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Summary. We present a review of several professional software products that serve 
to analyze and solve nonlinear (global and local) optimization problems across a va­
riety of hardware and software environments. The product versions discussed have 
been implemented for compiler platforms, spreadsheets, algebraic (optimization) 
modeling languages, and for integrated scientific-technical computing systems. The 
discussion highlights some of the key advantages of these implementations. Test ex­
amples, well-known numerical challenges and client applications illustrate the usage 
of the current software versions. 

K e y words : nonlinear (convex and global) optimization; LGO solver suite 
and its implementations; compiler platforms, spreadsheets, optimization mod­
eling languages, scientific-technical computing systems; illustrative applica­
tions and case studies. 
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1 Introduction 

Nonlinearity is literally ubiquitous in the development of natural objects, for­
mations and processes, including also living organisms of all scales. Conse­
quently, nonlinear descriptive models - and modeling paradigms even beyond 
a straightforward (analytical) function-based description - are of relevance in 
many areas of the sciences, engineering, and economics. For example, [BM68, 
Ric73, EW75, Man83, Mur83, Cas90, HJ91 , Sch91, BSS93, Ste95, Gro96, 
PSX96, Pin96a, Ari99, Ber99, Ger99, LafOO, PWOO, CZOl, EHLOl, JacOl, 
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Sch02, TS02, W0IO2, Diw03, Zab03, Neu04b, HL05, KP05, Pin05a, Pin05b] -
as well as many other authors - present discussions and an extensive repertoire 
of examples to illustrate this point. 

Decision-making (optimization) models that incorporate such a nonlinear 
system description frequently lead to complex models that (may or prov-
ably do) have multiple - local and global - optima. The objective of global 
optimization (GO) is to find the "absolutely best solution of nonlinear opti­
mization (NLO) models under such circumstances. 

The most important (currently available) GO model types and solution 
approaches are discussed in the Handbook of Global Optimization volumes, 
edited by Horst and Pardalos [HP95], and by Pardalos and Romeijn [PR02]. 
As of 2004, over a hundred textbooks and a growing number of informative 
web sites are devoted to this emerging subject. 

We shall consider a general GO model form defined by the following in­
gredients: 

• X decision vector, an element of the real Euclidean n-space R^\ 
• f{x) continuous objective function, f \ R^ —^ R^\ 
• D non-empty set of admissible decisions, a proper subset of R^. 

The feasible set D is defined by 

• l^ u explicit, finite vector bounds of x (a "box" in R^)\ 
• g{x) m-vector of continuous constraint functions, g : R^ —^ R^, 

Applying the notation introduced above, the continuous global optimiza­
tion (CGO) model is stated as 

min/(x) s.t. X belongs to (1) 

D = {x:l<x< u,g{x) < 0}. (2) 

Note that in (2) all vector inequalities are meant component-wise (/, u, 
are n-vectors and the zero denotes an m-vector). Let us also remark that the 
set of the additional constraints g could be empty, thereby leading to - of­
ten much simpler, although still potentially multi-extremal - box-constrained 
models. Finally, note that formally more general optimization models (that 
include also = and > constraint relations and/or explicit lower bounds on 
the constraint function values) can be simply reduced to the canonical model 
form (l)-(2). The canonical model itself is already very general: in fact, it triv­
ially includes linear programming and convex nonlinear programming models 
(under corresponding additional specifications). Furthermore, it also includes 
the entire class of pure and mixed integer programming problems, since all 
(bounded) integer variables can be represented by a corresponding set of bi­
nary variables; and every binary variable y G {0,1} can be equivalently rep­
resented by its continuous extension y G [0,1] and the non-convex constraint 
y ( l — ^ ) < 0 . Of course, we do not claim that the above approach is best - or 
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even suitable - for "all" optimization models: however, it certainly shows the 
generality of the CGO modeling framework. 

Let us observe next that the above stated "minimal" analytical assump­
tions already guarantee that the optimal solution set X* in the CGO model 
is non-empty. This key existence result directly follows by the classical theo­
rem of Weierstrass (that states the existence of the minimizer point (set) of a 
continuous function over a non-empty compact set). For reasons of numerical 
tract ability, the following additional requirements are also often postulated: 

• D is a, full-dimensional subset ("body") in R^\ 
• the set of globally optimal solutions to (l)-(2) is at most countable; 
• / and g (the latter component-wise) are Lipschitz-continuous functions on 

[l,u]-

Note that the first two of these requirements support the development and 
(easier) implementation of globally convergent algorithmic search procedures. 
Specifically, the first assumption - i.e., the fact that D is the closure of its 
non-empty interior - makes algorithmic search possible within the set D. 
This requirement also imphes that e.g., nonhnear equality constraints need to 
be directly incorporated into the objective function as discussed in [Pin96a], 
Chapter 4.1. 

With respect to the second assumption, let us note that in most well-
posed practical problems the set of global optimizers consists only of a single 
point, or at most of several points. However, in full generality, GO models may 
have even manifold solution sets: in such cases, software implementations will 
typically find a single solution, or several of them. (There are theoretically 
straightforward iterative ways to provide a sequence of global solutions.) 

The third assumption is a sufficient condition for estimating /* on the basis 
of a finite set of feasible search points. (Recall that the real-valued function 
h is Lipschitz-continuous on its domain of definition D C R^, if \h{xi) — 
h{x2)\ < L\\xi — X2II holds for all pairs xi G D^X2 G D; here L = L{D,h) is 
a suitable Lipschitz-constant of h on the set D\ the inequality above directly 
supports lower bound estimates on sets of finite size.) We emphasize that 
the factual knowledge of the smallest suitable Lipschitz-constant - for each 
model function - is not required, and in practice such information is typically 
unavailable indeed. 

Let us remark here that e.g., models defined by continuously diff"erentiable 
functions / and g certainly belong to the CGO or even to the Lipschitz model 
class. In fact, even such "minimal" smooth structure is not essential: since 
e.g., "saw-tooth" like functions are also Lipschitz-continuous. This comment 
also implies that CGO indeed covers a very general class of optimization 
models. As a consequence of this generality, the CGO model class includes also 
many extremely diflficult instances. To perceive this difficulty, one can think of 
model-instances that would require "the finding of the lowest valley across a 
range of islands" (since the feasible set may well be disconnected), based on an 
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intelligent (adaptive, automatic), but otherwise completely "blind" sampling 
procedure... 

For illustration, a merely one-dimensional, box-constrained model is shown 
in Fig. 1. This is a frequently used classical GO test problem, due to Shubert: 
it is defined as 

min Y^ k sm(k -\-(k + l)x) 10 < x < 10. 
;c=i, . . . ,5 

Fig. 1. One-dimensional, box-constrained CGO model 

Model complexity may - and frequently will - increase dramatically, al­
ready in (very) low dimensions. For example, both the amplitude and the 
frequency of the trigonometric components in the model of Figure 1 could be 
increased arbitrarily, leading to more and more difficult problems. 

Furthermore, increasing dimensionality per se can lead to a tremendous 
- theoretically exponential - increase of model complexity (e.g., in terms 
of the number of local/global solutions, for a given type of multi-extremal 
models). To illustrate this point, consider the - merely two-dimensional, box-
constrained, yet visibly challenging - objective function shown in Fig. 2 below. 
The model is based on Problem 4 of the Hundred-Dollar, Hundred-Digit Chal­
lenge Problems [Tre02], and it is stated as 

min -̂̂  + exp(sin(50x)) - sin(10(x + y)) + sin(60 exp(y)) 

+ sin(70 sin(a;)) + sin(sin(802/)) 

- 3 < x < 3 - 3 < y < 3 . 
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Fig. 2. Two-dimensional, box-constrained CGO model 

'vif. f.v#; I f • / 

/ 

Needless to say, not all - and especially not all practically motivated - CGO 
models are as difficult as indicated by Figures 1 and 2. At the same time, we do 
not always have the possibility to directly inspect and estimate the difficulty of 
an optimization model, and perhaps unexpected complexity can be met under 
such circumstances. An important case in point is when the software user 
(client) has a confidential or otherwise visibly complex model that needs to 
be analyzed and solved. The model itself can be presented to the solver engine 
as an object code, dynamic fink hbrary (dll), or even as an executable program: 
in such situations, direct model inspection is simply not an option. In many 
other cases, the evaluation of the optimization model functions may require 
the numerical solution of a system of differential equations, the evaluation of 
special functions or integrals, the execution of a complex system of program 
code, stochastic simulation, even some physical experiments, and so on. 

Traditional numerical optimization methods - discussed in most topical 
textbooks such as e.g. [BSS93, Ber99, CZOl] - search only for local optima. 
This approach is based on the tacit assumption that a "sufficiently good" ini­
tial solution (that is located in the region of attraction of the "true" solution) 
is immediately available. Both Fig. 1 and Fig. 2 suggest that this may not al­
ways be a realistic assumption . . . Models with less "dramatic" difficulty, but 
in (perhaps much) higher dimensions also imply the need for global optimiza­
tion. For instance, in advanced engineering design, models with hundreds or 
thousands of variables and constraints are analyzed. In similar cases to those 
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mentioned above, even an approximately completed, but genuine global (ex­
haustive) search strategy may - and typically will - yield better results than 
the most sophisticated local search approach when "started from the wrong 
valley"... 

2 A solver suite approach to practical global 
optimization 

The general development philosophy followed by the software implementa­
tions discussed here is based on the seamless combination of rigorous (i.e., 
theoretically convergent) global and efficient local search strategies. 

As it is well-known ([HT96, Pin96a]), the existence of vahd overestimates 
of the actual (smallest possible) Lipschitz-constants, for / and for each compo­
nent of ^ in the model (l)-(2), is sufficient to guarantee the global convergence 
of suitably defined adaptive partition algorithms. In other words, the applica­
tion of a proper branch-and-bound search strategy (that exploits the Lipschitz 
information referred to above) generates a sequence of sample points that con­
verges exactly to the (unique) global solution x* = {-̂ *} of the model instance 
considered. If the model has a finite or countable number of global solutions, 
then - theoretically, and under very general conditions - sub-sequences of 
search points are generated that respectively converge to the points of X*. 
For further details related to the theoretical background, including also a de­
tailed discussion of algorithm implementation aspects, consult [Pin96a] and 
references therein. 

In numerical practice, deterministically guaranteed global convergence 
means that after a finite number of search steps - i.e., sample points and 
corresponding function evaluations - one has an incumbent solution (with a 
corresponding upper bound of the typically unknown optimum value), as well 
as a verified lower bound estimate. Furthermore, the "gap" between these es­
timates converges to zero, as the number of generated search points tends to 
infinity. For instance, interval arithmetic based approaches follow this avenue: 
consult, e.g., [RR95, Kea96, Neu04b]; [CK99] review a number of successful 
applications of rigorous search methods. 

The essential difficulty of applying such rigorous approaches to "all" GO 
models is that their computational demand typically grows at an exponential 
pace with the size of the models considered. For example, the Lipschitz infor­
mation referred to above is often not precise enough: "carefree" overestimates 
of the best possible (smallest) Lipschitz-constant lead to a search procedure 
that will, in effect, be close in efficiency to a passive uniform grid search. For 
this reason, in a practical GO context, other search strategies also need to be 
considered. 

It is also well-known that properly constructed stochastic search algo­
rithms also possess general theoretical global convergence properties (with 
probability 1): consult, for instance, the review of [BR95], or [Pin96a]. For a 
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very simple example that illustrates this point, one can think of a pure ran­
dom search mechanism applied in the interval l<x<u to solve the CGO model: 
this will eventually converge, if the "basin of attraction" of the (say, unique) 
global optimizer x* has a positive volume. In addition, stochastic sampling 
methods can also be directly combined with search steps of other - various 
global and efficient local - search strategies, and the overall global convergence 
of such strategies will be still maintained. The theoretical background of sto­
chastic "hybrid" algorithms is discussed by [Pin96a]. The underlying general 
convergence theory of such combined methods allows for a broad range of im­
plementations. In particular, a hybrid optimization program system supports 
the flexible usage of a selection of component solvers: one can execute a fully 
automatic global or local search based optimization run, can combine solvers, 
and can also design various interactive runs. 

Obviously, there remains a significant issue regarding the (typically un­
foreseeable best) "switching point" from strategy to strategy: this is however, 
unavoidable, when choosing between theoretical rigor and numerical efficiency. 
(Even local nonlinear solvers would need, in theory, an infinite iterative pro­
cedure to converge, except in idealized special cases.) For example, in the 
stochastic search framework outlined above, it would suffice to find just one 
sample point in the "region of attraction" of the (unique) global solution x*, 
and then that solution estimate could be refined by a suitably robust and 
efficient local solver. Of course, the region of attraction of x* (e.g., its shape 
and relative size) is rarely known, and one needs to rely on computationally 
expensive estimates of the model structure (again, the reader is referred, e.g., 
to the review of [BR95]). Another important numerical aspect is that one loses 
the deterministic (lower) bound guarantees when applying a stochastic search 
procedure: instead, suitable statistical estimation methods can be applied, 
consult [Pin96a] and topical references therein. Again, the implementation of 
such methodology is far from trivial. 

To summarize the discussion, there are good reasons to apply various 
search methods and heuristic global-to-local search "switching points" with a 
reasonable expectation of numerical success. Namely, 

• one needs to apply proper global search methods to generate an initial 
good "coverage" of the search space; 

• it is also advantageous to apply quality local search that enables the fast 
improvement of solution estimates generated by a preceding global search 
phase; 

• using several - global or local - search methods based on different theoret­
ical strategies, one has a better chance to find quality solutions in difficult 
models (or ideally, confirm the solution by comparing the results of several 
solver runs); 

• one can always place more or less emphasis on rigorous search vs. efficiency, 
by selecting the appropriate solver combination, and by allocating search 
effort (time, function evaluations); 
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• we often have a priori knowledge regarding good quality solutions, based on 
practical, model-specific knowledge (for example, one can think of solving 
systems of equations: here a global solution that "nearly" satisfies the 
system can be deemed as a sufficiently good point from which local search 
can be directly started); 

• practical circumstance and resource limitations may (will) dictate the use 
of additional numerical stopping and switching rules that can be flexibly 
built into the software implementation. 

Based on the design philosophy outlined - that has been further confirmed 
and dictated by practical user demands - we have been developing for over 
a decade nonlinear optimization software implementations that are based on 
global and local solver combinations. The currently available software prod­
ucts will be briefly discussed below with illustrative examples; further related 
work is in progress. 

3 Modeling systems and user demands 

Due to advances in modeling, optimization methods and computer technol­
ogy, there has been a rapidly growing interest towards modeling languages 
and environments. Consult, for example, the topical Annals of Operations Re­
search volumes [MM95, MMS97, VMMOO, CFOOl], and the volume [Kal04]. 
Additional useful information can be found, for example, at the web sites 
[Fou04, MS04, Neu04a]. 

Prominent examples of widely used modeling systems that are focused on 
optimization include AIMMS ([PDT04]), AMPL ([FGK93]), GAMS ([BKM88]), 
the Excel Premium Solver Platform ([FSOl]), ILOG ([104]), the LINDO Solver 
Suite ([LS96]), MPL ([MS02]), and TOMLAB ([TO04]). (Please note that the 
literature references cited may not always reflect the current status of the 
modeling systems listed: for the latest information, contact the developers 
and/or visit their website.) 

In addition, there exists also a large variety of core compiler platform-
based solver systems with some built-in model development functionality: in 
principle, these all can be linked to the modeling languages listed above. At 
the other end of the spectrum, there is also signiflcant development related 
to fully integrated scientific and technical computing (ISTC) systems such as 
Maple ([M04a]), Mathematica ([WR04]), and MATLAB ([TM04]). The ISTCs 
also incorporate a growing range of optimization-related functionality, supple­
mented by application products. 

The modeling environments listed above are aimed at meeting the needs 
and demands of a broad range of clients. Major client groups include educa­
tional users (instructors and students); research scientists, engineers, econo­
mists, and consultants (possibly, but not necessarily equipped with an in-
depth optimization related background); optimization experts, vertical appli­
cation developers, and other "power users". Obviously, the user categories 



Nonlinear Optimization in Modeling Environments 155 

listed above are not necessarily disjoint: e.g., someone can be an expert re­
searcher and software developer in a certain professional area, with a perhaps 
more modest optimization expertise. The pros and cons of the individual 
software products - in terms of ease of model prototyping, detailed code de­
velopment and maintenance, optimization model processing tools, availability 
of solvers and other auxiliary tools, program execution speed, overall level of 
system integration, quality of related documentation and support - make such 
systems more or less attractive for the user groups listed. 

It is also worth mentioning at this point that - especially in the context 
of nonlinear modeling and optimization - it can be a salient idea to tackle 
challenging problems by making use of several modeling systems and solver 
tools, if available. In general, dense NLO model formulations are far less easy 
to "standardize" than linear or even mixed integer linear models, since one 
typically needs an explicit, specific formula to describe a particular model 
function. Such formulae are relatively straightforward to transfer from one 
modehng system into another: some of the systems hsted above even have such 
built-in converter capabilities, and their syntaxes are typically quite similar 
(whether it is x**2 or x^, sin(x) or Sin[x], bernouni(n,x) or BernoulliB[n,x], 
and so on). 

In subsequent sections we shall summarize the principal features of sev­
eral current nonlinear optimization software implementations that have been 
developed with quite diverse user groups in mind. The range of products re­
viewed in this work includes the following: 

• LGO Solver System with a Text I/O Interface 
• LGO Integrated Development Environment 
• LGO Solver Engine for Excel 
• MathOptimizer Professional (LGO Solver Engine for Mathematica) 
• Maple Global Optimization Toolbox (LGO Solver Engine for Maple). 

We will also present relatively small, but non-trivial test problems to il­
lustrate some of the key functionality of these implementations. 

Note that all software products discussed are professionally developed and 
supported, and that they are commercially available. For this reason - and 
also in line with the objectives of this paper - some of the algorithmic tech­
nical details are only briefly mentioned. Additional technical information is 
available upon request; please consult also the publicly available references, 
including the software documentation and topical web sites. 

In order to keep the length of this article within reasonable bounds, further 
product implementations not discussed here are 

• LGO Solver Engine for GAMS 
• LGO Solver Engine for MPL 
• TOMLAB/LGO for MATLAB 
• MathOptimizer for Mathematica. 



156 J.D. Pinter 

With respect to these products, consult e.g. the references [Pin02a, PK03, 
KP04b, KP05, PHGE04, PK05]. 

4 Software implementat ion examples 

4.1 LGO solver system with a text I /O interface 

The Lipschitz Global Optimizer (LGO) software has been developed and used 
for more than a decade (as of 2004). Detailed technical descriptions and user 
documentation have appeared elsewhere: consult, for instance, [Pin96a, Pin97, 
PinOla, Pin04], and the software review [BSOO]. Let us also remark here that 
LGO was chosen to illustrate global optimization software (in connection with 
a demo version of the MPL modeling language) in the well-received textbook 
[HL05]. 

Since LGO serves as the core of most current implementations (with the 
exception of one product), we will provide its somewhat more detailed de­
scription, followed by concise summaries of the other platform-specific imple­
mentations. 

In accordance with the approach advocated in Section 2, LGO is based on 
a seamless combination of a suite of global and local scope nonlinear solvers. 
Currently, LGO includes the following solver options: 

• adaptive partition and search (branch-and-bound) based global search 
(BB) 

• adaptive global random search (single-start) (GARS) 
• adaptive global random search (multi-start) (MS) 
• constrained local search (generalized reduced gradient method) (LS). 

The global search methodology was discussed briefly in Section 2; the well-
known GRG method is discussed in numerous textbooks, consult e.g. [EHLOl]. 
Note that in all three global search modes the model functions are aggregated 
by an exact penalty function. By contrast, in the local search phase all model 
functions are considered and treated individually Note also that the global 
search phases are equipped with stochastic sampling procedures that support 
the usage of statistical bound estimation methods. 

All LGO search algorithms are derivative-free: specifically, in the local 
search phase central differences are used to approximate gradients. This choice 
reflects again our objective to handle (also) models with merely computable, 
continuous functions, including "black box" systems. 

The compiler-based LGO solver suite is used as an option linked to various 
modeling environments. In its core text I/O based version, the application-
specific LGO executable program (that includes a driver file and the model 
function file) reads an input text file that contains all remaining application 
information (model name, variable and constraint names, variable bounds 
and nominal values, and constraint types), as well as a few key solver options 
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(global solver type, precision settings, resource and time limits). Upon com­
pleting the LGO run, a summary and a detailed report file are available. As 
can be expected, this LGO version has the lowest demands for hardware, it 
also runs fastest, and it can be directly embedded into vertical and proprietary 
user applications. 

4.2 LGO integrated development environment 

LGO can be also equipped - as a readily available implementation option -
with a simple, but functional and user-friendly MS Windows interface. This 
enhanced version is referred to as the LGO Integrated Development Environ­
ment (IDE). The LGO IDE provides a menu that supports model develop­
ment, compilation, linking, execution, and the inspection of results. To this 
end, a text editor is used that can be chosen optionally such as e.g. the freely 
downloadable ConTEXT and PFE editors, or others. Note here that even the 
simple Notebook Windows accessory - or the more sophisticated and still free 
Metapad text editor - would do. The IDE also includes external program call 
options and two concise help files: the latter discuss global optimization basics 
and the main application development steps when using LGO. 

As already noted, this LGO implementation is compiler-based: user models 
can be connected to LGO using one of several programming languages on 
personal computers and workstations. Currently supported platforms include 
essentially all professional Fortran 77/90/95 and C compilers and some others: 
prominent examples are Borland C /C++ and Delphi, Compaq/Digital Visual 
Fortran; Lahey Fortran 77/90/95; Microsoft Visual Basic and C/C++; and 
Salford Fortran 77/95. Other customized versions can also be made available 
upon request, especially since the vendors of development environments often 
expand the list of compatible platforms. 

This LGO software implementation (in both versions discussed above) 
fully supports communication with sophisticated user models, including en­
tirely closed or confidential "black box" systems. These LGO versions are 
particularly advantageous in application areas, where program execution (so­
lution) speed is a major concern: in the GO context, many projects fall into 
this category. The added features of the LGO IDE can also greatly assist in 
educational and research (prototyping) projects. 

LGO deliveries are accompanied by an approximately 60-page User Guide. 
In addition to installation and technical notes, this document provides a brief 
introduction to GO; describes LGO and its solvers; discusses the model de­
velopment procedure, including modeling and solution tips; and reviews a list 
of applications. The appendices provide examples of the user (main, model, 
and input parameter) files, as well as of the resulting output files; connectivity 
issues and workstation implementations are also discussed. 

For a simple illustration, we display below the LGO model function file 
(in C format), and the input parameter file that correspond to a small, but 
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not quite trivial GO model (this is a constrained extension of Shubert's model 
discussed earlier): 

min 2_] ^ sm{k + (/c + l)x) 
/c=l , . . . ,5 

s.t. x^ + 3x + sin(x) < 6, 10 < x < 10. 

Both files are slightly edited for the present purposes. Note also that in the 
simplest usage mode, the driver file contains only a single statement that calls 
LGO: therefore we skip the display of that file. (Additional pre- and post-
solver manipulations can also be inserted in the driver file: this can be useful 
in various customized applications.) 

Model function file 

#include <s td l ib .h> 
#include <stdio.h> 
#include<math.h> 

_ s t d c a l l USER _FCT( double x[] , double f o x [ l ] , double gox[]) 
{ 
fox[0] = s i n ( l . + 2.*x[0]) + 2 .* s in (2 . + 3.*x[0]) + 3 . * s i n ( 3 . 

+ 4 .*x[0]) + 4 . * s i n ( 4 . + 5.*x[0]) + 5 .* s in (5 . + 6 .*x[0 ] ) ; 
gox[0]=-6.+ pow(x[0],2.) -f s in (x [0 ] ) + 3 .*x[0 ] ; 
r e t u r n 0; 
} 

Input parameter file 

Model Descriptors 
LGO Model 

1 

1 

Variable names 

ModelName 

Number of Variables 

Number of Constraints 

Lower Bounds Nomimal Values Upper Bounds 

X -10. 0. 10. 

ObjFct ! Objective Function Name 

Constraint Names and Constraint Types (0 for ==, -1 for <=) 

Constraint1 -1 

! SOLVER OPTIONS AND PARAMETERS — 

1 ! Operational modes 0: LS; 1: BB+LS; 2: GARS 

! +LS; 3: MS+LS 

2000 ! Maximal no. of fct evals in global search 

! phase 

400 ! Maximal no. of fct evals in global search 

! w/o improvement 
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-1000000. 

-1000000. 

0.000001 

0.000001 

0.000001 

0 

300 

Constraint penalty multiplier 

Target objective fimction value in global 

search phase 

Target objective function value in local 

search phase 

Merit function precision improvement 

threshold in local search phase 

Constraint violation tolerance in local 

search phase 

Kuhn-Tucker local optimality conditions 

tolercince in local search phase 

Built-in random number generator seed value 

Program execution time limit (seconds) 

997 

-14.8379500257 

-1.1140996879 

Summary result file 

LGO Solver Results Summary 
Model name: LGO Model 

Total number of function evaluations 

Objective function: ObjFct 

Solution vector components 

1 X 

C o n s t r a i n t f u n c t i o n v a l u e s a t optimum e s t i m a t e 
1 C o n s t r a i n t 1 -8 .9985950759 
S o l v e r s t a t u s i n d i c a t o r v a l u e 4 TERMINATED BY 

SOLVER 
Model s t a t u s i n d i c a t o r v a l u e 1 GLOBALLY OPTIMAL 

SOLUTION FOUND 
LGO s o l v e r sys tem e x e c u t i o n t i m e ( s e c o n d s ) 0 . 0 1 
For a d d i t i o n a l r u n t i m e i n f o r m a t i o n , p l e a s e c o n s u l t t h e 
LGO.OUT f i l e . 

LGO a p p l i c a t i o n run comple t ed . 

4 .3 L G O so lve r e n g i n e for E x c e l u s e r s 

The LGO global solver engine for Microsoft Excel has been developed in 
cooperation with Frontline Systems [FSOl]. For details on the Excel Solver 
and the currently available advanced engine options visit Frontline's web site 
(www.solver.com). The site contains useful information, including for instance, 
tutorial material , modeling tips, and various spreadsheet examples. The User 
Guide provides a brief introduction to all current solver engines; discusses the 
diagnosis of solver results, solver options and reports; and it also contains 
a section on Solver VBA functions. Note t ha t this information can also be 
invoked through Excel's on-line help system. In this implementation, LGO 
is a field-installable Solver Engine tha t seamlessly connects to the Premium 
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Solver Platform: the latter is fully compatible with the standard Excel Solver, 
but it has enhanced algorithmic capabilities and features. 

LGO for Excel, in addition to continuous global and local capabilities, 
also provides basic support for handling integer variables: this feature has 
been implemented - as a generic option for all advanced solver engines - by 
Frontline Systems. 

The LGO solver options available are essentially based on the stand-alone 
"silent" version of the software, with some modifications and added features. 
The LGO Solver Options dialog, shown by Fig. 3, allows the user to control 
solver choices and several other settings. 

Fig. 3. Excel/ LGO solver engine: solver options and parameters dialog 
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To illustrate the usage of the Excel/LGO implementation, we shall present 
and solve the Electrical Circuit Design (ECD) test problem. The ECD model 
has been extensively studied in the global optimization literature, as a well-
known computational challenge: see, e.g., [RR93], with detailed historical 
notes and further references. 

In the ECD problem, a bipolar transistor is modeled by an electrical cir­
cuit: this model leads to the following square system of nonlinear equations 

ak{x) = 0 A: = 1,...,4; bk{x) = 0 A: = 1,...,4; c{x) = 0. 

The individual equations are defined as follows: 

ak{x) = {1- xiX2)x3{exp[x5{gik - gskXj - QbkXs)] - 1} - 9bk + 9AkX2, 

bk{x) = {l- xiX2)a;4{exp[x6(pifc - g2k - gskx? + gAkXg)] - 1} - 95kXi + g^k 

fc = l , . . . , 4 ; 

c{x) = X1X3 — X2X4. 

By assumption, the vector variable x belongs to the box region [0,10] . The 
numerical values of the constants p /̂e,f = l, . . . ,5,A: = l , . . . , 4 are listed in the 
paper of Ratschek and Rokne [RR93], and will not be repeated here. (Note 
that, in order to make the model functions more readable, several constants 
are simply aggregated in the above formulae, when compared to that paper.) 

To solve the ECD model rigorously, Ratschek and Rokne applied a com­
bination of interval arithmetic, subdivision and branch-and-bound strategies. 
They concluded that the rigorous solution was extremely costly (billions of 
model function evaluations were needed), in order to arrive at a guaranteed 
interval (i.e., embedding box) estimate that is component-wise within at least 
10-4 precision of the postulated approximate solution: 

X* = (0.9,0.45,1.0,2.0,8.0,8.0,5.0,1.0,2.0). 

Obviously, by taking e.g. the Euclidean norm of the overall error in the 
model equations, the problem of finding the solution can be formulated as a 
global optimization problem. This model has been set up in a demo spread­
sheet, and then solved by the Excel LGO solver engine. The numerical solution 
found by LGO - directly imported from the answer report - is shown below: 

Microsoft Excel 10.0 Answer Report 
Worksheet: [CircuitDesign_9^9.XLS] Model 
Report Created: 12/16/2004 
12:39:29 AM 
Result: Solver found a solution. All constraints and 

optimality conditions are satisfied. 
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Engine: LGO Global Solver 
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The error of the solution found is within 10"^ to the verified solution, for 
each component. The numerical solution of the ECD model in Excel takes less 
than 5 seconds on a personal computer (Intel Pentium 4, 2.4 GHz processor, 
512 Mb RAM). Let us note that we have solved this model also using core 
LGO implementations with various C and Fortran compilers, with essentially 
identical success (in about a second or less). Although this finding should not 
lead per se to overly optimistic claims, it certainly shows the robustness and 
efiiciency of LGO in solving this particular (non-trivial) example. 

4.4 MathOptimizer Professional 

Mathematica is an integrated environment for scientific and technical com­
puting. This ISTC system supports functional, rule-based and procedural 
programming styles. Mathematica also offers advanced multimedia (graphics, 
image processing, animation, sound generation) tools, and it can be used to 
produce publication-quality documentation. For further information, consult 
the key reference [WolOS]; the website www.wolfram.com provides detailed 
information regarding also the range of other products and services related to 
Mathematica. 

MathOptimizer Professional ([PK03]), combines the model development 
power of Mathematica with the robust performance and efficiency of the LGO 
solver suite. To this end, the general-purpose interface MathLink is used that 
supports communication between Mathematica and external programs. The 
functionality of MathOptimizer Professional is summarized by the following 
stages (note that all steps are fully automatic, except - obviously - the first 
one): 

• model formulation in Mathematica 
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• translation of the Mathematica optimization model into C or Fortran code, 
to generate the LGO model function file 

• generation of the LGO input parameter file 
• compilation of the C or Fortran model code into object code or dynamic 

link library (dll): this step makes use of a corresponding compiler 
• call to the LGO solver engine: the latter is typically provided as object 

code or an executable program that is now linked together with the model 
function object or dll file 

• numerical solution and report generation by LGO 
• report of LGO results back to the calUng Mathematica notebook. 

A "side-benefit" of using MathOptimizer Professional is that the Math­
ematica models formulated are automatically translated into C or Fortran 
format: this feature can be put to good use in a variety of contexts. (For ex­
ample, the LGO model function and input parameter file examples shown in 
Section 4.2 were generated automatically.) 

Let us also remark that the approach outlined supports "only" the solu­
tion of models defined in Mathematica that can be directly converted into C 
or Fortran program code. Of course, this model category still allows the han­
dling of a broad range of optimization problems. The approximately 150-page 
MathOptimizer Professional manual is a "live" (notebook) document that can 
be directly invoked through Mathematica''s on-line help system. In addition 
to basic usage description, the User Guide also discusses a large number of 
simple and more challenging test problems, and several realistic application 
examples in detail. 

As an illustrative example, we will present the solution of a new - and 
rather difficult - object packing model: we wish to find (numerically) the 
"best" non-overlapping arrangement of a set of non-uniform size circles in 
an embedding circle. Notice that this is not a standard model type (unlike 
uniform circle packings that have been studied for decades, yet still only spe­
cial cases are solved to guaranteed optimality). Our approach can be directly 
generalized to find essentially arbitrary object arrangements. 

The best packing is defined here by a combination of two criteria: the 
radius of the circumscribed circle, and the average pair-wise distance between 
the centers of the embedded circles. The relative weight of the two objective 
function components can be selected as a model-instance parameter. 

Detailed numerical results are reported in [KP04a], for circles defined by 
the sequence of radii ri — i'^'^.i = 1 , . . . , A/", up to A/" == 40-circle con­
figurations. Observe that the required (pair-wise) non-overlapping arrange­
ment leads to ^ 2~ non-convex constraints, in addition to 2N + 1 bound 
constraints on the circle center and circumscribed radius decision variables. 
Hence, in the 40-circle example, LGO solves this model with nearly 780 non-
convex constraints: the corresponding runtime is about 3.5 hours on a P4 1.6 
GHz personal computer. 
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As an illustration, the configuration found for the case of Â  = 20 circles 
is displayed in Fig. 4. In this example, equal consideration (weight) is given 
to minimizing the radius of the circumscribed circle and the average distance 
between the circle centers. As the picture shows, the circumscribed radius 
is about 2.2: in fact, the numerical value found is ~2.1874712123. Detailed 
results appeared and will appear in [KP04a] and [KP05], respectively. 

Fig. 4. An illustrative non-uniform circle packing result for N = 20 circles with 
radii ri \i=l,...,N 

Let us also remark that we have attempted to solve instances of the same 
circle packing problem applying the built-in Mathematica function NMinimize 
for nonhnear (global) optimization, but - using it in all of its default solver 
modes - it could not find a solution of acceptable quality already for the 
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case N = 5. Again, this is just a numerical observation, as opposed to an 
"all-purpose" conclusion, to illustrate the quality of the LGO solver suite. We 
have also conducted detailed numerical studies that provide a more systematic 
comparison of global solvers available for use with Mathematica: these results 
will appear in [KP05]. 

Finally, let us mention that MathOptimizer Professional is included in a 
recent peer review of optimization capabilities using Mathematica ([Cog03]). 

4.5 Maple Global Optimization Toolbox 

The integrated computing environment Maple [M04a] enables the develop­
ment of sophisticated interactive documents that seamlessly combine technical 
description, calculations, simple and advanced computing, and visualization. 
Maple includes an extensive mathematical library: its more than 3,500 built-in 
functions cover virtually all research areas in the scientific and technical dis­
ciplines. Maple also incorporates numerous supporting features and enhance­
ments such as e.g. detailed on-line documentation, a built-in mathematical 
dictionary with definitions for more than 5000 mathematical terms, debug­
ging tools, automated (ANSI C, Fortran 77, Java, Visual Basic and MATLAB) 
code generation, and document production (including HTML, MathML, TeX, 
and RTF converters). All these capabilities accelerate and expand the scope 
of optimization model development and solution. 

To emphasize the key features pertaining to advanced systems modeling 
and optimization, a concise listing of these capabilities is provided below. 
Maple 

• supports rapid prototyping and model development 
• performance scales well to modeling large, complex problems 
• offers context-specific "point and click" (essentially syntax-free) opera­

tions, including various "Assistants" (these are windows and dialogs that 
help to execute various tasks) 

• has an extensive set of built-in mathematical and computational functions 
• has comprehensive symbolic calculation capabilities 
• supports advanced computations with arbitrary numeric precision 
• is fully programmable, thus extendable by adding new functionality 
• has sophisticated visualization and animation tools 
• supports the development of GUIs (by using "Maplets") 
• supports advanced technical documentation, desktop publishing, and pre­

sentation 
• provides links to external software products. 

Maple is portable across all major hardware platforms and operating sys­
tems (Windows, Macintosh, Linux, and Unix versions). Without going into 
further details that are outside of the scope of the present discussion, we refer 
to the web site www.maplesoft.com that provides a wealth of further topical 
information and product demos. 
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The core of the recently released Global Optimization Toolbox (GOT) is 
a customized implementation of the LGO solver suite for Maple [M04b]. To 
this end, LGO was auto-translated into C code, and then fully integrated 
with Maple. The advantage of this approach is that, in principle, the GOT 
can handle all (thousands) of functions that are defined in Maple, including 
their further extensions. 

As an illustrative example, let us revisit Problem 4 posted by Trefethen 
[Tre02]; recall Fig. 2 from Section 1. We can easily set up this model in Maple: 

> f := exp(s in(50*xl))+sin(60*exp(x2))+sin(70*sin(xl)) 

+sin(s in(80*x2))-s in(10*(xl+x2)) + (xl^2+x2'^2)/4; 

/ : = exp(sin(50xl)) + sin(60exp(x2)) + sin(70sin(xl)) + sin(sin(80x2)) 

- sin(10xl + 10x2) + - x l ^ + -x2'^ 

Now using the bounds [—3,3] for both variables, and applying the Global 
Optimization Toolbox we receive the numerical solution: 

> GlobalSolveCf, x l = - 3 . . 3 , x 2 = - 3 . . 3 , evaluationlimit=100000, 
noimprovementlimit=100000); 

[-3.30686864747523535, [xl = -0.0244030794174338178, 

x2 - 0.210612427162285371]] 

We can compare the optimum estimate found to the corresponding 40-digit 
precision value as stated at the website http://web.comlab.ox.ac.uk/oucl/work 
/nick.trefethen/hundred.html (of Trefethen). The website provides the 40-
digit numerical optimum value 

-3.306868647 4752372800 7611377089 8515657166... 

Hence, the solution found by the Maple GOT (using default precision settings) 
is accurate to 15 digits. 

It is probably just as noteworthy that one can find a reasonably good 
solution even in a much larger variable range, with the same solution eff'ort: 

> GlobalSolveCf, x l=-100. .100, x2=-100..100, eva lua t ion l imi t 
=100000, noimprovementlimit=100000); 

[-3.06433688275856530, [xl - -0.233457978266705634e- 1, 

x2 = .774154819772443825]] 

A partial explanation is that the shape of the objective function f is close 
to quadratic, at least "from a distance". Note at the same time that the built-
in Maple local solver produces much inferior results on the larger region (and 
it also misses the global optimum when using the variable bounds [—3,3], as 
can be expected): 
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> Minimize(f, x l=-100. .100, x2=-100..100); 

[-.713074709310511201, [xl = -0.223022309405313465e- 1, 

x2 = -0.472762143202519123e- 2]] 

The corresponding GOT runtimes are a little more than one second in 
both cases. (Note that all such runtimes are approximate, and may vary a 
bit even between consecutive test runs, depending on the machine's actual 
runtime environment). 

One of the advantages of using ISTCs that one can visuahze models and 
verify their perceived difficulty. Fig. 5 is based on using the Maple Optimiza­
tion Plotter dialog, a feature that can be used in conjunction with the GOT: 
it shows the box-constrained Trefethen model [Tre02] in the range [-3,3]^; 
observe also the location of the optimal solution (green dot). 

Fig. 5. Problem 4 in [Tre02] solved and visualized using the Maple GOT 
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5 Further Applications 

For over a decade, LGO has been applied in a variety of professional, as well as 
academic research and educational contexts (in some 20 countries, as of 2004). 
In recent years, LGO has been used to solve models in up to a few thousand 
variables and constraints. The software seems to be particularly well-suited 
to analyze and solve complex, sophisticated applications in advanced engi­
neering, biotechnology, econometrics, financial modeling, process industries, 
medical studies, and in various other areas of scientific modeling. 

Without aiming at completeness, let us refer to some recent (published) 
applications and case studies that are related to the following areas: 

• model calibration ([PinOSa]) 
• potential energy models in computational chemistry ([PinOO, PinOlb]), 

([SSPOl]) 
• laser design ([IPC03]) 
• cancer therapy planning ([TKLPL03]) 
• combined finite element modeling and optimization in sonar equipment 

design ([PP03]) 
• Configuration analysis and design ([KP04b]). 

Note additionally that some of the LGO software users develop other 
advanced (but confidential) applications. Articles and numerical examples, 
specifically related to various LGO implementations are available from the 
author upon request. The forthcoming volumes ([KP05]; [Pin05a, Pin05b]) 
also discuss a large variety of GO applications, with extensive further refer­
ences. 

6 Conclusions 

In this paper, a review of several nonlinear optimization software products 
has been presented. Following the introduction of the LGO solver suite, we 
have provided a brief review of several currently available implementations for 
use with compiler platforms, spreadsheets, optimization modeling languages, 
and ISTCs. It is our objective to add customized functionality to the existing 
products, and to develop further implementations, in order to meet the needs 
of a broad range of users. 

Global optimization is and will remain a field of extreme numerical diffi­
culty, not only when considering "all possible" GO models, but also in prac­
tical attempts to handle complex, sizeable problems in an acceptable time­
frame. Therefore the discussion advocates a practically motivated approach 
that combines rigorous global optimization strategies with efficient local search 
methodology, in integrated, flexible solver suites. The illustrative - yet non-
trivial - application examples and the numerical results show the practical 
merits of such an approach. 
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We are interested to learn suggestions regarding future development direc­
tions. Test problems and challenges - as well as prospective application areas 
- are welcome. 
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