
Chapter 8

Boundary Layer Turbulence
Behavior

8.1 Introduction

In the previous chapter, we found that the classic arguments on inner and
outer layer similarity hold well over a very large range of Reynolds numbers,
and that the direct effects of compressibility on the mean flow appear to be
rather small: the most notable differences between zero pressure gradient sub-
sonic and supersonic boundary layers may be attributed to the variation in
fluid properties across the layer. As we show, similar considerations apply
to many aspects of the turbulence behavior. However, recent measurements
have also indicated some interesting differences between turbulence in sub-
sonic and supersonic boundary layers that do not seem to scale according to
fluid property variations. Differences in turbulence length and velocity scales,
and the structure of the large-scale, shear-stress-containing motions have been
observed, which may indicate that the turbulence dynamics are affected at a
lower fluctuating Mach number than previously believed.

“True” compressibility effects, beyond the effects determined by fluid prop-
erty variations, are usually described in terms of a Mach number representative
of the fluctuations. Several candidates were introduced in Chapter 4. It is also
possible that some of these apparent changes in the turbulence structure are
due to Reynolds number effects, rather than Mach number effects. As pointed
out earlier, the characteristic Reynolds numbers encountered in high-speed
flow cover a very large range, extending beyond the values typically found in
the laboratory. Furthermore, the temperature gradients that are found in the
boundary layer in supersonic flow lead to variations in Reynolds number across
the layer in addition to the usual variation in the streamwise direction. To
understand the effects of Reynolds number on turbulence in supersonic flow,
we first need to consider the scaling of turbulence in subsonic flows.
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218 CHAPTER 8. BOUNDARY LAYER TURBULENCE BEHAVIOR

8.2 Scaling Laws

The inner and outer-layer scaling scheme for the mean flow, as expressed by
Equations 7.17 and 7.19, appears to be very successful in practice. A similar
inner and outer scaling is therefore expected to apply to the time averaged tur-
bulence statistics, and for the inner and outer regions of a subsonic boundary
layer we expect, respectively:
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That is, we expect that the mean velocity and turbulence intensities scale with
the same set of velocity and length scales: more precisely, that the velocity
gradient and the turbulence intensities scale in this way. Matching the tur-
bulence intensity in the overlap region leads to the conclusion that u′2

/
u2

τ is
constant in the log-law region. As we shall see, this is not observed in experi-
ments. One explanation of this is that the “true” or active turbulent motion is
overlaid by an irrotational inactive motion imposed by the pressure field of the
large eddies in the outer part of the layer (Townsend 1956; Bradshaw, 1967,
1994). These eddies have length scales of order δ, and they are large compared
to the scale of motions in the inner layer. However, as the wall is approached
the v′ component of the inactive motion must become small due to the wall
constraint (the “splat” effect) so that its influence on the shear stress is minor,
and the mean velocity log law is preserved.

Townsend (1976) proposed that

. . . the main eddies of the flow have diameters proportional to the
distance of their centers from the wall, because the motion is directly
influenced by its presence. In other words, the velocity fields of the
main eddies, regarded as persistent, organized flow patterns, extend
to the wall and, in a sense they are attached to the wall.

This is commonly known as Townsend’s attached eddy hypothesis . He also
proposed that the interaction between a large eddy and a smaller, viscous-
dominated eddy occurs over several intermediate steps. Due to this highly
indirect interaction, he proposed that the large-scale motion is essentially
inviscid, and thus independent of the Reynolds number. This is known as
Townsend’s Reynolds number similarity hypothesis. Townsend did not regard
the main eddies as having any particular shape, but to make his model quanti-
tative, he assumed that the shear stress at a distance y from the wall was due
principally to the eddies that have their center at that height. All the main
eddies were assumed to be geometrically similar, and subject to the inviscid
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boundary conditions at the wall where the normal component of velocity was
assumed to be zero, but the other two components were allowed to have slip.
If the probability density function of the eddy scales follows an inverse power
law, then a constant stress region is obtained. Townsend’s model therefore
applies to the near-wall, fully turbulent part of the layer, and he found that
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Note that, by matching the gradients of the turbulence intensity in the inner
and outer regions, rather than the intensity levels themselves, Equations 8.1
and 8.2 will also yield a logarithmic term in y/δ, without any recourse to the
pdf of eddy scales. These relations indicate that the turbulence intensities are
independent of the Reynolds number which is again at odds with the data,
although Equations 8.3 to 8.5 may represent an infinite Reynolds number limit.
The question remains as to what extent the turbulence profiles are similar in
the sense that they collapse onto a Reynolds number independent curve, and
what is the correct basis for the similarity argument.

8.2.1 Spectral Scaling for Incompressible Flow

It is useful to begin by considering the scaling of the turbulence spectra. For
subsonic boundary layer flows, spectral scaling laws were first suggested by
Townsend and later developed extensively by Perry and his co-workers. Based
upon Townsend’s attached eddy hypothesis and the flow visualization results of
Head and Bandyopadhyay (1981) (see Section 8.4.2), Perry and Chong (1982)
developed a physical model for near-wall turbulence. They assumed that a
turbulent boundary layer outside the viscous region may be modeled as a forest
of hairpin or Λ-shaped vortices, which originate at the wall and grow outward.
Figure 8.1 shows three Λ-shaped vortices of different scales, and indicates their
influence on the velocity field sensed by a probe at a position y. The probe
will sense contributions to u′ and w′ from all eddies of scale y and larger.
However, only eddies of scale y will contribute to v′. Therefore, u′ and w′

should follow similar scaling laws, whereas v′ may follow a somewhat different
scaling law. Using these ideas in conjunction with dimensional analysis, scaling
laws can be derived for the energy spectra in the turbulent wall region, defined
as ν/uτ 
 y 
 δ (Perry et al., 1985, 1986). In general, it is the region
where direct wall effects such as the damping of the velocity components are
unimportant, and where the direct influence of the large-scale flow geometry
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Figure 8.1. Sketch of the streamline patterns and spatial influence of attached
eddies at three different scales. (Reproduced from Perry et al. (1986)). Copyright
1986, Cambridge University Press. Reprinted with permission.)

and outer boundary conditions can also be neglected. This region corresponds
approximately to the overlap region in the mean velocity profile, that is, the
region where the velocity has a logarithmic variation.

First consider the u-component of the turbulence fluctuations in an incom-
pressible flow. Eddies of scale δ will contribute only to the large-scale, low wave
number (low frequency) region of the energy spectrum Φ11. For the large-scale
eddies, viscosity is less important, and the spectrum in the low wave number
region should depend only on uτ , k1, y, and δ, where k1 is the streamwise
component of the three-dimensional wave number vector k. From dimensional
analysis, the spectrum of u at low wave numbers should have the form

Φ11(k1δ)

u2
τ

= g1(k1δ) =
Φ11(k1)

δu2
τ

. (8.6)

Throughout this section, the argument of Φii denotes the unit quantity over
which the energy spectral density is measured, following Perry et al. (1986).
Equation 8.6 represents an outer flow scaling because it describes the contri-
bution of the large-scale eddies.

Eddies of scale y will contribute to the intermediate wave number range of
the spectrum, whereas eddies of scale δ will not. In this range the spectrum
should have the following inner flow scaling form,

Φ11(k1y)

u2
τ

= g2(k1y) =
Φ11(k1)

yu2
τ

. (8.7)

The smallest scale motions, which contribute to the high wave number
range of the spectrum, depend on viscosity. Kolmogorov (1961) assumed that
these small-scale motions are locally isotropic, and that their energy content
depends only on the local rate of turbulence energy dissipation ε, and the
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kinematic viscosity ν. Dimensional analysis leads to
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ηυ2
, (8.8)

where η and υ are the Kolmogorov length and velocity scales respectively,
defined by

η =
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ε

)1/4

and υ = (νε)1/4 . (8.9)

In the high wave number region, therefore, the spectrum follows a Kolmogorov
scaling.

Just as the mean flow exhibited an inner and outer scaling with a region of
overlap, it is expected that Equations 8.6 and 8.7 will have a region of overlap
(Overlap Region I ), and that Equations 8.7 and 8.8 will have another region
of overlap (Overlap Region II ). These scalings are illustrated in Figure 8.2. It
follows that in Region I the spectrum must have the form:
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where A1 is a universal constant. That is, in the turbulent wall layer, the
spectrum in Overlap Region I follows a k−1 scaling.

In Region II, it follows that
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or
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Equation 8.12 was first derived by Kolmogorov (1961) using entirely differ-

ent arguments. The region displaying a k
−5/3
1 scaling is called the inertial

subrange, and Ko is called the Kolmogorov constant (≈0.5). To derive these

k
−5/3
1 scalings, Perry et al. (1986) imposed the requirement that the spectrum

be independent of viscosity in the inertial subrange, and assumed that in the
turbulent wall region dissipation equals production, ε = −u′v′ (∂u/∂y) , that
the velocity profile is logarithmic, and that −u′v′ = u2

τ . Some spectra for the

turbulent wall region are shown in Figure 8.3. The k
−5/3
1 and k−1

1 regions are

evident. At high Reynolds numbers, a very long k
−5/3
1 range has been observed

in the spectrum (Grant et al., 1962), but recent experiments in pipe flow have
called into question presence of a k−1

1 similarity range at very high Reynolds
numbers (Morrison et al., 2004).
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Figure 8.2. Behavior of the energy spectra of the longitudinal and spanwise velocity
fluctuations, Φ11(k1) according to Perry et al. (see text). Φ33(k1) is expected to
behave similarly. (a) Chart showing the different scaling regions, (b) inner scaling
behavior, and (c) outer scaling behavior. Note that in Perry et al.’s notation, z is
distance from the wall, and ∆E is a boundary layer thickness, similar to δ. (Figure
from Perry et al. (1986). Copyright 1986, Cambridge University Press. Reprinted
with permission.)

According to these arguments, Φ33, the spectra of w′ will follow similar
scaling laws, as illustrated in Figure 8.2a. The boundaries of the overlap
regions are denoted by P , N , M , and F , where P , N , and M are universal
constants, and F is a constant characteristic of the large scales, and likely to
be Reynolds number dependent. Figures 8.2b and 8.2c illustrate the deduced
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Figure 8.3. Spectra in the inner layer of subsonic boundary layers, plotted using
inner layer scales (left), and Kolmogorov scales (right). (Adapted from Fernholz
et al. (1995), with permission from Elsevier Science Ltd., Oxford, England.)

form of Φ11 and Φ33 using inner and outer scaling.

For the wall-normal component, Figure 8.1 suggests that there will be no
contributions from δ-scale eddies, and thus there will be no outer flow scaling
for Φ22. There will only be inner flow and Kolmogorov scaling, with one region
of overlap. Φ22 is described by Equations 8.7, 8.8, and 8.12, so that a region
of k

−5/3
1 scaling is expected but not one in k−1

1 . Figure 8.4a summarizes the
scaling laws for Φ22, and Figures 8.4b and 8.4c illustrate the expected form of
the v′ spectrum using inner and outer scaling. Energy spectra measured by
Perry and Abell (1975, 1977), Perry et al. (1985, 1986) Li (1989); Perry and
Li (1990), Erm (1988); Erm et al. (1985), Smith (1994), and Zhao (2005) have
all shown good agreement with these spectral scaling laws for the wall-normal
component.

By integrating these spectral forms, Li (1989) and Perry and Li (1990)
derived the following expressions for the normal stresses in a subsonic boundary
layer:
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v′2

u2
τ

= A2 − V (y+), (8.16)

where B1 and B2 are large-scale characteristic constants, particular to the flow
geometry, and A1, A2, and A3 are expected to be universal constants (all the
constants are positive). The function V (y+) is a Reynolds number dependent,
viscous correction term that increases with y+, and it accounts for the dissi-
pation region of the spectrum at finite Reynolds numbers. Equations 8.14 to
8.16 are valid only in the turbulent wall region.

Li (1989); Li and Perry (1989) and Perry et al. (1991) derived an expression
for the total stress τ using an assumed form for the mean velocity profile (in this
case Coles’ combined law-of-the-wall/law-of-the-wake given by Equation 7.50).
Figure 8.5 shows several Reynolds shear stress profiles calculated in this way,
and the variation with Reynolds number is not monotonic because of low
Reynolds number effects on the Coles wake factor.

Uddin (1994) and Marušić et al. (1997) extended these scaling laws to
include the entire region outside the viscous sublayer. As with the mean flow,
the deviation from the logarithmic profile near the wall is attributed to viscous
effects, and the deviation in the outer part of the layer is due to wake effects.
They suggested a “wall-wake” distribution where, for example,
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)
. (8.17)

They called Vg1 the viscous deviation, and Wg1 the wake deviation. Uddin
gave empirical forms for Vg1 and Wg1 that agreed well with data over the
range 6570 ≤ Reθ ≤35,100 (Vg1 was a more accurate version of the earlier
function V ). An extension of Equation 8.17 that applies across the entire
boundary layer including the viscous near-wall layer was proposed by Marušić
and Kunkel (2003), and comparisons with the laboratory data of DeGraaff
and Eaton (2000) and the atmospheric data of Metzger et al. (2001) showed
excellent agreement (Figure 8.6), although the formulation does not reproduce
the outer peak in the streamwise intensity observed at high Reynolds numbers
(as seen in Figure 8.11). A similar high level of agreement with high Reynolds
number pipe flow data was shown by Marušić et al. (2004), despite the absence
of a region of k−1

1 similarity in the streamwise velocity spectra (Morrison et al.,
2004).

8.2.2 Spectral Scaling for Compressible Flow

These spectral arguments for the scaling of the turbulence can be extended
to compressible flows, as follows (for further details see Dussauge and Smits
(1995)). In the analysis of the mean velocity distributions in supersonic bound-
ary layers it was assumed that the mixing length distribution was the same
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Figure 8.4. Behavior of the energy spectra of the wall-normal velocity fluctuations
Φ22(k1), according to Perry et al. (see text). (a) Chart showing the different scaling
regions, (b) inner scaling behavior, and (c) outer scaling behavior. Note that in
Perry et al.’s notation, z is distance from the wall, and ∆E is a boundary layer
thickness, similar to δ. (Figure from Perry et al. (1986). Copyright 1986, Cambridge
University Press. Reprinted with permission.)

as in subsonic flows. This comprises essentially a variable fluid property as-
sumption; that is, the mechanisms governing turbulent transport are the same
as at low speed, and the variations of density are taken in account by scaling
the local stress (see Section 5.1). This hypothesis is quite successful, because,
as we have seen, experimental evidence supports that the log law is observed
in the transformed velocity profile with the same constants as found at low
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Figure 8.5. Theoretical Reynolds shear stress profiles, −u′v′/u2
τ , derived by Li

and Perry (1989), from which this figure is taken, with the authors’ permission. In
their notation, z is the distance from the wall, and δH (=∆E) is a boundary layer
thickness similar to δ.

speeds. Therefore it may be expected that the typical size of the energetic ed-
dies producing turbulent transport obeys the same laws as in subsonic flows.
Note that this scale is built on the shear stress and that it is a scale related to
turbulent diffusion.

Hence, the length scales for the low and intermediate wave number regions
in the space ν/uτ 
 y 
 δ are as in subsonic flow, that is, the boundary layer
thickness δ (or equivalently, ∆), and the distance from the wall y, respectively.

The velocity scale for both regions is (τw/ρ̄)1/2. By applying the overlap ar-
gument, we find that the k−1

1 power law is again obtained in Overlap Region
I.

For compressible flow, however, the scaling of the viscous contribution to the
spectrum will change because the Kolmogorov scales vary due to temperature
gradients. We can define new length and velocity scales by considering the
viscosity, the rate of dissipation per unit volume ϕ (not per unit mass ε), and
the density. Dimensional analysis gives:

η′ = ρ−1/2

(
µ3

ϕ

)1/4

and υ′ = ρ−1/2 (µϕ)1/4 . (8.18)

Equations 8.11 and 8.12 now have the form:

Φ11 (k1y)

ρwu2
τ/ρ

= g2 (k1y) =
Φ11 (k1)

yρwu2
τ/ρ

(8.19)
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Figure 8.6. Comparison of Marušić and Kunkel (2003) formulation with data. Solid
symbols are from DeGraaff and Eaton (2000), and symbols ∗ and × are from Met-
zger et al. (2001). Broken symbols are atmospheric surface data, which should be
compared with the broken lines. (From Marušić and Kunkel (2003), with permis-
sion.)

Φ11 (k1η
′)

υ′2 = g3 (k1η
′) =

Φ11 (k1)

η′υ′2 . (8.20)

So the Kolmogorov scales are unchanged as long as ν̄ ≈ µ̄/ρ̄ and ε̄ ≈ ϕ̄/ρ̄. The
analysis for the overlap region is the same as for low-speed boundary layers: the
Kolmogorov scales are determined in the equilibrium zone where production
and dissipation are assumed to balance, where the turbulent shear stress is
constant, and where the transformed velocity is logarithmic. It is again found
that the spectrum of u′2 should have a range in k

−5/3
1 . Because the analysis

can be performed using either the incompressible or compressible variables, the
changes in the scales due to variations in the mean density are absorbed in the
modified dissipation rate because of the density scaling of the velocity gradient.
The differences between the incompressible and the compressible definitions of
the Kolmogorov scales depend mainly on the link between velocity and density
in the part of the layer where dissipation is maximum, and therefore it should
scale with the friction Mach number Mτ = uτ/aw.

It may then be inferred that for weak compressibility effects, the spectra
for u′ and w′ have two wave number ranges with power-law variations in k−1

1

and in k
−5/3
1 , as at low speeds. This analysis does not indicate where these

wave number ranges are placed in the spectrum, that is, if high speeds pro-
duce larger or smaller energetic eddies, or induce a change in the orientation of
these eddies. Naively, it also seems that the existence of a k−1

1 range should be
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Figure 8.7. Spectra in a Mach 2.9 boundary layer at Reθ = 78, 000. The data for
y+ ≤ 2930 are in the logarithmic region. (Adapted from Spina (1988), with the
author’s permission.)

a rather robust feature, because the existence of two domains where the wave
numbers scale respectively with δ and y are the only necessary conditions.
The k

−5/3
1 law is expected to have less generality, because the existence of a

constant shear stress zone with a logarithmic velocity distribution is postu-
lated, and a balance between production and dissipation is also required. The
data are somewhat ambiguous, as shown in Figure 8.7 for a Mach 2.9, high
Reynolds number boundary layer: the k

−5/3
1 range is clearly evident, but the

k−1
1 region seems to be rather small. These observations agree well with the

high Reynolds number data of Morrison et al. (2004) in incompressible, fully
developed turbulent pipe flow.

As a last remark, it may be seen that the incompressible and the compress-
ible definitions of the Kolmogorov scales are equivalent for moderate Mach
numbers, but in the buffer zone they may differ significantly from each other
if the friction Mach number Mτ is close to 1. In this case, however, it may
be expected that the hypotheses required for the derivation of the power laws
will no longer be valid. In practice, friction Mach numbers are usually small
(≤ 0.1), except at hypersonic Mach numbers and very high Reynolds numbers,
or on extremely cold walls.

We see that the turbulence spectra give insight into the scaling of the turbu-
lence stresses. There are some obvious shortcomings in the spectral arguments:
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Figure 8.8. The influence of the characteristic dimensionless hot-wire length scale
l+ on the maximum value of

√
u′2
/

uτ in subsonic boundary layers. Reθ > 700 and
l/δ > 180. (Figure from Fernholz and Finley (1996), where original references are
given. Reprinted with permission from Elsevier Science Ltd., Oxford, England.)

in particular, the data are not uniformly supportive of the proposed scaling.
Nevertheless, the physical arguments are reasonable, and they provide a start-
ing point for understanding the likely effects of Reynolds and Mach number
under conditions where Morkovin’s hypothesis is satisfied.

8.3 Turbulence Data

In considering the stress behavior, it is useful to take the approach followed in
the previous chapter where we used subsonic flows to try to identify Reynolds
number trends, and then went on to examine supersonic flows in order to un-
derstand Mach number effects. The discussion given here draws heavily on the
earlier reviews by Fernholz and Finley (1996) and Dussauge et al. (1996), al-
though the presentation has been considerably extended. By way of a general
comment, we need to be aware of the errors and uncertainties associated with
the measurement techniques, particularly the systematic errors. For example,
Figures 8.8 and 8.9 show how the finite length of the sensor affects the level of
the maximum turbulence intensity measured in the near-wall region of subsonic
boundary layers. As the wire length decreases, the level increases. Neverthe-
less, the data can be extrapolated reasonably unambiguously to zero sensor
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Figure 8.9. The influence of l+ and Reynolds number on the maximum value of√
u′2
/

uτ . (Figure from Fernholz and Finley (1996), where original references are
given. Reprinted with permission from Elsevier Science Ltd., Oxford, England.)

length, and there is a definite trend where the level increases with Reynolds
number, ranging from about 2.8 at Reθ = 1000 to about 3.2 at Reθ = 10,000.
At still larger Reynolds numbers, this ratio can reach a value about 4 (see
Figures 8.6 and 8.10). Note that in Figures 8.9 to 8.17, Reδ2 = Reθ, because
all data shown are for subsonic flow. Marušić and Kunkel (2003) derived the
variation of the maximum turbulence intensity with Reτ = δuτ/ν on the basis
of their similarity formulation (Section 8.2.1) and found good agreement with
the data. In later work, Marušić (2004) showed that the similarity formulation
indicates that the maximum mean square value should follow the functional
form:

u′2

u2
τ

= a + b ln Reτ , (8.21)

and the agreement with experiment, including very high Reynolds number
atmospheric data, is excellent (Figure 8.10).

8.3.1 Incompressible Flow

Figure 8.11 shows the distributions of u′2 normalized with wall variables. At
all Reynolds numbers, similarity can be observed in the range 3 ≤ y+ ≤
50, including the cases with high freestream turbulence levels, although the
maximum value of u′2/u2

τ tends to increase slightly with Reynolds number, as
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Figure 8.10. The maximum value of
√

u′2
/

uτ in the near-wall region. The solid
line is Equation 8.21 with a = 0.9132 and b = 0.9737. (From Marusic (2004), with
permission.)

we noted above. The position where this maximum occurs, however, seems
to be fixed at y+ ≈ 15 (Sreenivasan, 1988). For values of y+ > 100 large
departures are observed in inner scaling, with a tendency for the intensity to
form a second maximum in a region corresponding to the mean-profile log law
region, which becomes more pronounced as Reθ increases. Such second peaks
are often observed in high Reynolds number compressible boundary layers
(Figures 3.1.1 and 3.1.2 in Fernholz and Finley (1981)), although generally
not so pronounced.

The u′2 data plotted using the Rotta thickness as the outer length scale are
shown in Figures 8.12 and 8.13. With this scaling the data collapse well for
y/∆ > 0.4 (y/δ > 0.1) for Reθ > 5000 in the same way as the mean velocity
profile (Figures 7.6 to 7.8). The second maximum shown in Figure 8.11 can
be seen to represent a further extension of outer similarity toward the wall as
Reθ increases. Figure 8.12 shows the convergence of the u′2 profiles toward
this universal behavior at lower Reynolds numbers.

At high enough Reynolds number, therefore, the u′2 profiles display simi-
larity in the viscous sublayer and buffer layer when expressed in inner scal-
ing, except for a continuing increase of the maximum turbulence intensity at
y+ ≈ 15, which Morrison et al. (2004) ascribes to the influence of the inactive,
outer layer motions on the near-wall turbulence. Morrison et al. suggest that
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Figure 8.11. Distribution of the longitudinal Reynolds stress in inner layer scaling at
medium to high Reynolds numbers. Data from Bruns et al. (1992) and Nockemann
et al. (1994). , Equation 8.14 for Reδ2 = 5023; , Reδ2 =
57,720. (Figure adapted from Fernholz and Finley (1996) with permission from
Elsevier Science Ltd., Oxford, England.)

the interaction between inner and outer layer motions are responsible for such
departures from strict Reynolds number similarity. In outer scaling, similar-
ity is observed for y/δ > 0.4, approximately. The formulation by Marušić
and Kunkel (2003) shows very good agreement with the data at all Reynolds
numbers in inner and outer regions, but the appearance of a second maximum
in the streamwise component, seen in boundary layer and pipe data, is not
reproduced.

The profiles of v′2/u2
τ and w′2/u2

τ plotted against y+ (not shown here) dis-
play little or no sign of similarity. At least part of this behavior may be due to
measurement errors. In particular, measurements of v′ and w′ using an X-wire
probe are subject to errors due to spatial averaging caused by the separation
L of the two wires. The dimensionless distance L+ is likely to have as great an
influence as l+, and as a result v′ and w′ measurements are usually less precise
than u′ measurements (see Section 1.7.1).

Figures 8.14 and 8.15 show these data plotted against y/∆. An orderly
similarity behavior is found, although the peak values depend on Reynolds
number again, this time quite markedly. The maximum value of v′2/u2

τ in-
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Figure 8.12. Distribution of the longitudinal Reynolds stress in outer layer scaling
at low to medium Reynolds numbers. , Equation 8.14 for Reδ2 = 5023.
(Figure adapted from Fernholz and Finley (1996) with permission from Elsevier
Science Ltd., Oxford, England.)

creases from about 1 to 1.6 as Reθ increases from about 600 to 60,000, and the
maximum value of w′2/u2

τ increases from about 2 to 3 over a similar Reynolds
number range. The y+ location of the peak for v′2 moves away from the wall
as Reθ increases, in agreement with the findings of Sreenivasan (1988). The
location of the peak in w′2 cannot be determined with sufficient precision to
make any meaningful conclusions.

For v′2 in the overlap region, comparisons with the predictions according to
Equation 8.16 show a similar behavior to that found for u′2: good agreement
is found with the data at the lower Reynolds numbers, but the increase with
Reynolds number is underestimated somewhat. In a parallel study, Smith
(1994) found a similar trend, and concluded that the additive constants in
Equations 8.14 to 8.16 must be weakly Reynolds number dependent.

In contrast to the observations in boundary layers, recent data taken in a
pipe flow indicate the presence of a region of constant v′ in the overlap region
where w′2/u2

τ ≈ 1.3, with a peak developing in the near-wall region (y+ <
100 at higher Reynolds numbers (Zhao, 2005). Zhao interpreted this latter
observation to demonstrate the increasing effect of the outer layer motions on
the inner layer turbulence as the Reynolds number increases.

As far as the Reynolds shear stress is concerned, Sreenivasan (1988) and
Sreenivasan and Sahay (1997) suggest “that the location of the peak Reynolds
stress in a zero pressure gradient boundary layer is something like a critical
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Figure 8.13. Distribution of the longitudinal Reynolds stress in outer layer scaling
at medium to high Reynolds numbers. Data from Bruns et al. (1992) and Nocke-
mann et al. (1994). Equation 8.14 for Reδ2 = 5023; Reδ2 =
57,720. (Figure adapted from Fernholz and Finley (1996) with permission from
Elsevier Science Ltd., Oxford, England.)

layer for the flow and that it shares some of the properties of the transi-
tional critical layer.” One of these properties is that the velocity of the mean
flow in the transitional critical layer appears to be a constant fraction of the
freestream velocity. For several wall-bounded shear flows Sreenivasan found
Ucrit = 0.65Ue, so that the position of this “critical” layer is in the logarithmic
region of the boundary layer.

Similar ideas have been recently proposed by Wei et al. (2005) who derived
a new scaling scheme for wall-bounded flows using the streamwise momentum
equation and developing arguments based on stress gradients. For the mean
flow, they identify two layers that lie between the traditional linear sublayer
and the outer wake region: a stress gradient balance layer extending from
the viscous-dominated flow near the wall well into the region where the log
law is normally assumed to begin, and a viscous-advection balance or “meso-
layer” occurring in the region where the maximum Reynolds shear stress is
found, corresponding to Sreenivasan’s critical layer. The extent of both layers
increases with Reynolds number according to ∆y+ ∼ √

δ+, but of the two
layers the stress gradient balance layer is of most interest because its velocity
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Figure 8.14. Distribution of the wall-normal Reynolds stress in outer layer scaling
at medium to high Reynolds numbers. Equation 8.16 for Reδ2 = 5023;

Reδ2 = 57,720. (Figure adapted from Fernholz and Finley (1996), where
original references are given, with permission from Elsevier Science Ltd., Oxford,
England.)

increment is nearly constant and equal to about Ue/2, and it can occupy
a substantial fraction of the layer (from y+ ≈ 3 to y+ ≈ 1.6

√
δ+. These

observations may help to explain the power-law variation seen in the near-
wall region by Zagarola and Smits (1998a), which blends into a logarithmic
variation only for y+ > 600, because it would appear that this power-law
region and the stress gradient balance layer occupy similar space.

The scaled shear stress −u′v′/u2
τ in inner-layer scaling shows a plateau in

the vicinity of its peak value of about 0.92 and 0.95 (for details see Fernholz
and Finley, 1996). The spatial resolution of X-wire probes near the wall is
generally poor, and the near-wall observations are not precise enough to con-
firm Spalart’s (1988) suggestion that the total shear stress approaches the wall
with a finite nondimensional slope of order −0.6, with the slope falling to zero
only in the buffer layer.

Figure 8.16 shows the shear stress data in outer layer scaling. The data
collapse for y/∆ > 0.09. The peak value of the shear stress shows almost no
dependence on Reynolds number, but in this scaling the location of the peak
moves towards the wall as the Reynolds number increases. When expressed
in terms of inner scaling, the peak moves away from the wall with increas-
ing Reynolds number, although the movement of the peak is less pronounced
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Figure 8.15. Distribution of the spanwise Reynolds stress in outer layer scaling at
medium to high Reynolds numbers. Data from Bruns et al. (1992) and Nockemann
et al. (1994). Equation 8.15 for Reδ2 = 5023; Reδ2 = 57,720.
(Figure adapted from Fernholz and Finley (1996), with permission from Elsevier
Science Ltd., Oxford, England.)

Figure 8.16. Distribution of the Reynolds shear stress in outer layer scaling at
medium to high Reynolds numbers. Data from Bruns et al. (1992) and Nockemann
et al. (1994). (Figure from Fernholz and Finley (1996). Reprinted with permission
from Elsevier Science Ltd., Oxford, England.)
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than for v′2. This is in qualitative agreement with the results collected by
Sreenivasan (1988), who noted that the part of the dynamics contributing to
the Reynolds shear stress does not reside either at constant y+ or at constant
y/∆, again hinting at the influence of outer scales on the inner layer behavior.

Direct numerical simulations give shear stress values near the wall which
are generally in good agreement with the experimental values obtained at the
same Reynolds number. For example, at Reθ = 670, Spalart (1988) finds
a maximum value of u′v′/u2

τ of about 0.95 (compared with the experimental
value of 0.87 found by Erm and Joubert (1991)), and Yeung et al. (1993)
find a maximum value of about 0.89. The position of the maximum value
also agrees well with experiment (for further details see Fernholz and Finley
(1996)). In other respects, as in the turbulent stress and skewness and flatness
distributions, the DNS results agree similarly well with the experimental data
(Erm et al., 1994).

Some particular ratios of stresses are also of interest. The “structure pa-
rameter” a1 is the ratio of the Reynolds shear stress to the turbulent kinetic
energy, and Klebanoff (1955) found it to be approximately constant in a range
0.1 ≤ y/δ ≤ 0.8, at a Reynolds number Reθ = 7660. Erm (1988) found similar
results in the range 697 ≤ Reθ ≤ 2788, with a1 taking values between 0.14 and
0.16. Higher Reynolds number data are shown in Figure 8.17 in outer scaling.
The location of the peak value is approximately constant, and the magnitude
of the peak value lies between 0.14 and 0.17, increasing slightly with Reθ.

The correlation coefficient Ruv increases from about 0.3 near the wall to
about 0.45 in the outer part of the layer (see, for example, Klebanoff’s (1955)
results in Figure 8.21), and there is a weak tendency for these values to decrease

with Reynolds number. The anisotropy ratio
√

v′2/
√

u′2 increases across the
boundary layer from a value of about 0.4 to about 0.8, and shows the same
strong Reynolds number dependence as v′2 itself (see also Smith (1994)). The

ratio
√

w′2/
√

u′2 is nearly constant at a value of between 0.6 and 0.7 at all
y-locations and Reynolds numbers.

As for the higher-order moments, the skewness and flatness of u′ (given by
u′3/u′

rms
3 and u′4/u′

ms
2, respectively) appear to be independent of Reynolds

number when scaled using the appropriate scaling parameters for each region,
as found by Smith (1994) and Fernholz and Finley (1996). The behavior of the
triple correlations and production terms is discussed by Murlis et al. (1982),
Erm (1988), Fernholz and Finley (1996), and Morrison et al. (1992).

8.3.2 Compressible Flow

In Chapter 1 we saw that when the longitudinal velocity fluctuations are nor-
malized by the shear velocity u′2/u2

τ , there is a decrease in fluctuation level
with increasing Mach number (see Figure 1.5). However, when the streamwise
normal stress ρ̄u′2 is normalized by the wall shear stress, the results are in fair
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Figure 8.17. Distribution of the structure parameter a1 = −u′v′
/

q2 in outer layer
scaling at medium to high Reynolds numbers. Data from Bruns et al. (1992) and
Nockemann et al. (1994). (Figure from Fernholz and Finley (1996). Reprinted with
permission from Elsevier Science Ltd., Oxford, England.)

agreement with the incompressible data of Klebanoff (1955), except near the
wall where the supersonic measurements are subject to considerable uncer-
tainty (see Figure 1.2). This indicates the success of the scaling suggested by
Morkovin (1962) to account for the mean density variation, and provides some
support for the discussion given in Section 8.2. It should be mentioned that
Fernholz and Finley (1981), in considering an earlier set of data, concluded
that the streamwise Reynolds stress did not show a similar behavior in the
outer region, no matter which velocity scale was used in the nondimension-
alization. It appears that the later data shown in Figure 1.2 display a more
regular behavior. Morkovin’s scaling appears to be appropriate to at least
Mach 5. Measurements by Owen et al. (1975) at Me = 6.7 and Laderman
and Demetriades (1974) at Me = 9.4 exhibit damped turbulent fluctuations,
particularly near the wall. Because both of the hypersonic data sets are for
cold-wall conditions, this may simply indicate the stabilizing effect of cooling.

Measurements of v′2 and w′2 are less common than those of u′2, the data
exhibit more scatter, and the conclusions are therefore less certain. Cross-
wire measurements of both streamwise and wall-normal components of velocity
have suggested that some aspects of boundary layer structure depend on Mach
number (Smits et al., 1989). In contrast to the streamwise turbulence intensity,
v′2 and w′2 appear to increase slightly with increasing Mach number (Fernholz
and Finley, 1981). In this case, Morkovin’s scaling does not collapse the data,
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Figure 8.18. Turbulence distributions in a Mach 2.9 boundary layer, measured
using hot-wire probes (Reθ = 65,000). (Adapted from Konrad (1993), with the
author’s permission.)

and ρv′2/τw and ρw′2/τw show no obvious trend toward similarity. Using hot-
wire anemometry, Konrad (1993) found that w′2 and v′2 in a Mach 2.9, high
Reynolds number boundary layer were approximately equal throughout the
layer (see Figure 8.18). In contrast, the measurements by Eléna and Lacharme
(1988) in a Mach 2.3, low Reynolds number boundary layer using laser-Doppler
velocimetry indicate that the behavior of v′2/uτ

2 is almost identical to that
found in subsonic flows (see Figure 8.19). The behavior of the anisotropy
ratio is therefore not clear: Eléna and Lacharme data indicate that the ratio
v′2/u′2 is almost the same as those found by Klebanoff (1955) in a subsonic
boundary layer, whereas the measurements by Fernando and Smits (1990) and
Konrad (1993) indicate that this ratio increases with Mach number. As we
saw earlier, however, the anisotropy depends strongly on Reynolds number,
primarily because of the behavior of v′2, and the differences between the two
sets of compressible flow data may well be due to the large Reynolds number
difference between the experiments. Although the evidence is not conclusive,
there may be no significant Mach number influence.

Recent DNS results on a zero pressure gradient boundary layer by Martin
(2003, 2004) cover a Mach number range from 3 to 8, where the value of δ+ was
held approximately constant at 400 (corresponding to Reθ = 2390 at the lowest
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Figure 8.19. Turbulence distributions in a Mach 2.3 boundary layer (Reθ = 4000 to
4700). Symbols: Experimental results obtained using LDV (Eléna and Lacharme,
1988). Solid lines: DNS; broken lines: subsonic data from Klebanoff (1955). (Figure
adapted from Martin (2004), with permission of the author.)

Mach number, and Reθ = 13, 060 at the highest Mach). The wall condition
was chosen to be isothermal with a value close to the adiabatic value, and the
effect of varying the wall temperature was examined at Mach 5. As reported by
Smits and Martin (2004), the DNS results support many of the experimental
observations. For example, the mean velocity profiles transformed according
to van Driest collapse with the usual scaling using inner and outer variables,
and the Reynolds stresses collapse using Morkovin’s scaling at about the same
level of accuracy as seen in experiment. One of the cases considered by Martin
was at M = 2.23 and Reθ = 4452, corresponding to the experiments by
Debiève (1983), Eléna et al. (1985), and Eléna and Lacharme (1988), where
Reθ = 4000 to 4700. The comparisons between DNS and experiment are
particularly impressive (Figure 8.19).

Sandborn (1974) reviewed direct measurements and indirect evaluations of
the Reynolds shear stress −ρu′v′ in zero pressure gradient flows (a later, more
comprehensive study was provided by Fernholz and Finley (1981)). Sandborn
constructed a “best fit” of normalized shear stress profiles (τ/τw) from inte-
grated mean-flow data taken over a wide Mach number range (2.5 < M∞ < 7.2:
extended to Mach 10 for adiabatic and cold walls by Watson (1978)). The
data indicate a near-universal shear stress profile that agrees well with the
incompressible measurements of Klebanoff (1955) (see Figure 8.20). Direct
measurements of the shear stress have exhibited only modest agreement with
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Figure 8.20. Distribution of shear stress in boundary layers at supersonic speed.
Left: Figure from Sandborn (1974). Right: Figure from Martin (2004), where
the solid line is DNS, and the broken line is subsonic data from Klebanoff (1955).
(Figures reprinted with permission of the authors.)

Sandborn’s best fit. The agreement is limited to the outer layer, with great
scatter in the inner layer and most profiles not tending toward τ/τw = 1 near
the wall. The data in the inner layer do not scale with yuτ/νw, almost cer-
tainly because of the difficulties with the measurements. In contrast, the DNS
results of Martin (2004) shown in Figure 8.20 are in excellent agreement with
Sandborn’s curve, and the Mach 2.32 LDV data of Eléna et al. (1985).

The shear correlation coefficients obtained by Fernando and Smits (1990)
at Mach 2.9, indicated that Ruv decreases significantly with distance from the
wall, from a value of about 0.45 near the wall to about 0.2 near the boundary
layer edge (see Figure 8.21). This is in contrast to most subsonic flows where
the correlation coefficient is nearly constant at a value of about 0.45 in the
region between 0.1δ and 0.8δ. As can be seen in the figure, the data by Eléna
and Lacharme (1988) at Mach 2.3 follow the subsonic distribution closely, and
it is difficult to say how compressibility affects the level of Ruv without further
experiments. However, as noted earlier, there is about a factor of 15 difference
in Reynolds number between the results of Fernando and Smits and Eléna
and Lacharme, and the differences seen in the distribution of Ruv may well
reflect that fact, primarily through the Reynolds number dependence of v′2

(see Figure 8.14).

In Section 5.2 the Strong Reynolds Analogy was discussed, and some mea-
surements in support of this analoguey were presented in Figures 5.4 and 5.5.
It appears that the SRA is closely followed in supersonic boundary layers on
adiabatic walls, and that the correlation coefficient RuT is approximately equal
to −0.8 throughout the layer. The DNS results of Wu and Martin (2004) at
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Figure 8.21. Distribution of Ruv in subsonic and supersonic boundary layer. Left:
Data from Eléna and Lacharme (1988) (the dotted line is the subsonic data of
Klebanoff (1955)). (Reprinted with permission of Gauthier-Villars.) Right: Data
from Fernando and Smits (1990) (the filled-in symbols are subject to errors due to
transonic effects). (Copyright 1990, Cambridge University Press. Reprinted with
permission.)

Mach 3 agree very well with these observations (Figure 8.22), as do the com-
putations by Martin (2004) for Mach numbers from 3 to 8. The magnitude of
RuT is considerably higher than that found in slightly heated subsonic flows, as
seen in Figure 5.5, and the reason is not entirely clear. However, the high level
of the correlation makes the SRA a very useful tool in describing the behavior
of supersonic turbulent boundary layers, especially in formulating turbulence
models. The SRA can also be extended to nonadiabatic flows, as discussed in
Chapter 9.

The stagnation temperature fluctuation must be known to evaluate the tur-
bulent heat-flux correlation, −cpρv′T ′. Kistler (1959) observed that T ′

0rms
/T0

increased with Mach number, with maxima of 0.02 at M∞ = 1.72 and 0.048
at M∞ = 4.67. If Kistler’s data are nondimensionalized using Tw (Fernholz
and Finley, 1981) or Tr − Te (Sandborn, 1974), the Mach number dependence
appears to be eliminated, but similarity of the stagnation temperature dis-
tributions is not achieved. The same conclusions are reached from measure-
ments by Morkovin and Phinney (1958) and Horstman and Owen (1972).
The maximum level of stagnation-temperature fluctuations is about 6% (for
M < 7). Further analysis of these data shows that T ′

0rms
scales according to

either T0e − Tw or T0e − Tr. The fluctuations in total temperature appear to
be produced by the difference in stagnation temperature between the wall and
the freestream, and not, for example, by the unsteadiness in pressure through
the term ∂p/∂t in the total enthalpy equation. In these experiments, the maxi-
mum of T0rms/(T0e − Tr) is about 0.5, regardless of the Mach number, a rather
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Figure 8.22. DNS results for the SRA in a Mach 3 boundary layer (Reθ = 2400).
(Figure adapted from Wu and Martin (2004), with the authors’ permission.)

satisfactory result because it shows that the total temperature fluctuations
are of the order of (but less than) the total temperature difference across the
boundary layer. Finally, T ′

0rms/To is less than u′
rms/U and T ′

rms/T , but not
low enough to satisfy the strict Strong Reynolds Analogy. In fact, as indicated
in Section 5.3, the one-dimensional form of the energy equation, together with
the empirical results on the SRA, indicate that the ratio T ′

0rms
/T ′

rms is approxi-

mately equal to
√

2 (1 + RuT ); that is, T ′
0rms

is about 60% of T ′
rms, independent

of the Mach number (Smits and Dussauge, 1989).

8.4 Organized Motions

Here we describe the organized, spatially correlated motions found in turbu-
lent boundary layers. The interest in such flow structure is driven, at least
in part, by the hope that a better understanding of the dynamics of turbu-
lent motions will lead to a better predictive capability. Although we have
not yet achieved that objective completely, our studies of organized motions
have led to a deep (albeit largely qualitative) understanding of the turbulence
production cycle in wall-bounded flows, and a much better understanding of
Reynolds number scaling. The presentation given here is based largely on the
earlier work by Smith (1994), Spina et al. (1994), Dussauge et al. (1996) and
Smits and Delo (2001), and further details are given there. There are sev-
eral excellent reviews of turbulent flow structure in the literature, including
Willmarth (1975); Cantwell (1981), Robinson (1991a), and especially the vol-
ume by Panton (1997). More personal interpretations are offered by Hussain
(1983), Coles (1987), and Sreenivasan (1989).
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The term “structure” has at least two different interpretations. First, it is
used to describe the behavior of the mean flow and Reynolds stresses. The
scaling of the mean flow and Reynolds stresses, the composition of Reynolds
stresses, anisotropy ratios, and the behavior of the shear correlation coefficient,
Townsend’s structure parameter a1, and the intermittency profiles, can all be
viewed as describing the structure of a turbulent boundary layer. Second, the
term is used to describe coherent organized motions occurring in the flow.
Robinson (1991a) defines a coherent motion, or structure, as

a three-dimensional region of the flow over which at least one fun-
damental flow variable (velocity component, density, temperature,
etc.) exhibits significant correlation with itself or with another flow
variable over a range of space and/or time that is significantly larger
than the smallest local scales of the flow.

This definition is quite general, although as Kline and Robinson (1989) point
out, the classification of coherent structures in turbulent boundary layers can
be arranged in many ways, and they use the term “quasi-coherent” to empha-
size that the structures or motions exhibit significant variation from one ex-
periment to another. More specific versions have been proposed (for instance,
Hussain (1983)), but in essence they are just restricted forms of Robinson’s
definition.

8.4.1 Inner Layer Structure

Klebanoff (1955) found that about 75% of the total turbulence production in
the boundary layer occurs in the region where y/δ < 0.2. Most subsequent
investigations of turbulent boundary layer structure have therefore focused on
the near-wall region, primarily the viscous sublayer and buffer layer. Because
of practical considerations, such as the need for adequate resolution of small
scales, these studies have been limited to subsonic flows, predominantly at low
Reynolds numbers; that is, Reθ < 5000. In supersonic flows, the scaling of the
turbulence in the inner layer undoubtedly becomes more complicated because
strong gradients of temperature occur in the near-wall region that can cause
major changes in density and viscosity. Almost no near-wall data exist for
supersonic boundary layers, and so we must proceed under the assumption
that similar mechanisms occur in compressible flows, as long as Morkovin’s
hypothesis is satisfied. Recent DNS computations help verify this assumption,
as discussed below.

Runstadler et al. (1963), Kline et al. (1967), and Bakewell and Lumley
(1967) discovered that the viscous sublayer is occupied by alternating streaks
of high- and low-speed fluid (relative to the mean), as illustrated in Figure 8.23.
The spanwise spacing of the streaks λs was found to scale on inner variables and
to have a nondimensional mean value of λ+

s ≈ 100. The streaks were presumed
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Figure 8.23. Turbulent boundary layer on a flat plate. The water was seeded
with aluminum particles and viewed simultaneously from above and the side. Note
the large population of meandering near-wall streaks in the top view, and the
downstream-leaning, large-scale structure in the side view (Cantwell et al., 1978).
(Copyright 1978, Cambridge University Press. Reprinted with permission.)

to be the result of elongated, counter-rotating streamwise vortices very near
the wall. Kline et al. observed that the low-speed streaks would gradually lift
up from the wall, oscillate, and then break up violently, ejecting fluid away
from the wall and into the outer layer. They coined the term bursting to
describe this sequence of events, and concluded that all the events comprising
the bursting process were consistent with a stretched and lifted vortex. Kim
et al. (1971) determined that in the wall region 0 < y+ < 100, nearly all of the
turbulence production occurs during bursting, thus establishing the dynamical
significance of the near-wall region and the bursting process.

Similar observations were made by Corino and Brodkey (1969). They found
a recurring sequence of events where a large-scale disturbance would frequently
impinge upon a near-wall region of low-speed fluid. This would be followed by
one or more ejections of low-speed fluid up into the large-scale disturbance,
resulting in violent chaotic interaction. Once the ejection(s) had subsided, a
large region of high-speed fluid would cleanse the area of the debris of the
interaction. Corino and Brodkey called this latter event a sweep. As the
Reynolds number increased, the frequency and intensity of the ejection events
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increased, and at high Reynolds numbers it was difficult to distinguish between
individual events.

Cantwell (1981) examined the coherent structures in the inner layer in
terms of localized regions of vorticity, and suggested that a fluctuating array
of streamwise counterrotating vortices densely covers all parts of the smooth
wall. Slightly above the streamwise vortices but still quite close to the wall is a
layer that is regularly battered by bursts that involve very intense small-scale
motions of energetic fluid, which he termed “energetic near-wall eddies.”

The average spanwise spacing of the streaks (λ+
s ≈ 100) is one of the few uni-

versally accepted aspects of boundary layer structure, although there are large
departures from the mean (Smith and Metzler, 1983). In contrast, estimates
of the streamwise extent of the streaks vary widely. This is most likely due to
the different methods used to make the estimates. The low-speed streaks are
seen to extend up to L+

x = 
Lxuτ/ν ≈ 2000 in some cases, when the spanwise
meandering of the streaks is taken into account. Marušić (2004) has observed
even longer streaks in moderate Reynolds number boundary layers, and recent
DNS computations of channel flow support this observation (Iwamoto, 2004).
Velocity correlation methods derived from stationary probes tend to under-
estimate the streamwise length of a meandering streamwise vortex, because
only limited portions of such a vortex intersect the probe. The persistence
distance of the near-wall vortices is difficult to evaluate for the same reasons.
Probably the most complete description of their formation is given by Schoppa
and Hussain (1997). As Cantwell points out, even if the low-speed streaks are
generated directly by pairs of counterrotating vortices, it does not necessarily
follow that the two must have the same streamwise dimension (Smith et al.,
1991; Smith and Walker, 1997).

In compressible flow, the only evidence for the behavior of the near-wall
structure comes from DNS. Martin (2004), in a study of flat plate boundary
layers from Mach 3 to 8, observed a 40% decrease in the streamwise extent
of the near-wall streaks with Mach number (as a fraction of δ), and a 20%
decrease in spanwise spacing (in terms of νw/uτ ). These decreases may be due
to the spatial variation in the viscous length, because the rapid variations in
temperature near the wall cause significant changes in the local density and
viscosity. The fact that an increasing wall temperature had a similar effect on
the streaks supports this suggestion.

The convection velocities of the various types of near-wall structures are
fairly well established, at least in subsonic flows, and the values represent data
from a wide range of studies, primarily correlation based. For example, the
average convection velocity of the near-wall streamwise vortices is probably
close to the local mean velocity, because the low- and high-speed streaks move
at about 50% and 150% of the local mean velocity, respectively (Cantwell,
1981).

In contrast, the scaling of the mean bursting period, Tb (or mean bursting
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frequency, fb ∼ 1/Tb) is still controversial. Initially, Kline et al. suggested that,
because the bursting process is a wall-layer phenomenon, Tb should scale with
inner variables. Subsequent research has provided many conflicting results.
Rao et al. (1971), working in a turbulent boundary layer in the range 600 <
Reθ < 9000, concluded that outer scaling is appropriate, and that TbUe/δ ≈
5 (or TbUe/δ

∗ ≈ 30), independent of Reynolds number. Alfredsson et al.
(1988), working in a fully developed channel flow in the range 13,800 < Rec <
123,000 (Rec based on channel height and centerline velocity), found that Tb

was independent of Reynolds number when nondimensionalized by a mixed
time scale equal to the geometric mean of the inner and outer time scales.
Thus, three different scalings for Tb (and thus fb) have been proposed, and the
issue has not yet been resolved.

The scaling of Tb is important in its implications for the dynamics of the
turbulent boundary layer. If Tb scales on inner variables, it suggests that the
inner layer controls the dynamics of the boundary layer, and the outer layer
structure may be merely the debris of the bursting process. Alternatively, if
Tb follows outer scaling, it implies that the bursting process is controlled or
modulated by (and may be responding passively to) the outer layer structure.
If Tb scales on mixed variables, it implies an important mutual interaction
between the inner and outer structure.

There are many reasons for the discrepancy among the various results.
Measurement errors are important, in that spatial-averaging effects will lead to
an underestimate of fb (Blackwelder and Haritonidis, 1983). More important,
in order to measure the bursting period, it is necessary to devise a criterion
for detecting the bursting process. Visual methods, as used by Kline et al.,
Corino and Brodkey, and Kim et al., are limited to very low Reynolds numbers.
Therefore, Lu and Willmarth (1973) introduced the u′-level method, in which
low values of u′, relative to the mean, were used to detect ejections, and
high levels of u′ were used to detect sweeps. Wallace et al. (1972) and Lu
and Willmarth (1973) proposed splitting the u′–v′ velocity plane into four
quadrants, as shown in Figure 8.24. Instantaneous values of −u′v′ can then
be associated with a certain quadrant and a corresponding event (see also
Antonia (1971)).

Blackwelder and Kaplan (1976) developed an alternative method, the Vari-
able Interval Time Averaging (VITA) technique, whereby the variance of the
velocity u′ is computed over a short time interval. When the short time vari-
ance exceeds a preset threshold level, an event is said to have occurred. The
goal of these detection schemes is to identify segments of the velocity signal
that correspond to events of interest (for example, ejections and sweeps), and
to analyze these segments separately from the remaining signal by conditional
sampling and averaging.

All detection methods are, to some extent, subjective because they require
the user to choose threshold levels and/or averaging times. Willmarth and
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Figure 8.24. The four quadrants of the u′–v′ plane, and the common terms for the
events corresponding to each quadrant. (Figure from Robinson (1991b), with the
author’s permission.)

Sharma (1984) found that the bursting period determined using the VITA
technique is highly sensitive to the threshold level and the averaging time.
When the threshold level was changed by 5%, the measured bursting frequency
changed by 40%, and a 20% change in the averaging time resulted in a 15%
change in measured bursting frequency. More disturbing is the fact that it
is not certain what relationship exists between the detected events and the
actual events occurring during the bursting process. Bogard and Tiederman
(1986, 1987) evaluated several detection methods and found that different
methods could yield values of Tb which differed by an order of magnitude. They
also found that different techniques detected different phases of the bursting
process. Corino and Brodkey (1969) had already observed that more than one
ejection may occur during a single burst, leading to further variations among
the reported results. Reynolds number effects may also be important (Shah
and Antonia, 1989), and it is possible that the structure of fully developed
pipe and channel flows differs from that of turbulent boundary layers because
the outer layers have different intermittent characteristics.

8.4.2 Outer Layer Structure

The outer layer is more easily accessible to measurement, and therefore rea-
sonably comprehensive data sets exist for the large-scale structure of subsonic
and supersonic flows. The current state of knowledge concerning compressible
boundary layer structure is derived largely from studies by Robinson (1986);
Spina and Smits (1987); Smits et al. (1989); Fernando and Smits (1990), Spina
et al. (1991a,b), Donovan et al. (1994), and Bookey et al. (2005b) of flat-plate
layers with freestream Mach numbers of approximately 3, and the work by
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Figure 8.25. Shadowgraph visualizations of the flow over a cone cylinder of 12.5◦

semi-vertex angle at Mach 1.84. A detail of the flow in the vicinity of the base is
shown on the right. (Photograph by A.C. Charters, taken from Van Dyke (1982),
with permission.)

Baumgartner et al. (1997) and Bookey et al. (2005a) at Mach 8. These studies
were preceded by a pioneering investigation by Owen and Horstman (1972),
who made extensive two-point cross-correlation measurements with hot-wires
in a Mach 7.2 boundary layer. Most of the results available in the literature
were obtained using hot-wire anemometry (with its attendant limitations),
with some degree of corroboration at high speed by quantitative flow visual-
ization studies (Smith and Smits, 1988; Cogne et al., 1993; Baumgartner et
al., 1997; Bookey et al., 2005a,b).

A characteristic component of the outer layer is the large-scale turbulent
bulge, also referred to as a Large-Scale Motion (LSM). LSMs (Townsend’s
“main eddies”) evolve and decay slowly as they convect downstream, and on
average they are inclined to the wall in the downstream direction. Their most
identifiable feature is a downstream-sloping shear layer interface between up-
stream high-speed fluid and downstream low-speed fluid (unfortunately, these
structures have been labeled both “fronts” and “backs” in the literature).
These interfaces are three-dimensional shear layers that form the upstream
side of the largest of the boundary layer eddies, and remain coherent long
enough to convect several boundary layer thicknesses downstream. Early shad-
owgraph images of boundary layers on supersonic bodies of revolution (where
the spatial integration is minimized) clearly showed such structures, appearing
as marked and regular striations in the layer, leaning downstream at a char-
acteristic angle of 40◦ to 60◦ (Figure 8.25). Figure 8.26 shows several LSMs
in a subsonic boundary layer, and comparable images for supersonic flow are
given in Figure 1.4 and Figure 8.27.

The LSMs are an important feature in that they are responsible for the
large-scale transport of turbulence in the outer layer, the growth of the layer by
entrainment of initially irrotational flow, and appear to play a role in triggering
instabilities in the near-wall region. Up to 40% of the outer layer Reynolds
shear stress can be found in the neighborhood of their sloping interfaces (Spina
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Figure 8.26. Flow visualization of a boundary layer in subsonic flow at Reθ ≈ 4000,
obtained by seeding the flow with a fog of oil droplets, and illuminating the flow
with a planar laser sheet (Falco, 1977). Flow is from left to right. (Copyright 1977,
AIP. Reprinted with permission.)

Figure 8.27. Flow visualization of a boundary layer in a Mach 2.82 flow at Reθ =
81,190, obtained by seeding the flow with acetone droplets, and illuminating the flow
with a planar laser sheet (the two pictures shown were taken at different times). The
flow is from left to right. (Figure from Smith and Smits (1995). Copyright 1995,
Springer-Verlag. Reprinted with permission.)

et al., 1991a). Between neighboring bulges, the flow is irrotational, resulting in
the intermittent nature of the outer layer. The LSMs vary greatly in size and
inclination angle, and their length scales, time scales, convection velocity, and
structure angle, as well their characteristic velocity, vorticity, and pressure
fields, remain the subject of active research. Furthermore, their Reynolds
number and Mach number dependence is not very well understood, although
the superficial similarities between the subsonic and supersonic flows is striking
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Figure 8.28. Visualizations of flat plate boundary layers. Flow is from left to right.
Left: Air at Mach 8, Reθ ≈ 3600 (δ+ ≈ 200), visualized using FRS. Right: Water
at Mach 0, Reθ = 700 (δ+ = 300), visualized using dye (Delo and Smits, 1997).
(Figure from Baumgartner et al. (1997), with the author’s permission.)

(compare, for example, Figures 8.26 and 8.27). Even more suggestive is the
comparison shown in Figure 8.28, where two low Reynolds number boundary
layers, one in a low-speed water channel and the other at Mach 8, are shown
side by side.

In contrast to this visual evidence, the hot-wire measurements by Owen
et al. (1975) had strongly suggested that the extent of the intermittent zone
decreased with Mach number. Part of the difficulty in determining the in-
termittency (the wallward extent of the entrainment process) is finding an
unambiguous criterion for discriminating between turbulent and nonturbulent
fluid. Many techniques have been employed, but most methods generate a
box-car function by setting a threshold on the turbulence level, or on its first
derivative (Antonia, 1971). The most basic output is the intermittency itself,
γ, that is, the fraction of the time the flow is turbulent. Another possible
method for finding the intermittency is based on the pdf of the turbulence,
where γ is measured by the departure of the turbulence from its Gaussian
flatness value of 3; that is, γ ≡ 3/F , where F is the flatness. The flatness
distributions for a number of different freestream Mach numbers are shown in
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Figure 8.29. Comparison of flatness distributions: , Owen et al. (1975) (Reθ =
8500, M = 7), based on mass flux; �, Robinson (1986) (Reθ = 15,000, M = 3.0,
based on mass flux; �, Klebanoff (1955) (Reθ = 7100, M ≈ 0), based on velocity.
(Figure from Robinson (1986), with the author’s permission.)

Figure 8.29. The data display an apparent Mach number dependence, where
the onset of intermittency (corresponding to the rise in flatness factor) oc-
curs nearer the boundary layer edge as the Mach number increases. Because
the zone of influence of a flow disturbance decreases with Mach number, the
intermittent zone could become thinner as the Mach number increases. As
already noted, this interpretation is not supported by high-speed flow visual-
izations, and recent measurements by Baumgartner et al. (1997) and Bookey
et al. (2005b), as well as the DNS results of Martin (2004), support the notion
that the intermittency does not depend on Mach number to any significant
extent (see Figures 8.30 and 8.31).

So far, we have described the LSMs as a unified, large-scale, organized mo-
tion. However, considerable evidence now exists to indicate that they possess
a rich internal structure, comprising “typical eddies,” and horseshoe or hairpin
eddies, and that the LSMs may well be formed by well-organized “packets” of
hairpin eddies that are originally attached to the wall, and subsequently be-
come detached as vorticity cancellation and viscous effects take place. These
eddy structures are discussed in detail in Section 8.7.

8.5 Correlations and Ensemble Averages

A common method for investigating the large-scale structure is multiple-point
measurements of one or more flow variables, typically velocity, wall pressure,
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Figure 8.30. Comparison of intermittency distributions based on flatness of the
streamwise velocity: +, Eléna and Lacharme (1988) (Reθ = 5650, M = 2.32, LDV);
——–, Martin (2004) (Reθ = 4452, M = 2.32, DNS); – – –, Klebanoff (1955) (Reθ =
7100, M ≈ 0, HWA). (Figure from Martin (2004), with the author’s permission.)

Figure 8.31. Intermittency distributions. Left: ×, Baumgartner et al. (1997)
(Reθ = 3600, M = 8, FRS); ——–, Klebanoff (1955) (Reθ = 7100, M ≈ 0, HWA).
Right: Bookey et al. (2005b) (Reθ = 2400, M = 2.9), FRS. (Figures adapted from
Baumgartner et al. (1997) and Bookey et al. (2005b), with the authors’ permission.)

and wall shear stress. The data are then analyzed in the context of space-time
correlations. Space-time correlations generally have a single well-defined peak,
which occurs at τ = τmax, the optimum time delay, which is usually nonzero.

Favre et al. (1957, 1958) pioneered the use of velocity space-time correla-
tions. Their results, for Reθ values of about 1400 and 2700, showed that the
fluctuating velocities in the outer layer are correlated over distances compara-
ble to the boundary layer thickness in the spanwise and wall-normal directions,
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and over several boundary layer thicknesses in the streamwise direction. The
space-time correlations for optimum time delay also showed that, in the outer
layer, structures are convected downstream for a distance of O(10δ) before de-
caying. Nearer the wall, the structures decay more rapidly. Sternberg (1967)
noted that Favre et al.’s results also indicate that the large eddies are inclined
to the wall in the downstream direction.

In a later paper, Favre et al. (1967) used space-time correlations to measure
convection velocities of the large-scale motions in a turbulent boundary layer
with Reθ ≈ 8700. To complement their broadband results, they bandpass
filtered the data to measure the convection velocities of structures within a
narrow range of scales. They found that the smallest scales convect at about
the local mean velocity throughout the boundary layer. For y/δ > 0.2, large-
scale structures convect at speeds less than the local mean velocity, and the
convection velocity decreases with scale. For y/δ < 0.2, the opposite behavior
is observed. At y/δ ≈ 0.2, all scales convect at the local mean velocity. This
behavior could be explained as follows. A large structure will extend across
a significant fraction of the boundary layer, and will convect at a speed that
is a weighted average of the local mean velocity acting over the vertical span
of the structure. This convection velocity will be greater than the local mean
near the wall, and less than the local mean in the outer layer. The greater
the vertical extent of the structure, the greater will be this effect. Based
upon space-time correlations of wall pressure fluctuations, Corcos (1963) and
Tu and Willmarth (1966) reached similar conclusions regarding the difference
in convection velocity between large- and small-scale structures. Spina et al.
(1991b) obtained similar results for the convection velocity distribution in a
compressible flow (see Figure 8.32).

Using conditional averaging techniques based on the intermittency, Kovasz-
nay et al. (1970) and Blackwelder and Kovasznay (1972) discovered a stagna-
tion point on the back (upstream) side of the turbulent bulges in a subsonic
boundary layer. Because the bulges convect at a speed less than the freestream
velocity, the high-speed freestream fluid in the regions between the bulges will
impinge on the backs of the bulges, resulting in a stagnation point in the con-
vected frame of reference, as shown in Figure 8.33. Similar to the results of
Favre et al. (1957, 1958) Kovasznay et al. found that isocontours of the space-
time correlations of the streamwise velocity were elongated in the streamwise
direction and spanned the entire boundary layer thickness, and that the large
eddies lean downstream (see Figure 8.34). The contours were generated by
correlating the velocity measured by a probe at a fixed point in the middle of
the boundary layer with the velocity measured by a probe that was traversed
in both the y- and z-directions while maintaining a constant longitudinal probe
separation of 3.8δ. The results indicate that the large eddies are inclined with
an average angle of approximately 16◦. At the location of the fixed point,
the streamwise extent of the correlations is about 0.4δ (based on a minimum
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Figure 8.32. Broadband convection velocity in a turbulent boundary layer at Reθ =
81,000 and M = 2.9, based on measurements with three different streamwise probe
separations. ξx/δ = 0.11 ; 0.16 ◦; 0.18 �. (Figure from Spina et al. (1991a).
Copyright 1991, Cambridge University Press. Reprinted with permission.)

Figure 8.33. Schematic of the flowfield within and surrounding a large-scale motion
in a turbulent boundary layer, according to Blackwelder and Kovasznay (1972).
(Figure from Spina et al. (1991a). Copyright 1991, Cambridge University Press.
Reprinted with permission.)

correlation value of 0.5).

Murlis et al. (1982) used hot-wire anemometry and temperature-tagging
methods to study the effect of Reynolds number on boundary layer structure
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Figure 8.34. Isocorrelation contours of space-time correlations of the streamwise
velocity component measured by Kovasznay et al. (1970). (a) x–z plane, (b) x–
y plane, and (c) y–z plane. The position of one probe was fixed at y/δ = 0.5.
(Copyright 1987, Cambridge University Press. Reprinted with permission.)

for 791 < Reθ < 4750. They found that the intermittency profile is essentially
independent of Reynolds number. However, the average length of zones of
turbulent motion was found to decrease with increasing Reynolds number up
to Reθ ≈ 5000. Their data suggested that, beyond this Reynolds number, the
turbulent zone length remained constant. Similarly, Antonia et al. (1990a,b),
using what they called a “window average gradient” detection scheme, found
that the average period between detected events in the outer layer is indepen-
dent of Reynolds number when scaled on outer variables, and it has a value of
≈ 2.5δ/Ue. This value is similar to that obtained by Corrsin and Kistler (1955)
and Ueda and Hinze (1975), as noted by Falco (1977). Conditionally averaged
isovorticity contours were observed to extend further from the wall and have
a larger inclination angle (they were more upright) at lower Reynolds num-
bers, and the contribution of the organized motion to the turbulence stresses
decreased as the Reynolds number increased.
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Figure 8.35. Broadband structure angle in a subsonic boundary layer, as a function
of probe separation distance. (Figure from Alving et al. (1990). Copyright 1990,
Cambridge University Press. Reprinted with permission.)

8.5.1 Structure Angle

Alving and Smits (1990) and Alving et al. (1990) measured the broadband
structure angle of the LSMs by using two probes separated by a distance
ξy in the wall-normal direction. The structure angle was defined by θ =
tan−1 (ξy/Ucτmax), where Uc is the convection velocity (assumed to be equal
to the local mean velocity) and τmax is the time delay to the maximum in the
space-time correlation. The results given in Figure 8.35 indicate that θ is a
strong function of probe separation when ξy is small. It appears, however,
that θ reaches a limit as ξy increases, where it becomes independent of probe
separation. The angles in the middle of the layer are about 30◦, considerably
higher than the values found by Brown and Thomas (1977) and Kovasznay
et al. (1970). Perry et al. (1992) measured structure angles by fixing the wall-
normal separation of two probes and varying the streamwise separation until
the value of the cross-correlation of the signals from the two probes attained
a peak. This method has the advantage of not depending on the validity of
Taylor’s hypothesis. The results agreed well with the data of Alving et al.
(1990), for which the probes were separated in only the wall-normal direction
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Figure 8.36. Broadband structure angle found using two hot-wire probes with
different wall-normal separations. ξy/δ = 0.09 ; 0.21 ◦,
0.30 �; 0.40 +. (Figure from Spina et al. (1991a). Copyright
1991, Cambridge University Press. Reprinted with permission.)

and Taylor’s hypothesis was used.

Hot-wire and flow visualizations show that the sloping delta-scale struc-
tures convect downstream at approximately 90% of the freestream velocity
(slightly greater than for similar structures in low Reynolds number, incom-
pressible turbulent boundary layers), and at Mach 2.9 persist for at least four
boundary layer thicknesses downstream (and probably much farther) (Spina
et al., 1991b). The average angle at which the sharp interfaces lean down-
stream ranges from 45◦ to 60◦ (with a standard deviation of approximately
20◦) across most of the boundary layer, with a decrease near the wall and an
increase near the boundary layer edge. The measured value of the structure
angle is strongly dependent on measurement technique, although one method
in current favor employs two hot-wires, separated by a fixed distance in y of 0.1
to 0.3δ, with both traversed across the layer. Structure angles measured using
this technique in subsonic, low Reynolds number turbulent boundary layers
are somewhat lower than those for Mach 3, high Reynolds number layers (see
Figures 8.35 and 8.36). As indicated earlier, it seems likely that increasing
Reynolds number decreases the structure angle, and increasing Mach number
increases the structure angle.

Space-time correlation measurements by Smith (1994) at Reynolds num-
bers in the range 4600 ≤ Reθ ≤ 13,200 showed that the broadband convection
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velocity and the decay of the large scales with increasing time delay were only
weakly dependent on Reynolds number when scaled on outer layer variables
(Ue and δ). However, isocorrelation contours indicated that the streamwise
length scales increased with Reynolds number, in agreement with the results
by Liu et al. (1991) in a fully developed channel flow. Furthermore, space-time
correlations in the wall-normal direction revealed that the broadband struc-
ture angle decreased by about 10◦ over the same range in Reθ. Isocorrelation
contour maps (Figures 8.37 and 8.38) showed an increase of between 30 and
60% in the streamwise length scale over the same Reynolds number range,
and this behavior may be related to the decrease in the structure angle. The
spanwise length scale showed comparatively little variation.

These subsonic results provide an interesting contrast to the results ob-
tained by Spina et al. (1991a) in a Mach 3 boundary layer with Reθ = 80,000
(see Figure 8.39). In the supersonic flow, the streamwise length scales were
two to three times smaller than in the subsonic flow, and the structure angles
were about 10◦ larger.1 The spanwise scales were almost independent of the
Mach number. Now, the smaller streamwise scale is in accordance with the
more upright orientation of the structure, but the trend with Reynolds number
for subsonic flows does not seem to hold for supersonic flows. It seems that the
streamwise length scale and the structure angle depend on the Mach number
and the Reynolds number. This seems to be the most significant structural
difference between the two flows yet found, and as indicated earlier Reynolds
number and Mach number appear to be important. Increasing Reynolds num-
ber will increase the streamwise scales, whereas increasing Mach number will
decrease them. Otherwise, the structural model for the large-scale motions in
a supersonic flow is very similar to that derived from studies of subsonic flows,
as can be seen by comparing Figures 8.33 and 8.40.

Because the influence of compressibility on the large-scale turbulent bound-
ary layer motions seems to be subtle, explanations for the observed differences
between low- and high-speed boundary layer structure are mostly speculative.
Density gradient effects are known to play a significant role in turbulent shear
layers, but these effects are most likely to influence the near-wall region of the
wall layer, out of reach of standard measurement techniques. Parallels have
also been drawn between the 45-degree slope of the interfacial structures in
supersonic boundary layers and that of the hairpin-vortex structure observed
in incompressible boundary layers. Insufficient evidence exists to support ei-
ther side of this comparison, however. More conclusive results concerning
compressibility effects on large-scale structure require higher Mach number
investigations.

For boundary layers with freestream Mach numbers above 5, the near-wall
region is more likely to show significant departures from known incompress-

1Baumgartner (1997) found similar results based on FRS measurements in a Mach 8
boundary layer with Reθ = 3600.
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Figure 8.37. Isocorrelation contour maps in the x–y plane, as measured by Smith
(1994), in a subsonic turbulent boundary layer at Reθ = 4981 (left) and 13,052
(right) using different wall-normal probe separations: (a) ξy/δ ≈ 0.1; (b) ξy/δ ≈ 0.2;
(c) ξy/δ ≈ 0.3. (Figure from Smith (1994), with the author’s permission.)

ible structure. The viscous sublayer for hypersonic boundary layers is likely
to be much more quiescent than for incompressible flows (although pressure
fluctuations will be imposed from above), and it may not display the familiar
streaky structure. Because the mass flux near the wall is very low for high
Mach numbers, the buffer region may not be the dominant region for turbu-
lence production, as in subsonic boundary layers (note that hypersonic laminar
boundary layers undergo transition by disturbances spreading inward from the
outer layer). Further investigation will depend on the development and ap-
plication of nonintrusive measurement techniques to the near-wall regions of
hypersonic boundary layers.
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Figure 8.38. Isocorrelation contour maps in the x–z plane, as measured by Smith
(1994), in a subsonic turbulent boundary layer at (a) y/δ = 0.09, (b) 0.42, (c)
0.80. Left: Reθ ≈ 4600; right: Reθ ≈ 13,200. (Figure from Smith (1994), with the
author’s permission.)

Finally, we note that the rate of decay of the large-scale motions, as mea-
sured by the rate at which the peak in the space-time correlation decays with
distance, appears to decrease significantly with the Mach number. For exam-
ple, the distance over which the peak decreased to half its original level differs
by an order of magnitude in the experiments by Favre (1957, 1958) at Mach
0.04 and Owen and Horstman (1972) at Mach 7 when scaled by δ. A better
scaling for the rate of decay may be the time scale of the energy-containing
eddies, Λ/u′. Λ and u′ both decrease with Mach number so that their ratio
remains approximately constant. This result may in turn suggest that the
decrease in the streamwise length scales with Mach number simply reflects the
fact that the time scale of the large eddies remains constant as the absolute
fluctuation level decreases. The more complex scaling arguments presented
by Smith and Smits (1991b) to explain the experimental observations may
therefore not be necessary.

8.6 Integral Scales

Experimentally, the integral scales are usually deduced from one-point hot-
wire measurements by using Taylor’s hypothesis. Even when measurements
of two-point correlations are available in high-speed flows (see, for example,
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Figure 8.39. Isocorrelation contour maps measured by Spina (1988), in a turbulent
boundary layer at Reθ = 81,000 and M = 2.9. The figure on the left shows the
results in the x–y plane using different wall-normal probe separations: (a) ξy/δ =
0.09; (b) ξy/δ = 0.30; (c) ξy/δ = 0.51. The figure on the right shows the results
in the x–z plane at three positions in the boundary layer: (a) y/δ = 0.20; (b)
y/δ = 0.51; (c) y/δ = 0.82. (Figure adapted from Spina (1988), with the author’s
permission.)
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Figure 8.40. Ensemble averaged view of the large-scale motions in a Mach 2.9
boundary layer. (Figure from Spina et al. (1991a). Copyright 1991, Cambridge
University Press. Reprinted with permission.)

Spina and Smits (1987) and Robinson (1986)), it is often difficult to deter-
mine integral scales from the data. The type of data that is available also
depends on the measurement technique. For instance, when Constant Current
Anemometers (CCA) are used, time histories are generally not measured, but
spectral data for u′ and T ′ can be obtained directly by processing the signal
with the fluctuation diagram technique to separate the contributions of u′ and
T ′ (see Fulachier (1972), Bestion (1982), Debiève et al. (1982, 1983), Bestion
et al. (1983), and Audiffren (1993)). Bestion and Audiffren showed that for an
adiabatic flat plate boundary layer at a Mach number of 2.3 the shapes of the
spectra of (ρu)′ and u′ are practically the same, but they differ considerably
from the spectrum of T ′

0. Therefore, when anemometers are operated with a
single overheat, a sufficiently high value of the resistance should be chosen to
minimize the contribution of T ′

0 and to obtain a signal proportional to (ρu)′.
When Constant Temperature hot-wire Anemometers (CTA) are used at a high
overheat ratio, the measured signal is almost exactly proportional to (ρu)′,
which in turn gives spectral information on u′. Such data can be inaccurate
at low wave numbers. The spectral measurements of velocity and tempera-
ture performed with a CCA in adiabatic boundary layers by Morkovin (1962),
Bestion (1982), and Audiffren (1993) show that the ratio (u′/U)/(T ′/T ) at
low frequencies is not a constant, and that the magnitude of the spectral cor-
relation coefficient RuT (f) increases to unity at zero frequency. This may be
the cause for the differences in the shapes of the spectra for u′ and (ρu)′ at low
frequencies, depending on the Mach number. For higher frequencies, the ratio
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(u′/U)/(T ′/T ) and the correlation coefficient are approximately constant, and
the spectra are nearly proportional to each other.

The classical integral scale can be determined from one-point measurements
by integrating the autocorrelation coefficient of u′. It is necessary to define
the domain of integration, because the autocorrelation can become negative.
When using hot-wire anemometry in supersonic flows, this question can be
complicated by possible “strain-gauge” effects. These effects can cause peaks
in the spectrum, which may be acceptable for measurements of the overall
stress or the turbulence energy because the integral contribution is usually
small, but they can cause spurious oscillations in the autocorrelations and
make the estimates of the integral scale inaccurate.

Alternatively, the integral scale can be determined by finding the value of
the energy spectrum at zero frequency. However, because the signal is usually
filtered with a highpass filter, it has zero mean and its spectrum has a zero
value at zero frequency. The integral scale must then be found by extrapolating
the spectrum to zero frequency. In practice, the value at a frequency slightly
larger than the limit of the highpass filter is taken as the best estimate. It is
generally difficult to measure these low frequencies because the spectra of u′

and of (ρu)′ may be different at very low frequencies, the measurements can
be affected by noise in the power supply, and by the peculiarities of the wind
tunnel, such as acoustic resonances.

For these reasons, an additional scale has also been used. Because we expect
that the spectra have a region of k−1

1 dependence in the logarithmic zone,
E (k1) varies as k−1

1 , and k1E (k1) is constant or presents a maximum. Here we
have chosen the wave number for which this maximum occurs as the (inverse of
the) characteristic space scale. This probably has a clearer physical meaning
than the integral scale, since for the incompressible part of the fluctuating
motion it characterizes the eddies extracting energy from the mean field. As
indicated earlier, experimentalists commonly measure frequency spectra, so
that a characteristic frequency is measured, and then a length scale is deduced
using Taylor’s hypothesis. There is usually a considerable amount of scatter
because the location of the maximum is not always well defined. For the
data considered here, a maximum was generally found in the external layer,
but in the logarithmic zone of the subsonic boundary layer the spectra were
frequently “double-humped” and the maximum was difficult to determine.
Such shapes were also mentioned by Perry et al. (1986) who interpreted them
to mean that Taylor’s hypothesis failed for low frequencies. Uddin (1994)
noted that the bump at low wave number became more prominent at higher
Reynolds numbers (see also Smith (1994)). These double-humped profiles
lead to some difficulty in determining the length scale, and it is sometimes
necessary to discard points in the log-law region of the subsonic boundary
layer profiles. However, the higher frequency bump typically corresponds to
scales comparable to the scales of the outer layer, and the other maximum
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Authors M Rθ – Rδ2 Measurement Remarks
method

Klebanoff (1954) 0.044 7000 CCA

Fulachier (1972) 0.035 4750 CCA

Fernholz et al. 0.06 and 20000 and 60000 CTA
(1994) 0.17

Spina and Smits 2.89 80000 – 40000 CTA Scales estimated from
(1994) spectra of (ρu)′

Bestion (1982) 2.3 4200 – 2900 CCA Spectra of u′ (fluctuation
Debiève (1983) diagram technique)

Bestion et al. 1.8 and 5000 – 3500 CCA Spectra of u′ (fluctuation
(1983) diagram technique)

Audiffren (1993) 2.2 6300 – 3800 CCA Spectra of u′ (fluctuation
Audiffren and diagram technique)
Debiève (1995)

McGinley et al. 11 12400 – 1115 CTA Spectra of (ρu)′
(1994) 6500 – 633

Table 8.1. Sources for spectral data. (Adapted from Dussauge and Smits (1995).)

occurs at frequencies an order of magnitude lower, corresponding to length
scales five to ten times larger than the outer layer scales.

The values of the integral scale Λ obtained from the data sets listed in
Table 8.1 are given in Figure 8.41. Outer layer scaling was used, because
most of the data were obtained in that region. Plotting the data in inner
layer variables does not alter the conclusions. The data points from Smits
and Dussauge (1989) were deduced from autocorrelations in a way that may
underestimate the integral scale, due to a lack of experimental points for large
time delays. The boundary layer thickness was found from the profiles of
total pressure (as recommended by Fernholz and Finley (1980)). Choosing a
boundary layer thickness based on 0.99Ue would make some difference in the
magnitude of Λ/δ at Mach 3: in this experiment, the integral scale would be
a little closer to its subsonic value. It would also significantly increase Λ/δ
for the hypersonic experiment by McGinley et al. (1994), but in this case, the
mean profiles indicate that the traditional choice based on 0.99Ue would be
rather unphysical. In any case, a first result appears very clearly: the subsonic
data indicate that in the external layer, Λ is about 0.5δ in subsonic flows, but
it is only about half that value in supersonic layers. The hypersonic data of
McGinley et al. (1994) indicate a very low value, about 0.2δ, for Rδ2 = 1115,
but larger values at the lower Reynolds number. In this case, the spectra
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Figure 8.41. Integral scales in turbulent boundary layers. Subsonic data: +,
Klebanoff (1955); �, Fulachier (1972); ◦ Rδ2 = 20,900, Fernholz et al. (1995);

Rδ2 = 57,720, Fernholz et al. (1995). Supersonic data: +, Debiève (1983); �,
Bestion et al. (1983); ◦, Spina and Smits (1987); �, Audiffren (1993); � Rδ2 =
633, McGinley et al. (1994); � Rδ2 = 1115, McGinley et al. (1994). (Figure from
Dussauge and Smits (1995), with the authors’ permission.)

at low frequency reveal peaks and bumps that preclude an accurate estimate
of the integral scale. In fact, the lower limit of the error bar overlaps the
other high-speed data. The large variation could be due to the remnants of
transition. In the data by Spina and Smits, the point at y/δ = 0.1 has an
integral scale nearly equal to the subsonic value. This is due to the significant
slope in the spectrum, observed at low frequency, where the spectra of u′ and
(ρu)′ are perhaps not proportional, as discussed above. In spite of this trend,
the integral scales at Mach 2.9 in the middle of the layer are significantly below
the subsonic results. The results are independent of Reynolds number, within
the experimental accuracy. Note that Demetriades and Martindale (1983) in
a boundary layer on a flat plate at Mach 3 report measuring an integral scale
of 0.28δ, also considerably smaller than that found in subsonic flows.

The production scales L are given in Figure 8.42. The Reynolds numbers in
the subsonic and supersonic cases cover comparable ranges, except perhaps for
the hypersonic data. It is clear that the production range is shifted to higher
frequencies in supersonic flows. It should be emphasized that the limited
spatial resolution of the wires probably precludes any accurate determination
of the −5/3 law in the supersonic data, and tends to shift the maximum
of fE (f) to lower frequencies. If such systematic errors are significant, the
values measured in high-speed flows are probably overestimated, reinforcing
the notion that the scales are reduced with increasing Mach number.
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Figure 8.42. Production scales in turbulent boundary layers. Symbols as in Fig-
ure 8.41. (Figure from Dussauge and Smits (1995), with the authors’ permission.)

It appears that the production scale L follows the same trends as Λ, and
that L ≈ 2Λ. That is, L is about 2δ for low-speed boundary layers, and about δ
in high-speed boundary layers. The measurements of Morkovin and Phinney,
reported by Morkovin (1962), suggested the same trend for the production
scales. Again, plotting these data in inner-layer variables does not change the
differences between the subsonic and supersonic data. The only discrepancy is
found in the Mach 11 boundary layer, but several reasons can be found for this
departure. First, the boundary layer is probably not fully turbulent, at least at
the lower Reynolds number. Second, it is not clear that the velocity and mass-
flux spectra are proportional to each other at this Mach number. Third, the
conclusions drawn from the power law analysis are probably not valid if strong
compressibility effects are present. Fourth, the change in the shape of the
spectra may indicate a modification of the turbulence structure. In hypersonic
boundary layers, most of the mass flux occurs near the external edge of the
layer and the mass flux profiles have an inflexion point. This suggests that the
external layer can behave more like a mixing layer than a classical boundary
layer. Such free shear flows are known to contain turbulent structures of
large spatial extent, with the production scales being several boundary layer
thicknesses in size. This would be consistent with the surprisingly high level
of energy observed at low frequencies in the present Mach 11 experiments.

So it seems that the apparent size of the energetic eddies in the longitu-
dinal direction, deduced from measurements of u′ or (ρu)′ in zero pressure
gradient boundary layers, decreases with increasing Mach number whatever
the experimental method. This trend can also be illustrated by using another
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Figure 8.43. Evolution of the integral scale as a function of the friction Mach
number. Symbols as in Figure 8.41. (Figure from Dussauge and Smits (1995), with
the authors’ permission.)

representation. If we assume that the friction Mach number can be used to
characterize compressibility in turbulent boundary layers, then we can write
M2

τ = CfM
2
e /2. That is, Mτ depends on Mach and Reynolds number. The

average value of L/δ in the outer layer is shown as a function of Mτ in Fig-
ure 8.43. The results obtained at Me = 2.3 and 2.89 have nearly the same
values of Mτ and L/δ, and they agree on the average value of L/δ. The hyper-
sonic results by McGinley et al. have a value of Mτ only a little larger than
0.1, but they indicate a further decrease in the production scale.

This change in typical frequencies or time scales can be attributed either to
variations in the convection velocity or variations in the spatial scales. Mea-
surements of convection velocity by Spina and Smits (1987) in a high Reynolds
number boundary layer at Mach 2.9 showed that this quantity is not very sen-
sitive to compressibility (see Figure 8.32). This result was confirmed by Cogne
et al. (1993), who measured convection velocities directly using double-pulsed
Rayleigh scattering flow visualization (see Figure 1.19). This implies that
smaller space scales are found in supersonic flows. In contrast, the transverse
scales related to turbulent diffusion remain unchanged, and the longitudinal
scales determined from u′ decrease. Now Spina and Smits (1987) showed that
the direction of the maximum space-time correlation in their boundary layer
at Mach 2.9 is steeper than at low speeds (see Figures 8.35 and 8.36), so that
the streamwise correlation lengths are expected to decrease. As noted earlier,
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this purely geometric explanation is not sufficient to explain all the evolution
observed in Figure 8.43.

It is expected that the observed modifications in the flow structure and
scales are due to compressibility. A possible interpretation can be found in
the changes in the potential field induced in the external flow by the boundary
layer, and in the generation of acoustic noise by supersonic boundary layers.
Can they create smaller scales, and modify the orientation of the lines of max-
imum correlations? The variation of the angle was interpreted in the previous
paragraph as a change in the direction of vortical structures. In fact, the two-
point measurements by Spina and Smits did not use conditional statistics, and
therefore did not discriminate between the vortical and potential contributions
in the intermittent zone. In supersonic flows, the induced pressure field can
depend on local conditions (the pressure perturbation induced by a large-scale
structure, for instance), but also by the noise radiated by Mach waves. These
waves can have low levels of (ρu)′, but they are generally more conservative
than ordinary turbulence, and could modify the space-time correlations for
large separation distances. The formation of these Mach waves necessitates
the velocity difference between the sources and the external flow to be super-
sonic. In a boundary layer, this condition is always fulfilled, but at moderate
supersonic Mach numbers the part of the layer able to radiate Mach waves
is very thin and generally confined to the viscous sublayer or the logarithmic
zone. In this case, the behavior will be Reynolds and Mach number dependent.
The orientation of the Mach waves will depend on this Mach number differ-
ence. For example, transonic perturbations would be very steep, and would
help to make the maximum space-time correlation locus more vertical.

Another element, as noted by Laufer (1961), is an increase in the radiated
field near Mach 3, which could be interpreted as follows. The convection ve-
locity of the large eddies in the logarithmic layer is typically 0.8Ue, regardless
of the Mach number, and so the velocity difference with respect to the external
flow is 0.2Ue. Now, it may be expected that these eddies will start forming
eddy shocklets when this relative Mach number is larger than, say, 0.6. This
corresponds to an external Mach number of 3, and this criterion would be
independent of the Reynolds number because the convection velocity of the
large structures appears to be independent of Reynolds number. The mea-
surements taken at a Mach number of 2.9 would then be near the onset of
a new regime, and represent the first manifestation, in boundary layers, of
compressible turbulence phenomena as observed in mixing layers. Such an
interpretation, although speculative in many respects, is tempting because it
can explain changes in the structure of u′, as long as the radiated noise does
not significantly affect the shear stress.

To conclude this section, the spectral data show that there are modifica-
tions to the motions which contribute to the energy scales but not to the
turbulent transport. This implies that the primary action of compressibility
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is to alter inactive motions. As these motions are related to the irrotational
part of the fluctuations and to the pressure fluctuations induced by the layer,
this explanation may be correct, but a full assessment would require a more
complete knowledge of the two-point correlations and conditional statistics of
turbulence in these flows.

8.7 Eddy Models of Turbulence

Eddies and coherent structures, particularly their interactions, are an integral
part of our understanding of turbulence. Statistical descriptions, however, in-
cluding correlations and ensemble averages, provide little information on eddy
formation, growth, interaction, and dissipation. In this section, we describe
some of the prevailing notions that form eddy models of turbulence.

The first physical model of the large-scale structure of turbulent boundary
layers was proposed by Theodorsen (1955), who suggested that the basic struc-
ture of all turbulent shear flows is the inclined horseshoe vortex, as shown in
Figure 8.44. Using the vorticity transport equation, Theodorsen attempted to
prove that the only vortical structures which can sustain a nondecaying turbu-
lent field must have a horseshoe shape. As seen in Figure 8.44, the model can
certainly account for the generation of Reynolds stress. Between the legs of
the vortex, the induced velocity ejects low-speed fluid up, away from the wall,
into a region of higher mean velocity, hence u′ < 0 and v′ > 0 (a Quadrant II
event). On the outboard sides of the legs, high-speed fluid is swept towards
the wall, hence u′ > 0 and v′ < 0 (a Quadrant IV event).

The flow visualizations by Head and Bandyopadhyay (1981) provide strong
support for the concept that at least some of the LSMs are loop-shaped vor-
tical structures, with an aspect ratio that is Reynolds number dependent.
Figure 8.45 shows that at Reθ = 600 the structures have the proposed horse-
shoe shape, and as Reθ increases, the structures become elongated and appear
more as hairpins. At all Reynolds numbers, the spacing between the legs of the
structures is similar to the spacing between the near-wall streaks (≈ 100ν/uτ ).
Note that Smith et al. (1991) and Smith and Walker (1997) present convinc-
ing arguments that the low-speed streaks are in fact artifacts of the passage
of symmetric and asymmetric hairpin vortices. Head and Bandyopadhyay
proposed that the loops extend to the wall, in support of Townsend’s (1956)
attached eddy hypothesis, although the Reynolds number dependence of their
aspect ratio contradicts his Reynolds number similarity hypothesis.

Head and Bandyopadhyay (1981) further suggested that at low Reynolds
numbers the LSMs were merely single horseshoe elements, but at higher Reynolds
numbers the LSMs were actually agglomerations of many elongated hairpin
vortices. They observed the generation of multiple hairpin loops in packets,
where the heads of the loops lie along a line that is inclined to the wall at an
angle of about 20◦, as shown in Figure 8.46.
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Figure 8.44. The horseshoe vortex proposed by Theodorsen (1955) as the basic
structure in wall-bounded turbulent flows. (Figure from Spina (1988), with the
author’s permission.)

MacAulay and Gartshore (1991) also noted different structure angles us-
ing cross-correlations and conditional sampling. They determined that the
major contributions to the broadband cross-correlations in a turbulent bound-
ary layer at Reθ = 8390 came from δ-scale segments of the velocity signals,
which encompass many aspects of the flow structure, rather than from indi-
vidual hairpin eddies, which are an order of magnitude smaller than δ in the
streamwise and spanwise directions at this Reynolds number. Using condi-
tional sampling, they were able to measure the inclination angle of the sharp
interface at the backs of the large-scale motions. This interface angle is com-
pared to their measurements of the broadband structure angle in Figure 8.47,
and the differences are significant.

Work by Zhou et al. (1997, 1999), Liu et al. (2001), and Adrian et al. (2000)
has provided insight on the generation of coherent hairpin vortex packets con-
taining a multiplicity of spatially organized hairpinlike vortices in channel
and boundary layer flows, confirming and extending Head and Bapadhyay’s
observations using numerical simulations and PIV experiments. An elegant
conceptual model of nested packets of hairpins (or fragments thereof) growing
from the wall was developed. This model is illustrated in Figure 8.48. The
resulting hierarchy of motions, with changes of scale as a result of vortex pair-
ing, is in the same spirit as the mechanism of wall turbulence proposed by
Perry and Chong (1982). Strong confirmation of the statistical significance of
coherent hairpin packets has been provided by Marušić (2001) and Christensen
and Adrian (2001). Of particular interest is the observation by Adrian et al.
(2000) that at low Reynolds number, such packets contain two to three vor-
tices, and that the number of vortices and the range of scales present increases
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Figure 8.45. Flow visualizations by Head and Bandyopadhyay (1981), showing the
Reynolds number dependence of vortex loop structures in a turbulent boundary
layer. The visualizations were obtained by filling the boundary layer with smoke,
and illuminating the flow with a laser sheet inclined 45◦ downstream. (a) Reθ = 600;
(b) Reθ = 1700; (c) Reθ = 9400. (Figure from Head and Bandyopadhyay (1981).
Copyright 1981, Cambridge University Press. Reprinted with permission.)



8.7. EDDY MODELS OF TURBULENCE 273

Figure 8.46. Example of 20◦ interface at Rθ = 17,500. Flow is from right to
left. (Figure from Head and Bandyopadhyay (1981). Copyright 1981, Cambridge
University Press. Reprinted with permission.)

Figure 8.47. Structure angles measured by MacAulay and Gartshore (1991) in a
turbulent boundary layer at Reθ = 8390: , broadband general structure angle;
�, structure angle of the trailing (upstream) interface of the large-scale motions as
detected using the VITA technique. (Figure from MacAulay and Gartshore (1991),
with the authors’ permission.)

with increasing Reynolds numbers.

At low Reynolds numbers, Head and Bandyopadhyay found that the LSMs
exhibited a “brisk” overturning motion, and at higher Reynolds numbers they
overturned slowly. This suggests that entrainment decreases with increasing
Reynolds number, which is in agreement with the observation that the bound-
ary layer grows more slowly with increasing Reynolds number. MacAulay and
Gartshore (1991) proposed that at low Reynolds numbers, the horseshoe vor-
tices are of the same magnitude as the boundary layer thickness in the span-
wise and wall-normal directions. At high Reynolds numbers, the spanwise
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Figure 8.48. Conceptual model of hairpin packets and their evolution. (Figure
from Adrian et al. (2000). Copyright 2000, Cambridge University Press. Reprinted
with permission.)

scale of the hairpin eddies is much smaller than the boundary layer thickness.
Due to their own self-induction, the hairpin vortices will propagate backwards
(in a frame of reference moving at the mean velocity) through the low-speed
fluid within the turbulent bulges. When they reach the back of a bulge, they
encounter a sudden increase in streamwise velocity that balances their self-
induced velocity. MacAulay and Gartshore suggest that stronger structures
(with higher self-induced velocities) will penetrate the rear interface farther
than weaker structures. This results in the appearance of small-scale struc-
tures on the backs of the large-scale motions, similar to Falco’s typical eddies
(see next section). They suggested, in fact, that Falco’s eddies may simply be
the heads of the hairpin vortices. When the hairpin vortices cease their back-
ward propagation, their self-induction will continue to carry them up, away
from the wall, resulting in a slow overturning motion.

8.7.1 Inner-Outer Interactions

Sreenivasan and Sahay (1997) describe the Reynolds number dependence of
the peak of the Reynolds shear stress in its location (y+

p ) and maximum value.
Combined with the Reynolds number dependence of the peak in the streamwise
turbulence intensity (Fernholz and Finley, 1996), these observations indicate
that the near-wall region is not entirely independent of the outer layer dynam-
ics. Morrison et al. (2004) and Zhao (2005) have revisited the long-standing
notion of active and inactive motions, and they provide compelling evidence to
show that the local scaling behavior in fully developed pipe flow is determined
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both by inner and outer layer motions. The uncertainty regarding the scaling
of the bursting frequency also illustrates the problem.

To this end, Delo and Smits (1997) and Delo et al. (2004) obtained time re-
solved three-dimensional visualizations of the scalar field in a boundary layer at
Reθ = 701. They noted that groups of the large-scale motions were frequently
assembled into agglomerations measuring up to 5δ in length, and suggests
that the agglomerations are formed through the merging of adjacent, previ-
ously existing individual vortical structures as they convect downstream. Some
evidence was found that the large agglomerations actively “build” themselves
as they convect downstream, through the addition of near-wall fluid. Most
of the ejection events identified in a spatial distribution occurred simultane-
ously, soon after the passage of the extended, large-scale structures. The fluid
ejected by these events generally penetrated through the trailing edges of the
structures, growing like Head and Bandyopadhyay’s hairpin packets, effec-
tively increasing their streamwise extent. It was tentatively proposed that the
addition of energetic near-wall fluid in this manner serves to perpetuate the
active nature of the large-scale structures. The structures appear to be “long”
enough so that after perturbing the inner layer low-speed streaks and trigger-
ing an ejection, the trailing edges of the structures are still in the neighborhood
to profit from the addition of the ejected near-wall fluid.

Another example, concerning the relationship between the large-scale mo-
tion and the wall shear stress at much higher Reynolds numbers, was given
by Brown and Thomas (1977). They found that the large-scale motions were
inclined at an angle of 18◦ to the wall and extended about 2δ in the stream-
wise direction, similar to Head and Banyopadhyay’s observations on hairpin
packets. As the structures passed over the wall, they created a characteristic
wall shear stress signature. Brown and Thomas suggested that this wall shear
stress pattern was related to the bursting process, and concluded that the
large-scale, outer layer structure influenced the near-wall structure and dy-
namics. They found that the results were independent of Reynolds numbers
when scaled on outer variables, for Rθ = 4940 and 10,160.

In addition, the flow visualizations by Falco (1977) showed that there may
be at least two types of organized motions in the outer layer: LSMs and
“typical eddies” (see also Klewicki (1997)). He found that the typical eddies
are small-scale motions, which scale on wall variables and are responsible for
a significant fraction of the total Reynolds shear stress in the outer layer. The
average streamwise extent of the LSMs was about 1.6δ at Rθ ≈ 1000. The
streamwise length scale of the typical eddies had a constant value of about
200ν/uτ for 1000 < Rθ < 10,000. The vertical length scale varied nearly
linearly from 100ν/uτ to 150ν/uτ over the same range of Reynolds numbers.
Falco found that the typical eddies generally appear on the backs of the LSMs,
and propagate towards the wall, thus acting as sweeps very near the wall
(see Figure 8.49). Cantwell (1981) called these intense small-scale motions
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Figure 8.49. Schematic representation of typical eddies grouped on the back of a
large-scale motion. (Figure from Falco (1991). Copyright 1991, The Royal Society.
Reprinted with permission.)

“energetic outer-flow eddies”.
Falco claimed that the typical eddies may be an intermediate link between

the inner and outer layers. As discussed by Smith and Smits (1991b), how-
ever, if the typical eddies scale on wall variables then at very high Reynolds
number, where δ+ is very large, the typical eddies will become vanishingly
small compared to the boundary layer thickness, and they are unlikely to be
dynamically significant (that is, they will not carry significant levels of shear
stress). Furthermore, flow visualizations at very high Reynolds numbers show
features that appear to be very similar to the typical eddies observed by Falco
at lower Reynolds numbers, but which are at least an order of magnitude larger
(in terms of inner variables), even when the variations in fluid properties, as
expressed by the difference between Rθ and Rδ2 , are taken into account.

8.7.2 Summary of Boundary Layer Eddy Structure

Here, we describe a unified picture of boundary layer eddy structure that
attempts to represent the important kinematic and dynamic behavior in wall-
bounded turbulent flows. It is based in large part on the model suggested by
Smith and Walker (1997).

The dynamic process of turbulence production and the formation of struc-
ture is described as a cycle that begins with the growth of a low-speed streak.
The growth continues until the passage of a disturbance of sufficient size and
strength impresses a local adverse pressure gradient on the streak causing a
local deceleration. This deceleration creates a three-dimensional inflectional
profile at the interface between the streak and the higher speed flow in the wall
region. The region above the streak is unstable to small local disturbances,
and oscillations begin on the top of the streak. The three-dimensional sheet
of vorticity above the streak will develop waves due to the oscillations, roll
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Figure 8.50. Top: Illustration of the breakdown and formation of hairpin loops
during a streak-bursting process. Low-speed streak regions are indicated by shading.
Bottom: Schematic of breakup of a synthetic low-speed streak generating hairpin
vortices. Secondary streamwise vortical structures are generated owing to the inrush
of fluid. (From Acarlar and Smith (1987a), with permission.)

up, and concentrate the vorticity in locations on the sheet. This process takes
place at a y+ of between 15 and 20, and there can be between two and five
concentrations per streak.

As the roll-up continues, the vortices begin to look like horseshoe vortices
(see Figure 8.50). Biot-Savart interactions between various portions of the
vortex amplify the distortion. Self-induced movement away from the wall
occurs and the vortex is stretched by the steep mean velocity gradient. Legs
of the horseshoe, which are a pair of counterrotating vortices oriented in the
streamwise direction, develop as the loop is stretched. As the vortex becomes
elongated, it begins to look more like a hairpin vortex and the vorticity is
increased. The legs tend to pump low momentum fluid away from the wall
and thereby perpetuate the low-speed streak. The head or arch creates a
streamwise pressure gradient that will cause the liftup and ejection of low-
momentum fluid from the low-speed streak as it moves downstream. As the
process proceeds, the hairpin continues to be stretched and the head moves
farther away from the wall due to self-induction.

As the loops are dragged over the viscous layer near the wall, they help
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Figure 8.51. Schematic illustrating how advecting symmetric and asymmetric hair-
pinlike vortices generate low-speed streaks. (Figure from Smith et al. (1991). Copy-
right 1991, The Royal Society. Reprinted with permission.)

to regenerate new vortices through an interaction with the viscous wall layer
(Figure 8.51). The passage of successive loops can tend to focus the streak
so that it can continue to grow, or buffet it to weaken it. In either case, the
impingement of subsequent vortices creates the appearance of waviness and
swaying, a commonly observed behavior.

The timing on the formation of the loops out of the sublayer material ap-
pears to be such that as they rise they form the backs of the LSMs, creating a
very active shear layer out of the conjunction of the heads of the vortex loops
(see also MacAulay and Gartshore (1991), Bernard and Wallace (1997), and
Adrian et al. (1998)). The hairpins often align themselves so that their heads
lie along a line forming a 15◦ to 30◦ angle with the wall, whereas the individual
hairpins make an angle of about 45◦.

The stretching of the vortex loops by the surrounding flow (viewed either
as a background mean velocity gradient, or the summation of the velocity
induced by all surrounding vortex loops) requires work to be done. Also, the
narrowing of the vortex tube making up the loop will increase the velocity
gradients inside the tube, increasing its dissipation rate as the square of the
gradients. This dissipation will be greatest near the wall where the velocity
gradients are strongest, and diminish in the outer flow where the gradients are
relatively weak. According to Smith and Walker (1997):

... the process of growth to larger scales in a fully-turbulent bound-
ary layer can be explained by the proximity of multiple hairpin-like
vortices in different phases of development, which creates a condition
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conducive to coalescence, or three-dimensional vortex amalgamation.
This amalgamation process ... suggest(s) that local collections of
hairpin vortices can intertwine and interact to yield essentially a
hairpin-like structure of somewhat larger scale... This clearly sug-
gests that the outer region of a turbulent boundary layer can evolve
from hairpin vortex structures and that the large, arch-type vortices
(Robinson, 1991a) and rollers (Falco, 1977) observed in the outer-
region structures directly interface with the freestream flow. The
overturning of the structures plays an instrumental part in induc-
ing the flow of higher-speed fluid toward the wall (i.e., intermittent
engulfment), which eventually finds its way to the wall along a com-
plex gauntlet of vortex-induced motions, terminating in a “sweep”
motion at the wall... However despite the overall size and strength
of the outer structures, the stretching mechanism for energy trans-
fer to these larger-scale vortical structures is strongly diminished
because of the weak mean velocity gradient in the outer region. Fol-
lowing an initially strong energy input to the initial vortex scales
near the wall, these outer structures will basically “evolve” to larger
and larger scales, but with no significant additional energy input,
eventually succumbing to slow, viscous dissipation. The outer part
of the boundary layer of the boundary layer may thus be regarded
as a “graveyard” for vorticity, where the cumulative remnants of de-
formed wall-region vortices pass through a complicated process of
dissipation, diffusion and mutual cancellation, similar to the model
of Perry and Chong (1982) (Figure 8.52).

We note, however, that the heads of the hairpin loops, being a localized
concentration of shear stress, continue to be an active feature of the LSMs. In
addition, the viscous diffusion of the legs may free the heads to form vortex
loops or rings, with at least two consequences. First, the outer layer motions
are no longer attached to the wall, and will look more like that shown in
Figure 8.48. Second, at least some of the vortex loops may have an induced
velocity that directs them to the wall, as typical eddies (Klewicki, 1997). As the
Reynolds number increases, there need to be other levels of organization where
very large scale motions emerge because the active motions seen on the backs
of the LSM’s have a typical dimension of 200 wall units, and these size motions
cannot continue to be important in the shear stress budget since the stress in
the outer layer scales with outer layer variables. Smits et al. (1989) proposed
that as the Reynolds number increases the number of discrete scales of motion
also increase. At the lowest Reynolds numbers (1000 < Rθ and δ+ < 500), a
single scale dominates. This scale must be the same as that of the typical eddy,
because they are of the same order as the boundary layer thickness. At higher
Reynolds numbers (1000 < Rθ < 5000 and 500 < δ+ < 2500), two scales
appear: the large-scale outer layer bulges and Falco’s typical eddies. The
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Figure 8.52. Conceptual model of turbulence regeneration, amalgamation, and
evolution of outer-region structures. (Figure from Smith et al. (1991). Copyright
1991, The Royal Society. Reprinted with permission.)

typical eddies still make significant contributions to the Reynolds stresses.
With a further increase in Reynolds number, the large-scale motions must
carry more shear stress owing to the diminishing importance of the typical
eddies (see also Murlis et al., 1982). It is possible that a third scale appears,
corresponding to the smaller bulges seen at the edges of the large-scale bulges.
Falco’s typical eddies are now much smaller than the energy-containing range
(which scales with δ), so that they are no longer dynamically important (with
Reθ = 35,000, 200νw/uτ corresponds to a frequency of about 100Ue/δ). It may
be expected that the third scale would scale on outer layer variables, although
some form of mixed scaling may also be appropriate. The appearance of new
scales with increasing Reynolds numbers at approximately equal intervals in
log δ+ should be reflected in the behavior of the turbulence, especially the
higher-order moments. At present there are insufficient data to support these
proposals.

Finally, we address the question of symmetric and asymmetric vortex loops.
The horseshoe vortex of Theodorsen (1955), the hairpin loops of Head and
Bandyopadhyay (1981), and the Λ-shaped vortices of Perry and Chong (1982),
are symmetric structures. It has been widely reported in experimental studies
and DNS that the vortex structures observed in boundary layers are only rarely
symmetric and asymmetric structures dominate (see, for example, Kline and
Robinson (1989) and Kline and Portela (1997)). In the three-dimensional
visualizations by Delo et al. (2004), symmetrical structures are rarely seen,
although it is readily apparent that legs and arches are always part of the
same vortex looplike structure. However, as argued persuasively by Smith
and Walker (1997), any kinematic description of the near-wall cycle in terms
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of symmetric structures can equally be cast in terms of asymmetric events
(see also Figure 8.51). The important point is the sequence of events and
their underlying mechanisms, and because the presence of asymmetry does
not seem to affect the underlying physics, symmetrical models can be used for
simplicity.

8.8 Final Remarks

From our consideration of subsonic flows it appears that, in contrast to the
mean flow behavior, the turbulent stresses do not necessarily follow the in-
ner/outer scaling arguments. For example, as found previously by Sreenivasan
(1989) and Gad-el-Hak and Bandyopadhyay (1994), the Reynolds number can
have a significant effect on the level of the maximum stress, and the loca-
tion of that maximum in the boundary layer. In other respects, the scaling
arguments put forward by Perry and his co-workers (see, for example, Perry
and Li (1990)) indicate how the stresses may scale in the overlap region, and
the experimental evidence tends to support their arguments, although their
proposed constants may need to be adjusted somewhat.

The evolution of the organized motions in the boundary layer also depends
on Reynolds number. In particular, the streamwise scaling of the outer layer
structure is rather sensitive, where the scale increases with Reynolds number.
This was confirmed by direct measurements of the space-time correlations
and spectra. In contrast, the spanwise scaling appears to be insensitive to
Reynolds number, so that on average the structures become more elongated
in the streamwise direction with increasing Reynolds number. The average
inclination of the outer layer structures also decreases, which may be related
to the increase in the streamwise aspect ratio. It also appears that the spanwise
scaling of the sublayer streaks is fixed at a mean value of about 100ν/uτ over
a very wide Reynolds number range, although the trend with Mach number is
unknown.

For supersonic flows with moderate Mach number, it seems that the direct
effects of compressibility on wall turbulence are rather small, as was found for
the mean velocity distribution. Again, the most notable differences between
subsonic and supersonic boundary layers may be attributed to the variation in
fluid properties across the layer. Under the assumption that the length scales
are not affected by compressibility, the turbulent stresses in the outer region
scale on the wall stress, as first suggested by Morkovin (1962), as far as we can
tell from the available data. This result is not surprising in some ways because
the fluctuating Mach number (M ′ = M −M) for moderately supersonic flows
is considerably less than one, as illustrated in Figure 7.1.

However, a more detailed inspection of the turbulence properties reveals
certain characteristics that cannot be collapsed by a simple density scaling.

For example, the shear correlation coefficient Ruv decreases with distance
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from the wall in some supersonic flows instead of remaining approximately
constant as in subsonic flows. There are other results, however, which indicate
that Ruv follows the incompressible trend, and there is the possibility that the
differences may be caused by a Reynolds number rather than a Mach number
dependence. Unfortunately the database is very sparse, and considerable fur-
ther effort is needed before these issues can be laid to rest. With respect to
the streamwise and spanwise length scales of the large-scale motions, and their
average inclination to the wall, the effect of Mach number is clear. Even if we
account for the change in time scale of the energy-containing eddies Λ/u′, we
see that the lateral correlations are almost unaffected by changes in Mach and
Reynolds number. The streamwise length scales are reduced significantly by
increasing Mach number, and the angle of inclination is increased, although
in coming to these conclusions we have implicitly assumed that Mach and
Reynolds number effects are independent. It is necessary to make this as-
sumption because the data do not overlap to any significant extent, and we
are forced to compare experiments in supersonic flow with the results obtained
in subsonic flow, usually at a different Reynolds number. In fact, the actual
Reynolds number to be used in such a comparison is controversial because
there is usually a major difference between the values of Reθ and Rδ2. Finally,
there is an order-of-magnitude decrease in the rate of decay of the large-scale
motions as the Mach number increases from low subsonic to high supersonic
values (Smits et al., 1989).

How can we explain these differences? Part of the answer may lie in un-
derstanding the role of Reynolds number more clearly, but understanding the
effects of fluid property variations may be more important. In that respect, we
need more direct numerical simulations and more detailed turbulence measure-
ments at higher Mach numbers. We are seeing subtle differences at supersonic
speeds that may signal the onset of direct compressibility effects such as the
increased importance of pressure fluctuations and pressure-velocity correla-
tions. These effects will become more obvious at hypersonic Mach numbers,
and such studies will undoubtedly contribute to our understanding of the su-
personic behavior.

Although few specifics are known, the turbulence physics become more
complex as the Mach number increases beyond about five. For example, the
Strong Reynolds Analogy and Morkovin’s hypothesis are staples of boundary
layer analysis at moderate Mach number. However, an upper Mach number
limit must exist on the applicability of these simplifying assumptions, if only
because there is a limit on the magnitude of temperature fluctuations. For
instance, the SRA indicates that the standard deviation of the temperature
fluctuations becomes comparable to the mean temperature at Mach numbers
as low as 5. Indeed, the change in magnitude of the fluctuating Mach number
distribution as the flow enters the hypersonic range (see Figure 7.1) points to
the possibility of a dramatic alteration of turbulence dynamics due to com-
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pressibility effects around Mach 5 (in comparison, the turbulence Mach number
Mt is less than 0.3 even for the Mach 7.2 and 9.4 flows). Unlike the distri-
bution of Mt, the fluctuating Mach number develops a peak near the middle
of the boundary layer where both the velocity and temperature fluctuations
are important. This behavior, when considered together with the large gradi-
ents in density and viscosity near the wall, also leads to the conclusion that
there may be substantial differences in turbulence dynamics at higher Mach
numbers.

At the same time, the near-wall gradients in density and viscosity are
strongly dependent on heat transfer, and therefore the thickness of the sub-
layer will depend on Mach number, Reynolds number, and wall temperature.
This raises the issue of how the viscous instability of the sublayer changes when
fluid properties vary with distance from the wall (Morkovin, 1992). Because
the local Reynolds number increases away from an adiabatic wall faster in su-
personic flow than in incompressible flow, we would expect the flow to become
less stable as we move away from the wall at a rate that is faster than in an
incompressible flow at the same friction velocity. The effect on the near-wall
stability and the bursting process in supersonic flows is not clear, but DNS
may well provide the answer in the near future.




