= 0. By our
choice of order, we have ai = 0 for gi /∈ G0 and gi ∈ k[x1, . . . , xn]〈x1,...,xn〉
otherwise, since t does not appear in LT(f).

With this out of the way, we can immediately prove the following.

(5.5) Theorem. Let I, J ⊂ k[x1, . . . , xn]〈x1,...,xn〉 and f ∈ k[x1, . . . , xn].
a. I ∩ J = (t · I + (1 − t) · J) ∩ k[x1, . . . , xn]〈x1,...,xn〉.
b. I : 〈f〉 = 1

f · (I ∩ 〈f〉).
c. I : f∞ = (I + 〈1 − f · t〉) ∩ k[x1, . . . , xn]〈x1,...,xn〉.
d. f ∈ √I if and only if 1 ∈ I + 〈1 − f · t〉 in k[x1, . . . , xn]〈x1,...,xn〉[t].

Proof. The proofs are the same as for polynomial ideals. (See Chapter 1
of this book, §2 and §3 of Chapter 4 of [CLO], and [AL] or [BW].)

We remind the reader that the stable quotient of I with respect to f ,
denoted I : f∞, is defined to be the ideal

I : f∞ = {g ∈ R : there exists n ≥ 1 for which fng ∈ I}.
The stable quotient is frequently useful in applications of local algebra. We
also remark that the division in part b, where one divides the common
factor f out from all generators of I ∩ 〈f〉 in k[x1, . . . , xn]〈x1,...,xn〉, uses
the Mora algorithm.

Just as the ability to do computations in polynomial rings extends to
allow one to do computations in quotients (i.e., homomorphic images of
polynomial rings), so, too, the ability to do computations in local rings
extends to allow one to do computations in quotients of local rings. Sup-
pose that J ⊂ k[x1, . . . , xn]〈x1,...,xn〉 and let R = k[x1, . . . , xn]〈x1,...,xn〉/J .
Then one can do computations algorithmically in R due to the following
elementary proposition.
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(5.6) Proposition. Let I1, I2 ⊂ R be ideals, and let I1, I2 denote their
preimages in k[x1, . . . , xn]〈x1,...,xn〉. Let f ∈ k[x1, . . . , xn]〈x1,...,xn〉 and
[f ] ∈ R be its coset. Then:
a. I1 ∩ I2 = (I1 ∩ I2)/J;
b. I1 : [f ] = (I1 : f)/J;
c. I1 : [f ]∞ = (I1 : f∞)/J.

Using a standard basis of J allows one to determine whether f, g ∈ R
represent the same element in R (that is, whether [f ] = [g].) One can also
compute Hilbert functions and syzygies over R.

The techniques we have outlined above also extend to rings that are fi-
nite algebraic extensions of k[x1, . . . , xn]〈x1,...,xn〉 in k[[x1, . . . , xn]]. This
allows us to handle computations involving algebraic power series in
k[[x1, . . . , xn]] algorithmically. See [AMR] for details. There are still many
open questions in this area, however. Basically, one would hope to handle
any operations on ideals whose generators are defined in some suitably al-
gebraic fashion (not just ideals generated by polynomials), but there are
many instances where no algorithms are known.

ADDITIONAL EXERCISES FOR §5

Exercise 2.
a. Let f1, . . . , fn ∈ k[x1, . . . , xn] be homogeneous polynomials of de-

grees d1, . . . , dn, respectively. Assume that I = 〈f1, . . . , fn〉 is
zero-dimensional, and that the origin is the only point in V(I). Show
that the multiplicity is also the dimension of

k[x1, . . . , xn]/〈f1, . . . , fn〉,
and then prove that the multiplicity of 0 as a solution of f1 = · · · =
fn = 0 is d1 · · · dn. Hint: Regard f1, . . . , fn as homogeneous polynomi-
als in x0, x1, . . . , xn, where x0 is a new variable. Using x0, x1, . . . , xn

as homogeneous coordinates for P
n, show that f1 = · · · = fn = 0 have

no nontrivial solutions when x0 = 0, so that there are no solutions at
∞ in the sense of Chapter 3. Then use Bézout’s Theorem as stated in
Chapter 3.

b. Let f(x1, . . . , xn) be a homogeneous polynomial of degree d with an
isolated singularity at the origin. Show that the Milnor number of f at
the origin is (d − 1)n.

Exercise 3. Determine the multiplicity of the solution at the origin for
each of the following systems of polynomial equations.
a. x2 + 2xy4 − y2 = xy − y3 = 0.
b. x2 + 2y2 − y − 2z = x2 − 8y2 + 10z = x2 − 7yz = 0.
c. x2 + y2 + z2 − 2x4 = x3 − yz − x = x − y + 2z = 0.
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Exercise 4. Compute the Milnor and Tjurina numbers at the origin of
the following polynomials (all of which have an isolated singularity at 0).
a. f(x, y) = (x2 + y2)3 − 4x2y2. The curve V(f) ⊂ R

2 is the four-leaved
rose—see Exercise 11 of [CLO], Chapter 3, §5.

b. f(x, y) = y2 − xn, n ≥ 2. Express the Milnor number as a function of
the integer n.

c. f(x, y, z) = xyz + x4 + y4 + z4.

Exercise 5. (Tangent Cones) For each f ∈ 〈x1, . . . , xn〉, let fmin be the
homogeneous component of lowest degree in f . Let V = V(f1, . . . , fs) ⊂
kn be a variety containing the origin.
a. Let G = {g1, . . . , gt} be a standard basis for

I = 〈f1, . . . , fs〉k[x1, . . . , xn]〈x1,...,xn〉

with respect to a degree-anticompatible order >. Explain why LT>(gi)
is one of the terms in gi,min for each i.

b. Show that V(g1,min, . . . , gt,min) is the tangent cone of V at the origin.
c. Consider the variety V = V(x3 − yz − x, y2 + 2z3) in k3. Using the

>alex order on k[x, y, z]〈x,y,z〉, with x > y > z, show that the two given
polynomials in the definition of V are a standard basis for the ideal they
generate, and compute the tangent cone of V at the origin using part b.

Exercise 6. For an r-dimensional linear subspace L ⊂ C
n, a polynomial

f ∈ C[x1, . . . , xn] restricts to a polynomial function fL on L.
a. Show that if f has an isolated singularity at the origin in C

n, then for al-
most all r-dimensional subspaces L ⊂ C

n, fL has an isolated singularity
at the origin in L.

b. One can show, in fact, that there is an open dense set N of all r-
dimensional subspaces of C

n such that the Milnor number µ(fL) of fL

at the origin does not depend on the choice of L in N . This number
is denoted µr(f). Show that µ1(f) = mult(f) − 1 where mult(f) (the
multiplicity of f) is the degree of the lowest degree term of f that occurs
with nonzero coefficient.

c. Compute µ2(f) and µ3(f) if
1. f = x5 + y4 + z7;
2. f = x4 + y5 + z6 + xyz;
3. f = x5 + xy6 + y7z + z15;
4. f = x5 + y7z + z15.
Note that if n is the number of variables, then µn(f) = µ(f), so that
µ3(f) is just the usual Milnor number for these examples. To com-
pute these numbers, use the milnor package in Singular and note that
planes of the form z = ax + by are an open set in the set of all planes
in C

3. One could also compute these Milnor numbers by hand. Note
that examples 1, 3, and 4 are weighted homogeneous polynomials. For
further background, the reader may wish to consult [Dim] or [AGV].
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d. A family {ft ∈ C[x1, . . . , xn]} of polynomials with an isolated singular-
ity at the origin for t near 0 is µ-constant if µ(f0) = µ(ft) for t near 0.
Show that ft = x5 + y4 + z7 + tx8y2 and ft = x5 + txy6 + y7z + z15

are µ-constant families but ft = x4 + y5 + z6 + txyz is not.
e. If f ∈ C[x1, . . . , xn] has an isolated singularity at the origin, the n-tuple

of integers (µ1(f), . . . , µn(f)) is called the Teissier µ∗-invariant of f .
One says that a family {ft} is µ∗-constant if µ∗(f0) = µ∗(ft). Show that
ft = x5 + txy6 + y7z + z15 is µ-constant, but not µ∗ constant. This is a
famous example due to Briançon and Speder—there are very few known
examples of µ-constant families that are not µ∗-constant. At the time of
writing, it is not known whether there exist µ-constant families in which
µ1 is not constant. The attempt to find such examples was one of the
issues that motivated the development of early versions of Singular.




