
Nonlinear Optimization in Modeling
Environments
Software Implementations for Compilers, Spreadsheets,

Modeling Languages, and Integrated Computing

Systems

Janos D. Pinter

Pinter Consulting Services, Inc.
129 Gienforest Drive, Halifax, NS, Canada B3M 1J2
jdpinterQhfX.eastlink.ca

http://www.pinterconsulting.com

Summary. We present a review of several professional software products that serve
to analyze and solve nonlinear (global and local) optimization problems across a va
riety of hardware and software environments. The product versions discussed have
been implemented for compiler platforms, spreadsheets, algebraic (optimization)
modeling languages, and for integrated scientific-technical computing systems. The
discussion highlights some of the key advantages of these implementations. Test ex
amples, well-known numerical challenges and client applications illustrate the usage
of the current software versions.

K e y words : nonlinear (convex and global) optimization; LGO solver suite
and its implementations; compiler platforms, spreadsheets, optimization mod
eling languages, scientific-technical computing systems; illustrative applica
tions and case studies.

2 0 0 0 M R S u b j e c t Class i f icat ion. 65K30, 90C05, 90C31.

1 Introduction

Nonlinearity is literally ubiquitous in the development of natural objects, for
mations and processes, including also living organisms of all scales. Conse
quently, nonlinear descriptive models - and modeling paradigms even beyond
a straightforward (analytical) function-based description - are of relevance in
many areas of the sciences, engineering, and economics. For example, [BM68,
Ric73, EW75, Man83, Mur83, Cas90, HJ91 , Sch91, BSS93, Ste95, Gro96,
PSX96, Pin96a, Ari99, Ber99, Ger99, LafOO, PWOO, CZOl, EHLOl, JacOl,

148 J.D. Pinter

Sch02, TS02, W0IO2, Diw03, Zab03, Neu04b, HL05, KP05, Pin05a, Pin05b] -
as well as many other authors - present discussions and an extensive repertoire
of examples to illustrate this point.

Decision-making (optimization) models that incorporate such a nonlinear
system description frequently lead to complex models that (may or prov-
ably do) have multiple - local and global - optima. The objective of global
optimization (GO) is to find the "absolutely best solution of nonlinear opti
mization (NLO) models under such circumstances.

The most important (currently available) GO model types and solution
approaches are discussed in the Handbook of Global Optimization volumes,
edited by Horst and Pardalos [HP95], and by Pardalos and Romeijn [PR02].
As of 2004, over a hundred textbooks and a growing number of informative
web sites are devoted to this emerging subject.

We shall consider a general GO model form defined by the following in
gredients:

• X decision vector, an element of the real Euclidean n-space R^\
• f{x) continuous objective function, f \ R^ —^ R^\
• D non-empty set of admissible decisions, a proper subset of R^.

The feasible set D is defined by

• l^ u explicit, finite vector bounds of x (a "box" in R^)\
• g{x) m-vector of continuous constraint functions, g : R^ —^ R^,

Applying the notation introduced above, the continuous global optimiza
tion (CGO) model is stated as

min/(x) s.t. X belongs to (1)

D = {x:l<x< u,g{x) < 0}. (2)

Note that in (2) all vector inequalities are meant component-wise (/, u,
are n-vectors and the zero denotes an m-vector). Let us also remark that the
set of the additional constraints g could be empty, thereby leading to - of
ten much simpler, although still potentially multi-extremal - box-constrained
models. Finally, note that formally more general optimization models (that
include also = and > constraint relations and/or explicit lower bounds on
the constraint function values) can be simply reduced to the canonical model
form (l)-(2). The canonical model itself is already very general: in fact, it triv
ially includes linear programming and convex nonlinear programming models
(under corresponding additional specifications). Furthermore, it also includes
the entire class of pure and mixed integer programming problems, since all
(bounded) integer variables can be represented by a corresponding set of bi
nary variables; and every binary variable y G {0,1} can be equivalently rep
resented by its continuous extension y G [0,1] and the non-convex constraint
y (l — ^) < 0 . Of course, we do not claim that the above approach is best - or

Nonlinear Optimization in Modeling Environments 149

even suitable - for "all" optimization models: however, it certainly shows the
generality of the CGO modeling framework.

Let us observe next that the above stated "minimal" analytical assump
tions already guarantee that the optimal solution set X* in the CGO model
is non-empty. This key existence result directly follows by the classical theo
rem of Weierstrass (that states the existence of the minimizer point (set) of a
continuous function over a non-empty compact set). For reasons of numerical
tract ability, the following additional requirements are also often postulated:

• D is a, full-dimensional subset ("body") in R^\
• the set of globally optimal solutions to (l)-(2) is at most countable;
• / and g (the latter component-wise) are Lipschitz-continuous functions on

[l,u]-

Note that the first two of these requirements support the development and
(easier) implementation of globally convergent algorithmic search procedures.
Specifically, the first assumption - i.e., the fact that D is the closure of its
non-empty interior - makes algorithmic search possible within the set D.
This requirement also imphes that e.g., nonhnear equality constraints need to
be directly incorporated into the objective function as discussed in [Pin96a],
Chapter 4.1.

With respect to the second assumption, let us note that in most well-
posed practical problems the set of global optimizers consists only of a single
point, or at most of several points. However, in full generality, GO models may
have even manifold solution sets: in such cases, software implementations will
typically find a single solution, or several of them. (There are theoretically
straightforward iterative ways to provide a sequence of global solutions.)

The third assumption is a sufficient condition for estimating /* on the basis
of a finite set of feasible search points. (Recall that the real-valued function
h is Lipschitz-continuous on its domain of definition D C R^, if \h{xi) —
h{x2)\ < L\\xi — X2II holds for all pairs xi G D^X2 G D; here L = L{D,h) is
a suitable Lipschitz-constant of h on the set D\ the inequality above directly
supports lower bound estimates on sets of finite size.) We emphasize that
the factual knowledge of the smallest suitable Lipschitz-constant - for each
model function - is not required, and in practice such information is typically
unavailable indeed.

Let us remark here that e.g., models defined by continuously diff"erentiable
functions / and g certainly belong to the CGO or even to the Lipschitz model
class. In fact, even such "minimal" smooth structure is not essential: since
e.g., "saw-tooth" like functions are also Lipschitz-continuous. This comment
also implies that CGO indeed covers a very general class of optimization
models. As a consequence of this generality, the CGO model class includes also
many extremely diflficult instances. To perceive this difficulty, one can think of
model-instances that would require "the finding of the lowest valley across a
range of islands" (since the feasible set may well be disconnected), based on an

150 J.D. Pinter

intelligent (adaptive, automatic), but otherwise completely "blind" sampling
procedure...

For illustration, a merely one-dimensional, box-constrained model is shown
in Fig. 1. This is a frequently used classical GO test problem, due to Shubert:
it is defined as

min Y^ k sm(k -\-(k + l)x) 10 < x < 10.
;c=i, . . . ,5

Fig. 1. One-dimensional, box-constrained CGO model

Model complexity may - and frequently will - increase dramatically, al
ready in (very) low dimensions. For example, both the amplitude and the
frequency of the trigonometric components in the model of Figure 1 could be
increased arbitrarily, leading to more and more difficult problems.

Furthermore, increasing dimensionality per se can lead to a tremendous
- theoretically exponential - increase of model complexity (e.g., in terms
of the number of local/global solutions, for a given type of multi-extremal
models). To illustrate this point, consider the - merely two-dimensional, box-
constrained, yet visibly challenging - objective function shown in Fig. 2 below.
The model is based on Problem 4 of the Hundred-Dollar, Hundred-Digit Chal
lenge Problems [Tre02], and it is stated as

min -̂̂ + exp(sin(50x)) - sin(10(x + y)) + sin(60 exp(y))

+ sin(70 sin(a;)) + sin(sin(802/))

- 3 < x < 3 - 3 < y < 3 .

Nonlinear Optimization in Modeling Environments 151

Fig. 2. Two-dimensional, box-constrained CGO model

'vif. f.v#; I f • /

/

Needless to say, not all - and especially not all practically motivated - CGO
models are as difficult as indicated by Figures 1 and 2. At the same time, we do
not always have the possibility to directly inspect and estimate the difficulty of
an optimization model, and perhaps unexpected complexity can be met under
such circumstances. An important case in point is when the software user
(client) has a confidential or otherwise visibly complex model that needs to
be analyzed and solved. The model itself can be presented to the solver engine
as an object code, dynamic fink hbrary (dll), or even as an executable program:
in such situations, direct model inspection is simply not an option. In many
other cases, the evaluation of the optimization model functions may require
the numerical solution of a system of differential equations, the evaluation of
special functions or integrals, the execution of a complex system of program
code, stochastic simulation, even some physical experiments, and so on.

Traditional numerical optimization methods - discussed in most topical
textbooks such as e.g. [BSS93, Ber99, CZOl] - search only for local optima.
This approach is based on the tacit assumption that a "sufficiently good" ini
tial solution (that is located in the region of attraction of the "true" solution)
is immediately available. Both Fig. 1 and Fig. 2 suggest that this may not al
ways be a realistic assumption . . . Models with less "dramatic" difficulty, but
in (perhaps much) higher dimensions also imply the need for global optimiza
tion. For instance, in advanced engineering design, models with hundreds or
thousands of variables and constraints are analyzed. In similar cases to those

152 J.D. Pinter

mentioned above, even an approximately completed, but genuine global (ex
haustive) search strategy may - and typically will - yield better results than
the most sophisticated local search approach when "started from the wrong
valley"...

2 A solver suite approach to practical global
optimization

The general development philosophy followed by the software implementa
tions discussed here is based on the seamless combination of rigorous (i.e.,
theoretically convergent) global and efficient local search strategies.

As it is well-known ([HT96, Pin96a]), the existence of vahd overestimates
of the actual (smallest possible) Lipschitz-constants, for / and for each compo
nent of ^ in the model (l)-(2), is sufficient to guarantee the global convergence
of suitably defined adaptive partition algorithms. In other words, the applica
tion of a proper branch-and-bound search strategy (that exploits the Lipschitz
information referred to above) generates a sequence of sample points that con
verges exactly to the (unique) global solution x* = {-̂ *} of the model instance
considered. If the model has a finite or countable number of global solutions,
then - theoretically, and under very general conditions - sub-sequences of
search points are generated that respectively converge to the points of X*.
For further details related to the theoretical background, including also a de
tailed discussion of algorithm implementation aspects, consult [Pin96a] and
references therein.

In numerical practice, deterministically guaranteed global convergence
means that after a finite number of search steps - i.e., sample points and
corresponding function evaluations - one has an incumbent solution (with a
corresponding upper bound of the typically unknown optimum value), as well
as a verified lower bound estimate. Furthermore, the "gap" between these es
timates converges to zero, as the number of generated search points tends to
infinity. For instance, interval arithmetic based approaches follow this avenue:
consult, e.g., [RR95, Kea96, Neu04b]; [CK99] review a number of successful
applications of rigorous search methods.

The essential difficulty of applying such rigorous approaches to "all" GO
models is that their computational demand typically grows at an exponential
pace with the size of the models considered. For example, the Lipschitz infor
mation referred to above is often not precise enough: "carefree" overestimates
of the best possible (smallest) Lipschitz-constant lead to a search procedure
that will, in effect, be close in efficiency to a passive uniform grid search. For
this reason, in a practical GO context, other search strategies also need to be
considered.

It is also well-known that properly constructed stochastic search algo
rithms also possess general theoretical global convergence properties (with
probability 1): consult, for instance, the review of [BR95], or [Pin96a]. For a

Nonlinear Optimization in Modeling Environments 153

very simple example that illustrates this point, one can think of a pure ran
dom search mechanism applied in the interval l<x<u to solve the CGO model:
this will eventually converge, if the "basin of attraction" of the (say, unique)
global optimizer x* has a positive volume. In addition, stochastic sampling
methods can also be directly combined with search steps of other - various
global and efficient local - search strategies, and the overall global convergence
of such strategies will be still maintained. The theoretical background of sto
chastic "hybrid" algorithms is discussed by [Pin96a]. The underlying general
convergence theory of such combined methods allows for a broad range of im
plementations. In particular, a hybrid optimization program system supports
the flexible usage of a selection of component solvers: one can execute a fully
automatic global or local search based optimization run, can combine solvers,
and can also design various interactive runs.

Obviously, there remains a significant issue regarding the (typically un
foreseeable best) "switching point" from strategy to strategy: this is however,
unavoidable, when choosing between theoretical rigor and numerical efficiency.
(Even local nonlinear solvers would need, in theory, an infinite iterative pro
cedure to converge, except in idealized special cases.) For example, in the
stochastic search framework outlined above, it would suffice to find just one
sample point in the "region of attraction" of the (unique) global solution x*,
and then that solution estimate could be refined by a suitably robust and
efficient local solver. Of course, the region of attraction of x* (e.g., its shape
and relative size) is rarely known, and one needs to rely on computationally
expensive estimates of the model structure (again, the reader is referred, e.g.,
to the review of [BR95]). Another important numerical aspect is that one loses
the deterministic (lower) bound guarantees when applying a stochastic search
procedure: instead, suitable statistical estimation methods can be applied,
consult [Pin96a] and topical references therein. Again, the implementation of
such methodology is far from trivial.

To summarize the discussion, there are good reasons to apply various
search methods and heuristic global-to-local search "switching points" with a
reasonable expectation of numerical success. Namely,

• one needs to apply proper global search methods to generate an initial
good "coverage" of the search space;

• it is also advantageous to apply quality local search that enables the fast
improvement of solution estimates generated by a preceding global search
phase;

• using several - global or local - search methods based on different theoret
ical strategies, one has a better chance to find quality solutions in difficult
models (or ideally, confirm the solution by comparing the results of several
solver runs);

• one can always place more or less emphasis on rigorous search vs. efficiency,
by selecting the appropriate solver combination, and by allocating search
effort (time, function evaluations);

154 J.D. Pinter

• we often have a priori knowledge regarding good quality solutions, based on
practical, model-specific knowledge (for example, one can think of solving
systems of equations: here a global solution that "nearly" satisfies the
system can be deemed as a sufficiently good point from which local search
can be directly started);

• practical circumstance and resource limitations may (will) dictate the use
of additional numerical stopping and switching rules that can be flexibly
built into the software implementation.

Based on the design philosophy outlined - that has been further confirmed
and dictated by practical user demands - we have been developing for over
a decade nonlinear optimization software implementations that are based on
global and local solver combinations. The currently available software prod
ucts will be briefly discussed below with illustrative examples; further related
work is in progress.

3 Modeling systems and user demands

Due to advances in modeling, optimization methods and computer technol
ogy, there has been a rapidly growing interest towards modeling languages
and environments. Consult, for example, the topical Annals of Operations Re
search volumes [MM95, MMS97, VMMOO, CFOOl], and the volume [Kal04].
Additional useful information can be found, for example, at the web sites
[Fou04, MS04, Neu04a].

Prominent examples of widely used modeling systems that are focused on
optimization include AIMMS ([PDT04]), AMPL ([FGK93]), GAMS ([BKM88]),
the Excel Premium Solver Platform ([FSOl]), ILOG ([104]), the LINDO Solver
Suite ([LS96]), MPL ([MS02]), and TOMLAB ([TO04]). (Please note that the
literature references cited may not always reflect the current status of the
modeling systems listed: for the latest information, contact the developers
and/or visit their website.)

In addition, there exists also a large variety of core compiler platform-
based solver systems with some built-in model development functionality: in
principle, these all can be linked to the modeling languages listed above. At
the other end of the spectrum, there is also signiflcant development related
to fully integrated scientific and technical computing (ISTC) systems such as
Maple ([M04a]), Mathematica ([WR04]), and MATLAB ([TM04]). The ISTCs
also incorporate a growing range of optimization-related functionality, supple
mented by application products.

The modeling environments listed above are aimed at meeting the needs
and demands of a broad range of clients. Major client groups include educa
tional users (instructors and students); research scientists, engineers, econo
mists, and consultants (possibly, but not necessarily equipped with an in-
depth optimization related background); optimization experts, vertical appli
cation developers, and other "power users". Obviously, the user categories

Nonlinear Optimization in Modeling Environments 155

listed above are not necessarily disjoint: e.g., someone can be an expert re
searcher and software developer in a certain professional area, with a perhaps
more modest optimization expertise. The pros and cons of the individual
software products - in terms of ease of model prototyping, detailed code de
velopment and maintenance, optimization model processing tools, availability
of solvers and other auxiliary tools, program execution speed, overall level of
system integration, quality of related documentation and support - make such
systems more or less attractive for the user groups listed.

It is also worth mentioning at this point that - especially in the context
of nonlinear modeling and optimization - it can be a salient idea to tackle
challenging problems by making use of several modeling systems and solver
tools, if available. In general, dense NLO model formulations are far less easy
to "standardize" than linear or even mixed integer linear models, since one
typically needs an explicit, specific formula to describe a particular model
function. Such formulae are relatively straightforward to transfer from one
modehng system into another: some of the systems hsted above even have such
built-in converter capabilities, and their syntaxes are typically quite similar
(whether it is x**2 or x^, sin(x) or Sin[x], bernouni(n,x) or BernoulliB[n,x],
and so on).

In subsequent sections we shall summarize the principal features of sev
eral current nonlinear optimization software implementations that have been
developed with quite diverse user groups in mind. The range of products re
viewed in this work includes the following:

• LGO Solver System with a Text I/O Interface
• LGO Integrated Development Environment
• LGO Solver Engine for Excel
• MathOptimizer Professional (LGO Solver Engine for Mathematica)
• Maple Global Optimization Toolbox (LGO Solver Engine for Maple).

We will also present relatively small, but non-trivial test problems to il
lustrate some of the key functionality of these implementations.

Note that all software products discussed are professionally developed and
supported, and that they are commercially available. For this reason - and
also in line with the objectives of this paper - some of the algorithmic tech
nical details are only briefly mentioned. Additional technical information is
available upon request; please consult also the publicly available references,
including the software documentation and topical web sites.

In order to keep the length of this article within reasonable bounds, further
product implementations not discussed here are

• LGO Solver Engine for GAMS
• LGO Solver Engine for MPL
• TOMLAB/LGO for MATLAB
• MathOptimizer for Mathematica.

156 J.D. Pinter

With respect to these products, consult e.g. the references [Pin02a, PK03,
KP04b, KP05, PHGE04, PK05].

4 Software implementat ion examples

4.1 LGO solver system with a text I /O interface

The Lipschitz Global Optimizer (LGO) software has been developed and used
for more than a decade (as of 2004). Detailed technical descriptions and user
documentation have appeared elsewhere: consult, for instance, [Pin96a, Pin97,
PinOla, Pin04], and the software review [BSOO]. Let us also remark here that
LGO was chosen to illustrate global optimization software (in connection with
a demo version of the MPL modeling language) in the well-received textbook
[HL05].

Since LGO serves as the core of most current implementations (with the
exception of one product), we will provide its somewhat more detailed de
scription, followed by concise summaries of the other platform-specific imple
mentations.

In accordance with the approach advocated in Section 2, LGO is based on
a seamless combination of a suite of global and local scope nonlinear solvers.
Currently, LGO includes the following solver options:

• adaptive partition and search (branch-and-bound) based global search
(BB)

• adaptive global random search (single-start) (GARS)
• adaptive global random search (multi-start) (MS)
• constrained local search (generalized reduced gradient method) (LS).

The global search methodology was discussed briefly in Section 2; the well-
known GRG method is discussed in numerous textbooks, consult e.g. [EHLOl].
Note that in all three global search modes the model functions are aggregated
by an exact penalty function. By contrast, in the local search phase all model
functions are considered and treated individually Note also that the global
search phases are equipped with stochastic sampling procedures that support
the usage of statistical bound estimation methods.

All LGO search algorithms are derivative-free: specifically, in the local
search phase central differences are used to approximate gradients. This choice
reflects again our objective to handle (also) models with merely computable,
continuous functions, including "black box" systems.

The compiler-based LGO solver suite is used as an option linked to various
modeling environments. In its core text I/O based version, the application-
specific LGO executable program (that includes a driver file and the model
function file) reads an input text file that contains all remaining application
information (model name, variable and constraint names, variable bounds
and nominal values, and constraint types), as well as a few key solver options

Nonlinear Optimization in Modeling Environments 157

(global solver type, precision settings, resource and time limits). Upon com
pleting the LGO run, a summary and a detailed report file are available. As
can be expected, this LGO version has the lowest demands for hardware, it
also runs fastest, and it can be directly embedded into vertical and proprietary
user applications.

4.2 LGO integrated development environment

LGO can be also equipped - as a readily available implementation option -
with a simple, but functional and user-friendly MS Windows interface. This
enhanced version is referred to as the LGO Integrated Development Environ
ment (IDE). The LGO IDE provides a menu that supports model develop
ment, compilation, linking, execution, and the inspection of results. To this
end, a text editor is used that can be chosen optionally such as e.g. the freely
downloadable ConTEXT and PFE editors, or others. Note here that even the
simple Notebook Windows accessory - or the more sophisticated and still free
Metapad text editor - would do. The IDE also includes external program call
options and two concise help files: the latter discuss global optimization basics
and the main application development steps when using LGO.

As already noted, this LGO implementation is compiler-based: user models
can be connected to LGO using one of several programming languages on
personal computers and workstations. Currently supported platforms include
essentially all professional Fortran 77/90/95 and C compilers and some others:
prominent examples are Borland C /C++ and Delphi, Compaq/Digital Visual
Fortran; Lahey Fortran 77/90/95; Microsoft Visual Basic and C/C++; and
Salford Fortran 77/95. Other customized versions can also be made available
upon request, especially since the vendors of development environments often
expand the list of compatible platforms.

This LGO software implementation (in both versions discussed above)
fully supports communication with sophisticated user models, including en
tirely closed or confidential "black box" systems. These LGO versions are
particularly advantageous in application areas, where program execution (so
lution) speed is a major concern: in the GO context, many projects fall into
this category. The added features of the LGO IDE can also greatly assist in
educational and research (prototyping) projects.

LGO deliveries are accompanied by an approximately 60-page User Guide.
In addition to installation and technical notes, this document provides a brief
introduction to GO; describes LGO and its solvers; discusses the model de
velopment procedure, including modeling and solution tips; and reviews a list
of applications. The appendices provide examples of the user (main, model,
and input parameter) files, as well as of the resulting output files; connectivity
issues and workstation implementations are also discussed.

For a simple illustration, we display below the LGO model function file
(in C format), and the input parameter file that correspond to a small, but

158 J.D. Pinter

not quite trivial GO model (this is a constrained extension of Shubert's model
discussed earlier):

min 2_] ^ sm{k + (/c + l)x)
/c=l , . . . ,5

s.t. x^ + 3x + sin(x) < 6, 10 < x < 10.

Both files are slightly edited for the present purposes. Note also that in the
simplest usage mode, the driver file contains only a single statement that calls
LGO: therefore we skip the display of that file. (Additional pre- and post-
solver manipulations can also be inserted in the driver file: this can be useful
in various customized applications.)

Model function file

#include <s td l ib .h>
#include <stdio.h>
#include<math.h>

_ s t d c a l l USER _FCT(double x[] , double f o x [l] , double gox[])
{
fox[0] = s i n (l . + 2.*x[0]) + 2 .* s in (2 . + 3.*x[0]) + 3 . * s i n (3 .

+ 4 .*x[0]) + 4 . * s i n (4 . + 5.*x[0]) + 5 .* s in (5 . + 6 .*x[0]) ;
gox[0]=-6.+ pow(x[0],2.) -f s in (x [0]) + 3 .*x[0] ;
r e t u r n 0;
}

Input parameter file

Model Descriptors
LGO Model

1

1

Variable names

ModelName

Number of Variables

Number of Constraints

Lower Bounds Nomimal Values Upper Bounds

X -10. 0. 10.

ObjFct ! Objective Function Name

Constraint Names and Constraint Types (0 for ==, -1 for <=)

Constraint1 -1

! SOLVER OPTIONS AND PARAMETERS —

1 ! Operational modes 0: LS; 1: BB+LS; 2: GARS

! +LS; 3: MS+LS

2000 ! Maximal no. of fct evals in global search

! phase

400 ! Maximal no. of fct evals in global search

! w/o improvement

Nonlinear Optimization in Modeling Environments 159

-1000000.

-1000000.

0.000001

0.000001

0.000001

0

300

Constraint penalty multiplier

Target objective fimction value in global

search phase

Target objective function value in local

search phase

Merit function precision improvement

threshold in local search phase

Constraint violation tolerance in local

search phase

Kuhn-Tucker local optimality conditions

tolercince in local search phase

Built-in random number generator seed value

Program execution time limit (seconds)

997

-14.8379500257

-1.1140996879

Summary result file

LGO Solver Results Summary
Model name: LGO Model

Total number of function evaluations

Objective function: ObjFct

Solution vector components

1 X

C o n s t r a i n t f u n c t i o n v a l u e s a t optimum e s t i m a t e
1 C o n s t r a i n t 1 -8 .9985950759
S o l v e r s t a t u s i n d i c a t o r v a l u e 4 TERMINATED BY

SOLVER
Model s t a t u s i n d i c a t o r v a l u e 1 GLOBALLY OPTIMAL

SOLUTION FOUND
LGO s o l v e r sys tem e x e c u t i o n t i m e (s e c o n d s) 0 . 0 1
For a d d i t i o n a l r u n t i m e i n f o r m a t i o n , p l e a s e c o n s u l t t h e
LGO.OUT f i l e .

LGO a p p l i c a t i o n run comple t ed .

4 .3 L G O so lve r e n g i n e for E x c e l u s e r s

The LGO global solver engine for Microsoft Excel has been developed in
cooperation with Frontline Systems [FSOl]. For details on the Excel Solver
and the currently available advanced engine options visit Frontline's web site
(www.solver.com). The site contains useful information, including for instance,
tutorial material , modeling tips, and various spreadsheet examples. The User
Guide provides a brief introduction to all current solver engines; discusses the
diagnosis of solver results, solver options and reports; and it also contains
a section on Solver VBA functions. Note t ha t this information can also be
invoked through Excel's on-line help system. In this implementation, LGO
is a field-installable Solver Engine tha t seamlessly connects to the Premium

160 J.D. Pinter

Solver Platform: the latter is fully compatible with the standard Excel Solver,
but it has enhanced algorithmic capabilities and features.

LGO for Excel, in addition to continuous global and local capabilities,
also provides basic support for handling integer variables: this feature has
been implemented - as a generic option for all advanced solver engines - by
Frontline Systems.

The LGO solver options available are essentially based on the stand-alone
"silent" version of the software, with some modifications and added features.
The LGO Solver Options dialog, shown by Fig. 3, allows the user to control
solver choices and several other settings.

Fig. 3. Excel/ LGO solver engine: solver options and parameters dialog

1 LGO Glob

i**i»b"f̂ 1 iTi'fK^l

lte.^-ation5:

Precisiofi:

Convergence;

Global C on ver*;;er!C e:

Global Phase Cutoff

Global Phd<e Iterations:

Global Pha$e Iterations
vAT'/oImprovrrrien!::

Local '̂Hcive Cutoff:

Random S

r Sahovv

r n>>3 A

r Assun

r Bvf»a>

eed:

Iter'ation Pesuits

jtorrtatic Scaling

fe Mon-Negative

s Solver Repo?i:s

S m » J \ : \ llJSl
ilOO st^conds

jaoGoooi

|o.oooi

|0.00,

[T
[soij

piiTTo

OK :

Gance!

Integer Options... j

LoadHodel...

5av6 Model...

H-̂ t'

1'?'?'?

LGC> Search Optiorss

*'"' local Search fforn f-iomirual Solution

^* î Glofeai Branch Sc'Bourjd;

("' Global Ad.3pti''/e Random Search

^" Global Multji-.t:arl Searc^J

Nonlinear Optimization in Modeling Environments 161

To illustrate the usage of the Excel/LGO implementation, we shall present
and solve the Electrical Circuit Design (ECD) test problem. The ECD model
has been extensively studied in the global optimization literature, as a well-
known computational challenge: see, e.g., [RR93], with detailed historical
notes and further references.

In the ECD problem, a bipolar transistor is modeled by an electrical cir
cuit: this model leads to the following square system of nonlinear equations

ak{x) = 0 A: = 1,...,4; bk{x) = 0 A: = 1,...,4; c{x) = 0.

The individual equations are defined as follows:

ak{x) = {1- xiX2)x3{exp[x5{gik - gskXj - QbkXs)] - 1} - 9bk + 9AkX2,

bk{x) = {l- xiX2)a;4{exp[x6(pifc - g2k - gskx? + gAkXg)] - 1} - 95kXi + g^k

fc = l , . . . , 4 ;

c{x) = X1X3 — X2X4.

By assumption, the vector variable x belongs to the box region [0,10] . The
numerical values of the constants p /̂e,f = l, . . . ,5,A: = l , . . . , 4 are listed in the
paper of Ratschek and Rokne [RR93], and will not be repeated here. (Note
that, in order to make the model functions more readable, several constants
are simply aggregated in the above formulae, when compared to that paper.)

To solve the ECD model rigorously, Ratschek and Rokne applied a com
bination of interval arithmetic, subdivision and branch-and-bound strategies.
They concluded that the rigorous solution was extremely costly (billions of
model function evaluations were needed), in order to arrive at a guaranteed
interval (i.e., embedding box) estimate that is component-wise within at least
10-4 precision of the postulated approximate solution:

X* = (0.9,0.45,1.0,2.0,8.0,8.0,5.0,1.0,2.0).

Obviously, by taking e.g. the Euclidean norm of the overall error in the
model equations, the problem of finding the solution can be formulated as a
global optimization problem. This model has been set up in a demo spread
sheet, and then solved by the Excel LGO solver engine. The numerical solution
found by LGO - directly imported from the answer report - is shown below:

Microsoft Excel 10.0 Answer Report
Worksheet: [CircuitDesign_9^9.XLS] Model
Report Created: 12/16/2004
12:39:29 AM
Result: Solver found a solution. All constraints and

optimality conditions are satisfied.

162 J.D. Pinter

Engine: LGO Global Solver

Target Gel]
Cell

B21

Adjustable

Cell

D10

D11

D12

D13
D14

D15

D16

D17

D18

. (Min)
Name

objective

Cells

Name

x_l
x_2
x_3
x_4
x^5
x_6
x_7
x_8
x_9

Original Value Final Value

767671534.2

Original

1
2
3
4
5
6
7
8
9

Value

9.02001E-11

Final Value

0.900000409
0.450000021

1.000000331

2.000001476

7.999999956

7.999998226
4.999999941

1.000000001
1.999999812

The error of the solution found is within 10"^ to the verified solution, for
each component. The numerical solution of the ECD model in Excel takes less
than 5 seconds on a personal computer (Intel Pentium 4, 2.4 GHz processor,
512 Mb RAM). Let us note that we have solved this model also using core
LGO implementations with various C and Fortran compilers, with essentially
identical success (in about a second or less). Although this finding should not
lead per se to overly optimistic claims, it certainly shows the robustness and
efiiciency of LGO in solving this particular (non-trivial) example.

4.4 MathOptimizer Professional

Mathematica is an integrated environment for scientific and technical com
puting. This ISTC system supports functional, rule-based and procedural
programming styles. Mathematica also offers advanced multimedia (graphics,
image processing, animation, sound generation) tools, and it can be used to
produce publication-quality documentation. For further information, consult
the key reference [WolOS]; the website www.wolfram.com provides detailed
information regarding also the range of other products and services related to
Mathematica.

MathOptimizer Professional ([PK03]), combines the model development
power of Mathematica with the robust performance and efficiency of the LGO
solver suite. To this end, the general-purpose interface MathLink is used that
supports communication between Mathematica and external programs. The
functionality of MathOptimizer Professional is summarized by the following
stages (note that all steps are fully automatic, except - obviously - the first
one):

• model formulation in Mathematica

Nonlinear Optimization in Modeling Environments 163

• translation of the Mathematica optimization model into C or Fortran code,
to generate the LGO model function file

• generation of the LGO input parameter file
• compilation of the C or Fortran model code into object code or dynamic

link library (dll): this step makes use of a corresponding compiler
• call to the LGO solver engine: the latter is typically provided as object

code or an executable program that is now linked together with the model
function object or dll file

• numerical solution and report generation by LGO
• report of LGO results back to the calUng Mathematica notebook.

A "side-benefit" of using MathOptimizer Professional is that the Math
ematica models formulated are automatically translated into C or Fortran
format: this feature can be put to good use in a variety of contexts. (For ex
ample, the LGO model function and input parameter file examples shown in
Section 4.2 were generated automatically.)

Let us also remark that the approach outlined supports "only" the solu
tion of models defined in Mathematica that can be directly converted into C
or Fortran program code. Of course, this model category still allows the han
dling of a broad range of optimization problems. The approximately 150-page
MathOptimizer Professional manual is a "live" (notebook) document that can
be directly invoked through Mathematica''s on-line help system. In addition
to basic usage description, the User Guide also discusses a large number of
simple and more challenging test problems, and several realistic application
examples in detail.

As an illustrative example, we will present the solution of a new - and
rather difficult - object packing model: we wish to find (numerically) the
"best" non-overlapping arrangement of a set of non-uniform size circles in
an embedding circle. Notice that this is not a standard model type (unlike
uniform circle packings that have been studied for decades, yet still only spe
cial cases are solved to guaranteed optimality). Our approach can be directly
generalized to find essentially arbitrary object arrangements.

The best packing is defined here by a combination of two criteria: the
radius of the circumscribed circle, and the average pair-wise distance between
the centers of the embedded circles. The relative weight of the two objective
function components can be selected as a model-instance parameter.

Detailed numerical results are reported in [KP04a], for circles defined by
the sequence of radii ri — i'^'^.i = 1 , . . . , A/", up to A/" == 40-circle con
figurations. Observe that the required (pair-wise) non-overlapping arrange
ment leads to ^ 2~ non-convex constraints, in addition to 2N + 1 bound
constraints on the circle center and circumscribed radius decision variables.
Hence, in the 40-circle example, LGO solves this model with nearly 780 non-
convex constraints: the corresponding runtime is about 3.5 hours on a P4 1.6
GHz personal computer.

164 J.D. Pinter

As an illustration, the configuration found for the case of Â = 20 circles
is displayed in Fig. 4. In this example, equal consideration (weight) is given
to minimizing the radius of the circumscribed circle and the average distance
between the circle centers. As the picture shows, the circumscribed radius
is about 2.2: in fact, the numerical value found is ~2.1874712123. Detailed
results appeared and will appear in [KP04a] and [KP05], respectively.

Fig. 4. An illustrative non-uniform circle packing result for N = 20 circles with
radii ri \i=l,...,N

Let us also remark that we have attempted to solve instances of the same
circle packing problem applying the built-in Mathematica function NMinimize
for nonhnear (global) optimization, but - using it in all of its default solver
modes - it could not find a solution of acceptable quality already for the

Nonlinear Optimization in Modeling Environments 165

case N = 5. Again, this is just a numerical observation, as opposed to an
"all-purpose" conclusion, to illustrate the quality of the LGO solver suite. We
have also conducted detailed numerical studies that provide a more systematic
comparison of global solvers available for use with Mathematica: these results
will appear in [KP05].

Finally, let us mention that MathOptimizer Professional is included in a
recent peer review of optimization capabilities using Mathematica ([Cog03]).

4.5 Maple Global Optimization Toolbox

The integrated computing environment Maple [M04a] enables the develop
ment of sophisticated interactive documents that seamlessly combine technical
description, calculations, simple and advanced computing, and visualization.
Maple includes an extensive mathematical library: its more than 3,500 built-in
functions cover virtually all research areas in the scientific and technical dis
ciplines. Maple also incorporates numerous supporting features and enhance
ments such as e.g. detailed on-line documentation, a built-in mathematical
dictionary with definitions for more than 5000 mathematical terms, debug
ging tools, automated (ANSI C, Fortran 77, Java, Visual Basic and MATLAB)
code generation, and document production (including HTML, MathML, TeX,
and RTF converters). All these capabilities accelerate and expand the scope
of optimization model development and solution.

To emphasize the key features pertaining to advanced systems modeling
and optimization, a concise listing of these capabilities is provided below.
Maple

• supports rapid prototyping and model development
• performance scales well to modeling large, complex problems
• offers context-specific "point and click" (essentially syntax-free) opera

tions, including various "Assistants" (these are windows and dialogs that
help to execute various tasks)

• has an extensive set of built-in mathematical and computational functions
• has comprehensive symbolic calculation capabilities
• supports advanced computations with arbitrary numeric precision
• is fully programmable, thus extendable by adding new functionality
• has sophisticated visualization and animation tools
• supports the development of GUIs (by using "Maplets")
• supports advanced technical documentation, desktop publishing, and pre

sentation
• provides links to external software products.

Maple is portable across all major hardware platforms and operating sys
tems (Windows, Macintosh, Linux, and Unix versions). Without going into
further details that are outside of the scope of the present discussion, we refer
to the web site www.maplesoft.com that provides a wealth of further topical
information and product demos.

166 J.D. Pinter

The core of the recently released Global Optimization Toolbox (GOT) is
a customized implementation of the LGO solver suite for Maple [M04b]. To
this end, LGO was auto-translated into C code, and then fully integrated
with Maple. The advantage of this approach is that, in principle, the GOT
can handle all (thousands) of functions that are defined in Maple, including
their further extensions.

As an illustrative example, let us revisit Problem 4 posted by Trefethen
[Tre02]; recall Fig. 2 from Section 1. We can easily set up this model in Maple:

> f := exp(s in(50*xl))+sin(60*exp(x2))+sin(70*sin(xl))

+sin(s in(80*x2))-s in(10*(xl+x2)) + (xl^2+x2'^2)/4;

/ : = exp(sin(50xl)) + sin(60exp(x2)) + sin(70sin(xl)) + sin(sin(80x2))

- sin(10xl + 10x2) + - x l ^ + -x2'^

Now using the bounds [—3,3] for both variables, and applying the Global
Optimization Toolbox we receive the numerical solution:

> GlobalSolveCf, x l = - 3 . . 3 , x 2 = - 3 . . 3 , evaluationlimit=100000,
noimprovementlimit=100000);

[-3.30686864747523535, [xl = -0.0244030794174338178,

x2 - 0.210612427162285371]]

We can compare the optimum estimate found to the corresponding 40-digit
precision value as stated at the website http://web.comlab.ox.ac.uk/oucl/work
/nick.trefethen/hundred.html (of Trefethen). The website provides the 40-
digit numerical optimum value

-3.306868647 4752372800 7611377089 8515657166...

Hence, the solution found by the Maple GOT (using default precision settings)
is accurate to 15 digits.

It is probably just as noteworthy that one can find a reasonably good
solution even in a much larger variable range, with the same solution eff'ort:

> GlobalSolveCf, x l=-100. .100, x2=-100..100, eva lua t ion l imi t
=100000, noimprovementlimit=100000);

[-3.06433688275856530, [xl - -0.233457978266705634e- 1,

x2 = .774154819772443825]]

A partial explanation is that the shape of the objective function f is close
to quadratic, at least "from a distance". Note at the same time that the built-
in Maple local solver produces much inferior results on the larger region (and
it also misses the global optimum when using the variable bounds [—3,3], as
can be expected):

Nonlinear Optimization in Modeling Environments 167

> Minimize(f, x l=-100. .100, x2=-100..100);

[-.713074709310511201, [xl = -0.223022309405313465e- 1,

x2 = -0.472762143202519123e- 2]]

The corresponding GOT runtimes are a little more than one second in
both cases. (Note that all such runtimes are approximate, and may vary a
bit even between consecutive test runs, depending on the machine's actual
runtime environment).

One of the advantages of using ISTCs that one can visuahze models and
verify their perceived difficulty. Fig. 5 is based on using the Maple Optimiza
tion Plotter dialog, a feature that can be used in conjunction with the GOT:
it shows the box-constrained Trefethen model [Tre02] in the range [-3,3]^;
observe also the location of the optimal solution (green dot).

Fig. 5. Problem 4 in [Tre02] solved and visualized using the Maple GOT

B;0|itiiiiizatic>fi:;f*ld^| JSl

Ranges

Riangs of jxl ^ j = k

Risnge or |x2 -^J = [-3

Rar̂ ge of objsc-tjvs vstkies = {defauit

y Plot Using PtobJeiii Domaii-i

e-Arerr.a r^t 0.242807

sxtremaat -0.ij93323S

e;drerfia of -2.96667

r~ Plot Con t̂rcsirits I as SurTsices

168 J.D. Pinter

5 Further Applications

For over a decade, LGO has been applied in a variety of professional, as well as
academic research and educational contexts (in some 20 countries, as of 2004).
In recent years, LGO has been used to solve models in up to a few thousand
variables and constraints. The software seems to be particularly well-suited
to analyze and solve complex, sophisticated applications in advanced engi
neering, biotechnology, econometrics, financial modeling, process industries,
medical studies, and in various other areas of scientific modeling.

Without aiming at completeness, let us refer to some recent (published)
applications and case studies that are related to the following areas:

• model calibration ([PinOSa])
• potential energy models in computational chemistry ([PinOO, PinOlb]),

([SSPOl])
• laser design ([IPC03])
• cancer therapy planning ([TKLPL03])
• combined finite element modeling and optimization in sonar equipment

design ([PP03])
• Configuration analysis and design ([KP04b]).

Note additionally that some of the LGO software users develop other
advanced (but confidential) applications. Articles and numerical examples,
specifically related to various LGO implementations are available from the
author upon request. The forthcoming volumes ([KP05]; [Pin05a, Pin05b])
also discuss a large variety of GO applications, with extensive further refer
ences.

6 Conclusions

In this paper, a review of several nonlinear optimization software products
has been presented. Following the introduction of the LGO solver suite, we
have provided a brief review of several currently available implementations for
use with compiler platforms, spreadsheets, optimization modeling languages,
and ISTCs. It is our objective to add customized functionality to the existing
products, and to develop further implementations, in order to meet the needs
of a broad range of users.

Global optimization is and will remain a field of extreme numerical diffi
culty, not only when considering "all possible" GO models, but also in prac
tical attempts to handle complex, sizeable problems in an acceptable time
frame. Therefore the discussion advocates a practically motivated approach
that combines rigorous global optimization strategies with efficient local search
methodology, in integrated, flexible solver suites. The illustrative - yet non-
trivial - application examples and the numerical results show the practical
merits of such an approach.

Nonlinear Optimization in Modeling Environments 169

We are interested to learn suggestions regarding future development direc
tions. Test problems and challenges - as well as prospective application areas
- are welcome.

Acknowledgements

First of all, I wish to thank my developer partners and colleagues for their
cooperation and many useful discussions, quality software, documentation,
and technical support. These partners include AMPL LLC, Frontline Systems,
the GAMS Development Corporation, Dr. Frank J. Kampas, Lahey Computer
Systems, LINDO Systems, Maplesoft, Maximal Software, Paragon Decision
Technology, TOMLAB AB, and Wolfram Research.

Several application examples reviewed or cited in this paper are based on
cooperation with colleagues: all such cooperation is gratefully acknowledged
and is reflected by the references.

In addition to professional contributions and in-kind support oS^ered by
developer partners, the work summarized and reviewed in this paper has re
ceived financial support from the following organizations: DRDC Atlantic Re
gion, Canada (Contract W7707-01-0746), the Dutch Technology Foundation
(STW Grant CWI55.3638), the Hungarian Scientific Research Fund (OTKA
Grant T 034350), Maplesoft, the National Research Council of Canada (NRC
IRAP Project 362093), the University of Ballarat, Austraha; the University
of Kuopio, Finland; and the University of Tilburg, Netherlands.

References

[Ari99] Aris, R.: Mathematical Modeling: A Chemical Engineers Perspective. Aca
demic Press, San Diego, CA (1999)

[BSS93] Bazaraa, M.S., Sherali, H.D., Shetty, CM.: Nonlinear Programming: The
ory and Algorithms. Wiley, New York (1993)

[BSOO] Benson, H.P., Sun, E. LGO - Versatile tool for global optimization. In:
OR/MS Today, 27, 52-55 (2000)

[Ber99] Bertsekas, D.P.: Nonlinear Programming (2nd Edition). Athena Scientific,
Cambridge, MA (1999)

[BR95] Boender, C.G.E., Romeijn, H.E. Stochastic methods. In: Horst and Parda-
los (eds) Handbook of Global Optimization. Volume 1, pp. 829-869 (1995)

[BLWW04] Bornemann, P., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-
Digit Challenge. A Study in High-Accuracy Numerical Computing. SIAM,
Philadelphia, PA (2004)

[BM68] Bracken, J. and McCormick, G.P.: Selected Applications of Nonlinear Pro
gramming. Wiley, New York (1968)

[BKM88] Brooke, A., Kendrick, D. and Meeraus, A.: GAMS: A User's Guide. The
Scientific Press, Redwood City, CA. (Revised versions are available from
the GAMS Corporation.) See also http://www.gams.com (1988)

170 J.D. Pinter

[Cas90] Casti, J.L.: Searching for Certainty. Morrow & Co., New York (1990)
[Cog03] Cogan, B. How to get the best out of optimization software. In: Scientific

Computing World, 71 , 67-68 (2003)
[CK99] Corliss, G.F., Kearfott, R.B. Rigorous global search: industrial applications.

In: Csendes, T. (ed) Developments in Reliable Computing, 1-16. Kluwer
Academic Publishers, Boston/Dordrecht/London (1999)

[CFOOl] Coullard, C , Fourer, R., Owen, J.H. (eds): Annals of Operations Research,
104, Special Issue on Modeling Languages and Systems. Kluwer Academic
Publishers, Boston/Dordrecht/London (2001)

[CZOl] Chong, E.K.P., Zak, S.H.: An Introduction to Optimization (2nd Edition).
Wiley, New York (2001)

[Diw03] Diwekar, U.: Introduction to Applied Optimization. Kluwer Academic Pub
lishers, Boston/Dordrecht/London (2003)

[EHLOl] Edgar, T.F., Himmelblau, D.M., Lasdon, L.S. Optimization of Chemical
Processes (2nd Edition). McGraw-Hill, New York (2001)

[EW75] Eigen, M. and Winkler, R.: Das Spiel. Piper & Co., Miinchen (1975)
[Fou04] Fourer, R.: Nonlinear Programming Frequently Asked Questions. Op

timization Technology Center of Northwestern University and Ar-
gonne National Laboratory, http://www-unix.mcs.anl.gov/otc/Guide/faq/
nonlinear-programming-faq.html (2004)

[FGK93] Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL - A Modeling Lan
guage for Mathematical Programming. The Scientific Press, Redwood
City, CA (Reprinted by Boyd and Eraser, Danvers, MA, 1996. See also
http://www.ampl.com) (1993)

[FSOl] Frontline Systems: Premium Solver Platform - Solver Engines. User Guide.
Frontline Systems, Inc. Incline Village, NV (See http://www.solver.com,
and http://www.solver.com/xlslgoeng.htm) (2001)

[Ger99] Gershenfeld, N.: The Nature of Mathematical Modeling. Cambridge Uni
versity Press, Cambridge (1999)

[Gro96] Grossmann, I.E. (ed): Global Optimization in Engineering Design. Kluwer
Academic Publishers, Boston/Dordrecht/London (1996)

[HJ91] Hansen, P.E. and J0rgensen, S.E. (eds): Introduction to Environmental
Management. Elsevier, Amsterdam (1991)

[HL05] Hillier, F.J. and Lieberman, G.J. Introduction to Operations Research. (8th
Edition.) McGraw-Hill, New York (2005)

[HP95] Horst, R., Pardalos, P.M. (eds): Handbook of Global Optimization (Volume
1). Kluwer Academic Publishers, Boston/Dordrecht/London (1995)

[HT96] Horst, R., Tuy, H.: Global Optimization - Determinsitic Approaches (3rd
Edition). Springer-Verlag, Berhn / Heidelberg / New York (1996)

[104] ILOG: ILOG OPL Studio and Solver Suite, http://www.ilog.com (2004)
[IPC03] Isenor, G., Pinter, J.D., Cada, M.: A global optimization approach to laser

design. Optimization and Engineering 4, 177-196 (2003)
[JacOl] Jacob, C : Illustrating Evolutionary Computation with Mathematica. Mor

gan Kaufmann Publishers, San Francisco (2001)
[Kal04] Kallrath, J. (ed): Modeling Languages in Mathematical Optimization.

Kluwer Academic Publishers, Boston/Dordrecht/London (2004)
[KP04a] Kampas, F.J., Pinter, J.D.: Generalized circle packings: model formula

tions and numerical results. Proceedings of the International Mathematica
Symposium (Banff, AB, Canada, August 2004)

Nonlinear Optimization in Modeling Environments 171

[KP04b] Kampas, F.J., Pinter, J.D.: Configuration analysis and design by using
optimization tools in Mathematica. The Mathematica Journal (to appear)
(2004)

[KP05] Kampas, F.J., Pinter, J.D.: Advanced Optimization: Scientific, Engineering,
and Economic Applications with Mathematica Examples. Elsevier, Amster
dam (to appear) (2005)

[Kea96] Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer Aca
demic Publishers, Boston/Dordrecht/London (1996)

[LafOO] Lafe, O.: Cellular Automata Transforms. Kluwer Academic Publishers,
Boston / Dordrecht / London (2000)

[LCS02] Lahey Computer Systems. Fortran 90 User's Guide. Lahey Computer Sys
tems, Inc., Inchne Village, http://www.lahey.com (2002)

[LS96] LINDO Systems. Solver Suite. LINDO Systems, Inc., Chicago, IL.
http://www.lindo.com (1996)

[Man83] Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman &; Co., New
York (1983)

[M04a] Maplesoft. Maple. (Current version: 9.5.) Maplesoft, Inc., Waterloo, ON.
http://www.maplesoft.com (2004)

[M04b] Maplesoft. Global Optimization Toolbox. Maplesoft, Inc. Waterloo, ON.
http://www.maplesoft.com (2004)

[MM95] Maros, I., Mitra, G. (eds): Annals of Operations Research, 58, Applied
Mathematical Programming and Modeling II (APMOD 93) J.C. Baltzer
AG, Science Publishers, Basel (1995)

[MMS97] Maros, I., Mitra, G., Sciomachen, A. (eds): Annals of Operations Re
search, 81 , Applied Mathematical Programming and Modeling III (AP
MOD 95). J.C. Baltzer AG, Science Publishers, Basel (1997)

[MS04] Mittelmann, H.D., Spellucci, P. Decision Tree for Optimization Software.
http://plato.la.asu.edu/guide.html (2004)

[MS02] Maximal Software. MPL Modeling System. Maximal Software, Inc. Arling
ton, VA. http://www.maximal-usa.com (2002)

[Mur83] Murray, J.D.: Mathematical Biology. Springer-Verlag, Berlin (1983)
[Neu04a] Neumaier, A.: Global Optimization, http://www.mat.univie.ac.at/ neum

/glopt.html (2004)
[Neu04b] Neumaier, A.: Complete search in continuous global optimization and con

straint satisfaction. In: Iserles, A. (ed) Acta Numerica 2004. Cambridge
University Press, Cambridge (2004b)

[PWOO] Papalambros, P.Y., Wilde, D.J.: Principles of Optimal Design. Cambridge
University Press, Cambridge (2000)

[PDT04] Paragon Decision Technology: AIMMS (Current version 3.5).
Paragon Decision Technology BV, Haarlem, The Netherlands. See
http://www.aimms.com (2004)

[PSX96] Pardalos, P.M., Shalloway, D. and Xue, G.: Global minimization of noncon-
vex energy functions: molecular conformation and protein folding. In: DI-
MACS Series, 23, American Mathematical Society, Providence, RI (1996)

[PR02] Pardalos, P.M., Romeijn, H.E. (eds): Handbook of Global Optimization.
Volume 2. Kluwer Academic Publishers, Boston/Dordrecht/London (2002)

[Pin96a] Pinter, J.D.: Global Optimization in Action. Kluwer Academic Publishers,
Boston / Dordrecht / London (1996)

172 J.D. Pinter

[Pin96b] Pinter, J.D.: Continuous global optimization software: A brief
review. Optima, 52, 1-8 (1996) (Web version is available at:
http://plato.la.asu.edu/gom.html)

[Pin97] Pinter, J.D.: LGO - A Program System for Continuous and Lipschitz Opti
mization. In: Bomze, I.M., Csendes, T., Horst, R. and Pardalos, P.M. (eds)
Developments in Global Optimization, 183-197. Kluwer Academic Publish
ers, Boston/Dordrecht/London (1997)

[PinOO] Pinter, J.D.: Extremal energy models and global optimization. In: La-
guna, M., Gonzalez-Velarde, J-L., (eds) Computing Tools for Model
ing, Optimization and Simulation, 145-160. Kluwer Academic Publishers,
Boston/Dordrecht/London (2000)

[PinOla] Pinter, J.D.: Computational Global Optimization in Nonlinear Systems.
Lionheart Publishing Inc., Atlanta, GA (2001)

[PinOlb] Pinter, J.D.: Globally optimized spherical point arrangements: model vari
ants and illustrative results. Annals of Operations Research 104, 213-230
(2001)

[Pin02a] Pinter, J.D.: MathOptimizer - An Advanced Modehng and Opti
mization System for Mathematica Users. User Guide. Pinter Con
sulting Services, Inc., Halifax, NS (2002a) (For a summary, see also
http://www.wolfram.com/products/ applications/mathoptimizer/)

[Pin02b] Pinter, J.D.: Global optimization: software, test problems, and applica
tions. In: Pardalos and Romeijn (eds) Handbook of Global Optimization.
Volume 2, 515-569 (2002)

[Pin03a] Pinter, J.D.: (2003a) Globally optimized calibration of nonlinear models:
techniques, software, and applications. Optimization Methods and Soft
ware, 18, 335-355 (2003)

[Pin03b] Pinter, J.D.: GAMS /LGO nonlinear solver suite: key features, usage,
and numerical performance. Submitted for publication. Downloadable at
ht t p: / /www. gams. com/sol vers/ Igo (2003)

[Pin04] Pinter, J.D.: LGO - A Model Development System for Contin
uous Global Optimization. Users Guide. (Current revision.) Pinter
Consulting Services, Inc., Hahfax, NS (2004) (For a summary, see
ht tp: / /www. pinter consult ing. com)

[Pin05a] Pinter, J.D.: Applied Nonlinear Optimization in Modeling Environments.
CRC Press, Baton Rouge, FL (2005) (To appear)

[Pin05b] Pinter, J.D. (ed): Global Optimization - Selected Case Studies. Springer
Science + Business Media, New York (2005) (To appear)

[PHGE04] Pinter, J.D., Holmstrom, K., Goran, A.O., Edvall, M.M.: User's Guide
for TOMLAB /LGO. TOMLAB Optimization AB, Vasteras, Sweden (2004)
(See http://www.tomlab.biz)

[PK03] Pinter, J.D., Kampas, F.J.: MathOptimizer Professional - An Ad
vanced Modeling and Optimization System for Mathematica Users
with an External Solver Link. User Guide. Pinter Consulting Ser
vices, Inc., Halifax, NS, Canada (2003) (For a summary, see also
http://www.wolfram.com/products/ applications/mathoptpro/)

[PK05] Pinter, J.D., Kampas, F.J.: Model development and optimization with
Mathematica. In: Golden, B., Raghavan, S., Wasil, E. (eds) The Next Wave
in Computing, Optimization, and Decision Technologies, 285-302. Springer
Science + Business Media, New York (2005)

Nonlinear Optimization in Modeling Environments 173

[PP03] Pinter, J.D., Purcell, C.J.: Optimization of finite element models with
MathOptimizer and ModelMaker. Lecture presented at the 2003 Mathe-
matica Developer Conference, Champaign, IL (2003) (Extended abstract is
available upon request, and also from http://www.library.com)

[RR93] Ratschek, H., Rokne, J.: Experiments using interval analysis for solving a
circuit design problem. Journal of Global Optimization 3, 501-518 (1993)

[RR95] Ratschek, H., Rokne, J.: Interval methods. In: Horst and Pardalos (eds)
Handbook of Global Optimization. Volume 1, 751-828 (1995)

[Ric73] Rich, L.G.: Environmental Systems Engineering. McGraw-Hill, Tokyo
(1973).

[Sch02] Schittkowski, K.: Numerical Data Fitting in Dynamical Systems. Kluwer
Academic Publishers, Boston/Dordrecht/London (2002)

[Sch91] Schroeder, M.: Fractals, Chaos, Power Laws. Freeman & Co., New York
(1991)

[Ste95] Stewart, I.: Nature's Numbers. Basic Books / Harper and Collins, New
York (1995)

[SSPOl] Stortelder, W.J.H., de Swart, J.J.B., Pinter, J.D.: Finding elliptic Fekete
point sets: two numerical solution approaches. Journal of Computational
and Applied Mathematics, 130, 205-216 (2001)

[TS02] Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization
in Continuous and Mixed-integer Nonlinear Programming. Kluwer Acad
emic Publishers, Boston/Dordrecht/London (2002)

[TKLPL03] Tervo, J., Kolmonen, P., Lyyra-Laitinen, T., Pinter, J.D., and Lahtinen,
T. An optimization-based approach to the multiple static delivery technique
in radiation therapy. Annals of Operations Research, 119, 205-227 (2003)

[TO04] TOMLAB Optimization. TOMLAB. TOMLAB Optimization AB,
Vasteras, Sweden (2004) (See http://www.tomlab.biz)

[Tre02] Trefethen, L.N.: The hundred-dollar, hundred-digit challenge problems.
SIAM News, Issue 1, p. 3 (2002)

[TM04] The MathWorks: MATLAB. (Current version: 6.5) The MathWorks, Inc.,
Natick, MA (2004) (See http://www.mathworks.com)

[VMMOO] Vladimirou, H., Maros, I., Mitra, G. (eds): Annals of Operations Re
search, 99, Applied Mathematical Programming and Modeling IV (AP-
MOD 98) J.C. Baltzer AG, Science Publishers, Basel, Switzerland (2000)

[Wol02] Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign, IL, and
Cambridge University Press, Cambridge (2002)

[Wol03] Wolfram, S.: The Mathematica Book. (Fourth Edition) Wolfram Media,
Champaign, IL, and Cambridge University Press, Cambridge (2003)

[WR04] Wolfram Research: Mathematica (Current version: 5.1). Wolfram Research,
Inc., Champaign, IL (2004) (See http://www.wolfram.com)

[Zab03] Zabinsky, Z.B.: Stochastic Adaptive Search for Global Optimization.
Kluwer Academic Publishers, Boston/Dordrecht/London (2003)

