
Chapter 6

JADEX: A BDI REASONING ENGINE

Alexander Pokahr,^ Lars Braubach,^ and Winfried Lamersdorf^

University of Hamburg
Distributed Systems and Information Systems
22527 Hamburg, Germany
\pokahr\ braubach \ lamersd}@informatik. uni-hamburg.de

Abstract This chapter presents Jadex, a software framework for the creation of goal-
oriented agents following the belief-desire-intention (BDI) model. The Jadex
project aims to make the development of agent based systems as easy as pos­
sible without sacrificing the expressive power of the agent paradigm. The
objective is to build up a rational agent layer that sits on top of a middleware
agent infrastructure and allows for intelligent agent construction using sound
software engineering foundations. Fostering a smooth transition from tradi­
tional distributed systems to the development of multi-agent systems, well es­
tablished object-oriented concepts and technologies such as Java and XML are
employed wherever applicable. Moreover, the Jadex reasoning engine tries to
overcome traditional limitations of BDI systems by introducing explicit goals.
This allows goal deliberation mechanisms being realized and additionally facil­
itates application development by making results from goal-oriented analysis
and design easily transferable to the implementation layer. The system is freely
available under LGPL license and provides extensive documentation as well as
illustrative example applications.

Keywords: BDI agents, FIPA standard, object-oriented software engineering, explicit
goals.

6,1 Motivation
Today, a numerousness of different agent platforms is available for devel­

oping multi-agent applications [144]. Nevertheless, most of these platforms
are developed with a specific technological focus such as the cognitive or
infrastructural architecture. Hence, not all aspects of agent technology are

150 Jadex

covered equally well. General applicability of an agent platform for a great
variety of domains demands that at least three categories of requirements are
considered: openness, middleware, and reasoning. Openness is closely re­
lated to the vision of interconnected networks of originally unrelated appli­
cations whereas middleware aspects emphasize traditional software engineer­
ing concerns such as service management, security and persistency aspects.
Reasoning, in turn, focuses on the agent's internal decision-making process
and mostly tries to map this process from a natural archetype such as insects
or humans.

According to these aspects, the existing platforms can be classified into
two almost distinct groups. On the one hand, FIPA-compliant platforms
mainly address openness and middleware issues by realizing the FIPA com­
munication respectively platform standards [172]. On the other hand,
reasoning-centered platforms exist, that focus on the behaviour model of
a single agent, e.g. trying to achieve rationality and goal-directedness. This
gap between middleware and reasoning-centered systems is one main motiva­
tion for the realization of the Jadex BDI (Belief-Desire-Intention) reasoning
engine [30, 171], which aims to bring together both research strands.

Besides this overall objective to support both classical virtues from mid­
dleware and BDI reasoning, the design of the system is driven by two main
factors. On the one hand, the development of the reasoning engine is ac­
companied by an ongoing effort of enhancing the BDI architecture in gen­
eral. The system addresses shortcomings of earher BDI agent systems, e.g.
by providing an explicit representation of goals and a systematic way for the
integration of goal deliberation mechanisms. On the other hand, the system
respects the current state of the art regarding mainstream object-oriented
software engineering, and is designed to be used not only by AI experts,
but also by the normally skilled software developer. Therefore, agent de­
velopment is based on established techniques such as Java and XML, and is
further supported by software engineering aspects, such as reusable modules
and development tools.

6,2 Architecture

This section presents the architectural underpinnings of the Jadex system.
It starts with a short review of the BDI model and related systems. Sub­
sequently, an overview of the architecture of Jadex is presented. The basic
concepts - beliefs, goals, and plans - of the system are introduced by high­
lighting their main characteristics and differences to other BDI agent sys­
tems. Finally, the execution model is shortly sketched, showing how the
components of the system interoperate.

Architecture 151

6.2A BDI Models and Systems

The BDI model was initially conceived by Bratman as a theory of human
practical reasoning [28]. Its success is based on its simplicity reducing the
explanation framework for complex human behavior to the motivational
stance [58]. In this model, causes for actions are only related to desires ig­
noring other facets of cognition such as emotions. Another strength of the
BDI model is the consistent usage of folk psychological notions that closely
correspond to the way people communicate about human behavior [157].

The BDI theory of Rao and Georgeff [182] defines beliefs, desires, and
intentions as mental attitudes represented as possible world states. The in­
tentions of an agent are subsets of the beliefs and desires, i.e., an agent acts
towards some of the world states it desires to be true and believes to be possi­
ble. To be computationally tractable Rao and Georgeff also proposed several
simplifications to the theory, the most important one being that only beliefs
are represented explicitly. Desires are reduced to events that are handled by
predefined plan templates, and intentions are represented implicitly by the
runtime stack of plans to be executed.

According to Martha Pollack [96], work on BDI can be further subdivided
into three categories: 1. General models for practical reasoning, based on
BDI concepts. 2. Computational models based on the "Intelligent Resource-
Bounded Machine Architecture" (IRMA) [27], exhibiting close correspon­
dence to Bratman's philosophy. 3. The computational model employed in
the PRS family of systems [98, 118], which found many uses in practice.
Nowadays, current descendants of the PRS family, in particular commer­
cial products and solutions such as Agent Oriented Software's JACK 7 and
Agentis' AdaptivEnterprise Suite [127] have the most practical relevance con­
cerning development of agent-based software systems.

In the next sections, the architecture of the Jadex reasoning engine, which
basically follows the PRS computational model, will be described. Important
differences to other representatives of the PRS family will be highlighted in
the corresponding subsections.

6.2.2 Concepts within Jadex

In Fig. 6.1 an overview of the abstract Jadex architecture is presented.
Viewed from the outside, an agent is a black box, which receives and sends
messages. As common in PRS-like systems, all kinds of events, such as in­
coming messages or goal events serve as input to the internal reaction and
deliberation mechanism, which dispatches the events to plans selected from
the plan library. In Jadex, the reaction and deliberation mechanism is the
only global component of an agent. All other components are grouped into
reusable modules called capabilities.

152 Judex

Massages

Agent

Reaction
Deliberation

Handle
Events

Capability

Plans

Application Events Dispatch
I ^ (Sub-) Goals

Beliefs Goals

Figure 6.1. Jadex abstract architecture

Beliefs

One objective of the Jadex project is the adoption of a software engineer­
ing perspective for describing agents. In other BDI systems, beliefs are rep­
resented in some kind of first-order predicate logic (e.g. Jason, described in
chapter 1) or using relational models (e.g. JACK and JAM [114]). In Jadex,
an object-oriented representation of beliefs is employed, where arbitrary ob­
jects can be stored as named facts (called beliefs) or named sets of facts (called
belief sets). Operations against the beliefbase can be issued in a descriptive
set-oriented query language. Moreover, the beliefbase is not only a passive
data store, but takes an active part in the agent's execution, by monitoring
belief state conditions. Changes of beliefs may therefore directly lead to ac­
tions such as events being generated or goals being created or dropped.

Goals

Goals are a central concept in Jadex, following the general idea that goals
are concrete, momentary desires of an agent. For any goal it has, an agent
will more or less directly engage into suitable actions, until it considers the
goal as being reached, unreachable, or not wanted any more. In other PRS-
like systems, goals are represented by a special kind of event. Therefore, in
these systems the current goals of an agent are only implicitly available as
the causes of currently executing plans. In Jadex, goals are represented as
expHcit objects contained in a goalbase, which is accessible to the reasoning

Architecture 153

Creation
Condition ^-

adopt

' Ltflend
• ^

L>"0
[!> - .

Negated condition
Condition guards transition

Condition triggers transition

M

^
i
w

Option

ac///afe

Adopted

y

Context
Condition

I op//on !
•< i m /

^"^N^^ suspend

Active

^ J

'
> '1 Suspended

J
y
finished

k " '

suspend

Drop
Condition ^

d/cp
^

Figure 6.2, Goal lifecycle (from [32])

component as well as to plans if they need to know or want to change the
current goals of the agent. Because goals are represented separately from
plans, the system can retain goals that are not currently associated to any
plan. As a result, unlike other BDI systems, Jadex does not require that all
adopted goals are consistent to each other, as long as only consistent subsets
of those goals are pursued at any time. To distinguish between just adopted
and actively pursued goals, a goal lifecycle is introduced which consists of
the goal states option, active, and suspended (see Fig. 6.2). When a goal is
adopted, it becomes an option that is added to the agent's goalbase, either as
top-level goal, or when created from a plan as subgoal of a plan's root goal.
Application specific goal deliberation settings specify dependencies between
goals, and are used for managing the state transitions of all adopted goals
(i.e. deciding which goals are active and which are just options). In addition,
some goals may only be valid in specific contexts determined by the agent's
beliefs. When the context of a goal is invalid, it will be suspended until the
context is valid again.

Jadex supports four types of goals, which extend the general lifecycle and
exhibit different behaviour with regard to their processing as explained be­
low. K perform goal is directly related to the execution of actions. Therefore,
the goal is considered to be reached, when some actions have been executed,
regardless of the outcome of these actions. An achieve goal is a goal in the
traditional sense, which defines a desired world state without specifying how
to reach it. Agents may try several different alternative plans, to achieve a
goal of this type. A query goal is similar to an achieve goal, but the desired
state is not a state of the (outside) world, but an internal state of the agent, re­
garding the availability of some information the agent wants to know about.

154 Judex

For goals of type maintain, an agent keeps track of a desired state, and will
continuously execute appropriate plans to re-establish this maintained state
whenever needed. More details about goal representation and processing in
Jadex can be found in [32].

Plans

Plans represent the behavioural elements of an agent and are composed of
a head and a body part. The plan head specification is similar to other BDI
systems and mainly specifies the circumstances under which a plan may be
selected, e.g. by stating events or goals handled by the plan and precondi­
tions for the execution of the plan. Additionally, in the plan head a context
condition can be stated that must be true for the plan to continue executing.
The plan body provides a predefined course of action, given in a procedural
language. This course of action is to be executed by the agent, when the plan
is selected for execution, and may contain actions provided by the system
API, such as sending messages, manipulating beliefs, or creating subgoals.

Capabilities

Capabilities, introduced in [39], represent a grouping mechanism for the
elements of a BDI agent, such as beliefs, goals, plans, and events. In this
way, closely related elements can be put together into a reusable module,
which encapsulates a certain functionality (e.g. for interaction with a FIPA
directory facilitator). The enclosing capability of an element represents its
scope, and an element only has access to elements of the same scope (e.g. a
plan may only access beliefs or handle goals or events of the same capability).
To connect different capabilities, flexible import / export mechanisms can
be used that define the external interface of the capability (e.g. beliefs or goals
visible to the outside).

6,2.3 Execution IVIodel

This section shows the operation of the reaction and deliberation compo­
nent, given the Jadex BDI concepts as described earlier. All of the required
functionality is assigned to cleanly separated components, which will be ex­
plained in turn. Incoming messages are placed in the agent's global message
queue by the underlying agent platform such as JADE (see chapter 5). Before
the message can be forwarded to the system, it has to be assigned to a capabil­
ity, which is able to handle the message. If the message belongs to an ongoing
conversation, an event for the incoming message is created in the capability
executing the conversation. Otherwise, a suitable capability has to be found,
which is done by matching the message against event templates defined in

Architecture 155

Jadex Agent

Intemal/goal

1 Message queue

Message
receiver

^

3
^"Y^^ Select message

Create event
for message

^
V

^
+

Event list |

Dispatcher

^

^ r " " ^ Select event

Find applicable
candidates

•
Select

candidates

>•
V.

^
^

^ •
1 Ready list |

Scheduler

,

^ Y ^ Select intention

Execute
plan step

^
Capabilities/eventbases

J^

^
^

Capabilities/planbases

Meta-level reasoning

Figure 6,3. Jadex execution model

the eventbase of each capability. The best matching template is then used to
create an appropriate event in the scope of the capability. In either case, the
created event is subsequently added to the agent's global event list.

The dispatcher is responsible for selecting applicable plans for the events
from the event list. This is done in two steps: First, a list of applicable
plans is generated by matching the event against the plan heads as defined in
the planbases of each capability, whereby only those capabilities have to be
considered, where the event is visible. The second step is to select a subset
of the applicable plans for execution. Regarding this step several important
questions arise, such as if all of the applicable plans should be executed con­
currently, or if the event is posted to another plan if the first plan fails [39].
The decision of which plan to execute is called meta-level reasoning and may
be as simple as selecting the first plan from the list, or as complicated as
finding and executing meta-plans for the decision. Jadex provides flexible
settings to influence this event processing individually for event types and
instances. As a default, messages are posted to only one single plan, while
for goals, many plans are executed sequentially until the goal is reached or fi-

156 Judex

Agent Plattform

' ' : ^ ^ : ^ -

ADF
<agent name-"ping">

<beliefs>

<goals>

<plans>

</agent>

• ^

Plan
public class PingPlan 1

extends ThreadedPlan T
{ ;

public void bodyO 1'
{ ;

)
} li

^

Figure 6.4. Jadex agent

nally failed, when no more plans are applicable. Internal events are posted to
all plans at once, as they are considered only as a change notification and no
return value Is expected from executed plans. After plans have been selected,
they are placed In the ready list, waiting for execution.

The execution of plans Is performed by a scheduler, which selects the plans
from the ready list. Plans are executed step-by-step, whereby (In contrast to
other PRS-lIke systems) the length of plan step depends on the context, and
not only on the plan Itself. A plan Is executed only until It waits explicitly or
significantly affects the Internal state of the agent (e.g. by creating or drop­
ping a goal). Internal state changes can be caused directly or through side
effects, e.g. when a belief change triggers the creation condition of a goal.
After the plan waits or Is Interrupted, the state of the agent can be properly
updated, e.g. a newly created goal might lead to other plans being scheduled.

6.3 Language

Jadex Is neither based on a new agent programming language nor does It
employ or revise an existing one. Instead, a hybrid approach Is chosen, dis­
tinguishing explicitly between the language used for static agent type specifi­
cation and the language for defining the dynamic agent behaviour. According
to this distinction, a Jadex agent consists of two components: An agent defi­
nition file (ADF) for the specification of inter alia beliefs, goals and plans as

Language 157

well as their initial values and on the other hand procedural plan code (see
Fig. 6.4). For defining ADFs, an XML language is used that follows the Jadex
BDI metamodel specified in XML Schema. The XML structure specification
is augmented by a declarative expression language, e.g. for specifying goal-
conditions. The procedural part of plans (the plan bodies) are realized in an
ordinary programming language (Java) and have access to the BDI facilities
of an agent through an application program interface (API).

6,3.1 Specifications and Syntactical Aspects

The Jadex BDI metamodel defined in XML Schema is very extensive and
hence cannot be presented completely in this paper (for a complete intro­
duction see [170]). Generally, the corresponding language was specified with
two design principles in mind. The first design objective is the support for
strong typing and explicit representation of all kinds of elements, be it be­
liefs, goals or events. In consequence, this requires users to write detailed
ADFs, but in return allows for more rigorous consistency checking of agent
models. Additionally, at runtime certain kinds of failures can be discovered
more easily, e.g. the attempt of storing a fact value in an undefined belief can
be immediately reported.

The second design objective regards increasing the expressive power of the
ADF for the following purposes: The arbitrary complex creation of objects
(e.g. values within beliefs or parameters), the description of boolean condi­
tions (e.g. when a certain goal should be dropped) and the construction of
queries (e.g. for retrieving values from the beliefbase). To achieve this, an em­
bedded expression language is used for specifying parts of the agent model,
not easily represented in XML. Expressions are used throughout the XML
ADF, whenever values have to be obtained for certain elements at runtime,
e.g. values of beliefs, conditions of goals, etc. Expressions should be side
effect free, because they are often evaluated internally by the system. The
expression language has been designed to fully comply with the syntax of
Java expressions (right hand side of assignments) extended with a subset of
OQL (object query language) instructions [15]. The syntax of the OQL
extension is depicted in Fig. 6.5 in EBNF notation. It allows for query state­
ments being created in the well-known select-from-where form, whereby it
can be additionally specified if exactly one (iota), the first satisfying (any)
or all satisfying results are expected (line 1). In the/rom clause (lines 3-4)
it is specified from which object set (line 4) or joined sets (line 3) results
are generated. The identifiers define variables, which iterate over the ob­
ject sets specified as arbitrary expressions. These iterated values are checked
against the boolean where condition (line 6) and can possibly be ordered (line
7). The example query, corresponding to the example presented in section

158 Jadex

01: select.expression ::= "SELECT" ("ALL" | "ANY" | "IOTA")?
02: (
03: expression "FROM" ("$" identifier "IN" expression) ("," "$" identifier "IN" expression)*
04: I "$" identifier "FROM" expression
05:)
06: ("WHERE" expression)?
07: ("ORDER" "BY" expression ("ASC" | "DESC")?)?

Example: SELECT $block FROM $beliefbase.blocks WHERE $block.isClear()

Figure 6,5. OQL syntax in EBNF and query example

6.3.3, shows that it is possible to use Java method calls like isClearQ in the
expression language. While queries can be used in any expression, they are
most useful for predefined views on subsets of the agent's beliefs, which can
be evaluated at runtime (e.g. from within plans).

In the following the essential BDI concepts as presented in Section 6.2.2
will be taken on and their realization on language level will be detailed.
These concepts are specified as part of an agent or capability description
in the same manner. In Fig. 6.6 (left hand side) the allowed attributes and
subtags of the agent tag are shown. Each agent type is identified by a name
and package declaration and can be provided with a description text. In ad­
dition, the corresponding agent class and runtime properties can be set. For
most cases, the default values are sufficient and need not be modified. It
can be seen that besides the subtags for the core BDI concepts (beliefs, goals,
plans and events which are explained below) several other elements can be
declared. Most of these elements (languages, ontologies, servicedescriptions
and agentdescriptions) are FIPA related and facilitate agent communication
respectively the interaction with yellow page services. The remaining ele­
ments (imports, expressions, properties) are implementation details, serving
for convenience (e.g. to avoid duplicate declarations) and agent configuration
purposes, such as logging or debugging settings.

Beliefs

In Jadex, beliefs are represented in an object-oriented way allowing arbi­
trary Java objects being stored as facts. Like all elements of a capability,
beliefs and belief sets can be supplied with a name, a description text and
an exported flag. Exporting an element makes it accessible from the outer
scope (respectively a capability or an agent) and is turned off by default. For
beliefs and belief sets, the Java class for facts must be defined. Besides the
type-relevant information, initial fact data can also be supplied for configur-

Language 159

<agent>

Attribute
name
description
packaqe
class
propertyfile

<lmports> 1
<capabiliti»s>
<betlefs>
<goals> 1
<plan8>
<eV8nts> 1
<languages> 1
<ontologies>
<expressions> 1
<propert[es>
<servlcedG5cript[on$> 1
<a^entdescriptions> |
Type
xs:string
xs:string
xs:string
xs:string
xs:string

Use

optional
optional
optional
optional

Default 1

[...IJadeWrapperAgent
jadGx.config. Runtime

Fig.

<belief> {0..n)
<beliefset> (0„n)
name
description
exported
class
updaterate

<fact>
<fact>(0,.n)
xs;string
xs:strinq
xs:boolean
xs:string
xs:long

optional
optional
optional
optional

false 1

0 1

<plan> {0..n)

name
description
exported
instant
1 priority

<trigger> 1
<precondition>
<contextcondition> 1
<bindtngs>
<body>
xs:string
xs:string
xs:boolean
xs:boolean
xsiint

optional
optional
optional
optional

false
false
0

Legend: ->• Subtag refinements <Ugname> XML-Tag attmame Attribute

Figure 6.6. Agent metamodel specification fragment pCML-schema)

ing an agent's mental state at creation time. The value of a fact has to be
stated in the expression language and can be declared as static or dynamic,
whereby dynamic facts are useful e.g. for representing values continuously
sensed from an environment or time-relevant aspects. Re-calculation of such
dynamic facts occurs on access and additionally in fixed time intervals (using
the update rate). At runtime, beliefs and belief sets are accessible from within
plans via operations on the beliefbase and additionally by issuing OQL-like
queries.

Goals

As described earlier in Jadex four different goal types are distinguished
(perform, achieve, maintain and query). All these goal types are based on
the generic life cycle and hence exhibit many common properties that are
summarized in an abstract base goal type (see Fig. 6.7). According to the
lifecycle, creation, drop and context conditions can be specified as boolean
expressions. Customization of goal types can be further achieved by defining
named in-, out- and inout-parameters that are used to transfer information
between a goal's originator and its processing plans. Additionally, binding
parameters can be used for generating one goal instance for every possible
binding. The runtime processing of goals can be refined using the various
BDI-flags, which inter alia control if a goal is retried when a plan fails (retry),
if meta-level reasoning is used (mlreasoning) and if applicable plans are tried
sequentially or in parallel (posttoall). A complete explanation can be found
in [170].

160 Judex

goal (abstract)

Attribute
[name
Idescription
1 exported
1 retry
retrydelay
1 ml reasoning
randomselection
[exclude
[posttoall

< parameter > (0..n) 1
< parameterset > (0..n) 1
< bindings > 1
<creationcondlt[on >
<contextcondition >
<dropcondition > |
Type
xs:string
xs:string
xs:boolean
xsiboolean
xs:iong
xsibooiean
xs:boolean
xs:boo!ean
xs:boolean

Use

optional
optional
optional
optional
optional
optional
optional
optional

Default 1

false
tme 1
0

true 1
false 1
when tried 1
false]

<achiev8goal >
<targetcondltlon >

<fallurecondition >

<querygoal >
<targetcondltion >
<faiturecondition >

<maintalngoal >

recurdelay

<malntaincondition >
<targetcondition >
xs:boolean
xs:long

optional
optional

false

<performgoaI > Legend

< <tagname>
attrname

inheritance
XML-Tag
Attribute 1

Figure 6.7. Goal metamodel specification (XML-schema)

From the abstract goal type, all concrete types are derived. The simplest
one being the perform goal used for executing (possibly repeatedly) certain
actions, which does not require extra specification data. An achieve goal
extends this abstract goal type and adds support for the specification of a
target and a failure condition. The target condition is used for describing the
world state this goal seeks to bring about as a boolean expression. Similarly,
a boolean failure condition has the purpose to abort goal processing in case
its achievement has become impossible. The query goal provides the same
kind of conditions, but exhibits a slightly different behaviour in that it is
used for information retrieval purposes.

Most complex behaviour is exposed by the maintain goal type, which is
used to monitor a specific world state (maintain condition) and automati­
cally tries to reestablish this state whenever it becomes invalid. A boolean
target condition can be used to refine the state that is tried to be restored.
Maintain goals are not dropped when they are achieved once, but remain in­
active until the monitored state is violated again. Moreover, a maintain goal
can be configured to retry re-establishment in certain time intervals (recur
and recurdelay), when it has failed for some reason. In addition to the spec­
ification of the four types of goals, possibly parametrized initial goals can
be declared that will be created when the agent is born. At runtime, goal
instances can be created from within plans by referring to their type name.
Typically, some parameter values need to be supplied before a goal can be
dispatched as top-level goal or as subgoal of the current plan.

Language 161

Plans

The declaration of plans In Jadex Is very similar to other PRS-lIke systems
and requires the specification of the plan heads describing the circumstances
under which a plan Is applicable In the ADF. As plan trigger, Internal events,
messages, and goals, as well as a belief state condition (for data driven plans)
can be provided. The pre- and context condition of a plan can be specified
as boolean expressions. To facilitate goal achievement with plans. It Is some­
times advantageous to create several different parametrized plan Instances of
a plan type and try them one after another until a plan succeeds. For this
purpose, binding parameters can be specified and used for plan configura­
tion. Furthermore, the selection of which plan Is executed In response to an
occurring trigger can be adjusted by setting a priority value. As part of the
Initial mental state of an agent. It can be further declared whether a plan Is
Instantiated when the agent Is created (using the Instant flag).

The plan body needs to be supplied as expression for the creation of a
suitable plan Instance. Currently, two different types of plan bodies (stan­
dard and mobile) are supported, which both require a Java class to be Imple­
mented. Mobile plan bodies have several disadvantages compared to the stan­
dard versions, but nonetheless make sense In mobile scenarios as agent mi­
gration Is provided. In Fig. 6.8 the skeleton of an application plan Is depicted.
Mandatory Is only the extension of a corresponding framework class (Plan)
and the Implementation of the abstract bodyO method. In which the domain-
specific plan behaviour can be placed. In addition to the body method, three
other methods exist that optionally can be Implemented. These methods are
called when plan processing has finished according to the plans final state.
The passedQ method Is called when the body method completes, whereas
the falledQ method Is Invoked when an uncatched exception Is thrown within
the bodyO method. Finally, the abortedQ method Is called, when plan pro­
cessing was Interrupted from outside. Two different abort cases can be dis­
tinguished, either when the corresponding goal succeeds before the plan Is
finished or when the plans root goal Is dropped.

6,3,2 Software Engineering Issues

The overall goal of the Jadex project Is to provide a sophisticated reasoning
engine allowing to develop arbitrary complex Intelligent agents. Therefore,
while trying to be as easily useable as possible, the system does not sacrifice
expressiveness for simplicity. Nonetheless, software engineering Issues play
an Important role In the design of the system.

As stated earlier, a primary goal of the project Is to facilitate a smooth tran­
sition from mainstream object-oriented software development to an agent-
oriented approach. This Is achieved by resorting to established techniques

162 Jadex

01:
02:
03:
04:
05
06
07
08
09
10
11
12
13
14
15
16;
17:

/** Plan skeleton for an application plan. V
public class SomePlan extends jadex.runtlme.Plan {

public void body() {
// Plan code.

}

public void passed() {
// Optional cleanup code in case of a plan success.

}
public void failed() {
// Optional cleanup code in case of a plan failure.

}
public void aborted() {
// Optional cleanup code in case the plan is aborted.

}
}

Figure 6.8. Plan skeleton

wherever possible. E.g., the system builds on Java and XML, therefore the
developer does not have to learn a new language. Another advantage is that
the developer can continue to operate in a familiar environment. As the
agent developer only has to create Java and XML files, existing development
environments such as Eclipse^ or IntelliJ IDEA^ can be used to develop Jadex
agents. In recent editions of these environments, features such as on-the-fly
checking and auto-completion not only apply to Java coding but can also eas­
ily be adopted for XML ADF creation,"^ therefore offering extensive support
for Jadex agent development.

Moreover, the system provides advanced software engineering features,
such as reusability and consistency checking. The capability concept allows
encapsulating agent functionality into a reusable module while maintaining
the abstraction level of BDI elements. The explicit specification and strong
typing of beliefs, goals, etc. facilitates consistency checks of ADFs to detect
errors (e.g. spelling mistakes) as early as possible.

6.3.3 Example

To further explain the syntax and semantics of the Jadex agent languages,
in this section a simple example is provided. The example does only cover
a small subset of the features of Jadex. Another example covering all dif­
ferent types of goals can be found elsewhere [32]. The example presented

^ http://www.eclipse.org/
^ http://www.jetbrains.com/idea/
^In eclipse this can be realized by the XMLBuddy plug-in (see .http://xmlbuddy.com/).

http://www.eclipse.org/
http://www.jetbrains.com/idea/
http://xmlbuddy.com/

Language 163

<:\rwt BMtiwdU

A

yellow n

Jj^Hi ..reC); ; L

A'

H

^ i i

^^m ^^^H

^ yellow 1

î bl •^^^^^i
(»<•) J i ('•''

^ C ^ (^

V^L^ Cj^i^' -^^^

(§)

O c ^

Figure 6.9. Blocksworld scenario (left) and goal/plan tree (right)

here is a fully functional agent, taken directly from the current Jadex dis­
tribution. The purpose of the agent is to establish given configurations in
a blocksworld environment, where colored blocks are placed in stacks on
top of a table. The example provides a graphical user interface, where the
user can visually create custom block configurations (see Fig. 6.9, left hand
side). The configurations have to be established by the agent by moving the
blocks. As only clear blocks (without other blocks on top) can be moved,
the agent has to perform some ad-hoc planning. The implemented solution
is very simple, creating the stacks bottom-to-top. Fig. 6.9 (right hand side)
shows the planning process. To achieve the target configuration, subgoals
are created to stack the red block on the table, the yellow block on the red,
and the blue block on the yellow (see ConfigureBlocksPlan). To stack two
blocks on each other, a StackBlocksPlan clears both blocks and performs the
stackOn action. To clear a block, all obstructing blocks are moved to the
table.

The ADF of the agent is shown in Fig. 6.10, where tags (elements of the
Jadex metamodel) are in boldface, and embedded expressions are in italics.
The model starts with the declaration of the agent tag, specifying the name
and package of the agent (line 1). The package is used as first place to resolve
references to other files such as capabilities and Java classes. More packages
and files can be explicitly specified in the imports section (lines 2-4). In this
case the class java.awt.Color is imported, because it is used to represent the
color of a block.

The beliefs of the agent are given in the beliefs section (lines 6-16). A belief
"table" (lines 7-9) is used to represent the environment, which consists of a
table on which blocks are located. As initial fact of the belief, an instance
of the Table class (located in package jadex.examples.blocksworld) is created
(line 8). The known blocks are collected in a belief set "blocks" (lines 10-15).

164 Judex

01
02;
03:
04:
05:
06:
07:
08:
09:
10:
11:
12
13
14
15
16
17
18
19
20
21
22
23
24
25:
26
27
28
29
30
31:
32:
33
34
35
36
37
38
39
40
41
42
43
44:
45
46
47
48
49
50
51
52
53
54
55

<agent name="Blocksworlcl" package="jadex.examples.blocksworld">
<imports>

<import>yava.awf.Co/or</import>
</imports>

<beliefs>
<belief name="table" class="Table">

<fact>neiv Table()</iacX>
</belief>
<beliefset name="blocks" class="Block">

<fact>nen' Block(new Color(240,16,16),$bellefbase.table)</1acX>
<fact>new Block(new Color(16,16,240),$bellefbase.table.allBlocks[0])</iacX>
<fact>new Block(new Color(240,240,16),$bellefbase.table.allBlocks[1])<l\aoX>

</beliefset>
</bellefs>

<goals>
<achievegoal name="clear">

<parameter name="block" class="Block" />
<targetcondltlon>$gfoa/.t>/oc/c./sC/earO</targetconditlon>

</achievegoal>
<achievegoal name="stack">

<parameter name="block" class="Block" />
<parameter name="target" class="Block" />
<targetconditJon>$5foa/./?/oc/c./oiver==5s'oa/.fargef</targetcondltJon>

</achievegoal>
<achievegoal name="configure">

<parameter name="configuration" class="Table" />
<targetcondltlon>

$bellefbase. table. conflguratlonEquals($goal. configuration)
</targetcondition>

</achlevegoal>
</goals>

<plans>
<plan name="stack">

<body>neiv StackBlocksPlan($event.goal.block, $event.goal.target)</bo6y>
<trigger><goal ref="stack"/></trigger>

</plan>
<plan name="configure">

<bo6y>newConfigureBlocksPlan($event.goal.conflguration)</bo6y>
<trigger><goal ref="configure7></trlgger>

</plan>
<plan name="clear">

<bindings>
<binding name="upper">

select Supper from $beliefbase.blocks where $upper.lower==$event.goal.block
</binding>

</bindlngs>
<bo6y>new StackBlocksPlan($upper, $beliefbase.table)</bo6y>
<trigger><goal ref="clear"/></trigger>

</plan>
</plans>

</agent>

Figure 6.10. Blocksworld agent model

Language 165

A number of blocks (class Block) with different colors Is Initially created
given by single fact Items (lines 11, 12, 13 . . .) . The first block Is created on
the table, while the other blocks are created on top of each other (referenced
by table.allBlocks[]).

The agent has three achieve goals, each with a name, parameters and a
corresponding target condition (lines 18-34). The "clear" goal (lines 19-22)
represents the goal to clear (I.e. remove blocks located on top) a block given
In a parameter (line 20). The target condition (line 21) refers directly to
the IsClearQ method of this block. The "stack" goal (lines 23-27) alms at
placing a given block (line 24) on a target block (line 25). Achieving this
goal means that the block below the first block Is now equal to the target
block as stated by the target condition (line 26). To establish a complete
configuration of blocks on the table, the "configure" goal (lines 28-31) Is used.
The desired configuration Is given as a parameter of type Table (line 29).
The target condition (line 30-32) refers to the configuratlonEqualsQ method
Implemented In the Table class. No Initial Instances of these three goal types
are defined In the model. The agent starts Idle, waiting for goals to appear,
which are created by the user through a GUI.

The goals are handled by the plans of the agent (lines 36-54). In this ex­
ample, there Is one plan for each goal, although this kind of one to one
mapping Is not required. The plan head declarations of the first two plans
"stack" (lines 37-40) and "configure" (lines 41-44) are straightforward. The
trigger (lines 39 and 43) defines when the plan Is applicable. In this case for
goals of type "stack" and "configure", respectively. The body (lines 38, 42)
defines how the plan body object Is Instantiated. In both cases, the creation
expression refers to parameters of the triggering goal to supply the arguments
for the Java constructor (cf. Figs. 6.11, 6.12). The "clear" plan definition Is
more complex, as the body of the "stack" plan Is reused (see line 51) to move
all blocks from the top of the block to be cleared to the table. To resolve the
parameters used for body creation, a bindings declaration Is used (lines 46-
50). The variable Supper Is assigned to all blocks located on top of the given
block (select statement In line 48). For each of these variable assignments an
Instance of the plan Is created, assuring that all blocks are removed from the
given block.

The Java files of the two plan bodies are shown In Figs. 6.11 and 6.12,
respectively. References to classes and methods provided by the Jadex en­
gine are shown In boldface. Both plan classes define a constructor which
takes the plan arguments and stores them In corresponding fields (lines 6-
12 respectively 6-10) such that they are accessible from the bodyQ methods,
which will be described In turn.

The bodyO method of the StackBlocksPlan (Fig. 6.11, lines 14-24) first
clears both blocks provided as arguments, and then moves the first block on

166 Judex

01
02;
03:
04:
05:
06:
07:
08
09
10
11
12
13
14
15
16
17;
18
19
20;
21
22
23
24
25

package jadex.examples.blocksworld;
import jadex.runtime.*;

/** Plan to stack one block on top of another target block. V
public class StackBlocksPlan extends Plan {

protected Block block;
protected Block target;

public StackBlocksPlan(Block block, Block target) {
this.block = block; ,
this.target = target;

}

public void body() {
IGoal clear = createGoal("clear");
clear.getParameter("block").setValue(block);
dispatchSubgoalAndWait(clear);

clear = createGoal("clear");
clear.getParameter("block").setValue(target);
dispatchSubgoalAndWait(clear);

block.stackOn(target);
}

}

Figure 6.11, Java code for StackBlocksPlan

top of the other. To clear the first block, a goal of type "clear" (cf. Fig. 6.10)
is created (line 15) and the parameter is set to the block (line 16). The dis-
patchSubgoalAndWaitQ method (line 17) forces the agent to adopt the goal,
and halts the execution of the plan until goal processing is finished. If the
goal fails, an exception is thrown causing the whole plan to fail. Otherwise,
the plan continues to clear the target block in a similar fashion (lines 19-21).
Finally, the plan stacks the blocks on each other by calling the stackOnQ
method of the Block class (line 23).

In the ConfigureBlocksPlan (Fig. 6.12), the bodyO method (Hnes 12-25)
consists of two loops through all stacks on the table, and all blocks of each
stack, as returned by the getStacksQ method of the Table class (line 13). This
table object represents the desired target configuration. The agent now has
to look up the corresponding blocks in its beliefbase, and then operate on
these blocks such that they resemble the target configuration. The lookup
is simple for the block itself, as the corresponding object can be obtained
directly from the belief set (line 16). The lookup of the object below the
block (lines 17-19) is somewhat more difficult, because the block could be
located directly on the table (line 18) or on top of another block (line 19). To
perform the actual changes to the retrieved objects, a "stack" goal is created

Platform 167

01
02
03
04
05
06
07
08
09:
10;
11
12
13:
14
15;
16;
17;
1
19;
20;
21
22;
23;
24
25;
26;
27;
28;

package jadex.examples.blocksworld;
import jadex.runtlme.*;

/** Plan to to establish a given configuration of blocf<s. */
public class ConfigureBlocksPlan extends Plan {

protected Table table;

public ConfigureBlocksPlan(Table table) {
this.table = table;

}

public void body() {
Block[][] stacks = table.getStacks();
for(int i=0; i<stacks.length; i++) {

for(int j=0; j<stacks[i].length; j++) {
Block block=(Block)getBeliefbase().getBeliefSet("blocks").getFact(stacks[i]0]);
Block target=stacks[i]0].getLower()==table
?(Table)getBellefbase().getBellef("table").getFact()
:(Block)getBellefbase().getBellefSet("blocks").getFact(stacks[i]0].getLower());

IGoal stack = createGoal("stack");
stack.getParameter("block").setValue(block);
stack.getParameter("target").setValue(target);
dispatchSubgoalAndWait(stack);

}
}

Figure 6.12. Java code for ConfigureBlocksPlan

and dispatched (lines 21-24). Because the loop processes the stacks bottom-
to-top, the sequential execution of all "stack" goals ensures that the final
configuration resembles the desired target configuration.

6,4 Platform
This section describes the realization of the Jadex reasoning engine, and

Its Integration Into the JADE platform. Figure 6.13 shows the essential com­
ponents required for developing and executing a Jadex agent, and highlights
the dependencies between those components. The components are distin­
guished In core system components (upper row) which realize the reasoning
engine, system interface components (middle row) that provide and define the
access points to the system, and custom application components (lower row)
which have to be supplied by the agent developer. The links between the
components can be categorized In runtime dependencies (I.e. between com­
ponents In the first two columns from the left), dependencies that only apply
during the agent startup phase (see third column components), and dependen­
cies resolved at design time (right column).

168 Judex

Core
System
Components

System-
Interface
Components

Custom
Application
Components

Interpreter

Jadex Agent

Instance Elements
(e.g. Goal Irwtances)

Model Elements L
{e.a. Goal Types) " ^

I T

Plan Executors

Plan Code
(e.g. Java ClassM)

BDI API
(Plan/OUl Wrapper)

;̂
Agent Type Loader [|n7.

Application Code
(a.g. Java Classes)

auaifv

ADFXML

Runtime
(Invocation of Operationa)

Agent Startup
(XML Parsing / Creation of Model Elements)

XML Databinding
(Code Generator)

Jadex Metamodei
(XML Schema)

Design Time
n / Code Generation)

Figure 6.13. System realization

We will describe the components starting from the right. Jadex is based on
a BDI metamodei defined in XML Schema (cf. Sect. 6.3.1). This schema is on
the one hand used to validate the agent models specified in XML agent def­
inition files (ADF). On the other hand, an XML databinding framework"^ is
used to generate Java classes for the elements of the metamodei and for read­
ing model elements from XML. When an agent is instantiated, the generated
agent type loader reads the user supplied XML agent model and automatically
creates the corresponding model elements.

From these model elements, instances are continuously created at run­
time, represented by instance elements. The main interpreter operates on the
current instance elements and executes plans to handle events and goals. Plan
executors are used to hide the details of plan implementation types from the
system. As a default, there is a plan executor for executing plan code writ­
ten in Java. Plan code may access any other application code or third party
libraries written in a suitable language. Both plan and application code has
access to the reasoning engine through a BDI API. It is provided to plan and
other application (e.g. GUI) code by wrappers that encapsulate the instance
elements, and ensure proper synchronization and deadlock-avoidance when
the API is called from the plans, or from external threads respectively.

For integration into JADE, the platform management tool (RMA) has
been extended slightly to support launching of Jadex agents, by selecting the
corresponding agent model with a file chooser. The Jadex interpreter itself is
realized as a special type of JADE agent, which loads an agent model supplied

'^JBind Java-XML Data Binding Framework, see http://jbind.sourceforge.net/

http://jbind.sourceforge.net/

Platform 169

at startup, and creates its own instance of the reasoning engine according to
the settings given in the model (e.g. initial beliefs, goals, and plans). The
functionalities corresponding to the execution model components (message
receiver, dispatcher, scheduler, cf. section 6.2.3), are implemented as cyclic
behaviours (cf. chapter 5), always running inside the agent. These behaviours
call the reasoning engine to process incoming messages, and perform internal
reasoning. In each JADE agent cycle, the reasoning engine is called to process
one event and execute one plan step. Using a reference to the JADE agent
object, Jadex plans have direct access to all operations of the JADE API as
well (e.g. for handling of FIPA ACL messages).

6.4,1 Available tools and documentation

The system distribution contains complete documentation materials for
quick start and reference purposes. An introductory tutorial made up of
several exercises shows the usage of basic system features in a step-by-step
manner. Moreover, the distribution provides several example applications
including their commented source code. A user guide provides a systematic
overview of all features and also serves as a reference manual. In addition,
Javadocs of the plan programming API and a reference to the metamodel
defined in XML Schema are provided. The available tools are covered in a
separate guide. Apart from the documentation material included in the dis­
tribution, there are publicly available online tools kindly hosted by Source-
Forge.net, such as web forums for discussion and support requests, a database
for bug-reports and feature requests, and a general mailing list with online
archives.

As a Jadex agent is still a JADE agent, all runtime tools provided by the
JADE platform such as Sniffer and Dummy agent can also be used with
Jadex agents. To enable a comfortable testing of the internals of Jadex agents
additional tool agents have been developed. In Fig. 6.14 an example applica­
tion (marsworld) is depicted together with the logger and introspector tools
in a typical debugging session. The BDI introspector (Fig.6.14 bottom left
and right hand side) serves two purposes. First, it supports the visualiza­
tion and modification of the internal BDI concepts thus allowing inspection
and reconfiguration of an agent at runtime. Secondly, it simplifies debug­
ging through a facility for the stepwise agent execution. In the step mode, it
is possible to observe and control each event processing and plan execution
step having detailed control over the dispatcher and scheduler. Hence it can
be easily figured out what plans are selected for a given event or goal.

With the help of the logger (see Fig.6.14 on the top right) the agent's out­
puts can be directed to a single point of responsibility at runtime. In contrast
to simple console outputs, the logger agent preserves additional information

170 Judex

Tm '•••1 ^
•(3

i S
e

! \^i

iK' • ^ r - w ' j

Figure 6.14. BDI introspector and logger screenshots

about the output such as its time stamp and its source (the agent and method).
Using these artifacts the logger agent offers facilities for filtering and sorting
messages by various criteria allowing a personalized view to be created.

Moreover, a tracer tool for on-line visualization of agent execution based
on ideas from [132] is provided. It generates a unified view of multi-agent
and internal agent behaviour, relating message-based communication and in­
ternal agent processes. The Jadexdoc tool allows generating documentation
of agent applications similar to Javadoc. In addition to these tools already
included in the latest release, a tool for multi-agent application deployment
is currently in development (see [29]).

6,4.2 Standards compliance, interoperability and
portability

One driving factor for the development of Jadex was the need for a FIPA-
compliant platform supporting advanced BDI reasoning capabilities, FIPA-
compliance is achieved through the JADE platform, which provides sophis­
ticated implementations of all important FIPA specifications. The Jadex rea­
soning engine, realized on top of the JADE platform, in itself only supports

Platform 171

8

i
i

Host Platform (e.g. JADE) 1

r

V

''

^

Adapter Agent (e.g. JADE Agent)

Adapter Layer
(e.g. Timing-, MessageReceiver -, Scheduler-. Dispatchersehaviour)

t Adapter Agent interface Q

: Jadex Agent
V

V Jadex Agent Interfece

Core Reasoning Layer
{Beliafe. Plans. Goals, etc.)

A 1

11

^

1

1
3

) \

1

Figure 6.15. Platform integration

homogeneous (i.e. BDI) agents, but provides interoperability with agents
based on other models. Agents realized using the conventional JADE pro­
gramming techniques can be executed directly together with Jadex agents
running on the same platform. Interoperability with other kinds of agents
is straightforward as long as those agents adhere to the FIPA standard. E.g.
in an example application, Jadex agents have been successfully connected to
agents running on the CAPA platform [76], which provides a petri-net based
computation model for agents.

The reasoning engine has been realized as a separate component, inten­
tionally limiting the dependencies to the underlying platform. To use the
reasoning engine on top of other platforms, an adapter has to be realized
(see Fig. 6.15). This adapter has to implement a handful of methods used by
the Jadex engine (e.g. to send messages) and has to call the engine when it
is expected to do the reasoning. Therefore, although the current implemen­
tation is designed to be used with JADE, the reasoning engine can be easily
integrated with other FIPA-compliant agent platforms such as CAPA [76]
or ADK^, given that they provide a similar interface for message handling.
It is also possible to use the system in conjunction with other middleware
environments such as J2EE or .NET, when FIPA-compliance is not needed.
Currently, in addition to the JADE integration, we have developed experi­
mental adapters for the DIET agent platform [147] and for running a set of
Jadex agents as a standalone Java application.

^ http://www.tryllian.com/

http://www.tryllian.com/

172 Jadex

The engine was realized in Java 1.4 and includes the third party packages
JBind for XML data binding and Apache Velocity^ for generating the content
of some tool dialogs. To support mobile devices, a port of the engine is also
available in a reduced version based on J2ME / CDC. Moreover, all kinds of
tools and libraries with a Java API can easily be used to provide additional
features. For example, in a larger project the Cayenne database mapping
framework^ was used to connect agents to a relational database.

6.5 Applications supported by the language and/or the
platform

Jadex is a general-purpose development environment for creating multi-
agent system applications, allowing to build agents with reactive (event-
based) and deliberative (goal-driven) behaviour. It is not bound to a specific
target domain, but has been used to realize applications in different domains
such as simulation, scheduling, and mobile computation. Jadex originated
in the MedPAge ("Medical Path Agents") project [166, 167], which is part
of the German priority research programme 1083 Intelligent Agents in Real-
World Business Applications funded by the Deutsche Forschungsgemeinschaft
(DFG). In cooperation with the business management department of the
University of Mannheim, the project investigates the advantages of using
agent technology in the context of hospital logistics. In this project Jadex
is used to realize a multi-agent appHcation for market-based negotiation of
treatment schedules [167], as well as for the simulation of a hospital model
to test the negotiation mechanism [31]. In other contexts, Jadex was used
to realize portable PDA-based applications. A personal mobile task plan­
ner was developed, to test the Jadex J2ME port and to prove the usefulness
of BDI agents on mobile devices [104]. Elsewhere, in the PITA ("Personal
Intelligent Travel Assistant") project at the Delft University of Technology,
Jadex was used to realize a prototype of a mobile personal travel assistant
application [9].

Besides building specific agent applications, Jadex has also been used for
teaching and research regarding agent oriented software development in gen­
eral. Due to its simple language based on well-known technologies such as
Java and XML, and the extensive documentation material and illustrative ex­
ample applications, Jadex is well suited for teaching purposes. It has been
successfully applied in several courses at the University of Hamburg, and
is also evaluated by other institutes. Regarding research in agent systems,
the project is also designed as a means for researchers to further investigate

^http://jakarta.apache.org/velocity/
'̂ http://objectstyle.org/cayenne/

http://jakarta.apache.org/velocity/
http://objectstyle.org/cayenne/

Final Remarks 173

which mentalistic concepts are appropriate in the design and implementation
of agent systems. The combination of XML Schema with Java databind-
ing techniques allows the Jadex metamodel to be flexibly adapted and ex­
tended for experimentation purposes. While investigating different repre­
sentations for beliefs, goals and plans, the system has been applied to several
well-known AI problem domains (blocksworld, cleanerworld, mars robots,
hunter-prey). These applications are also included in the distribution. More­
over, the Technical University of Karlsruhe has used Jadex to implement an
experimental system for representing norms in multi-agent systems [204].

6.6 Final Remarks

In this chapter, the Jadex BDI reasoning engine has been presented. The
realization of the system is motivated mainly by three factors. Firstly, the
system aims to combine the benefits of agent middleware and internal agent
reasoning processes. Secondly, it intends to enhance the state-of-the-art BDI
architecture by addressing some shortcomings of current BDI agent plat­
forms such as implicit goal representation and thirdly, the system targets on
making agent technology more easily usable by exploiting current software
engineering techniques such as XML, Java and OQL.

The architecture of Jadex is in principle similar to traditional PRS systems,
when event and goal processing is considered. Nevertheless, conceptual dif­
ferences exist mainly concerning the representation of BDI core concepts
and as well on language level. According to the usability requirement, beliefs
are expressed in an object-oriented way instead of using logical formulae or
relational models. Moreover, goals are represented as explicit durable entities
instead of relying on events. On language level, Jadex differentiates between
the description of an agent's behaviour and its static structure. Therefore,
for each of these purposes different languages are employed. The static agent
structure is declared in an XML-dialect following the Jadex BDI metamodel
specified in XML-schema, whereas ordinary Java is used for plan realization.
BDI-specific facilities are made accessible from within plan through an appli­
cation program interface.

Ongoing work currently focuses on two aspects of the system: Exten­
sions to internal concepts and additional tool support. On the conceptual
level extensions to the basic BDI-mechanisms are developed, such as support
for planning, teams, and goal deliberation. It is planned to utilize the explicit
representation of goals by improving the BDI architecture with a generic fa­
cility for goal deliberation, which alleviates the necessity for designing agents
with a consistent goal set. Additionally the explicit representation allows in­
vestigating task delegation by considering goals at the inter-agent level. Work
on tools mainly addresses the usability of agent technology as a mainstream

174 Judex

software engineering paradigm. The tool support of Jadex currently focuses
on the implementation and testing phase supplying tools like the debugger
and logger agent. To achieve a higher degree of usability it is planned to
support the design phase as well with a graphical modeling tool based on
the MDA-approach [8]. Additionally, a tools for deployment of multi-agent
applications is being developed [29].

The current version is Jadex 0.931, which can be freely downloaded un­
der LGPL license from the project homepage http://jadex.sourceforge.net/.
It is termed a beta stage release, and has reached considerable stability and
maturity to be used in experimental and practical settings.

Acknowledgments

This work is partially funded by the German priority research programme
1083 Intelligent Agents in Real-World Business Applications.

http://jadex.sourceforge.net/

