
Chapter 1

JASON AND THE GOLDEN FLEECE OF
AGENT-ORIENTED PROGRAMMING

Rafael H. Bordinl,^ JomI F. Hlibner,^ and Renata Vieira^

Department of Computer Science, University of Durham
Durham DH13LE, U.K.
R.Bordini@durham.ac.uk

Departamento de Sistemas e Computagao, Universidade Regional de Blumenau
Blumenau, SC 89035-160, Brazil
jomi@inf.furb.br

Programa Interdisciplinar de Pos-Graduagao em Computagdo Aplicada,
Universidade do Vale do Rio dos Sinos, Sao Leopoldo, RS 93022-000, Brazil
renata@exatas.unisinos.br

Abstract This chapter describes Jason, an interpreter written in Java for an extended
version of AgentSpeak, a logic-based agent-oriented programming language
that is suitable for the implementation of reactive planning systems according
to the BDI architecture. We describe both the language and the various features
and tools available in the platform.

Keywords: Logic-Based Agent Programming, Beliefs-Desires-Intentions, Operational Se
mantics, Speech Acts, Plan Exchange, Java-based Extensibihty/Customisation.

Now was remaining as the last conclusion of this game,
By force ofchaunted herhes to make the watchfull Dragon sleepe
Within whose eyes came never winke: who had in charge to keepe
The goodly tree upon the which the golden fleeces hung

The dreadfull Dragon by and by (whose eyes before that day
Wist never erst what sleeping ment) did fall so fast asleepe
That Jason safely tooke the fleece ofgolde that he did keepe.

P. Ovidius Naso, Metamorphoses (ed. Arthur Golding), Book VII.

mailto:R.Bordini@durham.ac.uk
mailto:jomi@inf.furb.br
mailto:renata@exatas.unisinos.br

4 Jason

1,1 Motivation

Research on Multi-Agent Systems (MAS) has led to a variety of techniques
that promise to allow the development of complex distributed systems. The
importance of this is that such systems would be able to work in environ
ments that are traditionally thought to be too unpredictable for computer
programs to handle. With more than a decade of work on Agent-Oriented
Programming (AOP) — since Y. Shoham's seminal paper [206] — it has be
come clear that the task of putting together the technology emerging from
MAS research in a way that allows the practical development of real-world
MAS is comparable, in mythological terms, to the task of retrieving the
Golden Fleece from the distant kingdom of Colchis, where it hang on a tree
guarded by a sleepless dragon. Of course, this is not a task ior Jason alone,
but for the greatest heros of the time, who became known as the Argonauts
(a selection of "whom" is described throughout this book).

The work described here is the result of an attempt to revive one of the
most elegant programming languages that appeared in the literature; the lan
guage was called AgentSpeak(L), and was introduced by A. Rao in [180].
AgentSpeak(L) is a logic-based agent-oriented programming language, which
is aimed at the implementation of reactive planning systems (such as PRS
[98]) but also benefited from the experience with more clear notions of
Beliefs-Desires-Intentions (BDI) as put forward in the work on the BDI agent
architecture [182, 181] and BDI logics [183, 237]. However, AgentSpeak(L)
was not but an abstract agent programming language. The work we have
done, together with various colleagues, was both on extending AgentSpeak
so that it became a practical programming language (allowing full integra
tion with what we consider the most important MAS techniques) as well as
on providing operational semantics (a standard formalism for semantics of
programming languages) for AgentSpeak and most of the proposed exten
sions.^ The driving force of all work reported here is to have a programming
language for MAS which is practical (in the sense of allowing the develop
ment of real-world applications), yet elegant and with a rigorous formal basis.

Jason is the interpreter for our extended version of AgentSpeak, which
allows agents to be distributed over the net through the use of SACI
[115]. Jason is available Open Source under GNU LGPL at h t t p : / /
j a s o n . s o u r c e f o r g e . n e t [22]. It implements the operational seman
tics of AgentSpeak originally given in [24, 152] and improved in [229]. It
also implements the extension of the operational semantics that accounts for
speech-act based communication among AgentSpeak agents, first proposed

^We shall use AgentSpeak throughout this chapter, as a general reference to either AgentSpeak(L) as
proposed by Rao or the various existing extensions.

http://
http://jason.sourceforge.net

Motivation 5

in [153] and then extended in [229] (see Section 1.2.4). Another important
extension is on allowing plan exchange [4] (see Section 1.2.4).

Some of the features available in Jason are:

• speech-act based inter-agent communication (and annotation of beliefs
with information sources);

• annotations on plan labels, which can be used by elaborate (e.g., deci
sion theoretic) selection functions;

• the possibility to run a multi-agent system distributed over a network
(using SACI, but other middleware can be used);

• fully customisable (in Java) selection functions, trust functions, and
overall agent architecture (perception, belief-revision, inter-agent com
munication, and acting);

• straightforward extensibility (and use of) by means of user-defined
"internal actions";

• clear notion of multi-agent environments, which can be implemented
in Java (this can be a simulation of a real environment, e.g., for testing
purposes before the system is actually deployed).

Interestingly, most of the advanced features are available as optional, cus
tomisable mechanisms. Thus, because the AgentSpeak core that is inter
preted hy Jason is very simple and elegant, yet having all the main elements
for expressing reactive planning system with BDI notions, we think that Ja
son is also ideal for teaching AOP for under- and post-graduate studies.

An important strand of work related to AgentSpeak that adds to mak
ing Jason a promising platform is the work on formal verification of MAS
systems implemented in AgentSpeak by means of model checking techniques
(this is discussed in Section 1.2.2); that work in fact draws on there being pre
cise definitions of the BDI notions in terms of states of AgentSpeak agents.
Before we start describing/<^sow in more detail, we will introduce a scenario
that will be used to give examples throughout this chapter. Although not all
parts of the scenario are used in the examples given here, we introduce the
whole scenario as we think it contains most of the important aspects of envi
ronments for which multi-agent systems are appropriate, and may therefore
be useful more generally than its use in this chapter.

Scenario for a Running Example: The Airport Chronicle

The year is 2070 ad. Airports have changed a lot since the beginning of
the century, but terrorist attacks are hardly a thing of the past. Anti-terror
technology has improved substantially, arguably to compensate for the sheer

6 Jason

irrationality of mankind when it comes to resolve issues such as economic
greed, religious fanaticism, and group favouritism, all of which remain with
us from evolutionary times when they may have been useful.

Airports are now completely staffed by robots, specially London
Heathrow, where different robot models are employed for various specific
tasks. In particular, security is now completely under the control of spe
cialised robots: due to a legacy from XX and early XXI century, Heathrow
is still number one... terrorist threat target, that is. The majority of the
staff, however, is formed by CPH903 robots. These are cute, polite, handy
robots who welcome people into the airport, give them a "hand" with pieces
of luggage (e.g., lifting them to place on a trolley), and, of course, provide
any information (in natural language, also using multi-media presentations
whenever useful) that costumers may need.

Most of the security-related tasks are carried out by model MDS79 robots.
The multi-device security robots are very expensive pieces of equipment, as
they are endowed with all that technology can provide, in 2070, for bomb
detection. They use advanced versions of the technology in use by the be
ginning of the century: x-ray, metal detectors, and computed tomography
for detecting explosive devices, ion trap mobility spectrometry (ITMS) for
detecting traces of explosives, as well as equipment for detecting radioactive
materials (gamma ray and neutrons) used in "dirty bombs".

These days at Heathrow, check-in and security checks are no longer cen
tralised, being carried out directly at the boarding gates. Thus, there are
one or two replicas of robot model MDS79 at each departure gate. When
unattended luggage is reported, all staff in the vicinity are informed of its lo
cation through a wireless local area network to which they all are connected.
The robots then start a process of negotiation (with a very tight deadline for
a final decision) in order to reach an agreement on which of them will be
relocated to handle the unattended luggage report.

All staff robots know that, normally, one MDS79 and one CPH903 robot
can cooperate to ensure that reported unattended luggage has been cleared
away. The way they actually do it is as follow. The MDS79 robot replica
uses all of its devices to check whether there is a bomb in the unattended
luggage. If there is any chance of there being a bomb in the luggage, the
MDS79 robot sends a high priority message to the bomb-disarming team of
robots. (Obviously, robots communicate using speech-act based languages,
such as those used for agent communication since the end of last century.)
Only three of these very specialised robots are operational for all Heathrow
terminals at the moment. Once these robots are called in, the MDS79 and
CPH903 robots that had been relocated can go back to their normal duties.
The bomb-disarming robots decide whether to set off a security alert to evac
uate the airport, or alternatively they attempt to disarm the bomb or move it

Motivation 7

to a safe area, if they can ensure such courses of action would pose no threat
to the population.

In case the MDS79 robot detects no signs of a bomb in the unattended
luggage, the job is passed on to the accompanying CPH903 robot. Luggage
these days usually come with a magnetic ID tag that records the details of
the passenger who owns it. Replicas of robot CPH903 are endowed with
a tag reader and, remember, they are heavily built so as to be able to carry
pieces of luggage (unlike MDS79). Besides, MDS79 are expensive and much
in demand, so they should not be relocated to carry the piece of luggage
after it has been cleared. So, in case the luggage is cleared, it is the CPH903
robot's task to take the unattended luggage to the gate where the passenger is
(details of flights and passengers are accessed through the wireless network)
if the passenger is known to be already there, or to the lost luggage centre, in
case the precise location of the passenger in the airport cannot be determined
(which is rather unusual these days).

Thus, all staff robots have, as part of their knowledge representation, that
normally an MDS79 robot and a CPH903 robot can cooperate to eventually
bring about a state of affairs where the unattended luggage has been cleared
away. When unattended luggage is reported, they negotiate (for a very lim
ited period of time, after which a quick overriding decision based simply
on distance to the unattended luggage is used) so as to determine the best
group of robots to be relocated to sort out the incident. Ideally, the MDS79
robot to be relocated will be currently at a gate where two MDS79 robots
are available, to avoid excessive delays in boarding at that gate. Robots of
type CPH903 are easy to relocate as they exist in large numbers and do not
normally execute critical tasks.

An important aspect to consider is that the whole negotiation process, un
der normal circumstances, is about the specific MDS79 robot to be relocated,
and the choice of one CPH903 robot to help out. However, other more dif
ficult situations may arise under unpredicted circumstances. For example,
on the 9th of May 2070, at Heathrow, an unattended piece of luggage was
reported near gate 54. It turned out that the robot with ID S39 (an MDS79
replica) was helping out another MDS79 in charge of gate 56 close by. After
briefly considering the situation, S39 volunteered to check out the reported
unattended luggage, and so did H124 (a CPH903 replica). However, while
running a self check, S39 realised that its internal ITMS equipment had Just
been damaged, which it reported to other robots involved in the negotiation.

In the light of that recent information, negotiation was resumed among
the involved robots, to try and define an alternative course of action. An
other MDS79 robot could have been relocated, which would have led to de
lays at one of the nearby gates (gate 52), as that MDS79 robot was alone tak
ing care of security at that gate. Based on an argument put forward by S39,

8 Jason

the agreed course of action was that another (suitably positioned) CPH903
robot would be relocated to take (from a storage facility in that terminal) a
handheld ITMS device, while S39 and HI24 made their way to the location
of the unattended luggage. Any of the three relocated robots can actually
operate the portable ITMS device, so together they were able to bring about
a state of affairs where the unattended luggage had been cleared away.

1.2 Language

The AgentSpeak(L) programming language was introduced in [180]. It is a
natural extension of logic programming for the BDI agent architecture, and
provides an elegant abstract framework for programming BDI agents. The
BDI architecture is, in turn, the predominant approach to the implementa
tion of intelligent or rational agents [237].

An AgentSpeak agent is defined by a set of beliefs giving the initial state of
the agent's belief base ̂ which is a set of ground (first-order) atomic formula,
and a set of plans which form its plan library. Before explaining exactly how
a plan is written, we need to introduce the notions of goals and triggering
events. AgentSpeak distinguishes two types of goals: achievement goals and
test goals. Achievement goals are formed by an atomic formulas prefixed
with the *!' operator, while test goals are prefixed with the ' ?' operator. An
achievement goal states that the agent wants to achieve a state of the world
where the associated atomic formula is true. A test goal states that the agent
wants to test whether the associated atomic formulas is (or can be unified
with) one of its beliefs.

An AgentSpeak agent is a reactive planning system. The events it reacts to
are related either to changes in beliefs due to perception of the environment,
or to changes in the agent's goals that originate from the execution of plans
triggered by previous events. A triggering event defines which events can ini
tiate the execution of a particular plan. Plans are written by the programmer
so that they are triggered by the addition ('+') or deletion (*-') of beliefs or
goals (the "mental attitudes" of AgentSpeak agents).

An AgentSpeak plan has a head (the expression to the left of the arrow),
which is formed from a triggering event (specifying the events for which that
plan is relevant), and a conjunction of belief literals representing a context.
The conjunction of literals in the context must be a logical consequence
of that agent's current beliefs if the plan is to be considered applicable at
that moment in time (only applicable plans can be chosen for execution). A
plan also has a body, which is a sequence of basic actions or (sub)goals that
the agent has to achieve (or test) when the plan is triggered. Plan bodies
include basic actions — such actions represent atomic operations the agent
can perform so as to change the environment. Such actions are also written

Language

skill(plasticBomb).
skill(bioBomb).
-skill(nuclearBomb).

safetyArea(fieldl).

@pl
+bomb(Terminal, Gate, BombType) : skill(BombType)

<- !go(Terminal, Gate);
disarm(BombType).

@p2
+bomb(Terminal, Gate, BombType) : -skill(BombType)

<- ImoveSafeArea(Terminal, Gate, BombType).

@p3
+bomb(Terminal, Gate, BombType) : not skill(BombType) &

not -skill(BombType)
.broadcast(tell, alter)

@p4
+ImoveSafeArea(T,G,Bomb) ; true

<- ?safeArea(Place) ,•
!discoverFreeCPH(FreeCPH);
.send(FreeCPH, achieve,

carryToSafePlace(T,G,Place,Bomb)).

Figure 1.1. Examples of AgentSpeak Plans for a Bomb-Disarming Robot.

as atomic formula, but using a set of action symbols rather than predicate
symbols.

Figure 1.1 shows an example of AgentSpeak code for the initial beliefs
and plans of a bomb-disarming agent described in Section 1.1. Initially, the
agent believes it is skilled in disarming plastic and biological bombs, but not
skilled in nuclear bombs; it knows that "field 1" is a safe area to leave a bomb
that it cannot disarm. When this agent receives a message from an MDS79
robot saying that a biological bomb is at terminal t l , gate g43, a new event
for +bomb{t l , g43 , bioBomb) is created. A bomb-disarming agent
has three relevant plans for this event (identified by the labels p i , p2, and
p3), given that the event matches the triggering event of those three plans.
However, only the context of the first plan is satisfied (s k i l l (bioBomb)),
so that the plan is applicable. In plans p l - p 3 , the context is used to decide

10 Jason

whether to attempt to disarm a bomb (in case the agent is skilled in disarm
ing that type of bomb), to move it to a safe area (in case it is not skilled),
or to set off a security alarm (if it is not sure it is sufficiently skilled). As
only the first plan is applicable, an intention based on it is created and the
plan starts to be executed. It adds a sub-goal ! g o (t l , g43) (the plans
for achieving this goal are not included here) and performs a basic action
d i s a r m (BombType). In plan p4, we have an example of a test goal
whereby the agent consults its own beliefs about where to take the bomb
(?saf eArea (P l ace)) , and an example of an internal action used to send
a message (. send (. . .)) . The details of the AgentSpeak code in Figure 1.1
will be explained in the next sections.

1,2,1 Specifications and Syntactical Aspects

The BNF grammar in Figure 1.2 gives the AgentSpeak syntax as accepted
by Jason . Below, < ATOM> is an identifier beginning with a lowercase letter
or *.', <VAR> (i.e., a variable) is an identifier beginning with an uppercase
letter, <NUMBER> is any integer or floating-point number, and <STRING>
is any string enclosed in double quote characters as usual.

The main differences to the original AgentSpeak(L) language are as fol
lows. Wherever an atomic formulas^ was allowed in the original lan
guage, here a literal is used instead. This is either an atomic formulas
p (t i , . . . , t^2), n > 0, or -p (t i , . . . , tn), where '-* denotes strong nega
tion^. Default negation is used in the context of plans, and is denoted by
*not' preceding a literal. The context is therefore a conjunction of default
literals. For more details on the concepts of strong and default negation,
plenty of references can be found, e.g., in the introductory chapters of [135].
Terms now can be variables, lists (with Prolog syntax), as well as integer
or floating point numbers, and strings (enclosed in double quotes as usual);
further, any atomic formulae can be treated as a term, and (bound) variables
can be treated as literals (this became particularly important for introduc
ing communication, but can be useful for various things). Infix relational
operators, as in Prolog, are allowed in plan contexts.

Also, a major change is that atomic formulae now can have "annotations".
This is a list of terms enclosed in square brackets immediately following the
formula. Within the belief base, annotations are used, e.g., to register the
sources of information. A term s o u r c e (s) is used in the annotations for

^Recall that actions are special atomic formula with an action symbol rather than a predicate symbol.
What we say next only applies to usual predicates, not actions.
^Note that for an agent that uses Closed-World Assumption, all the user has to do is not to use literals
with strong negation anywhere in the program, nor negated percepts in the environment (see "Creating
Environments" under Section 1.3.1).

Language 11

agent
beliefs

plans
plan

beliefs plans
(literal ".")*
N.B. : a semantic error is generated if the
literal was not ground.
(plan)+
["©" atomic_formula]
triggering_event ":" context "<-" body "."

triggering_event

literal

default_literal

" +"

" +

literal
literal

' literal
' literal
' literal
' literal

atomic_formula
"~" atomic_formula
<VAR>
literal
"not" literal
"not" "(" literal
term ("<"|"<="|">"
literal ("=="|"\\=

') "

:..| = ") literal
" =") term

context

body

body_formula

atomic_f
list_of_
term

list

"ormula
.terms

1

r
—t

1
1
1
1

- t

-̂
1
1

1

"true"
default_literal ("&" default_literal)*
"true"
body_formula (";" body_formula)*
literal
"!" literal
"?" literal
"+" literal
"-" literal
<ATOM>["("list_of_terms")"] ["["list_of_terms
term ("," term)*
atomic_formula
list
<VAR>
<NUMBER>
<STRING>

[term (("," term)*

1 "1" (list 1 <VAR>)

] • ']

] "] "

Figure 1.2. BNF of the AgentSpeak Extension Interpreted by Jason.

that purpose; s can be an agent's name (to denote the agent that commu
nicated that information), or two special atoms, p e r c e p t and s e l f , that
are used to denote that a belief arose from perception of the environment,
or from the agent explicitly adding a belief to its own belief base from the
execution of a plan body, respectively. The initial beliefs that are part of the
source code of an AgentSpeak agent are assumed to be internal beliefs (i.e.,
as if they had a [s o u r c e (s e l f)] annotation), unless the belief has any

12 Jason

explicit annotation given by the user (this could be useful if the programmer
wants the agent to have an initial belief about the environment or as if it
had been communicated by another agent). Fore more on the annotation of
sources of information for beliefs, see [153].

Plans also have labels, as first proposed in [18]. However, a plan label
can now be any atomic formula, including annotations, although we suggest
that plan labels use annotations (if necessary) but have a predicate symbol
of arity 0, as in aLabe l or a n o t h e r L a b e l [c h a n c e S u c c e s s (0 .7) ,
e x p e c t e d P a y o f f (0 .9)] . Annotations in formulas used as plan labels
can be used for the implementation of sophisticated applicable plan (i.e.,
option) selection functions. Although this is not yet provided with the cur
rent distribution oi Jason, it is straightforward for the user to define, e.g.,
decision-theoretic selection functions; that is, functions which use something
like expected utilities annotated in the plan labels to choose among alter
native plans. The customisation of selection functions is done in Java (by
choosing a plan from a list received as parameter by the selection functions),
and is explained in Section 1.3.1. Also, as the label is part of an instance
of a plan in the set of intentions, and the annotations can be changed dy
namically, this provides all the means necessary for the implementation of
efficient intention selection functions, as the one proposed in [18]. However,
this also is not yet available as part oi Jason's distribution, but can be set up
by users with some customisation.

Events for handling plan failure are already available in Jason, although
they are not formalised in the semantics yet. If an action fails or there is no
applicable plan for a subgoal in the plan being executed to handle an internal
event with a goal addition + ! g, then the whole failed plan is removed from
the top of the intention and an internal event for - ! g associated with that
same intention is generated. If the programmer provided a plan that has a
triggering event matching - ! g and is applicable, such plan will be pushed
on top of the intention, so the programmer can specify in the body of such
plan how that particular failure is to be handled. If no such plan is available,
the whole intention is discarded and a warning is printed out to the con
sole. Effectively, this provides a means for programmers to "clean up" after
a failed plan and before "backtracking" (that is, to make up for actions that
had already been executed but left things in an inappropriate state for next
attempts to achieve the goal). For example, for an agent that persist on a goal
! g for as long as there are applicable plans for +! g, suffices it to include a
plan - ! g : t r u e <- ! g . in the plan library. Note that the body can
be empty as a goal is only removed from the body of a plan when the in
tended means chosen for that goal finishes successfully. It is also simple to
specify a plan which, under specific condition, chooses to drop the intention
altogether (by means of a standard internal action mentioned below).

Language 13

Finally, as also Introduced In [18], internal actions can be used both In
the context and body of plans. Any action symbol starting with \ \ or
having a ' . ' anywhere, denotes an Internal action. These are user-defined
actions which are run Internally by the agent. We call them "Internal" to
make a clear distinction with actions that appear In the body of a plan and
which denote the actions an agent can perform In order to change the shared
environment (In the usual jargon of the area, by means of Its "effectors"). In
Jason, Internal actions are coded In Java, or In Indeed other programming
languages through the use of JNI (Java Native Interface), and they can be
organised In libraries of actions for specific purposes (the string to the left
of *.' Is the name of the library; standard Internal actions have an empty
library name).

There are several standard Internal actions that are distributed with
Jason, but we do not mention all them here (see [22] for a complete list).
As an example (see Figure 1.1, plan p4), Jason has an Internal action
that Implements KQML-lIke Inter-agent communication. The usage Is:
, s e n d (+ r e c e i v e r , + i l l o c u t i o n a r y _ f o r c e , +prop_con ten t)
where each parameter Is as follows. The r e c e i v e r Is simply referred to
using the name given to agents In the multi-agent system (see Section 1,3.1).
The i l l o c u t i o n a r y _ f o r c e s available so far are: t e l l , u n t e l l ,
a c h i e v e , u n a c h i e v e , te l lHow, un te l lHow, a s k l f , askOne,
a s k A l l , and askHow. The effects of receiving messages with each of
these types of Illocutlonary acts are explained In Section 1.2.4. Finally, the
p r o p _ c o n t e n t Is a literal (see l i t e r a l In the grammar above).

Another Important class of standard Internal actions are related to query
ing about the agent's current desires and Intentions as well as forcing Itself
to drop desires or Intentions. The notion of desire and intention used Is ex
actly as formalised for AgentSpeak agents in [24]. The standard AgentSpeak
language has provision for beliefs to be queried (In plan contexts and by test
goals) and since our earlier extensions beliefs can be added or deleted from
plan bodies. However, an equally important feature, as far as the generic
BDI architecture Is concerned, is for an agent to be able to check current
desires/intentions and drop them under certain circumstances. In Jason, this
can be done by the use of certain special standard Internal actions.

L2.2 Semantics and Verification

As we mentioned in the Introduction, one of the important characteris
tics oi Jason is that It implements the operational semantics of an extension
of AgentSpeak. Having formal semantics also allowed us to give precise def
initions for practical notions of beliefs, desires, and intentions in relation
to running AgentSpeak agents, which in turn underlies the work on formal

14 Jason

verification of AgentSpeak programs, as discussed later In this section. The
formal semantics, using structural operational semantics [169] (a widely-used
notation for giving semantics to programming languages) was given then Im
proved and extended In a series of papers [152, 23, 24, 153, 229], In par
ticular, [229] presents a revised version of the semantics and Include some
of the extensions we have proposed to AgentSpeak, Including rules for the
Interpretation of speech-act based communication.

However, due to space limitation, we are not able to Include a complete
formal account of the semantics of AgentSpeak here. In this section we will
just provide the main Intuitions behind the Interpretation of AgentSpeak
programs, and after that we will give examples of the rules that are part of
the formal semantics.

Informal Semantics

Besides the belief base and the plan library, the AgentSpeak Interpreter
also manages a set of events and a set of intentions, and Its functioning re
quires three selection functions. The event selection function {Sg) selects a
single event from the set of events; another selection function (SQ) selects an
"option" (I.e., an applicable plan) from a set of applicable plans; and a third
selection function (<Sj) selects one particular Intention from the set of Inten
tions. The selection functions are supposed to be agent-specific. In the sense
that they should make selections based on an agent's characteristics (though
previous work on AgentSpeak did not elaborate on how designers specify
such functions'^). Therefore, we here leave the selection functions undefined,
hence the choices made by them are supposed to be non-determlnlstlc.

Intentions are particular courses of actions to which an agent has com
mitted In order to handle certain events. Each Intention Is a stack of par
tially Instantiated plans. Events, which may start off the execution of plans
that have relevant triggering events, can be external, when originating from
perception of the agent's environment (I.e., addition and deletion of beliefs
based on perception are external events); or internal, when generated from
the agent's own execution of a plan (I.e., a subgoal In a plan generates an
event of type "addition of achievement goal"). In the latter case, the event
Is accompanied with the Intention which generated It (as the plan chosen
for that event will be pushed on top of that Intention). External events cre
ate new Intentions, representing separate focuses of attention for the agent's
acting on the environment.

'^Our extension of AgentSpeak in [18] deals precisely with the automatic generation of efficient intention
selection functions. The extended language allows one to express relations between plans, as well as
quantitative criteria for their execution. We then use decision-theoretic task scheduling to guide the
choices made by the intention selection function.

Language 15

AgentSpeak(L) Agent

Intended
Means

Intentions

Intentions

Push \,

\ 1 New '

"-̂ ^Intention

-

Figure 1.3. An Interpretation Cycle of an AgentSpeak Program [143].

We next give some more details on the functioning of an AgentSpeak In
terpreter, which Is clearly depicted In Figure 1.3 (reproduced from [143]).
Note, however, that this Is a depiction of the essential aspects of the Inter
preter for the original (abstract) definition of AgentSpeak; It does not Include
the extensions Implemented In Jason. In the figure, sets (of beliefs, events,
plans, and Intentions) are represented as rectangles. Diamonds represent se
lection (of one element from a set). Circles represent some of the processing
Involved In the Interpretation of AgentSpeak programs.

At every Interpretation cycle of an agent program, the Interpreter updates
a list of events, which may be generated from perception of the environ
ment, or from the execution of Intentions (when subgoals are specified In
the body of plans). It Is assumed that beliefs are updated from perception
and whenever there are changes In the agent's beliefs, this Implies the Inser
tion of an event In the set of events. This belief revision function Is not
part of the AgentSpeak Interpreter, but rather a necessary component of the
agent architecture.

After S^ has selected an event, the Interpreter has to unify that event
with triggering events In the heads of plans. This generates the set of all
relevant plans for that event. By checking whether the context part of the

16 Jason

plans in that set follows from the agent's beliefs, the set oi applicable plans is
determined — these are the plans that can actually be used at that moment
for handling the chosen event. Then SQ chooses a single applicable plan
from that set, which becomes the intended means for handling that event,
and either pushes that plan on the top of an existing intention (if the event
was an internal one), or creates a new intention in the set of intentions (if
the event was external, i.e., generated from perception of the environment).

All that remains to be done at this stage is to select a single intention to be
executed in that cycle. The Sx function selects one of the agent's intentions
(i.e., one of the independent stacks of partially instantiated plans within the
set of intentions). On the top of that intention there is a plan, and the
formula in the beginning of its body is taken for execution. This implies
that either a basic action is performed by the agent on its environment, an
internal event is generated (in case the selected formula is an achievement
goal), or a test goal is performed (which means that the set of beliefs has to
be checked).

If the intention is to perform a basic action or a test goal, the set of in
tentions needs to be updated. In the case of a test goal, the belief base will
be searched for a belief atom that unifies with the atomic formula in the
test goal. If that search succeeds, further variable instantiation will occur in
the partially instantiated plan which contained that test goal (and the test
goal itself is removed from the intention from which it was taken). In the
case where a basic action is selected, the necessary updating of the set of in
tentions is simply to remove that action from the intention (the interpreter
informs to the architecture component responsible for the agent effectors
what action is required). When all formulae in the body of a plan have been
removed (i.e., have been executed), the whole plan is removed from the in
tention, and so is the achievement goal that generated it (if that was the case).
This ends a cycle of execution, and everything is repeated all over again, ini
tially checking the state of the environment after agents have acted upon it,
then generating the relevant events, and so forth.

Formal Semantics

We emphasise again that the purpose of this section is to give a general
idea of the style used for giving semantics to the language interpreted hy Ja
son, For a complete account of the formal semantics, we refer the interested
reader to [229].

We have defined the formal semantics of AgentSpeak using operational
semantics, a widely used method for giving semantics to programming lan
guages and studying their properties [169]. The operational semantics is

Language 17

given by a set of rules that define a transition relation between configura
tions {ag, C, M,T,s) where:

• An agent program ag is, as defined above, a set of beliefs and a set of
plans.

• An agent's circumstance C is a tuple {I,E,A) where:

- I is a set of intentions {i, i',,..}. Each intention i is a stack of
partially instantiated plans.

- E is a set of events {{te,i),{te\i^),.,,}. Each event is a pair
{te, f), where te is a triggering event and / is an intention (a stack
of plans in case of an internal event or T representing an external
event).
When the belief revision function, which is not part of the
AgentSpeak interpreter but rather of the general architecture of
the agent, updates the belief base, the associated events (i.e., addi
tions and deletions of beliefs) are included in this set. These are
called external events; internal ones are generated by additions or
deletions in the agent's goals.

- A is a set of actions to be performed in the environment. An ac
tion expression included in this set tells other architecture com
ponents to actually perform the respective action on the environ
ment, thus changing it.

• M is a tuple {In, Out, SI) whose components register the following
aspects of communicating agents:

- In is the mail inbox: the system includes all messages addressed
to this agent in this set. Elements of this set have the form
{niid,id,ilf,cnt), where mid is a message identifier, id identifies
the sender of the message, /// the illocutionary force of the mes
sage, and cnt its content (which can be an AgentSpeak atomic
formula, a set of AgentSpeak atomic formulas, or a set of AgentS
peak plans, depending on the illocutionary force of the message).

- Out is where the agent posts all messages it wishes to send
to other agents; the underlying multi-agent system mechanism
makes sure that messages included in this set are sent to the agent
addressed in the message. Messages here have exactly the same
format as above, except that now id refers to the agent to which
the message is to be sent.

- SI is used to keep track of intentions that were suspended due to
the processing of communication messages; this is explained in

18 Jason

more detail in the next section, but the intuition is: intentions
associated to illocutionary forces that require a reply from the
interlocutor are suspended, and they are only resumed when such
reply has been received.

• T is the tuple {R, Ap, i, e, p), used to keep temporary information that
is required in subsequent stages within a single reasoning cycle; its
components are:

- R for the set of relevant plans (for the event being handled).

- Ap for the set oi applicable plans (the relevant plans whose context
are true).

- t, £, and p keep record of a particular intention, event and appli
cable plan (respectively) being considered along the execution of
an agent.

• The current step s within an agent's reasoning cycle is symbolically
annotated by s G {ProcMsg,SelEv, RelPI, ApplPI,SelAppl, AddIM,
Selint, Execint, CIrInt}, which stand for: processing a message from
the agent's mail inbox, selecting an event from the set of events, re
trieving all relevant plans, checking which of those are applicable, se
lecting one particular applicable plan (the intended means), adding the
new intended means to the set of intentions, selecting an intention,
executing the select intention, and clearing an intention or intended
means that may have finished in the previous step.

Formally, all the selection functions an agent uses are also part of its con
figuration, (as is the social acceptance function that we mention below).
However, as they are fixed, i.e., defined by the agent's designer when con
figuring the interpreter, we avoid including them in the configuration, for
the sake of readability.

In order to keep the semantic rules clear, we adopt the following nota
tions:

•

•

If C is an AgentSpeak agent circumstance, we write Cg to make refer
ence to the component E of C. Similarly for all the other components
of a configuration.

We write T̂ = _ (the underline symbol) to indicate that there is no
intention being considered in the agent's execution. Similarly for Tp
and T .̂

We write z[p] to denote an intention / that has plan p on its top.

Language 19

We now present a selection of the rules which define the operational se
mantics of the reasoning cycle of AgentSpeak. In the general case, an agent's
initial configuration is {ag,C,M,T, ProcMsg), where ag is as given by the
agent program, and all components of C, M, and T are empty.

Updating the Set of Intentions: At the stage of the reasoning cycle where
a relevant and applicable plan has been found for an event, the interpreter
can then update the set of intentions. Events can be classified as external or
internal (depending on whether they were generated from the agent's per
ception, or whether they were generated by the previous execution of other
plans, respectively). Rule ExtEv says that if the event e is external (which
is indicated by T in the intention associated to e) a new intention is created
and its single plan is the plan p annotated in the p component. If the event
is internal, rule IntEv says that the plan in p should be put on top of the
intention associated with the event.

T, = {teJ) Tp = {p,e)
(ExtEv)

(IntEv)

(^g,C,M,T,AddlM) —> (^g,C^M,T,Sellnt)

where: Cj = Cj U { [pO] }

Te = {teJ) Tp = {p,e)

(^g,C,M,T,AddlM) —> (^g,C',M,T,Sellnt)

where: Cj = CiU{{i[p])9}

Note that, in rule IntEv, the whole intention / that generated the internal
event needs to be inserted back in Cj, with p as its top. This issue is related
to suspended intentions, see rule Achieve.

Intention Selection: Rule IntSeli uses an agent-specific function (<Sj) that
selects an intention (i.e., a stack of plans) for processing, while rule IntSe^
takes care of the situation where the set of intentions is empty (in which case,
the reasoning cycle is simply restarted).

Ci ^ {} SxiCi) = i

(^g,C,M,T,Sellnt) —> (^g ,C ,M,r , Execint)

where: T! = i

Ci = {]
^,C,M,r,Sellnt) —> (^g,C,M,T, ProcMsg)

(IntSeli)

(IntSelz)

Executing a Plan Body: Below we show part of the group of rules that de
fine the effects of executing the body of a plan. The plan being executed is

20 Jason

always the one on top of the intention that has been previously selected. Ob
serve that all the rules in this group discard the intention i; another intention
can then be eventually selected.
Achievement Goals: this rule registers a new internal event in the set of events
E. This event will, eventually, be selected and handled at another reasoning
cycle.

Tt = i[head ^— \at;h]
(Achieve) (^g,C,M,T,Execlnt) —> (^g,C',M,T, ProcMsg)

where: Cg = CE U {{-\-latJ[head <— /z])}

c; = Q\{T,}

Note how the intention that generated the internal event is removed from
the set of intentions C/. This denotes the idea of suspended intentions (see
[23] for details).
Updating Beliefs: rule AddBel below simply adds a new event to the set of
events E. The formula -\-h Is removed from the body of the plan and the
set of intentions is updated properly. There is also a DelBel rule, for delet
ing beliefs, which works similarly. In both rules, the set of beliefs of the
agent should be modified in a way that either the ground atomic formula h
(with annotation "source(self)") is included in the new set of beliefs (rule
AddBel) or it is removed from there (rule DelBel).

Z = i[head^^-h;h] (AddBel)
{ag, C, M, T, Execint) —> {ag\ C, M,T,s)

where: ag'^^ = ĝ̂ ^ + t[source(self)]
C^ = CE U{(+b[source(self)] ,T)}
C\ = {Ci\{Z})U{i[head^h]}

(CIrInt if/z = T
"" \ ProcMsg otherwise

Verification

One of the reasons for the growing success of agent-based technology is
that it has been shown to be quite useful for the development of various types
of applications, including air-traffic control, autonomous spacecraft control,
health care, and industrial systems control, to name just a few. Clearly, these
are application areas for which dependable systems are in demand. Conse
quently, formal verification techniques tailored specifically for multi-agent
systems is also an area that is attracting much research attention and is likely
to have a major impact in the uptake of agent technology. One of the advan
tages of the approach to programming multi-agent systems resulting from

Language 21

the research reviewed In this chapter Is precisely the fact that It Is amenable
to formal verification. In particular, model checking techniques (and state-
space reduction techniques to be used In combination with model checking)
for AgentSpeak have been developed [20, 21, 19, 26],

1.2.3 Software Engineering Issues

Although very little has been considered so far In regards to using agent-
oriented software engineering methodologies for the development of de
signs for systems to be Implemented with/<^sow, existing methodologies that
specifically concern BDI agents, such as Prometheus [164], should be per
fectly suitable for that purpose. In that book, the authors show an example
of the use of JACK (see Chapter 7) for the Implementation, but they ex
plicitly say that any platform that provides the basic concepts of reactive
planning systems (such as goals and plans) would be most useful In the sense
of providing all the required constructs to support the Implementation of
designs developed In accordance to the Prometheus methodology. Because
AgentSpeak code Is considerably more readable than other languages such
as JACK and Jadex (see Chapter 6), It Is arguable that Jason will provide at
least a much more clear way of Implementing such designs. However, being
an Industrial platform, JACK has, currently, far better supporting tools and
documentation, but on the other hand, Jason Is open source^ whereas JACK
Is not.

A construct that has an Important Impact In maintaining the right level of
abstraction In AgentSpeak code even for sophisticated systems Is that of In
ternal actions (described earlier In Section 1.2.1). Internal actions necessarily
have a boolean value returned, so they are declaratlvely represented within
a logic program In AgentSpeak — In effect, we can keep the agent program
as a high-level representation of the agent's reasoning, yet allowing It to be
arbitrarily sophisticated by the use of existing software Implemented In Java,
or Indeed any programming language through the use of JNI. Thus, the way
In which Integration with traditional object-oriented programming and use
of legacy code Is accomplished In Jason Is far more elegant than with other
agent programming languages (again, such as JACK and Jadex).

1.2.4 Other Features of the Language

Communication in AgentSpeak

The performatives that are currently available for communication In
AgentSpeak are largely Inspired by KQML performatives. We also Include
some new performatives, related to plan exchange rather than communica
tion about propositions. The available performatives are briefly described

22 Jason

below, where s denotes the agent that sends the message, and r denotes the
agent that receives the message. Note that t e l l and u n t e l l can be used
either for an agent to pro-actively send information to another agent, or as
replies to previous a s k messages.

t e l l : s intends r to believe (that s believes) the sentence in the message's
content to be true;

u n t e l l : s intends r not to beUeve (that s believes) the sentence in the mes
sage's content to be true;

a c h i e v e : s requests that r try to achieve a state of the world where the
message content is true;

u n a c h i e v e : s requests that r try to drop the intention of achieving a state
of the world where the message content is true;

t e l lHow: s informs r of a plan;

un te l lHow: s requests that r disregard a certain plan (i.e., delete that plan
from its plan library);

a s k i f: s wants to know if the content of the message is true for r;

a s k A l l : s wants all of r's answers to a question;

askHow: s wants all of r's plans for a triggering event;

A mechanism for receiving and sending messages asynchronously is used.
Messages are stored in a mail box and one of them is processed by the agent
at the beginning of a reasoning cycle. The particular message to be handled
at the beginning of the reasoning cycle is determined by a selection function,
which can be customised by the programmer, as three selection functions
that are originally part of the AgentSpeak interpreter.

Further, in processing messages we consider a "given" function, in the
same way that the selection functions are assumed as given in an agent's
specification. This function defines a set of socially acceptable messages. For
example, the receiving agent may want to consider whether the sending agent
is even allowed to communicated with it (e.g., to avoid agents being attacked
by malicious communicating agents). For a message with illocutionary force
a c h i e v e , the agent will have to check, for example, whether the sending
agent has sufficient social power over itself, or whether it wishes to act altru
istically towards that agent and then do whatever it is being asked.

Note that notions of trust can also be programmed into the agent by
considering the annotation of the sources of information during the agent's

Language 23

practical reasoning. When applied to t e l l messages, the function only de
termines if the message is to be processed at all. When the source is "trusted"
(in this limited sense used here), the information source for a belief acquired
from communication is annotated with that belief in the belief base, enabling
further consideration on degrees of trust during the agent's reasoning.

When the function for checking message acceptance is applied to an
a c h i e v e message, it should be programmed to return true if, e.g., the
agent has a subordination relation towards the sending agent. However this
"power/subordination" relation should not be interpreted with particular
social or psychological nuances: the programmer defines this function so as
to account for all possible reasons for an agent to do something for another
agent (from actual subordination to true altruism). Similar interpretations
for the result of this function when applied to other types of messages (e.g.,
a s k l f) can be derived easily. For more elaborate conceptions of trust and
power, see [42].

As a simple example of how the user can customise this power relation
in Jason, we may consider that a CPH903 robot only does what an MDS79
robot asks. The following agent customisation class implements that:

package cph;
import jason.asSemantics.Agent;

public class CPHAgent extends Agent {

public boolean socAcc(Message m) {
if (m.getSender().startsWith("mds") &&

m.getllForce().equals("achieve")) {
return true;

} else {
return false;

}

In order to endow AgentSpeak agents with the capability of processing
communication messages, we annotate, for each belief, what is its source.
This annotation mechanism provides a very elegant notation for making ex
plicit the sources of an agent̂ s belief. It has advantages in terms of expressive
power and readability, besides allowing the use of such explicit information
in an agent's reasoning (i.e., in selecting plans for achieving goals). For exam
ple, the triggering event of MDS79's plan p b l , seen later in Figure 1.8, uses
this annotation to identify the sender of the bid.

Belief sources can be annotated so as to identify which was the agent in the
society that previously sent the information in a message, as well as to denote
internal beliefs or percepts (i.e., in case the belief was acquired through per-

24 Jason

ception of the environment). By using this information source annotation
mechanism, we also clarify some practical problems in the implementation
of AgentSpeak interpreters relating to internal beliefs (the ones added during
the execution of a plan). In the interpreter reported in [18], we dealt with
the problem by creating a separate belief base where the internal beliefs were
included or removed.

Due to space restriction, we do not discuss the interpretation of received
messages with each of the available illocutionary forces. This is presented
both formally and informally in [229].

Cooperation In AgentSpeak

Coo-BDI (Cooperative BDI, [4]) extends traditional BDI agent-oriented
programming languages in many respects: the introduction of cooperation
among agents for the retrieval of external plans for a given triggering event;
the extension of plans with access specifiers-^ the extension of intentions to take
into account the external plan retrieval mechanism; and the modification of
the the interpreter to cope with all these issues.

The cooperation strategy of an agent Ag includes the set of agents with
which it is expected to cooperate, the plan retrieval policy, and the plan
acquisition policy. The cooperation strategy may evolve during time, allow
ing greater flexibility and autonomy to the agents, and is modelled by three
functions:

• tr\istedi{Te^TrustedAgentSet)^ where 7e is a (not necessarily ground)
triggering event and TrustedAgentSet is the set of agents that Ag will
contact in order to obtain plans relevant for 7e.

• TetT±e-va.lVol±CY{Te^Retrieval)^ where Retrieval may assume the
values a lways and noLoca l , meaning that relevant plans for the
trigger Te must be retrieved from other agents in any case, or only
when no local relevant plans are available, respectively.

• acquis!tionPolicy(7e,i4c^^i5itio^7), where Acquisition may as
sume the values d i s c a r d , add and r e p l a c e meaning that, when
a relevant plan for Te is retrieved from a trusted agent, it must be used
and discarded, or added to the plan library, or used to update the plan
library by replacing all the plans triggered by Te.

Plans. Besides the standard components which constitute BDI plans, in
this extension plans also have a source which determines the first owner of
the plan, and an access specifier which determines the set of agents with which
the plan can be shared. The source may assume two values: s e l f (the agent
possesses the plan) and Ag (the agent was originally from Ag). The access

Platform 25

specifier may assume three values: p r i v a t e (the plan cannot be shared),
p u b l i c (the plan can be shared with any agent) and only fTrustedAgentSet)
(the plan can be shared only with the agents contained in TrustedAgentSet).

The Coo-AgentSpeak mechanism to be available m Jason soon will allow
users to define cooperation strategies in the Coo-BDI style, and takes care of
all other issues such as sending the appropriate requests for plans, suspending
intentions that are waiting for plans to be retrieved from other agents, etc.
The Coo-AgentSpeak mechanism is described in detail in [4].

One final characteristic oi Jason that is relevant here is the configuration
option on what to do in case there is no applicable plan for a relevant event.
If an event is relevant, it means that there are plans in the agent's plan library
for handling that particular event (representing that handling that event is
normally a desire of that agent). If it happens that none of those plans are
applicable at a certain time, this can be a problem as the agent does not
know how to handle the situation at that time. Ancona and Mascardi [4]
discussed how this problem is handled in various agent-oriented program
ming languages. In Jason, a configuration option is given to users, which can
be set in the file where the various agents and the environment composing
a multi-agent system are specified. The option allows the user to state, for
events which have relevant but not applicable plans, whether the interpreter
should discard that event altogether (e v e n t s = d i s c a r d) or insert the event
back at the end of the event queue (event s=requeue) . Because oi Jason's
customisation mechanisms, the only modification that were required for Ja
son to cope with Coo-AgentSpeak was a third configuration option that is
available to the users — no changes to the interpreter itself was required.
When Coo-AgentSpeak is to be used, the option e v e n t s = r e t r i e v e must
be used in the configuration file. This makes Jason call the user-defined
s e l e c t O p t i o n function even when no applicable plans exist for an event,
This way, part of the Coo-BDI approach can be implemented by provid
ing a special s e l e c t O p t i o n function which takes care of retrieving plans
externally, whenever appropriate.

1.3 Platform

13.1 Main Features of the Jason Platform

Configuring Multi-Agent Systems

The configuration of a complete multi-agent system is given by a very
simple text file. Figure 1.4 shows an example of this configuration file for
the Heathrow scenario. Briefly, the environment is implemented in a class
named HeathrowEnv; the system has three types of agents: five instances
of MDS79, ten CPH903, and three bomb-disarmers; MDS79 agents have a

26 Jason

© O 6 Jason

Projea Help

ifSl^leir^Pl!!
f HeathrowRobots.mas2j i cph.asi mds.asi bd.asi] ^

MAS heathrow {

environment:
HeathrowEnv

agents:
mds agentclass md)s.MDSAgent

cph agentArchclass cph.CPHAgArch
agentclass cph.CFHAgent
#10;

bd #5;

Figure 1 A. Jason IDE.

customised agent class and CPH903 have customised agent and agent archi
tecture classes.

The BNF grammar in Figure 1.5 gives the syntax that can be used in the
configuration file. In this grammar, <NUMBER> is used for integer numbers,
<ASID> are AgentSpeak identifiers, which must start with a lowercase letter,
<ID> is any identifier (as usual), and <PATH> is as required for defining file
pathnames as usual in ordinary operating systems.

The <ID> used after the keyword MAS is the name of the society. The
keyword a r c h i t e c t u r e is used to specify which of the two overall agent
architectures available with Jason's distribution will be used. The options
currently available are either " C e n t r a l i s e d " or "Saci"; the latter option
allows agents to run on different machines over a network. It is important to
note that the user's environment and customisation classes remain the same
with both (system) architectures.

Next an env i ronmen t needs to be referenced. This is simply the name
of Java class that was used for programming the environment. Note that an
optional host name where the environment will run can be specified. This
only works if the SACI option is used for the underlying system architecture.

The keyword a g e n t s is used for defining the set of agents that will take
part in the multi-agent system. An agent is specified first by its symbolic
name given as an AgentSpeak term (i.e., an identifier starting with a lower
case letter); this is the name that agents will use to refer to other agents in

Platform 17

environment
agents
agent

":" <ID> [
(agent)+

"MAS" <ID> "{"
["architecture"
environment
agents

"}"
"environment
"agents" ":"
<ASID>
[filename]
[options]
["agentArchClass" <ID>
["agentClass" <ID>]
["#" <NUMBER>]
["at" <ID>]

<ID>]

"at" <ID>]

filename
options
option

[<PATH>] <ID>
" [" option (" , " option)•

—^ "events" " = " ("discard" | "requeue" | "retrieve")
I "intBels" "=" ("sameFocus" | "newFocus")
I "verbose" "=" <NUMBER>

Figure 1.5. BNF of the Language for Configuring Multi-Agent Systems.

the society (e.g., for Inter-agent communication). Then, an optional filename
can be given where the AgentSpeak source code for that agent Is given; by de
fault/^sow assumes that the AgentSpeak source code Is In file <name> . a s l ,
where <name> Is the agent's symbolic name. There Is also an optional list
of settings for the AgentSpeak Interpreter available with Jason (these are ex
plained below). An optional number of Instances of agents using that same
source code can be specified by a number preceded by #; If this Is present,
that specified number of "clones" will be created In the multi-agent system.
In case more than one Instance of that agent Is requested, the actual name of
the agent will be the symbolic name concatenated with an Index Indicating
the Instance number (starting from 1). As for the e n v i r o n m e n t keyword,
an agent definition may end with the name of a host where the agent(s) will
run (preceded by "at"). As before, this only works If the SACI-based archi
tecture was chosen.

The following settings are available for the AgentSpeak Interpreter avail
able In Jason (they are followed by *=' and then one of the associated key
words, where an underline denotes the option used by default):

e v e n t s : options are either d i s c a r d , r equeue , or r e t r i e v e ; the
d i s c a r d option means that external events for which there are no
applicable plans are discarded, whereas the r e q u e u e option Is used
when such events should be Inserted back at the end of the list of events

28 Jason

that the agent needs to handle. When option r e t r i e v e is selected,
the user-defined s e l e c t Op t ion function is called even if the set of
relevant/applicable plans is empty. This can be used, for example, for
allowing agents to request plan from other agents who may have the
necessary know-how that the agent currently lacks, as mentioned in
Section 1.2.4 and described in detail in [4].

i n t B e l s : options are either sameFocus or newFocus. When internal
beliefs are added or removed explicitly within the body of a plan, the
associated event is a triggering event for a plan, the intended means
resulting from the applicable plan chosen for that event is pushed on
top of the intention (i.e., the focus of attention) which generated the
event, if the sameFocus option is used). If the newFocus option is
used, the event is treated as external (i.e., as the addition or deletion
of belief from perception of the environment), creating a new focus of
attention.

v e r b o s e : a number between 0 and 6 should be specified. The higher the
number, the more information about that agent (or agents if the num
ber of instances is greater than 1) is printed out in the console where
the system was run. The default is in fact 1, not 0; verbose 1 prints
out only the actions that agents perform in the environment and the
messages exchanged between them.

Finally, user-defined overall agent architectures and other user-defined
functions to be used by the AgentSpeak interpreter for each particular agent
can be specified with the keywords a g e n t A r c h C l a s s and a g e n t C l a s s .

Creating Environments

Jason agents can be situated in real or simulated environments. In the for
mer case, the user would have to customise the "overall agent architecture",
as described in the next part of this section; in the latter case, the user must
provide an implementation of the simulated environment. This is done di
rectly in a Java class that extends xh^ Jason base Environment class. A very
simple simulated version of the environment for the Heathrow airport sce
nario is shown in Figure 1.6 as an example.

All percepts (i.e., everything that is perceptible in the environment)
should be added to the list returned by getPerceptS; this is a list of liter
als, so strong negation can be used in applications where there is open-world
assumption. It is possible to send individualised perception; that is, in pro
gramming the environment the developer can determine what subset of the
environment properties will be perceptible to individual agents. Recall that
within an agent's overall architecture you can further customise what beliefs

Platform 29

public class HeathrowEnv extends Environment {

Map agsLocation = new HashMap();

public List getPercepts(String agName) {
if (... unattended luggage has been found ...) {

// all agents will perceive the fact that
// there is unattendedLuggage

getPercepts().add(Term.parse("unattendedLuggage"));

}

if (agName.startsWith("mds")) {
// mds robots will also perceive their location
List customPerception = new ArrayList();
customPerception.addAll(getPercepts())/
customPerception.add(agsLocation.get(agName));
return customPerception;

} else {
return getPercepts();

}
}

public boolean executeAction(String ag, Term action) {
if (action.hasFunctor("disarm")) {

... the code that implements the disarm action

... on the environment goes here
} else if (action.hasFunctor("move")) {

... the code for changing the agents' location and

... updating the agsLocation map goes here
}

return true;

}

Figure 1.6. Simulated Environment of the Airport Scenario.

the agent will actually aquire from what it perceives. Intuitively, the envi
ronment properties available to an agent from the environment definition
itself are associated to what is actually perceptible at all in the environment
(for example, if something is behind my office's walls, I cannot see it). The
customisation at the agent overall architecture level should be used for sim
ulating faulty perception (i.e., even though something is perceptible for that
agent in that environment, it may still not include some of those properties
in its belief revision process, because it failed to perceive it). Customisation
of agent's individual perception within the environment is done by overrid-

30 Jason

ing the " g e t P e r c e p t s (agName)" method; the default methods simply
provide all current environment properties as percepts to all agents. In the
example above, only MDS79 robots will perceive their location at the air
port.

Most of the code for building environments should be (referenced) in the
body of the method executeAction which must be declared as described
above. Whenever an agent tries to execute a basic action (those which are
supposed to change the state of the environment), the name of the agent and
a Term representing the chosen action are sent as parameter to this method.
So the code for this method needs to check the Term (which has the form
of a Prolog structure) representing the action (and any parameters) being ex
ecuted, and check which is the agent attempting to execute the action, then
do whatever is necessary in that particular model of an environment — nor
mally, this means changing the percepts, i.e., what is true or false of the envi
ronment is changed according to the actions being performed. Note that the
execution of an action needs to return a boolean value, stating whether the
agent's attempt at performing that action on the environment was executed
or not. A plan fails if any basic action attempted by the agent fails.

Customising Agents

Certain aspects of the cognitive functioning of an agent can be customised
by the user overriding methods of the Agent class (see Figure 1.7). The three
first selection functions are discussed extensively in the AgentSpeak literature
(see Section 1.2.2 and Figure 1.3). The social acceptance function (socAcc,
which is related to pragmatics, e.g., trust and power social relations) and
the message selection function are discussed in [229] and Section 1.2.4. By
changing the message selection function, the user can determine that the
agent will give preference to messages from certain agents, or certain types
of messages, when various messages have been received during one reasoning
cycle. While basic actions are being executed by the environment, before the
(boolean) feedback from the environment is available the intention to which
that action belongs must be suspended; the last internal function allows cus
tomisation of priorities to be given when more than one intention can be
resumed because feedback from the environment became available during
the last reasoning cycle.

As an example of customising an agent class, consider again the Heathrow
scenario. The MDS79 robots must give priority to events related to unat
tended luggage over any other type of event. A customised MDS79 agent
class which overrides the selectEvent method can implement this priority
as follows:

Platform 31

•
•
•
•
•
•

® Agent

selectActionO: ActionExec 1

selectEventO: Event 1

selectlntentionO: Intention 1

selectMessageO: Message 1
selectOptionO: Option 1

socAccQ: boolean 1

Q CentralisedAgArch

• actO

• brfO

• checkMailO

• perceive!)

T

' M D S A g e n t

selectEventiList): Event

' c p h : : C P H A g e n t

o socAcc(Message): boolean

' cph::CPHAgArch

« actO

Figure 1.7. Customising Agents for the Airport Scenario.

pub l i c c l a s s MDSAgent extends Agent {

pub l i c Event s e l e c t E v e n t (L i s t evList) {
I t e r a t o r i = e v L i s t . i t e r a t o r () ;
while (i .hasNext ()) {

Event e = (E v e n t) i . n e x t () ;
i f (e . g e t T r i g g e r () . g e t F u n c t o r () . e q u a l s (

"unattendedLuggage"))
i . r emove() ;
r e t u r n e;

}
}
r e t u r n s u p e r . s e l e c t E v e n t (e v L i s t) ;

Similarly, the user can customise the functions defining the overall agent
architecture (see Figure 1.7, AgArch class). These functions handle: (i) the
way the agent will perceive the environment; (ii) the way it will update its be
lief base given the current perception of the environment, i.e., the so called
belief revision function (BRF) in the AgentSpeak literature; (iii) how the
agent gets messages sent from other agents (for speech-act based inter-agent
communication); and (iv) how the agent acts on the environment (for the ba
sic actions that appear in the body of plans) — normally this is provided by
the environment implementation, so this function only has to pass the action
selected by the agent on to the environment, but clearly for multi-agent sys
tems situated in a real-world environment this might be more complicated,
having to interface with, e.g., available process control hardware.

32 Jason

For the perception function, it may be interesting to use the function de
fined in Jason's distribution and, after it has received the current percepts,
then process further the list of percepts, in order to simulate faulty percep
tion, for example. This is on top of the environment being modelled so as
to send different percepts to different agents, according to their perception
abilities (so to speak) within the given multi-agent system (as with ELMS
environments, see [25]).

It is important to emphasise that the belief revision function provided
with Jason simply updates the belief base and generates the external events
(i.e., additions and deletion of beliefs from the belief base) in accordance with
current percepts. In particular, it does not guarantee belief consistency. As
percepts are actually sent from the environment, and they should be lists of
terms stating everything that is true (and explicitly false too, if closed-wo rid
assumption is dropped), it is up to the programmer of the environment to
make sure that contradictions do not appear in the percepts. Also, if AgentS-
peak programmers use addition of internal beliefs in the body of plans, it is
their responsibility to ensure consistency. In fact, the user might be inter
ested in modelling a "paraconsistent" agent, which can be done easily.

Suppose, for example, that under no circumstances a CPH903 robot is
allowed to disarm a bomb. To prevent them from performing this action,
even if they have decided to do so (e.g., they could be infected by a soft
ware virus), the developer could override the act method in the CPH903's
customised AgArch class and ensure that the selected action is not d i s a r m
before allowing it to be executed in the environment:

pub l i c c l a s s CPHAgArch extends CentralisedAgArch {
pub l i c void a c t () {

/ / get the cu r r en t a c t i on to be performed
Term a c t i o n = fTS .ge tC() .ge tAct ion() .ge tAct ionTerm() ;

i f (! a c t i o n . g e t F u n c t o r () . e q u a l s (" d i s a r m ")) {
/ / ask the environment to execute the a c t i o n
fEnv.executeAction(getName(), a c t i o n)) ;

}

Defining New Internal Actions

An important construct for allowing AgentSpeak agents to remain at the
right level of abstraction is that of internal actions, which allows for straight
forward extensibility and use of legacy code. As suggested in [18], internal
actions that start with *.' are part of a standard library of internal actions
that are distributed with/^sow. Internal actions defined by users should be
organised in specific libraries, which provides an interesting way of organis-

Platform 33

ing such code, which is normally useful for a range of different systems. In
the AgentSpeak program, the action is accessed by the name of the library,
followed by * / , followed by the name of the action. Libraries are defined as
Java packages and each action in the user library should be a Java class, the
name of the package and class are the names of the library and action as it
will be used in the AgentSpeak programs.

When unattended luggage is perceived by the MDS79 robots, they send
bids to each other that represent how suitable they are for coping with the
new situation (see Figure 1.8, plan pn2). The robot with the highest bid
will be relocated to handle the unattended luggage. Now, suppose a complex
formula is used to calculate the initial bid and further checks and calculations
are requested to adjust the bid; clearly imperative languages are normally
more suitable for implementing this kind of algorithms. The user can thus
use the following Java class to implement this algorithm, and refer to it from
within the AgentSpeak code as mds . c a l c u l a t e M y B i d (Bid) :

package mds;
import ...

public class calculateMyBid implements InternalAction {

public boolean execute(TransitionSystem ts, Unifier un,
Term[] args) throws Exception {

int bid = ... a complex formula ...;
... plus complex algorithm and calculations

for adjusting the agent's bid ...

un.unifies(args[0], Term.parse(""+bid))/
return true;

}

It is important that the class has an execute method declared exactly as above,
since Jason uses class introspection to call it. The internal action's arguments
are passed as an array of Terms. Note that this is the third argument of the
execute method. The first argument is the transition system (as defined by
the operational semantics of AgentSpeak), which contains all information
about the current state of the agent being interpreted. The second is the
unifying function currently determined by the execution of the plan, or the
checking of whether the plan is applicable^; the unifying functions is impor
tant in case the value bound to AgentSpeak variables need to be used in the
implementation of the action.

^This depends on whether the internal action being run appears in the body or the context of a plan.

34 Jason

free. // I'm not currently handling unattended luggage

+unattendedLuggage(Terminal,Gate) : true
<- !negotiate.

@pnl
+!negotiate : not free

<- .broadcast(tell, bid(O)).

@pn2
+!negotiate : free

<- .myName(I); // Jason internal action
+winner(I); // belief I am the negotiation winner
+bidsCount(1)/
mds.calculateMyBid(Bid); // user internal action
+myBid(Bid);
.broadcast(tell, bid(Bid)).

©pbl // for a bid better than mine
+bid(B)[source(Sender)] :

myBid(MyBid) & MyBid < B &
.myName(I) & winner(I)

<- -winner(I);
+winner(Sender).

@pb2 // for other bids (and I'm still the winner)
+bid(B) : .myName(I) & winner(I)

<- laddBidCounter;
!endNegotiation.

©pendl // all bids was received
+!endNegotiation : bidsCount(N) & numberOfMDS(M) & N >= M

<- -free; // I'm no longer free
!checkUnattendedLuggage.

@pend2 // void plan for endNegotiation not to fail
+!endNegotiation : true <- true.

Figure 1.8. Example of AgentSpeak Plans for an Airport Security Robot.

1,3.2 Available Tools and Documentation

Jason is distributed with an Integrated Development Environment (IDE)
which provides a GUI for editing a MAS configuration file as well as AgentS
peak code for the individual agents. Through the IDE, it is also possible to

Platform 35

control the execution of a MAS, and to distribute agents over a network in a
very simple way. There are three execution modes:

Asynchronous: in which all agents run asynchronously. An agent goes to
its next reasoning cycle as soon as it has finished its current cycle. This
is the default execution mode.

Synchronous: in which each agent performs a single reasoning cycle in ev
ery "global execution step". That is, when an agent finishes a reasoning
cycle, it informs/^sow's execution controller, and waits for a "carry
on" signal. The Jason controller waits until all agents have finished
their current reasoning cycle and then sends the "carry on" signal to
them.

Debugging: this execution mode is similar to the synchronous mode; how
ever, the Jason controller also waits until the user clicks on a "Step"
button in the GUI before sending the "carry on" signal to the agents.

There is another tool provided as part of the IDE which allows the user
to inspect agents' internal states when the system is running in debugging
mode. This is very useful for debugging MAS, as it allows "inspection of
agents' minds" across a distributed system. The tool is called "mind inspec
tor", and is shown in Figure 1.9.

Jason's distribution comes with documentation which is also available on
line at h t t p : / / j a s o n . s o u r c e f o r g e . n e t / J a s o n . p d f . The docu
mentation has something of the form of a tutorial on AgentSpeak, followed
by a description of the features and usage of the platform. Although it covers
all of the currently available features oi Jason, we still plan to improve sub
stantially the documentation, in particular because the language is at times
still quite academic. Another planned improvement in the available docu
mentation, in the relatively short term, is to include material (such as slides
and practical exercises) for teaching Agent-Oriented Programming with Ja
son. Because of the elegance and simplicity of the core agent language inter
preted by Jason, at the same time having all the important elements for the
implementation of BDI-based reactive planning systems, we think Jason can
become an important tool for teaching multi-agent systems.

1.3J Standards Compliance, Interoperability, and
Portability

As Jason is implemented in Java, there is no issue with portability, but
very little consideration has been given so far to standards compliance and in
teroperability. However, components of the platform can be easily changed
by the user. For example, at the moment there are two "system architectures"

http://jason.sourceforge.net/Jason.pdf

36 Jason

eee MAS &(ecutJon Control

Agents
cph6 :
cph2 j
cph7 !
cph8 i
cpM I
cphl I
cph9 \
mdsl
mdsS
bdl
mdsj
bd3
cphlO
cph3
bd2
cphS
mds2
mds4

Agent Inspection

Belief ft btd(lO)tsource(mdsl).source(serO]
unatiendedLuggage(t1.g3)[source(percepl)J
myBid(50)[source(setf)]
blds(l)[sourc0(seif))

winner(mds5)[source(sel01
locaiion(ti ,g3)[source(percept)]
bomb(t1 ,g3)[50urce(seif))
(reetsource(self)J
mds(5)[source(setf)]

MallBox <mld5.mds4 ,ieil.mds5,bW(40)>

events Set Trigger Intention

+recelved(mds3.tell,bld(30).mld4)

X +bid(10){source(mdsl), source (self)] 11

Plane App Scl Plan

X X @pb2
+bid(B): .myName(i) &winner(l)

<• laddBtdCounier: lend Negotiation

{I=nnds5,
B=10}

Intentions Set Id

X 17

@pt)l
i-bld(6}[Sender]: free & myBld{MyBkf) & .gi(B.MyBkf) &
.myName(t) & winner(l)

<• -wlnner{l); +wlnner(Sender); .print("noi winner)

Pen Intended Means Stack and Unifier

+recetved(S,ietl.KQMLcon (S=mds2. CA=bld(20)[source(mds2)I.
lentVar.M); M=mid3. KQMLcontentVar=bld(20)}

<-+CA

(Step all agents } (Clean console)

Figure 1.9. /<?sow's Mind Inspector.

V

available with Jason's distribution: a centralised one (which means that the
whole system runs in a single machine) and another which uses SACI for
distribution. It should be reasonably simple to produce another system ar
chitecture which uses, e.g., JADE (see Chapter 5) for FIPA-compliant distri
bution and management of agents in a multi-agent system.

1.3.4 Applications Supported by the Language and the
Platform

As yet, Jason has been used only for a couple of application described
below, and also for simple student projects in academia. However, due to
its AgentSpeak basis, it is clearly suited to a large range of applications for
which it is known that BDI systems are appropriate; various applications of

Final Remarks 37

PRS [98] and dMARS [126] for example have appeared in the literature [238,
Chapter 11].

Although we aim to use it for a wide range of applications in the future,
in particular Semantic Web and Grid-based applications, one particular area
of application in which we have great interest is Social Simulation [74], In
fact, Jason is being used as part of a large project to produce a platform tai
lored particularly to Social Simulation. The platform is called MAS-SOC
and is described in [25]; it includes a high-level language called ELMS [162]
for defining multi-agent environments. This approach was used to develop a
simple social simulation on social aspects of urban growth is also mentioned
(the simulation was briefly presented in [131]). Another area of application
that has been initially explored is the use of AgentSpeak for defining the
behaviour of animated characters for computer animation (or virtual real-
ity)[223].

1,4 Final Remarks

Jason is constantly being improved and extended. The long term objective
is to have a platform which makes available important technologies result
ing from research in the area of Multi-Agent Systems, but doing this in a
sensible way so as to avoid the language becoming cumbersome and, most
importantly, having formal semantics for most, if not all, of the essential
features available in Jason. We have ongoing projects to extend Jason with
organisations, given that social structure is an essential aspect of developing
complex multi-agent systems, and with ontological descriptions underlying
the belief base, thus facilitating the use oi Jason for Semantic Web and Grid-
based applications. We aim to contribute, for example, to the area of e-Social
Science, developing large-scale Grid-based social simulations using/^50W.

Acknowledgments

As seen from the various references throughout this document, the re
search on AgentSpeak has been carried out with the help of many col
leagues. We are grateful for the many contributions received over the last
few years from: Davide Ancona, Marcelo G. de Azambuja, Deniel M. Basso,
Ana L.C. Bazzan, Antonio Carlos da Rocha Costa, Guilherme Drehmer,
Michael Fisher, Rafael de O. Jannone, Romulo Krafta, Viviana Mascardi,
Victor Lesser, Rodrigo Machado, Alvaro F. Moreira, Fabio Y. Okuyama,
Denise de Oliveira, Carmen Pardavila, Marios Richards, Maira R. Rodrigues,
Rosa M. Vicari, Willem Visser, Michael Wooldridge.

