
Chapter 1

Introduction

Algebraic geometry is the study of geometric objects defined by polynomial
equations, using algebraic means. Its roots go back to Descartes’ introduc-
tion of coordinates to describe points in Euclidean space and his idea of
describing curves and surfaces by algebraic equations. Over the long his-
tory of the subject, both powerful general theories and detailed knowledge
of many specific examples have been developed. Recently, with the devel-
opment of computer algebra systems and the discovery (or rediscovery) of
algorithmic approaches to many of the basic computations, the techniques
of algebraic geometry have also found significant applications, for example
in geometric design, combinatorics, integer programming, coding theory,
and robotics. Our goal in Using Algebraic Geometry is to survey these
algorithmic approaches and many of their applications.

For the convenience of the reader, in this introductory chapter we will
first recall the basic algebraic structure of ideals in polynomial rings. In §2
and §3 we will present a rapid summary of the Gröbner basis algorithms de-
veloped by Buchberger for computations in polynomial rings, with several
worked out examples. Finally, in §4 we will recall the geometric notion of
an affine algebraic variety , the simplest type of geometric object defined by
polynomial equations. The topics in §1, §2, and §3 are the common prereq-
uisites for all of the following chapters. §4 gives the geometric context for
the algebra from the earlier sections. We will make use of this language at
many points. If these topics are familiar, you may wish to proceed directly
to the later material and refer back to this introduction as needed.

§1 Polynomials and Ideals

To begin, we will recall some terminology. A monomial in a collection of
variables x1, . . . , xn is a product

(1.1) xα1
1 xα2

2 · · · xαn
n

1
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where the αi are non-negative integers. To abbreviate, we will sometimes
rewrite (1.1) as xα where α = (α1, . . . , αn) is the vector of exponents in the
monomial. The total degree of a monomial xα is the sum of the exponents:
α1 + · · · + αn. We will often denote the total degree of the monomial xα

by |α|. For instance x3
1x

2
2x4 is a monomial of total degree 6 in the variables

x1, x2, x3, x4, since α = (3, 2, 0, 1) and |α| = 6.
If k is any field, we can form finite linear combinations of monomials

with coefficients in k. The resulting objects are known as polynomials in
x1, . . . , xn. We will also use the word term on occasion to refer to a product
of a nonzero element of k and a monomial appearing in a polynomial. Thus,
a general polynomial in the variables x1, . . . , xn with coefficients in k has
the form

f =
∑
α

cαxα,

where cα ∈ k for each α, and there are only finitely many terms cαxα in
the sum. For example, taking k to be the field Q of rational numbers, and
denoting the variables by x, y, z rather than using subscripts,

(1.2) p = x2 + 1
2 y2z − z − 1

is a polynomial containing four terms.
In most of our examples, the field of coefficients will be either Q, the

field of real numbers, R, or the field of complex numbers, C. Polynomi-
als over finite fields will also be introduced in Chapter 9. We will denote
by k[x1, . . . , xn] the collection of all polynomials in x1, . . . , xn with co-
efficients in k. Polynomials in k[x1, . . . , xn] can be added and multiplied
as usual, so k[x1, . . . , xn] has the structure of a commutative ring (with
identity). However, only nonzero constant polynomials have multiplicative
inverses in k[x1, . . . , xn], so k[x1, . . . , xn] is not a field. However, the set
of rational functions {f/g : f, g ∈ k[x1, . . . , xn], g �= 0} is a field, denoted
k(x1, . . . , xn).

A polynomial f is said to be homogeneous if all the monomials appearing
in it with nonzero coefficients have the same total degree. For instance,
f = 4x3 + 5xy2 − z3 is a homogeneous polynomial of total degree 3 in
Q[x, y, z], while g = 4x3 + 5xy2 − z6 is not homogeneous. When we study
resultants in Chapter 3, homogeneous polynomials will play an important
role.

Given a collection of polynomials, f1, . . . , fs ∈ k[x1, . . . , xn], we can
consider all polynomials which can be built up from these by multiplication
by arbitrary polynomials and by taking sums.

(1.3) Definition. Let f1, . . . , fs ∈ k[x1, . . . , xn]. We let 〈f1, . . . , fs〉
denote the collection

〈f1, . . . , fs〉 = {p1f1 + · · · + psfs : pi ∈ k[x1, . . . , xn] for i = 1, . . . , s}.
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For example, consider the polynomial p from (1.2) above and the two
polynomials

f1 = x2 + z2 − 1

f2 = x2 + y2 + (z − 1)2 − 4.

We have

(1.4)
p = x2 + 1

2 y2z − z − 1

= (− 1
2 z + 1)(x2 + z2 − 1) + ( 1

2 z)(x2 + y2 + (z − 1)2 − 4).

This shows p ∈ 〈f1, f2〉.

Exercise 1.
a. Show that x2 ∈ 〈x − y2, xy〉 in k[x, y] (k any field).
b. Show that 〈x − y2, xy, y2〉 = 〈x, y2〉.
c. Is 〈x − y2, xy〉 = 〈x2, xy〉? Why or why not?

Exercise 2. Show that 〈f1, . . . , fs〉 is closed under sums in k[x1, . . . , xn].
Also show that if f ∈ 〈f1, . . . , fs〉, and p ∈ k[x1, . . . , xn] is an arbitrary
polynomial, then p · f ∈ 〈f1, . . . , fs〉.

The two properties in Exercise 2 are the defining properties of ideals in
the ring k[x1, . . . , xn].

(1.5) Definition. Let I ⊂ k[x1, . . . , xn] be a non-empty subset. I is said
to be an ideal if
a. f + g ∈ I whenever f ∈ I and g ∈ I, and
b. pf ∈ I whenever f ∈ I, and p ∈ k[x1, . . . , xn] is an arbitrary

polynomial.

Thus 〈f1, . . . , fs〉 is an ideal by Exercise 2. We will call it the ideal
generated by f1, . . . , fs because it has the following property.

Exercise 3. Show that 〈f1, . . . , fs〉 is the smallest ideal in k[x1, . . . , xn]
containing f1, . . . , fs, in the sense that if J is any ideal containing
f1, . . . , fs, then 〈f1, . . . , fs〉 ⊂ J .

Exercise 4. Using Exercise 3, formulate and prove a general criterion for
equality of ideals I = 〈f1, . . . , fs〉 and J = 〈g1, . . . , gt〉 in k[x1, . . . , xn].
How does your statement relate to what you did in part b of Exercise 1?

Given an ideal, or several ideals, in k[x1, . . . , xn], there are a number of
algebraic constructions that yield other ideals. One of the most important
of these for geometry is the following.
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(1.6) Definition. Let I ⊂ k[x1, . . . , xn] be an ideal. The radical of I is
the set

√
I = {g ∈ k[x1, . . . , xn] : gm ∈ I for some m ≥ 1}.

An ideal I is said to be a radical ideal if
√

I = I.

For instance,

x + y ∈
√
〈x2 + 3xy, 3xy + y2〉

in Q[x, y] since

(x + y)3 = x(x2 + 3xy) + y(3xy + y2) ∈ 〈x2 + 3xy, 3xy + y2〉.
Since each of the generators of the ideal 〈x2+3xy, 3xy+y2〉 is homogeneous
of degree 2, it is clear that x + y /∈ 〈x2 + 3xy, 3xy + y2〉. It follows that
〈x2 + 3xy, 3xy + y2〉 is not a radical ideal.

Although it is not obvious from the definition, we have the following
property of the radical.

• (Radical Ideal Property) For every ideal I ⊂ k[x1, . . . , xn],
√

I is an
ideal containing I.

See [CLO], Chapter 4, §2, for example. We will consider a number of other
operations on ideals in the exercises.

One of the most important general facts about ideals in k[x1, . . . , xn] is
known as the Hilbert Basis Theorem. In this context, a basis is another
name for a generating set for an ideal.

• (Hilbert Basis Theorem) Every ideal I in k[x1, . . . , xn] has a finite gener-
ating set. In other words, given an ideal I, there exists a finite collection
of polynomials {f1, . . . , fs} ⊂ k[x1, . . . , xn] such that I = 〈f1, . . . , fs〉.

For polynomials in one variable, this is a standard consequence of the one-
variable polynomial division algorithm.

• (Division Algorithm in k[x]) Given two polynomials f, g ∈ k[x], we can
divide f by g, producing a unique quotient q and remainder r such that

f = qg + r,

and either r = 0, or r has degree strictly smaller than the degree of g.

See, for instance, [CLO], Chapter 1, §5. The consequences of this result for
ideals in k[x] are discussed in Exercise 6 below. For polynomials in several
variables, the Hilbert Basis Theorem can be proved either as a byproduct of
the theory of Gröbner bases to be reviewed in the next section (see [CLO],
Chapter 2, §5), or inductively by showing that if every ideal in a ring R is
finitely generated, then the same is true in the ring R[x] (see [AL], Chapter
1, §1, or [BW], Chapter 4, §1).
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ADDITIONAL EXERCISES FOR §1

Exercise 5. Show that 〈y − x2, z − x3〉 = 〈z − xy, y − x2〉 in Q[x, y, z].

Exercise 6. Let k be any field, and consider the polynomial ring in one
variable, k[x]. In this exercise, you will give one proof that every ideal in
k[x] is finitely generated. In fact, every ideal I ⊂ k[x] is generated by a
single polynomial: I = 〈g〉 for some g. We may assume I �= {0} for there is
nothing to prove in that case. Let g be a nonzero element in I of minimal
degree. Show using the division algorithm that every f in I is divisible by
g. Deduce that I = 〈g〉.

Exercise 7.
a. Let k be any field, and let n be any positive integer. Show that in k[x],√〈xn〉 = 〈x〉.
b. More generally, suppose that

p(x) = (x − a1)e1 · · · (x − am)em .

What is
√〈p(x)〉?

c. Let k = C, so that every polynomial in one variable factors as in b.
What are the radical ideals in C[x]?

Exercise 8. An ideal I ⊂ k[x1, . . . , xn] is said to be prime if whenever a
product fg belongs to I, either f ∈ I, or g ∈ I (or both).
a. Show that a prime ideal is radical.
b. What are the prime ideals in C[x]? What about the prime ideals in R[x]

or Q[x]?

Exercise 9. An ideal I ⊂ k[x1, . . . , xn] is said to be maximal if there
are no ideals J satisfying I ⊂ J ⊂ k[x1, . . . , xn] other than J = I and
J = k[x1, . . . , xn].
a. Show that 〈x1, x2, . . . , xn〉 is a maximal ideal in k[x1, . . . , xn].
b. More generally show that if (a1, . . . , an) is any point in kn, then the

ideal 〈x1 − a1, . . . , xn − an〉 ⊂ k[x1, . . . , xn] is maximal.
c. Show that I = 〈x2 + 1〉 is a maximal ideal in R[x]. Is I maximal

considered as an ideal in C[x]?

Exercise 10. Let I be an ideal in k[x1, . . . , xn], let � ≥ 1 be an integer,
and let I� consist of the elements in I that do not depend on the first �
variables:

I� = I ∩ k[x�+1, . . . , xn].

I� is called the �th elimination ideal of I.
a. For I = 〈x2 + y2, x2 − z3〉 ⊂ k[x, y, z], show that y2 + z3 is in the first

elimination ideal I1.
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b. Prove that I� is an ideal in the ring k[x�+1, . . . , xn].

Exercise 11. Let I, J be ideals in k[x1, . . . , xn], and define

I + J = {f + g : f ∈ I, g ∈ J}.
a. Show that I + J is an ideal in k[x1, . . . , xn].
b. Show that I + J is the smallest ideal containing I ∪ J .
c. If I = 〈f1, . . . , fs〉 and J = 〈g1, . . . , gt〉, what is a finite generating set

for I + J?

Exercise 12. Let I, J be ideals in k[x1, . . . , xn].
a. Show that I ∩ J is also an ideal in k[x1, . . . , xn].
b. Define IJ to be the smallest ideal containing all the products fg where

f ∈ I, and g ∈ J . Show that IJ ⊂ I ∩ J . Give an example where
IJ �= I ∩ J .

Exercise 13. Let I, J be ideals in k[x1, . . . , xn], and define I :J (called
the quotient ideal of I by J) by

I :J = {f ∈ k[x1, . . . , xn] : fg ∈ I for all g ∈ J}.
a. Show that I :J is an ideal in k[x1, . . . , xn].
b. Show that if I ∩ 〈h〉 = 〈g1, . . . , gt〉 (so each gi is divisible by h), then a

basis for I : 〈h〉 is obtained by cancelling the factor of h from each gi:

I : 〈h〉 = 〈g1/h, . . . , gt/h〉.

§2 Monomial Orders and Polynomial Division

The examples of ideals that we considered in §1 were artificially simple. In
general, it can be difficult to determine by inspection or by trial and error
whether a given polynomial f ∈ k[x1, . . . , xn] is an element of a given
ideal I = 〈f1, . . . , fs〉, or whether two ideals I = 〈f1, . . . , fs〉 and J =
〈g1, . . . , gt〉 are equal. In this section and the next one, we will consider a
collection of algorithms that can be used to solve problems such as deciding
ideal membership, deciding ideal equality, computing ideal intersections
and quotients, and computing elimination ideals. See the exercises at the
end of §3 for some examples.

The starting point for these algorithms is, in a sense, the polynomial
division algorithm in k[x] introduced at the end of §1. In Exercise 6 of §1,
we saw that the division algorithm implies that every ideal I ⊂ k[x] has
the form I = 〈g〉 for some g. Hence, if f ∈ k[x], we can also use division
to determine whether f ∈ I.



§2. Monomial Orders and Polynomial Division 7

Exercise 1. Let I = 〈g〉 in k[x] and let f ∈ k[x] be any polynomial. Let
q, r be the unique quotient and remainder in the expression f = qg + r
produced by polynomial division. Show that f ∈ I if and only if r = 0.

Exercise 2. Formulate and prove a criterion for equality of ideals I1 =
〈g1〉 and I2 = 〈g2〉 in k[x] based on division.

Given the usefulness of division for polynomials in one variable, we may
ask: Is there a corresponding notion for polynomials in several variables?
The answer is yes, and to describe it, we need to begin by considering
different ways to order the monomials appearing within a polynomial.

(2.1) Definition. A monomial order on k[x1, . . . , xn] is any relation > on
the set of monomials xα in k[x1, . . . , xn] (or equivalently on the exponent
vectors α ∈ Z

n
≥0) satisfying:

a. > is a total (linear) ordering relation;
b. > is compatible with multiplication in k[x1, . . . , xn], in the sense that if

xα > xβ and xγ is any monomial, then xαxγ = xα+γ > xβ+γ = xβxγ ;
c. > is a well-ordering . That is, every nonempty collection of monomials

has a smallest element under >.

Condition a implies that the terms appearing within any polynomial f
can be uniquely listed in increasing or decreasing order under >. Then
condition b shows that that ordering does not change if we multiply f by
a monomial xγ . Finally, condition c is used to ensure that processes that
work on collections of monomials, e.g., the collection of all monomials less
than some fixed monomial xα, will terminate in a finite number of steps.

The division algorithm in k[x] makes use of a monomial order implicitly :
when we divide g into f by hand, we always compare the leading term
(the term of highest degree) in g with the leading term of the intermediate
dividend. In fact there is no choice in the matter in this case.

Exercise 3. Show that the only monomial order on k[x] is the degree order
on monomials, given by

· · · > xn+1 > xn > · · · > x3 > x2 > x > 1.

For polynomial rings in several variables, there are many choices of mono-
mial orders. In writing the exponent vectors α and β in monomials xα and
xβ as ordered n-tuples, we implicitly set up an ordering on the variables xi

in k[x1, . . . , xn]:

x1 > x2 > · · · > xn.

With this choice, there are still many ways to define monomial orders. Some
of the most important are given in the following definitions.
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(2.2) Definition (Lexicographic Order). Let xα and xβ be monomials
in k[x1, . . . , xn]. We say xα >lex xβ if in the difference α − β ∈ Z

n, the
leftmost nonzero entry is positive.

Lexicographic order is analogous to the ordering of words used in
dictionaries.

(2.3) Definition (Graded Lexicographic Order). Let xα and xβ be
monomials in k[x1, . . . , xn]. We say xα >grlex xβ if

∑n
i=1 αi >

∑n
i=1 βi,

or if
∑n

i=1 αi =
∑n

i=1 βi, and xα >lex xβ .

(2.4) Definition (Graded Reverse Lexicographic Order). Let xα

and xβ be monomials in k[x1, . . . , xn]. We say xα >grevlex xβ if
∑n

i=1 αi >∑n
i=1 βi, or if

∑n
i=1 αi =

∑n
i=1 βi, and in the difference α − β ∈ Z

n, the
rightmost nonzero entry is negative.

For instance, in k[x, y, z], with x > y > z, we have

(2.5) x3y2z >lex x2y6z12

since when we compute the difference of the exponent vectors:

(3, 2, 1) − (2, 6, 12) = (1,−4,−11),

the leftmost nonzero entry is positive. Similarly,

x3y6 >lex x3y4z

since in (3, 6, 0) − (3, 4, 1) = (0, 2,−1), the leftmost nonzero entry is posi-
tive. Comparing the lex and grevlex orders shows that the results can be
quite different. For instance, it is true that

x2y6z12 >grevlex x3y2z.

Compare this with (2.5), which contains the same monomials. Indeed, lex
and grevlex are different orderings even on the monomials of the same
total degree in three or more variables, as we can see by considering pairs of
monomials such as x2y2z2 and xy4z. Since (2, 2, 2) − (1, 4, 1) = (1,−2, 1),

x2y2z2 >lex xy4z.

On the other hand by Definition (2.4),

xy4z >grevlex x2y2z2.

Exercise 4. Show that >lex, >grlex, and >grevlex are monomial orders in
k[x1, . . . , xn] according to Definition (2.1).

Exercise 5. Show that the monomials of a fixed total degree d in two
variables x > y are ordered in the same sequence by >lex and >grevlex.
Are these orderings the same on all of k[x, y] though? Why or why not?
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For future reference, we next discuss a general method for specifying
monomial orders on k[x1, . . . , xn]. We start from any m× n real matrix M
and write the rows of M as w1, . . . , wm. Then we can compare monomials
xα and xβ by first comparing their w1-weights α ·w1 and α ·w1. If α ·w1 >
β · w1 or β · w1 > α · w1, then we order the monomials accordingly.
If α · w1 = β · w1, then we continue to the later rows, breaking ties
successively with the w2-weights, the w3-weights, and so on through the
wm-weights. This process defines an order relation >M . In symbols: xα >M

xβ if there is an � ≤ m such that α · wi = β · wi for i = 1, . . . , � − 1, but
α · w� > β · w�.

To obtain a total order by this construction, it must be true that ker(M)∩
Z

n = {0}. If the entries of M are rational numbers, then this property
implies that m ≥ n, and M has full rank n. The same construction also
works for M with irrational entries, but there is a small subtlety concerning
what notion of rank is appropriate in that case. See Exercise 9 below. To
guarantee the well-ordering property of monomial orders, it is sufficient
(although not necessary) to require that M have all entries nonnegative.

Exercise 6. All the monomial orders we have seen can be specified as >M

orders for appropriate matrices M .
a. Show that the lex order with x > y > z is defined by the identity matrix

M =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠ ,

and similarly in k[x1, . . . , xn] for all n ≥ 1.
b. Show that the grevlex order with x > y > z is defined by either the

matrix

M =

⎛⎝ 1 1 1
1 1 0
1 0 0

⎞⎠
or the matrix

M ′ =

⎛⎝ 1 1 1
0 0 −1
0 −1 0

⎞⎠
and similarly in k[x1, . . . , xn] for all n ≥ 1. This example shows that
matrices with negative entries can also define monomial orders.

c. The grlex order compares monomials first by total degree (weight vector
w1 = (1, 1, 1)), then breaks ties by the lex order. This, together with
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part a, shows >grlex=>M for the matrix

M =

⎛⎜⎜⎝
1 1 1
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎠ .

Show that we could also use

M ′ =

⎛⎝ 1 1 1
1 0 0
0 1 0

⎞⎠ .

That is, show that the last row in M is actually superfluous. (Hint:
Making comparisons, when would we ever need to use the last row?)

d. One very common way to define a monomial order is to compare weights
with respect to one vector first, then break ties with another standard
order such as grevlex. We denote such an order by >w,grevlex . These
weight orders are studied, for instance, in [CLO], Chapter 2, §4, Exercise
12. Suppose w = (2, 4, 7) and ties are broken by grevlex with x > y > z.
To define this order, it is most natural to use

M =

⎛⎜⎜⎝
2 4 7
1 1 1
1 1 0
1 0 0

⎞⎟⎟⎠ .

However, some computer algebra systems (e.g., Maple V, Release 5
and later versions with the Groebner package) require square weight
matrices. Consider the two matrices obtained from M by deleting a
row:

M ′ =

⎛⎝ 2 4 7
1 1 1
1 1 0

⎞⎠ M ′′ =

⎛⎝ 2 4 7
1 1 1
1 0 0

⎞⎠ .

Both have rank 3 so the condition ker(M) ∩ Z
3 = {0} is satisfied.

Which matrix defines the >w,grevlex order?
e. Let m > n. Given an m × n matrix M defining a monomial order >M ,

describe a general method for picking an n × n submatrix M ′ of M to
define the same order.

In Exercise 8 below, you will prove that >M defines a monomial order
for any suitable matrix M . In fact, by a result of Robbiano (see [Rob]), the
>M construction gives all monomial orders on k[x1, . . . , xn].

We will use monomial orders in the following way. The natural gener-
alization of the leading term (term of highest degree) in a polynomial in
k[x] is defined as follows. Picking any particular monomial order > on
k[x1, . . . , xn], we consider the terms in f =

∑
α cαxα. Then the leading
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term of f (with respect to >) is the product cαxα where xα is the largest
monomial appearing in f in the ordering >. We will use the notation LT>(f)
for the leading term, or just LT(f) if there is no chance of confusion about
which monomial order is being used. Furthermore, if LT(f) = cxα, then
LC(f) = c is the leading coefficient of f and LM(f) = xα is the leading
monomial . Note that LT(0), LC(0), and LM(0) are undefined.

For example, consider f = 3x3y2 + x2yz3 in Q[x, y, z] (with variables
ordered x > y > z as usual). We have

LT>lex
(f) = 3x3y2

since x3y2 >lex x2yz3. On the other hand

LT>grevlex
(f) = x2yz3

since the total degree of the second term is 6 and the total degree of the
first is 5.

Monomial orders are used in a generalized division algorithm.

• (Division Algorithm in k[x1, . . . , xn]) Fix any monomial order > in
k[x1, . . . , xn], and let F = (f1, . . . , fs) be an ordered s-tuple of poly-
nomials in k[x1, . . . , xn]. Then every f ∈ k[x1, . . . , xn] can be written
as

(2.6) f = a1f1 + · · · + asfs + r,

where ai, r ∈ k[x1, . . . , xn], for each i, aifi = 0 or LT>(f) ≥ LT>(aifi),
and either r = 0, or r is a linear combination of monomials, none of which
is divisible by any of LT>(f1), . . . , LT>(fs). We will call r a remainder of
f on division by F .

In the particular algorithmic form of the division process given in [CLO],
Chapter 2, §3, and [AL], Chapter 1, §5, the intermediate dividend is reduced
at each step using the divisor fi with the smallest possible i such that LT(fi)
divides the leading term of the intermediate dividend. A characterization
of the expression (2.6) that is produced by this version of division can
be found in Exercise 11 of Chapter 2, §3 of [CLO]. More general forms
of division or polynomial reduction procedures are considered in [AL] and
[BW], Chapter 5, §1.

You should note two differences between this statement and the division
algorithm in k[x]. First, we are allowing the possibility of dividing f by
an s-tuple of polynomials with s > 1. The reason for this is that we will
usually want to think of the divisors fi as generators for some particular
ideal I, and ideals in k[x1, . . . , xn] for n ≥ 2 might not be generated by
any single polynomial. Second, although any algorithmic version of division,
such as the one presented in Chapter 2 of [CLO], produces one particular
expression of the form (2.6) for each ordered s-tuple F and each f , there are
always different expressions of this form for a given f as well. Reordering
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F or changing the monomial order can produce different ai and r in some
cases. See Exercise 7 below for some examples.

We will sometimes use the notation

r = f
F

for a remainder on division by F .
Most computer algebra systems that have Gröbner basis packages pro-

vide implementations of some form of the division algorithm. However, in
most cases the output of the division command is just the remainder f

F
,

the quotients ai are not saved or displayed, and an algorithm different from
the one described in [CLO], Chapter 2, §3 may be used. For instance, the
Maple Groebner package contains a function normalf which computes a
remainder on division of a polynomial by any collection of polynomials.
To use it, one must start by loading the Groebner package (just once in a
session) with

with(Groebner);

The format for the normalf command is

normalf(f, F, torder);

where f is the dividend polynomial, F is the ordered list of divisors (in
square brackets, separated by commas), and torder specifies the monomial
order. For instance, to use the >lex order, enter plex, then in parenthe-
ses, separated by commas, list the variables in descending order. Similarly,
to use the >grevlex order, enter tdeg, then in parentheses, separated by
commas, list the variables in descending order. Let us consider dividing
f1 = x2y2 − x and f2 = xy3 + y into f = x3y2 + 2xy4 using the lex order
on Q[x, y] with x > y. The Maple commands

(2.7)

f := x^3*y^2 + 2*x*y^4;

F := [x^2*y^2 - x, x*y^3 + y];

normalf(f,F,plex(x,y));

will produce as output

(2.8) x2 − 2y2.

Thus the remainder is f
F

= x2 − 2y2. The normalf procedure uses the
algorithmic form of division presented, for instance, in [CLO], Chapter 2,
§3.

The Groebner package contains several additional ways to specify mono-
mial orders, including one to construct >M for a square matrix M with
positive integer entries. Hence it can be used to work with general mono-
mial orders on k[x1, . . . , xn]. We will present a number of examples in later
chapters.
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ADDITIONAL EXERCISES FOR §2

Exercise 7.
a. Verify by hand that the remainder from (2.8) occurs in an expression

f = a1f1 + a2f2 + x2 − 2y2,

where a1 = x, a2 = 2y, and fi are as in the discussion before (2.7).
b. Show that reordering the variables and changing the monomial order to

tdeg(x,y) has no effect in (2.8).
c. What happens if you change F in (2.7) to

F = [x2y2 − x4, xy3 − y4]

and take f = x2y6? Does changing the order of the variables make a
difference now?

d. Now change F to

F = [x2y2 − z4, xy3 − y4],

take f = x2y6 + z5, and change the monomial order to plex(x,y,z).
Also try lex orders with the variables permuted and other monomial
orders.

Exercise 8. Let M be an m × n real matrix with nonnegative entries.
Assume that ker(M) ∩ Z

n = {0}. Show that >M is a monomial order on
k[x1, . . . , xn].

Exercise 9. Given w ∈ (Rn)+ define xα >w xβ if α · w > β · w.
a. Give an example to show that >w is not necessarily a monomial order

on k[x1, . . . , xn].
b. With n = 2, let w = (1,

√
2). Show that >w is a monomial order on

k[x1, x2] in this case.
c. What property of the components of the vector w ∈ (Rn)+ guarantees

that >w does define a monomial order on k[x1, . . . , xn]? Prove your
assertion. (Hint: See Exercise 11 of Chapter 2, §4 of [CLO].)

§3 Gröbner Bases

Since we now have a division algorithm in k[x1, . . . , xn] that seems to
have many of the same features as the one-variable version, it is natural
to ask if deciding whether a given f ∈ k[x1, . . . , xn] is a member of a
given ideal I = 〈f1, . . . , fs〉 can be done along the lines of Exercise 1 in
§2, by computing the remainder on division. One direction is easy. Namely,
from (2.6) it follows that if r = f

F
= 0 on dividing by F = (f1, . . . , fs),

then f = a1f1 + · · · + asfs. By definition then, f ∈ 〈f1, . . . , fs〉. On the
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other hand, the following exercise shows that we are not guaranteed to get
f

F
= 0 for every f ∈ 〈f1, . . . , fs〉 if we use an arbitrary basis F for I.

Exercise 1. Recall from (1.4) that p = x2 + 1
2 y2z − z − 1 is an element

of the ideal I = 〈x2 + z2 − 1, x2 + y2 + (z − 1)2 − 4〉. Show, however,
that the remainder on division of p by this generating set F is not zero.
For instance, using >lex, we get a remainder

pF = 1
2 y2z − z − z2.

What went wrong here? From (2.6) and the fact that f ∈ I in this case,
it follows that the remainder is also an element of I. However, pF is not
zero because it contains terms that cannot be removed by division by these
particular generators for I. The leading terms of f1 = x2 + z2 − 1 and
f2 = x2 + y2 + (z − 1)2 − 4 do not divide the leading term of pF . In order
for division to produce zero remainders for all elements of I, we need to be
able to remove all leading terms of elements of I using the leading terms
of the divisors. That is the motivation for the following definition.

(3.1) Definition. Fix a monomial order > on k[x1, . . . , xn], and let I ⊂
k[x1, . . . , xn] be an ideal. A Gröbner basis for I (with respect to >) is a
finite collection of polynomials G = {g1, . . . , gt} ⊂ I with the property
that for every nonzero f ∈ I, LT(f) is divisible by LT(gi) for some i.

We will see in a moment (Exercise 3) that a Gröbner basis for I is indeed
a basis for I, i.e., I = 〈g1, . . . , gt〉. Of course, it must be proved that
Gröbner bases exist for all I in k[x1, . . . , xn]. This can be done in a non-
constructive way by considering the ideal 〈LT(I)〉 generated by the leading
terms of all the elements in I (a monomial ideal). By a direct argument
(Dickson’s Lemma: see [CLO], Chapter 2, §4, or [BW], Chapter 4, §3, or
[AL], Chapter 1, §4), or by the Hilbert Basis Theorem, the ideal 〈LT(I)〉 has
a finite generating set consisting of monomials xα(i) for i = 1, . . . , t. By the
definition of 〈LT(I)〉, there is an element gi ∈ I such that LT(gi) = xα(i)

for each i = 1, . . . , t.

Exercise 2. Show that if 〈LT(I)〉 = 〈xα(1), . . . , xα(t)〉, and if gi ∈ I are
polynomials such that LT(gi) = xα(i) for each i = 1, . . . , t, then G =
{g1, . . . , gt} is a Gröbner basis for I.

Remainders computed by division with respect to a Gröbner basis are
much better behaved than those computed with respect to arbitrary sets
of divisors. For instance, we have the following results.

Exercise 3.
a. Show that if G is a Gröbner basis for I, then for any f ∈ I, the remainder

on division of f by G (listed in any order) is zero.
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b. Deduce that I = 〈g1, . . . , gt〉 if G = {g1, . . . , gt} is a Gröbner basis for
I. (If I = 〈0〉, then G = ∅ and we make the convention that 〈∅〉 = {0}.)

Exercise 4. If G is a Gröbner basis for an ideal I, and f is an arbitrary
polynomial, show that if the algorithm of [CLO], Chapter 2, §3 is used, the
remainder on division of f by G is independent of the ordering of G. Hint:
If two different orderings of G are used, producing remainders r1 and r2,
consider the difference r1 − r2.

Generalizing the result of Exercise 4, we also have the following important
statement.

• (Uniqueness of Remainders) Fix a monomial order > and let I ⊂
k[x1, . . . , xn] be an ideal. Division of f ∈ k[x1, . . . , xn] by a Gröbner
basis for I produces an expression f = g + r where g ∈ I and no term
in r is divisible by any element of LT(I). If f = g′ + r′ is any other such
expression, then r = r′.

See [CLO], Chapter 2, §6, [AL], Chapter 1, §6, or [BW], Chapter 5, §2.
In other words, the remainder on division of f by a Gröbner basis for I
is a uniquely determined normal form for f modulo I depending only on
the choice of monomial order and not on the way the division is performed.
Indeed, uniqueness of remainders gives another characterization of Gröbner
bases.

More useful for many purposes than the existence proof for Gröbner
bases above is an algorithm, due to Buchberger, that takes an arbitrary
generating set {f1, . . . , fs} for I and produces a Gröbner basis G for I
from it. This algorithm works by forming new elements of I using expres-
sions guaranteed to cancel leading terms and uncover other possible leading
terms, according to the following recipe.

(3.2) Definition. Let f, g ∈ k[x1, . . . , xn] be nonzero. Fix a monomial
order and let

LT(f) = cxα and LT(g) = dxβ ,

where c, d ∈ k. Let xγ be the least common multiple of xα and xβ . The
S-polynomial of f and g, denoted S(f, g), is the polynomial

S(f, g) =
xγ

LT(f)
· f − xγ

LT(g)
· g.

Note that by definition S(f, g) ∈ 〈f, g〉. For example, with f = x3y −
2x2y2 + x and g = 3x4 − y in Q[x, y], and using >lex, we have xγ = x4y,
and

S(f, g) = xf − (y/3)g = −2x3y2 + x2 + y2/3.
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In this case, the leading term of the S-polynomial is divisible by the
leading term of f . We might consider taking the remainder on division by
F = (f, g) to uncover possible new leading terms of elements in 〈f, g〉. And
indeed in this case we find that the remainder is

(3.3) S(f, g)
F

= −4x2y3 + x2 + 2xy + y2/3

and LT(S(f, g)
F
) = −4x2y3 is divisible by neither LT(f) nor LT(g). An

important result about this process of forming S-polynomial remainders is
the following statement.

• (Buchberger’s Criterion) A finite set G = {g1, . . . , gt} is a Gröbner basis

of I = 〈g1, . . . , gt〉 if and only if S(gi, gj)
G

= 0 for all pairs i �= j.

See [CLO], Chapter 2, §7, [BW], Chapter 5, §3, or [AL], Chapter 1, §7.
Using this criterion above, we obtain a very rudimentary procedure for
producing a Gröbner basis of a given ideal.

• (Buchberger’s Algorithm)

Input: F = (f1, . . . , fs)

Output: a Gröbner basis G = {g1, . . . , gt} for I = 〈F 〉, with F ⊂ G

G := F

REPEAT

G′ := G

FOR each pair p �= q in G′ DO

S := S(p, q)
G′

IF S �= 0 THEN G := G ∪ {S}
UNTIL G = G′

See [CLO], Chapter 2, §6, [BW], Chapter 5, §3, or [AL], Chapter 1, §7. For

instance, in the example above we would adjoin h = S(f, g)
F

from (3.3)
to our set of polynomials. There are two new S-polynomials to consider
now: S(f, h) and S(g, h). Their remainders on division by (f, g, h) would
be computed and adjoined to the collection if they are nonzero. Then we
would continue, forming new S-polynomials and remainders to determine
whether further polynomials must be included.

Exercise 5. Carry out Buchberger’s Algorithm on the example above,
continuing from (3.3). (You may want to use a computer algebra system
for this.)

In Maple, there is an implementation of a more sophisticated version of
Buchberger’s algorithm in the Groebner package. The relevant command
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is called gbasis, and the format is

gbasis(F,torder);

Here F is a list of polynomials and torder specifies the monomial order.
See the description of the normalf command in §2 for more details. For
instance, the commands

F := [x^3*y - 2*x^2*y^2 + x,3*x^4 - y];

gbasis(F,plex(x,y));

will compute a lex Gröbner basis for the ideal from Exercise 4. The output
is

(3.4) [−9y + 48y10 − 49y7 + 6y4, 252x − 624y7 + 493y4 − 3y]

(possibly up to the ordering of the terms, which can vary). This is not the
same as the result of the rudimentary form of Buchberger’s algorithm given
before. For instance, notice that neither of the polynomials in F actually
appears in the output. The reason is that the gbasis function actually
computes what we will refer to as a reduced Gröbner basis for the ideal
generated by the list F .

(3.5) Definition. A reduced Gröbner basis for an ideal I ⊂ k[x1, . . . , xn]
is a Gröbner basis G for I such that for all distinct p, q ∈ G, no monomial
appearing in p is a multiple of LT(q). A monic Gröbner basis is a reduced
Gröbner basis in which the leading coefficient of every polynomial is 1, or
∅ if I = 〈0〉.

Exercise 6. Verify that (3.4) is a reduced Gröbner basis according to this
definition.

Exercise 7. Compute a Gröbner basis G for the ideal I from Exercise 1
of this section. Verify that pG = 0 now, in agreement with the result of
Exercise 3.

A comment is in order concerning (3.5). Many authors include the con-
dition that the leading coefficient of each element in G is 1 in the definition
of a reduced Gröbner basis. However, many computer algebra systems (in-
cluding Maple, see (3.4)) do not perform that extra normalization because
it often increases the amount of storage space needed for the Gröbner basis
elements when the coefficient field is Q. The reason that condition is often
included, however, is the following statement.

• (Uniqueness of Monic Gröbner Bases) Fix a monomial order > on
k[x1, . . . , xn]. Each ideal I in k[x1, . . . , xn] has a unique monic Gröbner
basis with respect to >.
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See [CLO], Chapter 2, §7, [AL], Chapter 1, §8, or [BW], Chapter 5, §2.
Of course, varying the monomial order can change the reduced Gröbner
basis guaranteed by this result, and one reason different monomial orders
are considered is that the corresponding Gröbner bases can have different,
useful properties. One interesting feature of (3.4), for instance, is that the
second polynomial in the basis does not depend on x. In other words, it
is an element of the elimination ideal I ∩ Q[y]. In fact, lex Gröbner bases
systematically eliminate variables. This is the content of the Elimination
Theorem from [CLO], Chapter 3, §1. Also see Chapter 2, §1 of this book
for further discussion and applications of this remark. On the other hand,
the grevlex order often minimizes the amount of computation needed to
produce a Gröbner basis, so if no other special properties are required, it
can be the best choice of monomial order. Other product orders and weight
orders are used in many applications to produce Gröbner bases with special
properties. See Chapter 8 for some examples.

ADDITIONAL EXERCISES FOR §3

Exercise 8. Consider the ideal I = 〈x2y2 − x, xy3 + y〉 from (2.7).
a. Using >lex in Q[x, y], compute a Gröbner basis G for I.
b. Verify that each basis element g you obtain is in I, by exhibiting

equations g = A(x2y2 − x) + B(xy3 + y) for suitable A, B ∈ Q[x, y].
c. Let f = x3y2 + 2xy4. What is f

G
? How does this compare with the

result in (2.7)?

Exercise 9. What monomials can appear in remainders with respect to
the Gröbner basis G in (3.4)? What monomials appear in leading terms of
elements of the ideal generated by G?

Exercise 10. Let G be a Gröbner basis for an ideal I ⊂ k[x1, . . . , xn] and
suppose there exist distinct p, q ∈ G such that LT(p) is divisible by LT(q).
Show that G \ {p} is also a Gröbner basis for I. Use this observation,
together with division, to propose an algorithm for producing a reduced
Gröbner basis for I given G as input.

Exercise 11. This exercise will sketch a Gröbner basis method for
computing the intersection of two ideals. It relies on the Elimination
Theorem for lex Gröbner bases, as stated in [CLO], Chapter 3, §1. Let
I = 〈f1, . . . , fs〉 ⊂ k[x1, . . . , xn] be an ideal. Given f(t), an arbitrary
polynomial in k[t], consider the ideal

f(t)I = 〈f(t)f1, . . . , f(t)fs〉 ⊂ k[x1, . . . , xn, t].

a. Let I, J be ideals in k[x1, . . . , xn]. Show that

I ∩ J = (tI + (1 − t)J) ∩ k[x1, . . . , xn].
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b. Using the Elimination Theorem, deduce that a Gröbner basis G for I∩J
can be found by first computing a Gröbner basis H for tI + (1 − t)J
using a lex order on k[x1, . . . , xn, t] with the variables ordered t > xi

for all i, and then letting G = H ∩ k[x1, . . . , xn].

Exercise 12. Using the result of Exercise 11, derive a Gröbner basis
method for computing the quotient ideal I : 〈h〉. Hint: Exercise 13 of §1
shows that if I ∩ 〈h〉 is generated by g1, . . . , gt, then I : 〈h〉 is generated by
g1/h, . . . , gt/h.

§4 Affine Varieties

We will call the set kn = {(a1, . . . , an) : a1, . . . , an ∈ k} the affine n-
dimensional space over k. With k = R, for example, we have the usual
coordinatized Euclidean space R

n. Each polynomial f ∈ k[x1, . . . , xn] de-
fines a function f : kn → k. The value of f at (a1, . . . , an) ∈ kn is
obtained by substituting xi = ai, and evaluating the resulting expres-
sion in k. More precisely, if we write f =

∑
α cαxα for cα ∈ k, then

f(a1, . . . , an) =
∑

α cαaα ∈ k, where

aα = aα1
1 · · · aαn

n .

We recall the following basic fact.

• (Zero Function) If k is an infinite field, then f : kn → k is the zero
function if and only if f = 0 ∈ k[x1, . . . , xn].

See, for example, [CLO], Chapter 1, §1. As a consequence, when k is infinite,
two polynomials define the same function on kn if and only if they are equal
in k[x1, . . . , xn].

The simplest geometric objects studied in algebraic geometry are the
subsets of affine space defined by one or more polynomial equations. For
instance, in R

3, consider the set of (x, y, z) satisfying the equation

x2 + z2 − 1 = 0,

a circular cylinder of radius 1 along the y-axis (see Fig. 1.1).
Note that any equation p = q, where p, q ∈ k[x1, . . . , xn], can be rewrit-

ten as p − q = 0, so it is customary to write all equations in the form
f = 0 and we will always do this. More generally, we could consider the
simultaneous solutions of a system of polynomial equations.
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Figure 1.1. Circular cylinder

(4.1) Definition. The set of all simultaneous solutions (a1, . . . , an) ∈ kn

of a system of equations

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0

...

fs(x1, . . . , xn) = 0

is known as the affine variety defined by f1, . . . , fs, and is denoted by
V(f1, . . . , fs). A subset V ⊂ kn is said to be an affine variety if V =
V(f1, . . . , fs) for some collection of polynomials fi ∈ k[x1, . . . , xn].

In later chapters we will also introduce projective varieties. For now,
though, we will often say simply “variety” for “affine variety.” For example,
V(x2 + z2 − 1) in R

3 is the cylinder pictured above. The picture was
generated using the Maple command

implicitplot3d(x^2+z^2-1,x=-2..2,y=-2..2,z=-2..2,

grid=[20,20,20]);

The variety V(x2 + y2 + (z − 1)2 − 4) in R
3 is the sphere of radius 2

centered at (0, 0, 1) (see Fig. 1.2).
If there is more than one defining equation, the resulting variety can be

considered as an intersection of other varieties. For example, the variety
V(x2 + z2 − 1, x2 + y2 + (z − 1)2 − 4) is the curve of intersection of the
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Figure 1.2. Sphere
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Figure 1.3. Cylinder-sphere intersection

cylinder and the sphere pictured above. This is shown, from a viewpoint
below the xy-plane, in Fig. 1.3.

The union of the sphere and the cylinder is also a variety, namely V((x2+
z2 − 1)(x2 + y2 + (z− 1)2 − 4)). Generalizing examples like these, we have:

Exercise 1.
a. Show that any finite intersection of affine varieties is also an affine

variety.
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b. Show that any finite union of affine varieties is also an affine variety.
Hint: If V = V(f1, . . . , fs) and W = V(g1, . . . , gt), then what is
V(figj : 1 ≤ i ≤ s, 1 ≤ j ≤ t)?

c. Show that any finite subset of kn, n ≥ 1, is an affine variety.

On the other hand, consider the set S = R \ {0, 1, 2}, a subset of R.
We claim S is not an affine variety. Indeed, if f is any polynomial in
R[x] that vanishes at every point of S, then f has infinitely many roots.
By standard properties of polynomials in one variable, this implies that
f must be the zero polynomial. (This is the one-variable case of the Zero
Function property given above; it is easily proved in k[x] using the division
algorithm.) Hence the smallest variety in R containing S is the whole real
line itself.

An affine variety V ⊂ kn can be described by many different sys-
tems of equations. Note that if g = p1f1 + p2f2 + · · · + psfs, where
pi ∈ k[x1, . . . , xn] are any polynomials, then g(a1, . . . , an) = 0 at each
(a1, . . . , an) ∈ V(f1, . . . , fs). So given any set of equations defining a va-
riety, we can always produce infinitely many additional polynomials that
also vanish on the variety. In the language of §1 of this chapter, the g as
above are just the elements of the ideal 〈f1, . . . , fs〉. Some collections of
these new polynomials can define the same variety as the f1, . . . , fs.

Exercise 2. Consider the polynomial p from (1.2). In (1.4) we saw that
p ∈ 〈x2 + z2 − 1, x2 + y2 + (z − 1)2 − 4〉. Show that

〈x2 + z2 − 1, x2 + y2 + (z − 1)2 − 4〉 = 〈x2 + z2 − 1, y2 − 2z − 2〉
in Q[x, y, z]. Deduce that

V(x2 + z2 − 1, x2 + y2 + (z − 1)2 − 4) = V(x2 + z2 − 1, y2 − 2z − 2).

Generalizing Exercise 2 above, it is easy to see that

• (Equal Ideals Have Equal Varieties) If 〈f1, . . . , fs〉 = 〈g1, . . . , gt〉 in
k[x1, . . . , xn], then V(f1, . . . , fs) = V(g1, . . . , gt).

See [CLO], Chapter 1, §4. By this result, together with the Hilbert Basis
Theorem from §1, it also makes sense to think of a variety as being defined
by an ideal in k[x1, . . . , xn], rather than by a specific system of equations.
If we want to think of a variety in this way, we will write V = V(I) where
I ⊂ k[x1, . . . , xn] is the ideal under consideration.

Now, given a variety V ⊂ kn, we can also try to turn the construction of
V from an ideal around, by considering the entire collection of polynomials
that vanish at every point of V .

(4.2) Definition. Let V ⊂ kn be a variety. We denote by I(V ) the set

{f ∈ k[x1, . . . , xn] : f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V }.



§4. Affine Varieties 23

We call I(V ) the ideal of V for the following reason.

Exercise 3. Show that I(V ) is an ideal in k[x1, . . . , xn] by verifying that
the two properties in Definition (1.5) hold.

If V = V(I), is it always true that I(V ) = I? The answer is no, as
the following simple example demonstrates. Consider V = V(x2) in R

2.
The ideal I = 〈x2〉 in R[x, y] consists of all polynomials divisible by x2.
These polynomials are certainly contained in I(V ), since the corresponding
variety V consists of all points of the form (0, b), b ∈ R (the y-axis). Note
that p(x, y) = x ∈ I(V ), but x /∈ I. In this case, I(V(I)) is strictly larger
than I.

Exercise 4. Show that the following inclusions are always valid:

I ⊂
√

I ⊂ I(V(I)),

where
√

I is the radical of I from Definition (1.6).

It is also true that the properties of the field k influence the relation
between I(V(I)) and I. For instance, over R, we have V(x2 + 1) = ∅
and I(V(x2 + 1)) = R[x]. On the other hand, if we take k = C, then
every polynomial in C[x] factors completely by the Fundamental Theorem
of Algebra. We find that V(x2 + 1) consists of the two points ±i ∈ C, and
I(V(x2 + 1)) = 〈x2 + 1〉.

Exercise 5. Verify the claims made in the preceding paragraph. You may
want to start out by showing that if a ∈ C, then I({a}) = 〈x − a〉.

The first key relationships between ideals and varieties are summarized
in the following theorems.

• (Strong Nullstellensatz) If k is an algebraically closed field (such as C)
and I is an ideal in k[x1, . . . , xn], then

I(V(I)) =
√

I.

• (Ideal-Variety Correspondence) Let k be an arbitrary field. The maps

affine varieties I−→ ideals

and

ideals V−→ affine varieties

are inclusion-reversing, and V(I(V )) = V for all affine varieties V . If k
is algebraically closed, then
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affine varieties I−→ radical ideals

and

radical ideals V−→ affine varieties

are inclusion-reversing bijections, and inverses of each other.

See, for instance [CLO], Chapter 4, §2, or [AL], Chapter 2, §2. We con-
sider how the operations on ideals introduced in §1 relate to operations on
varieties in the following exercises.

ADDITIONAL EXERCISES FOR §4

Exercise 6. In §1, we saw that the polynomial p = x2 + 1
2 y2z − z − 1 is

in the ideal I = 〈x2 + z2 − 1, x2 + y2 + (z − 1)2 − 4〉 ⊂ R[x, y, z].
a. What does this fact imply about the varieties V(p) and V(I) in R

3?
(V(I) is the curve of intersection of the cylinder and the sphere pictured
in the text.)

b. Using a 3-dimensional graphing program (e.g. Maple’s implicitplot3d
function from the plots package) or otherwise, generate a picture of the
variety V(p).

c. Show that V(p) contains the variety W = V(x2 − 1, y2 − 2). Describe
W geometrically.

d. If we solve the equation

x2 + 1
2 y2z − z − 1 = 0

for z, we obtain

(4.3) z =
x2 − 1

1 − 1
2 y2

.

The right-hand side r(x, y) of (4.3) is a quotient of polynomials or, in the
terminology of §1, a rational function in x, y, and (4.3) is the equation
of the graph of r(x, y). Exactly how does this graph relate to the variety
V(x2 + 1

2 y2z − z − 1) in R
3? (Are they the same? Is one a subset of

the other? What is the domain of r(x, y) as a function from R
2 to R?)

Exercise 7. Show that for any ideal I ⊂ k[x1, . . . , xn],
√√

I =
√

I. Hence√
I is automatically a radical ideal.

Exercise 8. Assume k is an algebraically closed field. Show that in
the Ideal-Variety Correspondence, sums of ideals (see Exercise 11 of §1)
correspond to intersections of the corresponding varieties:

V(I + J) = V(I) ∩ V(J).
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Also show that if V and W are any varieties,

I(V ∩W ) =
√

I(V ) + I(W ).

Exercise 9.
a. Show that the intersection of two radical ideals is also a radical ideal.
b. Show that in the Ideal-Variety Correspondence above, intersections

of ideals (see Exercise 12 from §1) correspond to unions of the
corresponding varieties:

V(I ∩ J) = V(I) ∪ V(J).

Also show that if V and W are any varieties,

I(V ∪W ) = I(V ) ∩ I(W ).

c. Show that products of ideals (see Exercise 12 from §1) also correspond
to unions of varieties:

V(IJ) = V(I) ∪ V(J).

Assuming k is algebraically closed, how is the product I(V )I(W ) related
to I(V ∪W )?

Exercise 10. A variety V is said to be irreducible if in every expression
of V as a union of other varieties, V = V1 ∪ V2, either V1 = V or V2 = V .
Show that an affine variety V is irreducible if and only if I(V ) is a prime
ideal (see Exercise 8 from §1).

Exercise 11. Let k be algebraically closed.
a. Show by example that the set difference of two affine varieties:

V \ W = {p ∈ V : p /∈ W}
need not be an affine variety. Hint: For instance, consider k[x] and let
V = k = V(0) and W = {0} = V(x).

b. Show that for any ideals I, J in k[x1, . . . , xn], V(I :J) contains
V(I) \ V(J), but that we may not have equality. (Here I :J is the
quotient ideal introduced in Exercise 13 from §1.)

c. If I is a radical ideal, show that V(I) \ V(J) ⊂ V(I : J) and that any
variety containing V(I) \ V(J) must contain V(I :J). Thus V(I :J) is
the smallest variety containing the difference V(I) \ V(J); it is called
the Zariski closure of V(I) \ V(J). See [CLO], Chapter 4, §4.

d. Show that if I is a radical ideal and J is any ideal, then I :J is also a
radical ideal. Deduce that I(V ): I(W ) is the radical ideal corresponding
to the Zariski closure of V \ W in the Ideal-Variety Correspondence.




