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Applications

We see in this chapter how Galois theory can be used to get a satisfactory
answer to the problem of constructions with ruler and compass. By analogous
methods, we discuss the problem of solving polynomial equations using radicals
and we show how Galois theory allows us to understand the explicit resolution
of equations of degrees up to 4. Finally, we will study the behavior of the Galois
group of an equation when we vary the coefficients.

5.1 Constructibility with ruler and compass

Let us go back to the problem of geometric constructions with ruler and
compass. We are mostly interested here in complex numbers which are con-
structible from the set {0, 1}. By Wantzel’s theorem (Theorem 1.4.1), these
are the complex numbers z for which there is a sequence of extensions,
Q = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ Kn, such that z ∈ Kn and such that for
any i, [Ki : Ki−1] = 2. The main result is the following.

Theorem 5.1.1. An algebraic number z ∈ C is constructible (from {0, 1}) if
and only if the degree of the extension of Q generated by z and its conjugates
is a power of 2.

To understand step by step what happens, let us begin by proving the
following proposition.

Proposition 5.1.2. Let z ∈ C be a constructible number. Then any conjugate
of z is constructible.

Proof. Let Q = K0 ⊂ K1 ⊂ · · · ⊂ Kn be a sequence of quadratic extensions
such that z ∈ Kn. Let Q ⊂ L be a Galois extension such that Kn ⊂ L.
If z′ is a conjugate of z, there exists an element σ ∈ Gal(L/Q) such that



108 5 Applications

σ(z) = z′. (This is essentially the content of the proof of Proposition 3.3.2;
see Exercise 3.6.) Set K ′

j = σ(Kj) for 0 � j � n. These are subfields of L and
for any j, K ′

j−1 ⊂ K ′
j , with [K ′

j : K ′
j−1] = 2. Since z′ ∈ K ′

n, this shows that
z′ is constructible. ��
Proof of Theorem 5.1.1. Now let z ∈ C be a constructible number and let L

be the extension of Q generated by the conjugates of z. By Theorem 1.1.3,
any element in L is constructible. But Q having characteristic zero, it follows
from the Primitive Element Theorem (Theorem 3.3.3) that there is α ∈ L

such that L = Q[α]. This element α is constructible, so its degree is a power
of 2, by Corollary 1.4.4. It follows that [L : Q] is a power of 2, which was to
be shown.

Conversely, assume that [L : Q] is a power of 2. Since L is generated
by the roots of the minimal polynomial of z, it is a splitting extension of a
separable polynomial (Q has characteristic zero), hence a Galois extension
(Proposition 3.2.7). The order of its Galois group G = Gal(L/K) is a power
of 2. By Lemma 5.1.3 below, applied to p = 2, there exist subgroups {1} =
G0 ⊂ G1 ⊂ · · · ⊂ Gn = G, each of index 2 in the next. They correspond to a
sequence of extensions of Q contained in L, Q = LG ⊂ LGn−1 ⊂ · · · ⊂ LG0 =
L, with [LGj : LGj+1 ] = (Gj+1 : Gj) = 2. By Wantzel’s theorem 1.4.1, any
element of L is then constructible. In particular, z is constructible. ��
Lemma 5.1.3. Let G be a finite group, the order of which is a power of a
prime number p. Then G has a normal series

{1} = G0 ⊂ G1 ⊂ · · · ⊂ Gn = G

such that for any j, (Gj : Gj−1) = p.

Proof. We will argue by induction on the order of G. By Exercise 4.7, the
center Z of G is a nontrivial commutative group. Let g ∈ Z \ {e}; the order
of g divides cardZ, hence is a power of p, say pa, with a � 1. It follows that
h = gpa−1

is an element of Z of order p. Let G1 denote the subgroup of G

generated by h. It is a normal subgroup of order p in G. The cardinality of
the group G/G1 is a power of p, say pm. By induction, there are subgroups
Hj ⊂ G/G1, for 0 � j � m, such that Hj−1 is a normal subgroup of Hj and
(Hj : Hj−1) = p for each j. For 2 � j � m + 1, let Gj denote the preimage of
Hj−1 in G/G1. One has G1 ⊂ G2 ⊂ · · · ⊂ Gm+1, Gj−1 is a normal subgroup
of Gj and (Gj : Gj−1) = p for any j � m + 1, and Gm+1 = G. ��

5.2 Cyclotomy

This name is the concatenation of two Greek roots, and it roughly means
“cutting the circle.” Consider a regular n-gon inscribed in the unit circle.
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Its vertices divide the unit circle into n equal parts. By identifying points of
the plane with the complex numbers, and assuming that one of the vertices
is 1, these vertices correspond to nth roots of unity. Therefore, cyclotomy
characterizes nowadays any study of mathematics that is related to roots of
unity. For example, cyclotomic fields are fields generated by a root of unity,
and the roots of the nth cyclotomic polynomial are exactly the primitive nth
roots of unity.

We now obey the title of this section and begin by studying the Galois-
theoretical properties of the equation Xn = 1.

Theorem 5.2.1. Let K be a field, and let n be any positive integer. We as-
sume that the characteristic of K does not divide n. Let K ⊂ L be a splitting
extension of the polynomial Xn − 1. It is a Galois extension, and its Galois
group is isomorphic to a subgroup of the group (Z/nZ)∗.

More precisely, there is a canonical injective morphism of groups

ϕ : Gal(L/K) → (Z/nZ)∗

such that for any nth root of unity ζ ∈ L and any σ ∈ Gal(L/K),

σ(ζ) = ζϕ(σ).

Proof. Fix a primitive nth root of unity ζ. Since the polynomial Xn − 1 is
separable, the extension K ⊂ L is Galois. The roots of Xn − 1 are the ζm, for
0 � m � n − 1, hence L = K(ζ).

Let σ ∈ Gal(L/K); it maps ζ to a nth root of unity, which is of the form
ζm for some integer m whose class modulo m is well defined. Moreover, if
σ(ζ)k = 1, one has ζk = 1, hence σ(ζ) is still a primitive root, so that m is
prime to n. This defines a map ϕ : Gal(K(ζ)/K) → (Z/nZ)∗.

Let θ be any nth root of unity, and fix an integer a such that θ = ζa. One
has

σ(θ) = σ(ζa) = σ(ζ)a = (ζm)a = ζma = θm,

and σ(θ) = θϕ(σ). This shows in particular that the map ϕ does not depend
on the choice of a particular primitive root ζ.

If σ, τ ∈ Gal(Q(ζ)/Q), with σ(ζ) = ζm and τ(ζ) = ζn, one has

(σ ◦ τ)(ζ) = σ(ζn) = σ(ζ)n = ζmn,

so that ϕ(σ ◦ τ) = ϕ(σ)ϕ(τ). This implies that ϕ is a morphism of groups.
Moreover, if ϕ(σ) = 1, then σ(ζ) = ζ. Since ζ generates Q(ζ), this implies
σ = id and ϕ is injective. ��
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We saw in Chapter 1, Example 1.4.7, that it is impossible to construct a
regular 9-gon with ruler and compass. However, C.-F. Gauss had shown that
the regular polygon with 17 edges is actually constructible (as he wrote in his
mathematical diary, March 30, 1796). He was barely 19 years old. We now
prove a general result about the possibility of constructing regular polygons
with ruler and compass.

Theorem 5.2.2. A regular polygon with n sides is constructible with ruler
and compass if and only if n is the product of a power of 2 and of distinct
Fermat primes.

Recall that a Fermat prime is a prime num-
ber of the form Fm = 22m

+1, where m is an in-
teger. Among them are 3, 5, 17, 257 and 65537,
corresponding to m = 0, . . . , 4. Fermat had
conjectured that all Fm’s are prime numbers
but Euler showed that 641 divides F5. (Exer-
cise: prove it; show also that if n is not a power
of 2, then 2n +1 is not a prime number.) Actually, the five Fermat primes just
listed above are the only known ones! It has also been proved that F6, . . . , F16

are not primes.

Proof. Let P be the set of integers n � 3 such that one can construct a
regular n-gon with ruler and compass. In other words, an integer n � 3
belongs to P if and only if the algebraic number exp(2iπ/n) is constructible.
Its conjugates are among nth root of unity.

Using the following remarks, however, we reduce ourselves to the case
where n is a prime or the square of a prime.

a) If n ∈ P, then 2n ∈ P.
Indeed, if a regular n-gon is already drawn, one just needs, for each

edge AB of it, to draw the perpendicular to AB passing through the cen-
ter O of the n-gon, for it cuts the angle ÂOB into two equal parts.

b) If n ∈ P, then any integer m � 3 dividing n also belongs to P.
To construct a regular m-gon, just join every (n/m)th vertex of a regular

n-gon.

c) If m and n are two coprime integers belonging to P, then their product
mn belongs to P.

That m and n belong to P means that the two complex numbers
exp(2iπ/m) and exp(2iπ/n) are constructible. Since m and n are coprime,
there are integers u and v such that um + vn = 1, hence

exp(2iπ/mn) = exp
(
2iπ
(u
n

+
v

m

))
=
(
exp(2iπ/n)

)u ( exp(2iπ/m)
)v
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is constructible, which in turns means that mn ∈ P.

To prove the theorem, we now just need to prove that the only prime
numbers in P are Fermat primes, and that P does not contain the square
of any odd prime number. By Theorem 5.1.1, these two statements reduce to
the following facts, where p is an odd prime number.

d) The complex number exp(2iπ/p) is an algebraic number of degree p− 1
over Q. The extension of Q generated by all pth roots of unity has degree p−1.

Let P be the minimal polynomial of exp(2iπ/p). It is a monic polynomial
with integer coefficients and it divides (Xp−1)/(X−1) = 1+X + · · ·+Xp−1,
hence there is Q ∈ Z[X] with

Xp − 1
X − 1

= P (X)Q(X).

Set a = deg P , b = deg Q; in particular, a + b = p− 1. Since exp(2iπ/p) is not
a rational number, a � 2.

Modulo p, one has Xp − 1 ≡ (X − 1)p. By uniqueness of decomposition
into irreducible factors over Z/pZ, there are polynomials A and B ∈ Z[X]
such that P = (X − 1)a + pA(X), Q = (X − 1)b + pB(X), Consequently,

Xp − 1
X − 1

= P (X)Q(X)

= (X − 1)a+b + p
(
A(X)(X − 1)b + B(X)(X − 1)a

)
+ p2A(X)B(X).

Now evaluate the two sides of this equality at 1. If one had b � 1, it would
follow that p = p2AB(1), which is obviously a contradiction, for AB(1) is an
integer. Hence, b = 0, and a = p − 1.

The last assertion comes from the fact that exp(2iπ/p) generates the split-
ting extension over Q of the polynomial Xp − 1.

e) The complex number exp(2iπ/p2) is an algebraic number of degree
p(p − 1) over Q.

We do a similar analysis with the polynomial Xp2 −1 divided by its factor
Xp − 1, which does not vanish at exp(2iπ/p2). If P ∈ Z[X] is the minimal
polynomial of exp(2iπ/p2), there is as above a polynomial Q ∈ Z[X] such that

Xp2 − 1
Xp − 1

= P (X)Q(X).

Since Xp2 − 1 = (X − 1)p2
modulo p, we similarly find polynomials A and

B ∈ Z[X] with P = (X−1)a+pA and Q = (X−1)b+pB, where a = deg P � 2
and b = deg Q. Evaluating the resulting equality

Xp2 − 1
Xp − 1

= (X − 1)p2−p + p
(
(X − 1)aB(X) + (X − 1)bA(X)

)
+ p2A(X)B(X)
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at 1, we find as above that b = 0, hence the degree of exp(2iπ/p2) equals
a = p2 − p. ��
Remark 5.2.3. These last two statements d) and e) are particular cases of
a general theorem of Gauss, according to which the degree of exp(2iπ/n)
is equal to Euler’s totient function ϕ(n) (see Exercise 2.5). Together with
Theorem 5.2.1, this shows that the Galois group of the extension Q ⊂
Q(exp(2iπ/n)) is isomorphic to (Z/nZ)∗.

These particular cases, where n = pr is a power of a prime p, are usu-
ally proved using Eisenstein’s criterion (Exercise 1.10). Indeed, applied to the
polynomial Φpr (Y +1) and the prime p, this criterion allows one to show that
Φpr is irreducible.

Corollary 5.2.4 (Gauss, 1801). The regular polygon with 17 vertices is
constructible with ruler and compass.

Let us explain Gauss’s explicit resolution of the equation X17 = 1. Let ζ be
a primitive 17th root of unity in C. The extension Q ⊂ Q(ζ) is Galois and
its Galois group is isomorphic to (Z/17Z)∗. Gauss’s fundamental remark is
that this group is cyclic, generated, for example, by the class of 3. Its powers
modulo 17 are successively

1, 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1 . . .

Let σ ∈ Gal(Q(ζ)/Q) be the corresponding generator, mapping ζ to ζ3, and
set

a0 =
7∑

k=0

σ2k(ζ) = ζ + ζ9 + ζ13 + ζ15 + ζ16 + ζ8 + ζ4 + ζ2,

a1 =
7∑

k=0

σ2k+1(ζ) = ζ3 + ζ10 + ζ5 + ζ11 + ζ14 + ζ7 + ζ12 + ζ6.

One has σ(a0) = a1 and σ(a1) = a0. It follows that a0 and a1 are the two
roots of a quadratic equation in Q[X]. Precisely, one has a0 + a1 = −1 and
a0a1 = −4, so that

a0, a1 =
−1 ±√

17
2

.

The choice of signs depends on the choice of ζ. If ζ = exp(2iπ/17), a numerical
calculation shows that a0 = (−1 +

√
17)/2. Set K1 = Q(

√
17). The Galois

group of the extension K1 ⊂ Q(ζ) is generated by σ2.
We continue by defining, for 0 � i � 3,

bi =
3∑

k=0

σ4k+i(ζ),
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so that σ(bi) = bi+1 if i = 0, 1, 2 and σ(b3) = b1. In particular, b0 and b2 are
permuted by σ2, they are the two roots of a quadratic equation in K1. One
has b0 + b2 = a0 and b0b2 = −1, so that

b0, b2 =
1
2
(
a0 ±

√
a2
0 + 4

)
= −1

4
+

1
4

√
17 ±

√
34 − 2

√
17,

and again, choosing the positive square root for a positive real number, nu-
merical calculations show that b0 is given by the formula with the + sign.
Similarly,

b1, b2 = −1
4
− 1

4

√
17 ±

√
34 + 2

√
17.

Set K2 = Q(
√

34 − 2
√

17). The extension K2 ⊂ Q(ζ) is Galois, with group
generated by σ4.

Now define, for 0 � i � 7,

ci = σi(ζ) + σi+8(ζ).

The quantities c0 and c4 are permuted under σ4, hence are the two roots of a
quadratic equation over K2. Concretely, c0 + c4 = a0 and c0c4 = b1, hence

c0, c4 =
1
2
(
a0 ±

√
a2
0 − 4b1

)
.

Computing numerical values, with ζ = exp(2iπ/17), one then checks that
c0 = 2 cos(2π/17) is given by the + sign, so that we have proved the following
amazing formula:

2 cos(2π/17) = −1

8
+

1

8

√
17 +

1

8

√
34 − 2

√
17

+
1

8

√
68 + 12

√
17 − 2

√
34 − 2

√
17 + 2

√
34 − 2

√
17

√
17 − 16

√
34 + 2

√
17.

5.3 Composite extensions

In this section, we study the following situation. Let K be a field; let Ω be an
algebraic closure of K and let E, F be two extensions of K contained in Ω. We
denote by EF the subfield of Ω generated by E and F . This is by definition
the composite extension of E and F . Introduce also their intersection E ∩ F ,
hence a diagram of fields as follows:
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E

����
��

��
��

K �� E ∩ F

�����������

����
��

��
��

� EF �� Ω .

F

		��������

Lemma 5.3.1. If the extension K ⊂ E is Galois, then the extension F ⊂ EF

is Galois. If moreover the extension K ⊂ F is Galois, the extensions K ⊂ EF

and K ⊂ E ∩ F are Galois.

Proof. Assume that K ⊂ E is a splitting extension of a separable polyno-
mial P ∈ K[X] (in other words, E is generated by the roots of P in Ω).
Then F ⊂ EF is a splitting extension of P over the field F , so is a Galois
extension, by Proposition 3.2.7. If K ⊂ F is itself a splitting extension of a
separable polynomial Q ∈ K[X], then K ⊂ EF is a splitting extension of the
polynomial PQ or, preferably, of the separable polynomial l. c. m.(P,Q) (see
Exercise 3.2). In particular, the extension K ⊂ EF is Galois. This shows the
first two assertions of the lemma.

To prove that the extension K ⊂ E ∩ F is Galois, provided K ⊂ E and
K ⊂ F are, it suffices to check that for any K-homomorphism σ : E∩F → Ω,
one has σ(E∩F ) = E∩F , for then the result will follow from Proposition 3.2.7.
By Theorem 3.1.6, such a morphism σ can be extended to a K-homomorphism
τ : EF → Ω. Since the extension K ⊂ E is Galois, τ(E) = E. Similarly,
τ(F ) = F . Hence, τ(E ∩ F ) ⊂ E ∩ F . By Remark 3.2.3, τ(E ∩ F ) = E ∩ F .��

Assume now that K ⊂ E is a Galois extension and let us show how
one can identify Gal(EF/F ) with a subgroup of Gal(E/K). An element σ ∈
Gal(EF/F ) is an automorphism of EF which restricts to the identity on F .
In particular, σ|K = idK and σ ∈ Gal(EF/K). Since the extension K ⊂ E is
Galois, σ(E) = E, so that σ defines an element in Gal(E/K) that we denote
i(σ). The map i : Gal(EF/F ) → Gal(E/K) is a morphism of groups, because
it is the composition of the two natural morphisms

Gal(EF/F ) ↪→ Gal(EF/K) � Gal(E/K).

Proposition 5.3.2. The morphism i is injective; its image is Gal(E/E ∩F ).

Proof. If σ ∈ Gal(EF/F ) satisfies i(σ) = idE , then σ restricts to the identity
on E. One thus has σ(x) = x for any x in F and for any x in E, so that
σ(x) = x for any x in the field generated by E and F , which is EF . This
shows that σ = id, hence i is injective.

Its image i(Gal(EF/F )) is a subgroup H of Gal(E/K) and corresponds by
Galois correspondence to the subfield EH of E and one has H = Gal(E/EH).
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(Recall that EH is the set of all x ∈ E such that σ(x) = x for any σ ∈
Gal(EF/F ).) Therefore E ∩ F ⊂ EH , but conversely, if x ∈ E \ (E ∩ F ), one
has x ∈ EF \ F and there is σ ∈ Gal(EF/F ) with σ(x) �= x, hence x �∈ EH .
This shows that EH = E ∩ F ; consequently H = Gal(E/E ∩ F ). ��

An immediate corollary of this proposition is the following formula for the
degrees of the various extensions we have been discussing.

Corollary 5.3.3. Assume that the extension K ⊂ E is Galois. Then,

[EF : F ] = [E : E ∩ F ].

In particular, [EF : K] = [E : K] [F : K] if and only if K = E ∩ F .

Proof. Indeed, [EF : F ] is the cardinality of Gal(EF/F ). By the proposition,
card i(Gal(EF/F )) = card Gal(E/E ∩ F ), whence [EF : F ] = [E : E ∩ F ].
Consequently,

[EF : K] = [E : E ∩ F ] [F : K] =
[E : K] [F : K]

[E ∩ F : K]
,

so that [EF : K] = [E : F ] [F : K] if and only if E ∩ F = K. ��
In the case where the two extensions K ⊂ E and K ⊂ F are Galois, we

will compute the Galois group of EF over K in terms of the groups Gal(E/K)
and Gal(F/K). First consider the homomorphism

j : Gal(EF/K) → Gal(E/K) × Gal(F/K)

deduced from the two surjective morphisms Gal(EF/K) → Gal(E/K) and
Gal(EF/K) → Gal(F/K). (They are well defined, for the extensions K ⊂ E

and K ⊂ F are Galois; see Proposition 3.2.9). If σ ∈ Gal(EF/K) restricts
to the identity on E and on F , it induces the identity on the field generated
by E and F in Ω, hence on EF . It follows that σ = id and j is injective.

First assume that K = E ∩ F . By Corollary 5.3.3, one has [EF : K] =
[E : K][F : K]. Since j is injective, it must be surjective.

In the general case, we have shown in Lemma 5.3.1 that the extension
K ⊂ E ∩ F is Galois. Let us see what happens if we compose j with the
surjective homomorphisms

π1 : Gal(E/K) × Gal(F/K) → Gal(E/K) → Gal(E ∩ F/K)

and

π2 : Gal(E/K) × Gal(F/K) → Gal(F/K) → Gal(E ∩ F/K).

By construction, π1 ◦ j and π2 ◦ j are both equal to the natural morphism
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Gal(EF/K) → Gal(E ∩ F/K)

corresponding to the Galois subextension K ⊂ E ∩ F of K ⊂ EF . Therefore,
the image of j is contained in the subgroup G of Gal(E/K) × Gal(F/K)
consisting of all (σ1, σ2) such that π1(σ1) = π2(σ2).

If we show that card G = cardGal(EF/K), it will follow that j is
an isomorphism from Gal(EF/K) onto G. If ∆ denotes the diagonal sub-
group in Gal(E ∩ F/K) × Gal(E ∩ F/K) consisting of all (σ, σ), with σ ∈
Gal(E ∩ F/K), we see that G is the preimage of ∆ by the surjective mor-
phism

(π1, π2) : Gal(E/K) × Gal(F/K) → Gal(E ∩ F/K) × Gal(E ∩ F/K).

Therefore,

cardG = card Gal(E ∩ F/K) × card Ker(π1, π2)

= [E ∩ F : K] × [E : E ∩ F ] × [F : E ∩ F ]

= [F : K] × [E : E ∩ F ]

= [F : K] × [EF : F ]

= [EF : K].

We have thus proved the following theorem.

Theorem 5.3.4. Let us consider a composite extension K ⊂ EF , where K ⊂
E and K ⊂ F are two Galois extensions contained in an algebraic closure
of K. The extension K ⊂ EF is Galois and its Galois group is isomorphic
to the subgroup of Gal(E/K)×Gal(F/K) consisting of all couples (σ, τ) such
that σ and τ have the same image in Gal(E ∩ F/K).

In particular, if E ∩ F = K, Gal(EF/K) can be identified with the direct
product Gal(E/K) × Gal(F/K).

5.4 Cyclic extensions

By definition, a cyclic extension is a Galois extension whose Galois group is
cyclic, hence isomorphic to Z/nZ, where n denotes the degree of the extension.

If K is a field, let us denote by µn(K), or µn in short, the (cyclic) group
of nth roots of unity in K. In this section, we will often assume that µn has
order n. In this case, it is generated by a primitive nth root of unity. If the
characteristic of the field K is equal to a prime number p, this implies that n

is not a multiple of p.
This section is devoted to the determination of the field extensions of K

which are Galois with Galois group Z/nZ.
Let us begin by an example, which in fact is the example.
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Theorem 5.4.1. Let K be a field and let n be any integer with n � 2. We
assume that cardµn(K) = n.

Let a ∈ K∗ and let K ⊂ L be a splitting extension of the polynomial
P = Xn − a; denote by x a root of P in L.

The extension K ⊂ L is Galois. The map i : σ 
→ i(σ) = σ(x)/x defines
an injective group morphism from Gal(L/K) to µn(K). Let d be the smallest
positive integer such that xd ∈ K. Then d divides n, and the image of the
morphism i is equal to µd(K).

In particular, the following are equivalent:

a) for any integer m > 1 dividing n, a is not an mth power in K;
b) the polynomial Xn − a is irreducible in K[X];
c) Gal(L/K) � Z/nZ.

Proof. In L[X], the polynomial P = Xn − a can be factored as

P = Xn − a =
∏

ζ∈µn

(X − ζx).

Since cardµn(K) = n, the characteristic of K does not divide n and any root
ζx of P in L is simple, for P ′(ζx) = n(ζx)n−1 = na/(ζx) �= 0. In other words,
the polynomial P is separable and the extension K ⊂ L is Galois.

Any K-automorphism σ of L is determined by the image σ(x) of x, which
is a root of Xn − a. Then σ(x)/x is an nth root of unity. This defines a map
i : Gal(L/K) → µn, such that i(σ) = σ(x)/x.

Observe that i is a group homomorphism; if σ(x) = ux and τ(x) = vx for
u, v ∈ µn, then

(σ ◦ τ)(x) = σ(vx) = vσ(x) = uvx,

since v ∈ K; hence i(σ ◦ τ) = i(σ)i(τ). The image of i in µn is a subgroup,
necessarily of the form µd for some integer d dividing n. One has [L : K] =
card Gal(L/K) = d, and d is the degree of the minimal polynomial of x over K,
for L = K[x]. Notice also that Gal(L/K) � µd(K) � Z/dZ.

Let m be any integer. One has xm ∈ K if and only if σ(xm) = xm for
any σ ∈ Gal(L/K). Since σ(x) = i(σ)x, this holds if and only if i(σ)m = 1
for any σ ∈ Gal(L/K), hence if and only if ζm = 1 for any ζ in the image
of Gal(L/K) by i. Since i(Gal(L/K)) = µd(K), one has xm ∈ K if and only if
d divides m. It follows in particular that a = xn = (xd)n/d is an (n/d)th power
in K. If one assumes that a is not an mth power in K for any integer m > 1
dividing n, then d = n and P = Xn − a is irreducible in K[X]. Conversely,
assuming that a = be for some b ∈ K and some integer e > 1 dividing n, the
equality

P = Xn − a = Xme − be = (Xm − b)(Xm(e−1) + Xm(e−2)b + · · · + be−1)
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shows that P is not irreducible in K[X]. ��
Conversely, let K → L be any finite Galois extension, with Galois group

Z/nZ. Let σ be any generator of Gal(L/K). The preceding proof suggests
that we seek for an element x ∈ L such that L = K[x] and such that σ(x)/x

is an nth root of unity. Let ζ ∈ µn be any primitive nth root of unity and let
us define, for t ∈ L, the Lagrange’s resolvent of t, by the formula

x = t + ζ−1σ(t) + · · · + ζ1−nσn−1(t).

It is proved in Exercise 3.12 that the elements of Gal(L/K) are linearly inde-
pendent over K. Consequently, one may find t ∈ L such that x �= 0. Then

σ(x) = σ(t) + ζ−1σ2(t) + · · · + ζ1−nσn(t) = ζx,

since σn = id and ζn = 1. By induction, for any k ∈ {0, 1, . . . , n− 1}, one has

σk(x) = ζkx.

It follows that for any integer k, σk(xn) = xn. Since Gal(L/K) =
{id, σ, σ2, . . . , σn−1}, a = xn belongs to K.

Let

P = Xn − a =
n−1∏
k=0

(X − ζkx) =
n−1∏
k=0

(X − σk(x)).

It is a separable polynomial in K[X], split in L. Consequently, the extension
K ⊂ K(x) is a splitting extension of the polynomial P . Since Gal(L/K) acts
transitively on its roots, this polynomial is irreducible. This implies [K(x) :
K] = n, and since one has [L : K] = n, it follows necessarily that L =
K(x), hence x is a primitive element of the extension K ⊂ L, with minimal
polynomial Xn − a. (See also Exercise 3.8.)

We finally have proved the following theorem.

Theorem 5.4.2. Let K be a field and let n be any integer � 2 such that
cardµn(K) = n.

If K ⊂ L is a Galois extension whose Galois group is isomorphic to Z/nZ,
there exists a ∈ K such that L is a splitting extension of the irreducible poly-
nomial Xn − a ∈ K[X].

5.5 Equations with degrees up to 4

We are now going to analyse equations of degree � 4 in light of Galois theory.
What will allow us to explicitly solve such equations is that in each of the
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three groups S2, S3 and S4, there is a normal series such that the successive
quotients are cyclic (with order 2 or 3), i.e. , these groups are solvable. By
Corollary 4.6.8, this does not happen in Sn for n > 4. Recall that the symbol
� means that the group on the left is normal in the next, and the number
above it indicates the order of the quotient. Also recall that one denotes by
V4 the Klein four-group in A4, the four elements of which are the permutations

id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)

on the set {1, 2, 3, 4} (these are the products

Felix Klein (1849–1925)

of two transpositions with disjoint supports,
plus the identity). This group is isomorphic
to (Z/2Z)2. Now, one has the following nor-
mal series:

{1} = A2
2
� S2 = Z/2Z

{1} 3
� 〈(1, 2, 3)〉 2

� A3
2
� S3

{1} 2
� {1, (1, 2)(3, 4)} 2

� V4
3
� A4

2
� S4 .

In this section, we consider only fields
whose characteristic is neither 2 nor 3.

Let K be such a field and let P be a monic polynomial in K[X] with degree
n � 4. Let K ⊂ L be the splitting extension of P contained in some fixed
algebraic closure Ω of K. (All extensions in this section will be assumed to live
in Ω.) Denote by x1, x2, . . . , xn the roots of P in L and let G = Gal(L/K).
This is naturally a subgroup of Sn.

The intersections with G of the above-written subgroups of Sn define
a normal series in G, and the successive quotients are cyclic groups with
order � 3 (they may be trivial). Such a series corresponds to a chain of Galois
extensions. We already explained in Chapter 3, Prop. 3.4.2, how the subgroup
An ⊂ Sn corresponds to the extension generated by a square root of the
discriminant of P .

Let us first consider degree 2. Then P = X2 + aX + b for a, b ∈ K and
the discriminant of P is equal to ∆ = a2 − 4b. If ∆ is a square in K, the roots
of P belong to K and G = {1}. Otherwise, L = K(

√
∆) has degree 2 over K.

We can order the roots so that x1 − x2 =
√

∆. Together with the relation
x1 + x2 = a, this determines x1 = (a +

√
∆)/2 and x2 = (a −√

∆)/2.

Assume now that P is a separable polynomial with degree 3 in K[X] :

P = X3 + a1X
2 + a2X + a3.
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The change of variables Y = X +a1/3 allows us to assume that the sum of its
roots is equal to 0 or, in other words, that P is of the form P = X3 + pX + q.
Its discriminant is then equal to D = −4p3 − 27q2 (Example 3.4.1). Let us
consider the extensions

K
2⊂ K(

√
∆)

3⊂ L,

where each extension is either trivial, or Galois with Galois group the cyclic
group of cardinality indicated above the inclusion sign. If the polynomial P

is irreducible, we already can deduce from this the Galois group of L over K.
Indeed, the degree of the extension K ⊂ L is a multiple of 3 and Gal(L/K)
is S3 when ∆ is not a square, and is A3 if ∆ is a square in K.

To give explicit formulas for the roots of P , we first have to adjoin
√

∆.

The remaining extension K(
√

∆)
3⊂ L is either trivial if the field K(

√
∆)

contains the three roots of P , or cyclic with Galois group Z/3Z.
Proceeding as in the case of extensions with a cyclic Galois group (Sec-

tion 5.4), let us first add to K(
√

∆) the cubic roots of unity ρ and ρ2. These
are the roots of the polynomial X2 + X + 1. Recall that we may assume

ρ = −1
2

+
1
2
√−3, ρ2 = −1

2
− 1

2
√−3

where
√−3 denotes a square root of −3 in K(

√
∆, ρ). In particular, ρ− ρ2 =√−3. Set K ′ = K(ρ) and L′ = L(ρ).

The resulting extension K ′(
√

∆) ⊂ L′ is either trivial or cyclic with or-
der 3. Corresponding to the circular permutation (1, 2, 3), there are two La-
grange’s resolvents that one can introduce:

α = x1 + ρx2 + ρ2x3 and β = x1 + ρ2x2 + ρx3.

Let us now compute α3 and β3:

α3 = x3
1+x3

2+x3
3+6x1x2x3+3ρ(x2

1x2+x2
2x3+x2

3x1)+3ρ2(x1x
2
2+x2x

2
3+x3x

2
1)

and β3 is given by the formula obtained by switching ρ and ρ2. The first
term in these expressions is a symmetric function of the roots, hence can be
expressed with p and q. Explicitly:

x3
1 + x3

2 + x3
3 + 6x1x2x3 = (x1 + x2 + x3)3 − 3(x2

1x2 + . . . )

= −3
(
x1x2(x1 + x2) + . . .

)
= −3x1x2(−x3) − . . .

= 9x1x2x3 = −9q.

The two other terms are not symmetric functions, and we cannot hope for
them to be, otherwise α3 and β3 would always belong to K ′. However, we
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know that they belong to K ′(
√

∆) and the aim of the game is to find a
formula for them! Since ∆ has two square roots, we have to choose one of
them and we set
√

∆ = (x1−x2)(x1−x3)(x2−x3) = (x2
1x2+x2

2x3+x2
3x1)−(x1x

2
2+x2x

2
3+x3x

2
1).

Defining

A = x2
1x2 + x2

2x3 + x2
3x1 and B = x1x

2
2 + x2x

2
3 + x3x

2
1,

we find the relations

A + B = 3q and A − B =
√

∆,

hence
A =

3
2
q +

1
2

√
∆ and B =

3
2
q − 1

2

√
∆.

Let us write down these expressions in the formulae for α3 and β3:

α3 = −9q + 3ρA + 3ρ2B

= −9q +
3
2
q(3ρ + 3ρ2) +

1
2

√
∆(3ρ − 3ρ2)

= −27
2

q +
3
2
√−3

√
∆

and

β3 = −27
2

q − 3
2
√−3

√
∆.

Moreover, since σ(α) = ρ−1α and σ(β) = ρ−2β, one has σ(αβ) = αβ and
αβ ∈ K ′. Actually,

αβ = (x1 + ρx2 + ρ2x3)(x1 + ρ2x2 + ρx3)

= x2
1 + x2

2 + x2
3 + (ρ + ρ2)(x1x2 + x2x3 + x3x1)

= (x1 + x2 + x3)2 + (ρ + ρ2 − 2)(x1x2 + x2x3 + x3x1)

= −3p.
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To derive explicit formulae for x1, x2 and x3, it remains to note that one
has a Cramer system with three linear equations in three unknowns:

Jerome Cardan (1501–1576)

⎧⎪⎨
⎪⎩

x1 + x2 + x3 = 0

x1 + ρx2 + ρ2x3 = α

x1 + ρ2x2 + ρx3 = β.

Therefore, ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 =
1
3
α +

1
3
β

x2 =
1
3
ρ2α +

1
3
ρβ

x3 =
1
3
ρα +

1
3
ρ2β.

These are “Cardan’s formulae.” (Concerning history, Jerome Cardan had
bought them to Tartaglia under the promise of not publishing them, a promise
which was broken when Cardan published his Ars magna sive de regulis al-
gebraicis liber unus in 1545. Before that, Scipione del Ferro, an Italian like
Cardan, had discovered how to solve equations of degree 3 but only at the
moment of his death did he explain his method, and only for a particular
case!)

In practice, if one wants to solve a cubic equation, this can all be ignored
and one needs to remember only the following procedure: write one of the
roots x = u + v with uv = −p/3, then expand

0 = (u+ v)3 +p(u+ v)+ q = u3 + v3 +3uv(u+ v)+p(u+ v)+ q = u3 + v3 + q,

so that u3 and v3 are solutions of the quadratic equation

X2 + qX − p3

27
= 0.

Therefore, the value of u3 can be deduced from one of the square roots of the

discriminant q2 +
4
27

p3 = −∆/27, then the value of u through a cubic root,

and finally the value for x = u − p/3u. (This works well for p �= 0, but the
case p = 0 is easy.)

You might also notice that when x1, x2 and x3 are real numbers, ∆ is a
positive real number, hence Cardan’s formulae use complex numbers. This is
the so-called casus irreductibilis, and there is no way to avoid it (see Exer-
cise 7.2).
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Let us finally explain how to solve equations of degree 4. Let

P = X4 + pX2 + qX + r

be a monic polynomial of degree 4, where the coefficient of X3 is assumed to
be 0 up to a linear change of variables. Let us recall the sequence of normal
subgroups in S4:

{1} 2
� {1, (1, 2)(3, 4)} 2

� V4
3
� A4

2
� S4,

hence a chain of Galois extensions

K
2⊂ K(

√
∆)

3⊂ K1

2⊂ K2

2⊂ L.

(The numbers above the inclusion symbol mean that the extension is either
trivial, or cyclic with corresponding degree.) We now can use a similar ap-
proach to the one we gave for degree 3.

Let us immediately introduce a resolvent polynomial corresponding to the
extension K ⊂ K1. The polynomial R1 = (X1 + X2)(X3 + X4) is invariant
under the permutations of V4, and its orbit under the symmetric group S4

consists of the three polynomials

R1, R2 = (X1 + X3)(X2 + X4) and R3 = (X1 + X4)(X2 + X3).

It follows first that θ1 = (x1 + x2)(x3 + x4), θ2 = (x1 + x3)(x2 + x4), and
θ3 = (x1 + x4)(x2 + x3) belong to K1 = LV4 , and second that the degree 3
polynomial

Q(X) = (X − θ1)(X − θ2)(X − θ3)

has its coefficients in K. This polynomial is usually called the Lagrange’s
resolvent polynomial of the quartic equation. If P is separable, which we
assume, then θ1, θ2 and θ3 are distinct. In fact, one has

θ1 − θ2 = (x4 − x1)(x2 − x3),

and similar formulae for θ2 − θ3 and θ1 − θ2. This shows moreover that the
discriminant of Q is equal to that of P .

Exercise 5.5.1. Show that Q(X) = X3 − 2pX2 + (p2 − 4r)X + q2.

Assume now that we have determined θ1, θ2 and θ3, e.g. , using Cardan’s
formulae. By the relations (x1+x2)(x3+x4) = θ1 and (x1+x2)+(x3+x4) = 0,
we see that x1 + x2 is a square root of −θ1, say

√−θ1. Similarly, x1 + x3 and
x1 + x4 are square roots of −θ2 and −θ3 respectively. Pay attention to the
fact that these three square roots cannot be taken arbitrarily: the degree of
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the extension K1 ⊂ L divides 4 and three “independent” square roots would
make the degree a multiple of 8. Actually, one has√

−θ1

√
−θ2

√
−θ3 = (x1 + x2)(x1 + x3)(x1 + x4)

= x3
1 + x2

1(x2 + x3 + x4) + x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = −q.

If q = 0, the quartic equation is “biquadratic” and can be solved easily.
Otherwise, if q �= 0, the θi are nonzero and this formula computes

√−θ3 =
−q/

√−θ1

√−θ2. Then,

2x1 = 3x1 + x2 + x3 + x4 =
√
−θ1 +

√
−θ2 +

√
−θ3

and analogous formulae for x2, x3 and x4.
Assuming that P is irreducible in K[X], let us determine the various pos-

sible Galois groups.
First observe that the extension K(

√
∆) ⊂ K1 has degree either 1 or 3,

for it is Galois and its Galois group is a subquotient of A4/V4 � Z/3Z. This
shows that the polynomial Q cannot have an irreducible factor of degree 2
over K(

√
∆). Therefore, it is either split or irreducible over K(

√
∆). In this

last case, the degree [L : K] is divisible by 3 and by Cauchy’s lemma (Propo-
sition 4.2.3, but you might want to prove it by hand here), Gal(L/K) contains
an element of order 3, hence a subgroup of order 3. But there are precisely
four such subgroups in S4, denoted H1, . . . , H4, where Hi is generated by any
3-cycle which fixes i. (For example, H1 is generated by the 3-cycle (2, 3, 4).)
If g ∈ S4 maps i to j, then gHjg

−1 = Hi; since Gal(L/K) acts transitively
on {1, 2, 3, 4}, as soon as Gal(L/K) contains one of the Hi, it contains the
other three, hence all 3-cycles, hence all of A4. We just proved that if Q is
irreducible over K(

√
∆), then Gal(L/K) contains A4.

If moreover ∆ is a square in K, one has Gal(L/K) ⊂ A4, whence the
equality. If ∆ is not a square in K, one has Gal(L/K) = S4.

Let us now assume that the resolvent polynomial Q is split in K(
√

∆),
i.e. , assume that K1 = K(

√
∆). Since P is irreducible, [L : K] is a multiple

of 4. Moreover, [L : K] divides 8, hence one has [L : K] = 4 or 8.
If ∆ is a square in K, one then has K1 = K and Gal(L/K) ⊂ V4. Since

no proper subgroup of V4 acts transitively on {1, 2, 3, 4}, one necessarily has
Gal(L/K) = V4 in this case.

If ∆ is not a square in K, one has [K1 : K] = 2. Therefore, [L : K] = 4 if L

is generated by one of the square roots of the −θj , and [L : K] = 8 otherwise.
In the first case, Gal(L/K) is a transitive subgroup of order 4 in S4, not
contained in A4, which leaves only the cyclic group generated by a circular
permutation. In the other case, Gal(L/K) has 8 elements and is isomorphic
to the dihedral group D4. (Remark: it is one of the 2-Sylow subgroups of S4,
generated by a 4-cycle (a, b, c, d) and the transposition (a, c).)
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5.6 Solving equations by radicals

In this section, I explain the relationship discovered by Galois between the
possibility of solving a polynomial equation with radicals and the solvability
of its Galois group. This relationship simultaneously generalizes the following
results:

– Theorem 5.1.1 concerning constructibility with ruler and compass (on
one hand, a group with cardinality a power of 2 is solvable, see Exercise 4.11;
on the other hand, constructible numbers are contained in an extension ob-
tained by successively adding square roots);

– the explicit solution of equations with degree 2, 3 or 4 which I explained
in the previous section (as I said there, the groups S2, S3 and S4, and their
subgroups, are solvable);

– Abel’s theorem (see Corollary 5.6.5 below) that the general equation of
degree n � 5 is not solvable by radicals.

To simplify, we will only consider in this section fields of characteristic
zero.

Definition 5.6.1. Let E be a field with characteristic zero, and let E ⊂ F be
a finite extension.

We will say that the extension E ⊂ F is elementary radical with expo-
nent n, if there is some x ∈ F such that F = E[x] and xn ∈ E.

We will say that the extension E ⊂ F is radical if there are subfields
E = E0 ⊂ E1 ⊂ · · · ⊂ En = F such that the extension Ei−1 ⊂ Ei is
elementary radical for any i ∈ {1, . . . , n}.

Finally, we will say that the extension E ⊂ F is solvable by radicals, or
simply solvable, if there is a finite extension F ⊂ F ′ such that the extension
E ⊂ F ′ is a radical extension.

Proposition 5.6.2. a) Let E ⊂ F be a finite extension and K be any
field such that E ⊂ K ⊂ F . If the extension E ⊂ F is radical, then the
extension K ⊂ F is itself radical. If the extension E ⊂ F is solvable, then
both extensions E ⊂ K and K ⊂ F are solvable.

b) Let E ⊂ F1 and E ⊂ F2 be two finite isomorphic extensions. If E ⊂ F1

is a radical extension ( resp. a solvable extension), then so is E ⊂ F2.
c) Let Ω be a field containing E and let E ⊂ F and E ⊂ F ′ be two radical

( resp. solvable) extensions contained in Ω. Then the composite extension E ⊂
FF ′ is radical ( resp. solvable).

d) Let E ⊂ F a finite radical ( resp. solvable) extension. Then its Galois
closure (in any algebraic closure), E ⊂ F g, is again radical ( resp. solvable).

Proof. a) is obvious from the Definition.
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b) Assume the extension E ⊂ F1 to be radical. Let E = E0 ⊂ E1 ⊂
· · · ⊂ En = F1 be a chain of subfields such that the extension Ei−1 ⊂ Ei is
elementary radical for any integer i. Let σ : F1 → F2 be any E-isomorphism.
For any i, the extension σ(Ei−1) ⊂ σ(Ei) is elementary radical, for if Ei =
Ei−1(xi), with xni

i ∈ Ei−1, one has σ(Ei) = σ(Ei−1)(σ(xi)) and σ(xi)ni ∈
σ(Ei−1). This shows that the extension σ(E) ⊂ σ(F1) is radical.

Now assume that the extension E ⊂ F1 is solvable and let F ′
1 be some

extension of F1 such that the extension E ⊂ F ′
1 is radical. Fix an algebraic

closure Ω of F2; by Theorem 3.1.6, there is a field homomorphism σ′ : F ′
1 → Ω

such that σ′|F1 = σ. Consequently, the extension E ⊂ σ′(F ′
1) is radical, and

the extension E ⊂ F2 is solvable.
c) Let E = E0 ⊂ E1 ⊂ · · · ⊂ En = F and E = E′

0 ⊂ E′
1 ⊂ · · · ⊂ E′

n′ =
F ′ be two chains of fields, the extensions Ei−1 ⊂ Ei and E′

i−1 ⊂ E′
i being

elementary radical. If yi is an element in E′
i such that E′

i = E′
i−1(yi), a power

of which belongs to E′
i−1, then the extension FE′

i−1 ⊂ FE′
i is elementary

radical, for FE′
i = FE′

i−1(yi). The chain of elementary radical extensions

E = E0 ⊂ E1 ⊂ · · · ⊂ En = F ⊂ FE′
1 ⊂ FE′

2 ⊂ · · · ⊂ FE′
n = FF ′

shows that the extension E ⊂ FF ′ is radical.
Assume that the two extensions E ⊂ F and E ⊂ F ′ are solvable, and let

F ⊂ L and F ′ ⊂ L′ be extensions such that E ⊂ L and E ⊂ L′ are radical. By
assumption, the fields F and F ′ are contained in Ω, which we can assume to
be algebraically closed. (Otherwise, replace Ω by any algebraic closure.) Then
there is an F -homomorphism σ : L → Ω and a F ′-homomorphism σ′ : L′ →
Ω. By b), the extensions E ⊂ σ(L) and E ⊂ σ′(L′) are radical, and so is
the extension E ⊂ σ(L)σ′(L′). Since E ⊂ FF ′ ⊂ σ(L)σ′(L′), the extension
E ⊂ FF ′ is solvable.

d) Let Ω be an algebraic closure of F . The Galois closure of an exten-
sion E ⊂ F is the subfield of Ω generated by all σ(F ), with σ running along
the set of all E-homomorphisms from F to Ω. By b), each extension E ⊂ σ(F )
is radical (resp. solvable). An obvious induction using c) now shows that the
extension E ⊂∏

σ
σ(F ) is radical (resp. solvable). ��

Theorem 5.6.3. Let E be a field of characteristic zero. A Galois extension
E ⊂ F is solvable if and only if its Galois group Gal(F/E) is solvable.

Before proving this very important theorem, it might be worth recalling
the Galois theory of elementary radical extensions given by Theorem 5.4.1 and
its converse, Theorem 5.4.2, showing that that Galois extensions with Galois
group Z/nZ are elementary radical, since we assumed that card µn(E) = n.

Proposition 5.6.4. Let E be a field such that cardµn(E) = n.
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Any elementary radical extension E ⊂ F of exponent n, is Galois and
Gal(F/E) can be identified to a subgroup of Z/nZ. (It follows that there is an
integer d dividing n such that Gal(F/E) � Z/dZ.)

Conversely, any Galois extension E ⊂ F with Galois group Z/nZ is ele-
mentary radical, of exponent n.

The Proof of Theorem 5.6.3 involves four steps.

a) Let the extension E ⊂ F be radical, Galois, and assume that E contains
a root of unity of order [F : E]. Then Gal(F/E) is a solvable group.

Let us show this by induction on the degree [F : E]. Let E ⊂ E1 ⊂ · · · ⊂ F

be a chain of (nontrivial) elementary radical extensions. Set G = Gal(F/E)
and H = Gal(F/E1). The extension E1 ⊂ F is radical and Galois. Since
[F : E1] and [E1 : E] both divide [F : E], E contains a primitive root of
unity of both orders. By induction, the group H is solvable; by the preceding
proposition, the extension E ⊂ E1 is Galois and its Galois group is cyclic.
Consequently, H is a normal subgroup of G and G/H � Gal(E/E1) is a cyclic
finite group. It now follows from Proposition 4.5.2, c), that G is a solvable
group.

b) Let E ⊂ F be a solvable Galois extension, then Gal(F/E) is a solvable
group.

Let F ⊂ F1 be a finite extension such that the extension E ⊂ F1 is a
radical extension. Let Ω be an algebraic closure of K containing F1 and let L

denote the Galois closure of the extension E ⊂ F1 in Ω. The extension E ⊂ L

is radical and Galois. Denote also by K the extension of E generated in Ω by
a primitive root of unity of order [L : E].

By Proposition 5.6.2, c), the extension K ⊂ KL is radical and Galois.
Since its degree [KL : K] divides [L : E], a) implies that Gal(KL/K) is a
solvable group. On the other hand, the extension E ⊂ K is Galois, and its
Galois group is a subgroup of (Z/NZ)∗, where N = [L : E] (see Section 5.2).
Therefore, Gal(KL/K) is a normal subgroup of Gal(KL/E) and the quotient
Gal(KL/E)/ Gal(KL/K) is abelian, because it is isomorphic to Gal(K/E).
Since Gal(KL/K) is solvable, it follows from Prop. 4.5.2, c), that the group
Gal(KL/E) is solvable. Since E ⊂ F is a Galois extension with F ⊂ KL,
Gal(F/E) is a quotient of Gal(KL/E). This shows that Gal(F/E) is a solvable
group.

c) If Gal(F/E) is a solvable group, and if E contains a primitive root of
unity of order [F : E]. Then the extension E ⊂ F is radical.

Let us show this by induction on [F : E]. The group G = Gal(F/E) is
solvable. By Proposition 4.5.3, G has a normal subgroup H, such that G/H

is cyclic. Consequently, there exists an integer d > 1 dividing [F : E] such
that G/H is isomorphic to Z/dZ. Therefore, the field extension E ⊂ FH is
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Galois, and its Galois group is Z/dZ; by Proposition 5.6.4, this extension is
elementary radical. (Observe that E contains a primitive dth root of unity.)
The extension FH ⊂ F is Galois and its Galois group is equal to H, so is
solvable (Proposition 4.5.2, a). Since [F : FH ] divides [F : E], FH contains a
primitive root of unity of order [F : FH ]. By induction, the extension FH ⊂ F

is a radical extension. This shows that the extension E ⊂ F is radical.

d) If Gal(F/E) is a solvable group, the extension E ⊂ F is solvable.
Let Ω be an algebraic closure of F and let K be the field generated in Ω

by a primitive root of unity of order [F : E]. The extension E ⊂ K is radical,
Galois, and its Galois group is abelian. The extension K ⊂ KF is Galois, and
its Galois group is solvable, for it is a subgroup of Gal(F/E). Since [KF : K]
divides [KF : E], K contains a primitive root of unity of order [KF : K], it
follows from c) that the extension K ⊂ KF is radical. Therefore, the extension
E ⊂ KF is radical and the extension E ⊂ F is solvable. ��

Solving the “general equation of degree n” over some field K means being
able to give formulae for solving any equation of degree n with arbitrary
unspecified coefficients. In more precise terms, we want to solve the equation

Xn + a1X
n−1 + · · · + an,

in which coefficients a1, . . . , an are indeterminates. This is a polynomial equa-
tion over the field of rational functions K(a1, . . . , an) in n indeterminates.
By Exercise 3.11, its Galois group is equal to the full symmetric group Sn.
Since this group is not solvable for n � 5 (Corollary 4.6.8), it follows from
Theorem 5.6.3 that the general equation of degree n is not solvable by radi-
cals, a result which had been first anticipated by the Italian mathematician
P. Ruffini in 1799 and proved by N. Abel in 1826.

Corollary 5.6.5 (Abel). Let K be a field.
For n � 5, the general equation of degree n,

Xn + a1X
n−1 + · · · + an = 0,

viewed as a polynomial equation over the field
K(a1, . . . , an) of rational functions in n inde-
terminates and coefficients in K, is not solvable by radicals.

You will find below, and also in some exercises, explicit examples of poly-
nomial equations (over the field of rational numbers) which are not solvable
by radicals.
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5.7 How (not) to compute Galois groups

In many actual applications, one considers a separable polynomial P , irre-
ducible or not, with coefficients in a field K, and a splitting extension K ⊂ L

of the polynomial P , so that L is generated over K by the roots x1, . . . , xn of P

in an algebraic closure of K. As in Section 3.3, the Galois group G = Gal(L/K)
is naturally a subgroup of the group of permutations of {x1, . . . , xn}, hence
can be identified with a subgroup of the symmetric group Sn.

The first result of this section shows that, provided one knows how to
factor polynomials with many indeterminates and coefficients in K, then one
can explicitly determine the group G.

The group G = Gal(L/K) acts on the ring L[Y1, . . . , Yn] coefficientwise,
hence also on the the field of rational functions L(Y1, . . . , Yn), which is its
field of fractions. It also acts on the ring of polynomials L[X, Y1, . . . , Yn].
To simplify notation, we will write Y as an abbreviation for Y1, . . . , Yn. For
example, we write L[Y ] for L[Y1, . . . , Yn] and L(Y ) for L(Y1, . . . , Yn).

For any σ ∈ Sn, we let

ξσ = x1Yσ(1) + · · · + xnYσ(n) ∈ L[Y ].

Lemma 5.7.1. a) For any element τ in the Galois group Gal(L/K), one has

τ(ξσ) = ξστ−1 .

b) The extension K(Y ) ⊂ L(Y ) is Galois, with Galois group G.
c) Moreover, ξ = x1Y1 + · · · + xnYn is a primitive element.

Proof. For any τ ∈ G, one has

τ(ξσ) =
n∑

i=1

τ(xi)Yσ(i) =
n∑

i=1

xτ(i)Yσ(i) =
n∑

j=1

xjYσ(τ−1(j)) = ξστ−1 ,

which proves a).
b) If R = P/Q ∈ L(Y ), one can write

R =
P

Q

∏
τ∈G\{1}

τ(Q)
τ(Q)

=

P
∏

τ �=1

τ(Q)∏
τ

τ(Q)
,

a new fraction whose denominator D belongs to K[Y ] since it is clearly in-
variant under any τ ∈ G. Let N = RD be its numerator, then R is invariant
under G if and only if N is. It follows that L(Y )G = K(Y ), and by Artin’s
lemma (Prop. 3.2.8), the extension K(Y ) ⊂ L(Y ) is Galois, with Galois
group G.
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c) Let ξ = ξid = x1Y1 + · · · + xnYn. For any τ ∈ G, τ(ξ) = ξτ−1 , so that
τ = id is the only element of G such that τ(ξ) = ξ. This shows that the
extension K(Y ) ⊂ L(Y ) is generated by ξ. ��

It follows from the Lemma that the minimal polynomial of ξ over K(Y )
is equal to

Mξ(T ) =
∏
τ∈G

(T − τ(ξ)) =
∏
τ∈G

(T − ξτ ).

It belongs to K[Y , T ] and is irreducible in K(Y )[T ], hence is irreducible
in K[Y , T ] for the ring K[Y ] is a unique factorization domain.

Theorem 5.7.2. Let us define a polynomial in variables X, Y1, . . . , Yn by the
formula

RP (T ) =
∏

σ∈Sn

(T − ξσ) =
∏

σ∈Sn

(T − (x1Yσ(1) + · · · + xnYσ(n))).

This is a separable polynomial with coefficients in K.
Let M be the unique irreducible factor of RP in K(Y )[T ] which is monic

in T and divisible by T − ξ in L(Y )[T ].
Then M = Mξ and a permutation σ ∈ Sn belongs to G if and only if

M(T, Y1, . . . , Yn) = M(T, Yσ(1), . . . , Yσ(n)).

Proof. Any τ ∈ G induces a permutation of the roots of RP , since τ(ξσ) =
ξστ−1 , hence τ(RP ) = RP for any τ ∈ Gal(L/K) and the coefficients of RP

belong to K.
Since M and Mξ have the common factor X−ξ in L(Y )[T ], it follows from

Corollary 2.4.3 that M and Mξ have a common factor in K(Y )[T ]. Being both
monic and irreducible in K(Y )[T ], they are equal and

M(T, Y1, . . . , Yn) =
∏
τ∈G

(T − (x1Yτ(1) + · · · + xnYτ(n))).

Finally, for σ ∈ Sn, one has

M(T, Yσ(1), . . . , Yσ(n)) =
∏
τ∈G

(
X − x1Yτ(σ(1)) − · · · − xnYτ(σ(n))

)
=
∏

τ∈Gσ

(
X − x1Yτ(1) − · · · − xnYτ(n)

)
,

so that
M(X, Yσ(1), . . . , Yσ(n)) = M(X, Y1, . . . , Yn)

if and only if Gσ = G, which means exactly that σ ∈ G. ��
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However nice it may look, this theorem is of almost no practical use. For
example, if K is the field of rational numbers, the complexity of factoring
multivariate polynomials of large degree (deg RP = n!) is tremendous and
this approach rapidly fails, even on the fastest available computing systems.
We will still deduce from it a fundamental theoretical consequence concerning
the behaviour of the Galois group of a polynomial by specialization of its
coefficients, which is the subject of the next section.

Observe that the polynomial RP defined in the theorem is symmetric
in Y1, . . . , Yn, and is independent of the particular numbering of the roots. On
the contrary, its irreducible factor M depends on the chosen numbering, as
well as the Galois group, viewed as a subgroup of a symmetric group. Let us
make this dependence explicit.

Let P ∈ K[X] be a separable polynomial of degree n and let K → L be a
splitting extension of P . Let R be the set of roots of P in L. A numbering of R

is a bijection ν : {1, . . . , n} ∼−→ R; it defines an embedding λν : Gal(L/K) ↪→
Sn such that

ν(λν(g)(i)) = g(ν(i)), g ∈ Gal(L/K), i ∈ {1, . . . , n}.
Denote its image by Gν = λν(Gal(L/K)). Observe that the polynomial RP

satisfies

RP (T ) =
∏

σ∈Sn

(
T − (xσ−1(1)Y1 + · · · + xσ−1(n)Yn)

)
=

∏
numberings ν

(
T − (ν(1)Y1 + · · · + ν(n)Yn)

)
,

the last product being over all numberings of the roots of P . Let RP,ν denote
the minimal polynomial of ξ = ν(1)Y1 + · · · + ν(n)Yn introduced above, so
that

RP,ν(T, Y1, . . . , Yn) =
∏
τ∈G

(
T − (τ(ν(1))Y1 + · · · + τ(ν(n))Yn)

)
=
∏

σ∈Gν

(
T − (ν(σ(1))Y1 + · · · + ν(σ(n))Yn)

)
.

If µ is another numbering, there is a permutation σ ∈ Sn such that µ(i) =
ν(σ(i)) for any i ∈ {1, . . . , n}. Then either RP,µ and RP,ν are coprime, or
they have a factor in common. In this case, they are necessarily equal since
they both are irreducible and monic; moreover, one has σ ∈ Gν . This implies
that RP is the product of RP,ν◦σ, the σ being some representatives in Sn

of all left cosets of Gν . The embeddings of the Galois group into Sn defined
by µ and ν satisfy the relation
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λµ(g) = σ−1λν(g)σ.

In particular, Gµ = σ−1Gνσ is conjugate to Gν in Sn.

5.8 Specializing Galois groups

Before I give a general definition, let me explain two important examples:

a) Let P be a monic polynomial with integer coefficients, and let G denote
the Galois group of a splitting extension of P over Q. For any prime number p,
one can reduce the polynomial P modulo p; hence one obtains a new Galois
group Gp corresponding to a finite extension of Z/pZ.

b) Let P ∈ Q(t)[X] be a polynomial with coefficients in the field Q(t) of
rational functions, denote by G the Galois group of a splitting extension of P

over Q(t). For any rational number α which is not a pole of the coefficients
of P , one can evaluate the polynomial P at t = α, and obtain a polynomial
Pα ∈ Q[X], hence a Galois group Gα.

We will see that the Galois groups of these specialized equations are, in a
quite natural way, subgroups of the group G.

Definition 5.8.1. A place of the field K is a map ϕ : K → k ∪ {∞}, where
k is a field, which satisfies the following properties:

a) if ϕ(x) and ϕ(y) are not both ∞, then ϕ(x+y) = ϕ(x)+ϕ(y), with the
convention a + ∞ = ∞ for a ∈ k;

b) if {ϕ(x), ϕ(y)} �= {0,∞}, then ϕ(xy) = ϕ(x)ϕ(y), with the convention
a∞ = ∞ for a �= 0.

Example 5.8.2. Let us go back to the two previous examples.

a) Let p be a prime number. Let x = a/b be a rational number, written in
smallest terms. If p divides b, let us set ϕp(x) = ∞. If p does not divide b, let
ϕp(x) be the quotient in Z/pZ of the classes of a and b modulo p. This map
ϕp : Q → (Z/pZ) ∪ {∞} is a place.

b) Let α ∈ Q. A rational function has a “value” at α, which is set to ∞ if
α is a pole. This map ϕα : Q(t) → Q ∪ {∞} is a place.

If ϕ : K → k ∪ {∞} is a place, let A = ϕ−1(K) be the set of x ∈ K such
that ϕ(x) �= ∞. The definition of a place implies at once that A is a subring
of K, which we will call the valuation ring of ϕ. (Exercise: check it! See also
Exercise 5.15.) In the two examples above, any ideal in A is generated by a
power of p, or of X − α, accordingly. In particular, in these two cases, the
ring A is a principal ideal ring.
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Let us fix a place ϕ : K → k ∪ {∞} of the field K. Let A denote the
valuation ring of ϕ. Let P ∈ K[X] be a monic polynomial of degree n. Assume
that P ∈ A[X], and that its discriminant ∆ ∈ A satisfies ϕ(∆) �= 0, so that
the polynomial ϕ(P ) ∈ k[X] is separable. Let G be the Galois group of a
splitting extension L of P over K, and let H be the Galois group of a splitting
extension � of the polynomial ϕ(P ) over k.

Lemma 5.8.3. The polynomial RP belongs to A[T,Y ], and Rϕ(P ) = ϕ(RP ).

Proof. Let us first consider the polynomial

R =
∏

σ∈Sn

(T − (
n∑

i=1

Xσ(i)Yi)).

We view it as a polynomial in T, Y1, . . . , Yn with coefficients in Z[X1, . . . , Xn],
writing

R =
∑

I=(i0,...,in)

RI(X1, . . . , Xn)Y i0Y i1
1 . . . Y in

n .

The polynomial R is symmetric in X1, . . . , Xn, hence each of its coeffi-
cients RI is symmetric too. Therefore, there is for each I a polynomial
R̃I ∈ Z[S1, . . . , Sn] such that

RI(X1, . . . , Xn) = R̃I(S1(X), . . . , Sn(X)).

Let us write P = Xn + a1X
n−1 + · · · + an and let x1, . . . , xn denote the

roots of P in L, so that aj = (−1)jSj(x1, . . . , xn). It follows that

RP =
∑

I

R̃I(−a1, . . . , (−1)nan)T i0Y i1
1 . . . Y in

n .

Since the coefficients aj belong to the subring A, RP ∈ A[T,Y ].
Moreover, one has ϕ(P ) = Xn + ϕ(a1)Xn−1 + · · · + ϕ(an), and the same

argument shows that

R̃ϕ(P ) =
∑

I

R̃I(−ϕ(a1), . . . , (−1)nϕ(an))T i0Y i1
1 . . . Y in

n .

Consequently,

ϕ(RP ) =
∑

I

ϕ(R̃I(−a1, . . . , (−1)nan))T i0Y i1
1 . . . Y in

n = R̃ϕ(P )

is the polynomial attached to ϕ(P ), which proves the lemma. ��
Lemma 5.8.4. For any numbering ν of the roots of P in L, the polyno-
mial RP,ν belongs to A[T,Y ].
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Proof. If the ring A is a unique factorization domain, e.g. , in the two exam-
ples above, it follows from Theorem 2.4.7 that the polynomial RP,ν belongs
to A[T,Y ]. That remains true in the general case, for “a valuation ring is
integrally closed,” but we shall not prove it here; see Exercise 5.16. ��

We saw that the irreducible factors in k[T,Y ] of the polynomial Rϕ(P )

were of the form Rϕ(P ),µ for µ a numbering of the roots of ϕ(P ) in �. Now,
since RP,ν divides RP , the preceding lemmas show that ϕ(RP,ν) is a divisor
of Rϕ(P ) in k[T,Y ]. We shall say that a numbering ν of the roots of P and a
numbering µ of the roots of ϕ(P ) are compatible if Rϕ(P ),µ divides ϕ(RP,ν).

Theorem 5.8.5. Fix a numbering ν of the roots of P , hence an embedding
λν : Gal(L/K) → Sn of image Gν .

a) There exists a numbering µ of the roots of ϕ(P ) which is compatible
with ν. It defines an embedding of the Galois group H into Sn; its image Hµ

is a subgroup of Gν .
b) Let µ′ be any numbering of the roots of ϕ(P ), and let σ be the unique

permutation ∈ Sn such that µ′(i) = µ(σ(i)) for any i ∈ {1, . . . , n}. Then µ′

is compatible with ν if and only if σ ∈ Gν . In that case, Hµ′ = σ−1Hµσ is
conjugate to Hµ in Gν .

This shows that “the” Galois group H of the specialized equation ϕ(P ) is in
an almost natural way a subgroup of the Galois group G of the equation P .
Moreover, if the group G is abelian, or if the group H appears to be normal
in G, then the Galois group of the specialized equation is a canonical subgroup
of the Galois group.

Proof. The irreducible factors of the polynomial ϕ(RP,ν) ∈ k[T,Y ] divide
Rϕ(P ), hence are of the form Rϕ(P ),µ for some numberings µ of the roots
of ϕ(P ) in �. These numberings are precisely those which are compatible
with ν.

More precisely, with N denoting the set of numberings of the roots of ϕ(P )
which are compatible with ν, one has the formula

ϕ(RP,ν) =
∏
µ∈N

(T − (µ(1)Y1 + · · · + µ(n)Yn))

in �[T,Y ]. Let σ ∈ Gν ; then

RP,ν(T, Yσ(1), . . . , Yσ(n)) = RP,ν(T, Y1, . . . , Yn),

hence, taking the images of both sides by ϕ,∏
µ∈N

(T − (µ(1)Yσ(1) + · · · + µ(n)Yσ(n))) =
∏
µ∈N

(T − (µ(1)Y1 + · · · + µ(n)Yn)).
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Writing µ(i) = µ ◦ σ−1(σ(i)), we find that Nσ−1 = N ; in other words, N =
NGν is a right coset modulo Gν . Since the cardinality of N is that of Gν , one
has N = µGν for any µ ∈ N .

Fix such a µ. The polynomial Rϕ(P ),µ divides ϕ(RP,ν). Looking in �[T,Y ],
one sees that µHµ ⊂ N = µGν . Consequently, Hµ ⊂ Gν .

If µ′ is another numbering, one has µ′ = µ◦σ for some σ ∈ Sn. Moreover,
µ′ is compatible with ν if and only if µ′ ∈ N , hence if and only if σ ∈ Gν .
For such a numbering µ′, we saw that Hµ′ = σ−1Hµσ. The subgroups Hµ′

and Hµ are therefore conjugate in Gν . ��
Let me now show some examples of how this theorem can be used to specify

the shape of the Galois group of a polynomial with rational coefficients. Recall
a remark from the end of Section 3.5 on finite fields. We define the shape of a
permutation of {1, . . . , n} as the partition of n that it defines (see p. 93).

Lemma 5.8.6. Let P be a monic separable polynomial with coefficients in a
finite field k. Let us denote by n1, . . . , nr the degrees of the irreducible factors
of P in k[X]. Let k → � be a splitting extension of P ; the Frobenius auto-
morphism F ∈ Gal(�/k) induces a permutation of the roots of P in �. This
permutation has shape (n1, . . . , nr).

Recall also from Prop. 4.6.1 that the conjugacy class of this permutation
is characterized by these integers (n1, . . . , nr). Consequently, this lemma and
Theorem 5.8.5 allow one to exhibit conjugacy classes of elements in the Galois
group. In some cases, this is even enough to compute the Galois group!

Example 5.8.7. Let us begin with the polynomial P = X5−X−1. Denote by G

its Galois group over Q, considered as a subgroup of the group of permutations
of the 5 roots, identified with S5.

Reducing the polynomial modulo 2, we see that it has no root in F2, but
it has two in F4. Indeed, the g.c.d. of X5 − X − 1 and X4 − X is equal to
X2 − X − 1 over F2, so that P (mod 2) has a factor of degree 2, the other
being necessarily of degree 3. In particular, P (mod 2) is separable over F2

and its Galois group over F2 is generated by an element of S5 of shape (2, 3).
By Theorem 5.8.5, G contains a permutation of this shape, hence its cube,
which is a transposition.

Let us now reduce modulo 3. By computing the g.c.d. of P (mod 3) and
X3 − X, resp. X9 − X (computer algebra systems can be of great use in
such calculations...), we check that P (mod 3) has no root in F3, nor in F9.
(Exercise: do it also by hand, using, for example, the fact that for any ele-
ment x ∈ F9, one has x4 ∈ {0,±1}.) It follows that P (mod 3) is irreducible
over F3. By Theorem 5.8.5, G contains a 5-cycle. Incidentally, this shows that
the polynomial P is irreducible.
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It now follows from Proposition 4.6.2 that G is equal to the full symmetric
group S5. By the way, this gives an explicit example of a polynomial with
rational coefficients which cannot be solved by radicals, for its Galois group,
being S5, is not solvable.

Example 5.8.8. Let us show in a similar way that the Galois group G of the
polynomial P = X5+20X−16 over Q, viewed as a subgroup of S5, is equal to
the alternating group A5. Modulo 2, one has P ≡ X5, which is not separable.
Let us thus look modulo 3. One has P ≡ X5−X−1 (mod 3); as we saw in the
previous example, P (mod 3) is irreducible. As above, the group G contains
a 5-cycle.

Modulo 7, one has P ≡ X5 − X − 2 and its roots in F7 are 2 and 3;
moreover, one has

P ≡ (X − 2)(X − 3)(X3 − 2X2 − 2X + 2) (mod 7).

The polynomial X3 − 2X2 − 2X + 2 has no root in F7 (check it!), hence is
irreducible since its degree is 3. It follows that G contains a 3-cycle.

Modulo 23, one gets a factorization of P as the product of a linear factor
and two polynomials of degree 2, hence there is a permutation of the form
(1)(2, 3)(4, 5) — a double transposition — in G.

Considering other prime numbers does not seem to give new information
on G. We already know that the order of G is a multiple of 2, 3 and 5, hence of
their l.c.m. 60, and since it is a subgroup of S5, its order divides by 5! = 120.

We now have to use another piece of information. Observe that the dis-
criminant of P is equal to

55 × (−16)4 + 44 × 205 = 1024000000 = 216 56 = (28 53)2

(see Exercise 3.22), so is a square in Q. By Proposition 3.4.2, this implies
that G is a subgroup of A5. Since card A5 = 60, one necessarily has G = A5.

In more complicated examples, these two ingredients, reduction modulo
prime numbers and the consideration of the discriminant, are not enough and
one is forced to use more general resolvent polynomials (see Section 3.4).

Example 5.8.9. Computer algebra systems like Magma, Pari/Gp or Maple

can compute Galois groups for you, at least if the degree is not too big. For
instance, here is the output of a (verbose) Maple session when asked to
compute the Galois group of the polynomial t5 − 5t + 12 over the rationals.

> infolevel[galois]:=2;

> galois(t^5-5*t+12);

galois: Computing the Galois group of t^5-5*t+12
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galois/absres: 64000000 = ‘‘(8000)^2

galois/absres: Possible groups: {"5T2", "5T1", "5T4"}

galois/absres: p = 3 gives shape 2, 2, 1

galois/absres: Removing {"5T1"}

galois/absres: Possible groups left: {"5T2", "5T4"}

galois/absres: p = 7 gives shape 5

galois/absres: p = 11 gives shape 5

galois/absres: p = 13 gives shape 5

galois/absres: p = 17 gives shape 2, 2, 1

galois/absres: p = 19 gives shape 5

galois/absres: p = 23 gives shape 5

galois/absres: p = 29 gives shape 2, 2, 1

galois/absres: p = 31 gives shape 2, 2, 1

galois/absres: p = 37 gives shape 5

galois/absres: p = 41 gives shape 5

galois/absres: The Galois group is probably one of {"5T2"}

galois/respol: Using the orbit-length partition of 2-sets.

galois/respol: Calculating a resolvent polynomial...

galois/respol: Factoring the resolvent polynomial...

galois/respol: Orbit-length partition is 5, 5

galois/respol: Removing {"5T4"}

galois/respol: Possible groups left: {"5T2"}

"5T2", {"5:2", "D(5)"}, "+", 10, {"(1 4)(2 3)", "(1 2 3 4 5)"}

To understand these lines, one needs to know that, up to conjugacy, there
are only 5 transitive subgroups of S5. These are

a) the cyclic group C5, generated by the 5-cycle (1, 2, 3, 4, 5), isomorphic
to Z/5Z and denoted in this context as 5T1;

b) the dihedral group D5, generated by (1, 2, 3, 4, 5) and (2, 5)(3, 4), de-
noted as 5T2;

c) the metacyclic group M20, defined as the normalizer 5T3 of C5 in S5,
of cardinality 20, also isomorphic to the group of all maps F5 → F5 of the
form x 
→ ax + b with a ∈ F∗

5 and b ∈ F5;
d) the alternating group A5, of cardinality 60 and denoted 5T4;
e) the full symmetric group S5, denoted 5T5.

(In fact, all practical algorithms for computing Galois groups require the list
of all transitive subgroups of Sn, which is known up to n = 31. The notations
5T1, etc. come from this classification.)

First, the discriminant is computed. It is a square, (64, 000, 000 = (8000)2),
hence the group must be a subgroup of the alternating group, which ex-
cludes M20 and S5 (respectively 5T3 and 5T5). Then, the program reduces
our polynomial modulo small prime numbers and computes its factorization
over the corresponding finite field, hence the shape of some permutation be-
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longing to the Galois group; then, for any group which has not yet been
excluded, the program simply checks whether it contains such a permutation.
In fact, all nontrivial elements of the group generated by a 5-cycle are 5-cycles
themselves, so that the group C5 (5T1) is eliminated at once by reducing mod-
ulo p = 3. However, no new information is obtained in this way by reducing
modulo prime numbers � 41.

Then, Maple indicates that the group would probably be equal to D5

(5T2). Indeed, by Chebotarëv’s density theorem, a profound and difficult the-
orem from algebraic number theory, all possible conjugacy classes of elements
in the Galois group will appear by reducing modulo larger and larger prime
numbers, and they will appear “in proportion” to their cardinalities. In fact,
the shape of a permutation detects only its conjugacy class in the symmetric
group, so that an easier result, due to Frobenius, is sufficient for our purposes.
The number of permutations of a given shape in each group is given in Ta-
ble 5.1. In our example, the shapes that appear are (2, 2), 4 times, and (5),
7 times. If the group had been A5 (5T4), the shape (3) would probably have
already appeared, therefore Maple suggests that the group is D5.

C5 (5T1) D5 (5T2) M20 (5T3) A5 (5T4) S5 (5T5)

1,1,1,1,1 1 1 1 1 1

2,1,1,1 10

3,1,1 20 20

2,2,1 5 5 15 15

4,1 10 30

3,2 20

5 4 4 4 24 24

total 5 10 20 60 120

Table 5.1. Number of permutations inducing a given partition in subgroups of S5

Since D5 is a subgroup of A5, it remains to check whether G is, up to
conjugacy, a subgroup of D5. This requires a resolvent polynomial like

X1X2 + X2X3 + X3X4 + X4X5 + X5X1,

whose stabilizer is exactly D5. (Can you see why? Remember that D5 is
the symmetry group of the regular pentagon.) Computing the complex roots
of the polynomial t5 − 5t + 12 with large accuracy, one can evaluate the
above resolvent polynomial at all permutations of the roots. Some of these
evaluations are integers and Prop. 3.4.5 implies that the Galois group is equal
to D5. In fact, a floating point calculation does not really prove that the
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numbers obtained are integers, only that they are up to the given precision.
However, using results such as Liouville’s theorem (Exercise 1.2), one can
prove that the numbers obtained are actually integers.

5.9 Hilbert’s irreducibility theorem

This section explains some facts concerning the variation of the Galois group
of a polynomial equation depending on a parameter. Any of the three theorems
below constitute what is generally known as Hilbert’s irreducibility theorem.

Let us consider a monic polynomial P with coefficients in the field Q(T )
of rational functions. Let us assume that P is irreducible as a polynomial
in Q(T )[X]. We will first show that for “many” values t ∈ Z, the polynomial
P (t, X) ∈ Q[X] has no root in Q. We will then show that in fact, for “many”
integers t, the polynomial P (t,X) is even irreducible. Recall from Theo-
rem 5.8.5 that, essentially, the Galois group over Q of the polynomial P (t, X)
is a subgroup of the Galois group over Q(T ) of the polynomial P (T, X). The
last result, Theorem 5.9.7, claims that for “many” integers t, these two groups
are in fact equal!

This is a theorem in arithmetic, as opposed to algebra, and it relies on
properties of the field Q of rational numbers. It is obviously false if one
replaces Q(T ) by C(T ) in its statement: there are irreducible polynomi-
als P ∈ C(T )[X] of any degree but for any t, the polynomial P (t, X) is
split in C, for the field of complex numbers is algebraically closed. The Galois
group of the specialized equation is therefore trivial.

The heart of the arithmetic arguments will be in the proof of Prop. 5.9.1,
at the point when we bound from below by 1 the absolute value of a nonzero
integer. Remark that such a lower bound was also the crucial point in the
proof that e and π are transcendental numbers (Theorems 1.6.3 and 1.6.6).
However, the arguments we will use to prove Theorems 5.9.4, 5.9.6 and 5.9.7
from that proposition are essentially of algebraic nature.

Proposition 5.9.1. Let e be any positive integer and let ϕ =
∑

n�−n0

anu−n/e

be a Laurent series in the variable u−1/e which is not a polynomial in u. (In
other words, there is a nonzero coefficient an such that either n > 0 or e does
not divide n.) Assume that ϕ(u) converges for |u| � B0. Denote by N(B) the
number of integers u ∈ [B0, B] such that ϕ(u) ∈ Z. Then, there exists a real
number α < 1 such that N(B)/Bα remains bounded when B → ∞.

From now on, we shall use the big-O notation and write N(B) = O(Bα) to
mean that N(B)/Bα remains bounded when B → ∞.
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Proof. It suffices to separately consider the real and imaginary parts of ϕ, for
at least one of them is not a polynomial. We will therefore assume that ϕ

has real coefficients. Observe that ϕ defines a C∞ function from the interval
(B0, +∞) to R, its derivatives of any order being obtained by deriving the
series term by term. Hence, for m > n0/e, ϕ(m)(u) decreases to 0 when u →
+∞ Since ϕ is not a polynomial, ϕ(m) is not the zero-function and, when u →
∞, ϕ(m)(u) is then equivalent to its first term, which is of the form cu−µ for
some real number c �= 0 and some positive real number µ. In particular, for u

large enough, say u � B1, one has an inequality c1u
−µ �

∣∣ϕ(m)(u)
∣∣ � c2u

−µ.
Let S denote the set of integers � B0 such that ϕ(u) ∈ Z. Consider

m + 1 elements in S, u0 < · · · < um, with u0 > B1 and let us introduce the
determinant

D =

∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1
u0 . . . um

...
...

um−1
0 . . . um

m

ϕ(u0) . . . ϕ(um)

∣∣∣∣∣∣∣∣∣∣∣∣
.

This determinant is an integer, for it is the determinant of a matrix with
integer coefficients. By Lemma 5.9.3 below, there exists a real number ξ ∈
(u0, um) such that

D =
1
m!

ϕ(m)(ξ)
∏
i>j

(ui − uj).

Since u0 � B1, ϕ(m)(ξ) �= 0; in particular D �= 0. Since D is an integer, one
has |D| � 1, hence a lower bound

∏
i>j

(ui − uj) � m!∣∣ϕ(m)(ξ)
∣∣ � m!

c2
ξµ,

and, a fortiori,

(um − u0)m(m+1)/2 � m!
c2

uµ
0 .

We thus have shown the existence of positive real numbers b and β such that,
for any m + 1 elements u0 < · · · < um in S with u0 > B1, one has

um � u0 + buβ
0 . (5.9.2)

Now we set α = 1/(1 + β) and we split the interval [B0, B] as
[B0, B

α] ∪ [Bα, B]. The interval [B0, B
α] contains at most Bα elements of S.

For B large enough, Bα � B1 and the lower bound (5.9.2) implies that the
interval [Bα, B] contains at most (m/b)B1−αβ = (m/b)Bα elements of S.
Finally, for B � B

1/α
1 , N(B) � (1 + m/b)Bα, as we had to prove. ��
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Lemma 5.9.3. Let I be an interval in R, and f : I → R a function with C n-
regularity. Let x0, . . . , xn be elements in I. Then, there is ξ ∈ I such that∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1
x0 . . . xn

...
...

xn−1
0 . . . xn−1

n

f(x0) . . . f(xn)

∣∣∣∣∣∣∣∣∣∣∣∣
=

f (n)(ξ)
n!

∏
i>j

(xi − xj).

Proof. It suffices to consider the case where all xi are distinct. Let us con-
sider x0 as a parameter and denote by D(x0) the determinant above. For A ∈
R, let FA : I → R be the function defined by FA(x) = D(x) − A

n∏
i=1

(x − xi).

This function FA vanishes at x1, . . . , xn; let us choose A so that it vanishes
at x = x0 too.

By Rolle’s Lemma, the derivative of FA vanishes at n distinct points on I,
then its second derivative (n − 1) times, and so on. Finally, there is at least
one ξ ∈ I such that F

(n)
A (ξ) = 0. Moreover,

F
(n)
A (ξ) = D(n)(ξ) − An! =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 . . . 1
x0 . . . xn

...
...

...
0 xn−1

1 . . . xn−1
n

f (n)(ξ) f(x1) . . . f(xn)

∣∣∣∣∣∣∣∣∣∣∣∣
− An!

= (−1)nf (n)(ξ)

∣∣∣∣∣∣∣∣∣

1 . . . 1
x0 . . . xn

...
...

xn−1
1 . . . xn−1

n

∣∣∣∣∣∣∣∣∣
− An!,

hence A = (−1)n f (n)(ξ)
n!

∏
i>j�1

(xi − xj) and

D(x0) = A
n∏

i=1

(x0 − xi) =
f (n)(ξ)

n!

∏
i>j

(xi − xj).

This proves the lemma. ��

Theorem 5.9.4. Let P be a monic polynomial in Q(T )[X]. Let N(B) denote
the number of integers t ∈ [0, B] such that P (t, X) has a root in Q. If P has
no root in Q(T ), then there is a real number α < 1 such that, when B → ∞,
N(B) = O(Bα).
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Lemma 5.9.5. Let n denote the degree of P . There exist an integer e � 1,
Laurent series x1, . . . , xn with complex coefficients, and a nonzero radius of
convergence, such that for any complex number t of large enough modulus,
the n complex roots of P (te, X) are the xj(1/t), for 1 � j � n.

Proof. Since we look at the roots of P (t, X) for t large, let us make a change of
variables t = 1/u. Let R denote a common denominator to the coefficients of
the polynomial P (1/U,X) ∈ Q(U)[X], so that R(U)P (1/U,X) ∈ Q[U,X].
Multiplying by R(U)n−1, we can then find a polynomial Q ∈ Q[U, Y ],
monic and of degree n with respect to Y , such that P (1/U,X)R(U)n =
Q(U,R(U)X). By Puiseux’s theorem (Theorem 2.6.1), there are power se-
ries y1, . . . , yn with positive radius of convergence, and an integer e � 1 such
that, for |u| small enough, the roots of the polynomial Q(ue, Y ) are the yj(u),
for 1 � j � n. Let us set xj(u) = R(u)−eyj(u). Expanding R(u)−e as a Lau-
rent series around u = 0, one sees that the xj are Laurent series, converging
for |u| small enough, but u �= 0. Making the change of variables t = 1/u again,
the xj(1/t) are the roots of P (te, X) provided |t| is large enough. ��

Proof of Theorem 5.9.4. Let D ∈ Z[T ] be a common denominator of the
coefficients of P , so that P (T, X)D(T ) ∈ Z[T, X]. There is a polynomial
Q ∈ Z[T, X], monic as a polynomial in X, such that P (T, X)D(T )n =
Q(T, D(T )X). The polynomial Q has no root in Q(T ) (if R(T ) were a root
of Q in Q(T ), then R(T )/D(T ) would be a root of P in Q(T )). Similarly,
if D(t) �= 0, then the polynomial P (t, X) ∈ Z[X] has a root in Q if and
only if Q(t, X) has a root in Q. Therefore, it suffices to prove the theorem
for the polynomial Q, which allows us to assume that P ∈ Z[T, X]. Then,
for any t ∈ Z, the polynomial P (t, X) is monic with integer coefficients. By
Exercise 1.5, its roots in Q are necessarily integers.

Let x1, . . . , xn be the series given by Lemma 5.9.5. Since P has no root
in Q(T ), none of these series is a polynomial. It is now enough to apply
Proposition 5.9.1 to each of them and to add up the upper bounds obtained,
so that we get the desired upper bound for N(B). ��

Theorem 5.9.6. Let P ∈ Q(T )[X] be any monic irreducible polynomial with
coefficients in Q(T ). Let N(B) denote the cardinality of the set of integers t ∈
[0, B] such that t is not a pole of any coefficient of P and such that P (t, X)
is reducible in Q[X]. Then there exists α < 1 such that N(B) = O(Bα).

Proof. As in the proof of the preceding theorem, we assume that P belongs
to Z[T, X]. Let x1, . . . , xn be the Laurent series given by Lemma 5.9.5. If t is
large enough, say t � B0, any monic factor of P (t, X) ∈ Z[X] has the form

PI(t) =
∏
i∈I

(X − xi(t−1/e)),



5.9 Hilbert’s irreducibility theorem 143

where I is a subset of {1, . . . , n}. If I �= ∅ and I �= {1, . . . , n}, it is thus enough
to show that the set of all integers t ∈ [B0, B] such that PI(t) belongs to Z[X]
has cardinality O(Bα).

But we may view the polynomial PI as a polynomial with coefficients in the
field K of converging Laurent series in a variable T−1/e, and PI is a factor of P

in K[X]. Since P is irreducible in Q[T, X], the polynomial PI does not belong
to Q(T )[X] and at least one of its coefficients, say ϕI , is not a polynomial
in T . Proposition 5.9.1 then implies that the set of all integers t ∈ [B0, B] such
that ϕI(t) is an integer has cardinality O(Bα) for some α < 1. The theorem
is then proved. ��

More generally, the following theorem says that the Galois group over Q
of the polynomial P (t, X), with t ∈ Z, quite often coincides with the Galois
group over Q(T ) of the polynomial P (T, X).

Theorem 5.9.7. Let P ∈ Q(T )[X] be a monic polynomial with coefficients
in Q(T ). Let G denote its Galois group over Q(T ). Let N(B) be the cardinality
of the set of all integers t ∈ [0, B] such that either t is a pole of P (T, X) or
the Galois group of the polynomial P (t, X) over Q is not isomorphic to G.
Then, there exists α < 1 such that N(B) = O(Bα).

Proof. As in the proof of Theorem 5.9.7, we assume that the coefficients of P

are polynomials in T . Let us denote by n the degree of P in the variable X.
Let Q(T ) → K be a splitting extension of the polynomial P and let κ ∈ K

be any primitive element. If N = cardG, then N = [K : Q(T )], and N is the
degree of the minimal polynomial Q of κ over Q(T ). The coefficients of Q are
a priori rational functions in T . However, denoting by D ∈ Q[T ] a common
denominator of its coefficients, the minimal polynomial of D(T )κ is equal to
the polynomial D(T )NQ(T, D(T )−1X) and therefore belongs to Q[T, X]. This
allows us to assume that Q ∈ Q[T, X].

Over Q(T ), the polynomials P and Q have a common splitting extension,
hence have the same Galois group, even if, as permutation groups, they look
distinct (they do not act on the same set).

By the following lemma, there is a finite subset S ⊂ Q such that for any t �∈
S, the polynomials Q(t,X) and P (t,X) are separable and have a common
splitting extension Q ⊂ Kt. By Theorem 5.8.5, the Galois group Gal(Kt/Q)
can be considered as a subgroup of the Galois group Gal(K/Q(T )), so that
[Kt : Q] � [K : Q(T )] = N . By Theorem 5.9.6 applied to the polynomial Q,
there exists α < 1 such that the number N(B) of all integers t ∈ [0, B] such
that t �∈ S and such that Q(t, X) is irreducible in Q[X], satisfies N(B) =
O(Bα). For such t, [Kt : Q] � N , so that one has [Kt : Q] = N and Gal(Kt/Q)
is isomorphic to Gal(K/Q(T )). ��
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Lemma 5.9.8. Let P ∈ Q(T )[X] be a monic polynomial, let Q(T ) ⊂ K be
a splitting extension of P . Let y ∈ K be a primitive element and denote by
Q ∈ Q(T )[X] its minimal polynomial. There exists a finite subset Σ ⊂ Q such
that for any t �∈ Σ, the polynomials Q(t,X) and P (t,X) are separable and
have a common splitting extension.

Proof. Let us denote by x1, . . . , xn the roots of P in K. One can find polyno-
mials Ai ∈ Q(T )[Y ] such that for any i, xi = Ai(y), in other words,

P (T, X) =
n∏

i=1

(X − Ai(T, y)).

Replacing y by a formal variable Y , this implies that Q(T, Y ) divides the
coefficients of the polynomial

P (T, X) −
n∏

i=1

(X − Ai(T, Y )),

for these coefficients vanish at y and Q is the minimal polynomial of y. There-
fore, there is a polynomial R ∈ Q(T )[X, Y ] such that

P (T, X) =
n∏

i=1

(X − Ai(T, Y )) + R(T, X, Y )Q(T, Y ). (5.9.9)

Similarly, there exists a polynomial B ∈ Q(T )[X1, . . . , Xn] such that y =
B(T, x1, . . . , xn) and, again, Q(T, Y ) divides the coefficients of the polynomial
Y − B(T, A1(Y ), . . . , An(Y )), hence there is a polynomial S ∈ Q(T )[Y ] such
that

Y = B(T, A1(T, Y ), . . . , An(T, Y )) + S(T, Y )Q(T, Y ). (5.9.10)

Finally, the polynomial Q is split in K. We thus can find polynomials Ci ∈
Q(T )[Y ] satisfying

Q(T, X) =
N∏

i=1

(X − Ci(T, y)).

As before, it follows that there is a polynomial U ∈ Q(T )[X, Y ] such that

Q(T, X) =
N∏

i=1

(X − Ci(T, Y )) + U(T, X, Y )Q(T, Y ). (5.9.11)

The coefficients of the polynomials P,Q,A1, . . . , An, B, C1, . . . , CN , R, S

belong to Q(T ). Let Σ denote the set of all t ∈ Q such that either t is a pole
of one of these coefficients, or such that the discriminant of P or Q vanishes
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at t. By assumption, for any t �∈ Σ, the polynomials P (t, X) and Q(t, X) are
separable and the preceding relations hold when evaluated at T = t.

Let t ∈ Q \Σ. To prove the lemma, it now suffices to show that the poly-
nomial P (t, X) is split in any extension where Q(t, X) is split, and conversely.

Thus let L be an a extension of Q in which Q(t,X) has a root η. For any i ∈
{1, . . . , n}, let us set ξi = Ai(t, η). Relation (5.9.9) shows that P (t, X) =
n∏

i=1

(X − ξi), hence P (t, X) is split in L.

Conversely, let L be any extension of Q in which P (t,X) is split. Denote
its roots by ξ1, . . . , ξn. Let η be a root of Q(t, X) in some extension L′ of L.
The roots of P in L′ are then given by the Ai(t, η), for 1 � i � n, so that there
is a permutation σ ∈ Sn with Ai(t, η) = ξσ(i) for all i. The relation (5.9.10)
implies that

η = B(t, ξσ(1), . . . , ξσ(n)).

It follows that η ∈ L and that Q(t,X) has a root in L.

Now, relation (5.9.11) implies that Q(t, X) =
N∏

i=1

(X − Ci(t, η)) is split

in L. ��

Exercises

Exercise 5.1. a) Let G be a finite group and let H be a subgroup of G such

that (G : H) = 2. Show that H is normal in G.

b) How does this relate to Lemma 5.1.3?

c) More generally, if (G : H) is equal to the smallest prime number dividing card G,

show that H is normal in G.

Exercise 5.2. Let K ⊂ E and K ⊂ F be two finite extensions with coprime degrees,

contained in a common extension Ω of K. Show that E ∩ F = K and that [EF :

K] = [E : K][F : K].

Exercise 5.3. Let α and β be two distinct complex roots of the polynomial X3−2.

Let E = Q(α), F = Q(β).

a) Show that the composite extension Q ⊂ EF is a splitting extension of the

polynomial X3 − 2 over Q.

b) Show that E ∩ F = Q, although [EF : Q] �= [F : Q] [E : Q]. (This shows that

one cannot remove the hypothesis that one of the extensions E or F is Galois in

Corollary 5.3.3.)

Exercise 5.4. This is a sequel to Exercise 1.13, where we showed that the two real

roots of the polynomial P = X4 − X − 1 cannot be both constructible with ruler

and compass.
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a) Show that in fact no root of P is constructible with ruler and compass.

b) What is the Galois group of the extension generated by the complex roots of P?

Exercise 5.5. Let p be a prime number and let P ∈ Q[X] be any irreducible poly-

nomial of degree p which has 2 conjugate complex roots, x1, x2, and p−2 real roots,

x3, . . . , xp. Let us denote by K = Q(x1, . . . , xp) the subfield of C generated by the

roots of P . We identify Gal(K/Q) with a subgroup of Sp.

a) Show that the transposition τ = (1, 2) belongs to Gal(K/Q). (Think about the

complex conjugation.)

b) Show that Gal(K/Q) contains a p-cycle σ.

c) Show that σ and τ generate Sp. Conclude that Gal(K/Q) = Sp.

d) Application: P = X5−6X+3. (To prove that P is irreducible, use Exercise 1.10

or reduce mod 5.)

Exercise 5.6 (Artin-Schreier’s theory). Let p be a prime number. Let K be

a field of characteristic p and let a ∈ K. We assume that the polynomial P =

Xp − X − a has no root in K. Let K ⊂ L be any splitting extension of P .

a) If x is a root of P in L, show that the roots of P are x, x+1, x+2, . . . , x+p−1.

In particular, P is separable.

b) Show that P is irreducible in K[X]. (If a degree d polynomial Q divides P , look

at the term of degree d − 1 in Q.)

c) (Another proof that P is irreducible.) Let x + u (for 1 � u < p) be another

root of the minimal polynomial of x over K. Show that there is τ ∈ Gal(L/K) with

τ(x) = x + u. Deduce from this that there is some σ ∈ Gal(L/K) such that σ(x) =

x + 1, hence that all roots of P are conjugates of x. Conclude.

d) Show that L = K[x] and that Gal(L/K) � Z/pZ.

Exercise 5.7 (Cyclic extensions of degree p in characteristic p). Let K be a

field of characteristic p > 0, and let K ⊂ L be a finite Galois extension with Galois

group Z/pZ. Let σ be a generator of Gal(L/K).

a) Show the existence of t ∈ L such that
p−1∑
i=0

σi(t) = 1.

Then, set x =
p−1∑
i=0

iσi(t).

b) Compute σ(x). Show that x �∈ K but that a = xp − x belongs to K.

c) Show that L = K[x] and that Xp − X − a is the minimal polynomial of x

over K.

Exercise 5.8. In this exercise, we will determine the Galois group over Q of the

polynomial P = X7 − X − 1, using reduction modulo primes.

a) Show that P has no root in the finite field F8. Deduce that it is irreducible,

when viewed as a polynomial over F2.
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b) Show that the only roots of P in F9 are the roots of the polynomial X2 +X−1,

and that they are simple. Conclude that over F3, P splits as the product of two

irreducible polynomials of degrees 2 and 5.

c) Show that the Galois group of P over the field of rational numbers contains a

7-cycle and a transposition, hence that it is isomorphic to the symmetric group S7.

Remark. In fact, for any integer n, the Galois group of the polynomial Xn − X − 1

over Q is equal to Sn. You may try to prove this by analogous methods for small val-

ues of n. If you find the computations too hard, do not hesitate to rely on computer

algebra systems, for they often provide routines to factor polynomials modulo prime

numbers. For example, the answer to the first question is obtained in less than 1 ms

by entering factormod(x^7-x-1,2) in Pari/Gp, or Factor(x^7-x-1) mod 2 in

Maple.

Exercise 5.9 (Another proof of Theorem 5.4.2). Let K ⊂ L be a finite exten-

sion of degree n � 2. Assume that it is Galois and that its Galois group is generated

by σ ∈ Gal(L/K). Assume moreover that card µn(K) = n.

a) Show that σ : L → L is a morphism of K-vector spaces, and that its eigenvalues

are nth roots of unity.

b) Show that L is the direct sum of the eigenspaces Lζ = {x ∈ L ; σ(x) = ζx}, for

ζ ∈ µn(K).

c) If y ∈ Lζ \ {0}, show that the map x → x/y is an injective K-linear map

Lζ → L1.

d) Show that L1 = K and conclude that dim Lζ = 1 for any ζ ∈ µn(K). In

particular, if ζ is any primitive nth root of unity, there is a nonzero element x ∈ L∗

such that σ(x) = ζx.

Exercise 5.10. Let K ⊂ E be a splitting extension of an irreducible separable

polynomial P ∈ K[X]. Assume that P has degree n and let x1, . . . , xn denote the

roots of P in E. One assumes moreover that Gal(E/K) is cyclic; let σ be a generator.

a) Show that [E : K] = n.

b) Assume that card µn(K) = n. For any nth root of unity ζ ∈ K, define a

Lagrange’s resolvent by

R(ζ) = x1 + ζσ(x1) + · · · + ζn−1σ(n−1)(x1).

Show that R(1) ∈ K. For any ζ ∈ µn(K), show that R(ζ)n ∈ K.

c) Show that E is generated by the R(ζ) for ζ ∈ µn(K).

d) If n is a prime number, show that there is j ∈ {1, . . . , n − 1} such that E =

K( n
√

R(ζ)n).

Exercise 5.11. Let K be a field and consider a polynomial P = Xn − a, for some

a ∈ K∗. Assume that n is not a multiple of the characteristic of K and observe

that P is separable.
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a) Let L be a splitting extension of K. Show that L contains a primitive nth root

of unity ζ. Let K1 = K(ζ) and write µn = µn(K1).

If m ∈ Z is prime to n, show that the map u → um is an automorphism of µn.

Show conversely that any automorphism of µn is of this form. Conclude that there

is an isomorphism (Z/nZ)∗ � Aut(µn).

b) Show that the extensions K ⊂ K1 and K1 ⊂ L are Galois, and that their Galois

groups are naturally subgroups A ⊂ (Z/nZ)∗ and B ⊂ µn. (Fix x ∈ L with xn = a

and look at the action of Gal(L/K) on x and ζ.)

c) Show that the isomorphism of Question b) restricts to a morphism ϕ : A →
Aut(B) and prove that Gal(L/K) is isomorphic to the semi-direct product A �ϕ B.

d) Assume that [K1 : K] is prime to n and that P is irreducible over K. Show

that P is still irreducible over K1 and that B = µn.

e) Numerical application: K = Q and P = X7 − 2. Show that Gal(L/K) has

order 42 and is isomorphic to the group of permutations of Z/7Z of the form n →
an + b for a ∈ (Z/7Z)∗ and b ∈ Z/7Z.

Exercise 5.12. This exercise proposes a Galois-theoretic proof of the fundamental

theorem of algebra.

Let R ⊂ K be a Galois extension of the field of real numbers containing the field

of complex numbers C. Let G = Gal(K/R) and let P be a 2-Sylow subgroup of G.

Set card P = 2n.

a) Using the fact that R has no finite extension of odd degree, show that G = P .

b) Let P1 = Gal(K/C). By Lemma 5.1.3, P has a normal series

{1} = Pn ⊂ · · · ⊂ P2 ⊂ P1 ⊂ P

with (Pj+1 : Pj) = 2 for any j. Define Kj = KPj . Show that the extension Kj ⊂
Kj+1 is a quadratic extension. Using the fact that any complex number is a square,

show that n = 1, hence K = C.

Exercise 5.13. This exercise will let you prove Theorem 5.1.1 without any group

theory, using instead ideas from the second proof of the fundamental theorem of

algebra.

Let z be any algebraic number, and assume that the degree of the extension of Q

generated by its conjugates z1, . . . , zd is a power of 2.

Observe that d is itself a power of 2. By induction on d, prove as follows that z

is constructible.

a) Fix c ∈ Q, set zi,j,c = zi +zj +czizj and Qc =
∏
i<j

(X−zi,j,c). Show that Qc is a

polynomial with rational coefficients, and that the degrees of its irreducible factors

are powers of 2. Show that at least one of these degrees divides d/2, hence that there

are i < j such that zi + zj + czizj is constructible.

b) Show that there are i and j such that zi+zj and zizj are constructible. Conclude

that zi and zj are both constructible.

c) Show that z is constructible.
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Exercise 5.14. Let n be an integer, with n � 5. Let K ⊂ L be a finite Galois

extension with Galois group Sn.

a) Show that there is only one quadratic extension K ⊂ K1 contained in L. What

is the Galois group of the extension K1 ⊂ L? (Use Exercise 4.17.)

b) Show that the degree of any x ∈ L \ K1 is at least n.

Exercise 5.15. Let K be a field, and let ϕ : K → k ∪ {∞} be a place of K. Recall

that we defined the valuation ring of ϕ as the set A = {x ∈ K ; ϕ(x) �= ∞}.
a) Show also that for any x ∈ K \ {0}, either x or 1/x belongs to A (this is the

general definition of a valuation ring).

b) Let m = ϕ−1(0). Show that m is an ideal of A and that an element a ∈ A is

invertible in A if and only if a �∈ m.

c) Deduce from this that m is the unique maximal ideal in A, that A/m is a field,

and that ϕ induces a field homomorphism A/m → k.

d) In the two examples given in the text (Example 5.8.2), show that the ideal m

is generated by one element π. Show moreover that any ideal in A is generated by

a power of π. (In fact, one can set π = p in case a) and π = X − α in case b).) In

particular, in these two cases, the ring A is a principal ideal ring.

Exercise 5.16. Let K be a field and let A be a subring in K. Fix an algebraic

closure Ω of K. One says that an element x ∈ Ω is integral over A if there is a

monic polynomial P ∈ A[X] such that P (x) = 0.

a) Let x and y be two elements in Ω which are integral over A. Let P and Q ∈ A[X]

be monic polynomials such that P (x) = Q(y) = 0. Factor P and Q in Ω as

P =

n∏
i=1

(X − xi) and Q =

m∏
j=1

(X − yj).

Show that the coefficients of the polynomial R =
∏
i,j

(X − xi − yj) belong to A.

(Write R =
∏
i

Q(X−xi) and use the theorem on symmetric polynomials.) Conclude

that x + y is integral over A. Similarly, show that xy is integral over A.

b) Show that the set of elements of Ω which are integral over A form a subring

of Ω.

c) Assume that A is a valuation ring. Show that an element x ∈ K is integral

over A if and only if x ∈ A. (“A valuation ring is integrally closed.”)

d) Let P and Q be two monic polynomials in K[X]. Assume that P ∈ A[X] and

that Q divides P in K[X]. Show that the coefficients of Q are integral over A.

e) Assuming that A is a valuation ring, conclude that Q ∈ A[X]. (“Gauss’s lemma

for valuation rings.”)




