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16. Remembrance of Weather Past:
Ecosystem Responses to Climate Variability

David Schimel, Galina Churkina,
Bobby H. Braswell, and James Trenbath

. . . the biosphere is . . . a highly complex system with ten million to thirty
million different kinds of working parts and myriad feedback systems pos-
itive and negative, each with its own lag time, of which we have little ken.

—Thomas E. Lovejoy 1992

16.1 Introduction

The future of the carbon cycle is one of the great uncertainties in projecting the
future of climate. The response of terrestrial ecosystems remains largely un-
known, and qualitative disagreement persists regarding the influence of climate
change on ecosystem carbon storage. There has been a sustained effort to un-
derstand how ecosystems respond to climate and carbon dioxide (Prentice et al.
2001) using observations, experiments, models, and the paleorecord. Despite
this massive research effort, and considerable effort to synthesize its results,
considerable uncertainty remains. We do not have a clear paradigm for inter-
preting observations of ecosystem climate responses in time and space and for
translating that paradigm into predictive models. Many of the disagreements
occur because it is difficult to separate the effects of processes operating on
different timescales. For example, low cloud cover, high solar radiation, and
consequent high temperatures may increase photosynthesis (A) in the short term.
On slightly longer timescales, these conditions may favor allocation of new
photosynthate to roots, reducing leaf area relative to a cooler year. The flux in
units of mass per area depends on both the specific rate of photosynthesis (mass
per unit Leaf Area Index (LAI)) and the LAI, multiplicatively. The ecosystem-
level change can be predicted only by knowing the impact of physical variables
on a range of parameters, some of which respond in seconds (for example, A)
and others that respond over days to months (e.g., allocation to leaf area).
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This type of complexity pervades the terrestrial carbon cycle, in which fluxes
depend on both rate constants (e.g., water, temperature, or light dependence)
and substrate (e.g., leaf area or detrital carbon) in a first-order (multiplicative)
fashion. Biogeochemists have tended to extrapolate the consequences of envi-
ronmental change from the direction and relative magnitude of the immediate
rate constants (e.g., photosynthesis vs. respiration), since we have much less
direct information about the “slower” physiological rate constants, such as those
controlling allocation of photosynthate to leaves and litter quality and microbial
processes controlling soil carbon. These slower processes tend to affect the state
variable component of first-order regulation of fluxes and so transmit the inte-
grated history of influences on the ecosystem to the short-term responses.

The growing attention paid to slower processes partly reflects developments
in methodology. Early efforts to model whole-ecosystem carbon exchange (De-
tling, Parton, and Hunt 1978) were based on scaling-up leaf-level of chamber
measurements, with fluxes measured in area-specific rates, multiplied by esti-
mates of the relevant substrate (leaf area). Currently, eddy covariance provides
a measure of the flux on a true area basis, but the specific rates and relevant
substrate (leaf area, litter, etc.) amounts are more difficult to ascertain because
of the high heterogeneity in vegetation and soil properties within the footprint
of flux towers. This poses new challenges for modeling (Thornton et al. 2002).
Existing observational time series intrinsically capture the higher frequencies
best, but eddy covariance time series are now long enough that the role of
interannual changes to state variables, such as LAI, litter mass, or soil water
amount, should be evident.

Developing an observational basis for understanding long-term carbon dynam-
ics from flux observations is challenging. The problem can be described as
detecting the signal of slow processes through the “noise” of daily and seasonal
changes. Fluxes vary strongly and predictably with physical forcing. Interannual
changes to carbon uptake may be driven by climate but do not scale simply
with the integral or average of short-term forcing (Vukicevic, Braswell, and
Schimel 2001; Wofsy personal communication). In this paper, we use a model
to simulate observations of ecosystem flux and state variables and analyze the
interaction between short-term climate effects and slower state variable re-
sponses, as reflected in both “fast fluxes” and slow pools. We do not address
the longer timescales of sand and soil development.

The existence of processes operating on different timescales in the carbon
system is well known. Both formal and empirical approaches to unraveling the
dynamics of multiscales processes are just beginning to be applied in biogeo-
chemistry (Katul et al. 2001a), although mathematical scaling has long been the
subject of formal analysis in atmospheric science and hydrology (Famiglietti
and Wood 1994). While current models simulate dynamics on various timescales
(Collatz et al. 1991; Rosenbloom, Doney, and Schimel 2001), observations and
experiments intrinsically provide more information about “fast” than “slow”
processes, although as time series of observations in flux networks and long-
term ecological studies lengthen, long-term dynamics become more apparent
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(Goulden et al. 1996; Thornton et al. 2002). Creative use of long operational
time series (Caspersen et al. 2000) and isotopic measurements (Gaudinski et al.
2000) also provide insight into long-term processes.

In the past decade, the amount and sophistication of terrestrial biogeochemical
data has increased dramatically (Canadell et al. 2000). At the same time, eco-
system models have generally increased in complexity and in their ability to
accurately predict observations (Jenkins, Birdsey, and Pan 2001; Schimel et al.
1997). Furthermore, the number of measured variables available for comparison
to simulated quantities has expanded greatly, even from the 1990s (Parton et al.
1993) to the present (Kelly et al. 2000). However, validation of the time-
dependence of many modeled processes remains elusive, and it is still not clear
why terrestrial models do not show closer agreement with each other (McGuire
et al. 2001; Schimel et al. 2001). The abundance of data and the increasing
sophistication of models therefore pose operational problems for the biogeo-
chemical community. How can models be evaluated against observations of mul-
tiple timescales simultaneously and objectively? We address this through a
simple and instructive model experiment.

16.2 Methods

16.2.1 Model

We used the model Biome-BGC to simulate flux and process observations.
Biome-BGC has been extensively described in the literature (Running et al.
1994) and is a comprehensive model of ecosystem physiology. A detailed and
recent comparison of Biome-BGC to eddy covariance measurements of Net
Ecosystem Exchange (NEE) is found in Thornton et al. (2002), along with a
description of the model. In short, the Biome-BGC model simulates daily pho-
tosynthesis and respiration as a function of physical variables and nutrient avail-
ability, and decomposition as a function of soil microclimate and nutrient
dynamics. Plant growth and allocation to leaves, roots, and wood are simulated
at the whole-plant level and respond dynamically to the environment. In Biome-
BGC as in other state-of-the-art ecosystem models water and nitrogen couple
autotrophic and heterotrophic processes together (Schimel et al. 1997). Biome-
BGC was chosen for this study because of its relatively mechanistic canopy
model, and because it has been extensively compared to flux measurements.

16.2.2 Experimental Design

An ensemble of experiments was performed with Biome-BGC and is referred
to as the ecosystem memory experiment. In the ecosystem memory experiment,
parallel simulations were run to create an ensemble. The simulations were in-
tegrated using long-term weather until the systems were a statistical steady state
(year-to-year carbon fluxes varied with the weather, but decadal fluxes were
stable). This results in systems with relatively low Net Ecosystem Exchange and
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Figure 16.1. Simulated daily NEE for the Harvard Forest stand base cases. This figure
illustrates the amount of variability on all timescales inherent in the simulations and the
significant differences in the character of fluxes between growth forms. The Harvard
Forest is shown to visualize the amount and scales of variability. Hyytiala’s simulations
have comparable daily, seasonal and interannual variability in fluxes. To produce Figs.
16.2 through 16.7, the annual values of the perturbed simulations were subtracted from
the annual values derived from the base simulation to visualize the relative change in-
troduced by direct and delayed effects. (A) Harvard Deciduous; (B) Harvard Coniferous.
Subsequent plots are based on annual rather than daily values.

Net Primary Productivity. We chose this state because it makes the sensitivity
of disparate systems comparable, and to maximize sensitivity of the analysis.
The experiments were identical in every respect until 1975, which we chose
arbitrarily as the base year. Note that the base year includes daily, seasonal, and
interannual variability although most figures show annual results (Fig. 16.1).
Simulations were integrated in which the weather from each of the 10 years
prior to and including 1975 were substituted for 1975 (Table 16.1). After 1975,
the inputs to all runs were once again identical. Table 16.1 shows the differences
in annual meteorological parameters between the long-term mean, the base year
of 1975, and each year substituted for 1975 to create the ensemble. The simu-
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Table 16.1. Location and meteorology for the Harvard Forest and Hyytiala sites.
Annual meterological parameters are shown for the mean, the base year of 1975, and
the years substituted for 1975 to create the ensemble. Note that the model is run using
daily weather files and these are computed average values.

Year Mean To SD

Mean
annual
precip. SD

Mean
vapor

pressure
deficit SD

Mean
Incident

shortwave SD

Hyvitiala, Finland,
61� 51' N

1965–1994
(annual)

4.67 1.0 70.52 10.7 414.55 32.70 162.27 5.05

1965 4.17 9.8 65.53 — 413.5 396.4 163.0 135.6
1966 3.27 11.8 68.43 — 415.7 463.3 161.17 140.2
1967 4.83 11.0 83.4 — 400.7 391.9 157.2 135.9
1968 3.9 10.8 61.78 — 411.9 421.3 161.5 137.0
1969 3.89 11.3 61.18 — 461.99 471.3 171.8 143.9
1970 4.09 10.7 67.24 — 411.14 436.6 159.6 139.4
1971 4.63 9.93 60.32 — 479.2 513.2 168.69 141.0
1972 5.77 10.0 75.5 — 417.4 432.2 160.7 136.6
1973 4.92 10.3 59.24 — 442.91 462.4 162.17 135.2
1974 6.03 7.7 97.85 — 389.26 375.5 158.5 136.3
1975 (Base) 6.4 8.7 60.09 — 468.4 445.1 167.32 141.2

Havard Forest
USA,
42� 30' N

1965–1994
(annual mean)

9.8 0.7 111.7 19.4 639.4 36.5 316.33 8.2

1965 9.1 10.9 62.5 — 647 474.2 321.5 124.2
1966 9.78 10.2 80.88 — 684.59 489.1 320.52 121.6
1967 9.0 10.5 112.1 — 606.5 426.9 324.28 121
1968 9.41 11.2 87.06 — 648.44 454.6 324 122.2
1969 9.56 10.5 103.01 — 610.47 424.9 314.67 123.6
1970 9.26 11.4 86.33 — 629.83 454 327.04 119.8
1971 9.51 10.9 99.84 — 635.21 451.3 325.24 127.4
1972 8.77 10.3 122.84 — 550.73 395 308.94 123.9
1973 10.7 10.1 123.59 — 635.93 412.3 313.65 112.5
1974 9.51 10 107.93 — 604.46 419.1 320.74 118.5
1975 (Base) 10.0 10.4 135.7 — 622.27 437.9 309.63 128.7

lations of 1965 to 1994 differed only during simulated 1975. By comparing the
perturbed runs to the base case (1975 weather was the actual weather for that
year), we could assess how long ecosystem pools and fluxes would be influenced
by past weather conditions.

We substituted natural variability in climate forcing as an alternative to a
systematic factorial sensitivity analysis in order to (1) probe realistic levels of
ecosystem response to the degree of natural variability experienced at each site,
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and (2) because, as a practical matter, it is difficult to distribute a systematic
perturbation over a daily weather year, while maintaining realistic autocorrela-
tion, correlations between climate variables, event structures, and other charac-
teristics of the weather that affect ecosystems. As Knapp and Smith (2001) show,
ecosystem characteristics are closely adapted to both the local mean and natural
variability of the site. Our ensemble approach produces a model estimate of
responses scaled to representative behavior at each site. A systematic sensitivity
experiment may produce exaggerated results in some cases, while underesti-
mating the response in others, depending on the relationship of the perturbations
applied to a site’s natural variability.

16.2.3 Sites

Two sites were used for the ecosystem memory experiment: Hyytiala, Finland,
and Harvard Forest, United States. At each site, defined in the model by latitude,
climate (see Table 16.1), and soils, deciduous and coniferous stands were sim-
ulated. Meteorological data were derived from local weather station records, as
both sites had available daily meteorological data. Both deciduous and conif-
erous growth forms were simulated: first, because the two regions contain both
growth forms (the Hyytiala region contains birch and deciduous understory veg-
etation, although the flux site footprint is pine); and second, to examine the
effect of differences between growth forms in leaf turnover time and foliar chem-
istry. Note that for the Harvard Forest site, by chance, 1975 was the wettest and
one of the warmest years in the period from 1965 to 1975. As a consequence,
at that site, the ensemble members differ monotonically and systematically from
the base case.

16.3 Results and Discussion

16.3.1 Responses of Net Ecosystem Exchange

We analyzed the initial and long-term responses of multiple ecosystem variables.
Plotting the difference between the base case and perturbed ensemble members
allows visualization of how long weather effects in a single year cause indirect
ecosystem responses. Fig. 16.2 shows the difference in NEE resulting from a
single year’s perturbation. NEE fluxes are significantly affected by weather in
prior years. The effect is large for several years and can continue for periods of
decades.

The differences in NEE were often larger in the year after the perturbed year
(1975), even though the weather for that subsequent year was identical for all
simulations. NEE slowly returned to the base case and generally approached the
baseline after 3 to 5 years. The rates and pattern of this “relaxation” were eco-
system specific. Note that because these experiments were analyzed while sys-
tems were at a mature NEE/NPP state, the sensitivity expressed as a fractional
change is amplified relative to systems rapidly accumulating carbon. Experience
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Figure 16.2. Net ecosystem exchange for the model ensemble. All results are shown as
annual % difference from the base case. The shaded envelope brackets the ensemble of
results; individual ensemble results are shows as points within the envelope. (A) the
Hyytiala site coniferous stand; (B) the Harvard Forest coniferous stand; (C) Hyytiala
decidous; and (D) Harvard Forest deciduous stand.

with this model suggests that the various effects described below remain sig-
nificant and are on the order of 10% to 50% of the mean NEE flux in accu-
mulating stands (Thornton et al. 2002).

The effects on NEE do not decay away smoothly but decline and recur, de-
pending on the subsequent year’s weather and variations in litter carbon and
leaf area. Ecosystem sensitivity to climate variability in one year is contingent
on responses to the weather in previous years. Since fluxes per se have no
memory in the model, these lags arise because of changes to model state vari-
ables, including carbon, nitrogen, or water pools. Responses to weather in one
year can predispose ecosystem component fluxes to respond more or less
strongly to weather in subsequent years. This type of contingency, though ex-
pected from ecosystem theory, is rarely accounted for in analyses of biogeo-
chemical flux time series (Goulden et al. 1996; Kelly et al. 2000).
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Figure 16.3. Effects on key state variables. All results are shown as annual % difference
from the base case. Example results are shown for the Harvard Forest Coniferous stand.
(A) Maximum leaf area index; (B) Litter carbon; (C) Soil water; and (D) soil mineral
nitrogen (plant available N).

16.3.2 State Variable Dynamics

Plotting state variable changes over time provides insights into the mechanisms
causing lagged responses in NEE (Fig. 16.3). The responses of maximum leaf
area, soil water, soil nitrogen, and litter mass are shown for the Harvard Forest
Coniferous simulation; other sites and growth forms show qualitatively similar
results. Foliage, soil water, and nitrogen cycles were all affected by the weather
perturbation and then recovered on different timescales. Soil water generally
responds quickly (1–2 years) and quickly returns to the base case, which is
expected since the modeled turnover time for soil water is a little less than a
year. Leaf area also has a short turnover time (depending on coniferous or de-
ciduous growth habit) but is affected through water and nitrogen effects on
productivity for many years. Since the nitrogen cycling response is controlled
by decomposition, it responds slowly, as does litter carbon. Litter responds to
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Figure 16.4. Effect of growth form and site on state variables: maximum leaf area index.
All results are shown as annual % difference from the base case. This figure compares
leaf area index responses of coniferous and deciduous stands at the two sites. (A) Hyytiala
Coniferous; (B) Harvard Coniferous; (C) Harvard Deciduous; and (D) Hyytiala Decid-
uous.

altered NPP and then returns to quasi-equilibrium slowly with a rate determined
by litter decomposition rates and changes to inputs from NPP. Nitrogen plays a
key role in coupling plant and soil time scales together. Rates of N cycling are
modified by the initial water and litter C perturbations. Altered N cycling then
affects productivity, litter production, and so feeds back again to N cycling and
so on.

Plant growth forms affect response times of state variables. The magnitude
of effects arising from growth forms is at least as large as the differences be-
tween latitudes, based on this limited comparison. Fig. 16.4 shows a comparison
of leaf area responses between growth forms at the two sites. Sites and growth
forms differ significantly in their responses. The difference in peak proportional
response between the deciduous and coniferous responses is large (6 vs. 18%
for the northern site) compared to the mean site-to-site differences (9 vs. 12%).
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Figure 16.5. GPP and Ecosystem respiration for the coniferous sites. Results are annual
% difference from the base case. (A) Hyytiala GPP; (B) Harvard GPP; (C) Hyytiala
Respiration; and (D) Harvard Respiration.

For three of the simulations, the timescale of the LAI perturbation is about 15
years, while at the Harvard Forest deciduous site, the timescale is only about 4
years. In the case of the northern deciduous simulation, the extremely long
timescale appears to result from the long-lived perturbation to the nitrogen cycle,
which in this cold forest is controlled by slow decomposition rates. The differ-
ences are indicative of the additional parameterization and validation needed to
accurately model “slow” responses globally.

16.3.3 GPP and Ecosystem Respiration Responses

Ecosystem state variables have direct effects on the component fluxes Gross
Primary Production and Ecosystem Respiration (ER � microbial respiration �
plant growth and maintenance respiration). Fig. 16.5 shows proportional changes
in GPP and ER for the coniferous sites. The proportional changes in GPP and
ER are larger than those in the state variables, although much smaller than the
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Figure 16.6. GPP perturbations (annual % difference from the base case) for the Harvard
Forest coniferous and deciduous simulations, showing the effects of growth form on a
component flux response. Note that ER in the model is computed from the sum of plant
growth respiration maintenance respiration and heterotrophic respiration, all of which are
computed separately. (A) Coniferous; (B) Deciduous.

changes in NEE (see Fig. 16.2). The initial responses and recovery of GPP and
ER are smoother than those of NEE. The highly discontinuous responses of
NEE occur because GPP and ER change out of phase with one another, on
slightly different timescales, causing the difference to vary nonlinearly. Growth
form also affects the responses of GPP and ER. Fig. 16.6 compares the GPP
perturbations for the Harvard Forest coniferous and deciduous simulations. The
GPP effects are longer lasting in the coniferous stand, due mainly to the multi-
year needle retention time, and secondarily to coupled effects resulting from
slower decomposition rates.

NEE is more sensitive to lagged effects than are GPP and ER separately.
Large effects on NEE occur when GPP and ER responses are uncorrelated in
time. A variety of ecosystem processes can cause uncorrelated changes in ER
and GPP. For example, the production of a large litter cohort in one year may



16. Remembrance of Weather Past 361

increase ER the next year without a corresponding impact on state variables
affecting photosynthesis. Changes in nitrogen availability driven by changes in
litter mass and heterotrophic activity may also affect GPP. The effects of climate
perturbations tend to be largest the year after the perturbation. During the anom-
alous year, changes to temperature and moisture affect both autotrophic and
heterotrophic processes. The effects on GPP and ER are largest initially but may
cancel each other out. In subsequent years, the anomalies in GPP and ER are
smaller but uncorrelated, leading to larger effects on NEE than in the year when
GPP and ER respond the most.

16.3.4 Multiple Steady States in Total Carbon Storage

State variables are important controls in ecosystem models because of the strong
first-order dependence of most fluxes. Because the state variables change slowly
relative to fluxes and change as a consequence of integrated fluxes, they con-
tribute low-frequency behavior to the model. Differences in the values of state
variables that are small relative to measurement error, and too small to simulate
accurately, will affect model solutions. This is a precondition for complex re-
sponses or even chaotic behavior (May 2001). Fig. 16.7 shows that the model,
examined in terms of total carbon storage, has multiple steady states, at least on
decadal timescales. Each realization of the model equilibrates at a slightly dif-
ferent level of total carbon. Initially, the total carbon responses diverge, a pre-
condition for chaotic behavior. For the model to be chaotic, these responses
would have to diverge exponentially as a function of an initial infinitesimal
perturbation. The plots show modest quantitative differences between model
states, but given that the variable plotted is total carbon, these small differences
are significant. Given the timescale of the perturbation, the differences would
be entirely between much smaller active pools (e.g., litter, microbial C, leaf area)
and so significant for fluxes. These small differences in state can “precondition”
the system for later, altered sensitivity as can be seen 5 to 15 years after the
perturbation for some site/growth form combinations.

16.3.5 Significance of Lagged Effects

Ecosystem responses to the environment are a complex mixture of immediate
responses to environmental variability and indirect effects mediated through bi-
ological processes. Ecosystems therefore respond to any given forcing (e.g.,
weather) on multiple timescales. This is a characteristic of systems that contain
components that respond with different time-constants. The carbon cycle liter-
ature has long identified multiple timescales of response as a key aspect of
ecosystem behavior (Moore and Braswell 1994; Schimel et al. 1997). Recent
papers have begun to address this question as well, as time series grow longer
(Katul et al. 2001a,b; Baldocchi, Falge, and Wilson 2001). Ecosystem memory—
the effects of prior disturbance and weather forcing of ecosystem responses—
exerts a significant effect on net carbon exchange (Vukicevic, Braswell, and
Schimel 2001).
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Figure 16.7. Total ecosystem carbon (plant plus soil stocks) for both sites and growth
forms, shown as annual % difference from the base case. Each individual ensemble
member is shown as a separate trajectory and is color-coded. To create the ensemble
members, a year previous to 1975, chosen from 1965 to 1974, is substituted in place of
1975; the substituted year is indicated in the legend in Panel C. Note the variety of
dynamical responses of total C illustrated by the NEE trajectories. All simulations show
parallel behavior of ensemble members as they approach new steady states (possibly
converging on very long timescales). (A) the Hyytiala site coniferous stand; (B) the
Harvard Forest coniferous stand; (C) Hyytiala deciduous; and (D) Harvard Forest decid-
uous stand.

Braswell et al. (1997) and Vukicevic, Braswell, and Schimel (2001) argue that
the atmospheric carbon dioxide response to temperature variability suggests that
ecosystems respond initially to increased temperature by releasing carbon, but
that a delayed increase in uptake occurs on average 1 to 3 years after the initial
release. They hypothesized that this occurs because increased respiration in the
initial year causes increased nutrient availability, and hence increased produc-
tivity in subsequent years, without a balancing increase in respiration. There is
some evidence for this pattern in the ecosystem memory experiment, as this is
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the pattern shown in the Harvard Forest deciduous simulation. Other sites and
forest types show other responses. As in Schimel et al. (1996) and Braswell et
al. (1997), Biome-BGC suggests that ecosystem characteristics significantly in-
fluence the response to climate variability. Large responses in the atmosphere
must result when spatially coherent climate anomalies trigger responses across
ecosystems that respond in similar ways. Vukicevic, Braswell, and Schimel
(2001) show that a dominant mode of temperature variability on land occurs in
the Northern Hemisphere mid-latitudes, a region that contains most temperate
deciduous forests. Because effects of weather in prior years can significantly
alter NEE, GPP, and ER from average values, we caution that space-for-time
analyses where short flux records are plotted against mean or current year’s
climate (Valentini et al. 2000) may be significantly affected by lagged effects.
As a result, space for time substitution can give extremely misleading results
for environmental controls over fluxes.

16.3.6 The Response Hierarchy and State Space Estimation

We observed a hierarchy in the impact of indirect effects from state variables
to component fluxes to the integrated (NEE) flux. The ecosystem memory ex-
periment shows that lagged effects are discernible in ecosystem state variables
such as leaf area, soil water, soil mineral nitrogen, and litter mass. The magni-
tude of these effects is of the order 1% to 18% difference from the base case,
depending on variable and time since disturbance. The effects persist for 3 to
15 years. The ecosystem component fluxes (GPP and ER) likewise show lagged
effects and have delayed responses of up to 25% to 50%. The component fluxes
show their largest responses soon after the initiation of the ensemble and decay
away smoothly. Delayed differences relative to the base case arise from lags in
the ecosystem state variables, because, unlike fluxes, they are able to carry
information from one time step to the next. NEE is the difference between GPP
and ER and is, therefore, typically a small fraction of either flux. Small changes
in either GPP or ER can cause large changes in NEE. The magnitude of the
differences between ensemble members in NEE is of the order 50% to 1500%,
far larger than the proportional differences in state variables or the component
fluxes. At each level of control, the effects of the perturbation are amplified.
Accurate simulation of NEE on the interannual timescale depends on highly
accurate simulation of state variables and component fluxes of GPP and ER.

Note that the sensitivity of modeled fluxes to key control variables, such as
leaf area and litter fall, has profound implications for measurement strategies. It
has long been known that errors in GPP scales nearly linearly with errors in
leaf area, and as a result major efforts have gone into developing in situ and
satellite estimates of leaf area (Running et al. 1994). The current state of the art
allows for precision in LAI measurements at the stand scale of 10% to 25% of
the mean. Model predictions of leaf area can typically be verified to within
about 10% to 25% of the true value. This may result in acceptable errors in
GPP and NPP, which are also typically known to within about 25% (Parton et
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al. 1993) but can result in very large errors in NEE (including a possible sign
change). Similar scaling applies to errors in ecosystem respiration, which, how-
ever, is rarely measured with comparable accuracy and precision to NPP or GPP.

Until the relatively recent advent of long, quality-controlled NEE time series
from eddy covariance, model verification was usually based on comparison to
state variables, and NPP, estimated from state variables. Accurate simulation of
NEE will require models whose simulation of key state variables is optimized
as carefully as are parameter values. While correct model structure and accurate
parameters will help with simulation of state variables, other techniques may
also be applied. State space estimation, or adjustment of initial and simulated
state variable values to minimize the difference between observed and simulated
fluxes, while accounting for uncertainties in all variables, is a clear alternative
to estimation and tuning or model parameters. This approach is widely used in
geophysical models and in weather forecasting and is well justified in systems
where model evolution depends sensitively on poorly known state variables
(Kalnay, in press).

The sensitivity of NEE to small changes in state variables may explain some
of the discrepancies among ecosystem models (Melillo et al. 1995). Ecosystem
models with similar structures and parameterizations generally perform similarly
under today’s climate and compare similarly against NPP data (Schimel et al.
2000; Jenkins, Birdsey, and Pan 2001). However, these same models tend to
diverge when simulating climate change (Melillo et al. 1995). Given the sensi-
tivity of NEE to small differences in LAI and other state variables, model biases
too small to detect with today’s data can have large impacts on modeled NEE.
This provides an alternate perspective on model-model disagreements and sug-
gests that far more detailed model intercomparisons will be required to diagnose
the cause of differences, such as detailed diagnoses of interannual variability.
Models validated against state variable measurements can have major errors in
NEE, and equally “valid” models can differ substantially in predictions. Small
errors, undetectable with current measurements, in allocation, litter chemistry,
soil water, and other key states can accumulate and produce large errors in the
long-term carbon balance. This is especially true when models represent aggre-
gated properties (stands or pixels) and average parameter values must be esti-
mated. Long-term modeling of NEE can easily require more accuracy than
sampling error permits! Correct models may not even be identifiable with current
process study techniques. The solution to this dilemma is not purely reductionist,
but rather through the use of novel estimation strategies, as discussed above.

16.3.7 Complex Dynamics in the Carbon System

It is well known that model systems can exhibit stable or chaotic behavior,
depending on parameter values (May 2001). In the state and parameter domain
examined in this study, Biome-BGC exhibits multiple steady states but not cha-
otic dynamics. As ecosystem models and data are analyzed under more and
more conditions, we should pay close attention to appropriate diagnostics to
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identify whether systems are entering chaotic domains. The existence of chaotic
behavior in biogeochemical systems would have a major impact on both ob-
serving system design and modeling strategy. Currently, monitoring and analysis
systems for chaotic systems (e.g., the atmosphere, some animal populations)
exist, but most biogeochemical observations have tacitly assumed a high degree
of linearity between forcing and response (Schimel et al. 1997). If this were to
change with alterations in either the biota or the climate system, management
of carbon, water quality, and other ecological goods and services would become
even more challenging.

Katul et al. (2001b) suggested that ecosystems were dissipative systems, cre-
ating some degree of order from chaotic atmospheric forcing (this amounts to
an operational definition of life, couched in terms of fluxes). That hypothesis
remains tenable. Our results suggest that one mechanism of dissipation is to
“rectify” chaotic forcing from the atmosphere into longer timescales. These
model results show that interannual variability in climate forcing of ecosystems
has impacts on timescales up to decadal. Ecosystem responses may be propor-
tional in the integral to the chaotic portion of forcing but spread over a long
period of time, thus limiting the change to average or instantaneous rates. Be-
cause NEE is a small difference between large opposing fluxes, its dynamical
characteristics are different from the variables ecosystem modelers have focused
on for decades (NPP, biomass, and other state variables). Our study addresses
intermediate timescales just reached in the short time series that Katul et al.
(2001b) analyzed, but it has implications for behavior over a longer term. Eco-
systems may either damp or amplify high-frequency chaotic forcing into chaotic
fluxes on longer timescales, depending on whether ecosystems are chaotic sys-
tems themselves. Models and data about the dynamical characteristics of bio-
geochemical systems have just reached the point where questions about
complexity, nonlinearity, and predictability can be concretely addressed.

16.4 Summary

Understanding the contribution to ecosystem change from processes with dif-
ferent time constants is extremely difficult using short observational time series.
We used a model to simulate observations of ecosystem flux and state variables
and then linked behavior in the simulated observations to underlying mecha-
nisms and timescales as a model for developing new strategies for observing
and analyzing ecosystems. We performed a simple model experiment, using a
widely used and well-tested ecological mode, Biome-BGC. We ran many parallel
multidecadal simulations, which differed only in the weather during one year
(simulated 1975). One simulation used 1975 weather during 1975 while the
others had different weather years substituted in that year. Following the 1975
perturbation, the inputs were again identical. This allowed us to analyze both
the rate of recovery of ecosystem variables after a one-year perturbation and the
mechanisms that caused delayed responses. We observed a hierarchy in the im-
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pact of indirect effects arising from state variables and component fluxes upon
the integrated (NEE) flux. State variables such as leaf area, soil water, and litter
mass were affected by 1% to 15% difference from the base case. The effects
persisted for 3 to 15 years. The ecosystem component fluxes (GPP and ecosys-
tem respiration) had responses of up to 25% to 50%, which persisted for 3 to
5 years. The component fluxes show their largest responses soon after the ini-
tiation of the ensemble and decay away smoothly. Net Ecosystem Exchange was
altered by 50% to 1500% with lagged effects persisting for many years. The
fluxes themselves have no memory per se and so lagged differences from the
base case arise from anomalies in the ecosystem state variables. The model
suggests that a large fraction of interannual variation in NEE occurs when subtle
lagged changes in GPP and Ecosystem Respiration occur out of phase with each
other. The sensitivity of NEE to small changes in state variables may explain
some of the discrepancies amongst ecosystem models. Model biases too small
to detect with today’s data can have large impacts on modeled NEE. Models
validated against state variable measurements can have major errors in NEE,
and equally “valid” models can differ substantially in predictions. Aggregated
state variables (ecosystem carbon storage) showed multiple steady states but not
chaotic dynamics. Biogeochemical systems may be, however, on the “edge” of
chaos and future observations, and models should consider the possibility of
highly nonlinear and chaotic dynamics arising as novel climate and ecological
changes occur.

Acknowledgments. This research was supported by the European Commission’s
CARBODATA project, by a NASA grant, by the Max Planck Institute for Bio-
geochemistry, the National Science Foundation, and the U.S. Department of
Energy. The authors would like to thank Dennis Baldocchi, Steve Wofsy, Tomi
Vukicevic, Peter Thornton, and Steve Running for various forms of help and
dispute. The National Science Foundation sponsors the National Center for At-
mospheric Research.

References

Baldocchi, D., E. Falge, and K. Wilson. 2001. A spectral analysis of biosphere-
atmosphere trace gas flux densities and meteorological variables across hour to multi-
year time scales. Agricultural and Forest Meteorology 107:1–27.

Braswell B.H., Schimel D.S., Linder E, Moore B. 1997. Science 278 (5339): 870–872.
Canadell, J.G., H.A. Mooney, D.D. Baldocchi, J.A. Berry, J.R. Ehleringer, C.B. Field,

S.T. Gower, D.Y. Hollinger, J.E. Hunt, R.B. Jackson, S.W. Running, G.R. Shaver, W.
Steffen, S.E. Trumbore, R. Valentini, and B.Y. Bond. 2000. Carbon metabolism of
the terrestrial biosphere: A multitechnique approach for improved understanding. Eco-
systems 3:115–30.

Caspersen, J.P., S.W. Pacala, J.C. Jenkins, G.C. Hurtt, P.R. Moorcroft, and R.A. Birdsey.
2000. Contributions of land-use history to carbon accumulation in US forests. Science
290:1148–51.

Collatz, G.J., J.T. Ball, C. Grivet, and J.A. Berry. 1991. Physiological and environmental
regulation of stomatal conductance, photosynthesis, and transpiration: A model that
includes a laminar boundary-layer. Agricultural and Forest Meteorology 54:107–36.



16. Remembrance of Weather Past 367

Detling, J.K., W.J. Parton, and H.W. Hunt. 1978. An empirical model for estimating CO2

exchange of Bouteloua gracilis (H.B.K.) Lag. in the shortgrass prairie. Oecologia 33:
137–47.

Famiglietti, J.S., and E.F. Wood. 1994. Multiscale modeling of spatially variable water
and energy-balance processes. Water Resources Research 30:3061–78.

Gaudinski, J.B., S.E. Trumbore, E.A. Davidson, and S.H. Zheng. 2001. Soil carbon cy-
cling in a temperate forest: radiocarbon-based estimates of residence times, seques-
tration rates, and partitioning of fluxes. Biogeochemistry 52:113–14.

Goulden, M.L, J.W. Munger, S.M. Fan, B.C. Daube, and S.C. Wofsy. 1996. Exchange
of carbon dioxide by a deciduous forest: Response to interannual climate variability.
Science 271:1576–78.

Jenkins, J.C., R.A. Birdsey, and Y. Pan. 2001. Biomass and NPP estimation for the mid-
Atlantic region (USA) using plot-level forest inventory data. Ecological Applications
11:1174–93.

Kalnay, E. [in press] Atmospheric modeling, data assimilation, and predictability. Cam-
bridge: Cambridge University Press.

Katul, G.G., C.T. Lai, J.D. Albertson, B. Vidakovic, K.V.R. Schafer, C.I. Hsieh, and R.
Oren. 2001b. Quantifying the complexity in mapping energy inputs and hydrologic
state variables into land-surface fluxes. Geophysical Research Letters 28:3305–3307.

Katul, G., C.T. Lai, K. Schafer, B. Vidakovic, J. Albertson, D. Ellsworth, and R. Oren.
2001a. Multiscale analysis of vegetation surface fluxes: From seconds to years. Ad-
vances in Water Resources 24:1119–32.

Kelly, R.H., W.J. Parton, M.D. Hartman, L.K. Stretch, D.S. Ojima, and D.S. Schimel.
2000. Intra-annual and interannual variability of ecosystem processes in shortgrass
steppe. Journal of Geophysical Research-Atmospheres 105:20093–20100.

Knapp, A.K., and M.D. Smith. 2001. Variation among biomes in temporal dynamics of
aboveground primary production. Science 291:481–84.

Lovejoy, T. 1992. Preface. In Global warming and biological diversity, ed. R.L. Peters
and T.E. Lovejoy. New Haven: Yale University Press.

May, R.M. 2001. Stability and complexity in model ecosystems. Princeton, New Jersey:
Princeton University Press.

McGuire, A.D., S. Sitch, J.S. Clein, R. Dargaville, G. Esser, J. Foley, M. Heimann, F.
Joos, J. Kaplan, D.W. Kicklighter, R.A. Meier, J.M. Melillo, B. Moore, I.C. Prentice,
N. Ramankutty, T. Reichenau, A. Schloss, H. Tian, L.J. Williams, and U. Wittenberg.
2001. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses
of CO2, climate and land use effects with four process-based ecosystem models.
Global Biogeochemical Cycles 15:183–206.

Melillo, J.M. J. Borchers, J. Chaney, H. Fisher, S. Fox,A. Haxeltine, A. Janetos, D.W.
Kicklighter, T.G.F. Kittel, A.D. McGuire, R. McKeown, R. Neilson, R. Nemani, D.S.
Ojima, T. Painter, Y. Pan, W.J. Parton, L. Pierce, L. Pitelka, C. Prentice, B. Rizzo,
N.A. Rosenbloom, S. Running, D.S. Schimel, S. Sitch, T. Smith, I. Woodward. 1995.
Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): continental-scale
study of terrestrial ecosystem responses to climate change and CO2 doubling. Global
Biogeochemical Cycles 9(4): 407–437.

Moore, B., and B.H. Braswell. 1994. The lifetime of excess atmospheric carbon-dioxide
Global Biogeochemical Cycles 8:23–38.

Parton, W.J., J.M. O. Scurlock, D.S. Ojima, T.G. Gilmanov, R.J. Scholes, D.S. Schimel,
T. Kirchner, J.C. Menaut, T. Seastedt, E.G. Moya, A. Kamnalrut, J.I. Kinyamario.
1993. Observations and modeling of biomass and soil organic-matter dynamics for
the grassland biome worldwide. Global Biogeochemical Cycles 7:785–809.

Prentice, I.C., G.D. Farquhar, M.J.R. Fasham, M.L. Goulden, M. Heimann, V.J. Jaramillo,
H.S. Kheshgi, C. Le Quere, R.J. Scholes and D.W.R. Wallace. In: J.T. Houghton, Y.
Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson
(eds) Climate Change 2001: The Scientific Basis. Contribution of Working Group I



368 D. Schimel et al.

to the Third Assessment Report of the Intergovernmental Panel on Climate Change.
Cambridge University Press, Cambridge, U.S.A. pp. 183–237.

Rosenbloom, N.A., S.C. Doney, and D.S. Schimel. 2001. Geomorphic evolution of soil
texture and organic matter in eroding landscapes. Global Biogeochemical Cycles 15:
365–81.

Running, S.W., C.O. Justice, V. Salomonson, D. Hall, J. Barker, Y.J. Kaufmann, A.H.
Strahler, A.R. Huete, J.P. Muller, V. Vanderbilt, Z.M. Wan, P. Teillet, and D. Carneg-
gie. 1994. Terrestrial remote-sensing science and algorithms planned for EOS
MODIS. International Journal of Remote Sensing 15:3587–3620.

Schimel, D.S., B.H. Braswell, R. McKeown, D.S. Ojima, W.J. Parton, and W. Pulliam.
1996. Climate and nitrogen controls on the geography and timescales of terrestrial
biogeochemical cycling. Global Biogeochemical Cycles 10:677–92.

Schimel, D.S., W. Emanuel, B. Rizzo, T. Smith, F.I. Woodward, H. Fisher, T.G.F. Kittel,
R. McKeown, T. Painter,N. Rosenbloom, D.S. Ojima, W.J. Parton, D.W. Kicklighter,
A.D. McGuire, J.M. Melillo, Y. Pan, A. Haxeltine, C. Prentice, S. Sitch, K. Hibbard,
R. Nemani, L. Pierce, S. Running, J. Borchers, J. Chaney, R. Neilson, and B.H.
Braswell. 1997. Continental scale variability in ecosystem processes: Models, data,
and the role of disturbance. Ecological Monographs 67:251–71.

Schimel D.S., J.I. House, K.A. Hibbard, P. Bousquet, P. Ciais, P. Peylin, B.H. Braswell,
M.J. Apps, D. Baker, A. Bondeau, J. Canadell, G. Churkina, W. Cramer, A.S. Den-
ning, C.B. Field, P. Friedlingstein, C. Goodale, M. Heimann, R.A. Houghton, J.M.
Melillo, B. Moore, D. Murdiyarso, I. Noble, S.W. Pacala, I.C. Prentice, M.R. Raupach,
P.J. Rayner, R.J. Scholes, W.L. Steffen, C. Wirth. 2001. Recent patterns and mecha-
nisms of carbon exchange by terrestrial ecosystems. Nature 414 (6860): 169–172

Thornton, P.E., B.E. Law, H.L. Gholz, K.L. Clark, E. Falge, D.S. Ellsworth, A.H. Gold-
stein, R.K. Monson, D. Hollinger, M. Falk, J. Chen, and J.P. Sparks. 2002. Modeling
and measuring the effects of disturbance history and climate on carbon and water
budgets in evergreen needleleaf forests. Agricultural and Forest Meteorology 113:185–
222.

Valentini, R., G. Matteucci, A.J. Dolman, E.D. Schulze, C. Rebmann, E.J. Moors, A.
Granier, P. Gross, N.O. Jensen, K. Pilegaard, A. Lindroth, A. Grelle, C. Bernhofer,
T. Grunwald, M. Aubinet, R. Ceulemans, A.S. Kowalski, T. Vesala, U. Rannik, P.
Berbigier, D. Loustau, J. Guomundsson, H. Thorgeirsson, A. Ibrom, K. Morgenstern,
R. Clement, J. Moncrieff, L. Montagnani, S. Minerbi, P.G. Jarvis. 2000. Respiration
as the main determinant of carbon balance in European forests. Nature 404:861–65.

Vukicevic, T., B.H. Braswell, and D. Schimel. 2001. A diagnostic study of temperature
controls on global terrestrial carbon exchange. Tellus B53:150–70.




