
Chapter 2

PROGRAMMING MULTI-AGENT SYSTEMS IN
3APL

Mehdi Dastani, M. Birna van Riemsdijk, and John-Jules Ch. Meyer

Institute of Information and Computing Sciences
Utrecht University
The Netherlands

{mehdi,birnajj} ©cs.uu.nl

Abstract This chapter presents 3APL, which is a muhi-agent programming language,
and its corresponding development platform. The 3APL language is moti
vated by cognitive agent architectures and provides programming constructs
to implement individual agents directly in terms of beliefs, goals, plans, ac
tions, and practical reasoning rules. The syntax and semantics of the 3APL
programming language is explained. Various features of the language and plat
form and some software engineering issues are discussed.

Keywords: Multi-Agent Programming Language, Cognitive Agents, Multi-Agent Systems

2.1 Motivation

In research on agents, besides architectures, the areas of agent theories
and agent programming languages are distinguished. Theories concern de
scriptions of (the behavior of) agents. Agents are often described using logic
[181, 224]. Concepts that are commonly incorporated in such logics are
for instance knowledge, beliefs, desires, intentions, commitments, goals and
plans.

It has been argued in the literature that it can be useful to analyze and
specify a system in terms of these concepts [58, 182]. However, if the sys
tem would then be implemented using an arbitrary programming language,
it will be difficult to verify whether it satisfies its specification: if we cannot
identify what for instance the beliefs, desires and intentions of the system
are, it will be hard to check the system against its specification expressed in

40 3APL

these terms. This is referred to by Wooldridge as the problem of ungrounded
semantics for agent specification languages [238]^ It will moreover be more
difficult to go from specification to implementation if there is no clear cor
respondence between the concepts used for specification and those used for
implementation.

To support the practical development of intelligent agents, several pro
gramming languages have thus been introduced that incorporate some of the
concepts from agent logics. 3APL ("triple-a-p-l") is one such language. The
first version of 3APL was designed by Hindriks et al. [107]. In this version,
beliefs, plans^, and rules for revising plans are the basic building blocks of
3APL agents. An extension to this first version was the addition of declar
ative goals [54, 228]. Declarative goals^ describe the state an agent wants to
reach and can be used to program pro-active behavior. Plans form the pro
cedural part of an agent and can be executed by the agent in order to achieve
its goals. The notion of a goal is important in agent logics and the exten
sion of 3APL with goals is thus important if we are to deal with the issue of
ungrounded semantics. Together with the addition of goals, rules were in
troduced to generate plans on the basis of these goals (and beliefs). Another
extension to 3APL was the addition of communication to allow describing
multi-agent 3 APL systems [53], in the vein of work on ACPL [225].

A 3APL agent thus consists of beliefs, plans, goals and reasoning rules.
Given these mental attitudes, issues arise with respect to the operation of
the agent; these are issues such as which plan should be executed at a certain
point, which goal(s) should be pursued, which (type of) rule should be ap
plied, etc. The choices made affect the operation of the agent and it is thus
an important point to consider. To be able to make these kinds of choices ex
plicit, Hindriks et al. introduced a meta-language on top of basic 3 APL [107].
This deliberation language was extended by Dastani et al. [52] and includes
constructs for tests, planning, and different types of selection functions by
means of which plans and rules can be selected.

In this paper, we present the concrete syntax and semantics of the 3APL
programming language and give examples to illustrate how cognitive agents
can be implemented. The presented version of 3APL is extended with a
shared environment in which 3APL agents can perform actions. We then
discuss the use of the 3APL programming language from a software engi-

^Note that the way the problem is named suggests the problem resides in the specification language,
which uses terms that do not relate to computational notions, and should therefore be changed). Al
though we agree that there is a problem here, we believe that it might also be solved by introducing the
notions used in the specification language into the implementation (viz. the programming language),
thus in effect grounding the specification language.
^What we refer to as plans are called "goals" in [107].
^From now on, we will use the term "goal" to refer to the notion of declarative goal.

Language 41

neering point of view and describe the 3APL platform that supports the
development of 3APL multi-agent systems.

2.2 Language

In general, the Implementation of a multi-agent system requires two pro
gramming languages: one single-agent programming language to Implement
Individual agents, and one multi-agent programming language to Implement
multi-agent aspects, such as which and how Individual agents should be ex
ecuted. The multi-agent programming language can be used to Implement
organization and coordination of multi-agent systems directly and explic
itly. Using the multi-agent programming language one can, for example,
Implement sequential or parallel execution of Individual agents or block the
execution of Individual agents when their actions are not permitted.

A 3APL multi-agent system consists of a set of concurrently executed
3APL agents that can Interact with each other either directly through com
munication or Indirectly through the shared environment. In order to Im
plement a 3APL multi-agent system, the 3APL platform has been built to
support the design. Implementation, and execution of a set of 3APL agents
that share an external environment. The 3APL platform thus allows the Im
plementation and parallel execution of a set of 3APL agents and therefore
It fulfills the function of a 3APL multi-agent programming language. This
choice Implies that all organization and coordination Issues should be Imple
mented Implicitly through the Implementations of Individual 3APL agents.

The Individual 3APL agents can be Implemented by the 3APL program
ming language that facilitates direct Implementation of various aspects of
cognitive agents, and the shared environment can be Implemented in the
Java [99] programming language. In particular, the shared environment Is
Implemented as a Java class such that its methods correspond with the ac
tions that agents can perform in the environment. Besides the Interaction
with the environment, the agents can Interact with each other through di
rect communication. Using 3APL, one can Implement agents that observe
the shared environment, communicate with each other, reason about and
update their states, and execute actions In the shared environment.

In designing the 3APL programming language, a separation was created
between mental attitudes (data structures) and the deliberation process (pro
gramming Instructions) that manipulate the mental attitudes. Therefore, the
3APL programming language consists of programming constructs to imple
ment the agent's mental attitudes, represented as data structures, as well as
the agent's deliberation process, represented as instructions, to manipulate
the mental attitudes. In particular, 3APL allows direct specification of men
tal attitudes such as beliefs, goals, plans, actions and reasoning rules. Actions

42 3APL

form the basic building blocks of plans and can be internal mental actions,
external actions, or communication actions. The deliberation constructs
allow the implementation of selection and execution of actions and plans
through which an agent's belief base can be updated and through which the
shared environment can be modified. It also allows the selection and ap
plication of reasoning rules through which the goal and plan bases can be
modified.

The basic deliberation constructs can be composed by means of sequen
tial composition and by using if-then-else and while constructs, forming the
deliberation language (see [52] for the formal specification). This enables the
programmer to implement, for example, a deliberation program that consists
of (the iteration of the sequential composition of) two conditional iterations
(while-loops) such that the condition of the first holds as long as there is no
emergency situation while the condition of the second holds as long as there
is an emergency situation. The body of the first iteration could then be used
to plan new goals, while the body of the second could generate emergency
plans and execute them. This example illustrates that the language is expres
sive enough to implement important aspects of subsumption architectures
[36], in which emergency behavior can be realized at the reactive layer while
complex behavior can be realized at higher deliberative layers. Note that
also the usual 'standard' sense-reason-act cycle can be implemented in this
deliberation language.

This view on programming multi-agent systems has resulted in the 3APL
multi-agent platform architecture and the 3APL agent architecture, as illus
trated in figure 2.1. The 3APL platform consists of a number of agents, a
directory facilitator called agent management system (AMS), a message trans
port system which delivers messages between agents, a shared environment,
and a plugin interface that allows agents to execute actions in the shared envi
ronment. The function of the agent management system is to register agents
that are loaded and executed on the platform and it answers a set of questions
from agents about other agents that are present on the platform. These ques
tions can be, for example, about the names of agents, their functions, and the
services they provide. Each individual 3APL agent consists of a belief base, a
goal base, a plan base, an action base for the specification of internal mental
actions, a base for goal planning rules (which can be applied to plan a goal),
and a base for plan revision rules (which can be used to revise, adopt, and
drop plans).

2.2,1 Specifications and Syntactical Aspects

In the following subsections, we explain how various ingredients of the
individual 3APL agent architecture and the 3APL platform can be imple-

Language 43

Ny NI^VW

<->

Communication

r NETWORK ^

Belief
Base

Goal
Base

Plan

Base

^ ^ ^

^r^

V
Deliberation

Process

/
\

Goal Planning

Rule Base

^ ' f - ^

/
Action Base

Plan Revision

Rule Base ;

Figure 2.1, The architectures of 3APL platform (A) and individual 3APL agents (B)

mented. In particular, we describe the programming constructs to imple
ment individual agents, explain how the deliberation cycle of individual
agents can be implemented, and discuss the implementation of the shared
environment. Before starting to describe the programming constructs for
implementing individual agents, we present the EBNF grammar of the lan
guage.

The EBNF specification of the 3APL programming language for individ
ual agents is illustrated in Figure 2.2.1. In this specifications, we use (atom)
to denote an atomic formula"^ the terms of which can include Prolog-like list
representations of the form [a , b , [3 , f]] , [X | T] , and [a , [4 , d] | T] ,
etc. Moreover, we use {ground-atom) to denote a ground atomic for
mula, which is an atomic formula that contains no variables. The terms
of ground atomic formulae can include Prolog-like list representations such
as [a , b , c] , [e , [9 , d , g] , 3] . Finally, we use (Atom) to denote atomic
formulae where the predicate letter starts with a capital letter, {ident) to
denote a string, and {var) to denote a variable.

Beliefs and goals

The beliefs of a 3APL agent describe the situation the agent is in. Beliefs
are implemented by the belief base, which contains information the agent
believes about the world. The goals of the agent on the other hand denote

'̂ A predicate name parameterized with a number of terms, e.g. on (a, b) .

44 3APL

(Program) ::= "Program" (ident)
("Load" {ident))?
"Capabilities :" {{capabilities))?
" Bel ief Base : " ((^d / e / s))?
"GoalBase :" ({goals))?
"PlanBase :" ({plans))?
"PG-rules :" {{p.rules))?
"PR-rules :" {{r.rules))?

{capabilities) ::= {capability) (" ," {capability))''"
{capability) ::= " { " {query) " } " {Atom) " { " {literals) " } "
(Z7d/e/s) ::= {{belief))''
{belief) v. = {groundMom) "." \ {atom) ":-" {literals)"."
{goals) v.^ {goal){"r {goal) y^
{goal) ::= {groundJitom) ("and" {groundMom))'•*
{plans) ::= {;?/an) ("," (;?/fln))''"
(/?/fln) ::= {basicaction) \ {composedplan)
{basicaction) w^ "e" | {Atom) \ "Send{"{iv)y{iv),{atom)")" \

" Ja.vai{" {ident),{atom),{var)")" \ {wff)"?" \ {atom)
{composedplan) ::= "if" (w / /) "then" {plan) ("else" (p/an))? |

"while" {query) "do" {plan) \
{plan) ";" (;?/an>

{pj-ules) ::= {p.rule) ("," {p.rule))'•'
{pj-ule) ::= {atom) "<-" {query) "|" (p/«n)
{psule) ::= '•<_•• {query) "\" {plan)
{r.rules) ::= {rsule) ("," {rsule))'•'
{rsule) ::= (;?/«n> " < - " {query) "\" {plan)
{literals) ::= (/zYer^/) ("," (//fera/))'••
{literal) v.= {atom) \ "not{"{atom)")"
{wff) ::= (;/Jer«/) | (u; / /) "and" (u;//> | («; / /) "or" (u;/ /)
{query) ::= (^ / /) I "true"
(/i;) ::= {ident) \ {var)

Figure 2.2. The EBNF specification of the 3APL language for programming individual
agents.

the situation the agent wants to realize, which is implemented by an agent's
goal base.

The belief base is implemented by a Prolog program consisting of Prolog
facts and rules. The initial belief base of a 3APL agent is preceded by the
keyword "Belief Base ;". Note that the syntax of Prolog is in accordance
with the specification of {beliefs) as given above. The following is an exam
ple of the initial belief base of a 3APL agent which indicates that blocks a
and b are on the floor, block c is on block a, and that a block is clear if there
is no block placed on top of it.

Language 45

B e l i e f B a s e :
o n (a , f l) .
o n (b , f l) .
o n (c , a) .
c l e a r (Y) : - n o t (o n (X , Y)) .

Note that, like in Prolog, the specification of beliefs allows the use of
negation in the body of the rules. The n o t in these rules stands for
negat ion-as-failure.

We allow individual agents to load a separate file containing the back
ground knowledge. The syntax of the background knowledge is the same as
the syntax of beliefs and is implemented by a Prolog program that can be
loaded into the initial belief base of an agent through the optional " Load"
construct. The argument of the load construct is the name of a file that con
tains a Prolog program. Such a file can be loaded by different agents. In this
way, one can implement the background knowledge once and allow different
agents to load it as part of their initial beliefs.

The goal base of a 3APL agent is a set of goals, each of which is imple
mented by a conjunction of ground Prolog atoms. The initial goal base of
a 3APL agent is preceded by the keyword "GoalBase :". The following
is an example of the initial goal base of a 3APL agent which indicates
that the agent has two goals. The first goal is to have block a on block
b and block b on block c, and the second goal is to have block d on the floor.

GoalBase:
on(a,b) and on(b,c) , on(d,fl)

The difference between the two goals in this goal base and the single goal
o n (a , b) and o n { b , c) and o n (d , f l) is that the two separate
goals in the goal base may be fulfilled at different times, whereas the three
conjuncts of the single goal have to be satisfied at the same time.

As we will see below, it is useful to be able to check whether a formula
follows from the belief base or the goal base, for example for test actions,
for the application of reasoning rules, or for performing mental actions.
For these purposes, we use the so-called belief and goal query expressions
(i.e. {query)) which are either the special atomic formulae t r u e or a well-
formed formula (i.e. {wff)) constructed from atoms and logical connec
tors. In the implementation of 3APL, the keywords and, or , and n o t are
used as logical connectives. For example, (on (X, b) and on (b, Y)) o r
n o t (on (b, f 1)) can be a belief query expression which is derivable from

46 3APL

the belief base if either on (X, b) and on (b, Y) is derivable from the be
lief base or on (b, f 1) is not derivable^.

Basic Actions

In order to reach its goals, a 3APL agent adopts plans. A plan is built from
basic actions that can be composed through co-called program operators. We
first discuss the various kinds of basic actions and then explain how they can
be composed to form plans. In 3APL, beside the neutral action (denoted by
e) that does not change the current state of affairs, five other types of actions
are distinguished: mental actions, communication actions, external actions,
test actions, and so-called abstract plans.

The mental actions can update the belief base of agents, if successfully exe
cuted. A mental action has the form of an atomic formula and thus consists
of a predicate name and a list of terms with the exception that the first letter
of the predicate name is a capital letter (i.e. {Atom)). The effect of the execu
tion of a mental action is a change in the agent's belief base. The conditions
under which a mental action can be successfully executed (also called the pre
condition of the mental action), and its effects on the belief base (also called
the post-condition of the mental action) should be specified in the 3APL
program.

The pre- and post-conditions of mental actions are specified through
so-called capabilities which consist of three parts: the mental action itself
(i.e. {Atom))y a pre-condition which is a belief query expression (i.e. a
{query)), and a post-condition which is a list of literals (i.e. {literals)). An
agent can execute a mental action if the pre-condition of the corresponding
capability holds. The effect of the execution of a mental action is then
a change in the agent's belief base such that the post-condition of the
corresponding capability holds. In order to realize this effect, a function is
defined in the interpreter that adds the positive literals to the belief base and
retracts the atoms of the negative literals from the belief base, if present. In
the implementation of 3APL, the specification of capabilities is preceded
by the keyword "Capabi l i t i es :". The following is an example of a
capability that defines the effect of the mental Move action.

Capabilities:
{on(X,Y)} Move(X,Y,Z) {not(on(X,Y)) , on(X,Z)}

The idea is, that the action Move (X, Y, Z) moves a block X from

^Note that as we use the Prolog reasoning engine to implement the evaluation of the query expressions,
the o r and and operators are not commutative.

Language 47

block Y to block Z. If this Move (X, Y, Z) action is executed, the variables
X, Y and Z will be instantiated with a value. Assume for example that X =
a, Y = b and Z = c. The action can then be executed in case on (a, b)
is derivable from the belief base, i.e., if block a is on b. The result should
be that n o t (on (a, b)) and on (a, c) are derivable from the belief base.
This is implemented by removing fact on (a, b) and adding on (a, c) .

A send action can be used to pass a message to another agent. A message
contains the name of the receiver of the message, the speech act or perfor
mative (e.g. inform, request, etc.) of the message, and the content. The send
action is like an atomic formula which has Send as the predicate name and
has three arguments. The first argument is either an identifier or a variable
(i.e. {iv)) denoting the name of the receiving agent, the second argument
is also either an identifier or a variable (i.e. {iv)) denoting the performative
of the message, and the third argument is an atomic formula (i.e. {atom)),
which specifies the content of the message. If the receiver or the performa
tive is a variable, they should be instantiated with constants denoting the
name of the receiver and the performative, respectively, before the send ac
tion is executed. An example of a send action is Send(ag2, i n fo rm,
on (a, b)), which specifies that agent agi informs agent ag2 that block a
is on block b.

If an agent sends a message Send (R e c e i v e r , P e r f o r m a t i v e ,
C o n t e n t) to another agent, the belief base of the sender is updated with the
formula s e n t (R e c e i v e r , P e r f o r m a t i v e , C o n t e n t) and the be
lief base of the receiver is updated with the formula r e c e i v e d (Sender ,
P e r f o r m a t i v e , C o n t e n t) . Agents can receive a message in their belief
base at each moment in time. Note that unlike the mental actions, the send
actions can always be executed.

The external actions are means to change the external environment in
which the agents operate. The effects of external actions are assumed to
be determined by the environment and might not be known to the agents.
The agent thus decides to perform an external action and the external envi
ronment determines the effect of this action. The agent can come to know
the effects of an external action by performing a sense action. This sense
action can be defined as an external action in an agent's plan, or it could be a
pre-defined operation that is part of the sense-reason-act loop of the agent's
deliberation cycle.

External actions are performed by 3APL agents with respect to an envi
ronment which is assumed to be implemented as a Java class. In particular,
the actions that can be performed in this environment are determined by the
methods of the Java class (i.e., the methods specify the effect of those actions

48 3APL

in that environment), and the state of the environment is represented by the
instance variables of the class.

The external actions that can be performed by 3APL agents have the form
J a v a (Classname, Method, L i s t) where Classname is the name
of the Java class that implements the environment, Method is the action to
be performed in the environment, and L i s t is a list of returned values. The
parameter Method corresponds with a parameterized method of the Java
class Classname and L i s t is a list of values returned by Method. The
method can be implemented to return the result of the action in the list, or
the list could for example be empty. In that case, an explicit sense action
would have to be executed to obtain the result of the action.

An example of an external action is J a v a (BlockWorld, e a s t () ,
L) where the external action e a s t () is performed in the environment
BlockWorld.^ The effect of this action is that the position of the agent in
the block world environment is shifted one slot to the east.

A test action checks whether a well-formed formula (i.e. {wff)) is deriv
able from the belief base. Such an action, which consists of a well-formed
formula followed by a question mark, will be blocked if the formula is not
derivable from the belief base. Note that the derivation relation is imple
mented by the Prolog reasoning engine. If the arguments of a test action are
variables and the well-formed formula is derivable from the belief base, then
the effect of the test action is a substitution that assigns terms to the vari
ables. The assignment is useful for retrieving information from the belief
base and passing it to other actions for further manipulation.

An example of a test action is (on (a , X) and on (X, c)) ? which will
be successfully executed if the agent believes that there is a block X placed
on top of block c such that block a is placed on top of it. The result of a
successful execution is a substitution such as {X/b} which indicates that
the relevant block is block b.

An abstract plan, which is represented as an atomic formula (i.e. {atom)),
is an abstract representation of a plan which can be instantiated with a (more
concrete) plan during execution. An abstract plan cannot be executed di
rectly and should be rewritten into another plan, possibly (and even prob
ably) containing executable basic actions, through application of reasoning
rules (see below for a detail description of these rules). The application of
rules to abstract plans involves a unification of abstract plans with the head
of rules through which values can be passed to the instantiated plan.

^BlockWorld is in this case a two-dimensional grid with obstacles in which the agents may move in
any direction that is not blocked by obstacles (or walls).

Language 49

Plans

Basic actions, as discussed above, can be composed to build plans through
so-called program operators. There are three 3APL program operators: the
sequential operator (denoted by ;), the iteration operator (denoted by a
w h i l e - d o construct), and the conditional choice operator (denoted by an
i f - t h e n - e l s e construct). In particular, if ^ is a well-formed formula, fi'
is a query expression (i.e. a well-formed formula or t r u e) , and Actions is
the set of basic actions as defined above, then the set of plans, denoted by
Plans is defined as follows:

• Actions C Flans

• if 71,7x' G Plans, then i f /3 t h e n n e l s e n' G Plans

• if Tt 6 Plans, then w h i l e /3' do TT G Plans

• if n, 7x' G Plans, then 7i;7x' G Plans

We use e to denote the empty plan and we identify e; n with zr.
The plan base of a 3APL agent consists of a set of plans. In the imple

mentation of 3APL, the specification of the initial plan base of an agent is
preceded by the keyword "PlanBase :" and consists of a number of plans
separated by a comma. The following is an example of the initial plan base
of a 3APL agent.

P l a n B a s e :
w h i l e (on{X, f l) and n o t (o n (V , X)) do {

(on(Y,Z) and n o t (Z = = f 1)) ? ;
Move(X,f l ,Y)

}

This plan base consists of one plan which will find all free blocks
(blocks with no block on top) that are placed on the floor and move them
to an existing block which itself is not placed on the floor.

Reasoning Rules

In order to reason with goals and plans, 3APL has two types of rules: goal
planning rules and plan revision rules. These rules are conditionalized by
beliefs. Let ^ be a query expression, K be an atomic formula, and n, 71}^, 7ti)
be plans. The set of goal planning rules (PG) and the set of plan revision
rules (PR) are then defined as follows:

50 3APL

K^ (i\n, <r- (^\7X e PG
Tth^ P\7ti, G PR.

The goal planning rules are used to generate plans to achieve goals. In the
first goal planning rule, the belief condition /3 indicates when the plan n
could be generated to achieve the specified goal K. The second goal planning
rules can be used to model reactive behavior by omitting the head of the
rule. This special kind of goal planning rule states that under the belief
condition /3, a plan can be adopted. The specification of the set of goal
planning rules is preceded by the keyword "PG — ru les :". The follow
ing is an example of the specification of a goal planning rule of a 3APL agent.

P G - r u l e s :
on(X,Z) ^ on(X,Y) | Move(X,Y,Z)

This rule states that if the agent wants to have block X on block Z,
but it believes that X is on block Y, then it plans to move X from Y onto Z.

The plan revision rules are used to revise plans from the plan base. The
specification of the set of plan revision rules is preceded by the keyword
"PR — ru les :". The following is an example of the specification of a plan
revision rule of a 3APL agent.

P R - r u l e s :
Move(X,Y,Z) ^ n o t (c l e a r (X)) |

on (U,X)? ;Move(U,X, f l) ;Move(X,Y,Z)

This plan revision rule informally means that if the agent plans to
move block X from block Y onto block Z, but it cannot move X because (it
believes that) there is a block on X, then the agent should revise its plan by
finding out which block (U) is on X, moving U onto the floor, and finally
moving X from Y onto Z.

A plan revision rule Tt/̂ <— /3 | TT̂ can be applied to a plan n, if
7th can be matched to a prefix of zr, i.e., if n is of the form rcii; n',
For example, a plan Move{a,h,c)',Move(h,fl,a) can be revised into
a plan Move{a,h,fl)',Move{h,fl,a) by applying the plan revision rule
Move{a,h,c) ^ t r u e | Move{a,h,fl). Note that a plan revision rule
could be used to drop (part of) a plan if its body ni) is the empty plan e.

Deliberation Cycle

The beliefs, goals, plans and reasoning rules form the mental attitudes
or data structures of 3APL agents. These data structures can be modified by
deliberation operations such as applying a rule or executing a plan. These de-

Language 51

liberation operations constitute the deliberation process of individual agents.
The deliberation process or program can be viewed as the interpreter, as it
determines which deliberation operations should be performed in which or
der. For example, it can be programmed to determine whether a goal should
be dropped if it is not reachable using any possible plan and plan revision
rule. A deliberation process programmed in this way could be viewed as an
implementation of "single minded" agents [182], Some more moderate al
ternatives are also possible. Moreover, the interpreter can determine if and
when to check the relation between plans and goals. For example, the in
terpreter can check whether a goal still exists during plan execution to avoid
continuing with a plan of which the goal is reached (or dropped) already.
The interpreter can also perform a kind of "garbage collection" and remove
a left-over plan for a goal that no longer exists. If this would not be done, the
left-over plan could become active again at a later time and this might not be
desired behavior.

Another issue that the interpreter can determine is related to multiple
(parallel) goals and/or plans. For example, it can decide whether only one
or more plans can be adopted for the same goal at any time. It seems not
unreasonable to allow only one plan at a time for each goal, which coincides
with the idea that we try different plans consecutively and not in parallel,
because this might lead to a lot of unnecessary interactions between plans and
also a waste of resources. If we allow only one current plan for each goal, the
plans in the plan base will all be for different goals. Also in this case one has
to determine whether the plans will be executed interleaved or consecutively.
Interleaving might be beneficial, but can also lead to resource contention
between plans in a way that no plan executes successfully anymore (see also
[222, 221, 220]). E.g., a robot needs to go to two different rooms that are in
opposite directions. If it has a plan to arrive in each room and interleaves
those two plans, it will keep oscillating around its starting position. Many
of the existing work on concurrent planning can however be applied in this
setting to avoid most problems in this area.

For 3APL, a set of deliberation operations is proposed [52], includ
ing S e l e c t P l a n n i n g G o a l r u l e , S e l e c t P l a n R e v i s i o n r u l e ,
S e l e c t P l a n , E x e c u t e P l a n , A p p l y P l a n n i n g G o a l r u l e , and
A p p l y P l a n R e v i s i o n r u l e . These operations can be composed to form
a deliberation program by using operators such as sequential composition,
test (on both belief, goal and plan bases), conditional choice (if-then-else
construct), and conditional iteration (while loop).

In order to facilitate the implementation of a deliberation process and
since the 3APL interpreter is implemented in Java, we have implemented
each mental attitude as a Java class, i.e., a Java class for the belief base, one
for the capabilities, one for the goal base, one for the plan base, one for the

52 3APL

goal planning rule base, and one for the plan revision rule base. Each of these
classes has an internal representation for its specific mental attitude, which
will initially be set by parsing the input 3APL program. The parser is part
of the Java implementation of the 3 APL interpreter.

Each class implementing a mental attitude has a set of methods. These
methods implement the deliberation operations that are relevant for that
mental attitude. For example, the class that implements the belief base has a
method for updating the belief with new facts, and the class that implements
the goal planning rule base has a method for selecting a goal planning rule
and another method for applying that rule. In order to implement a delib
eration process for 3APL agents, a programmer should thus have the source
code of the interpreter and implement a Java class that calls the methods of
the classes that correspond to the mental attitudes.

Although the idea is that the agent programmer implements the deliber
ation process, an interpreter is provided that implements a cyclic order of
deliberation operations as illustrated in figure 2.3. According to this delib
eration program, an agent starts with searching for an applicable planning
rule (in their order of occurrence) to generate a plan for one of its goals and
applies the first applicable planning rule that it finds. The agent then con
tinues with searching for an applicable plan revision rule (in their order of
occurrence) to revise one of its plans. A plan needs to be revised when, for
example, it starts with an abstract plan which is not executable. The agent
applies the first applicable plan revision rule that it finds. Then, the agent
continues with searching for the executable plans (in their order of occur
rence) and executes the first plan it finds. Note that a plan that starts, for
example, with a mental action of which the pre-condition does not hold,
cannot be executed. Finally, the agent continues with either the same cycle
of operations or it suspends its activities until a message is arrived. The agent
suspends its activities if no sensible operation could be performed during the
previous cycle, i.e. if no rules could be applied and no plan could be exe
cuted. Note that the arrival of a message may make either a rule applicable
or a plan executable.

This order of operations is by no means universal, since it does not guar
antee the proper agent behavior for all kinds of situations. For example,
in an emergency situation it may be more plausible that an agent does not
continue executing its current plans, but starts adopting and executing emer
gency plans. As we have argued in [52], we believe that an agent's interpreter
should be programmable to allow the implementation of different types of
behavior. The proposed interpreter for 3APL is an example which can in
principle be modified by the agent programmers to generate different types
of behavior. At this moment, the source code of 3APL is under development

Language 53

and is not available for modifying and implementing the deliberation cycle.
However, we hope to make this possible in the near future.

Applying Goal Planning Rules

Figure 2.3. A cyclic interpreter (deliberation cycle) for the 3APL agents.

3APL Platform

The 3APL platform provides a user interface that allows 3APL agents to
be programmed, loaded, and executed. During execution there are various
facilities in the interface such as the sniffer, which allows monitoring the
exchanges of messages between agents, and specific windows, which allow
monitoring the changes of all mental attitudes of individual agents. Also,
there are various icons in the interface that allow monitoring the execution
of agents, either step by step or continuously. The graphical user interface of
the 3APL platform is illustrated in Figure 2.4 and described in section 2.3. A
detailed description of the platform interface can be found in the 3 APL user
guide [51].

The only part of the platform architecture that is programmable to this
date is the shared environment. As noted, the environment of 3APL agents is
assumed to be implemented as a Java class, the actions that can be performed
in this environment are determined by the methods of the Java class (i.e.,
the methods specify the effect of those actions in that environment), and the
state of the environment is represented by the instance variables of the class.
In particular, the environment is modelled as plugin to the platform. This

54 3APL

is a systematic way to interface between the 3APL platform and Java classes.
The plugin facilitates the interaction between individual agents running on
the platform and the instantiation of the Java classes. These interactions in
clude method calls from agents to Java classes and event notification from
the platform interface. To create a plugin you need to implement three in
terfaces.

1. i c s . Tr ip leApl . Plugin: factory class

2. i c s . Tr ip leApl . Ins tance: product class

3. i c s . T r i p l e A p l .Method: plugin method (function).

At startup, the platform loads all Plugin-implementing classes from the
p l u g i n s / directory (this directory is created when the 3APL platform
is downloaded and unpacked). It then queries the found plugin classes
for their external functionalities (Java methods) they provide to individual
agents. This is done by the platform through invocation of the method
ge tMethods of the Plugin interface. The idea behind the plugin is to sys
tematize the relation between agent platform and environment that can be
used by the agents. In particular, the environment should be linked to the
individual agents running on the platform such that the effect of any change
on individual agents (create, reset or remove) on the platform can be realized
and passed on to the environment.

For example, consider a two-dimensional grid such as the block world
environment in which the agents running on the platform can be present
and move around. In such a case, if the user creates, resets or removes an
agent on or from the platform, the agent should be added to, reset (moved
to initial position), or removed from the block world environment, respec
tively. The effects of the mentioned events (on the platform) are realized
by the platform through invocation of one of the following methods from
the Plugin interface: createlnstance, resetlnstance, and removelnstance. The
downloadable version of the 3 APL platform comes with an implementation
of a block world environment. The details of this environment and its Java
implementation are described in the 3APL user guide [51]. Note that this
environment is just an example and that the programmer can implement its
own environment.

2.2,2 Semantics and Verification

To program a 3APL multi-agent system is to program individual 3APL
agents and to specify the initial state of their shared environment. To pro
gram an agent means to specify its initial beliefs, goals, plans and capabilities,
and to specify sets of goal planning rules and plan revision rules. The initial
state of the shared environment is specified by a set of facts.

Language 55

D E F I N I T I O N 2.1 (3 A P L A G E N T) An individual 3APL agent is a tuple
{i,crQ,YQ,Caj),T\Q,PG,PR,E,) where i is the agent identifier, CTQ is the ini
tial belief base, 70 is the initial goal base. Cap is the capability base, TTQ C
Plans X { t r u e } is the initial plan base, PG is a set of goal planning rules, PR
is a set of plan revision rules, and £, is the environment the agent shares with
other agents, which is represented by a set of ground atoms.

The plan base of a 3APL agent consists of a set of plan-goal pairs. The goal
for which a plan is selected is recorded with the plan, because this for instance
provides for the possibility to drop a plan of which the goal is reached. The
initial plan base of a 3APL agent consists of a set of plans, rather than a set
of plan-goal pairs. We take these initial plans as having the associated goal
t rue ' ' . Furthermore, goals may be revised or dropped and one might want
to remove a plan associated with a goal which has been dropped, from the
plan base (see also the discussion on the deliberation cycle of section 2.2.1).

The beliefs, goals and plans of individual agents and their shared environ
ment are the elements that change during the execution of the agent, while
the capabilities and the reasoning rules remain unchanged. Together with a
substitution component, these changing components of the agent constitute a
3APL agent configuration. The substitution part of the configuration is used
to store values or bindings associated with variables.

D E F I N I T I O N 2.2 ((GROUND) SUBSTITUTION, BINDING, DOMAIN,

FREE VARIABLES) A substitution 9 is a finite set of the form
{x\/ti,... ,Xn/tn], where Xi E Var and tj E Term and \/i y^ j : Xj ^ Xj.
9 is called a ground substitution if all tj are ground terms. Each element Xi/tf
is then called a binding for Xi. The set of variables { x i , . . . , x„} is the domain
of 9 and will be denoted by dom{9). The application of a substitution 9 to a
syntactic expression e is denoted as e9. It refers to the expression resulting from
simultaneously replacing all occurrences of variable x in efor which x/t E 9 by
t.

Below, we first define the configuration of an individual 3 APL agent in terms
of the elements that change during the execution of the agent. Then, we
define the configuration of a 3APL multi-agent system in terms of the con
figurations of the involved agents and their shared environment.

D E F I N I T I O N 2.3 (CONFIGURATION) A configuration of an individual
3APL agent is a tuple {i, (J, Y,T\,9,^), where i is an agent identifier, a is the
belief base of the agent, y is the goal base of the agent, TT is the plan base of the
agent, 9 is a ground substitution that binds domain variables to domain terms,

^Although t r u e as a logical formula cannot be an agent's goal according to the 3APL semantics, we use
it only to indicate that there is no specific goal associated to a plan.

56 3APL

and £, is the environment it interacts with, where E, is a set of ground atoms. The
goal base in a configuration is such that for any goal cp E y it holds that cp is not
entailed by the agent's beliefs.

A configuration of a 3APL multi-agent system is a tuple {Ai,,., ,An,E,)
where Ajfor 1 < i < n is the configuration of individual agent i and E, is the
shared environment. This shared environment is the same as the environment of
each individual agent.

The rationale behind the condition on the goal base is the following. The
beliefs of an agent describe the state the agent is in and the goals describe
the state the agent wants to realize. If an agent believes 0 is the case, it
cannot have the goal to achieve (̂ , because the state of affairs (\) is already
realized. This is thus an implementation of achievement goals, as opposed to
maintenance goals.

Transition system

In the following, we present the general idea of the type of semantics that
is given to the 3APL programming language. It is an operational semantics
which is defined in terms of a transition system [169]. A transition system
is a set of derivation rules for deriving transitions. A transition is a trans
formation of one configuration into another and it corresponds to a single
computation step. For the purpose of this paper, we present only a subset of
derivation rules. A complete set of derivation rules is presented in [54].

We define first a derivation rule for transitions between multi-agent con
figurations. This derivation rule, which captures the parallel execution of the
set of individual agents, forms the only transition at the multi-agent level.

D E F I N I T I O N 2.4 (MULTI-AGENT EXECUTION) Let

A\,,.., Ai,... ,An,A!i be agent configurations and let i, and E,' be spec
ifications of the environment. Further, let Ai = ((J,7, IT, 0,^) and let
A'l = {CF',y ,T\',0',E,'). Then the derivation rule for multi-agent configura
tions is defined as follows.

sAi > Jx^

This derivation rule states that a transition between multi-agent configura
tions can be defined in terms of a transition between single-agent configura
tions. This amounts to an interleaved execution of the agents in the system.
Note that the environment of the multi-agent configuration is shared among
all individual agents.

We now define transition rules that can derive transitions transforming
single-agent configurations. These derivation rules specify the semantics of
the execution of plans and the application of reasoning rules.

Language 57

The first derivation rule specifies the execution of the plan base of a 3 APL
agent. The plan base of the agent Is a set of plan-goal pairs. This set can be
executed by executing one of the constituent plans. The execution of a plan
can change the agent's configuration.

D E F I N I T I O N 2.5 (plan base execution) Let
n = {{7Xi,Ki),,.,,{7ti,Ki),,,.,{7Xn,Kn)} and

W = {{ni,Ki),.,. ,{n'-,Ki),.., ,{nn,Kn)] be plan bases, 0,9' be ground
substitutions, and ^,E^ be environment specifications. Then, the derivation
rule for the execution of a set of plans is specified in terms of the execution of
individual plans as follows,

Now we will Introduce some of the derivation rules for the execution of
Individual plans. We Introduce derivation rules for external actions, com
munication actions and tests.

An external action J a v a (C l a s sname, oc{ti,,.. ,tn), x) has two
functionalities. First, based on the Input terms and the state of the envi
ronment, It generates a term and assigns It to variable x. The term assigned
to X Is the output of the action which Is returned to the agent from the envi
ronment. For sense actions, this output can be programmed to be the sensed
Information. For other actions, the output could for example be Information
such as whether the action has been performed, or the result of the action.
Note that this term can be a list of terms. Second, actions are assumed to
have effects on the environment.

In order to capture these two functionalities. I.e., calculating a value for x
and updating the current environment, we assume for each external action
with a method name ex a function Fa which maps terms ti,.., ,tn and the
environment <̂ to a term which will be assigned to variable x. Further, we
assume a function Ga which maps terms t\,.., ,tn and the environment <̂ to
a new environment ^^ An agent can execute an external action only If the
goal associated to the action Is still a goal of the agent.

D E F I N I T I O N 2.6 (external action execution) Let t,ti,,,, ,tn be terms, x be a
variable, let £,,£,' be agent environments, a be the method name of an external
action, and assume functions F^ and G« as explained above. The execution of an
external action is then defined as follows:

r N^

(i, (J, y, (Java(ciassname, a{ti,... ,tn), x), K), 9, £,) -> (i, a, y, (e, K), 9', S,')

where0' = 9U {x/t} witht = Fpc{ti,... ,tn,K)yand^' = Goc{ti,... ,tn,^).

58 3APL

Note that the execution of an external action thus influences only the substi
tution and the environment component of the configuration.

The next type of basic action is the communication action Send{r, lp,(p).
We assume that each agent can receive a message at any moment in time. We
use then a synchronization mechanism for sending and receiving messages.
This synchronization mechanism takes care of simultaneously taking a mes
sage from the sending agent and putting it in the belief base of the receiving
agent. How these messages are then handled by the receiving agent is done
in a completely asynchronous fashion.

The semantics of a Sendij, p, (p) action affects both sending and receiving
agents. The communication action Send{r, ip, (p) is removed from the plan
base of the sending agent and the formula sent{r, p, (p) is added to its belief
base. Moreover, the formula received{s, p, (p) is added to the belief base of
the receiving agent, where s is the name of the sending agent. This informa
tion about incoming and outgoing messages can respectively be used by the
receiving and sending agents for their future deliberations. In order to be
able to identify the sending agent when defining the addition of a fact of the
form received{s, p, (p) to the belief base of the receiver, we add the name of
the sending agent to messages.

D E F I N I T I O N 2.7 (COMMUNICATION ACTION EXECUTION) Let

(s, r, p, (p) be the format of the message that is sent and received by the
agents, where s is the name of the sending agent, r is the name of the receiving
agent, p is the communication performative, and <p is the message content. The
following three transition rules specify the semantics for sending and receiving
messages between agents, and their synchronization, respectively,

• The transition rule for the sending agent:

(s, 0-, y, {Send{r, p, 0) , K), 9, i) '-^^ " (s, a', y, (e, K), 0,£^)

where a' = aU {sent{r, p,(p)},

The transition rule for the receiving agent:

(r, (7,y, n , 0, ̂) ^ ' ' ^ ' (r, C7̂ y, n , 0, <̂)

where cr' = cr U {received{s, p, (p)],

• The transition rule for synchronization:

Language 59

Note that the second transition rule guarantees that each agent can receive
the messages that are directed to the agent at any moment In time. More
discussion on communication between 3APL agents can be found In [53].

Next, we specify the derivation rule for the execution of the test action.
A test action can bind the free variables that occur In the test formula for
which no bindings have been computed yet.

D E F I N I T I O N 2.8 (TEST EXECUTION) Let (3 be a well formed formula and
let r bea ground substitution.

a[=l3er^y\=K

The entailment relation |= In the condition a \= (59r Is Implemented by
the Prolog Inference engine. When posing a query ^, the substitution 0 Is
first applied to (i. The substitution r Is the substitution returned by Prolog
and should bind the variables of /30. The entailment relation |= In y |= K Is
Implemented In a similar fashion.

The derivation rules for the execution of composite plans are defined In a
standard way.

Next, we define the transition rule for the goal planning rule. A goal
planning rule K ^- (5 \ n specifies that the goal K can be achieved by plan
TT If ^ Is derivable from the agent's beliefs. A goal planning rule only affects
the plan base of the agent.

D E F I N I T I O N 2.9 (GOAL PLANNING RULE APPLICATION) Let K ^ ^ \

71 bea goal planning rule. Let also Ti, T2 be ground substitutions,

(t,(7,r,n,0,i) ^ (t,o-,r,nu{(7rTiT2,KTi)},0,̂)
Note that the goal KTI that should be achieved by the plan /rri T2 Is associated
with It. It Is only this rule that associates goals with plans. The goal base of
the agent does not change because the plan 7rTiT2 Is not executed yet; the
goals of agents may change only after execution of plans: goals are removed
If believed to be achieved. We do not add substitutions Ti, T2 to 9 since these
substitutions should only Influence the new plan zr.

Finally, the transition rule for the goal planning rule that defines reac
tive behavior, I.e. the goal planning rule In which the head Is omitted. Is a
modification of the above transition rule.

D E F I N I T I O N 2.10 (REACTIVE GOAL PLANNING RULE APPLICATION)

Let —̂ p> I n be a reactive goal planning rule and let also r be a ground
substitution.

c^h^^
(t,c7,r,n,a,^) -> (t,a-,7,nu{(7rT,true)},0,£)

60 3APL

Note that the goal associated to the generated plan is set to true, which means
that the plan is not generated to achieve a specific goal.

Semantics of a 3APL agent

The semantics of an individual 3APL agent as well as the semantics of a
3APL multi-agent system is derived directly from the transition relation -^.
The meaning of individual agents and multi-agent systems consists of a set
of so called computation runs.

D E F I N I T I O N 2.11 (COMPUTATION RUN) Given a transition system, a
computation run CR(so) is a finite or infinite sequence $Q, .., ,SnorSQ,.,. where
Si are configurations, and V/>o '- Sf_i -^ Sf is a transition in the transition sys
tem.

We can now use the concept of a computation run to define the semantics of
individual 3APL agents and the semantics of 3APL multi-agent systems.

D E F I N I T I O N 2.12 (SEMANTICS OF 3APL MULTI-AGENT SYSTEMS)

The semantics of a 3APL multi-agent system {Ai,... ,An,^) is the set of
computation runs CR{{Air - ^ - ,Anr^)) of the transition system for 3APL
multi-agent systems.

Note that the computation runs of a 3APL multi-agent system consist of
multi-agent transitions which can be derived by means of two multi-agent
transition rules. The first is defined in definition 2.4 and the second is the
synchronization rule specified in definition 2.7.

3APL Verification

We deem the verification of multi-agent systems very important (cf.
[150]). At the moment we do not yet have verification tools for 3APL
agents. We have done some theoretical work on agent verification in gen
eral [116, 108], and some work more focused on the language 3APL in par
ticular [226]. However, this work is still too theoretical to be the basis of a
practical tool. Following related work on the verification of AgentSpeak pro
grams [19] we plan to employ model-checking techniques. At the moment
we are investigating if we can check (LTL) temporal properties of agents
programmed in a light version of 3APL, using PROMELA, the finite state
model specification language for the SPIN LTL model checker [110].

2.2,3 Software Engineering Issues

The 3APL platform and 3APL programming language are designed to re
spect a number of software engineering and programming principles. Below
we give an overview of these principles and how they can be used.

Language 61

Separation of concerns

Development methodologies for multi-agent systems [234] differ from
each other in many respects. Some of them focus on inter-agent aspects,
while others also provide support for the design of internal components of
an agent, such as mental attitudes and the deliberation process. Finally, some
methodologies explicitly deal with the environment, while others do not.
The tools to develop and implement multi-agent systems should therefore
support each of these issues separately.

The 3APL programming language supports the implementation of inter-
agent issues by providing the communication action Send^ and the 3APL
platform manages the transportation of the communicated messages. More
over, the platform provides information about existing agents to other agents
through the Agent Management System (AMS). The information provided
by the AMS to agents is required for agents' interactions. The environment
of 3APL multi-agent systems can be implemented directly and explicitly
through external programs accessible to the agents through APFs (applica
tion program interfaces).

Finally, the 3APL programming language respects the separation of con
cerns related to the distinction between an agent's data structures and an
agent's operations. In particular, the data structures are mental attitudes
such as beliefs, goals, and plans while operations concern manipulation of
the mental attitudes such as updating of beliefs, plans and goals, and execu
tion of plans. This distinction is made explicit by introducing two levels of
programming: at the data level one can specify the mental attitudes of the
agents and at the operation level one can implement the deliberation process
of the agent.

Modularity

The implementation of an agent is modular in the sense that an agent can
be implemented in terms of seven different modules. The first module is
the capability base of the agent which implements the mental actions that
an agent can perform to update its beliefs. The second module is the belief
base of the agent which contains information the agent believes about the
world as well as information that is internal to the agent. The initial beliefs
of the agents can be distinguished in two kinds. The first kind of initial
beliefs constitutes the background knowledge which can be used by different
agents. The second kind of initial beliefs is specific to agents and cannot
be used by other agents. Since the background knowledge can be used by
different agents, we allow individual agents to load a separate file containing
the background knowledge. In this way, one can implement the background
knowledge once and allow different agents to load it as part of their initial

62 3APL

beliefs. The third module is the goal base that denotes the situation the agent
wants to realize. The fourth module is the plan base of the agent which
contains the plans that the agent intends to perform. The fifth module is the
goal planning rule base that contains the rules that can be used to generate a
plan for the possible goals of an agent. The sixth module is the plan revision
rule base that contains rules to revise existing agent's plans. Finally, the
seventh module is the deliberation module that allows the implementation
of an agent's deliberation process.

Abstraction

The abstraction mechanisms that can be exploited in the 3APL program
ming language are related to external actions and abstract plans. In particular,
the external actions allow the 3APL programmers to use external programs
through their corresponding API's without having any access to the internal
data and operations of the programs. The second abstraction mechanism is
related to abstract plans which allow users to abstract over certain parts of
plans. The abstract plans can be instantiated with a plan through the appli
cation of plan revision rules. It is very important to note that an abstract
plan should be introduced, not only because it occurs in different plans, but
also because its specific instantiation depends on the conditions known only
at run time. For example, going to work can be considered an abstract plan
since its specific instantiations such as going to work by bus, by taxi, by
train, or by own car depend on the conditions that hold when the plan is to
be executed. For example, if the agent does not have enough money, then it
may consider going by bus or train, otherwise it may consider using a taxi.

The introduction of abstract plans in 3APL implies the introduction of
plan revision rules. In implementing 3APL agents, the programmers tend
to conceive abstract plans as a kind of procedure calls and the plan revision
rules as the corresponding procedure. It is important to note that this is not
the optimal and principal use of abstract plans and their corresponding plan
revision rules.

Reusability

Finally, the 3APL platform allows reusing multi-agent systems by provid
ing a library of templates for individual agents and templates for multi-agent
systems. Using the templates for individual agents, the 3APL programmer
can use generic agents that have certain initial mental attitudes. The tem
plates for multi-agent systems, also known as projects, allow the 3APL pro
grammers to use a set of generic agents that, in addition to their initial mental
attitudes, follow a specified interaction protocol. Such a template can include
an environment with which the agents are supposed to interact. An example

Platform 63

of a multi-agent template Is a template for an auction. In order to Implement
such an auction, a 3APL programmer can load such a multi-agent template
and Implement both the details of the agents, such as their specific Initial
mental attitudes, as well as the details of their environment.

2,2.4 Language integration

The 3APL programming language together with Its platform allows the
Integration of Prolog and Java. The Prolog programs can be Integrated since
they can be loaded In 3APL and used as background knowledge. Given a
loaded Prolog program, the agent can pose queries In three different con
texts: as the pre-condition of mental actions, as test actions In plans, and as
the guard of the reasoning rules. The Prolog programs can thus be used to
control the execution of mental actions, the execution of plans, and the appli
cation of reasoning rules. Note that the queries may yield substitutions that
can bind other variables used In the post-conditions of the mental actions,
In the rest of plans that follow a test action, and In the bodies of reasoning
rules.

Moreover, the 3APL programming language allows Java programs to be
used through external actions. The external actions can be used to call meth
ods of Java classes. Using the arguments of these methods. It Is possible to
pass data from 3APL to Java and vice versa. In this way, data can be passed
from Java to the plans of the agent to the Prolog part (belief base) of the agent
and vice versa. Note that the Integration of Java Is also used to Implement
the multi-agent environment with which the agents Interact.

2.3 Platform

23.1 Available tools and documentation

The 3APL platform Is an experimental tool, designed to support the devel
opment, Implementation, and execution of 3APL agents [54]. The detailed
Information about Installation and deployment of the 3APL platform can
be found In the 3APL user guide which Is available online at the following
URL:

http://www.cs.uu.nl/3apl/download/java/userguide.pdf

or In [217]. Moreover, we are developing a tutorial and training material
which will be available soon from the 3APL web page:

http://www.cs.uu.nl/3apl

Also, various papers on 3APL can help to understand how to deploy the
3APL platform [107, 228, 54, 52, 227]. Finally, the Implementation docu
mentation of the platform can be found at:

http://www.cs.uu.nl/3apl/download/java/userguide.pdf
http://www.cs.uu.nl/3apl

64 3APL

http://www.cs.uu.nl/3apl/docs/aplp-refman/index.html

The 3APL platform provides a graphical interface, as shown in Figure 2.4,
through which a user can develop and execute 3APL agents using several
facilities, such as a syntax-colored editor and several debugging tools. The
platform allows communication among agents and provides the Agent Man
agement System (AMS) that is responsible for registration of the hosted
agents. Multiple 3APL platforms can run on different machines connected
in a network at the same time, such that agents hosted on these platforms
can communicate with each other. When the 3APL platform is started, the
user should select whether the multi-agent application is intended to act as
a server or as a client. The server option must be selected the first time the
3APL platform is run. The client option can be selected only if the 3APL
platform is running as a server already. When the user selects the client op
tion, the IP of the server with which the (client) platform should connect,
must be filled in.

C^3APL Platform (Unnamed Project)

Rie Edit Project Tools Help
^M^

a (3 Sniffer K n I ^\>A l \ \ <

AMS •

agantl «
agent2 #

Communication | System Messages | Agent properties Source |

Save and recompile | Revert chariQes 1

PR0*5RAM "agent I"

CAPABILITIES;

{on(X ,Y | } MovetX,Y,Z) {not (ontX, Y)) , on (X,Z)}

BELIEFBASG:

; o n (a , f l) .

o n (b , f l) .

, on (c ,a) .

|k;lear (b) .

!c lear.(c) .

^ciear (f i) .

c l e a r (Y) : - n o t (o n (X , Y ^) .

|GOALBASE; :

| ! o n [a , b) and on(b,c] i and o n [c , f l)

|)fCtt^5ii!l
.d

±J

FigHve 2.4, An illustration of the graphical user interface of the 3APL platform.

The graphical interface shows in the left side window the names of the
agents that are hosted and running on the platform in a tree-like structure.
The tree includes also the AMS (Agent Management System) which is mod
elled as a non-programmable agent that provides information about hosted

http://www.cs.uu.nl/3apl/docs/aplp-refman/index.html

Platform 65

agents to each of the running agent. The information will be provided only
on request. The same window of the graphical interface presents also the
status of the hosted agents such as initial, running, stopped, final, and er
roneous. Moreover, the Communicat ion tab of the graphical interface
provides a message window that displays the messages that are exchanged
between agents. The System Messages tab is a window that shows the
system messages such as parse errors or the errors that are generated dur
ing the execution. The Agent p r o p e r t i e s tab is a window that can be
used to monitor the (mental) states of the agents during their execution. The
Source tab provides an editor that allows programmers to modify the ini
tial mental state of agents. In addition, the interface provides a sniffer button
that displays the graphical representation of the message exchange.

2J,2 Standards compliance, interoperability and
portability

The 3APL platform has been tested on Windows 98, Windows NT and
Windows XP, as well as on Linux, Unix (Solaris) and Mac OS X. 3APL is
written in Java 2 SDK 1.4, and makes use of the Prolog engine of JlProlog,
which is also implemented in Java. We have tested it for Java 2 SDK 1.4.0_02
and upwards. The downloadable 3APL package consists of a .Jar file that
contains all the .class files needed, as well as examples of 3APL programs.
The package needs approximately 800 KB.

The 3APL platform adheres to the FIPA standard to the extent that it pro
vides a simplified version of an Agent Management System which provides
a combination of name service and yellow-page services. Moreover, the for
mat of the messages that are communicated between 3APL agents are based
on FIPA standards, consisting of the identifiers of the sender and receiver
of the message, the performative or speech act, and the content of the mes
sage. The 3APL platform supports only the development, implementation,
and execution of multi-agent systems that consist of 3APL agents. At this
moment, the platform does not support open multi-agent systems, mobile
agents, or heterogeneous agents.

The 3APL platform is still in a prototyping stage and can execute only
a small number of agents. The performance of the platform decreases if
the number of agents, which are loaded and executed concurrently on the
platform, grows. One reason for the low performance is the complex and
cognitive nature of agents and the fact that agents have the capability to
reason with their mental attitudes. The platform can handle the messages
that are exchanged by the agents, although the number of agents that can be
run efficiently on the 3APL platform is small.

66 3APL

The platform provides distributed control such that the agents can be ex
ecuted concurrently. This enables loading, executing, and stopping agents
while other agents are running. The platform also provides the possibility
to build a library of agents, multi-agent systems and agent templates. The
templates can be loaded and extended to build multi-agent systems. Finally,
based on the templates it is possible to have interaction protocols in the plat
form's library, since the protocols can be defined in terms of a set of agent
templates in which only the actions prescribed by the protocols are specified.

2.4 Applications supported by the language and/or the
platform

The applications that can be developed using the 3APL platform and the
3APL programming language are those that are best understood in terms
of cognitive and social concepts like beliefs, goals, plans, actions, norms,
organizational structures, resources and services that are part of the multi-
agent environment. We have already implemented a number of toy problem
applications such as block world logistics, Axelrod's tournament, English
Auction, and Contract Net protocols. Also, 3APL is already applied to im
plement the high-level control of mobile robots. In this project, external
actions of 3APL were defined and connected to some simple sensory and
motor actions of the mobile robot. In this way, a programmer can imple
ment a 3APL program that senses the position of the robot it is controlling
and determine how to reach a goal position in a rectangular environment,
a model of which is accessible to the 3APL program. Currently, 3APL is
also being applied to control the behavior of SONY AIBO robots and to
implement small device mobile applications.

2.5 Final Remarks

The 3APL platform can be employed to implement multi-agent systems
where each individual agent is implemented through the 3APL program
ming language. Using the 3APL programming language, individual agents
can directly be implemented in terms of cognitive concepts such as beliefs,
goals, plans, actions, and reasoning rules. Experience from deploying the
3APL platform for educational purposes have proved it to provide appropri
ate programming constructs for direct and easy implementation of applica
tions that are analyzed and designed by existing multi-agent system develop
ment methodologies such as Prometheus [163] and Gaia [242].

The programming language 3APL is subject to constant theoretical and
practical improvements. For example, the definition of the 3APL language
is extended with specific programming constructs to implement the agent's
deliberation process, declarative goals, other types of reasoning rules such

Final Remarks 67

as goal planning rules, and external and communication actions. Also, the
specification of belief is distinguished from the belief query expressions. The
practical development consists of the implementation of the 3APL platform
that allows the design, implementation, and testing of multi-agent applica
tions. Facilities provided by the platform ease the task of developing multi-
agent systems.

Currently, we are working to extend and refine the implementation of
the 3APL platform by adding additional features needed to facilitate the de
velopment of multi-agent systems. One of the extensions is to provide pro
gramming constructs for adopting different types of goals such as achieve
ment goals, perform goals and maintenance goals at run time. The exten
sion will add basic actions dedicated for adopting different types of goals
such that executing plans that include these types of basic actions generates
goals. Another extensions is to provide programming constructs to allow
explicit implementation of the organizational structures and the multi-agent
environment. In particular, we are building on the existing coordination
mechanisms designed for concurrent component-based systems and extend
them with social and organizational concepts needed to specify multi-agent
organizations. Moreover, we aim at using the existing web technologies such
as XML and web services to define the environment of multi-agent systems.
Our aim is that any introduced extension and refinement should have a the
oretical foundation, being defined in terms of formal syntax and semantics.

Acknowledgments

Thanks to Frank de Boer and Frank Dignum for discussion on the issues
raised in this paper.

