
Chapter 2

Solving Polynomial Equations

In this chapter we will discuss several approaches to solving systems of
polynomial equations. First, we will discuss a straightforward attack based
on the elimination properties of lexicographic Gröbner bases. Combining
elimination with numerical root-finding for one-variable polynomials we get
a conceptually simple method that generalizes the usual techniques used
to solve systems of linear equations. However, there are potentially severe
difficulties when this approach is implemented on a computer using finite-
precision arithmetic. To circumvent these problems, we will develop some
additional algebraic tools for root-finding based on the algebraic structure
of the quotient rings k[x1, . . . , xn]/I. Using these tools, we will present
alternative numerical methods for approximating solutions of polynomial
systems and consider methods for real root-counting and root-isolation.
In Chapters 3, 4 and 7, we will also discuss polynomial equation solving.
Specifically, Chapter 3 will use resultants to solve polynomial equations,
and Chapter 4 will show how to assign a well-behaved multiplicity to each
solution of a system. Chapter 7 will consider other numerical techniques
(homotopy continuation methods) based on bounds for the total number
of solutions of a system, counting multiplicities.

§1 Solving Polynomial Systems by Elimination

The main tools we need are the Elimination and Extension Theorems. For
the convenience of the reader, we recall the key ideas:

• (Elimination Ideals) If I is an ideal in k[x1, . . . , xn], then the �th
elimination ideal is

I� = I ∩ k[x�+1, . . . , xn].

Intuitively, if I = 〈f1, . . . , fs〉, then the elements of I� are the linear com-
binations of the f1, . . . , fs, with polynomial coefficients, that eliminate
x1, . . . , x� from the equations f1 = · · · = fs = 0.
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• (The Elimination Theorem) If G is a Gröbner basis for I with respect
to the lex order (x1 > x2 > · · · > xn) (or any order where monomi-
als involving at least one of x1, . . . , x� are greater than all monomials
involving only the remaining variables), then

G� = G ∩ k[x�+1, . . . , xn]

is a Gröbner basis of the �th elimination ideal I�.
• (Partial Solutions) A point (a�+1, . . . , an) ∈ V(I�) ⊂ kn−� is called a

partial solution. Any solution (a1, . . . , an) ∈ V(I) ⊂ kn truncates to
a partial solution, but the converse may fail—not all partial solutions
extend to solutions. This is where the Extension Theorem comes in. To
prepare for the statement, note that each f in I�−1 can be written as a
polynomial in x�, whose coefficients are polynomials in x�+1, . . . , xn:

f = cq(x�+1, . . . , xn)xq
� + · · · + c0(x�+1, . . . , xn).

We call cq the leading coefficient polynomial of f if xq
� is the highest

power of x� appearing in f .
• (The Extension Theorem) If k is algebraically closed (e.g., k = C), then

a partial solution (a�+1, . . . , an) in V(I�) extends to (a�, a�+1, . . . , an) in
V(I�−1) provided that the leading coefficient polynomials of the elements
of a lex Gröbner basis for I�−1 do not all vanish at (a�+1, . . . , an).

For the proofs of these results and a discussion of their geometric meaning,
see Chapter 3 of [CLO]. Also, the Elimination Theorem is discussed in §6.2
of [BW] and §2.3 of [AL], and [AL] discusses the geometry of elimination
in §2.5.

The Elimination Theorem shows that a lex Gröbner basis G successively
eliminates more and more variables. This gives the following strategy for
finding all solutions of the system: start with the polynomials in G with the
fewest variables, solve them, and then try to extend these partial solutions
to solutions of the whole system, applying the Extension Theorem one
variable at a time.

As the following example shows, this works especially nicely when V(I)
is finite. Consider the system of equations

(1.1)

x2 + y2 + z2 = 4

x2 + 2y2 = 5

xz = 1

from Exercise 4 of Chapter 3, §1 of [CLO]. To solve these equations, we
first compute a lex Gröbner basis for the ideal they generate using Maple:

with(Groebner):
PList := [x^2+y^2+z^2-4, x^2+2*y^2-5, x*z-1];
G := gbasis(PList,plex(x,y,z));
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This gives output

G := [1 + 2z4 − 3z2, y2 − z2 − 1, x + 2z3 − 3z].

From the Gröbner basis it follows that the set of solutions of this system in
C

3 is finite (why?). To find all the solutions, note that the last polynomial
depends only on z (it is a generator of the second elimination ideal I2 =
I ∩ C[z]) and factors nicely in Q[z]. To see this, we may use

factor(2*z^4 - 3*z^2 + 1);

which generates the output

(z − 1)(z + 1)(2z2 − 1).

Thus we have four possible z values to consider:

z = ±1,±1/
√

2.

By the Elimination Theorem, the first elimination ideal I1 = I ∩ C[y, z] is
generated by

y2 − z2 − 1

2z4 − 3z2 + 1.

Since the coefficient of y2 in the first polynomial is a nonzero constant,
every partial solution in V(I2) extends to a solution in V(I1). There are
eight such points in all. To find them, we substitute a root of the last
equation for z and solve the resulting equation for y. For instance,

subs(z=1,G);

will produce:

[−1 + x, y2 − 2, 0],

so in particular, y = ±√2. In addition, since the coefficient of x in the first
polynomial in the Gröbner basis is a nonzero constant, we can extend each
partial solution in V(I1) (uniquely) to a point of V(I). For this value of z,
we have x = 1.

Exercise 1. Carry out the same process for the other values of z as well.
You should find that the eight points

(1,±
√

2, 1), (−1,±
√

2,−1), (
√

2,±
√

6/2, 1/
√

2), (−
√

2,±
√

6/2,−1/
√

2)

form the set of solutions.

The system in (1.1) is relatively simple because the coordinates of the
solutions can all be expressed in terms of square roots of rational numbers.
Unfortunately, general systems of polynomial equations are rarely this nice.
For instance it is known that there are no general formulas involving only
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the field operations in k and extraction of roots (i.e., radicals) for solving
single variable polynomial equations of degree 5 and higher. This is a fa-
mous result of Ruffini, Abel, and Galois (see [Her]). Thus, if elimination
leads to a one-variable equation of degree 5 or higher, then we may not be
able to give radical formulas for the roots of that polynomial.

We take the system of equations given in (1.1) and change the first term
in the first polynomial from x2 to x5. Then executing

PList2 := [x^5+y^2+z^2-4, x^2+2*y^2-5, x*z-1];
G2 := gbasis(PList2,plex(x,y,z));

produces the following lex Gröbner basis:

(1.2) [2 + 2z7− 3z5− z3, 4y2 − 2z5 + 3z3 + z− 10, 2x + 2z6− 3z4− z2].

In this case, the command

factor(2*z^7 - 3*z^5 - z^3 + 2);

gives the factorization

2z7 − 3z5 − z3 + 2 = (z − 1)(2z6 + 2z5 − z4 − z3 − 2z2 − 2z − 2),

and the second factor is irreducible in Q[z]. In a situation like this, to
go farther in equation solving, we need to decide what kind of answer is
required.

If we want a purely algebraic, “structural” description of the solutions,
then Maple can represent solutions of systems like this via the solve
command. Let’s see what this looks like. Entering

solve(convert(G2,set),{x,y,z});
you should generate the following output:

{{y = RootOf( Z2 − 2, label = L4), x = 1, z = 1},
{y = 1/2RootOf( Z2

− 2RootOf(2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z − 2)5

+ 3RootOf(2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z − 2)3

+ RootOf(2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z − 2)

− 10, label = L1),

x = RootOf(2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z − 2)4

− 1/2RootOf(2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z − 2)2 − 1

+ RootOf(2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z − 2)5

− 1/2RootOf(2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z − 2)3

− RootOf(2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z − 2),

z = RootOf(2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z − 2)}}



30 Chapter 2. Solving Polynomial Equations

Here RootOf(2 Z6 +2 Z5− Z4− Z3−2 Z2−2 Z−2) stands for any one
root of the polynomial equation 2 Z6 + 2 Z5 − Z4 − Z3 − 2 Z2 − 2 Z −
2 = 0. Similarly, the other RootOf expressions stand for any solution of
the corresponding equation in the dummy variable Z.

Exercise 2. Verify that the expressions above are obtained if we solve for
z from the Gröbner basis G2 and then use the Extension Theorem. How
many solutions are there of this system in C

3?

On the other hand, in many practical situations where equations must
be solved, knowing a numerical approximation to a real or complex solu-
tion is often more useful, and perfectly acceptable provided the results are
sufficiently accurate. In our particular case, one possible approach would
be to use a numerical root-finding method to find approximate solutions of
the one-variable equation

(1.3) 2z6 + 2z5 − z4 − z3 − 2z2 − 2z − 2 = 0,

and then proceed as before using the Extension Theorem, except that we
now use floating point arithmetic in all calculations. In some examples,
numerical methods will also be needed to solve for the other variables as
we extend.

One well-known numerical method for solving one-variable polynomial
equations in R or C is the Newton-Raphson method or, more simply but
less accurately, Newton’s method. This method may also be used for equa-
tions involving functions other than polynomials, although we will not
discuss those here. For motivation and a discussion of the theory behind
the method, see [BuF] or [Act].

The Newton-Raphson method works as follows. Choosing some initial
approximation z0 to a root of p(z) = 0, we construct a sequence of numbers
by the rule

zk+1 = zk − p(zk)
p′(zk)

for k = 0, 1, 2, . . . ,

where p′(z) is the usual derivative of p from calculus. In most situations,
the sequence zk will converge rapidly to a solution z of p(z) = 0, that is,
z = limk→∞ zk will be a root. Stopping this procedure after a finite number
of steps (as we must!), we obtain an approximation to z. For example, we
might stop when zk+1 and zk agree to some desired accuracy, or when a
maximum allowed number of terms of the sequence have been computed.
See [BuF], [Act], or the comments at the end of this section for additional
information on the performance of this technique. When trying to find all
roots of a polynomial, the trickiest part of the Newton-Raphson method is
making appropriate choices of z0. It is easy to find the same root repeatedly
and to miss other ones if you don’t know where to look!
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Fortunately, there are elementary bounds on the absolute values of the
roots (real or complex) of a polynomial p(z). Here is one of the simpler
bounds.

Exercise 3. Show that if p(z) = zn + an−1z
n−1 + · · · + a0 is a monic

polynomial with complex coefficients, then all roots z of p satisfy |z| ≤ B,
where

B = max{1, |an−1| + · · · + |a1| + |a0|}.
Hint: The triangle inequality implies that |a + b| ≥ |a| − |b|.

See Exercise 10 below for another better bound on the roots. Given any
bound of this sort, we can limit our attention to z0 in this region of the
complex plane to search for roots of the polynomial.

Instead of discussing searching strategies for finding roots, we will use a
built-in Maple function to approximate the roots of the system from (1.2).
The Maple function fsolve finds numerical approximations to all real (or
complex) roots of a polynomial by a combination of root location and
numerical techniques like Newton-Raphson. For instance, the command

fsolve(2*z^6+2*z^5-z^4-z^3-2*z^2-2*z-2);

will compute approximate values for the real roots of our polynomial (1.3).
The output should be:

−1.395052015, 1.204042437.

(Note: In Maple, 10 digits are carried by default in decimal calculations;
more digits can be used by changing the value of the Maple system variable
Digits. Also, the actual digits in your output may vary slightly if you
carry out this computation using another computer algebra system.) To
get approximate values for the complex roots as well, try:

fsolve(2*z^6+2*z^5-z^4-z^3-2*z^2-2*z-2,complex);

We illustrate the Extension Step in this case using the approximate value

z = 1.204042437.

We substitute this value into the Gröbner basis polynomials using

subs(z=1.204042437,G2);

and obtain

[2x − 1.661071025,−8.620421528 + 4y2,−.2 ∗ 10−8].

Note that the value of the last polynomial was not exactly zero at our
approximate value of z. Nevertheless, as in Exercise 1, we can extend this
approximate partial solution to two approximate solutions of the system:

(x, y, z) = (.8305355125,±1.468027718, 1.204042437).
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Checking one of these by substituting into the equations from (1.2), using

subs(z=1.204042437,y=1.468027718,x=.8305355125, G2);

we find

[0,−.4 ∗ 10−8,−.2 ∗ 10−8],

so we have a reasonably good approximate solution, in the sense that our
computed solution gives values very close to zero in the polynomials of the
system.

Exercise 4. Find approximate values for all other real solutions of this
system by the same method.

In considering what we did here, one potential pitfall of this approach
should be apparent. Namely, since our solutions of the one-variable equation
are only approximate, when we substitute and try to extend, the remaining
polynomials to be solved for x and y are themselves only approximate. Once
we substitute approximate values for one of the variables, we are in effect
solving a system of equations that is different from the one we started
with, and there is little guarantee that the solutions of this new system are
close to the solutions of the original one. Accumulated errors after several
approximation and extension steps can build up quite rapidly in systems
in larger numbers of variables, and the effect can be particularly severe if
equations of high degree are present.

To illustrate how bad things can get, we consider a famous cautionary
example due to Wilkinson, which shows how much the roots of a polynomial
can be changed by very small changes in the coefficients.

Wilkinson’s example involves the following polynomial of degree 20:

p(x) = (x + 1)(x + 2) · · · (x + 20) = x20 + 210x19 + · · · + 20!.

The roots are the 20 integers x = −1,−2, . . . ,−20. Suppose now that we
“perturb” just the coefficient of x19, adding a very small number. We carry
20 decimal digits in all calculations. First we construct p(x) itself:

Digits := 20:
p := 1:
for k to 20 do p := p*(x+k) end do:

Printing expand(p) out at this point will show a polynomial with some
large coefficients indeed! But the polynomial we want is actually this:

q := expand(p + .000000001*x^19):
fsolve(q,x,complex);
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The approximate roots of q = p+ .000000001 x19 (truncated for simplicity)
are:

− 20.03899,−18.66983 − .35064 I, −18.66983 + .35064 I,

− 16.57173 − .88331 I, −16.57173 + .88331 I,

− 14.37367 − .77316 I, −14.37367 + .77316 I,

− 12.38349 − .10866 I, −12.38349 + .10866 I,

− 10.95660, −10.00771, −8.99916, −8.00005,

− 6.999997, −6.000000, −4.99999, −4.00000,

− 2.999999, −2.000000, −1.00000.

Instead of 20 real roots, the new polynomial has 12 real roots and 4 com-
plex conjugate pairs of roots. Note that the imaginary parts are not even
especially small!

While this example is admittedly pathological, it indicates that we should
use care in finding roots of polynomials whose coefficients are only approx-
imately determined. (The reason for the surprisingly bad behavior of this p
is essentially the equal spacing of the roots! We refer the interested reader
to Wilkinson’s paper [Wil] for a full discussion.)

Along the same lines, even if nothing this spectacularly bad happens,
when we take the approximate roots of a one-variable polynomial and try
to extend to solutions of a system, the results of a numerical calculation can
still be unreliable. Here is a simple example illustrating another situation
that causes special problems.

Exercise 5. Verify that if x > y, then

G = [x2 + 2x + 3 + y5 − y, y6 − y2 + 2y]

is a lex Gröbner basis for the ideal that G generates in R[x, y].

We want to find all real points (x, y) ∈ V(G). Begin with the equation

y6 − y2 + 2y = 0,

which has exactly two real roots. One is y = 0, and the second is in the
interval [−2,−1] because the polynomial changes sign on that interval.
Hence there must be a root there by the Intermediate Value Theorem from
calculus. Using fsolve to find an approximate value, we find the nonzero
root is

(1.4) −1.267168305

to 10 decimal digits. Substituting this approximate value for y into G yields

[x2 + 2x + .999999995, .7 ∗ 10−8].
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Then use

fsolve(x^2 + 2*x + .999999995);

to obtain

−1.000070711, −.9999292893.

Clearly these are both close to x = −1, but they are different. Taken
uncritically, this would seem to indicate two distinct real values of x when
y is given by (1.4).

Now, suppose we used an approximate value for y with fewer decimal
digits, say y

.= −1.2671683. Substituting this value for y gives us the
quadratic

x2 + 2x + 1.000000054.

This polynomial has no real roots at all. Indeed, using the complex option
in fsolve, we obtain two complex values for x:

−1. − .0002323790008 I, −1. + .0002323790008 I.

To see what is really happening, note that the nonzero real root of y6 −
y2 + 2y = 0 satisfies y5 − y + 2 = 0. When the exact root is substituted
into G, we get

[x2 + 2x + 1, 0]

and the resulting equation has a double root x = −1.
The conclusion to be drawn from this example is that equations with

double roots, such as the exact equation

x2 + 2x + 1 = 0

we got above, are especially vulnerable to the errors introduced by numer-
ical root-finding. It can be very difficult to tell the difference between a
pair of real roots that are close, a real double root, and a pair of complex
conjugate roots.

From these examples, it should be clear that finding solutions of polyno-
mial systems is a delicate task in general, especially if we ask for information
about how many real solutions there are. For this reason, numerical meth-
ods, for all their undeniable usefulness, are not the whole story. And they
should never be applied blindly. The more information we have about the
structure of the set of solutions of a polynomial system, the better a chance
we have to determine those solutions accurately. For this reason, in §2 and
§3 we will go to the algebraic setting of the quotient ring k[x1, . . . , xn]/I
to obtain some additional tools for this problem. We will apply those tools
in §4 and §5 to give better methods for finding solutions.

For completeness, we conclude with a few additional words about the
numerical methods for equation solving that we have used. First, if z is a
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multiple root of p(z) = 0, then the convergence of the Newton-Raphson se-
quence zk can be quite slow, and a large number of steps and high precision
may be required to get really close to a root (though we give a method for
avoiding this difficulty in Exercise 8). Second, there are some choices of z0
where the sequence zk will fail to converge to a root of p(z). See Exercise 9
below for some simple examples. Finally, the location of z in relation to z0
can be somewhat unpredictable. There could be other roots lying closer to
z0. These last two problems are related to the fractal pictures associated to
the Newton-Raphson method over C—see, for example, [PR]. We should
also mention that there are multivariable versions of Newton-Raphson for
systems of equations and other iterative methods that do not depend on
elimination. These have been much studied in numerical analysis. For more
details on these and other numerical root-finding methods, see [BuF] and
[Act]. Also, we will discuss homotopy continuation methods in Chapter 7,
§5 of this book.

ADDITIONAL EXERCISES FOR §1

Exercise 6. Use elimination to solve the system

0 = x2 + 2y2 − y − 2z

0 = x2 − 8y2 + 10z − 1

0 = x2 − 7yz.

How many solutions are there in R
3; how many are there in C

3?

Exercise 7. Use elimination to solve the system

0 = x2 + y2 + z2 − 2x

0 = x3 − yz − x

0 = x − y + 2z.

How many solutions are there in R
3; how many are there in C

3?

Exercise 8. In this exercise we will study exactly why the performance
of the Newton-Raphson method is poor for multiple roots, and suggest a
remedy. Newton-Raphson iteration for any equation p(z) = 0 is an example
of fixed point iteration, in which a starting value z0 is chosen and a sequence

(1.5) zk+1 = g(zk) for k = 0, 1, 2, . . .

is constructed by iteration of a fixed function g(z). For Newton-Raphson
iteration, the function g(z) is g(z) = Np(z) = z − p(z)/p′(z). If the se-
quence produced by (1.5) converges to some limit z, then z is a fixed point
of g (that is, a solution of g(z) = z). It is a standard result from analysis
(a special case of the Contraction Mapping Theorem) that iteration as in
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(1.5) will converge to a fixed point z of g provided that |g′(z)| < 1, and z0
is chosen sufficiently close to z. Moreover, the smaller |g′(z)| is, the faster
convergence will be. The case g′(z) = 0 is especially favorable.
a. Show that each simple root of the polynomial equation p(z) = 0 is a

fixed point of the rational function Np(z) = z − p(z)/p′(z).
b. Show that multiple roots of p(z) = 0 are removable singularities of

Np(z) (that is, |Np(z)| is bounded in a neighborhood of each multiple
root). How should Np be defined at a multiple root of p(z) = 0 to make
Np continuous at those points?

c. Show that N ′
p(z) = 0 if z is a simple root of p(z) = 0 (that is, if

p(z) = 0, but p′(z) �= 0).
d. On the other hand, show that if z is a root of multiplicity k of p(z) (that

is, if p(z) = p′(z) = · · · = p(k−1)(z) = 0 but p(k)(z) �= 0), then

lim
z→z

N ′
p(z) = 1 − 1

k
.

Thus Newton-Raphson iteration converges much faster to a simple
root of p(z) = 0 than it does to a multiple root, and the larger the
multiplicity, the slower the convergence.

e. Show that replacing p(z) by

pred(z) =
p(z)

GCD(p(z), p′(z))

(see [CLO], Chapter 1, §5, Exercises 14 and 15) eliminates this difficulty,
in the sense that the roots of pred(z) = 0 are all simple roots.

Exercise 9. There are cases when the Newton-Raphson method fails to
find a root of a polynomial for lots of starting points z0.
a. What happens if the Newton-Raphson method is applied to solve the

equation z2 + 1 = 0 starting from a real z0? What happens if you take
z0 with nonzero imaginary parts? Note: It can be shown that Newton-
Raphson iteration for the equation p(z) = 0 is chaotic if z0 is chosen in
the Julia set of the rational function Np(z) = z − p(z)/p′(z) (see [PR]),
and exact arithmetic is employed.

b. Let p(z) = z4 − z2 − 11/36 and, as above, let Np(z) = z − p(z)/p′(z).
Show that ±1/

√
6 satisfies Np(1/

√
6) = −1/

√
6, Np(−1/

√
6) = 1/

√
6,

and N ′
p(1/
√

6) = 0. In the language of dynamical systems, ±1/
√

6 is
a superattracting 2-cycle for Np(z). One consequence is that for any z0
close to ±1/

√
6, the Newton-Raphson method will not locate a root of

p. This example is taken from Chapter 13 of [Dev].

Exercise 10. This exercise improves the bound on roots of a polynomial
given in Exercise 3. Let p(z) = zn + an−1z

n−1 + · · ·+ a1z + a0 be a monic
polynomial in C[z]. Show that all roots z of p satisfy |z| ≤ B, where

B = 1 + max{|an−1|, . . . , |a1|, |a0|}.
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This upper bound can be much smaller than the one given in Exercise 3.
Hint: Use the Hint from Exercise 3, and consider the evaluation of p(z) by
nested multiplication:

p(z) = (· · · ((z + an−1)z + an−2)z + · · · + a1)z + a0.

§2 Finite-Dimensional Algebras

This section will explore the “remainder arithmetic” associated to a
Gröbner basis G = {g1, . . . , gt} of an ideal I ⊂ k[x1, . . . , xn]. Recall from
Chapter 1 that if we divide f ∈ k[x1, . . . , xn] by G, the division algorithm
yields an expression

(2.1) f = h1g1 + · · · + htgt + f
G

,

where the remainder f
G

is a linear combination of the monomials xα /∈
〈LT(I)〉. Furthermore, since G is a Gröbner basis, we know that f ∈ I if
and only if f

G
= 0, and the remainder is uniquely determined for all f .

This implies

(2.2) f
G

= gG ⇐⇒ f − g ∈ I.

Since polynomials can be added and multiplied, given f, g ∈ k[x1, . . . , xn]
it is natural to ask how the remainders of f + g and fg can be computed
if we know the remainders of f, g themselves. The following observations
show how this can be done.

• The sum of two remainders is again a remainder, and in fact one can
easily show that f

G
+ gG = f + g

G
.

• On the other hand, the product of remainders need not be a remain-

der. But it is also easy to see that f
G · gG

G

= fg
G

, and f
G · gG

G

is a
remainder.

We can also interpret these observations as saying that the set of remain-
ders on division by G has naturally defined addition and multiplication
operations which produce remainders as their results.

This “remainder arithmetic” is closely related to the quotient ring
k[x1, . . . , xn]/I. We will assume the reader is familiar with quotient rings,
as described in Chapter 5 of [CLO] or in a course on abstract algebra.
Recall how this works: given f ∈ k[x1, . . . , xn], we have the coset

[f ] = f + I = {f + h : h ∈ I},
and the crucial property of cosets is

(2.3) [f ] = [g] ⇐⇒ f − g ∈ I.
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The quotient ring k[x1, . . . , xn]/I consists of all cosets [f ] for f ∈
k[x1, . . . , xn].

From (2.1), we see that f
G ∈ [f ], and then (2.2) and (2.3) show that we

have a one-to-one correspondence

remainders ←→ cosets

f
G ←→ [f ].

Thus we can think of the remainder f
G

as a standard representative of its
coset [f ] ∈ k[x1, . . . , xn]/I. Furthermore, it follows easily that remainder
arithmetic is exactly the arithmetic in k[x1, . . . , xn]/I. That is, under the
above correspondence we have

f
G

+ gG ←→ [f ] + [g]

f
G · gG

G

←→ [f ] · [g].

Since we can add elements of k[x1, . . . , xn]/I and multiply by constants
(the cosets [c] for c ∈ k), k[x1, . . . , xn]/I also has the structure of a vector
space over the field k. A ring that is also a vector space in this fashion
is called an algebra. The algebra k[x1, . . . , xn]/I will be denoted by A
throughout the rest of this section, which will focus on its vector space
structure.

An important observation is that remainders are the linear combinations
of the monomials xα /∈ 〈LT(I)〉 in this vector space structure. (Strictly
speaking, we should use cosets, but in much of this section we will identify
a remainder with its coset in A.) Since this set of monomials is linearly
independent in A (why?), it can be regarded as a basis of A. In other
words, the monomials

B = {xα : xα /∈ 〈LT(I)〉}
form a basis of A (more precisely, their cosets are a basis). We will refer to
elements of B as basis monomials. In the literature, basis monomials are
often called standard monomials.

The following example illustrates how to compute in A using basis
monomials. Let

(2.4) G = {x2 + 3xy/2 + y2/2 − 3x/2 − 3y/2, xy2 − x, y3 − y}.
Using the grevlex order with x > y, it is easy to verify that G is a Gröbner
basis for the ideal I = 〈G〉 ⊂ C[x, y] generated by G. By examining the
leading monomials of G, we see that 〈LT(I)〉 = 〈x2, xy2, y3〉. The only
monomials not lying in this ideal are those in

B = {1, x, y, xy, y2}
so that by the above observation, these five monomials form a vector space
basis for A = C[x, y]/I over C.
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We now turn to the structure of the quotient ring A. The addition op-
eration in A can be viewed as an ordinary vector sum operation once we
express elements of A in terms of the basis B in (2.4). Hence we will consider
the addition operation to be completely understood.

Perhaps the most natural way to describe the multiplication operation
in A is to give a table of the remainders of all products of pairs of elements
from the basis B. Since multiplication in A distributes over addition, this
information will suffice to determine the products of all pairs of elements
of A.

For example, the remainder of the product x · xy may be computed as
follows using Maple. Using the Gröbner basis G, we compute

normalf(x^2*y,G,tdeg(x,y));

and obtain
3
2

xy − 3
2

x +
3
2

y2 − 1
2

y.

Exercise 1. By computing all such products, verify that the multiplication
table for the elements of the basis B is:

(2.5)

· 1 x y xy y2

1 1 x y xy y2

x x α xy β x
y y xy y2 x y
xy xy β x α xy
y2 y2 x y xy y2

where

α = −3xy/2 − y2/2 + 3x/2 + 3y/2

β = 3xy/2 + 3y2/2 − 3x/2 − y/2.

This example was especially nice because A was finite-dimensional as a
vector space over C. In general, for any field k ⊂ C, we have the following
basic theorem which describes when k[x1, . . . , xn]/I is finite-dimensional.

• (Finiteness Theorem) Let k ⊂ C be a field, and let I ⊂ k[x1, . . . , xn] be
an ideal. Then the following conditions are equivalent:
a. The algebra A = k[x1, . . . , xn]/I is finite-dimensional over k.
b. The variety V(I) ⊂ C

n is a finite set.
c. If G is a Gröbner basis for I, then for each i, 1 ≤ i ≤ n, there is an

mi ≥ 0 such that xmi
i = LT(g) for some g ∈ G.

For a proof of this result, see Theorem 6 of Chapter 5, §3 of [CLO], Theorem
2.2.7 of [AL], or Theorem 6.54 of [BW]. An ideal satisfying any of the above
conditions is said to be zero-dimensional . Thus

A is a finite-dimensional algebra ⇐⇒ I is a zero-dimensional ideal.
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A nice consequence of this theorem is that I is zero-dimensional if and
only if there is a nonzero polynomial in I ∩ k[xi] for each i = 1, . . . , n. To
see why this is true, first suppose that I is zero-dimensional, and let G be a
reduced Gröbner basis for any lex order with xi as the “last” variable (i.e.,
xj > xi for j �= i). By item c above, there is some g ∈ G with LT(g) = xmi

i .
Since we’re using a lex order with xi last, this implies g ∈ k[xi] and hence
g is the desired nonzero polynomial. Note that g generates I ∩ k[xi] by the
Elimination Theorem.

Going the other way, suppose I ∩k[xi] is nonzero for each i, and let mi be
the degree of the unique monic generator of I ∩ k[xi] (remember that k[xi]
is a principal ideal domain—see Corollary 4 of Chapter 1, §5 of [CLO]).
Then xmi

i ∈ 〈LT(I)〉 for any monomial order, so that all monomials not in
〈LT(I)〉 will contain xi to a power strictly less than mi. In other words, the
exponents α of the monomials xα /∈ 〈LT(I)〉 will all lie in the “rectangular
box”

R = {α ∈ Z
n
≥0 : for each i, 0 ≤ αi ≤ mi − 1}.

This is a finite set of monomials, which proves that A is finite-dimensional
over k.

Given a zero-dimensional ideal I, it is now easy to describe an algorithm
for finding the set B of all monomials not in 〈LT(I)〉. Namely, no matter
what monomial order we are using, the exponents of the monomials in
B will lie in the box R described above. For each α ∈ R, we know that
xα /∈ 〈LT(I)〉 if and only if xαG = xα. Thus we can list the α ∈ R in some
systematic way and compute xαG for each one. A vector space basis of A
is given by the set of monomials

B = {xα : α ∈ R and xαG = xα}.
See Exercise 13 below for a Maple procedure implementing this method.

The vector space structure on A = k[x1, . . . , xn]/I for a zero-
dimensional ideal I can be used in several important ways. To begin, let
us consider the problem of finding the monic generators of the elimina-
tion ideals I ∩ k[xi]. As indicated above, we could find these polynomials
by computing several different lex Gröbner bases, reordering the variables
each time to place xi last. This is an extremely inefficient method, however.
Instead, let us consider the set of non-negative powers of [xi] in A:

S = {1, [xi], [xi]2, . . .}.
Since A is finite-dimensional as a vector space over the field k, S must
be linearly dependent in A. Let mi be the smallest positive integer for
which {1, [xi], [xi]2, . . . , [xi]mi} is linearly dependent. Then there is a linear
combination

mi∑
j=0

cj [xi]j = [0]
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in A in which the cj ∈ k are not all zero. In particular, cmi �= 0 since mi is
minimal. By the definition of the quotient ring, this is equivalent to saying
that

(2.6) pi(xi) =
mi∑
j=0

cjx
j
i ∈ I.

Exercise 2. Verify that pi(xi) as in (2.6) is a generator of the ideal
I ∩ k[xi], and develop an algorithm based on this fact to find the monic
generator of I ∩ k[xi], given any Gröbner basis G for a zero-dimensional
ideal I as input.

The algorithm suggested in Exercise 2 often requires far less computa-
tional effort than a lex Gröbner basis calculation. Any ordering (e.g. grevlex)
can be used to determine G, then only standard linear algebra (matrix op-
erations) are needed to determine whether the set {1, [xi], [xi]2, . . . , [xi]m}
is linearly dependent. We note that the univpoly function from Maple’s
Groebner package is an implementation of this method.

We will next discuss how to find the radical of a zero-dimensional ideal
(see Chapter 1 for the definition of radical). To motivate what we will
do, recall from §1 how multiple roots of a polynomial can cause problems
when trying to find roots numerically. When dealing with a one-variable
polynomial p with coefficients lying in a subfield of C, it is easy to see that
the polynomial

pred =
p

GCD(p, p′)

has the same roots as p, but all with multiplicity one (for a proof of this, see
Exercises 14 and 15 of Chapter 1, §5 of [CLO]). We call pred the square-free
part of p.

The radical
√

I of an ideal I generalizes the idea of the square-free part
of a polynomial. In fact, we have the following elementary exercise.

Exercise 3. If p ∈ k[x] is a nonzero polynomial, show that
√〈p〉 = 〈pred〉.

Since k[x] is a PID, this solves the problem of finding radicals for all
ideals in k[x]. For a general ideal I ⊂ k[x1, . . . , xn], it is more difficult
to find

√
I, though algorithms are known and have been implemented in

Macaulay 2, REDUCE, and Singular. Fortunately, when I is zero-dimen-
sional, computing the radical is much easier, as shown by the following
proposition.

(2.7) Proposition. Let I ⊂ C[x1, . . . , xn] be a zero-dimensional ideal.
For each i = 1, . . . , n, let pi be the unique monic generator of I ∩ C[xi],
and let pi,red be the square-free part of pi. Then√

I = I + 〈p1,red, . . . , pn,red〉.
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Proof. Write J = I + 〈p1,red, . . . , pn,red〉. We first prove that J is a
radical ideal, i.e., that J =

√
J . For each i, using the fact that C is alge-

braically closed, we can factor each pi,red to obtain pi,red = (xi − ai1)(xi −
ai2) · · · (xi − aidi), where the aij are distinct. Then

J = J + 〈p1,red〉 =
⋂
j

(J + 〈x1 − a1j〉),

where the first equality holds since p1,red ∈ J and the second follows from
Exercise 9 below since p1,red has distinct roots. Now use p2,red to decompose
each J + 〈x1 − a1j〉 in the same way. This gives

J =
⋂
j,k

(J + 〈x1 − a1j , x2 − a2k〉).

If we do this for all i = 1, 2, . . . , n, we get the expression

J =
⋂

j1,...,jn

(J + 〈x1 − a1j1 , . . . , xn − anjn〉).

Since 〈x1 − a1j1 , . . . , xn − anjn〉 is a maximal ideal, the ideal J + 〈x1 −
a1j1 , . . . , xn − anjn〉 is either 〈x1 − a1j1 , . . . , xn − anjn〉 or the whole ring
C[x1, . . . , xn]. It follows that J is a finite intersection of maximal ideals.
Since a maximal ideal is radical and an intersection of radical ideals is
radical, we conclude that J is a radical ideal.

Now we can prove that J =
√

I. The inclusion I ⊂ J is built into
the definition of J , and the inclusion J ⊂ √I follows from the Strong
Nullstellensatz, since the square-free parts of the pi vanish at all the points
of V(I). Hence we have

I ⊂ J ⊂
√

I.

Taking radicals in this chain of inclusions shows that
√

J =
√

I. But J is
radical, so

√
J = J and we are done.

A Maple procedure that implements an algorithm for the radical of a
zero-dimensional ideal based on Proposition (2.7) is discussed in Exercise
16 below. It is perhaps worth noting that even though we have proved
Proposition (2.7) using the properties of C, the actual computation of
the polynomials pi,red will involve only rational arithmetic when the input
polynomials are in Q[x1, . . . , xn].

For example, consider the ideal

(2.8) I = 〈y4x + 3x3 − y4 − 3x2, x2y − 2x2, 2y4x − x3 − 2y4 + x2〉

Exercise 4. Using Exercise 2 above, show that

I ∩ Q[x] = 〈x3 − x2〉
and

I ∩ Q[y] = 〈y5 − 2y4〉.
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Writing p1(x) = x3 − x2 and p2(y) = y5 − 2y4, we can compute the
square-free parts in Maple as follows. The command

p1red := simplify(p1/gcd(p1,diff(p1,x)));

will produce

p1,red(x) = x(x − 1).

Similarly,

p2,red(y) = y(y − 2).

Hence by Proposition (2.7),
√

I is the ideal

〈y4x + 3x3 − y4 − 3x2, x2y− 2x2, 2y4x− x3 − 2y4 + x2, x(x− 1), y(y− 2)〉.
We note that Proposition (2.7) yields a basis, but usually not a Gröbner
basis, for

√
I.

Exercise 5. How do the dimensions of the vector spaces C[x, y]/I and
C[x, y]/

√
I compare in this example? How could you determine the number

of distinct points in V(I)? (There are two.)

We will conclude this section with a very important result relating the
dimension of A and the number of points in the variety V(I), or what is
the same, the number of solutions of the equations f1 = · · · = fs = 0 in
C

n. To prepare for this we will need the following lemma.

(2.9) Lemma. Let S = {p1, . . . , pm} be a finite subset of C
n. There exist

polynomials gi ∈ C[x1, . . . , xn], i = 1, . . . , m, such that

gi(pj) =
{

0 if i �= j, and
1 if i = j.

For instance, if pi = (ai1, . . . , ain) and the first coordinates ai1 are
distinct , then we can take

gi = gi(x1) =

∏
j �=i(x1 − aj1)∏
j �=i(ai1 − aj1)

as in the Lagrange interpolation formula. In any case, a collection of poly-
nomials gi with the desired properties can be found in a similar fashion. We
leave the proof to the reader as Exercise 11 below. The following theorem
ties all of the results of this section together, showing how the dimension
of the algebra A for a zero-dimensional ideal gives a bound on the number
of points in V(I), and also how radical ideals are special in this regard.

(2.10) Theorem. Let I be a zero-dimensional ideal in C[x1, . . . , xn], and
let A = C[x1, . . . , xn]/I. Then dimC(A) is greater than or equal to the
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number of points in V(I). Moreover, equality occurs if and only if I is a
radical ideal.

Proof. Let I be a zero-dimensional ideal. By the Finiteness Theorem,
V(I) is a finite set in C

n, say V(I) = {p1, . . . , pm}. Consider the mapping

ϕ : C[x1, . . . , xn]/I −→ C
m

[f ] �→ (f(p1), . . . , f(pm))

given by evaluating a coset at the points of V(I). In Exercise 12 below,
you will show that ϕ is a well-defined linear map.

To prove the first statement in the theorem, it suffices to show that ϕ
is onto. Let g1, . . . , gm be a collection of polynomials as in Lemma (2.9).
Given an arbitrary (λ1, . . . , λm) ∈ C

m, let f =
∑m

i=1 λigi. An easy com-
putation shows that ϕ([f ]) = (λ1, . . . , λm). Thus ϕ is onto, and hence
dim(A) ≥ m.

Next, suppose that I is radical. If [f ] ∈ ker(ϕ), then f(pi) = 0 for all
i, so that by the Strong Nullstellensatz, f ∈ I(V(I)) =

√
I = I. Thus

[f ] = [0], which shows that ϕ is one-to-one as well as onto. Then ϕ is an
isomorphism, which proves that dim(A) = m if I is radical.

Conversely, if dim(A) = m, then ϕ is an isomorphism since it is an
onto linear map between vector spaces of the same dimension. Hence ϕ is
one-to-one. We can use this to prove that I is radical as follows. Since the
inclusion I ⊂ √I always holds, it suffices to consider f ∈ √I = I(V(I))
and show that f ∈ I. If f ∈ √I, then f(pi) = 0 for all i, which implies
ϕ([f ]) = (0, . . . , 0). Since ϕ is one-to-one, we conclude that [f ] = [0], or in
other words that f ∈ I, as desired.

In Chapter 4, we will see that in the case I is not radical, there are
well-defined multiplicities at each point in V(I) so that the sum of the
multiplicities equals dim(A).

ADDITIONAL EXERCISES FOR §2

Exercise 6. Using the grevlex order, construct the monomial basis B for
the quotient algebra A = C[x, y]/I, where I is the ideal from (2.8) and
construct the multiplication table for B in A.

Exercise 7. In this exercise, we will explain how the ideal I = 〈x2 +
3xy/2 + y2/2 − 3x/2 − 3y/2, xy2 − x, y3 − y〉 from (2.4) was constructed.
The basic idea was to start from a finite set of points and construct a
system of equations, rather than the reverse.
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To begin, consider the maximal ideals

I1 = 〈x, y〉, I2 = 〈x − 1, y − 1〉,
I3 = 〈x + 1, y − 1〉, I4 = 〈x − 1, y + 1〉,

I5 =〈x − 2, y + 1〉
in C[x, y]. Each variety V(Ij) is a single point in C

2, indeed in Q
2 ⊂

C
2. The union of the five points forms an affine variety V , and by the

algebra-geometry dictionary from Chapter 1, V = V(I1 ∩ I2 ∩ · · · ∩ I5).
An algorithm for intersecting ideals is described in Chapter 1. Use it

to compute the intersection I = I1 ∩ I2 ∩ · · · ∩ I5 and find the reduced
Gröbner basis for I with respect to the grevlex order (x > y). Your result
should be the Gröbner basis given in (2.4).

Exercise 8.
a. Use the method of Proposition (2.7) to show that the ideal I from (2.4)

is a radical ideal.
b. Give a non-computational proof of the statement from part a using the

following observation. By the form of the generators of each of the ideals
Ij in Exercise 7, V(Ij) is a single point and Ij is the ideal I(V(Ij)). As
a result, Ij =

√
Ij by the Strong Nullstellensatz. Then use the general

fact about intersections of radical ideals from part a Exercise 9 from §4
of Chapter 1.

Exercise 9. This exercise is used in the proof of Proposition (2.7). Suppose
we have an ideal I ⊂ k[x1, . . . , xn], and let p = (x1 − a1) · · · (x1 − ad),
where a1, . . . , ad are distinct. The goal of this exercise is to prove that

I + 〈p〉 =
⋂
j

(I + 〈x1 − aj〉).

a. Prove that I + 〈p〉 ⊂ ⋂
j(I + 〈x1 − aj〉).

b. Let pj =
∏

i �=j(x1 − ai). Prove that pj · (I + 〈x1 − aj〉) ⊂ I + 〈p〉.
c. Show that p1, . . . , pn are relatively prime, and conclude that there are

polynomials h1, . . . , hn such that 1 =
∑

j hjpj .
d. Prove that

⋂
j(I +〈x1−aj〉) ⊂ I +〈p〉. Hint: Given h in the intersection,

write h =
∑

j hjpjh and use part b.

Exercise 10. (The Dual Space of k[x1, . . . , xn]/I) Recall that if V is a
vector space over a field k, then the dual space of V , denoted V ∗, is the
k-vector space of linear mappings L : V → k. If V is finite-dimensional,
then so is V ∗, and dim V = dim V ∗. Let I be a zero-dimensional ideal in
k[x1, . . . , xn], and consider A = k[x1, . . . , xn]/I with its k-vector space
structure. Let G be a Gröbner basis for I with respect to some monomial
ordering, and let B = {xα(1), . . . , xα(d)} be the corresponding monomial
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basis for A, so that for each f ∈ k[x1, . . . , xn],

f
G

=
d∑

j=1

cj(f)xα(j)

for some cj(f) ∈ k.
a. Show that each of the functions cj(f) is a linear function of f ∈

k[x1, . . . , xn]. Moreover, show that cj(f) = 0 for all j if and only if
f ∈ I, or equivalently [f ] = 0 in A.

b. Deduce that the collection B∗ of mappings cj given by f �→ cj(f),
j = 1, . . . , d gives a basis of the dual space A∗.

c. Show that B∗ is the dual basis corresponding to the basis B of A. That
is, show that

cj(xα(i)) =
{

1 if i = j
0 otherwise.

Exercise 11. Let S = {p1, . . . , pm} be a finite subset of C
n.

a. Show that there exists a linear polynomial �(x1, . . . , xn) whose values
at the points of S are distinct .

b. Using the linear polynomial � from part a, show that there exist
polynomials gi ∈ C[x1, . . . , xn], i = 1, . . . , m, such that

gi(pj) =
{

0 if i �= j, and
1 if i = j.

Hint: Mimic the construction of the Lagrange interpolation polynomials
in the discussion after the statement of Lemma (2.9).

Exercise 12. As in Theorem (2.10), suppose that V(I) = {p1, . . . , pm}.
a. Prove that the map ϕ : C[x1, . . . , xn]/I → C

m given by evaluation at
p1, . . . , pm is a well-defined linear map. Hint: [f ] = [g] implies f−g ∈ I.

b. We can regard C
m as a ring with coordinate-wise multiplication. Thus

(a1, . . . , am) · (b1, . . . , bm) = (a1b1, . . . , ambm).

With this ring structure, C
m is a direct product of m copies of C. Prove

that the map ϕ of part a is a ring homomorphism.
c. Prove that ϕ is a ring isomorphism if and only if I is radical. This

means that in the radical case, we can express A as a direct product
of the simpler rings (namely, m copies of C). In Chapter 4, we will
generalize this result to the nonradical case.

Exercise 13. In Maple, the SetBasis command finds a monomial basis B
for the quotient algebra A = k[x1, . . . , xn]/I for a zero-dimensional ideal I.
However, it is instructive to have the following “home-grown” version called
kbasis which makes it easier to see what is happening.
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kbasis := proc(GB,VList,torder)

# returns a list of monomials forming a basis of the quotient
# ring, where GB is a Groebner basis for a zero-dimensional
# ideal, and generates an error message if the ideal is not
# 0-dimensional.

local B,C,v,t,l,m,leadmons,i;

if is_finite(GB,VList) then
leadmons:={seq(leadterm(GB[i],torder),i=1..nops(GB))};
B:=[1];
for v in VList do
m:=degree(univpoly(v,GB),v);
C:=B;
for t in C do
for l to m-1 do
t:=t*v;
if evalb(not(1 in map(u->denom(t/u),leadmons))) then
B:=[op(B),t];

end if;
end do;

end do;
end do;
return B;

else
print(‘ideal is not zero-dimensional‘);

end if
end proc:

a. Show that kbasis correctly computes {xα : xα /∈ 〈LT(I)〉} if A is finite-
dimensional over k and terminates for all inputs.

b. Use either kbasis or SetBasis to check the results for the ideal from
(2.4).

c. Use either kbasis or SetBasis to check your work from Exercise 6
above.

Exercise 14. The algorithm used in the procedure from Exercise 13 can
be improved considerably. The “box” R that kbasis searches for elements
of the complement of 〈LT(I)〉 is often much larger than necessary. This is
because the call to univpoly, which finds a monic generator for I ∩ k[xi]
for each i, gives an mi such that xmi

i ∈ 〈LT(I)〉, but mi might not be as
small as possible. For instance, consider the ideal I from (2.4). The monic
generator of I ∩ C[x] has degree 4 (check this). Hence kbasis computes
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x2G
, x3G

and rejects these monomials since they are not remainders. But
the Gröbner basis G given in (2.4) shows that x2 ∈ 〈LT(I)〉. Thus a smaller
set of α containing the exponents of the monomial basis B can be deter-
mined directly by examining the leading terms of the Gröbner basis G,
without using univpoly to get the monic generator for I ∩ k[xi]. De-
velop and implement an improved kbasis that takes this observation into
account.

Exercise 15. Using either Setbasis or kbasis, develop and implement a
procedure that computes the multiplication table for a finite-dimensional
algebra A.

Exercise 16. Implement the following Maple procedure for finding the
radical of a zero-dimensional ideal given by Proposition (2.7) and test it on
the examples from this section.

zdimradical := proc(PList,VList)

# constructs a set of generators for the radical of a
# zero-dimensional ideal.

local p,pred,v,RList;

if is_finite(PList,VList) then
RList := PList;
for v in VList do
p := univpoly(v,PList);
pred := simplify(p/gcd(p,diff(p,v)));
RList:=[op(RList),pred]

end do;
return RList

else
print(‘Ideal not zero-dimensional; method does not apply‘)

end if
end proc:

Exercise 17. Let I ⊂ C[x1, . . . , xn] be an ideal such that for every 1 ≤
i ≤ n, there is a square-free polynomial pi such that pi(xi) ∈ I. Use
Proposition (2.7) to show that I is radical.

Exercise 18. For 1 ≤ i ≤ n, let pi be a square-free polynomial. Also let
di = deg(pi). The goal of this exercise is to prove that 〈p1(x1), . . . , pn(xn)〉
is radical using only the division algorithm.
a. Let r be the remainder of f ∈ C[x1, . . . , xn] on division by the pi(xi).

Prove that r has degree at most di − 1 in xi.
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b. Prove that r vanishes on V(p1(x1), . . . , pn(xn)) if and only if r is
identically 0.

c. Conclude that 〈p1(x1), . . . , pn(xn)〉 is radical without using Proposition
(2.7).

Exercise 19. In this exercise, you will use Exercise 18 to give an ele-
mentary proof of the result of Exercise 17. Thus we assume that I ⊂
C[x1, . . . , xn] is an ideal such that for every 1 ≤ i ≤ n, there is a
square-free polynomial pi such that pi(xi) ∈ I. Take f ∈ C[x1, . . . , xn]
such that fN ∈ I for some N > 0. Let z be a new variable and set
J = 〈p1(x1), . . . , pn(xn), z − f〉 ⊂ C[x1, . . . , xn, z].
a. Prove that there is a ring isomorphism

C[x1, . . . , xn, z]/J ∼= C[x1, . . . , xn]/〈p1(x1), . . . , pn(xn)〉
and conclude via Exercise 18 that J is zero-dimensional and radical.

b. Without using Proposition (2.7), show that there is a square-free
polynomial g such that g(z) ∈ J .

c. Explain why GCD(g, zN ) is 1 or z, and conclude that z = p(z)g(z) +
q(z)zN for some polynomials p, q.

d. Under the isomorphism of part a, show that z = p(z)g(z) + q(z)zN

maps to f = q(f)fN + h, where h ∈ 〈p1(x1), . . . , pn(xn)〉. Conclude
that f ∈ I.

This argument is due to M. Mereb.

§3 Gröbner Basis Conversion

In this section, we will use linear algebra in A = k[x1, . . . , xn]/I to show
that a Gröbner basis G for a zero-dimensional ideal I with respect to one
monomial order can be converted to a Gröbner basis G′ for the same ideal
with respect to any other monomial order. The process is sometimes called
Gröbner basis conversion, and the idea comes from a paper of Faugère,
Gianni, Lazard, and Mora [FGLM]. We will illustrate the method by con-
verting from an arbitrary Gröbner basis G to a lex Gröbner basis Glex

(using any ordering on the variables). The Gröbner basis conversion method
is often used in precisely this situation, so that a more favorable monomial
order (such as grevlex) can be used in the application of Buchberger’s al-
gorithm, and the result can then be converted into a form more suited for
equation solving via elimination. For another discussion of this topic, see
[BW], §1 of Chapter 9.

The basic idea of the Faugère-Gianni-Lazard-Mora algorithm is quite
simple. We start with a Gröbner basis G for a zero-dimensional ideal I,
and we want to convert G to a lex Gröbner basis Glex for some lex order.
The algorithm steps through monomials in k[x1, . . . , xn] in increasing lex
order. At each step of the algorithm, we have a list Glex = {g1, . . . , gk} of
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elements in I (initially empty, and at each stage a subset of the eventual
lex Gröbner basis), and a list Blex of monomials (also initially empty, and
at each stage a subset of the eventual lex monomial basis for A). For each
input monomial xα (initially 1), the algorithm consists of three steps:

(3.1) Main Loop. Given the input xα, compute xαG. Then:
a. If xαG is linearly dependent on the remainders (on division by G) of the

monomials in Blex, then we have a linear combination

xαG −∑
jcjxα(j)

G
= 0,

where xα(j) ∈ Blex and cj ∈ k. This implies that

g = xα −∑
jcjx

α(j) ∈ I.

We add g to the list Glex as the last element. Because the xα are con-
sidered in increasing lex order (see (3.3) below), whenever a polynomial
g is added to Glex, its leading term is LT(g) = xα with coefficient 1.

b. If xαG is linearly independent from the remainders (on division by G)
of the monomials in Blex, then we add xα to Blex as the last element.

After the Main Loop acts on the monomial xα, we test Glex to see if we
have the desired Gröbner basis. This test needs to be done only if we added
a polynomial g to Glex in part a of the Main Loop.

(3.2) Termination Test. If the Main Loop added a polynomial g to Glex,
then compute LT(g). If LT(g) is a power of x1, where x1 is the greatest
variable in our lex order, then the algorithm terminates.

The proof of Theorem (3.4) below will explain why this is the correct way
to terminate the algorithm. If the algorithm does not stop at this stage, we
use the following procedure to find the next input monomial for the Main
Loop:

(3.3) Next Monomial. Replace xα with the next monomial in lex order
which is not divisible by any of the monomials LT(gi) for gi ∈ Glex.

Exercise 3 below will explain how the Next Monomial procedure works.
Now repeat the above process by using the new xα as input to the Main
Loop, and continue until the Termination Test tells us to stop.

Before we prove the correctness of this algorithm, let’s see how it works
in an example.

Exercise 1. Consider the ideal

I = 〈xy + z − xz, x2 − z, 2x3 − x2yz − 1〉
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in Q[x, y, z]. For grevlex order with x > y > z, I has a Gröbner basis
G = {f1, f2, f3, f4}, where

f1 = z4 − 3z3 − 4yz + 2z2 − y + 2z − 2

f2 = yz2 + 2yz − 2z2 + 1

f3 = y2 − 2yz + z2 − z

f4 = x + y − z.

Thus 〈LT(I)〉 = 〈z4, yz2, y2, x〉, B = {1, y, z, z2, z3, yz}, and a remainder
f

G
is a linear combination of elements of B. We will use basis conversion

to find a lex Gröbner basis for I, with z > y > x.
a. Carry out the Main Loop for xα = 1, x, x2, x3, x4, x5, x6. At the end of

doing this, you should have

Glex = {x6 − x5 − 2x3 + 1}
Blex = {1, x, x2, x3, x4, x5}.

Hint: The following computations will be useful:

1G = 1

xG = −y + z

x2G
= z

x3G
= −yz + z2

x4G
= z2

x5G
= z3 + 2yz − 2z2 + 1

x6G
= z3.

Note that 1G
, . . . , x5G

are linearly independent while x6G
is a linear

combination of x5G
, x3G

and 1G. This is similar to Exercise 2 of §2.
b. After we apply the Main Loop to x6, show that the monomial provided

by the Next Monomial procedure is y, and after y passes through the
Main Loop, show that

Glex = {x6 − x5 − 2x3 + 1, y − x2 + x}
Blex = {1, x, x2, x3, x4, x5}.

c. Show that after y, Next Monomial produces z, and after z passes through
the Main Loop, show that

Glex = {x6 − x5 − 2x3 + 1, y − x2 + x, z − x2}
Blex = {1, x, x2, x3, x4, x5}.

d. Check that the Termination Test (3.2) terminates the algorithm when
Glex is as in part c. Hint: We’re using lex order with z > y > x.
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e. Verify that Glex from part c is a lex Gröbner basis for I.

We will now show that the algorithm given by (3.1), (3.2) and (3.3)
terminates and correctly computes a lex Gröbner basis for the ideal I.

(3.4) Theorem. The algorithm described above terminates on every in-
put Gröbner basis G generating a zero-dimensional ideal I, and correctly
computes a lex Gröbner basis Glex for I and the lex monomial basis Blex

for the quotient ring A.

Proof. We begin with the key observation that monomials are added
to the list Blex in strictly increasing lex order. Similarly, if Glex =
{g1, . . . , gk}, then

LT(g1) <lex · · · <lex LT(gk),

where >lex is the lex order we are using. We also note that when the Main
Loop adds a new polynomial gk+1 to Glex = {g1, . . . , gk}, the leading
term LT(gk+1) is the input monomial in the Main Loop. Since the input
monomials are provided by the Next Monomial procedure, it follows that
for all k,

(3.5) LT(gk+1) is divisible by none of LT(g1), . . . , LT(gk).

We can now prove that the algorithm terminates for all inputs G gener-
ating zero-dimensional ideals. If the algorithm did not terminate for some
input G, then the Main Loop would be executed infinitely many times, so
one of the two alternatives in (3.1) would be chosen infinitely often. If the
first alternative were chosen infinitely often, Glex would give an infinite list
LT(g1), LT(g2), . . . of monomials. However, we have:

• (Dickson’s Lemma) Given an infinite list xα(1), xα(2), . . . of monomials
in k[x1, . . . , xn], there is an integer N such that every xα(i) is divisible
by one of xα(1), . . . , xα(N).

(See, for example, Exercise 7 of [CLO], Chapter 2, §4). When applied to
LT(g1), LT(g2), . . ., Dickson’s Lemma would contradict (3.5). On the other
hand, if the second alternative were chosen infinitely often, then Blex would
give infinitely many monomials xα(j) whose remainders on division by G
were linearly independent in A. This would contradict the assumption that
I is zero-dimensional. As a result, the algorithm always terminates for G
generating a zero-dimensional ideal I.

Next, suppose that the algorithm terminates with Glex = {g1, . . . , gk}.
By the Termination Test (3.2), LT(gk) = xa1

1 , where x1 >lex · · · >lex xn.
We will prove that Glex is a lex Gröbner basis for I by contradiction.
Suppose there were some g ∈ I such that LT(g) is not a multiple of any of
the LT(gi), i = 1, . . . , k. Without loss of generality, we may assume that g
is reduced with respect to Glex (replace g by gGlex).
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If LT(g) is greater than LT(gk) = xa1
1 , then one easily sees that LT(g) is

a multiple of LT(gk) (see Exercise 2 below). Hence this case can’t occur,
which means that

LT(gi) < LT(g) ≤ LT(gi+1)

for some i < k. But recall that the algorithm places monomials into Blex

in strictly increasing order, and the same is true for the LT(gi). All the
non-leading monomials in g must be less than LT(g) in the lex order. They
are not divisible by any of LT(gj) for j ≤ i, since g is reduced. So, the non-
leading monomials that appear in g would have been included in Blex by
the time LT(g) was reached by the Next Monomial procedure, and g would
have been the next polynomial after gi included in Glex by the algorithm
(i.e., g would equal gi+1). This contradicts our assumption on g, which
proves that Glex is a lex Gröbner basis for I.

The final step in the proof is to show that when the algorithm terminates,
Blex consists of all basis monomials determined by the Gröbner basis Glex.
We leave this as an exercise for the reader.

In the literature, the basis conversion algorithm discussed here is called
the FGLM algorithm after the authors Faugère, Gianni, Lazard, and Mora
of the paper [FGLM] in which the algorithm first appeared. We should
also mention that while the FGLM algorithm assumes that I is zero-
dimensional, there are methods which apply to the positive-dimensional
case. For instance, if degree bounds on the elements of the Gröbner basis
with respect to the desired order are known, then the approach described
above can also be adapted to treat ideals that are not zero-dimensional. An
interesting related “Hilbert function-driven” basis conversion method for
homogeneous ideals has been proposed by Traverso (see [Trav]). However,
general basis conversion methods that apply even when information such
as degree bounds is not available are also desirable. Such a method is the
Gröbner Walk to be described in Chapter 8.

The ideas used in Gröbner basis conversion can be applied in other
contexts. In order to explain this, we need to recast the above discus-
sion using linear maps. Recall that we began with a Gröbner basis G of a
zero-dimensional ideal I and our goal was to find a lex Gröbner basis Glex

of I. However, for G, the main thing we used was the normal form f
G

of a
polynomial f ∈ k[x1, . . . , xn].

Let’s write this out carefully. Let B be the monomial basis of A =
k[x1, . . . , xn]/I determined by G. Denote f

G
by L(f) and Span(B) by

V , so that L(f) = f
G ∈ V = Span(B). Thus we have a map

(3.6) L : k[x1, . . . , xn] −→ V.

In Exercise 10 of §2, you showed that L is linear with kernel equal to I.
Using this, the Main Loop (3.1) can be written as follows.
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(3.7) Main Loop, Restated. Given the input xα, compute L(xα). Then:
a. If L(xα) is linearly dependent on the images under L of the monomials

in Blex, then we have a linear combination

L(xα) −∑
jcjL(xα(j)) = 0,

where xα(j) ∈ Blex and cj ∈ k. This implies that L
(
x−∑j cjx

α(j)
)

= 0.
Since I is the kernel of L, we have

g = xα −∑
jcjx

α(j) ∈ I.

We add g to Glex as the last element.
b. If L(xα) is linearly independent from the images under L of the

monomials in Blex, then we add xα to Blex as the last element.

If we combine (3.7) with the Termination Test (3.2) and Next Monomial
(3.3), then we get the same algorithm as before. But even more is true, for
this algorithm computes a lex Gröbner basis of the kernel for any linear
map (3.6), provided that V has finite dimension and the kernel is an ideal
of k[x1, . . . , xn]. You will prove this in Exercise 9 below.

As an example of how this works, pick distinct points p1, . . . , pm ∈ kn

and consider the evaluation map

L : k[x1, . . . , xn] −→ km, L(f) = (f(p1), . . . , f(pm)).

The kernel is the ideal I(p1, . . . , pm) of polynomials vanishing at the given
points. It follows that we now have an algorithm for computing a lex
Gröbner basis of this ideal! This is closely related to the Buchberger-Möller
algorithm described in [BuM]. You will work out an explicit example in
Exercise 10.

For another example, consider

(3.8) I = {f ∈ C[x, y] : f(0, 0) = fx(0, 0) = fy(0, 0) − fxx(0, 0) = 0}.
In Exercise 11, you will show that I is an ideal of C[x, y]. Since I is the
kernel of the linear map

L : C[x, y] −→ C
3, L(f) = (f(0, 0), fx(0, 0), fy(0, 0) − fxx(0, 0)),

the above algorithm can be used to show that {y2, xy, x2 + 2y} is a lex
Gröbner basis with x > y for the ideal I. See Exercise 11 for the details.

There are some very interesting ideas related to these examples. Dif-
ferential conditions like those in (3.8), when combined with primary
decomposition, can be used to describe any zero-dimensional ideal in
k[x1, . . . , xn]. This is explained in [MMM1] and [MöS] (and is where we
got (3.8)). The paper [MMM1] also describes other situations where these
ideas are useful, and [MMM2] makes a systematic study of the different
representations of a zero-dimensional ideal and how one can pass from one
representation to another.
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ADDITIONAL EXERCISES FOR §3

Exercise 2. Consider the lex order with x1 > · · · > xn and fix a power
xa

1 of x1. Then, for any monomial xα in k[x1, . . . , xn], prove that xα > xa
1

if and only if xα is divisible by xa
1 .

Exercise 3. Suppose Glex = {g1, . . . , gk}, where LT(g1) < · · · < LT(gk),
and let xα be a monomial. This exercise will show how the Next Monomial
(3.3) procedure works, assuming that our lex order satisfies x1 > · · · > xn.
Since this procedure is only used when the Termination Test fails, we can
assume that LT(gk) is not a power of x1.
a. Use Exercise 2 to show that none of the LT(gi) divide xa1+1

1 .
b. Now consider the largest 1 ≤ k ≤ n such that none of the LT(gi) divide

the monomial

xa1
1 · · · xak−1

k−1 xak+1
k .

By part a, k = 1 has this property, so there must be a largest such k. If
xβ is the monomial corresponding to the largest k, prove that xβ > xα

is the smallest monomial (relative to our lex order) greater than xα

which is not divisible by any of the LT(gi).

Exercise 4. Complete the proof of Theorem (3.4) by showing that when
the basis conversion algorithm terminates, the set Blex gives a monomial
basis for the quotient ring A.

Exercise 5. Use Gröbner basis conversion to find lex Gröbner bases for
the ideals in Exercises 6 and 7 from §1. Compare with your previous results.

Exercise 6. What happens if you try to apply the basis conversion algo-
rithm to an ideal that is not zero-dimensional? Can this method be used
for general Gröbner basis conversion? What if you have more information
about the lex basis elements, such as their total degrees, or bounds on those
degrees?

Exercise 7. Show that the output of the basis conversion algorithm is
actually a monic reduced lex Gröbner basis for I = 〈G〉.

Exercise 8. Implement the basis conversion algorithm outlined in (3.1),
(3.2) and (3.3) in a computer algebra system. Hint: Exercise 3 will be useful.
For a more complete description of the algorithm, see pages 428–433 of
[BW].

Exercise 9. Consider a linear map L : k[x1, . . . , xn] → V , where V has
finite dimension and the kernel of L is an ideal. State and prove a version
of Theorem (3.4) which uses (3.7), (3.2), and (3.3).
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Exercise 10. Use the method described at the end of the section to find
a lex Gröbner basis with x > y for the ideal of all polynomials vanishing
at (0, 0), (1, 0), (0, 1) ∈ k2.

Exercise 11. Prove that (3.8) is an ideal of C[x, y] and use the method
described at the end of the section to find a lex Gröbner basis with x > y
for this ideal.

§4 Solving Equations via Eigenvalues and
Eigenvectors

The central problem of this chapter, finding the solutions of a system of
polynomial equations f1 = f2 = · · · = fs = 0 over C, rephrases in fancier
language to finding the points of the variety V(I), where I is the ideal gen-
erated by f1, . . . , fs. When the system has only finitely many solutions,
i.e., when V(I) is a finite set, the Finiteness Theorem from §2 says that
I is a zero-dimensional ideal and the algebra A = C[x1, . . . , xn]/I is a
finite-dimensional vector space over C. The first half of this section ex-
ploits the structure of A in this case to evaluate an arbitrary polynomial
f at the points of V(I); in particular, evaluating the polynomials f = xi

gives the coordinates of the points (Corollary (4.6) below). The values of
f on V(I) turn out to be eigenvalues of certain linear mappings on A. We
will discuss techniques for computing these eigenvalues and show that the
corresponding eigenvectors contain useful information about the solutions.

We begin with the easy observation that given a polynomial f ∈
C[x1, . . . , xn], we can use multiplication to define a linear map mf from
A = C[x1, . . . , xn]/I to itself. More precisely, f gives the coset [f ] ∈ A,
and we define mf : A → A by the rule: if [g] ∈ A, then

mf ([g]) = [f ] · [g] = [fg] ∈ A.

Then mf has the following basic properties.

(4.1) Proposition. Let f ∈ C[x1, . . . , xn]. Then
a. The map mf is a linear mapping from A to A.
b. We have mf = mg exactly when f − g ∈ I. Thus two polynomials give

the same linear map if and only if they differ by an element of I. In
particular, mf is the zero map exactly when f ∈ I.

Proof. The proof of part a is just the distributive law for multiplication
over addition in the ring A. If [g], [h] ∈ A and c ∈ k, then

mf (c[g] + [h]) = [f ] · (c[g] + [h]) = c[f ] · [g] + [f ] · [h] = cmf ([g]) + mf ([h]).
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Part b is equally easy. Since [1] ∈ A is a multiplicative identity, if mf = mg,
then

[f ] = [f ] · [1] = mf ([1]) = mg([1]) = [g] · [1] = [g],

so f −g ∈ I. Conversely, if f −g ∈ I, then [f ] = [g] in A, so mf = mg.

Since A is a finite-dimensional vector space over C, we can represent mf

by its matrix with respect to a basis. For our purposes, a monomial basis
B such as the ones we considered in §2 will be the most useful, because
once we have the multiplication table for the elements in B, the matrices
of the multiplication operators mf can be read off immediately from the
table. We will denote this matrix also by mf , and whether mf refers to the
matrix or the linear operator will be clear from the context. Proposition
(4.1) implies that mf = m

f
G , so that we may assume that f is a remainder.

For example, for the ideal I from (2.4) of this chapter, the matrix for the
multiplication operator by f may be obtained from the table (2.5) in the
usual way. Ordering the basis monomials as before,

B = {1, x, y, xy, y2},
we make a 5× 5 matrix whose jth column is the vector of coefficients in the
expansion in terms of B of the image under mf of the jth basis monomial.
With f = x, for instance, we obtain

mx =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
1 3/2 0 −3/2 1
0 3/2 0 −1/2 0
0 −3/2 1 3/2 0
0 −1/2 0 3/2 0

⎞⎟⎟⎟⎟⎠ .

Exercise 1. Find the matrices m1, my, mxy−y2 with respect to B in this
example. How do my2 and (my)2 compare? Why?

We note the following useful general properties of the matrices mf (the
proof is left as an exercise).

(4.2) Proposition. Let f, g be elements of the algebra A. Then
a. mf+g = mf + mg.
b. mf ·g = mf · mg (where the product on the right means composition of

linear operators or matrix multiplication).

This proposition says that the map sending f ∈ C[x1, . . . , xn] to the
matrix mf defines a ring homomorphism from C[x1, . . . , xn] to the ring
Md×d(C) of d × d matrices, where d is the dimension of A as a C-vector
space. Furthermore, part b of Proposition (4.1) and the Fundamental
Theorem of Homomorphisms show that [f ] �→ mf induces a one-to-one ho-
momorphism A → Md×d(C). A discussion of ring homomorphisms and the
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Fundamental Theorem of Homomorphisms may be found in Chapter 5, §2
of [CLO], especially Exercise 16. But the reader should note that Md×d(C)
is not a commutative ring, so we have here a slightly more general situation
than the one discussed there.

For use later, we also point out a corollary of Proposition (4.2). Let h(t) =∑m
i=0 cit

i ∈ C[t] be a polynomial. The expression h(f) =
∑m

i=0 cif
i makes

sense as an element of C[x1, . . . , xn]. Similarly h(mf ) =
∑m

i=0 ci(mf )i is
a well-defined matrix (the term c0 should be interpreted as c0I, where I is
the d × d identity matrix).

(4.3) Corollary. In the situation of Proposition (4.2), let h ∈ C[t] and
f ∈ C[x1, . . . , xn]. Then

mh(f) = h(mf ).

Recall that a polynomial f ∈ C[x1, . . . , xn] gives the coset [f ] ∈ A. Since
A is finite-dimensional, as we noted in §2 for f = xi, the set {1, [f ], [f ]2, . . .}
must be linearly dependent in the vector space structure of A. In other
words, there is a linear combination

m∑
i=0

ci[f ]i = [0]

in A, where ci ∈ C are not all zero. By the definition of the quotient ring,
this is equivalent to saying that

(4.4)
m∑

i=0

cif
i ∈ I.

Hence
∑m

i=0 cif
i vanishes at every point of V(I).

Now we come to the most important part of this discussion, culminating
in Theorem (4.5) and Corollary (4.6) below. We are looking for the points in
V(I), I a zero-dimensional ideal. Let h(t) ∈ C[t], and let f ∈ C[x1, . . . , xn].
By Corollary (4.3),

h(mf ) = 0 ⇐⇒ h([f ]) = [0] in A.

The polynomials h such that h(mf ) = 0 form an ideal in C[t] by the
following exercise.

Exercise 2. Given a d × d matrix M with entries in a field k, consider
the collection IM of polynomials h(t) in k[t] such that h(M) = 0, the d× d
zero matrix. Show that IM is an ideal in k[t].

The nonzero monic generator hM of the ideal IM is called the minimal
polynomial of M . By the basic properties of ideals in k[t], if h is any poly-
nomial with h(M) = 0, then the minimal polynomial hM divides h. In
particular, the Cayley-Hamilton Theorem from linear algebra tells us that
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hM divides the characteristic polynomial of M . As a consequence, if k = C,
the roots of hM are eigenvalues of M . Furthermore, all eigenvalues of M
occur as roots of the minimal polynomial. See [Her] for a more complete
discussion of the Cayley-Hamilton Theorem and the minimal polynomial
of a matrix.

Let hf denote the minimal polynomial of the multiplication operator mf

on A. We then have three interesting sets of numbers:

• the roots of the equation hf (t) = 0,
• the eigenvalues of the matrix mf , and
• the values of the function f on V(I), the set of points we are looking

for.

The amazing fact is that all three sets are equal.

(4.5) Theorem. Let I ⊂ C[x1, . . . , xn] be zero-dimensional, let f ∈
C[x1, . . . , xn], and let hf be the minimal polynomial of mf on A =
C[x1, . . . , xn]/I. Then, for λ ∈ C, the following are equivalent:
a. λ is a root of the equation hf (t) = 0,
b. λ is an eigenvalue of the matrix mf , and
c. λ is a value of the function f on V(I).

Proof. a ⇔ b follows from standard results in linear algebra.
b ⇒ c: Let λ be an eigenvalue of mf . Then there is a corresponding

eigenvector [z] �= [0] ∈ A such that [f − λ][z] = [0]. Aiming for a con-
tradiction, suppose that λ is not a value of f on V(I). That is, letting
V(I) = {p1, . . . , pm}, suppose that f(pi) �= λ for all i = 1, . . . , m.

Let g = f − λ, so that g(pi) �= 0 for all i. By Lemma (2.9) of this
chapter, there exist polynomials gi such that gi(pj) = 0 if i �= j, and
gi(pi) = 1. Consider the polynomial g′ =

∑m
i=1 1/g(pi)gi. It follows that

g′(pi)g(pi) = 1 for all i, and hence 1 − g′g ∈ I(V(I)). By the Nullstellen-
satz, (1 − g′g)� ∈ I for some � ≥ 1. Expanding by the binomial theorem
and collecting the terms that contain g as a factor, we get 1 − g̃g ∈ I for
some g̃ ∈ C[x1, . . . , xn]. In A, this last inclusion implies that [1] = [g̃][g],
hence g has a multiplicative inverse [g̃] in A.

But from the above we have [g][z] = [f − λ][z] = [0] in A. Multiplying
both sides by [g̃], we obtain [z] = [0], which is a contradiction. Therefore
λ must be a value of f on V(I).

c ⇒ a: Let λ = f(p) for p ∈ V(I). Since hf (mf ) = 0, Corollary (4.3)
shows hf ([f ]) = [0], and then (4.4) implies hf (f) ∈ I. This means hf (f)
vanishes at every point of V(I), so that hf (λ) = hf (f(p)) = 0.

Exercise 3. We saw earlier that the matrix of multiplication by x in the
5-dimensional algebra A = C[x, y]/I from (2.4) of this chapter is given by
the matrix displayed before Exercise 1 in this section.
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a. Using the minpoly command in Maple (part of the linalg package) or
otherwise, show that the minimal polynomial of this matrix is

hx(t) = t4 − 2t3 − t2 + 2t.

The roots of hx(t) = 0 are thus t = 0,−1, 1, 2.
b. Now find all points of V(I) using the methods of §1 and show that the

roots of hx are exactly the distinct values of the function f(x, y) = x
at the points of V(I). (Two of the points have the same x-coordinate,
which explains why the degree and the number of roots are 4 instead of
5!) Also see Exercise 7 from §2 to see how the ideal I was constructed.

c. Finally, find the minimal polynomial of the matrix my, determine its
roots, and explain the degree you get.

When we apply Theorem (4.5) with f = xi, we get a general result
exactly parallel to this example.

(4.6) Corollary. Let I ⊂ C[x1, . . . , xn] be zero-dimensional. Then the
eigenvalues of the multiplication operator mxi on A coincide with the
xi-coordinates of the points of V(I). Moreover, substituting t = xi in
the minimal polynomial hxi yields the unique monic generator of the
elimination ideal I ∩ C[xi].

Corollary (4.6) indicates that it is possible to solve equations by comput-
ing eigenvalues of the multiplication operators mxi . This has been studied
in papers such as [Laz], [Möl], and [MöS], among others. As a result a whole
array of numerical methods for approximating eigenvalues can be brought
to bear on the root-finding problem, at least in favorable cases. We include
a brief discussion of some of these methods for the convenience of some
readers; the following two paragraphs may be safely ignored if you are fa-
miliar with numerical eigenvalue techniques. For more details, we suggest
[BuF] or [Act].

In elementary linear algebra, eigenvalues of a matrix M are usually
determined by solving the characteristic polynomial equation:

det(M − tI) = 0.

The degree of the polynomial on the left hand side is the size of the matrix
M . But computing det(M − tI) for large matrices is a large job itself, and
as we have seen in §1, exact solutions (and even accurate approximations
to solutions) of polynomial equations of high degree over R or C can be
hard to come by, so the characteristic polynomial is almost never used in
practice. So other methods are needed.

The most basic numerical eigenvalue method is known as the power
method . It is based on the fact that if a matrix M has a unique dom-
inant eigenvalue (i.e., an eigenvalue λ satisfying |λ| > |µ| for all other
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eigenvalues µ of M), then starting from a randomly chosen vector x0, and
forming the sequence

xk+1 = unit vector in direction of Mxk,

we almost always approach an eigenvector for λ as k → ∞. An approxi-
mate value for the dominant eigenvalue λ may be obtained by computing
the norm ‖Mxk‖ at each step. If there is no unique dominant eigenvalue,
then the iteration may not converge, but the power method can also be
modified to eliminate that problem and to find other eigenvalues of M . In
particular, we can find the eigenvalue of M closest to some fixed s by ap-
plying the power method to the matrix M ′ = (M − sI)−1. For almost all
choices of s, there will be a unique dominant eigenvalue of M ′. Moreover, if
λ′ is that dominant eigenvalue of M ′, then 1/λ′ + s is the eigenvalue of M
closest to s. This observation makes it possible to search for all the eigen-
values of a matrix as we would do in using the Newton-Raphson method to
find all the roots of a polynomial. Some of the same difficulties arise, too.
There are also much more sophisticated iterative methods, such as the LR
and QR algorithms, that can be used to determine all the (real or complex)
eigenvalues of a matrix except in some very uncommon degenerate situa-
tions. It is known that the QR algorithm, for instance, converges for all
matrices having no more than two eigenvalues of any given magnitude in
C. Some computer algebra systems (e.g., Maple and Mathematica) provide
built-in procedures that implement these methods.

A legitimate question at this point is this: Why might one consider apply-
ing these eigenvalue techniques for root finding instead of using elimination?
There are two reasons.

The first concerns the amount of calculation necessary to carry out this
approach. The direct attack—solving systems via elimination as in §1—
imposes a choice of monomial order in the Gröbner basis we use. Pure lex
Gröbner bases frequently require a large amount of computation. As we saw
in §3, it is possible to compute a grevlex Gröbner basis first, then convert it
to a lex basis using the FGLM basis conversion algorithm, with some savings
in total effort. But basis conversion is unnecessary if we use Corollary (4.6),
because the algebraic structure of C[x1, . . . , xn]/I is independent of the
monomial order used for the Gröbner basis and remainder calculations.
Hence any monomial order can be used to determine the matrices of the
multiplication operators mxi .

The second reason concerns the amount of numerical versus symbolic
computation involved, and the potential for numerical instability. In the
frequently-encountered case that the generators for I have rational coef-
ficients, the entries of the matrices mxi will also be rational, and hence
can be determined exactly by symbolic computation. Thus the numerical
component of the calculation is restricted to the eigenvalue calculations.
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There is also a significant difference even between a naive first idea for
implementing this approach and the elimination method discussed in §1.
Namely, we could begin by computing all the mxi and their eigenvalues
separately. Then with some additional computation we could determine
exactly which vectors (x1, . . . , xn) formed using values of the coordinate
functions actually give approximate solutions. The difference here is that
the computed values of xi are not used in the determination of the xj ,
j �= i. In §1, we saw that a major source of error in approximate solutions
was the fact that small errors in one variable could produce larger errors
in the other variables when we substitute them and use the Extension
Theorem. Separating the computations of the values xi from one another,
we can avoid those accumulated error phenomena (and also the numerical
stability problems encountered in other non-elimination methods).

We will see shortly that it is possible to reduce the computational effort
involved even further. Indeed, it suffices to consider the eigenvalues of only
one suitably-chosen multiplication operator mc1x1+···+cnxn . Before devel-
oping this result, however, we present an example using the more naive
approach.

Exercise 4. We will apply the ideas sketched above to find approximations
to the complex solutions of the system:

0 = x2 − 2xz + 5

0 = xy2 + yz + 1

0 = 3y2 − 8xz.

a. First, compute a Gröbner basis to determine the monomial basis for the
quotient algebra. We can use the grevlex (Maple tdeg) monomial order:

PList := [x^2 - 2*x*z + 5, x*y^2 + y*z + 1, 3*y^2 - 8*x*z];
G := gbasis(PList,tdeg(x,y,z));
B := SetBasis(G,tdeg(x,y,z))[1];

(this can also be done using the kbasis procedure from Exercise 13 in
§2) and obtain the eight monomials:

[1, x, y, xy, z, z2, xz, yz].

(You should compare this with the output of SetBasis or kbasis for
lex order. Also print out the lex Gröbner basis for this ideal if you have
a taste for complicated polynomials.)

b. Using the monomial basis B, check that the matrix of the full
multiplication operator mx is
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0 −5 0 0 0 −3/16 −3/8 0
1 0 0 0 0 0 0 0
0 0 0 −5 0 0 0 0
0 0 1 3/20 0 0 0 3/40
0 0 0 0 0 5/2 0 0
0 0 0 −2 0 0 0 −1
0 2 0 0 1 0 0 0
0 0 0 −3/10 0 −3/16 −3/8 −3/20

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This matrix can also be computed using the MulMatrix command in
Maple.

c. Now, applying the numerical eigenvalue routine eigenvals from Maple,
check that there are two approximate real eigenvalues:

−1.100987715, .9657124563,

and 3 complex conjugate pairs. (This computation can be done in several
different ways and, due to roundoff effects, the results can be slightly
different depending on the method used. The values above were found
by expressing the entries of the matrix of mx as floating point numbers,
and applying Maple’s eigenvals routine to that matrix.)

d. Complete the calculation by finding the multiplication operators my,
mz, computing their real eigenvalues, and determining which triples
(x, y, z) give solutions. (There are exactly two real points.) Also see
Exercises 9 and 10 below for a second way to compute the eigenvalues
of mx, my, and mz.

In addition to eigenvalues, there are also eigenvectors to consider. In fact,
every matrix M has two sorts of eigenvectors. The right eigenvectors of M
are the usual ones, which are column vectors v �= 0 such that

M v = λv

for some λ ∈ C. Since the transpose MT has the same eigenvalues λ as M ,
we can find a column vector v′ �= 0 such that

MT v′ = λv′.

Taking transposes, we can write this equation as

w M = λw,

where w = v′T is a row vector. We call w a left eigenvector of M .
The right and left eigenvectors for a matrix are connected in the following

way. For simplicity, suppose that M is a diagonalizable n×n matrix, so that
there is a basis for C

n consisting of right eigenvectors for M . In Exercise 7
below, you will show that there is a matrix equation MQ = QD, where
Q is the matrix whose columns are the right eigenvectors in a basis for
C

n, and D is a diagonal matrix whose diagonal entries are the eigenvalues



64 Chapter 2. Solving Polynomial Equations

of M . Rearranging the last equation, we have Q−1M = DQ−1. By the
second part of Exercise 7 below, the rows of Q−1 are a collection of left
eigenvectors of M that also form a basis for C

n.
For a zero-dimensional ideal I, there is also a strong connection between

the points of V(I) and the left eigenvectors of the matrix mf relative to
the monomial basis B coming from a Gröbner basis. We will assume that
I is radical. In this case, Theorem (2.10) implies that A has dimension m,
where m is the number of points in V(I). Hence, we can write the monomial
basis B as the cosets

B = {[xα(1)], . . . , [xα(m)]}.
Using this basis, let mf be the matrix of multiplication by f . We can relate
the left eigenvectors of mf to points of V(I) as follows.

(4.7) Proposition. Suppose f ∈ C[x1, . . . , xn] is chosen such that the
values f(p) are distinct for p ∈ V(I), where I is a radical ideal not con-
taining 1. Then the left eigenspaces of the matrix mf are 1-dimensional
and are spanned by the row vectors (pα(1), . . . , pα(m)) for p ∈ V(I).

Proof. If we write mf = (mij), then for each j between 1 and m,

[xα(j)f ] = mf ([xα(j)]) = m1j [xα(1)] + · · · + mmj [xα(m)].

Now fix p ∈ V(f1, . . . , fn) and evaluate this equation at p to obtain

pα(j)f(p) = m1jp
α(1) + · · · + mmjp

α(m)

(this makes sense by Exercise 12 of §2). Doing this for j = 1, . . . , m gives

f(p)(pα(1), . . . , pα(m)) = (pα(1), . . . , pα(m)) mf .

Exercise 14 at the end of the section asks you to check this computation
carefully. Note that one of the basis monomials in B is the coset [1] (do
you see why this follows from 1 /∈ I?), which shows that (pα(1), . . . , pα(m))
is nonzero and hence is a left eigenvector for mf , with f(p) as the
corresponding eigenvalue.

By hypothesis, the f(p) are distinct for p ∈ V(I), which means that the
m × m matrix mf has m distinct eigenvalues. Linear algebra then implies
that the corresponding eigenspaces (right and left) are 1-dimensional.

This proposition can be used to find the points in V(I) for any zero-
dimensional ideal I. The basic idea is as follows. First, we can assume that
I is radical by replacing I with

√
I as computed by Proposition (2.7). Then

compute a Gröbner basis G and monomial basis B as usual. Now consider
the function

f = c1x1 + · · · + cnxn,

where c1, . . . , cn are randomly chosen integers. This will ensure (with small
probability of failure) that the values f(p) are distinct for p ∈ V(I). Rel-
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ative to the monomial basis B, we get the matrix mf , so that we can use
standard numerical methods to find an eigenvalue λ and corresponding left
eigenvector v of mf . This eigenvector, when combined with the Gröbner
basis G, makes it trivial to find a solution p ∈ V(I).

To see how this is done, first note that Proposition (4.7) implies

(4.8) v = c(pα(1), . . . , pα(m))

for some nonzero constant c and some p ∈ V(I). Write p = (a1, . . . , an).
Our goal is to compute the coordinates ai of p in terms of the coordinates
of v. Equation (4.8) implies that each coordinate of v is of the form cpα(j).

The Finiteness Theorem implies that for each i between 1 and n, there is
mi ≥ 1 such that xmi

i is the leading term of some element of G. If mi > 1,
it follows that [xi] ∈ B (do you see why?), so that cai is a coordinate of
v. As noted above, we have [1] ∈ B, so that c is also a coordinate of v.
Consequently,

ai =
cai

c

is a ratio of coordinates of v. This way, we get the xi-coordinate of p for
all i satisfying mi > 1.

It remains to study the coordinates with mi = 1. These variables appear
in none of the basis monomials in B (do you see why?), so that we turn
instead to the Gröbner basis G for guidance. Suppose the variables with
mi = 1 are xi1 , . . . , xi�

. We will assume that the variables are labeled so
that x1 > · · · > xn and i1 > · · · > i�. In Exercise 15 below, you will show
that for j = 1, . . . , �, there are elements gj ∈ G such that

gj = xij + terms involving xi for i > ij .

If we evaluate this at p = (a1, . . . , an), we obtain

(4.9) 0 = aij + terms involving ai for i > ij.

Since we already know ai for i /∈ {i1, . . . , i�}, these equations make it
a simple matter to find ai1 , . . . , ai�

. We start with ai�
. For j = �, (4.9)

implies that ai�
is a polynomial in the coordinates of p we already know.

Hence we get ai�
. But once we know ai�

, (4.9) shows that ai�−1 is also a
polynomial in known coordinates. Continuing in this way, we get all of the
coordinates of p.

Exercise 5. Apply this method to find the solutions of the equations given
in Exercise 4. The x-coordinates of the solutions are distinct, so you can
assume f = x. Thus it suffices to compute the left eigenvectors of the
matrix mx of Exercise 4.

The idea of using eigenvectors to find solutions first appears in the
pioneering work of Auzinger and Stetter [AS] in 1988 and was further de-
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veloped in [MöS], [MT], and [Ste]. Our treatment focused on the radical
case since our first step was to replace I with

√
I. In general, whenever

a multiplication map mf is nonderogatory (meaning that all eigenspaces
have dimension one), one can use Proposition (4.7) to find the solutions.
Unfortunately, when I is not radical, it can happen that mf is deroga-
tory for all f ∈ k[x1, . . . , xn]. Rather than replacing I with

√
I as we

did above, another approach is to realize that the family of operators
{mf : f ∈ k[x1, . . . , xn]} is nonderogatory, meaning that its joint left
eigenspaces are one-dimensional and hence are spanned by the eigenvec-
tors described in Proposition (4.7). This result and its consequences are
discussed in [MT] and [Mou1]. We will say more about multiplication maps
in §2 of Chapter 4.

Since the left eigenvectors of mf help us find solutions in V(I), it is
natural to ask about the right eigenvectors. In Exercise 17 below, you will
show that these eigenvectors solve the interpolation problem, which asks
for a polynomial that takes preassigned values at the points of V(I).

This section has discussed several ideas for solving polynomial equations
using linear algebra. We certainly do not claim that these ideas are a com-
putational panacea for all polynomial systems, but they do give interesting
alternatives to other, more traditional methods in numerical analysis, and
they are currently an object of study in connection with the implementa-
tion of the next generation of computer algebra systems. We will continue
this discussion in §5 (where we study real solutions) and Chapter 3 (where
we use resultants to solve polynomial systems).

ADDITIONAL EXERCISES FOR §4

Exercise 6. Prove Proposition (4.2).

Exercise 7. Let M, Q, P, D be n × n complex matrices, and assume D is
a diagonal matrix.
a. Show that the equation MQ = QD holds if and only if each nonzero

column of Q is a right eigenvector of M and the corresponding diagonal
entry of D is the corresponding eigenvalue.

b. Show that the equation PM = DP holds if and only if each nonzero
row of P is a left eigenvector of M and the corresponding diagonal entry
of D is the corresponding eigenvalue.

c. If MQ = QD and Q is invertible, deduce that the rows of Q−1 are left
eigenvectors of M .

Exercise 8.
a. Apply the eigenvalue method from Corollary (4.6) to solve the system

from Exercise 6 of §1. Compare your results.
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b. Apply the eigenvalue method from Corollary (4.6) to solve the system
from Exercise 7 from §1. Compare your results.

Exercise 9. Let Vi be the subspace of A spanned by the non-negative
powers of [xi], and consider the restriction of the multiplication operator
mxi : A → A to Vi. Assume {1, [xi], . . . , [xi]mi−1} is a basis for Vi.
a. What is the matrix of the restriction mxi |Vi with respect to this basis?

Show that it can be computed by the same calculations used in Exer-
cise 4 of §2 to find the monic generator of I ∩ C[xi], without computing
a lex Gröbner basis. Hint: See also Exercise 11 of §1 of Chapter 3.

b. What is the characteristic polynomial of mxi |Vi and what are its roots?

Exercise 10. Use part b of Exercise 9 and Corollary (4.6) to give another
determination of the roots of the system from Exercise 4.

Exercise 11. Let I be a zero-dimensional ideal in C[x1, . . . , xn], and
let f ∈ C[x1, . . . , xn]. Show that [f ] has a multiplicative inverse in
C[x1, . . . , xn]/I if and only if f(p) �= 0 for all p ∈ V(I). Hint: See the
proof of Theorem (4.5).

Exercise 12. Prove that a zero-dimensional ideal is radical if and only if
the matrices mxi are diagonalizable for each i. Hint: Linear algebra tells
us that a matrix is diagonalizable if and only if its minimal polynomial is
square-free. Proposition (2.7) and Corollary (4.6) of this chapter will be
useful.

Exercise 13. Let A = C[x1, . . . , xn]/I for a zero-dimensional ideal I,
and let f ∈ C[x1, . . . , xn]. If p ∈ V(I), we can find g ∈ C[x1, . . . , xn]
with g(p) = 1, and g(p′) = 0 for all p′ ∈ V(I), p′ �= p (see Lemma (2.9)).
Prove that there is an � ≥ 1 such that the coset [g�] ∈ A is a generalized
eigenvector for mf with eigenvalue f(p). (A generalized eigenvector of a
matrix M is a nonzero vector v such that (M−λI)mv = 0 for some m ≥ 1.)
Hint: Apply the Nullstellensatz to (f − f(p))g. In Chapter 4, we will study
the generalized eigenvectors of mf in more detail.

Exercise 14. Verify carefully the formula f(p)(pα(1), . . . , pα(m)) =
(pα(1), . . . , pα(m)) mf used in the proof of Proposition (4.7).

Exercise 15. Let > be some monomial order, and assume x1 > · · · > xn.
If g ∈ k[x1, . . . , xn] satisfies LT(g) = xj , then prove that

g = xj + terms involving xi for i > j.

Exercise 16. (The Shape Lemma) Let I be a zero-dimensional radical
ideal such that the xn-coordinates of the points in V(I) are distinct. Let
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G be a reduced Gröbner basis for I relative to a lex monomial order with
xn as the last variable.
a. If V(I) has m points, prove that the cosets 1, [xn], . . . , [xm−1

n ] are
linearly independent and hence are a basis of A = k[x1, . . . , xn]/I.

b. Prove that G consists of n polynomials

g1 = x1 + h1(xn)

...

gn−1 = xn−1 + hn−1(xn)

gn = xm
n + hn(xn),

where h1, . . . , hn are polynomials in xn of degree at most m − 1. Hint:
Start by expressing [x1], . . . , [xn−1], [xm

n ] in terms of the basis of part a.
c. Explain how you can find all points of V(I) once you know their xn-

coordinates. Hint: Adapt the discussion following (4.9).

Exercise 17. This exercise will study the right eigenvectors of the matrix
mf and their relation to interpolation. Assume that I is a zero-dimensional
radical ideal and that the values f(p) are distinct for p ∈ V(I). We write
the monomial basis B as {[xα(1)], . . . , [xα(m)]}.
a. If p ∈ V(I), Lemma (2.9) of this chapter gives us g such that g(p) = 1

and g(p′) = 0 for all p′ �= p in V(I). Prove that the coset [g] ∈ A
is a right eigenvector of mf and that the corresponding eigenspace has
dimension 1. Conclude that all eigenspaces of mf are of this form.

b. If v = (v1, . . . , vm)t is a right eigenvector of mf corresponding to the
eigenvalue f(p) for p as in part a, then prove that the polynomial

g̃ = v1x
α(1) + · · · + vmxα(m)

satisfies g̃(p) �= 0 and g̃(p′) = 0 for p′ �= p in V(I).
c. Show that we can take the polynomial g of part a to be

g =
1

g̃(p)
g̃.

Thus, once we know the solution p and the corresponding right
eigenvector of mf , we get an explicit formula for the polynomial g.

d. Given V(I) = {p1, . . . , pm} and the corresponding right eigenvectors of
mf , we get polynomials g1, . . . , gm such that gi(pj) = 1 if i = j and 0
otherwise. Each gi is given explicitly by the formula in part c. The in-
terpolation problem asks to find a polynomial h which takes preassigned
values λ1, . . . , λm at the points p1, . . . , pm. This means h(pi) = λi for
all i. Prove that one choice for h is given by

h = λ1g1 + · · · + λmgm.
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Exercise 18. Let A = k[x1, . . . , xn]/I, where I is zero-dimensional. In
Maple, MulMatrix computes the matrix of the multiplication map mxi rel-
ative to a monomial basis computed by SetBasis. However, in §5, we will
need to compute the matrix of mf , where f ∈ k[x1, . . . , xn] is an arbitrary
polynomial. Develop and code a Maple procedure getmatrix which, given
a polynomial f , a monomial basis B, a Gröbner basis G, and a term or-
der, produces the matrix of mf relative to B. You will use getmatrix in
Exercise 6 of §5.

§5 Real Root Location and Isolation

The eigenvalue techniques for solving equations from §4 are only a first way
that we can use the results of §2 for finding roots of systems of polynomial
equations. In this section we will discuss a second application that is more
sophisticated. We follow a recent paper of Pedersen, Roy, and Szpirglas
[PRS] and consider the problem of determining the real roots of a system
of polynomial equations with coefficients in a field k ⊂ R (usually k =
Q or a finite extension field of Q). The underlying principle here is that
for many purposes, explicitly determined, bounded regions R ⊂ R

n, each
guaranteed to contain exactly one solution of the system can be just as
useful as a collection of numerical approximations. Note also that if we
wanted numerical approximations, once we had such an R, the job of finding
that one root would generally be much simpler than a search for all of the
roots! (Think of the choice of the initial approximation for an iterative
method such as Newton-Raphson.) For one-variable equations, this is also
the key idea of the interval arithmetic approach to computation with real
algebraic numbers (see [Mis]). We note that there are also other methods
known for locating and isolating the real roots of a polynomial system (see
§8.8 of [BW] for a different type of algorithm).

To define our regions R in R
n, we will use polynomial functions in the

following way. Let h ∈ k[x1, . . . , xn] be a nonzero polynomial. The real
points where h takes the value 0 form the variety V(h)∩R

n. We will denote
this by VR(h) in the discussion that follows. In typical cases, VR(h) will
be a hypersurface—an (n− 1)-dimensional variety in R

n. The complement
of VR(h) in R

n is the union of connected open subsets on which h takes
either all positive values or all negative values. We obtain in this way a
decomposition of R

n as a disjoint union

(5.1) R
n = H+ ∪ H− ∪ VR(h),

where H+ = {a ∈ R
n : h(a) > 0}, and similarly for H−. Here are some

concrete examples.
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Exercise 1.
a. Let h = (x2 +y2−1)(x2 +y2−2) in R[x, y]. Identify the regions H+ and

H− for this polynomial. How many connected components does each of
them have?

b. In this part of the exercise, we will see how regions like rectangular
“boxes” in R

n may be obtained by intersecting several regions H+ or
H−. For instance, consider the box

R = {(x, y) ∈ R
2 : a < x < b, c < y < d}.

If h1(x, y) = (x − a)(x − b) and h2(x, y) = (y − c)(y − d), show that

R = H−
1 ∩ H−

2 = {(x, y) ∈ R
2 : hi(x, y) < 0, i = 1, 2}.

What do H+
1 , H+

2 and H+
1 ∩ H+

2 look like in this example?

Given a region R like the box from part b of the above exercise, and
a system of equations, we can ask whether there are roots of the system
in R. The results of [PRS] give a way to answer questions like this, using
an extension of the results of §2 and §4. Let I be a zero-dimensional ideal
and let B be the monomial basis of A = k[x1, . . . , xn]/I for any monomial
order. Recall that the trace of a square matrix is just the sum of its diagonal
entries. This gives a mapping Tr from d× d matrices to k. Using the trace,
we define a symmetric bilinear form S by the rule:

S(f, g) = Tr(mf · mg) = Tr(mfg)

(the last equality follows from part b of Proposition (4.2)).

Exercise 2.
a. Prove that S defined as above is a symmetric bilinear form on A, as

claimed. That is, show that S is symmetric, meaning S(f, g) = S(g, f)
for all f, g ∈ A, and linear in the first variable, meaning

S(cf1 + f2, g) = cS(f1, g) + S(f2, g)

for all f1, f2, g ∈ A and all c ∈ k. It follows that S is linear in the
second variable as well.

b. Given a symmetric bilinear form S on a vector space V with basis
{v1, . . . , vd}, the matrix of S is the d× d matrix M = (S(vi, vj)). Show
that the matrix of S with respect to the monomial basis B = {xα(i)}
for A is given by:

M = (Tr(mxα(i)xα(j))) = (Tr(mxα(i)+α(j))).

Similarly, given the polynomial h ∈ k[x1, . . . , xn] used in the decompo-
sition (5.1), we can construct a bilinear form

Sh(f, g) = Tr(mhf · mg) = Tr(mhfg).

Let Mh be the matrix of Sh with respect to B.
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Exercise 3. Show that Sh is also a symmetric bilinear form on A. What
is the i, j entry of Mh?

Since we assume k ⊂ R, the matrices M and Mh are symmetric matrices
with real entries. It follows from the real spectral theorem (or principal axis
theorem) of linear algebra that all of the eigenvalues of M and Mh will be
real . For our purposes the exact values of these eigenvalues are much less
important than their signs.

Under a change of basis defined by an invertible matrix Q, the matrix
M of a symmetric bilinear form S is taken to QtMQ. There are two fun-
damental invariants of S under such changes of basis—the signature σ(S),
which equals the difference between the number of positive eigenvalues and
the number of negative eigenvalues of M , and the rank ρ(S), which equals
the rank of the matrix M . (See, for instance, Chapter 6 of [Her] for more
information on the signature and rank of bilinear forms.)

We are now ready to state the main result of this section.

(5.2) Theorem. Let I be a zero-dimensional ideal generated by polyno-
mials in k[x1, . . . , xn] (k ⊂ R), so that V(I) ⊂ C

n is finite. Then, for
h ∈ k[x1, . . . , xn], the signature and rank of the bilinear form Sh satisfy:

σ(Sh) = #{a ∈ V(I) ∩ R
n : h(a) > 0} − #{a ∈ V(I) ∩ R

n : h(a) < 0}
ρ(Sh) = #{a ∈ V(I) : h(a) �= 0}.

Proof. This result is essentially a direct consequence of the reasoning
leading up to Theorem (4.5) of this chapter. However, to give a full proof
it is necessary to take into account the multiplicities of the points in
V(I) as defined in Chapter 4. Hence we will only sketch the proof in
the special case when I is radical. By Theorem (2.10), this means that
V(I) = {p1, . . . , pm}, where m is the dimension of the algebra A. Given
the basis B = {[xα(i)]} of A, Proposition (4.7) implies that (pα(i)

j ) is an
invertible matrix.

By Theorem (4.5), for any f , we know that the set of eigenvalues of mf

coincides with the set of values of the f at the points in V(I). The key new
fact we will need is that using the structure of the algebra A, for each point
p in V(I) it is possible to define a positive integer m(p) (the multiplicity)
so that

∑
p m(p) = d = dim(A), and so that (t − f(p))m(p) is a factor of

the characteristic polynomial of mf . (See §2 of Chapter 4 for the details.)
By definition, the i, j entry of the matrix Mh is equal to

Tr(mh·xα(i)·xα(j)).

The trace of the multiplication operator equals the sum of its eigenvalues.
By the previous paragraph, the sum of these eigenvalues is

(5.3)
∑

p∈V(I)

m(p)h(p)pα(i)pα(j),
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where pα(i) denotes the value of the monomial xα(i) at the point p. List
the points in V(I) as p1, . . . , pd, where each point p in V(I) is repeated
m(p) times consecutively. Let U be the d × d matrix whose jth column
consists of the values p

α(i)
j for i = 1, . . . , d. From (5.3), we obtain a matrix

factorization Mh = UDU t, where D is the diagonal matrix with entries
h(p1), . . . , h(pd). The equation for the rank follows since U is invertible.
Both U and D may have nonreal entries. However, the equation for the
signature follows from this factorization as well, using the facts that Mh has
real entries and that the nonreal points in V(I) occur in complex conjugate
pairs. We refer the reader to Theorem 2.1 of [PRS] for the details.

The theorem may be used to determine how the real points in V(I) are
distributed among the sets H+, H− and VR(h) determined by h in (5.1).
Theorem (5.2) implies that we can count the number of real points of
V(I) in H+ and in H− as follows. The signature of Sh gives the difference
between the number of solutions in H+ and the number in H−. By the same
reasoning, computing the signature of Sh2 we get the number of solutions
in H+ ∪ H−, since h2 > 0 at every point of H+ ∪ H−. From this we can
recover #V(I) ∩ H+ and #V(I) ∩ H− by simple arithmetic. Finally, we
need to find #V(I) ∩ VR(h), which is done in the following exercise.

Exercise 4. Using the form S1 in addition to Sh and Sh2 , show that
the three signatures σ(S), σ(Sh), σ(Sh2) give all the information needed to
determine #V(I) ∩ H+, #V(I) ∩ H− and #V(I) ∩ VR(h).

From the discussion above, it might appear that we need to compute
the eigenvalues of the forms Sh to count the numbers of solutions of the
equations in H+ and H−, but the situation is actually much better than
that. Namely, the entire calculation can be done symbolically, so no recourse
to numerical methods is needed. The reason is the following consequence
of the classical Descartes Rule of Signs.

(5.4) Proposition. Let Mh be the matrix of Sh, and let

ph(t) = det(Mh − tI)

be its characteristic polynomial. Then the number of positive eigenvalues of
Sh is equal to the number of sign changes in the sequence of coefficients of
ph(t). (In counting sign changes, any zero coefficients are ignored.)

Proof. See Proposition 2.8 of [PRS], or Exercise 5 below for a proof.
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For instance, consider the real symmetric matrix

M =

⎛⎜⎜⎝
3 1 5 4
1 2 6 9
5 6 7 −1
4 9 −1 0

⎞⎟⎟⎠ .

The characteristic polynomial of M is t4 − 12t3 − 119t2 + 1098t − 1251,
giving three sign changes in the sequence of coefficients. Thus M has three
positive eigenvalues, as one can check.

Exercise 5. The usual version of Descartes’ Rule of Signs asserts that the
number of positive roots of a polynomial p(t) in R[t] equals the number of
sign changes in its coefficient sequence minus a non-negative even integer.
a. Using this, show that the number of negative roots equals the number

of sign changes in the coefficient sequence of p(−t) minus another non-
negative even integer.

b. Deduce (5.4) from Descartes’ Rule of Signs, part a, and the fact that all
eigenvalues of Mh are real.

Using these ideas to find and isolate roots requires a good searching
strategy. We will not consider such questions here. For an example showing
how to certify the presence of exactly one root of a system in a given region,
see Exercise 6 below.

The problem of counting real solutions of polynomial systems in regions
R ⊂ R

n defined by several polynomial inequalities and/or equalities has
been considered in general by Ben-Or, Kozen, and Reif (see, for instance,
[BKR]). Using the signature calculations as above gives an approach which
is very well suited to parallel computation, and whose complexity is rela-
tively manageable. We refer the interested reader to [PRS] once again for
a discussion of these issues.

For a recent exposition of the material in this section, we refer the reader
to Chapter 6 of [GRRT]. One topic not mentioned in our treatment is
semidefinite programming. As explained in Chapter 7 of [Stu5], this has
interesting relations to real solutions and sums of squares.

ADDITIONAL EXERCISES FOR §5

Exercise 6. In this exercise, you will verify that the equations

0 = x2 − 2xz + 5

0 = xy2 + yz + 1

0 = 3y2 − 8xz

have exactly one real solution in the rectangular box

R = {(x, y, z) ∈ R
3 : 0 < x < 1, −3 < y < −2, 3 < z < 4}.
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a. Using grevlex monomial order with x > y > z, compute a Gröbner
basis G for the ideal I generated by the above equations. Also find the
corresponding monomial basis B for C[x, y, z]/I.

b. Implement the following Maple procedure getform which computes the
matrix of the symmetric bilinear form Sh.

getform := proc(h,B,G,torder)

# computes the matrix of the symmetric bilinear form S_h,
# with respect to the monomial basis B for the quotient
# ring. G should be a Groebner basis with respect to
# torder.

local d,M,i,j,p,q;

d:=nops(B);
M := array(symmetric,1..d,1..d);
for i to d do
for j from i to d do
p := normalf(h*B[i]*B[j],G,torder);
M[i,j]:=trace(getmatrix(p,B,G,torder));
end do;

end do;
return eval(M)
end proc:

The call to getmatrix computes the matrix mhxα(i)xα(j) with respect to
the monomial basis B = {xα(i)} for A. Coding getmatrix was Exercise
18 in §4 of this chapter.

c. Then, using

h := x*(x-1);

S := getform(h,B,G,tdeg(x,y,z));

compute the matrix of the bilinear form Sh for h = x(x − 1).
d. The actual entries of this 8 × 8 rational matrix are rather complicated

and not very informative; we will omit reproducing them. Instead, use

charpoly(S,t);

to compute the characteristic polynomial of the matrix. Your result
should be a polynomial of the form:

t8 − a1t
7 + a2t

6 + a3t
5 − a4t

4 − a5t
3 − a6t

2 + a7t + a8,

where each ai is a positive rational number.
e. Use Proposition (5.4) to show that Sh has 4 positive eigenvalues. Since

a8 �= 0, t = 0 is not an eigenvalue. Explain why the other 4 eigenvalues
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are strictly negative, and conclude that Sh has signature

σ(Sh) = 4 − 4 = 0.

f. Use the second equation in Theorem (5.2) to show that h is nonvanishing
on the real or complex points of V(I). Hint: Show that Sh has rank 8.

g. Repeat the computation for h2:

T := getform(h*h,B,G,tdeg(x,y,z));

and show that in this case, we get a second symmetric matrix with ex-
actly 5 positive and 3 negative eigenvalues. Conclude that the signature
of Sh2 (which counts the total number of real solutions in this case) is

σ(Sh2) = 5 − 3 = 2.

h. Using Theorem (5.2) and combining these two calculations, show that

#V(I) ∩ H+ = #V(I) ∩ H− = 1,

and conclude that there is exactly one real root between the two planes
x = 0 and x = 1 in R

3. Our desired region R is contained in this infinite
slab in R

3. What can you say about the other real solution?
i. Complete the exercise by applying Theorem (5.2) to polynomials in y

and z chosen according to the definition of R.

Exercise 7. Use the techniques of this section to determine the number
of real solutions of

0 = x2 + 2y2 − y − 2z

0 = x2 − 8y2 + 10z − 1

0 = x2 − 7yz

in the box R = {(x, y, z) ∈ R
3 : 0 < x < 1, 0 < y < 1, 0 < z < 1}. (This

is the same system as in Exercise 6 of §1. Check your results using your
previous work.)

Exercise 8. The alternative real root isolation methods discussed in §8.8
of [BW] are based on a result for real one-variable polynomials known as
Sturm’s Theorem. Suppose p(t) ∈ Q[t] is a polynomial with no multiple
roots in C. Then GCD(p(t), p′(t)) = 1, and the sequence of polynomials
produced by

p0(t) = p(t)

p1(t) = p′(t)

pi(t) = −rem(pi−1(t), pi−2(t), t), i ≥ 2

(so pi(t) is the negative of the remainder on division of pi−1(t) by pi−2(t) in
Q[t]) will eventually reach a nonzero constant, and all subsequent terms will
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be zero. Let pm(t) be the last nonzero term in the sequence. This sequence
of polynomials is called the Sturm sequence associated to p(t).
a. (Sturm’s Theorem) If a < b in R, and neither is a root of p(t) = 0, then

show that the number of real roots of p(t) = 0 in the interval [a, b] is
the difference between the number of sign changes in the sequence of
real numbers p0(a), p1(a), . . . , pm(a) and the number of sign changes in
the sequence p0(b), p1(b), . . . , pm(b). (Sign changes are counted in the
same way as for Descartes’ Rule of Signs.)

b. Give an algorithm based on part a that takes as input a polynomial
p(t) ∈ Q[t] with no multiple roots in C, and produces as output a
collection of intervals [ai, bi] in R, each of which contains exactly one
root of p. Hint: Start with an interval guaranteed to contain all the
real roots of p(t) = 0 (see Exercise 3 of §1, for instance) and bisect
repeatedly, using Sturm’s Theorem on each subinterval.




