
Chapter 4

CLAIM AND SYMPA:
A PROGRAMMING ENVIRONMENT FOR
INTELLIGENT AND MOBILE AGENTS

Amal El Fallah Seghrouchni and Alexandru Suna

LIP6 • CNRS UMR 7606 University of Paris 6
8, Rue du Capitaine Scott
75015, Paris
{AmaI.EIfallah.Alexandru.Suna} @lip6.fr

Abstract The multi-agent systems (MAS) paradigm is one of the most important and
promising approaches to occur in computer science during the 90s. However,
for an effective use of the agent technology in real life applications, specific
programming languages are required. CLAIM is a high-level agent-oriented
programming language that combines cognitive aspects such as knowledge,
goals and capabilities and computational elements such as communication,
mobility and concurrence in order to reduce the gap between the design and
the implementation phase. CLAIM has an operational semantics that is a first
step towards the verification of the built MAS. The language is supported by
a distributed platform called SyMPA, implemented in Java, compliant with
the specifications of the MASIF standard from the OMG, that offers all the
necessary mechanisms for a secure execution of a distributed MAS. CLAIM
and SyMPA have been used for developing several applications that proved the
expressiveness of the language and the robustness of the platform.

Keywords: Agent-oriented programming, mobile agents, ambient calculus.

4.1 Motivation

The emergence of autonomous agents and multi-agent technology is one
of the most exciting and important events to occur in computer science dur
ing the 1990s. The main focus of the multi-agent systems (MAS) community
has been on the development of informal and formal tools {e.g. consortiums

96 CLAIM and SyMPA

such as FIPA^ or OMG^ have attempted to propose a wide range of stan
dards to cover the main aspects of MAS engineering), concepts (e.g. concern
ing mental or social attitudes, communication, co-operation, organization),
techniques (e.g. AUML^) and modal languages (e.g. BDI[182]) in order to
be able to analyze and specify MAS. Unfortunately, the design of declarative
languages and tools which can effectively support MAS programming and al
low implementing the key concepts of MAS remained at an embryonic stage.
In addition, the potential of MAS technology for large-scale, cross-functional
deployment of general purpose in industrial setting has been hampered by
insufficient progress on infrastructure, architecture, security and scalability
issues.

Recently, the mobile agents technology (the mobility is seen as a transver
sal property for agents) tries to improve the systems' performances since
it provides powerful programming constructs for designing distributed and
mobile applications. Thanks to the mobile agents paradigm, it becomes easy
to design active entities that move over the network and perform tasks on
hosts {target sites or computers)^ thus reducing the network traffic and in
creasing the scalability and the flexibility of such applications.

Despite the plethora of approaches and platforms that have been proposed
for mobile agents, the main focus remains on the development of mobile ob
jects and processes. Mainly implemented using object-oriented frameworks,
the mobile agents provide a collection of extensible classes modelling simple
concepts of agent that are specified rather at the implementation level.

For an effective use of the MAS paradigm, we claim that specific high-
level programming languages are required. The programming environment
presented in this chapter is motivated by three main objectives:

1. Propose an agent oriented programming language that:

• helps the designer to reduce the gap between the design and the imple
mentation phases; i.e. the designer should think and implement using
the same paradigm, namely through agents;

• allows the representation of cognitive skills such as knowledge, beliefs,
goals and more complex mechanisms such as planning, decision mak
ing and reasoning;

• meets the requirements of mobile computation in order to support the
geographic distribution of complex systems and of their computation
over the net;

^FIPA on-line : http://www.fipa.org
^OMG : http://www.omg.org
^AUML : http://www.auml.org/

http://www.fipa.org
http://www.omg.org
http://www.auml.org/

Language 97

• allows the dynamic adaptability and reconfiguring of the MAS.
Thanks to mobility, to the hierarchical representation of agents and
to the language' features, our agents (and consequently the MAS) are
able to reconfigure themselves autonomously, to acquire new knowl
edge and capabilities and to dynamically adapt their structure in accor
dance with the changes in the environment and the demands of target
applications.

2. Make possible the verification of MAS. Indeed, at a short term we would
like an agent-oriented programming language that allows the verification of
the built systems. A first and necessary step towards developing methods
for verifying formally agent-oriented programs is the design of a suitable
operational semantics. It opens the way to the application of standard tech
niques like type systems or model-checking to the setting of agent-oriented
programming.

3. Provide a distributed platform that supports the proposed language and
the deployment and secure execution of mobile MAS.

To reach our objectives, we proposed a high-level declarative language
called CLAIM (Computational Language for Autonomous, Intelligent and
Mobile agents) [81] that combines the main advantages of the intelligent
agents paradigm (e.g. intelligence, autonomy, communication primitives and
cognitive skills) with those of the concurrent languages such as the ambi
ent calculus [41] (e.g. concurrence, hierarchical representation of agents and
mobility primitives). CLAIM has an operational semantics [83] that is a
first step towards the verification of the built MAS. The language is sup
ported by a distributed platform, called SyMPA (SYstem Multi-Platform of
Agents) [211] that offers all the necessary mechanisms for the deployment of
distributed MAS designed in CLAIM and for its secure execution.

4,2 Language

CLAIM is a high-level declarative language allowing to design intelligent
and mobile agents.

4,2.1 Specifications and Syntactical Aspects

A MAS in CLAIM is a set of hierarchies of agents distributed over a net
work. The notion of hierarchy in our approach can be also seen as a mem
bership relation. Thus, "an agent is sub-agent of another agent" means that
he is contained in the higher-level agent. A CLAIM agent is a node in a hier
archy; he is an autonomous, intelligent and mobile entity that can be seen as
a bounded place where the computation happens and has a parent, a list of

98 CLAIM and SyMPA

local processes and a list of sub-agents. In addition, an agent has intelligent
components such as knowledge, capabilities, goals, that allow a reactive or
proactive behavior.

In CLAIM, agents and classes of agent can be defined using:

defineAgent agentName {
authority = null; \ agentName;
parent = null; \ agentName;
knowledge=null; \ { (knowledge;)-^}
goals = null; \ {(goal;)+}
messages = null; \ { (queueMessage;)+}
capabilities = null; \ { (capability;)+}
processes = null; \ {(process D'''process}
agents = null; \ {(agentName;)-^}

}
defineAgentClass className ((argj'') {,„}

An new agent can be instantiated from an already defined class using the
primitive:

new Agent namexlassName ((argj^'j

In CLAIM, variables (denoted by ?x) can be used to replace agents' names,
messages, goals, etc. There are global (for a class) or local (to a capabil
ity) variables. The agents' components we propose allow representing the
agents' mental state, communication and mobility and will be presented be
low. Most of the components are null in the definition (e.g. parent, messages,
etc.) but will evolve during the agent's execution.

An agent is uniquely identified in the MAS by his name and he belongs to
an authority. Thus, the authority component is instantiated at the agent's
creation and is composed of the authority and the name of the agent that has
created the current agent. This component is necessary for security reasons
(e.g. for authentication).

The agents in CLAIM are hierarchically represented, like the ambi-
ents [41]. So an agent's parent is represented by the name of the agent that
currently contains him. When an agent is created, his parent and his author
ity indicate the same agent; after the migration, his parent will change, but
his authority will always be the same.

The knowledge component contains pieces of information about other
agents (i.e. about theirs capabilities or their classes) or about the world (divers
propositions). This knowledge base is a set of elements of knowledge type,
defined as follows:

knowledge ::= agentName(capahilityNameymessage,effectJ
I agentNamexlassName
I proposition

Language 99

We can notice that the knowledge about other agents has a standard format,
containing the name of the known agent and his class or capability. In addi
tion, the user can define his own ontology of information about the world,
represented as propositions containing a name and a list of arguments.

proposition = nafne{argi, arg2, ,.>, argn)

Propositions can also be used for denoting goals or messages.
The current goals of an agent are represented as user-defined propositions,

in accordance with the current application. The agent will try to achieve his
goals using his capabilities or services offered by other agents.

The CLAIM agents communicate asynchronously using messages. Every
agent has a queue for storing the received messages. The messages are pro
cessed using a FIFO policy and are used to activate capabilities. A message
from the queue contains the sender of the message and the arrived message:

queueMessage .-.•= agentName > message

An agent can send messages to an agent {unicast)^ to all the agents in a class
{multicast)^ or to all the agents in the system {broadcast)^ using the primitive:

send(receiverymessageX where the receiver can be:
- this - the message is sent to himself;
- parent or authority - the message is sent to the agent's current parent or

authority (the agent that created the current agent);
- agentName - the message is sent to the specified agent;
- all - the message is sent to all the running agents;
- ^Ag.'className - the message is sent to all the agents that have been instan

tiated from the specified class of agents;

In CLAIM there are three types of messages:

1. propositions, defined by the designer to suit the current application and
used to activate capabilities;
2. the messages concerning the knowledge, used by agents to exchange
information about their knowledge and capabilities. These messages have a
predefined treatment, but a designer can write capabilities to treat them in a
different manner:

- tell(knowledge) - to give an agent a piece of information; the specified knowl
edge is added in the agent's knowledge base.
- askAllCapabilitiesO - an agent requests all the capabilities of another agent;
The later inform the first agent about all his capabilities, using the tell prim
itive.
- asklfCapability(capabilityName) - an agent asks another agent if he has the
specified capability; If the later has this capability, he confirms using the tell
communication primitive.

100 CLAIM and SyMPA

- achieveCap ability (capability Name) - an agent requests from another agent
the execution of the specified capability; if this capability's condition is veri
fied, it is executed.
- askEffect(effect) - to ask the achievement of an effect from another agent.
- doneEffect(effect) - to confirm the accomplishment of an effect.

3. the mobility messages are used by the system during the mobility op
erations, for asking, granting or not granting mobility permissions. Their
treatment can be redefined by the designer in order to control the mobility.
They are represented at the semantical level by co-actions. In the ambient
calculus, the only condition for the mobility operations is a structure condi
tion (e.g. for the enter operation, the involved agents must be on the same
level in the agents' hierarchy). In CLAIM, we kept this condition, but we
added the mobility messages for an advanced security and control.

The capabilities are the main elements of an agent and dictate his
behavior. They represent the actions an agent can do in order to achieve
his goals or that he can offer to other agents. A capability has a message of
activation, a condition, the process to execute in case of activation and a set
of possible effects:

capability .v= capabilityName {
message=null; \ message;
condition = null; \ condition;
do {process}
effects = null; \ { (effect;)+ }

}

To execute a capability, the agent must receive the activation message and
verify the condition. If the message is null, the capability is executed
whenever the condition is verified. If the condition is null, the capability
is executed when the message is received. A condition can be a Java
function that returns a boolean, an achieved effect, a condition about agent's
knowledge or sub-agents, or a logical formula:

condition ;;=]^\^(ohjectNamefHnction(argsJ)
agentName. effect
hasKnowledge(knowledge)
ha$Agent(agentName)
not(condition)
and(condition,(condition)+)
or(condition,(condition)+)

An agent concurrently executes several processes. One of these concur
rent processes can be a sequence of processes, an instruction, a variable's
instantiation, a method implemented in other programming language (e.g.
Java), the invocation of a known Web Service, the creation of a new agent

Language 101

or the removal on an existing one, a mobility operation or a message
transmission:

process .'.'^^ process.process
I instruction
I h = (value \ Javafohj.methodfargsJ))
I Java(ohj.method(args))
I WebServicefaddresSy method(args))
I new Agent agentNamexlassNamef (argy)'''')
I ^^7/ (agentName)
I opew (agentName)

I jw (mobilityArgument,agentName)
I o«^ (mobilityArgumentyagentName)
I mo-ye (mobilityArgumentyagentName)
I send (receiverymessage)

We defined two instructions:
forAllKnowledge(knowledge) { process } - execute the process for all

agent's knowledge that satisfy a criteria (e.g. all agent's knowledge about a
certain agent).

forAllAgentsfagentNameJ { process } - execute the process for all the
agent's sub-agents that satisfy a criteria (e.g. all the agent's sub-agents that
belong to a certain class).

The mobility primitives have the same utilization as in the ambient calculus
but they have been adapted to intelligent agents. Hence, an agent can open
the borders of one of his sub-agents (open) or can open his own borders
(acid); in both cases, the parent of the open agent inherits knowledge,
capabilities, processes and sub-agents from the open agent. Also, an agent
can enter an agent form the same level in the hierarchy, i.e. having the same
parent (m), can exit the current parent (put) or can migrate into another
agent (move). With respect to the hierarchical representation of agents,
these operations allow flexible reconfiguring of MAS and dynamic gathering
of capabilities and knowledge.

An important problem is the migration's granularity, and the question
is "who can migrate?". We specify this using the mobility argument that
allows the migration of the agent himself, of a clone of the agent or of a
process:

mobilityArgument = this \ clone \ process

The agent component represents the agent's current sub-agents.

The CLAIM language offers to the agents' designer the possibility to de
fine two types of behavior for the agents:

The reactive behavior (or forward reasoning):

102 CLAIM and SyMPA

• get a message from the queue (the first or using a selection heuristic);

• find the capabilities that have this message of activation and replace the
variables In the body of the capability;

• verify the conditions of the chosen capabilities;

• execute the process of the verified capabilities; let us note that several
capabilities can be concurrently activated.

The pro-active behavior (or backward reasoning):

• get a goal from the list of goals (the first or using a selection heuristic);

• find the capabilities that allow to achieve this goal;

• verify the conditions of the chosen capabilities; If the condition is an
agent's effect, add this effect in his list of goals; if the condition is other
agent's effect, request the execution of the corresponding capability;

• execute the process of the verified capabilities.

Before reading the next section, about CLAIM'S semantics, the reader can
see in section 4.4 a list of applications implemented in CLAIM, one of them
presented in details in order to illustrate the language's specifications.

4.2.2 Semantics and Verification

The specifications of the CLAIM programming language, presented in the
previous section, are used by the programmer to define agents and classes
of agents. Nevertheless, these specifications are complex and the reduction
rules of the semantics using the same notations are difficult to read and un
derstand. That's why we are using another formalism (equivalent with the
specifications) to re-write the syntax and the operational semantics of the
language, semantics that must take into account the mobility, the communi
cation and the specificity of cognitive agents. All the components presented
at the specification level will be also represented at the semantical level, with
a different notation, to facilitate the understanding and the readability of the
reduction rules.

A MAS in CLAIM is a set of connected hierarchies of agents. At the se
mantical level, a MAS (or a CLAIM program) is a set TT of running agents
(deployed on several sites).
We consider that oc, (i, n, ... are agents' names. We also consider that a\,a2,
... are agents (with all the components) belonging to IT. The goals, the mes
sages, the capabilities' effects and the pieces of information about the world
are propositions containing a name and a list (possibly empty) of arguments,

Language 103

denoted by: p = n(fi, 2̂/ •••/ ̂ m)- The other notations will be explained as
they are introduced.

A program is: TT = ai || Ui \\ ... || cin,n > 0. The notation || represents
concurrent agents inside the MAS, running on the same computer or on dif
ferent connected computers.
An agent: Uj = {a, n, K, G, G', M, C, P, S, £) , where:

- a is the agent's name;
- n is the name of the agent's current parent;
- K is the knowledge base, containing pieces of information about the world
(represented as propositions) or about other agents' capabilities (containing
the name, the message and the effect) or classes.

^ = {h,ki,'",K],ki = Pi I oci{ni,mi,Ei) \ Uf : elf
- G is the agent's set of current goals (not treated yet); this list can contain
not only agent's goals, but also goals requested by other agents, denoted by
e.g. I5.g
- G' is the agent's set of currently processing goals;
- M is the messages queue containing a set of pairs representing the sender
and the message. The received messages are treated sequentially:

M = 0 I ai{mi}.a2{m2}....;
- C is the agent's list of capabilities. A capability has a name (n/) and triggers
a process (p/) according to a message (m/) if a (optional) pre-condition (jQ/) is
verified. A capability may have eventual effects (post-conditions) (£/):

Ci = {ni,mi,ai,ipi,Ei) e C
A condition can be a Java method that returns a boolean, an effect (used
for the goal-driven behavior), a condition about the agent's knowledge, sub-
agents or effects, or a logical formula. We defined a function V : (H, TT) —>
{true, false} (detailed later), that evaluates the boolean value of a CLAIM
agent condition in the context of a running MAS.
- P is the list of the agent' concurrent running processes (the notation | rep
resents concurrent processes inside an agent): P ::= pi \ pj \ ... \ pj^

- S is the set of names of the agent's sub-agents;
- E is the list of achieved goals or effects.

A process may be executed either if it is explicitly coded in the agent or as
a result of a triggered capability or in order to achieve a goal. Several pro
cesses can be concurrently executed by an agent. One of these concurrent
processes can be, as seen in the previous section, a (possibly empty) sequence
of processes, a message transmission, the creation of a new agent (belonging
to an already defined class) or the removal of an existing one, a mobility op
eration (we added co-actions, represented in the previous section as mobility

104 CLAIM and SyMPA

messages), an effect achievement, a variable instantiation or an instruction
(the last two). We do not treat at the semantical level the Java methods and
the Web Services invocations.

p/::= 0 I PyPk \send{a,m) \
new Agent {a, 0 , K, G, 0 , 0 , C, P, 0 , 0) |
mm _
in{l3) I in_{a) \
out{l5) I out{a) I
move{(5) \
open{(5) I 'open{cx) \
acid I acid{l3) \
addEffect{ei) \
7x = value \
forAllKnowkedge(k){pj} \
f or All Agents {oci){pj}

Additional notations

Propositions are important notions in our language. A proposition has a
name and contains a set of arguments: p = /^(h/ 2̂/ •••/ ̂ m)- They are used
to represent goals, messages, information about the world and effects. The
propositions may contain variables (denoted by ?x) as arguments. We say
that a proposition is instantiated if it contains no variables (all the arguments
are instantiated).

D E F I N I T I O N 4.1 A proposition.p = n{ti,t2,>^^,tm) is to^dX with another
proposition p' = n'[ty t'2,.../ 0̂) (notation p = p') if p and p' are instantiated
andn — n'ym = oand\/i € {1,...,m},f/ = fj.

D E F I N I T I O N 4,2 A proposition p belongs to a set A (e.g. G, E) of propositions
(notation p £ A) if3p' G A and p = p\

D E F I N I T I O N 4.3 A proposition p = n(fi, ^2/ .•./ tm) corresponds to another
proposition p' = yi'[t\,i^2, ...,i^^ (notation p = p') if p' is instantiated and
n =z n\m = 0 andMi G {1,. . . , m}, ti = t[or ti is a variable.

D E F I N I T I O N 4.4 A proposition p has a correspondent in a set A (e.g. G, E)
of propositions (notation p ^E A) if^p' G A and p = p'.

These definitions also apply to all types of knowledge, with slight differences
and with the same notations.

Conditions

The function V (as seen before, V : conditions —> {true,false})
evaluates the boolean value of a capability condition in the context of a

Language 105

running MAS. We will use the notation V{Q.),

Vinull) = true

n

true if e/̂ ~G £

T//r fr^i • r \\ J ^^^^ if Java rcturns true V{]ava{Obj.func)) = { ^^^^^ J ^

V{this.e,) - ^ ^^^^^ ^^^^

(true if3fly=: {(5,...,Ej) eU
V{(3.e„)= I mdek-^eEj

[false else

V{husKnowkedse(k)) = {
false else

ViHasAsentm = {%:, I f ^

v(notia)) = -(v(a))
V(and{Cli,Cl2,...,Clm)) = V{CL^) A V(Cl2) A ... A V(CLm)

v(or(cii,ci2, ...,a^)) = y(ai) v 1/(02) v... v v(CLm)

Reduction rules

We recall that a program in CLAIM contains a set of concurrent running
agents: TT = ai \\ ai || ...^«, where the notation || represents concurrent
running agents in the MAS. For representing the semantics of CLAIM pro
grams we choose an operational approach [169] consisting in a transition
relation —> between states of a program. We use a different notation, giving
a set of reduction rules, from an initial state of a program, verifying certain
conditions, to another stable state, after the execution of actions by agents
in the program: ^ (instead of fl —> TT').

For readability reasons we omit the unchanged components of agents. All
the actions are considered to be atomic. At each step of an agent's execution,
either a message is treated via a capability or a running process is executed or
a goal is processed.

Terminal configuration

A very important notion for studying a program behavior is the terminal
configuration. We give two related definitions, appropriate for CLAIM
programs. The first one defines the termination of a CLAIM program, using
the second definition that defines the termination of a CLAIM agent.

DEFINITION 4.5 (PROGRAM TERMINATION) A CLAIM program is in a
terminal configuration (denoted by T\t) if it contains no agents (i.e, T\t = 0) or
if all its agents are in terminal configurations (see next definition),

D E F I N I T I O N 4.6 (AGENT TERMINATION) A CLAIM agent is in a termi

nal configuration if he has no message or goal to treat and no running process.

106 CLAIM and SyMPA

Ex. Ui = {a, n, K, 0 , 0 , 0 , C, 0 , S, £)

Even if an agent can still receive messages that activate capabilities, we call
this kind of configuration a terminal configuration.

Message transmission

Using the send primitive and the language's possibilities, an agent can send
a message to himself or to another agent, to all the agents belonging to a class
(multicast), or to all the agents in the MAS. The message is added at the end
of the messages queue M (rule 4.1).

{a,send{(5,m)) \\ {15, M) -^ {a,0) \\ {(5,M.a{m}) (4.1)

Message processing

The arrived messages are processed sequentially, following a FIFO policy.
The language offers to the designer the possibility to create his own messages,
or to use several pre-defined messages {e.g. tell, asklfCapability, askAllCapa-
bilities, achieveCapability, askEffect, doneEffect), that can be used by agents to
exchange information about their capabilities, effects and knowledge base.
These messages have a pre-defined treatment. We present next (rule 4.2) the
treatment of the tell message, used by an agent to send a piece of information
to another agent. By default, the information is added in the knowledge base.
Nevertheless, the agent's designer can write a capability having this message
of activation, for treating it someway else {e.g. verifying the trust level of the
sender).

{^,K,oc{tell{k))) -^ (/3,KU{fc},0) (4.2)

If the triggering message of a capability arrives and its condition is verified,
the associated processes are executed and the effects are updated (rule 4.3).
When a message arrives, the variables in the condition, process or effects
are replaced with the corresponding values sent in the message. In the next
reduction rule (4.3), we consider that if the capability's message m/ has a list
of variables-attributes instantiated with real values in the received message,
and if jQ/, p/ and ei G E/ contains as attributes some of the variables x^
from m/, then Oj, p\ and e\ G E/ will have the variables replaced with the
corresponding values from the received message.

(^, (K{m}, C, 0) , and 3{ni, m/, O/, pi, Ej) e C, nti ̂ m and V{C1'-) = true
{(3,0,C,p'i-addEffect{e[).,..addEffect(e'j)), e[...e'- e EJ ^'^' ''

If there are several capabilities activated by a message, the rule above is
applied concurrently for each of these capabilities.

A message that does not have a corresponding capability or whose condi
tion is not verified is simply removed from the queue, without any change
in the agent's state.

Language 107

Capabilities without messages

The CLAIM language gives the possibility to the agents to have capabili
ties that are not started by a received message, but only by a condition {e.g.
concerning the internal state, a certain moment in time, etc.). If a capability
does not have a message, it is executed whenever the condition is verified
(rule 4.4).

(13, C, Q)), and 3(n,v Q), O-j, Pi, £/) G C, Vjaj) = true
{l5,C,Pi'addEffect{ei)....addEffect(ej)), ei...ej G £/ ^ ' •^

Agents' creation and removal

When an agent is created using the new Agent operation, his components
are instantiated from an already defined class (rule 4.5).

(a, newAgent{^, 0 , K, G, 0 , 0 , C, P, 0 , 0) , 0)
(a,0,{i3}) II (/3,a,K,G,0,0,C,P,0,0>

An agent can completely remove one of his sub-agents:
{cc,7T,kill(l3),Sa) II {(5, cc),where 15 G Sg

(a,7r,0,S«-{/3}>

(4.5)

(4.6)

Mobility operations

The mobility primitives are inspired from the ambient calculus. The re
duction rules will be accompanied for these operations by a graphical repre
sentation that emphasizes the changes in the MAS hierarchy. Using zn, an
agent can enter another agent from the same level in the hierarchy (rule 4.7
and Figure 4.1) and using out, an agent can exit his parent (rule 4.8 and Fig
ure 4.2). Unlike the ambient calculus, where there is no control, we added an
asking/granting permission mechanism, represented in term of co-actions,
in the same spirit with the safe ambients [136], with the main difference that
one can specify the agent to whom he will grant a permission. By default, a
CLAIM agent will receive these permissions, unless another agent is explic
itly programmed to refuse to give them.

{n,Srx) II {oc,nAn{^)) \\ {l5,nM^)^Sp),a,[5 G S^
{n, Sn - [oc]) II {a, 13,0) || {(3, n, 0 , S^ U {«}) ^ ' ^

{7i,Sn) II {(K,^,out{(3)) II {^,7i,Wt{a),S^),(3eSn,oceS^
(71, Sn U [oc]) II {oc, n, 0) II (^, n, 0 , S^ - {«}) ^ ''^

In both cases, if the structural condition is not verified or if the agent does
not receive the permission (i.e. the other does not have the correspondent
co-action), the mobility process waits until the operation is possible.

The move mobility operation is a direct migration to another agent, with
out verifying a structure condition (rule 4.9 and Figure 4.3). Nevertheless,
the operation is subject to the in and out permissions.

{n,'oui{(x),Sn) II {a,7T,move((3),Sa) \\ {(3,m(a), Sp,), oc e Sn , .
{n, Q), Sn - {«}) II (oc, (3,0, S«) II (13,0,SpU{a]) ^' ^

108 CLAIM and SyMPA

Pe = in(x)-p|q I
|>> = p|q]

Figure 4.1. The enter operation Figure 4.2. The exit operation

5 @ &_i'̂ '̂̂ pi3l fp>=̂ iq'̂ 6 %

Figure 4.3. The move operation

The open and acid actions are used as in the original ambient calculus,
respectively for opening one of the sub-agents (rule 4.10 and Figure 4.4), and
for opening his own boundaries (rule 4.11 and Figure 4.5). Nevertheless,
they have been adapted to intelligent agents. Hence, not only the running
processes and the sub-agents of the open agent, but also his knowledge base
and capabilities, become components of his parent. In this way, an agent can
dynamically gather new knowledge and capabilities and can adapt himself
to the requirements of an application. These operations are controlled by
co-actions and allow a dynamic reconfiguration of a MAS.

{a,KaXa,P\open{[5),Sa) \\ {(5,a,K,iXi3rQ \open{a),S,i) \\ ap
where (5 € S«,fl^ = {y^,(^),^y^ € S^

{(x,Koc^K^,Ca\JC^>P I Q, S« U Ŝ > II a^, where a^ = {y^,CK),'iy(i G S^

{oc,Ka,Ca,P\^dd{^),Sa) || {^, (X, K^Xp, Q \ acid, S^) \\aii
where /3 e Scc.a^ = {r(i, I3),\frii G S^

(4.10)

(4.11)
(a,i<:«Ui<^,C«UC^,P| Q,S«US^) ||fl^,wherefl^ = (r^,«),Vr/3 6 S^

All these mobility operations are considered atomics at the semantical level
and are executed in one step.

Instructions
There are two instructions in CLAIM. The first one, f orAllKnowledge,

allows to sequentially execute a process for all the elements in the knowledge
base verifying a criterion (rule 4.12). The second instruction, for All Agents^
allows to execute a process for all the sub-agents verifying a certain criterion
{e.g. all sub-agents - rule 4.13, or all sub-agents belonging to a specific class

file:////aii

Language 109

• I f / V f , = open(p).p|q:/

fZ^

4 ©̂ 5© ^®>^§

\'lC>C,uCg

«0 ^ ^ ^ .:=K

xQ ^
f^ = acid.piq̂

C'̂ = Ĉ u Ĉ

P'.^PJplq

^ 6̂̂ 0

Figure 4,4. The open operation Figure 4.5, The acid operation

- rule 4.14). The notation Pi{xi/x} symbolizes the substitution of all the
occurrences of x with X/ (or of the variables in x with corresponding values
from Xi) in p.

{a, K, forAllKnowledge(k) {pj})
{oc,K,pi{ki/k}.,..pi{kj/k}),\/ki G X,l < / < j,k^ki

{a,K,forAllAgents{?x){pi},S)

{cx,K,pi{n/r}....Pi{rn/r}.s),\/ri eSA<i<n
{oc,K,forAllAgents{?x : cl){pi},S),Sci C S^Yi G Sci,Yi : cl,Yi belongs to the class c/

{oc.K,pi{ri/r}.,.,pi{rj/r},s),\fy, e SdA <i<j

(4.12)

(4.13)

(4.14)

Updating effects

The effects are added in the effect list after the successful execution of the
capability's process. If the achieved effects correspond to goals, they will be
removed from the lists of not treated and processing goals.

{oc,G,G',addEffect[ei),E)
{a,G-{e/},G'-{%},0,£U{e,}) (4.15)

The goal-driven behavior

Concurrently with the reactive behavior, in which processes are executed
when messages are received, an agent has a proactive behavior, accomplished
using the capabilities' effects. When a capability has an effect corresponding
to one of his goals, the agent will try to execute the capability. If its condition
is true, the corresponding process is executed, (rule 4.16, where pJ, Hj and
e'-^.-.e': have the variables replaced with values from g),

(«. {g]> 0 . C, 0), 3{si, mj, dj, Pi, Ej) e C, 3ei € £,-, e/ ^ g, V(Q.\) =^ true
{oc,(2),{g],C,p'i-addEffect{e[),.,.addEffect(e'-)),e\.,.e'.eE, ^ ' ^

If the condition allowing to achieve the goal contains an agent' effect not
achieved yet, the agent will try first to achieve this effect, by adding it in his
goals list. In the same time, the fist goal is moved from the current goals list

110 CLAIM and SyMPA

to the processing goals (rule 4.17).

{«,te},0,C),3(s,-,m/,a/,p/,£/> G C,3ei G Ei,ei^g,
V(D.i) = false, Cli conmns this.Ci

^ ') J ' ~ (4.17)
{<^>{e'i}r{g],C)

If the condition allowing to achieve the goal contains an effect of another
agent, the effect is requested to the other agent using a specific message,
asfcE//ecf (rule 4.18).

(«/ {g]> 0 / C 0) , 3(s/, nii, O/, Pi, Ei) G C, 3e/ G E/,e/ ^ ^,
V(Cli) = false, Cli contains B.ei ^ " J ' ' (4.18)

{oc,(d,{g],C,send{^,askEffect{e'.)))

When an agent receives an askEffect message, if he does not have a capabil
ity with this message, meaning that the agent is programmed to treat differ
ently the requests for services from other agents, he will add the demanded
effect to his list of goals (rule 4.19).

((5,0,(x{askEffect(ei)}) -> (/3, {a:.^/},0) (4.19)

The treatment of this new goal, resulting from another agent's demand, is
done in the same way as his own goals. The only difference is that after the
successful achievement of this external goal, a doneEffect message is sent to
the agent that requested it (rule 4.20).

{l3,G,G\addEffect(ei),E), and Ba.ej e G or Ba.ej G G'
{I5,G- {ei},G' - {ei},send((x,doneEffect(ei)),EU{ei}) ^ ' ^

The treatment of a doneEffect message consists in removing the effect from
the goals lists and adding it in the effect list, similar with the addEffect
process.

Variable instantiation
The language allows to instantiate variables that will be used in the fol

lowing processes in the current sequence (rule 4.21).

{a,?x = v.pi) —> {a,pi{v/?x}) (4.21)

Sequence

If an agent can evolve from a state containing a process pi into another
state containing the process p-, then the agent containing pi followed (in
sequence) by another process q is able to evolve into pj followed by q.

if {a. Pi) -^ {a, p'i) then {a, pi.q) -^ {a, p^.q) (4.22)

Language 111

Java and Web Services

As seen in the previous section, the programming language offers addi
tional features, for calling Java methods or for invoking Web Services, that
cannot change the components of an agent and we do not treat them at the
semantical level.

Verification of programs: a discussion

The operational semantics presented above is just a first necessary step
towards the formal verification of multi-agent programs written in CLAIM.
The formal definition of an agent is more complex than the other formalisms
treating mobile processes and the verification become much more compli
cated. We are currently studying aspects as programs' correctness (desirable
properties that programs should verify [5]) and verification and we provide
here a brief discussion about the characteristics of CLAIM programs. A
CLAIM program is distributed and concurrent, containing agent communi
cating asynchronously and that do not share common variables. We have
already presented the notion of program termination. We continue in this
section with other important properties.
Determinism: A program is determinist if for any given state, there is ex
actly one next possible computational state. CLAIM programs are implicitly
non-deterministic, because starting from a state, a program can evolve in sev
eral different states (see below).

The next configuration is a valid CLAIM program.

(T,SrU{7r}> II (7r,^(^).pfc,S^Uja,^}) ||
(a,7T,in{(3),pi) \\ {(5,7r,out(n).pi | m(a).;?y, S)̂

This configuration can evolve (with equal probabilities) in two different con
figurations. If a executes in:

{T,SrU{7T}) II (n,Wt{l5).pk,SnU{(5}) \\
{a, (3, Pi) II ([5,n,outin).pi\pi,SpU{a})

or, if out is executed by /3:

{T,SrU{7T,(3}) II {7l,pj„SnU{a}) \\
{cx,n,in{l3).pi) \\ {(5,T,pi |m(a).py,S^)

In the first case, (5 will still be capable of executing owf(7r), but in the
second case, a no longer can enter /3, because he is not at the same level in
the hierarchy anymore. Nevertheless, we guarantee at the implementation
level that this kind of program will evolve in a stable state (one of the two
in our example), in concordance with the reduction rules.
Deadlock: A configuration of a program is called deadlock if the configura
tion is non-terminal and there is no possible successor configuration (using
a reduction rule). In CLAIM, because of the needed structure condition

112 CLAIM and SyMPA

for the mobility operation, an agent may try infinitely to execute an in
operation, for entering an agent that is not in his neighborhood (and may
never be), and consequently the next processes (in the same sequence)
are blocked. However, we are not considering this as being a deadlock
configuration, because the destination agent may be sometimes in the future
in the neighborhood thus verifying the structural condition and unblocking
the execution.
Correctness: A program is correct if it satisfies the intended input-output
relation. To prove the correctness of CLAIM programs in syntax-directed
manner, we are using a proof system. A proof system is a finite set of axiom
schemas and proof rules. An axiom is a correctness formula representing
the intended next states of a program starting from initial states. These
axioms correspond to the reduction rules introduced earlier (note that we
did not present in this chapter all the reduction rules; however, the proof
system contains them all). A correctness formula is true with respect to
the operational semantics reduction rules. Our current work tackles the
soundness and the completeness of the proof system.
Structural congruence: As a first step towards the verification of MAS
built using CLAIM, we studied the structural congruence of programs. We
defined a CLAIM program as a set of running agents. Two programs are
equivalent if they exhibit an identical behavior for an external observer.
Following this reasoning, two programs are equivalent if they have equiva
lent running agents. That is, the same agents, with the same name, parent,
knowledge base, goals, messages, capabilities and with equivalent running
processes. So, the equivalence between programs is reduced at equivalence
between processes inside agents. Processes are grouped into equivalence
classes using the structural congruence relation = . Its properties are
presented below.

V = V

p = q,q = r=>p = r
p\0 = p
p.O = p

p\q = q\p
{p\q)\r = p\(q\r)
p = q=^p\r = q\r
p ^ q =^ p.r = q.r
p = q =^ r.p = r.q

4,2,3 Software Engineering Issues

The language includes the notion of class of agents. Generic classes can
be defined and instantiated later. In this version of the language there is no
inheritance as in object-oriented programming, but we intend to offer the
possibility to define classes of agents that are sub-classes (specializations) of
other classes. Nevertheless, at the agent level, CLAIM offers two primitives,

Platform 113

open and acid, allowing an agent to gather sub-agents, processes, knowledge
and capabilities from an open sub-agent, thus allowing a dynamic reconfigur
ing and adaptability of a MAS. We also developed several libraries of classes
of agents for different domains, that can be parameterized and used by de
signers.

The CLAIM agents can invoke Java methods or Web Services for com
putational purposes. In the future, we intend to give the agents the possi
bility to invoke methods or programs implemented in other programming
languages.

4,2.4 Other features of the language

The lack of formalisms to deal with both intelligent and mobile agents was
one of our main motivations in developing CLAIM. The agents' mobility is a
central aspect in our framework. We can easily model agents' reasoning, but
our target applications must take advantage of both mobility and cognitive
skills. There is a strong mobility at the agents' processes level and a week
mobility for the invoked Java methods.

Concerning the extensibility of the language, the main constructs of
CLAIM (e.g. agents' creation, mobility and communication primitives) are
fixed. Nevertheless, the language offers the possibility to the agents' designer
to develop his own ontology for representing knowledge or goals and for
creating his own messages, with a specific treatment (represented by capabil
ities), to suit the current application.

4.3 Platform

The CLAIM language is supported by a dedicated platform, called SyMPA
(French: Systeme Multi-Plateforme d'Agents), implemented in Java and that
offers all the necessary mechanisms needed for the design and the secure
execution of a distributed MAS.

4.3.1 Available tools and documentation

There are many platforms for mobile agents nowadays. The main differ
ence of SyMPA with respect to other mobile agents platforms is that it sup
ports agents implemented in CLAIM, an agent-oriented programming lan
guage while the other platforms support agents implemented using mainly
object-oriented languages (e.g. Java in most cases). In addition, a CLAIM
agent deployed in SyMPA can use Java methods. SyMPA is compliant with
the specifications of the MASIF [151] standard from OMG, that provides a
set of interfaces and definitions for the mobile agents' management, identifi-

114 CLAIM and SyMPA

cation, authentication, localization, tracking, communication, mobility and
security.

Agent System Agant System Agent and Qasses Defnition / Editor

Complter

Agents' Creation

Agents' Interfaces

Agents*
Depfciyment

Agents'
Migration

Agents'
Communication

Security

Figure 4.6. SyMPA's Architecture Figure 4.7. SyMPA's features

SyMPA can be deployed on a set of connected computers. It provides in
stallation and deployment guidelines and a tutorial is currently developed.
The platform's architecture is presented in Figure 4.6. There is a central
system providing management functions. An agent system is deployed on
each computer connected to the platform. It provides a graphical interface
for defining and creating agents and for visualizing their execution, a com
piler, mechanisms for agents' deployment, communication, migration and
management (conf. Figure 4.7), all of these in a secure and fault tolerant en
vironment. The compiler was implemented using JavaCC (Java Compiler
Compiler) [84].

The agent system is also in charge of the communication with other agent
systems or with the central system and of the mobility. The communication
and the mobility are implemented using Java on top of the TCP/IP protocol.
For each running agent, a optional graphical interface (Figure 4.8) can be
used to monitor his behavior, communication or mobility.

Mobility

Due to the hierarchical representation of the agents and the distributed
deployment of an MAS, we distinguish local and remote migrations. The
local migration takes place inside a hierarchy, while the remote migration is
the migration between hierarchies, using the move primitive.
The remote mobility in SyMPA can be considered at two levels. First, there
is a strong migration at the language level, because, before the migration, the
state of an agent is saved and then transferred to the destination. The agent's

Platform 115

Figure 4.8. Agents' interfaces

language-specific processes are resumed from their interruption point. An
agent can be at any moment saved in a format similar to the definition, con
taining the current state (e.g. knowledge, messages, running processes). This
representation is sent through the network to the destination agent system,
in an encrypted format and the agent's execution is resumed from the saved
state.
At the Java level, we use its mobility facilities, so there is a weak migration.
A Java method that has begun before the migration will be reinvoked af
ter the arrival at the destination. Since the migration is achieved using the
language's primitives, unlike in other platforms, where there are Java ob
jects that migrate during their execution, a solution can also be to let all the
agent's running Java methods terminate before his migration.

Security

The mobile agents are programs running in a distributed and insecure en
vironment (e.g. the Internet) where there are possible different attacks from
the agents against the host agent system or attacks against an agent during
the migration or during his execution. Several solutions exist against these
attacks [101]. For the agent systems' protection, we are using agents' authen
tication, the control of the access to the system's resources in accordance

116 CLAIM and SyMPA

with a set of permissions given to agents with regard to their authority, and
audit techniques. For the agents' protection, we are using encryption during
the migration and during the execution on a agent system (when the agent
is stored on the disk), and also fault-tolerance mechanisms. The reader can
find in [211] a detailed description of these security aspects.

4.3.2 Standards compliance, interoperability and
portability

The SyMPA platform is implemented in Java and takes advantage of the
portability and the platform-independence of this language. The SyMPA en
vironment is composed of an ensemble of packages that can be installed on
every computer with an operating system supporting Java Virtual Machine.
After installing the packages, a few configuring operations are needed and
the CLAIM language supported by the platform is ready to be used to im
plement MAS applications. We easily installed and tested the platform on
Windows, Unix-based or Macintosh systems.

As we have already specified, SyMPA is compliant with the specifications
of the MASIF [151] standard from the OMG, that provides a set of interfaces
and definitions for the mobile agents' management, identification, authenti
cation, localization, tracking, communication, mobility and security.

We have seen that CLAIM offers a set of agent-specific concepts and prim
itives for the agents' reasoning, communication and mobility. In addition, an
agent can use Java methods or Web Services invocations for computational
purposes.

Considering that the interoperability between heterogenous agents is a
very important aspect in the MAS applications, we used the Web Services ap
proach to develop an interoperability environment, called Web-MASI [80].
This environment is based on two key elements: an architecture that in
cludes the MAS in the functional model of the Web Services and an inter
operability module playing the role of interface between the agents and the
Web Services layer. Using this plug-in module, the agents can publish their
capabilities as Web Services, that can be invoked by other agents, indepen
dently from conceptual (agent architecture, interaction model) or technical
(platform, programming language) characteristics.

4.3.3 Other features of the platform

The implementation of the platform is in a prototype stage, in continuous
development and optimization and has already been used to implement sev
eral applications, presented in the next section. The results are very promis
ing and an open-source version will be available soon, that will allow us to

Applications 117

improve our implementation and to detect the expressiveness and the power
but also the limits of the language and of the platform.

The developed applications cover a wide area, starting from simple ap
plications with a small number of agents to largely distributed applications,
with big number of highly communicating mobile agents. Concerning the
reached performances, we could deploy up to 30 agents on one computer,
but this number could easily increase if the resources consuming graphical
interfaces of agents are not used. Nevertheless, in our current applications
we used the interfaces to monitor the agents' execution, behavior, communi
cation and migration. Concerning the scale of tests, until now we developed
application using agents deployed on up to 10 connected computers.

As specified before, there is a central system with management func
tions in our environment. In the first phases, the central system had some
problems with treating a great number of messages, but after adding fault-
tolerance techniques and optimizations, the communications proceeded in a
satisfying manner. Nevertheless, we are studying the possibility to introduce
different management solutions (e.g. distributed, non-centralized) that the
developer can choose in function of the current application's requirements.

The code reutilization is another of our priorities. The notion of class in
central in our framework. Our long term goal is to have different already
defined classes of agents for different types of applications that can be only
parameterized and easily used by the designers.

4.4 Applications supported by the language and/or the
platform

The CLAIM language supported by the SyMPA platform has been used
to develop several applications, summarized below, that emphasize the main
features of the framework, show the expressiveness and the facility of usage
of the language and the robustness of the platform.

Translations

In the first phase of development of the CLAIM language, applications
from other agent-oriented programming languages, such as Airline reserva
tions from AGENTO [206] or Bolts Make Scenario from AgentSpeak [233],
were translated. FIPA protocols were also programmed using CLAIM. There
is no mobility in these applications, but the agents' reasoning and communi
cation were easily translated.

118 CLAIM and SyMPA

Research of information

One of the first appHcations implemented was the research of informa
tion on a network [82] using mobile agents. Receiving requests from users,
these agents migrate to all the available connected sites searching for pieces
of information corresponding to a request.

Electronic commerce

A more complex application, that justified the hierarchical representation
of agents, was an e-commerce application [81], where there are several elec
tronic markets distributed on a network. Each e-market has various depart
ments (represented as sub-agents of a market), for different types of products.
The markets can move with all the sub-departments to other sites in order
to find clients and the clients can move to different markets searching for
products.

Load balancing

In the two applications previously presented, the intelligent elements of
the agents were central. An application focused on the computational aspects
was implemented next. Thus, CLAIM and SyMPA served for programming
an application of load balancing and resource sharing [212]. The connected
computers' characteristics are gathered by mobile agents and the computers
are classified using different criterions. The users' tasks are executed on com
puters satisfying some requirements and can dynamically migrate during the
execution in order to finish the execution in the fastest way possible.

E-libraries network

The next step was to combine the intelligent features of the agents with
the results of the load balancing application in an application containing a
network of distributed cooperative digital libraries [129]. The libraries have
sections and are used by customers searching for various documents. The
libraries manage the subscribers, the documents and have information about
other libraries, as the goal is to satisfy the customers, even if this means to
direct them towards other libraries. A library can also distribute one or
several sections to another site when there are too many clients on the local
computer, using results from the load-balancing application.

Veracruz coffee market

Another complex application developed using CLAIM was the modelling
of the coffee market in Veracruz, Mexico [213]. Using our framework, all

Applications 119

the involved actors were designed, proposing an agent-based application able
to deal with the different types of transaction negotiations and covering the
entire value chain of coffee.

A Case Study

In order to illustrate the language's specifications, we present here an appli
cation inspired from strategy games, such zsAge of Empires'^. As a simplified
version, there is a village of people in a prehistoric era, trying to survive by
gathering resources. There are sites of resources distributed on several com
puters of a network. Each site can contain three types of resources: wood,
stone and food. The population is represented by a Creator agent that can
create Seeker agents and resource gatherer agents for each type of resource
(resources are consumed when creating new agents): Woodcutter, Miner and
Hunter, Each type of agent has capabilities for gathering only his corre
sponding resource. The goal is to gather all the resources. We implemented
several strategies, in order to observe the agents' behavior in different situa
tions. Since the goal here is only to show examples of agents implemented
in CLAIM, we focus on one scenario.

•.** 4 k.
Figure 4.9. Application's schema

The Creator agent creates (using new Agent) a Seeker agent, finds out the
list of the existing sites and tells to the Seeker to migrate to each of them
(using move). When the Seeker arrives on a site, he "counts" the available

'*http://www.microsoft.com/games/empires/

http://www.microsoft.com/games/empires/

120 CLAIM and SyMPA

resources and asks (using send) speciahzed agents from the Creator, who
will create (using newAgent) one specialized agent for each type of resource,
agents that migrate to the specific resource agents on the site. After gathering
the resources, they return to the village, give the resources to the Creator and
wait for other calls. Meanwhile, the Seeker moves to other sites, searches for
resources and asks for specialized agents. If there is no specialized agent
available at the Creator when a new ask for help arrives, a new specialized
agent is created.

We present only some of the most important capabilities of our agents.
Every identified actor of our scenario will be represented as a class of agents.
When programming a CLAIM class, one must identify the possible parame
ters of the class, the knowledge ontology (that can evolve during the execu
tion), the chosen type of reasoning (forward reasoning or proactive or both),
the goals (for agents with a proactive behavior), the capabilities, the messages
to be exchanged with other agents and the necessary Java methods used for
various computations.

The agents in the presented scenario use a forward reasoning, ue,
they execute actions when specific messages arrive and some (optional)
conditions are verified. The Creator has an initial amount of resources,
given as parameters for the class and represented in the knowledge base as
'wood{?'woodQuant), stone{?stoneQuant) and food{?foodQuant), The
quantities of resource evolve during the execution (decrease when new
agents are created and increase when resources are brought by agents).
Other manipulated knowledge represents the found sites (not known a
priori). Several Java methods were needed for verifying if the agent has
sufficient resources when he tries to create a new agent, for waiting an
amount of time, for updating the quantities of resources, etc.

defineAgentClass Crea to r (?w,?s , ? f) {

a u t h o r i t y = n u l l ; pa r en t=nu l l ;

knowledge= {wood(?w) ; s t o n e (? s) ; f o o d (? f) ; }

goa l s=nu l l ; messages=null ;

c a p a b i l i t i e s {

f i n d S i t e s {

capability for sending to all the existing Site agents a message for asking their names; the Site agents which answer to

this messages are added in the Creator' knowledge base

message=findSites() ;

cond i t i on=nu l l ;

d o { s e n d (? a g S : S i t e () , a s k S i t e N a m e ()) . J a v a (A O E . w a i t (3 0)) . s e n d (t h i s , i n i t S e a r c h O) }

e f f e c t s = n u l l ;

}

c rea teSeeker {

capability for creating a Seeker (if there are sufficient resources), for telling him the names of the known sites and for

Applications 121

requesting his departure

message=initSearch();

condition=Java(AOE,hasResources(this,0,0));

do{?n=Java (AOE.baptise (tihis, 0)) .newAgent ?n: Seeker () .

f o r A l l K n o w l e d g e (s i t e (? a g s)) { s e n d (? n , t e l l (s i t e (? a g s))) } . s e n d (? n , s e e k ()) }

e f f e c t s = n u l l ;

} . . .

the class has several other capabilities for creating specialized agents when the Seeker arrives on a site and requests help

and for updating the resources when these agents return.

}

processes={send(this,findSites())}

agents=null;

}

The Site class has parameters representing the amount of each resource
(the knowledge base contains pieces of information similar with those of a
Creator) and capabilities for creating the sub-resource agents and for answer
ing the questions concerning his names and his resources. The sub-resource
agents are represented in a simple class (named Resource) that can receive
agents and updates the amount of resources after a gatherer agent's passage.

A Seeker manipulates pieces of information about the known sites, about
the visited sites and about the sites' resources. When created, he selects a
destination site (known and not visited already; he uses a Java method for
this), migrates to this site, finds out the amount of available resources (by
communicating with the site agent) and then requests specialized agents
from the Creator,
defineAgentClass Seeker() {

a u t h o r i t y = n u l l ; pa r en t=nu l l ; knowledge=null; goa l s=nu l l ; messages=null ;

c a p a b i l i t i e s {

seek {

capability for migrating to a not visited site and for asking the amount of available resources

message=seek();

cond i t i on=nu l l ;

do{?d=Java(AOE.f indDes t ina t ion(th i s)) .move(th i s , ?d) . send(?d ,needResources (?d))}

e f f e c t s = n u l l ;

} . . .

he requests next specialized agents and continues the search migrating to other sites.

}

processes=nu l l ; agen t=nul l ;

}

The specialized gatherer agents (Woodcutter, Miner and Hunter) can mi
grate to specific Resource agents, return to the Creator, give him the gathered
resources and await for new requests.

122 CLAIM and SyMPA

After defining all the classes of agents for our scenario (but also for the
other considered scenarios) and writing all the necessary Java methods, the
SyMPA platform was deployed on several computers of the network. Sev
eral sites of resources were started on different computers and a Creator. We
observed the behavior of all the agents in our application (not only for pre
sented scenario) that migrate in order to gather resources and we also counted
the times for gathering all the resources and the Creator' resource variation
for different scenarios.

4,5 Final Remarks

In this chapter, we argue that the development of MAS applications needs
specific languages {i,e, agent-oriented) in order to reduce the gap between the
design and the implementation phases.

The presented language, CLAIM, frees the designer from time-consuming
implementation aspects and combines in a unified framework the advantages
of the intelligent agents with those of the ambient calculus (particularly suit
able for mobile computation). Hence, both computational aspects (commu
nication, mobility, processing) and cognitive features (knowledge, goals and
reasoning) of agents are easily represented thanks to CLAIM.

For using the language in real-life applications, we would like to be able to
verify some important aspects of the built MAS, using a formal operational
semantics, whose main elements were also presented in this chapter.

Using a flexible hierarchical topology of the MAS, a goal-driven behav
ior and a mental state of agents that continuously evolves in an autonomous
manner, CLAIM allows a dynamic re-configuring of the built MAS in or
der to give the system the full scope to adapt its structure and to meet the
requirements of target applications.

The language is supported by a distributed platform, SyMPA, that offers
all the necessary mechanisms for creating and deploying CLAIM agents and
for a secure execution of a distributed MAS.

CLAIM and SyMPA have been used for developing several complex ap
plications that showed the expressiveness of the language and the robustness
and the strength of the platform, such as an application for information re
search on the Web, electronic commerce applications, a load balancing and
resource sharing application using mobile agents or an application of a digital
libraries network. All the results were very promising.

The current work tackles the verification of CLAIM programs, using the
defined operational semantics, the optimization of the platforms and the
adaptability and interoperability issues. We would like to deploy SyMPA
on mobile devices in order to fulfill the ambient intelligence requirements.

II

JAVA-BASED AGENT PROGRAMMING
LANGUAGES

