
Chapter 4

Fundamental Concepts

Probably the most important question that we need to address when starting a
study of compressible turbulence is to determine what is qualitatively different
in compressible and incompressible turbulence. Here, we try to define the new
elements associated with compressibility, and the links between compressible
and incompressible turbulence. We examine if it is possible to characterize
these elements quantitatively using simple parameters, at least for some par-
ticular flows, and try to decide if the existing approaches are correct. Do they
provide the right answers in practice? Do they predict the measured trends?
Is it possible to observe the pertinent parameters in the existing experiments,
or, conversely, can simple theories predict the measured quantities?

In view of the difficulties in finding general solutions to the Navier-Stokes
equations, most research work is confined to finding properties of the solutions
under some particular conditions. Two approaches can be taken. First, we can
try to find the general properties of the equations, independent of the boundary
conditions. Kolmogorov’s theory, predicting the −5/3 law for the slope of
energy spectra for incompressible turbulence at large enough Reynolds number
is a good illustration. Unfortunately, this approach is successful only on rare
occasions. The second possibility is to investigate the influence of the boundary
conditions on the solutions. A classical example in low-speed flows is the
analysis of turbulent boundary layers, where the log law exists as a dimensional
requirement for matching the viscous region to the high Reynolds number
region. The second approach forms the basis for all subsequent chapters, but
here we try to summarize the attempts made to characterize compressible
turbulence by the first approach, together with some examples to help define
and quantify possible trends in the behavior of compressible turbulence. In
particular, we consider the linearized equations of motion, which introduce
the concept of modes, the interaction of these modes in a higher-order theory
(especially with respect to the compressibility of the velocity fluctuations and
the role of pressure fluctuations), the effects of rapid distortion of turbulence in
compressible flows and the implications for the Reynolds stresses, and, finally,
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the physical bases for using different Mach numbers of turbulence and the
connections among them.

4.1 Kovasznay’s Modes

Kovasznay (1953) suggested that, intuitively, we may expect that sound waves
will accompany vorticity fluctuations, and that fluid particles, having passed
through different shear regions, may suffer different changes in entropy. To un-
derstand how the vortical, compressible, and acoustic motions are connected
together, and how the dynamic and thermodynamic aspects are linked, Ko-
vasznay performed a small perturbation analysis for fluctuations developing
in a medium at rest (U0 = 0), with uniform temperature T0, density ρ0, and
pressure p0. The fluid was assumed to be a perfect gas, with constant specific
heats, viscosity, and heat conductivity. More precisely, the conditions on the
fluctuations are:
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ρ′

ρ0

,
p′
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 1.

The condition on the velocity fluctuations u′
i is not obvious because the refer-

ence velocity is zero. However, because the only velocity scale in the problem
is the reference sound speed a0, the condition

Mt =
u′

i

a0


 1

is imposed on the magnitude of the velocity fluctuations. This point is dis-
cussed in more detail in what follows. It is important to note that although
Kovasznay’s analysis does not provide a predictive tool, it is very useful for
classifying the mechanisms that operate in compressible turbulent flows.

The continuity equation can be written as:

∇ · V = −D ln ρ

Dt
= −1

γ

D ln p

Dt
+

1

Cp

Ds

Dt
, (4.1)

where the density has been written in terms of the pressure and entropy.
Linearizing Equation 4.1 gives:
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, (4.2)

which shows that the divergence of velocity fluctuations (the fluctuating di-
vergence) can be changed by pressure and entropy fluctuations.

The linearization of the momentum equation presents no real difficulty: the
nonlinear transport terms are neglected, and only the contribution of the mean
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viscosity to the viscous stress is retained. Hence:
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The entropy equation has the usual form:
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)
, (4.4)

where Φ is the dissipation rate per unit mass and k the coefficient of heat
conduction (see Equation 2.24). The transport terms are linearized as in the
previous two equations, and only the partial derivative with respect to time is
retained. The dissipation is quadratic in velocity gradients, and therefore it is
neglected. As a result:
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By taking the curl and the divergence of Equation 4.3, two different forms of
the momentum equation can be obtained. Taking the curl leads to an equa-
tion for the vorticity where the pressure does not appear because interactions
between pressure and density fluctuations are not taken into account. The
result has the form of a diffusion equation:

∂ωi

∂t
= ν0∇2ωi. (4.6)

Taking the divergence of the momentum equation and eliminating the diver-
gence of the velocity using continuity gives an equation for the pressure:
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. (4.7)

Equations 4.2, 4.6, 4.7, and 4.5 constitute a complete set of equations for the
mass, vorticity, pressure, and entropy.

In fact, determining the velocity field with the present method implies the
use of the Helmholtz decomposition in which the velocity field is separated
into a solenoidal part with zero divergence and nonzero curl, and an irrota-
tional part with zero vorticity and nonzero divergence. This decomposition is
nonunique. In a homogeneous case such as that considered by Kovasznay, a
solution can be obtained by specifying the proper boundary conditions at the
limits of the domain.

Consider now the form of the equations. The vorticity mode is governed
by the same diffusion equation as in incompressible flow, and it produces no
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pressure fluctuations. However, the pressure or acoustic mode, the entropy
mode, and the velocity divergence are coupled together. Kovasznay (1953)
considered the particular case when the Prandtl number P = µ0Cp/k0 =
3/4, which is close to that of air where P is about 0.72 over a wide range of
temperatures. The acoustic mode equation then reduces to an equation for a
pressure wave propagating at the speed of sound but damped by the action of
viscosity. In this case, the equations for the acoustic and entropy modes are
independent of each other. Up to first order, the entropy varies only by heat
conduction, and velocity divergence follows pressure and entropy variations.

The equation for the vorticity can be solved directly to give:

ωj(t) = ωj(0)e−ν0k2t, (4.8)

where k is the modulus of the wave number vector. Also, the linear system
governing pressure, divergence and entropy can be solved in Fourier space to
give the amplitude of sinusoidal fluctuations as a function of time. The in-
fluence of the diffusion terms (the viscous decay of the vorticity, entropy, and
sound fields) depends on the length and time scales over which the observation
is made. Order-of-magnitude arguments can be used to show that for some
important cases, such as when a hot-wire is used to measure turbulence in the
freestream of a supersonic wind tunnel, these terms are often small. Setting
the viscosity and the heat conduction to negligibly small values in the solu-
tion shows that the amplitudes of the modes are governed by the following
equations:

dω′
j(t)

dt
= 0, (4.9)
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= 0, (4.10)
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1

γp0

∂p′

∂t
= −∇.u′. (4.12)

This set of equations represents a consistent zeroth-order approximation for
weak fluctuation fields when the time of observation is short. The vorticity
and entropy are constant, and the pressure obeys a wave equation with a speed
of propagation equal to the speed of sound. Equation 4.9 represents a “frozen
pattern” of vorticity (or solenoidal velocity) and when it is applied to homo-
geneous turbulence in a wind tunnel it predicts an unchanged flow pattern
carried by the mean velocity, as suggested by Taylor’s hypothesis. Equa-
tion 4.10 indicates a similar frozen pattern behavior for temperature spots,
and Equation 4.11 is simply the wave equation for propagation of the pressure
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field. The only compressibility effect, that is, the creation of velocity diver-
gence, is related to the pressure fluctuations. Because the fluctuating pressure
and divergence are in quadrature, the result is the superposition of acoustic
waves on an incompressible vortical field, with no coupling.

Kovasznay assumed that the Mach number of the fluctuations was small,
which allowed the nonlinear term u′

j∂u′
i/∂xj in the momentum equation to

be neglected. Because this nonlinear term is known to be responsible for
the energy cascade from large to small scales in three-dimensional turbulence,
neglecting it implies some limitations. For example, the characteristic time
scale derived for viscous diffusion in Equation 4.8 is several orders of magnitude
larger than any turbulent time scale. The only possible conclusion is to assume
that the nonlinear term is small compared to the pressure gradient ∂p′/∂xi.
For a given domain size, defined as the volume or time interval over which the
small perturbation approximations can be applied, a necessary condition is

ρ0u
′2

p′

 1 or

γM2
t p0

p′

 1.

It was assumed that p′/p 
 1, so that the condition is Mt 
 1, which is
always satisfied by acoustic waves.

Because this is a linear theory the modes do not interact, at least within
this domain. An interaction may take place outside the domain, either at solid
boundaries or in regions where the fluctuations are not small. If the fluid at
some earlier time had passed through a grid, for example, the high-intensity
turbulence created by the grid would have produced strong sound waves and
the viscous dissipation would have produced entropy spots. The sound waves
will propagate away according to the wave equation, but the entropy spots
travel with the fluid, diffusing slowly by heat conduction. The small pertur-
bation analysis applies when the modes are sufficiently small for nonlinear
interactions between any two modes to be negligible, although nonlinearities
may have had an important role in the creation of the modes. Furthermore,
if these noninteracting modes pass through a region of strong gradient, such
as a shock wave, they may interact with the strong field and then conversion
from one mode to another may take place.

Nonlinear interactions between modes were considered in more detail by
Chu and Kovasznay (1958). As to the generation of the modes, they found
that mass addition produces the sound mode, in that the injected fluid dis-
places other fluid, and the movement of the displaced fluid generates pressure
waves that propagate into the surrounding medium. A body force generates
the vorticity and sound modes. The irrotational force component produces
only sound, and the solenoidal component produces only vorticity. Heat ad-
dition generates the entropy and sound modes, because it increases the tem-
perature of the gas and causes expansion of the heated fluid element. The
possible interactions between the modes are summarized in Table 4.1. Several
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Table 4.1. Second-order nonlinear interaction between modes of order α. Here,
S = s′/Cp, P = p′/γp0, and the subscripts p, Ω, and s denote the sound, vorticity,
and entropy modes, respectively. The parameter α is a nondimensional measure of
the intensity of the disturbance, and ε = ν0k/a0. (Adapted from Chu and Kovasznay
(1958).)

well-known mechanisms are described by these interactions: vortex stretch-
ing (the production of vorticity by the interaction of vorticity with itself),
the production of vorticity through baroclinic torques (interaction of acoustic
and entropy modes, which can sometimes promote early laminar-to-turbulent
transition in noisy wind tunnels), the wave-steepening mechanism (interaction
between entropy and acoustic modes producing acoustic modes, which can
lead to the formation of shock waves), and the scattering of incident sound
waves by vorticity fluctuations (the vorticity-sound interaction). As pointed
out by Gaviglio (1976), the baroclinic effect is the only generation process in
which two modes interact to produce a third one. The other interactions only
modify pre-existing modes. The role of pressure fluctuations is discussed in
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greater detail in the next section.

4.2 Velocity Divergence in Shear Flows

We saw that in very simple flows with small amplitude fluctuations, pres-
sure fluctuations and compressible turbulence are linked. In general, a non-
solenoidal velocity field can have many origins (see, for example, Batchelor
(1967)). It can be produced by gravity in a stratified medium, by heat release,
viscous dissipation, or pressure gradients, although for pressure gradients to
produce significant velocity divergence the turbulence Mach number should be
of order unity. Supersonic flows have significant kinetic energy, large enough
to produce significant changes in temperature when it is converted into heat.
Turbulence is a very dissipative process, and therefore contributions to the
fluctuating divergence can come from adiabatic processes, where pressure gra-
dients (and Mach number) are important, and dissipative processes, where en-
tropy production is important. The main concern of this section is to examine
if simple order-of-magnitude analyses can give some insight on the importance
of compressibility effects on turbulence in known flows. We assume that there
are significant compressibility effects when ∇ · u′ becomes large compared to
the turbulent velocity gradient ∂u′

i/∂xj. For the energy-containing motions,
this gradient is of order u′/Λ, where Λ is a length scale characteristic of these
motions. We begin by deriving simple criteria to assess the importance of
compressibility effects, as a function of the flow properties. For most common
cases, the criteria can be expressed in terms of pressure fluctuations (isentropic
processes), or entropy fluctuations (dissipation or heat conduction), as shown
later. For this purpose, we consider the full perturbation forms of the conti-
nuity and entropy equations. The approach given by Dussauge et al. (1989) is
followed here, in a somewhat expanded form.

If velocity divergence is produced by isentropic pressure variations, the
equation for pressure is a wave equation, which is hyperbolic. If the divergence
of velocity is produced by entropy variations, the pressure obeys a Poisson
equation, and an elliptic problem is obtained (see, for instance, Equation 4.7).
This can have many consequences on the overall nature of the flow. For exam-
ple, for the supersonic flow of a reacting mixture in a nozzle, the heat release
will increase the flow entropy, and if the nozzle is not properly designed it
can choke. As the flow becomes subsonic there is a transition from hyperbolic
to elliptic behavior. Also, if the pressure is governed by a Poisson equation,
then it seems likely that in modeling the pressure strain terms in the Reynolds
stress equation models similar to the ones used in subsonic flow can probably
be used.

By combining the continuity and entropy equations (Equations 4.1 and 4.4)
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we have:
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)
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with Φ = ρε. The problem is to find reasonable estimates for the amplitude
of the pressure fluctuations and the corresponding (Lagrangian) time scale τ .

We can now derive the equation for divergence of the instantaneous velocity
fluctuations. The pressure term in Equation 4.13 becomes:
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∂ (ln p)′
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+ u′∂(ln p)

∂xi

⎞⎠ .

Here, the Reynolds decomposition is used, and d/dt denotes the derivative
along the instantaneous motion. The last term can be neglected if we restrict
ourselves to zero pressure gradient flows. The dissipation and conduction terms
are more complicated because they are nonlinear. It is assumed that a sufficient
approximation is obtained by assuming small temperature fluctuations, and by
linearizing the dissipation and conduction terms with respect to temperature
fluctuations. For T ′/T 
 1, therefore, the fluctuating part of the dissipation
term ε/T becomes:

ε′
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− ε̄

T̄

T ′
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.

The bars denote mean quantities. The heat-conduction term can be written as
the sum of a flux term and a term that is quadratic in temperature gradients
(see Section 3.2.3). That is,
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The perturbation form for small temperature fluctuations may now be found,
and then we obtain an equation for the fluctuating divergence:
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where ε̄ is the mean rate of dissipation per unit volume, and the term ε̄θ =
k(∂T ′/∂xi)2/(ρCv) is sometimes called the second dissipation. It acts as a
dissipation for the variance of temperature (energy) fluctuations. Because
it represents irreversibility due to molecular effects, it is a local source term
for entropy. In Equation 4.14, an approximation for small quantities is ob-
tained. The terms that are cubic in velocity and temperature fluctuations
were neglected (terms such as ε′T ′

/
ε̄ T̄ ) because at high Reynolds numbers
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they involve wave numbers belonging to different domains. Quadratic terms
were retained. The reason is that we have linear terms such as (T ′/T )(ε̄/CpT )
where T ′/T < 1, and quadratic terms such as ε′/CpT ). It is known (see below)
that the fluctuating dissipation can be an order of magnitude larger than the
mean dissipation rate, so that the term involving ε′ has been retained.

We see from Equation 4.14 that divergence fluctuations come from pressure
fluctuations, local source terms, and heat fluxes. The sources are proportional
to the fluctuations of the dissipation rate, or to the temperature fluctuations
themselves. In the following, a primed quantity denotes an rms value, rather
than the fluctuation itself. The sum of the two pressure terms is assumed
to be of order (p′/p)/τ , where the time scale τ depends strongly on whether
the pressure wave propagates with respect to the medium. Even if simple
estimates can be found for the external flow, the behavior of the near field,
or the interaction between the pressure waves and the turbulent field, is not
at all clear. Some aspects of the problem are related to problems of wave
propagation in a random medium, where the speed of propagation can vary
dramatically in amplitude and direction. So two cases are considered: one for
which the time scale is acoustic, τa = Λ/a, and another for which the time
scale is turbulent, τt = Λ/u′, where Λ is a length scale, a the speed of sound
and u′ the rms velocity. The ratio of the two time scales turns out to be the
turbulence Mach number:

τa

τt

=
u′

a
= Mt.

As for the other terms, it is assumed for simplicity that the terms involving
the first and second (mean) dissipation rates are all of comparable order, so
that only the viscous dissipation needs to be considered. An example is given
for supersonic flows without heat sources, which indicates the limits of this
approximation. The fluctuating dissipation rates ε′ (and ε′θ) are related to
the phenomenon of internal intermittency, according to which the dissipation
is distributed randomly in space. This results in a random occurrence in time
of strongly dissipative events, at a given fixed point. In subsonic flows, ε′ is
often an order of magnitude larger than ε̄ (Sreenivasan et al., 1977), so that
in Equation 4.14 we expect that the term containing ε′ can be larger than
the term involving ε̄. An important difference is that the term in ε′ proba-
bly contains more smaller scales than the term in ε̄, which is proportional to
T ′/T . The internal intermittency is certainly modified by compressibility be-
cause if shock waves appear they introduce regions of strong dissipation with
a very particular shape. If the results of recent numerical simulations are a
good indication, the shock waves produced by compressible turbulence have
a large aspect ratio: they are thin (small-scale), corrugated sheets of long ex-
tent (large-scale), located randomly in space, and therefore they are important
for the evolution of large and small scales. However, no measurements of the
fluctuating dissipation rates are available for supersonic flows, and we need to
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assume that their orders of magnitude are not greatly changed by compress-
ibility. Then the contribution of dissipation to the divergence is estimated by
considering the fluctuating dissipation rate:

ε′

CpT
≈ 10 (γ − 1) M2

t

u′

Λ
= 10 (γ − 1)

M2
t

τt

, (4.15)

where it is assumed that, typically, ε′ ≈ 10ε̄. For large scales, the impor-
tant contribution to the divergence is probably the one involving the mean
dissipation rate:

T ′

T

ε̄

CpT
≈ T ′

T
(γ − 1)

M2
t

τt

. (4.16)

T ′/T is generally less than 1, and so the fluctuating dissipation term is proba-
bly more important than the mean dissipation term, implying that the major
contribution to the velocity divergence occurs at small scales.

The last term, which is related to the fluctuating heat flux, is not con-
sidered here. For constant mean temperature at large Reynolds and Peclet
numbers it involves no large scales. It is probably not the leading mechanism
in flows without heat sources (such as adiabatic or nonreacting flows) or in
flows without chemical reactions, because it follows the temperature fluctua-
tions produced by dissipation or pressure fluctuations and just smooths out
the smaller scales.

We can now examine some particular situations, beginning with the case of
weak compressibility, as found in boundary layers at moderate Mach numbers.
Figure 4.1 shows temperature and pressure fluctuation measurements in a zero
pressure gradient boundary layer at Mach 1.8. It was possible to measure
pressure at only two places: at the wall using a pressure transducer, and in
the outer flow using a hot-wire anemometer (where it was assumed that in
the freestream the fluctuations were isentropic: see Laufer (1961)). The wall
pressure fluctuations measurements are affected by spurious signals such as
mechanical vibrations or electronic noise, and they probably underestimate
the rms level because of spatial integration. For the measurements shown
in Figure 4.1, this error was estimated at ±20%. Despite these difficulties,
the levels at the wall and in the outer flow are comparable, and we expect a
smooth variation between these two levels within the layer so that it is clear
that adiabatic flows develop temperature fluctuations which are much larger
than pressure fluctuations. The entropy fluctuation is s′/Cp = T ′/T . If the
time scales of pressure and entropy are of the same order, Equations 4.14 and
4.15 show that the magnitude of the velocity divergence is given by 10(γ −
1)M2

t /τt . The divergence can be compared to the order of magnitude of the
instantaneous velocity gradients for the energy-containing motions u′/Λ by

∇.u′

u′/Λ
≈ 10(γ − 1)M2

t , (4.17)
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Figure 4.1. Temperature and pressure fluctuation measurements in a zero pressure
gradient boundary layer at Mach 1.8. (From Dussauge (1986), with permission.)

which suggests that in the weak compressibility regime, where the dissipation
rate is solenoidal, the relative importance of velocity divergence varies accord-
ing to M2

t . In a boundary layer at Mach 1.8 with a Reynolds number Reθ of
5000, Mτ is about 0.07, so that Mt is about 0.1, and the fluctuating divergence
is certainly negligible. In a mixing layer with a convective Mach number of
0.6, where compressibility effects are just becoming important, the peak value
of Mt is about 0.25, and the ratio in Equation 4.17 is also about 0.25. So ∇.u′

begins to become significant because of the high dissipation rate. The dissipa-
tion rate in the averaged equations, ε̄, may be split into two parts, ε̄s and ε̄d.
The solenoidal dissipation rate ε̄s is the dissipation in the solenoidal part of
the fluctuating motion. In the homogeneous case ε̄s = νω′

iω
′
i, where ω′

i is the
fluctuating vorticity and ω′

iω
′
i is the enstrophy. Similarly, the dilatational dis-

sipation rate ε̄d is the dissipation in the nonsolenoidal part of the fluctuating

motion. In the homogeneous case, ε̄d = 4
3
ν (∇.u′)2 = 4

3
ν(∂u′

i/∂xi)
2, so that in

general, the ratio ε̄d/ε̄s is something like (∇.u′/(u′/Λ))2, which suggests that
ε̄d is not large in this case. Hence, this simple analysis of dilatation produced
by solenoidal dissipation indicates the following dependences for the variance
of velocity divergence and for the dilatation dissipation:

(∇u̇′)2 ∝ M4
t and

εd

εs

∝ M4
t .

More recent studies (Ristorcelli, 1997; Fauchet, 1998; Fauchet and Bertoglio,
1999) have found the same dependence for weak compressibility cases, us-
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ing different methods. They both refer to the concept of pseudo-sound used
by Ribner (1962). In the regime of pseudo-sound, the acoustic fluctuations
(with characteristic velocity scale a) and the turbulent fluctuations (with
characteristic velocity scale u′) involve distinct ranges of time scales, such
as τa/τt = Mt 
 1. Ristorcelli uses the notion of compact sources of sound.
The acoustic sources (the turbulent eddies) radiate acoustic waves in the far
field, but the near field has a subsonic behavior: for small Mach numbers,
information is felt simultaneously in the whole source. Moreover, the “pseudo-
pressure” developed in the sources obeys a Poisson equation, as in subsonic
flows. The work of Fauchet and Bertoglio (1999) uses simulations of isotropic
turbulence with a two-point closure adapted from Kraichnan’s DIA model.
Their computations reproduce the pseudo sound regime and the M4

t depen-
dence. These studies use formulations more elaborate than our simple order-
of-magnitude analysis. However, even if the details of the closure are very
different in each case, the primary hypotheses are very similar, and the con-
vergence of the results suggests that the scaling in M4

t is a rather robust result,
which can be used with some confidence.

In flows with temperature inhomogeneities, the magnitude of the second
dissipation should be estimated. This implies that we can specify the link
between kinetic and thermal energy. We will examine the case of flows without
heat sources. Because the flow is adiabatic, it is assumed that the temperature
fluctuations are given by the Strong Reynolds Analogy (Equation 5.15), and
that ε′ and ε′θ are linked in the same way as usually assumed in models for
low-speed flows. That is,

ε′θ
ε′

≈ ε̄θ

ε̄
=

rεT
′2

1
2
q′2

,

where q′2/2 is the turbulent kinetic energy and rε = 1.25 is a constant de-
termined from experiments. For weak compressibility, if the anisotropy of
turbulent stresses is not altered,

∇.u′

u′/Λ
≈ 10(γ − 1)M2

t

(
1 +

rε(γ − 1)

γ
M2

)

≈ 10(γ − 1)M2
t

(
1 +

M2

2γ

)
. (4.18)

We can now examine the typical values taken by this ratio in simple flows.
If we consider adiabatic supersonic boundary layers for M < 5 and mixing
layers for Mc ≤ 1 (see Chapters 6 and 8), maximum values of Mt are at most
0.2. Equation 4.17 indicates that the divergence of fluctuations produced by
solenoidal heating is two orders of magnitude lower than the individual com-
ponent of the fluctuating gradient, and therefore is negligible. A comparison
of Equations 4.17 and 4.18 shows that ε′θ can become the leading term even
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under adiabatic conditions (for air), and it can produce significant divergence
levels with an elliptic overall behavior if Mt is large enough.

The large-scale estimate of velocity divergence, which is the companion to
Equation 4.16, is given by:

∇.u′

u′/Λ
≈ (γ − 1)2M3

t M

(
1 +

rε(γ − 1)

γ
M2

)

≈ (γ − 1)2M3
t M

(
1 +

M2

2γ

)
,

which suggests analogous conclusions: because the ratio is proportional to M3
t ,

it remains small for Mt < 1 (implying that M remains moderate at the same
time).

A second important case is the production of fluctuations by weak shock
waves. The entropy increase through the wave is proportional to the cube
of the pressure variation (Liepmann and Roshko, 1957; Landau and Lifshitz,
1987):

s′

Cp

∝
(

p′

p

)3

.

Because in this case the acoustic and turbulence time scales are the same, the
ratio of the pressure and entropy terms in Equation 4.13 is (p′/p)2, which shows
that the leading term is the pressure term and in the acoustic approximation
it is proportional to Mt. In this case, velocity divergence is produced by quasi-
isentropic pressure waves.

Finally, more complicated situations can be considered, with strong pressure
fluctuations and high rates of dissipation, by assuming that a typical entropy
variation term is given by the fluctuating dissipation rate and that the time
scale for pressure is either τa or τt. The following estimate is obtained,
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,

where n = 2 if τp = τt, and n = 1 if τp = τa, and where T ′ now denotes the
rms temperature fluctuation level.

In this case, in the absence of heat sources or chemical reactions, pressure
can be an important source of velocity divergence. This is consistent with the
results of the previous section, where in simplified cases pressure and diver-
gence fluctuations were found to be strongly linked. Also, the link between
T ′ and p′ is crucial, because they both appear in these estimates. There is no
general rule to find the magnitude of these terms because they depend on the
flow conditions. For the particular case studied by Blaisdell et al. (1993), who
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simulated homogeneous turbulence subjected to a shear with constant mean
density, pressure, and temperature, it turned out that the fluctuations were
produced by nearly isentropic processes, so that p′/p ≈ (γ/(γ − 1))(T ′/T ).
They found p′/p ≈ 0.3 for Mt ≈ 3. In that extreme case, the ratio of the rates
of variation of pressure and entropy is of order 1, so that none of the terms
may be neglected. This result is probably not very general, because most of
the pressure fluctuations found in these simulations are due to shock waves
produced by the interaction of vortices. It is not clear that the time scale
for pressure can then be related directly to τt or τa. Moreover, this case is
somewhat far from the more usual case of compressible shear flows where tem-
perature gradients can produce strong temperature fluctuations. For example,
with the same values for pressure fluctuations and turbulence Mach number,
if the temperature and velocity fluctuations are still linked according to the
SRA, then the entropy variations are much larger than the pressure variations.
The continuity equation indicates that here the velocity divergence is due to
dissipation. Neglecting the pressure terms in the continuity equation leads
to a Poisson equation for the pressure fluctuations. The links among T ′, p′,
and u′ are again important, and in the strongly compressible regimes found in
practice they are not clearly identified.

These estimates confirm that turbulence in zero pressure gradient bound-
ary layers at moderate Mach numbers (M < 5) may be assumed to be weakly
compressible, as long as phenomena such as sound radiation are not of pri-
mary interest. Because the divergence of the fluctuating velocity is small, the
behavior of the pressure strain terms is found to be similar to that found in
the low-speed, variable density case. The fluctuating divergence appears to
depend on the turbulence Mach number Mt. In flows where Mt is large, such
as in mixing layers, significant levels of fluctuating divergence may be found.
If the source of velocity divergence is dissipative heating it seems difficult to
produce high levels of the dilatational dissipation, suggesting that significant
values of ε̄d will be produced by shocklets rather than by viscous heating. If it
is possible to produce significant levels of velocity divergence in mixing layers
at moderate convective Mach numbers (Mc ≥ 0.5, say), the equation for the
pressure fluctuations and the form of the pressure strain should be changed,
and it may be expected that the anisotropy of the Reynolds stresses changes
accordingly. This is consistent with an elliptic behavior of the energetic eddies.
In addition, it seems difficult to develop significant fluctuations of velocity di-
vergence by the usual levels of dissipation, that is, without shock waves and
without heating (or cooling) the flow strongly. If no heat flux is considered,
it is clear that the existence of shocklets must be assumed to characterize
compressible turbulence.
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4.3 Velocity Induced by a Vortex Field

In Chapter 2 we saw that the vorticity transport-equation and the theorems of
Kelvin and Helmholtz are easily extended to compressible flows. What is not
straightforward is the interpretation of vorticity concentrations in terms of the
induced velocity field. In an incompressible flow, we can use the Biot-Savart
relation to determine the velocity field induced by concentrated elements of
vorticity. When the density is variable (due to the effects of compressibility
or stratification), the Biot-Savart relation can strictly no longer be used. The
communication among vortex elements is no longer global—it will be confined
to directions lying along characteristics (see, for instance, Section 1.3). When
the Mach number gradients are severe, the communication paths may have
a very complicated geometry. However, in many parts of an otherwise com-
pressible fluid, the mean and instantaneous Mach number gradients may be
relatively small. A good example is the outer part of a turbulent boundary
layer. Within certain limits, Biot-Savart law may still be used, depending on
the importance of the fluctuating divergence.

Formally, we can use the Helmholtz decomposition, in which the velocity
field is written as the sum of a rotational part (Vω) and an irrotational part
(Vφ) such that Vφ = ∇φ, where φ is a potential function (see, for example,
Panton (1984)). Hence,

V = Vω + Vφ.

That is,

∇× V = Ω = ∇× Vω

∇× Vφ = 0,

so the vorticity is contained in the rotational part. The appropriate boundary
conditions provide the uniqueness of the decomposition. If we require that Vω

is solenoidal, then ∇ · Vω = 0, and therefore

∇ · V = ∇ · Vφ = ∇2φ,

so the dilatation is contained in the irrotational part. For incompressible flow,
∇2φ = 0, and φ is a harmonic function. For the rotational part, we note
that any vector field that is solenoidal can be represented in terms of a vector
potential β, so that

Vω = ∇× β.

The vector identity ∇2β = −∇× (∇× β) + ∇ (∇ · β) shows that if ∇ · β = 0,
then

∇2β = −Ω,
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which can be solved to give the Biot-Savart law for the velocity induced by a
vorticity distribution Ω:

Vω = − 1

4π

∫ r × Ω

|r|3 dυ, (4.19)

where r is the position vector measured from the point of interest within the
volume υ. This result is general, insofar as the condition ∇ · β = 0 holds.

To find the velocity V from a given potential and rotational field, we need
V ω and V φ. For incompressible flow, ∇ · Vφ = 0, but for compressible flow the
dilatation needs to be known. In the particular case of a boundary layer, where
the turbulence is relatively weak, compressibility effects are weak and the
results of the previous section can be used to determine the magnitude of the
fluctuating divergence (Equations 4.17 to 4.19). For low levels of the mean and
turbulent Mach number, Biot-Savart can still be used to understand vorticity
interactions, and many of the intuitive concepts used in describing structures
in boundary layers in subsonic flow carry over unchanged when the flow is
supersonic, as long as we are careful in the neighborhood of vorticity sources
within the fluid, places where barotropic torques are important (including
curved shocks or shocklets).

4.4 Rapid Distortion Concepts

In this section, a particular class of flows is examined where distortions are
imposed on the turbulence over a small period of time. The distortions con-
sidered here are such that fluid elements are stretched or compressed in some
or all directions. A typical example of a “distorting constant area box” used
in studies of rapidly distorted subsonic flows is sketched in Figure 4.2. In the
experiment by Tucker and Reynolds (1968), for example, the turbulence in
the initial section was isotropic and homogeneous. As the flow passed through
the box, the spanwise scales were elongated and the vertical ones were com-
pressed. Similar distortions occur frequently in practice, as when turbulence
passes through a convergent or a divergent channel, or when a turbulent flow
is deformed by the presence of an obstacle or pressure gradient. The char-
acteristic time scale of the energy-containing motions may be estimated by:

Tt =
Λ

u′ or Tt =
k

ε
.

In the first estimate, the scale Λ is some average size of the energetic perturba-
tions, for example, an integral scale, and u′ is a characteristic value of the rms
velocity. The second estimate, due to Townsend (1976), is commonly used in
k–ε models, where k is the mean turbulent kinetic energy (= 1

2
q′2) and ε is its

mean dissipation rate per unit mass. As Bradshaw (1973) points out, if the
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Figure 4.2. An example of a distorting constant area box used in studying rapid
distortion effects in subsonic flows.

production were suddenly shut off the turbulent energy initially decays with
this time constant. If Td is the time during which the distortion is applied to
turbulence, then if Td/Tt 
 1 the distortion can be formally classified as a
rapid distortion.

Most of the work in rapid distortion has been confined to incompressible
flows. Yet, compressible flows are potentially very attractive for the application
of rapid distortion methods. Changes in the mean field can occur over very
short distances, much shorter than is possible in subsonic flows, and the limits
of a rapid distortion can often be more easily satisfied. For example, when
a boundary layer passes through a Prandtl-Meyer fan or a short region of
compression, including the case where the layer interacts with a shock wave,
the perturbation can occur over a distance comparable to the boundary layer
thickness. Typically, outside the viscous sublayer, the pressure gradients are
much stronger than the other stress gradients, and rapid distortion methods
become very appealing.

This situation is particularly attractive because analytical solutions can
be found for some simple cases where the nonlinear terms in the equation
of motion become negligible. The turbulence time scale Tt is related to the
nonlinear terms in the momentum equation: after a time Tt, an eddy of size Λ
loses its “identity.” That is, the nonlinearities are responsible for transferring
its energy to smaller scales. For times much smaller than Tt, these nonlinear
effects can be neglected, and if the flow is subsonic it obeys a linear set of
equations, as long as the mean flowfield is constant and does not depend on the
turbulence. These cases represent the field of application of Rapid Distortion
Theory (RDT).

The basic theory was developed by Ribner and Tucker (1952) and Batch-
elor and Proudman (1954) for homogeneous, initially isotropic turbulence in
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an irrotational mean flow. The theory was later extended to shear flows (see,
for example, Moffatt (1968) and Townsend(1970)) and subsequent develop-
ments led to a wide variety of applications. The papers by Hunt (1977);
Townsend (1980); Cambon (1982), and the reviews by Savill (1987) and Hunt
and Caruthers (1990) provide a comprehensive picture of the current status of
RDT for incompressible flows. What seems particularly encouraging is that
despite the strict limits on the applicability of RDT, the theory often gives
qualitatively useful results outside these bounds, as well as providing guidelines
for distorted structure modeling (Savill, 1987).

To solve the linear rapid distortion problem for specific cases, some con-
ditions often need to be satisfied, in addition to the usual rapid distortion
criteria. For example, if Fourier transforms of the velocity field are used, the
turbulence often needs to be homogeneous. Other solutions may require that
the distortion is irrotational, or that the evolution is isentropic along stream-
lines. In most practical flow realizations these assumptions are not obeyed,
and RDT cannot be applied. It is often more attractive to consider instead
the Reynolds stress evolution, rather than the associated spectra, especially
in supersonic flows where the scope of experimental data is more limited than
in subsonic cases. The simplifications of second-order closure needed for rapid
distortion approximations to the Reynolds stress equations are not straightfor-
ward, as pointed out by Hunt (1977), mainly because terms involving pressure
fluctuations must be modeled, giving at best an approximation to the solu-
tion. This latter approach, where the scaling arguments and limiting processes
employed in RDT are used to approximate the Reynolds stress equations, is
what we term the Rapid Distortion Approximation (RDA) and its application
to supersonic flows is discussed in Section 4.4.3.

4.4.1 Linearizing the Equations for the Fluctuations

The main consideration in linearizing the equation of momentum comes from
the form of the fluctuating acceleration a′

i. That is,

a′
i =

∂u′
i

∂t
+ ūj

∂u′
i

∂xj

+ u′
j

∂ūi

∂xj

+ u′
j

∂u′
i

∂xj

.

(1) (2) (3) (4)

Terms 1 and 2 represent the particle derivative of u′
i (= Du′

i/Dt), and it is
assumed that they are of the same order as the other terms in the acceleration.
A necessary condition for the linearization of the acceleration terms is that the
second term is much larger than the fourth term. If q′ and U are representative
scales for u′

i and Ui, respectively, this simply requires that the fluctuations are
small:

q′

U

 1. (4.20)
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By comparing the third and fourth terms, another condition related to time
scales is obtained. If S is the scale for the mean velocity gradient, we require:

q′

ΛS

 1. (4.21)

We should also make sure that Du′
i/Dt is large compared to the nonlinear

term. If the scale of variation of the fluctuation is the fluctuation itself q′, and
if the time scale is the transport time L/U , where L is the size of the distorted
zone and U a typical mean velocity, we obtain the condition:

q′

U

L

Λ

 1. (4.22)

This condition may be more stringent than condition 4.21, depending on the
flow. Because we have neglected the nonlinear inertial terms, we need to
consider only the low wave number part of the spectrum. In this case, the
viscous terms in the momentum equation may be neglected, which requires
large Reynolds numbers.

The equation for the velocity fluctuation now has the form,

Du′
i

Dt
+ u′

j

∂Ui

∂xj

= −1

ρ

∂p′

∂xi

, (4.23)

which indicates that the time constant of the linear system is 1/(∂Ui/∂xj),
and that the nature of the pressure terms depends on the velocity and density
fields.

We must also consider the fluctuating continuity equation:

∂ρ

∂t
+ Ui

∂ρ′

∂xi

+ ρ̄
∂u′

i

∂xi

+ u′
i

∂ρ̄

∂xi

+ ρ′∂Ui

∂xi

+ ρ′∂u′
i

∂xi

+ u′
i

∂ρ′

∂xi

= 0.

(1) (2) (3) (4) (5) (6) (7)

If condition 4.20 is fulfilled, it is clear that the seventh term in this equation is
small compared to the second term, and if the density fluctuations are small

ρ′

ρ̄

 1, (4.24)

the sixth term is much less than the third.
The form of the continuity equation is therefore not a problem by itself be-

cause the hypothesis of small fluctuations is sufficient to yield a linear equation.
The density can be replaced by a function of pressure and entropy. However,
as noted in the previous section, there is a contribution of the energy dissipa-
tion to the low wave numbers through temperature fluctuations. A linearized
form of the energy equation, for example, Equation 4.5, combined with the
linearized equation of state, closes the system. This constitutes a complete set
of equations for the RDT problem, and a flow case can formally be called a
rapid distortion when conditions 4.20 to 4.22 and 4.24 are fulfilled.
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4.4.2 Application to Supersonic Flows

As noted earlier, RDT problems for subsonic flows have been studied by many
authors. In particular, it is possible to find mean fields that produce ho-
mogeneous turbulence fields. Fourier transforms can then be used, and the
evolution of the three-dimensional spectra of turbulence can be derived. After
integration over all wave numbers, the turbulent stresses can be calculated,
analytically if the mean distortion is irrotational.

In trying to formulate a similar approach for compressible flows, a diffi-
culty is encountered with the energy equation. The solution now depends on
the source terms in the energy equation, or, if the entropy fluctuation level
is constant, from source terms in the distortion. The groundwork for the ap-
plication of RDT to compressible flows was laid by Ribner and Tucker (1952)
who studied the evolution of a solenoidal turbulent field subjected to an irro-
tational compressible mean field. Another important contribution was made
by Goldstein (1978) who separated the velocity fluctuations into vortical and
potential parts. He applied this decomposition to the case of isentropic fluc-
tuations with an irrotational mean distortion. This yields a wave equation
for pressure, with a source term depending on the vortical part of velocity.
Debiève (1986) (reported also in Dussauge et al., 1989) gave a classification of
the different possible source terms in this equation.

The applications of RDT to homogeneous flows by Durbin and Zeman
(1992) and Jacquin et al. (1993) are of particular interest. Homogeneity
makes possible some analytical results, and Fourier transforms can be used.
For these particular distortions, the mean velocity gradients, the pressure and
the density were spatially uniform but time dependent. Jacquin et al. used
the Helmholtz decomposition of the velocity fluctuations into a solenoidal and
a dilatational part, while Durbin and Zeman used Goldstein’s decomposition
into a vortical and a potential part. For the particular case of irrotational dis-
tortion they concluded that the nature of the pressure field depends critically
on the gradient Mach number Mg = λS∗/a. Here Λ is an integral space scale,
S∗ is a characteristic value of the velocity gradient (= |∂Ui/∂xj|), and a is the
speed of sound. This Mach number is therefore based on the velocity differ-
ence occurring over a distance equal to the integral scale in the distortion. For
subsonic velocity differences, the velocity divergence depends only on pressure
fluctuations generated by a purely acoustic mode, and it does not depend on
the solenoidal part. However, if this velocity difference becomes supersonic,
there is a direct coupling with the dilatational mode, without damping by
pressure. Mg can also be interpreted as the ratio of the acoustic time scale
of the pressure fluctuations Λ/a to the time scale of the distortion 1/S∗. If
Mg is large, the pressure does not have time to develop fully during the dis-
tortion. This suggests that in very rapid interactions, such as in shock waves,
the effect of pressure can be neglected. For moderate Mg, the contributions of
the vortical and potential modes to the pressure variance and to the pressure
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divergence term in the turbulent kinetic energy equation are both small. This
analysis has recently been extended to the case of a pure shear by Simone and
Cambon (1995) and Simone et al. (1997).

4.4.3 Rapid Distortion Approximations

It is usually difficult to apply RDT to shear flows, because in general the dis-
tortions of such flows are vortical and inhomogeneous, the entropy fluctuations
are not constant, and the initial three-dimensional spectra are not known. The
theory has not been developed for such cases. Nevertheless, the analysis of the
Reynolds stress equations and the physical hypothesis used in RDT can still
provide useful information on practical shear flows. This approach is what we
call Rapid Distortion Approximation (RDA).

Consider the Reynolds stress equations. In the equation for the velocity
fluctuations (Equation 4.23), it was possible to identify linear and nonlin-
ear interactions with appropriate time scales. This is not so obvious in the
Reynolds stress equations, because they are derived by multiplying the equa-
tion for the velocity fluctuations by the fluctuations themselves, integrating
over all wave numbers and averaging. Consequently, some properties related
to the length scales of the fluctuations have been lost. However, we can still
apply some of the same physical arguments used in RDT. For example,

(i) The characteristic time scale of turbulent energetic eddies is Tt = Λ/q′.
As noted earlier, after a time Tt the eddies have lost their identity through
nonlinear mechanisms and most of their energy has been transferred to
smaller scales. A consequence is that for times much less than Tt, the
dissipation rate can be considered constant. In the present formulation,
Λ is related to the energetic eddies, so that the rate of dissipation can
be defined by ε = q′3/Λ or ε = q′2/Tt.

(ii) The distortion time is of the order of Td = 1/(∂Ui/∂xj) = 1/S∗. This
is the linear response time of the turbulent stresses, which means that
after a time Td a significant evolution of k or the shear stress due to the
distortion can be observed. For the cases where the distortion is applied
over a time Ld/U that is larger than Td (Ld is the length of the distorted
zone and U an average value of the mean velocity), we must use Ld/U
instead of Td.

It is assumed here that in a rapid distortion the evolution of turbulent
fluxes is controlled by the action of the mean distortion, and not by diffusive
processes, turbulent or viscous. Only the case of high Reynolds number flow
is considered. When the diffusion terms are neglected, the equation for the
Reynolds stress σij = ũ′

iu
′
j = ρu′

iu
′
j

/
ρ̄ can be written in the symbolic form:

Dσij

Dt
= (production) + (pressure strain terms) – (dissipation).
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The pressure strain terms cannot be neglected and need to be modeled. The
production terms come in two parts: one from the interaction of the turbu-
lence with mean velocity gradients, and one from the interaction of the turbu-
lence with mean pressure gradients. The second part, in the Favre averaged
equations, results from the interaction of turbulent mass fluxes with the mean
pressure gradients, whereas for the Reynolds averaged equations it comes from
the interaction of the turbulent mass flux with the mean acceleration. This
part is sometimes called the enthalpic production term, but it is not discussed
here because that would not contribute much to the physical understanding of
the phenomena (for further details, see Dussauge and Gaviglio (1987)). Both
parts of the production can be calculated directly from the mean field. For
adiabatic, nonhypersonic Mach numbers, the two parts of the total production
are comparable in magnitude and of order q′2S, and the dissipation terms are
of order q′3/Λ. If the evolution of σij is to be independent of the dissipation,
we first require that the dissipation be much less than the production and
pressure strain terms. That is,

q′3

Λ

 q′2S or

q′

ΛS

 1.

The result is identical to condition 4.21.
Second, we also require Dσij/Dt � ε because Dσij/Dt ∼ q′2U/L. This

gives the same condition as condition 4.22:

q′

U

L

Λ

 1.

The terms involving pressure fluctuations, that is, the pressure strain terms,
need to be evaluated. A linearized equation for the pressure fluctuations can
be derived by taking the divergence of the linearized momentum equation (ne-
glecting diffusion), provided ρ′/ρ 
 1 and u′/U 
 1. This is in agreement
with the requirements for RDT (in particular, conditions 4.20 and 4.24). The
pressure strain terms can be written as the sum of gradients of pressure velocity
correlations (the pressure diffusion term), and the product of pressure fluctu-
ations and instantaneous velocity gradients (the redistribution term). When
the initial turbulence is isotropic, exact expressions for the pressure strain
terms can be found, but in the general case these terms need to be modeled.
The pressure diffusion is simply neglected in RDA, although this may lead to
inaccuracies. Hunt (1977) indicated that some rapid distortions may develop
pressure fluctuations strong enough to produce significant pressure transport
terms, but he suggested that an inhomogeneous version of the RDT could com-
pute this effect. The redistribution term can also be split into two parts: the
return-to-isotropy part and the rapid part. The return-to-isotropy part is of
the order of the dissipation, and it is therefore neglected. Dussauge and Gav-
iglio (1987) developed a model for the rapid part of the pressure strain terms
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for solenoidal velocity fluctuations ∇ · u′ = 0 and a compressible mean field.
For such flows, the pressure fluctuation obeys a Poisson equation, and the
mean dilatation does not contribute to p′. This result has two consequences.

First, if the mean distortion is isotropic, that is, a pure dilatation or com-
pression with spherical symmetry, the pressure does not damp the effects of
production. The only source term in the equation for σij is then the production
due to turbulence interacting with the mean velocity gradients. The Reynolds
stress equation can be integrated, and as a result the tensor Tij = ρ−2/3σij is
constant along a streamline, and the Reynolds stress σij varies with density
according to:

σij ∝ ρ2/3.

This dependence was also proposed from dimensional considerations by Batch-
elor (1955).

Second, the compressible models for the rapid part of the pressure strain
terms can be derived very simply from the subsonic formulations: the rule
is that the velocity gradient ∂Ui/∂xj should be replaced by its deviatoric
∂Ui/∂xj − 1

3
δij (∂Uk/∂xk). In particular, the rapid part can itself be split

into two parts, one related to mean velocity gradients, (πij)u, and the other to
mean pressure gradients, (πij)p. Because we assume ∇.u′ = 0, the mean pres-
sure contribution can be modelled according to the incompressible formulation
by Lumley (1975, 1978). For the contribution due to mean velocity gradients,
several different models are available (see, for example, Launder et al. (1975)
and Shih and Lumley (1990)).

Finally, we obtain a Reynolds stress equation that can be solved once the
mean field is known. As long as the pressure gradients are much larger than
the turbulent stress gradients, the turbulence does not influence the mean field
and the mean velocity and pressure gradients can be found using the Euler
equation with appropriate boundary conditions. For a supersonic flow, the
method of characteristics can be used.

We see that in trying to solve the problem in terms of the Reynolds stresses,
the basic concepts developed in RDT were used in RDA. However, in RDA the
diffusion processes and the pressure transport are neglected, and the pressure
strain terms need to be modeled. The current models were developed for
incompressible turbulence and they use the incompressibility condition ∇.u′ =
0 extensively. The discussion in the previous section also showed that the
behavior of the pressure may depend strongly on the value of the gradient
Mach number. Although these approximations may lead to inaccuracies, the
resulting simplifications are attractive because they generally lead to tractable
formulations.
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4.4.4 Application to Shock-Free Flows

Computations using RDA were performed in expansions and compressions by
Dussauge and Gaviglio (1987), Jayaram et al. (1989), Donovan (1989) and
Smith et al. (1992). In these experiments, turbulent boundary layers were
subjected to expansions and compressions produced by wall deflections, and
they are described more fully in Chapter 9. Incoming Mach numbers ranged
from 1.8 to 3.0. The pressure gradients were strong, so that the evolution of
the supersonic part of the boundary layer could be computed using the Euler
equations by the method of characteristics applied to the vortical flow of a
perfect gas, together with the boundary conditions given by the experiment.
The mean fields determined in this way were used as the input for the com-
putation of the Reynolds stresses. This computation can be performed along
streamlines because the diffusion terms were neglected. In all these flows, the
gradient Mach number is small, and in any case less always than one. Favre
averages were used, so that enthalpic production terms and their counterparts
in the pressure strain models were retained.

The results for a 12◦ expansion at Mach 1.76 are shown in Figure 4.3. The
general agreement between experiment and computation was excellent. The
main effect on the velocity fluctuations appeared to be due to pure dilatation,
but the rest of the mean distortion (due to mean normal strain and mean
vorticity) also had a significant influence. The effect of dissipation was always
negligible. Near the wall (y/δ < 0.4), the RDA conditions were not fully
met, and the predictions underestimate the turbulence damping. For the 20◦

expansion at Mach 2.89 studied by Smith et al. (1992), the computation
also agreed well with the data, at least for 0.2 < y/δ < 0.8. In this region
the dilatation alone accounted for 90% of the reduction in the streamwise
component of the stress.

For the compressions, the task was more difficult. In each case, the compres-
sion was produced by a concave wall so that near the wall, where the turnover
times are small, the relative length of the distortion increases. For this rea-
son the compression was rapid in the outer flow (where the distortion length
is short and the characteristic time scales are large) and slow near the wall.
Nevertheless, in the outer layer of an 8◦ compression at Mach 2.87, Jayaram
et al. (1989) found satisfactory agreement between the predictions of RDA
and the measurements. Near the wall, the estimate of the nonlinear effects
(associated with the neglected return-to-isotropy and dissipation terms) were
compatible with the observed discrepancies between measurements and RDA.
By including a crude estimate of the dissipation and the return-to-isotropy
contributions, the predictions near the wall were improved considerably, as
shown by Jayaram et al. (1989) and Donovan (1989). With these corrections,
Donovan (1989) found very good agreement between the RDA predictions and
the experimental data for the flow over a concavely curved wall with a turning
angle of 16◦ at Mach 2.87, and for the flow over a flat wall with an externally
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Figure 4.3. Velocity fluctuations in a 12◦ expansion corner at Mach 1.76. ◦,
upstream profile; �, along the last Mach wave in the expansion; - - - -, dilatation
effect; shaded zone, dissipation effect. Arrows indicate streamline correspondence.
(From Dussauge and Gaviglio (1987). Copyright 1987, Cambridge University Press.
Reprinted with permission.)

imposed adverse pressure gradient of similar strength.
As we can see, RDA appears to be a useful tool for computing many con-

tinuous distortions of turbulent flows, provided the Reynolds number is high
enough to satisfy the criteria of rapid distortion. It is also a useful tool to
help understand more complex distortions. Smith and Smits (1996a), for ex-
ample, used RDA to determine the relative importance of several competing
distorting influences in the flow over a forward-facing step (see Chapter 9).

4.4.5 Shock Relations for the Turbulent Stresses

Another application of RDA is the case of a turbulent field passing through a
shock wave. The main argument for using rapid distortion analysis is that the
time of interaction between the shock and a turbulent eddy is very small so
that the nonlinear energy cascade has no time to transfer energy. This leads to
a linear problem if the strength of the shock does not depend on the incident
turbulence. In particular, the shock is assumed to be steady. It was noted
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earlier that the nature of the pressure field may depend on the gradient Mach
number Mg = ΛS∗/a. For large values of Mg, pressure fluctuations do not have
enough time to propagate, so that there is no damping of the distortion by
pressure. If this result still holds in vortical flows with entropy fluctuations, it
suggests that the effect of pressure could be neglected for turbulent fluctuations
passing through a shock, because the characteristic velocity gradient S∗ takes
very large values in a thin shock. The Reynolds stresses then experience the
whole effect of the production terms. This hypothesis was used by Debiève
(1983), who developed relationships for turbulence quantities across a shock
(in effect, jump conditions for turbulence). The main difficulty in the analysis,
the integration through the discontinuity, was resolved by defining a transport
invariant relative to the Reynolds stresses, given by niσijnj, where n is a unit
vector normal to the shock. This quantity is invariant for flows described by
Dσij/Dt = production. Turbulence source terms that modify the transport
invariant were taken into account if they were either continuous through the
shock, or if they varied like a Heaviside function.

The analysis leads to a particularly simple expression for the amplification
of turbulence by a shock wave. The result depends on the orientation and
strength of the shock wave, and it is given by

T2 = K∗T1K (4.25)

with K = I−[Ũ ](n∗/U2n), where T1 and T2 are the upstream and downstream
Reynolds stress tensors, Ũn is the velocity normal to the shock, [Ũ ] is the jump
in velocity across the shock, and the asterisk denotes a transpose. Figure 4.4
gives a polar representation of the Reynolds stress upstream and downstream
of the shock. The vector OM has a magnitude equal to the variance of the
velocity fluctuation and a direction given by the unit vector m. Note that
OM = (u′ · m)2 m, and u′v′ = OP −OQ. The initial state corresponds to an
isotropic tensor and it is represented by a circle. The diagram shows that the
amplification through the shock is a maximum in the direction normal to the
shock.

In this formulation the enthalpic production terms (which can probably
be represented at least approximately as Dirac source terms) are neglected.
Comparisons made with experiments in a 6◦ compression at Mach 1.8 showed
good agreement, which suggests that the approximations based on gradient
Mach number could also be extended to the rapid distortion of shear flows.
However, Smits and Muck (1987) found that in stronger compression corner
interactions at Mach 2.9, the agreement was not satisfactory, and for these
flows the analysis explains only part of the observed turbulence amplification
(see Chapter 10).
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Figure 4.4. Evolution of the Reynolds stress tensor in a 6◦ compression ramp flow.
(From Debiève (1983), with the author’s permission.)

4.5 Mach Numbers for Turbulence

We have seen that a variety of Mach numbers has been used to quantify com-
pressible turbulence. Turbulence models in their present form almost exclu-
sively use the turbulence Mach number M2

t = u′2/a2, or = 1
2
q′2/a2, which

suggests that strong turbulence fluctuations, of the magnitude of the speed of
sound, will produce compressibility effects strong enough to change the global
turbulence properties. If the velocity fluctuations are of the same order as the
speed of sound, we can expect that shocks will be formed in the fluctuating
motion. In some situations, however, this Mach number is not very useful.
For example, acoustical phenomena are entirely dominated by compressibility,
yet Mt is very small for this case. If the rms velocity is obtained from the
isentropic relationship p′ = ρau′, which can be rewritten as p′/p = γMt, we
see that for typical acoustic pressure fluctuation levels it is difficult to obtain
an acoustic wave with velocity fluctuations larger than the speed of sound.
Another example can be found in direct numerical simulations. In simulat-
ing the decay of homogeneous turbulence, Blaisdell et al. (1993) found that
the decay cannot be scaled by the turbulent Mach number alone, and that it
depended strongly on initial conditions and on the relative importance of the
solenoidal and nonsolenoidal parts of the velocity field.

Several other Mach numbers are also commonly used. In Chapter 3, it was
shown that for thin shear layers in supersonic flow, the same approximations
made in subsonic flows can be used, as long as Mv 
 1, where Mv is the
turbulence Mach number based on vertical velocity fluctuations. Some authors
have introduced the fluctuating Mach number M ′, which takes into account
the fluctuations in the speed of sound. In the analysis of boundary layers,
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and in Preston tube calibrations, a friction Mach number Mτ = uτ/aw is often
used. Finally, a parameter widely used in mixing layer studies is the convective
Mach number briefly described in Chapter 1. Its main success is to collapse
the data on the spreading rate of mixing layers formed between two different
gases at high speed.

It is always puzzling, and certainly a little confusing, to introduce so many
different parameters (even though they are all Mach numbers) to characterize
situations that appear to be of the same type. Some questions need to be
asked. Under what conditions are these Mach numbers defined? What is their
physical meaning, and how they are related to each other? Is it possible to
represent the properties of turbulence with some generality, as a function of
any of these quantities?

We can start with the equations of motion. Dimensionless parameters gen-
erally define classes of problems, and they cannot be separated from the equa-
tions to which they are related. The momentum equation indicates that each
time the magnitude of a turbulent stress is compared to the mean pressure, a
Mach number is formed, for example, Mv = v′/a, as indicated earlier. This
is similar to comparing the turbulent kinetic energy to the mean potential or
internal energy, which yields M2

q = 1
2
q′2/a2. This is fundamentally the case

found in the SRA relationship (see Chapter 3), where rms temperature fluctu-
ations are proportional to M and Mt. In boundary layer studies, the friction
Mach number Mτ = uτ/aw can also be understood in the same way.

These interpretations are simple, but not very informative. Models for
compressible turbulence are more ambitious because they try to scale the ra-
tio of the divergence-free part of the velocity field to the compressible part
by a single parameter. A similar attempt was made in Section 4.4, when the
order of magnitude of the ratio (∇.u′)/(u′/Λ) was estimated in terms of Mt.
Although the estimates were approximate, this approach is inadequate even
in the simplest case because this ratio was a function of both Mt and T ′/T .
Therefore, the parameter Mt can be a useful parameter to classify phenom-
ena in shear flows only when the flows have a high degree of similarity. For
example, Blaisdell et al. (1993) showed in their simulations that the structure
of homogeneous sheared turbulence was independent of the initial conditions
and could be characterized by either Mt or M ′.

Compressibility effects found in acoustic waves are certainly different. In
shear flows, intense vortices produce pressure waves such as shock waves or
sound waves, which in turn are a powerful mechanism to generate velocity
divergence, and therefore “compressible” turbulence. The important point in
this case is not so much the Mach number of the (small) velocity fluctuations
produced by the waves, but the Mach number of the strong fluctuations gen-
erated at the origin of the wave. Because the velocity divergence depends on
Mt and T ′/T , a representation using M ′ is therefore probably more appropri-
ate. Because we believe that only relative motions are important, the pressure
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fluctuations produced by vortices will be of a different nature if the velocity
difference across the layer is subsonic or supersonic, so that the pressure term
of Equation 4.14, and consequently ∇.u′ may depend in general on M ′ rather
than Mt, whereas the entropy term is some function of Mt and T ′/T .

These considerations are based on global statistics, rather than a physical
view of the flow. More precise descriptions can be obtained by considering
some particular cases, and it may be possible that this approach can be ap-
plied to other flows as well. For example, the fluctuating Mach number M ′

represents the magnitude of the local Mach number variation, and it may be
the best indication of the effects of compressibility on the distortion of com-
munication paths, and the possible appearance of shocklets. Similarly, the
convective Mach number is based on the mean characteristics of the flow, and
in simple cases it can be interpreted as the Mach number of the relative mo-
tion of the large eddies. This is consistent with the view that the scales of
the energy-containing eddies are of the same order as the scales of the mean
motion. If Mc is larger than one, compressibility affects these large eddies.
The multiple scale aspects of turbulence complicate this approach consider-
ably, and it is not clear that smaller scales, which are less energetic and which
have smaller velocity scales, are also directly affected by compressibility. In
the general situation, the problem is difficult. In self-similar flows, however,
Mc could play the role of a Mach number for turbulence, because all prop-
erties will depend only on similarity parameters and only one Mach number
is required to describe all compressibility effects. It then becomes possible to
derive relationships among Mc, Mt, and M ′. For example, in mixing layers it
may be assumed that

u′/∆U = F (Mc),

where u′ is the peak value of the rms velocity fluctuations at a given streamwise
location, and F is the normalized spreading rate (see Chapter 5). Introducing
the definition valid for mixing layers with the same gas on both sides Mc =
∆U/(a1 + a2), and remarking that u′/(a1 + a2) ≈ u′/2a, we find that Mt ≈
McF (Mc). Because F (Mc) varies from 1 to about 0.7 when Mc varies from 0
to 2, this relation shows that Mt and Mc are of the same order, and are nearly
proportional to each other over a wide range of convective Mach numbers.

The picture would not be complete without referring again to the gradient
Mach number Mg = SΛ/a. Here, SΛ is the velocity difference across a distance
Λ. If this relative velocity is supersonic, Mg > 1, and compressibility effects
are expected to become important, in particular with respect to the pressure
field. In the simple case of mixing layers, the scale Λ is of the order of δω:
Λ = C (Mc) δω, where C can depend on Mc . In the middle of the layer,
∂U/∂y ≈ ∆U/δω, and therefore

Mg ≈ ∆U

δω

Cδω

a
≈ C Mc .
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Because C is of order 1, Mg, Mc, and Mt in these shear flows are all of the same
order of magnitude, and they are nearly proportional to each other, although
they can represent different physical aspects of the flow.

4.6 DNS and LES

Direct Numerical Simulations (DNS) based on the compressible Navier-Stokes
equations require that a large number of scales need to be resolved. In many
high Reynolds number variable-density flows produced in laboratory experi-
ments, in industrial applications (aerodynamics) and in nature (atmospheric
flows), the ratio of the large scales to the small scales is very often greater
than 106, and a very high accuracy is therefore required. There is also one
more variable, the density, and one more equation, the energy equation. More-
over, we have hyperbolic behavior and the equations allow shock solutions that
the numerical algorithms must reproduce accurately. The methods also need
to make compromises between conflicting requirements: they should have a
low numerical viscosity and be able to capture discontinuities such as shock
waves without oscillations. These problems remain challenging, and only the
most refined numerical methods have these capabilities. At present, three-
dimensional computations can have a resolution of 20483 (Kaneda and Ishi-
hara, 2004), which means that the ratio of the smallest scales to the largest
ones is two thousand. For isotropic flows, this may be enough to establish the
high Reynolds number limit (Pearson et al., 2004), but for shear flows, espe-
cially wall-bounded flows at large Reynolds number, experiments still remain
essential, and several new generations of computers (perhaps two or three) will
need to be developed before this situation will change significantly.

There is also the question of which computational techniques can be used.
Among the more accurate are spectral methods, usually in Fourier space, which
naturally lend themselves to homogeneous or periodic flow conditions. This
limits the simulation of compressible flow severely: as pointed out by Lele
(1994), there exist only a few possible instances where compressible flows are
homogeneous. For steady flow, there is only the case of temporally decaying,
homogeneous, compressible turbulence, and the case of pure mean shear with
uniform density. It is also possible to compute homogeneous compressions or
expansions by balancing the dilatation by a time-varying density. There is
obviously a great need to study numerically the behavior of inhomogeneous
compressible turbulence, so that, at present, most of the simulations (DNS
and LES) are very often performed with finite difference schemes of high ac-
curacy. For reasons of computer power and capacity, it is also often preferred
to simulate temporal problems, the longitudinal direction being considered as
homogeneous. This indicates the difficulty found in computing fully inhomoge-
neous, spatially evolving flows. However, this is mostly a question of technical
performance, which will probably find a cure in the next generation of com-
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puters, and which, it is hoped, does not alter significantly the understanding
of the physics of such flows. Current indications are that this holds true, even
for relatively low Reynolds number flows (see, for example, Martin (2004)).

These computations are very appealing, despite their limitations, because
they can produce results that are very difficult or even impossible to obtain
experimentally. First, they can give field properties, because they produce
an entire three-dimensional, time-dependent data set, and quantities such as
vorticity or velocity divergence can be determined, and the existence of shock
waves can be observed or derived. Such data are difficult to obtain experimen-
tally under three-dimensional unsteady conditions such as found in turbulent
flows. Second, they provide data on thermodynamic properties such as pres-
sure, density, and temperature. Direct measurements of these quantities in
supersonic turbulent flows are very difficult in many respects, and informa-
tion from simulations, even if it is imperfect or incomplete, can prove to be
very useful. Third, some particularly interesting experiments are very difficult
to perform at high speed because of experimental difficulties. For example,
it is very difficult to produce a homogeneous, decaying turbulence field in a
flow of good quality, or to generate grid turbulence subjected to homogeneous
shear, or to control the motion of the foot of a shock wave in an experiment.
Similarly, because of the small physical size of the flows produced in typical
research wind tunnels, and because the Reynolds number is usually high, it
is generally more difficult in high-speed flows to take measurements in the
near-wall region, or to measure the slope of the spectrum at high frequencies.
For such problems, the simulations can play an essential role. The status of
the simulations for homogeneous flows and simple shear flows is reviewed in
the next section, and the case of inhomogeneous shear flows such as mixing
layers, boundary layers, and channel flows is examined in Section 4.6.4. The
particular example of the numerical simulation of the interaction of a shock
wave with an incoming turbulence field is discussed in Section 4.7. We should
also mention the recent simulations of channel flows by Coleman et al. (1995)
and Huang et al. (1995). Their results, in particular regarding the pressure
and density fluctuations, and the turbulent time scales, are in good agreement
with what is known about supersonic wall layers, as described in the following
chapters.

4.6.1 Homogeneous Decaying Turbulence

For the case of homogeneous turbulence in a uniform stream with constant
mean density, the first simulations were two-dimensional (Passot and Pou-
quet, 1987). Shock waves were observed, and at the intersection of shock
waves vortices were seen forming. In the three-dimensional case, it was more
difficult to observe these shock waves, partly because of the problems of spatial
resolution. In fact, the formation of shocks depends critically on the amount
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of compressible turbulence put in as part of the initial conditions. A useful
parameter is χ, the ratio of the kinetic energy of the part of the fluctuations
with nonzero divergence to the total kinetic energy. When χ is O(1), nonlinear
effects are observed in the acoustic mode and shock waves are produced by
wave steepening. However, even with an initial χ of zero, Lee et al. (1991) re-
port the occurrence of shocklets for high enough values of the turbulence Mach
number Mt. One of the difficulties in interpreting these simulations is that the
observed decay depends on the amount of dilatation dissipation εd present at
any time, where εd itself depends on the initial values of χ, Mt, and the den-
sity fluctuations. It also seems that differences occur if the acoustic mode is
prescribed independently of the vortical mode (see Sarkar et al. (1991) and
Blaisdell et al. (1993)). When the initial conditions of these two modes are
specified separately, their superposition is obtained: from Kovasznay’s mode
theory it is expected that their interaction is weak. Such behavior was con-
firmed by the work of Kida and Orszag (1990). Moreover, the resolved large
scales had a limited statistical ensemble, and the oscillations in the solution
obscured the observed trends (Lele, 1994).

Nevertheless, the simulations can give some guidance on the trends that
can be expected, and they have been used to calibrate compressible turbulence
closure models. In their present state, they are probably not reliable enough
because of the ambiguities listed in the previous paragraph, and there is some
question as to whether the simulations compute turbulence and the pressure
field generated by the eddies, or whether they compute eddies and acoustic
waves with weak coupling. In addition, because of insufficient dynamics, the
resolved scales are often entirely dominated by viscous effects (Lele, 1994).
Even if the functional form of the closure model is correct, therefore, the values
of the modeling constants probably have to be treated somewhat skeptically.

4.6.2 Turbulence Subjected to Constant Shear

The situation is brighter for homogeneous turbulence subjected to uniform
shear. The simulations are limited to flows with constant mean density, and
they can only describe the shear flows found in real life incompletely because
they give information on the effect of shear alone. This flow is fundamentally
different from an inhomogeneous shear flow, because the latter is bounded and
can lose energy by acoustic radiation. In the homogeneous case, the initial
conditions are rather quickly forgotten, and after some time the ratio of the
solenoidal and dilatational parts of dissipation is nearly constant (Blaisdell
et al., 1993). As expected, the amplification of fluctuations is less than at
low speeds. Long and thin structures with strong negative velocity divergence
have been identified, and they have been interpreted as shocklets developing
between zones where the vorticity has concentrated. This supports the notion
that shock waves can exist within the turbulent motions present in shear flows.
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The simulations also suggest that in practical flows a part of density is related
to pressure through nearly isentropic processes, and another part is connected
to the turbulent transport of heat, which, at moderate Mach numbers, is nearly
isobaric but produces large temperature fluctuations.

Sarkar (1995) has performed simulations for various values of the turbulent
Mach number Mt and gradient Mach number Mg. The gradient Mach num-
ber was based on the velocity difference occurring over a distance equal to an
integral scale (Section 4.4.2), and it was shown that the structure of the pres-
sure field in rapid distortion problems depends critically on this parameter, for
both irrotational mean distortions and for shear flows. In these simulations,
Sarkar attempted to make Mt and Mg vary independently. The data show
that the observed low amplification rate of fluctuations is primarily due to a
low level of turbulent friction and to a lesser extent to dilatation dissipation
and pressure divergence terms. The amplification rate depends strongly on
Mg and it is practically insensitive to variations in Mt. The results suggest
that the first signs of compressibility effects are to be found in changes in the
anisotropy of the Reynolds stresses. This aspect has been widely ignored in
simple compressible turbulence models, and if confirmed, it implies that we are
probably just starting to discover the properties of turbulence in high-speed
shear flows where compressibility effects are significant.

4.6.3 Spectra for Compressible Turbulence

The form of the spectrum in compressible turbulence is still unknown. A
number of theoretical proposals have been made and they were summarized
by Passot and Pouquet (1987) and Lian and Aubry (1993). If acoustic waves
are superimposed on incompressible turbulence, or if shock waves are present
in one-dimensional or two-dimensional turbulence, the shape of the spectrum
may be altered. In fact, there is some evidence to suggest that this is possible.
In most numerical simulations the number of scales is too small to develop
an inertial subrange. Typically, the spectra contain only two decades of wave
numbers. However, the first simulations of two-dimensional compressible tur-
bulence showed that there was a dramatic increase in the spectra at high wave
numbers when shock waves were produced, suggesting that the slope of the
spectrum for small scales could be significantly altered by compressibility. The
more recent simulations by Porter et al. (1994, 1995) of forced and decaying
turbulence contradict these results. For decaying turbulence, the initial rms
Mach number was unity, and they reported the existence of a small spectral
range with a −5/3 slope. Their simulations for turbulence subjected to a shear
showed a larger range. When the solenoidal part and the compressible part of
the velocity are considered separately, a −5/3 range was found for each part.
This implies that the part of the motion which is directly controlled by the
shocklets can also follow a −5/3 law. In a hypersonic boundary layer, Lader-
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man and Demetriades (1974) found experimentally a slope close to −5/3 in
the spectrum at high wave numbers, but these measurements are very difficult:
the −5/3 slope is found in a frequency range where the frequency compensa-
tion of the hot-wire probe is difficult, so that the accuracy of the measurement
may be in question.

More recently, Fauchet (1998) and Fauchet and Bertoglio (1998) have ex-
plored the shape of the spectra provided by the DIA model adapted for com-
pressible isotropic turbulence. They also found a very robust persistence of the
−5/3 power law for the solenoidal spectrum, whatever the value of Mt. Their
results suggest, for low Mt, a −3/2 power law for the compressible part of the
motion, and a −3 power law at large Mt. These results are obtained in the
high wave number ranges of isotropic turbulence. Existing measurements are
restricted to low energetic wave numbers in shear flow turbulence. In this case
a distortion of the spectra is observed, the energetic scales being about half
the size of their subsonic counterparts. These results are discussed in greater
detail in Chapter 8. In summary, although the shape of the spectra appear to
be modified, the asymptotic power laws are still observed.

4.6.4 Shear Flows

The computation of simple shear flows has been very successfully developed
during the last few years, and an overview of these results in canonical flows
such as mixing layers, boundary layers, and channel flows is given in this sec-
tion. Simulations have been performed with (LES) or without a turbulence
model (DNS). Obviously, the LES aim at simulating flows at larger Reynolds
numbers. Many models have been used in LES, from the simple MILES (Boris
et al., 1992), in which the filtering produced by the truncature at the level of
the mesh acts as a sink for the fluctuations of larger scale, to more elaborate
subgrid closures such as the dynamic mixed scale model (Sagaut, 2002). The
adequacy of these models for high-speed flows is not discussed here, because at
the present stage, no specific two-point closure is routinely used in the simula-
tions. However, the discussion presented in Section 4.2 suggests that in flows
where Mt is small, the fluctuating field is almost solenoidal. It may there-
fore be expected that in such flows, typically in channel flows and boundary
layers with M < 4 or 5, no compressible events are expected. That is, it is
probable that no significant singularities such as shocklets occur in the flow,
and DNS may be easier. If no compressibility modeling is needed, low-speed
formulations can probably be used with success.

Mixing layer simulations are more difficult, in that compressibility effects
are important, even for relatively low values of Mc. In Section 6.10, we compare
the predicted anisotropy of the Reynolds stresses to the experimental values.
The behavior of, for example, −u′v′/u′2 reveals more or less similar trends (see
figure 6.16), but the most striking observations are the discrepancies shown at
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low Mach numbers, indicating some serious shortcomings in the computations.

Despite these difficulties, some important results have been uncovered from
the computations. There is uniform agreement among the computations quoted
here (Vreman et al., 1996; Freund et al., 2000; Pantano and Sarkar, 2002). that
the dilatational dissipation and the pressure divergence terms are weak, and
that the decrease in the spatial growth rate reflects a change in the structure
of the fluctuating pressure. So the computations have already proved their
worth by uncovering important physical mechanisms, even if their accuracy
remains insufficient to calibrate models.

The predictions seem to be much better for boundary layer and channel
flows. Many authors have performed DNS and LES simulations for compress-
ible channel flows, including Coleman et al. (1995), Huang et al. (1995), and
Lechner et al. (2001) among others. Their results, in particular regarding the
pressure and density fluctuations, and the turbulent time scales, are in good
agreement with what is known about supersonic wall layers, as described in
Chapter 8. As for flat plate boundary layers, many computations are now avail-
able that demonstrate good results, including Guarini et al. (2000), Maeder
et al. (2001), Stolz and Adams (2003), Pirozzoli et al. (2004), Sagaut et al.
(2004), and Martin (2004), among others. The agreement with measurements
in boundary layers at moderate Reynolds numbers is often excellent. An ex-
ample of LES results obtained by Sagaut et al. (2004) is given in Figures 4.5
and 4.6. The result of the computation is in close agreement with the mea-
surements. Particular hypotheses, such as the assumption of small pressure
fluctuations, are well verified.

Recent DNS results obtained by Martin (2003) and (2004) are particularly
interesting. The computations covered a Mach number range from 3 to 8,
for a constant Reynolds number of δ+ = 400 (corresponding to a value of
Reθ = 2390 at the lowest Mach number, and Reθ = 13, 060 at the highest). A
complementary run at M = 2.23 and Reθ = 2390 allowed comparisons with
the experiments of Debiève (1983), at the same Mach and Reynolds number.
This body of work is discussed more extensively in Chapter 8, but the initial
evaluations show remarkable agreement with the known behavior of high-speed
boundary layers, and further analysis of the DNS database will undoubtedly
lead to a greatly expanded insight into the underlying physics. What is of
equal interest are the DNS results on shock wave-boundary layer interactions
obtained by Adams (2000) and Wu and Martin (2004). A preliminary result
is shown in Figure 10.9, highlighting the wrinkled character of the shock as it
interacts with the incoming turbulent boundary layer. Further consideration
of this work is deferred to Chapter 10.

To conclude this short review, it seems that for homogeneous flows and sim-
ple wall flows (and possibly even for shock wave-boundary layer interactions),
DNS and LES may be accurate enough to predict global properties in a very
reliable way. If valid, this conclusion will open up a new era in high-speed
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Figure 4.5. Longitudinal velocity variance in a supersonic boundary layer, M = 2.3,
Reθ = 4500. , hot-wire measurements, Debiève (1983); �, LDV measurements,
Eléna and Lacharme (1988); ——, LES. (From Sagaut et al. (2004), with permis-
sion.)

boundary layer research, where many old questions can be addressed in an
entirely new way. For example, numerical results can explore the immediate
vicinity of the wall, a zone that is out of reach of most experimental methods.
Moreover, time-dependent phenomena can be examined in great detail, such
as the three-dimensional deformation of a single large-scale boundary layer
motion as it encounters a shock wave. Finally, the computations have already
been used for calibrating turbulence models, and they can help significantly
in their development. It is not clear, however, that all the pertinent param-
eters have been systematically examined, and the available results are very
often dominated by viscous effects. Whatever the present imperfections, it is
expected that future progress in this area will help to improve our understand-
ing of at least some compressibility effects, and it is likely to have a crucial
impact on the development of compressible turbulence models.

4.7 Modeling Issues

In developing turbulence models for high-speed shear flows, Morkovin’s (1962)
hypothesis has often been a starting point. In essence, Morkovin suggested
that for moderate Mach numbers compressibility effects did not influence the
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Figure 4.6. Density, pressure, and temperature fluctuations in a supersonic bound-
ary layer, M = 2.3, Reθ = 4500, obtained using LES. ——- , rms density; - - - - , rms
pressure; —- · · , rms temperature. (From Sagaut et al. (2004), with permission.)

dynamic behavior of turbulence directly, and the principal effect of high speeds
was felt through the change in fluid properties. The next chapter is concerned
with the range of validity of this hypothesis, among other topics, and we show
that it will be possible to describe some flows, such as nonhypersonic boundary
layers with zero pressure gradient, using relatively straightforward extensions
of simple low-speed models. In other flows, such as in mixing layers (see, for
example, Barre et al. (1994)), or in boundary layers with Me > 5 or with
nonzero pressure gradients, there is a need for models taking compressibility
effects into account. Here, we discuss some of the difficulties encountered
when trying to model compressible turbulence using second-order closures. As
we show, this is not a simple task. In contrast to the situation in low-speed
flows, no satisfactory model has been found that is general enough to give
accurate results over a reasonably extended range of applications. The models
for compressible flow are rapidly evolving in as much as this field is relatively
new, and we run the risk of making comments that will become obsolete at
the same rate. Nevertheless, it is probably a risk worth taking, in order to
check that the current proposals are sensible.

It was seen in Chapter 3 that the equation for turbulent kinetic energy
does not have the same form in low- and high-speed flows. For compressible
flows, there is a pressure velocity divergence term, which represents the power
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produced (or lost) by pressure in volume changes. The problem is to determine
whether we can keep the modeling of the other terms unchanged (that is, use
the models derived for incompressible flows) and add one or more extra terms,
appropriately modeled, or whether compressibility modifies several or all of the
terms, or even if the pressure divergence term is actually the most important
one. Another question of interest is to determine if in models of the k–ε variety,
the dissipation equation needs to be modified, and how this should be done.

A useful starting point is the case of subsonic flows with density gradients.
These flows are very different from supersonic and hypersonic flows, but they
can be considered as a benchmark for defining the action of compressibility as
distinct from the departures due to high Mach numbers. At low speed, the
degenerate form of a compressible turbulence model should match the variable
density form. Somewhat surprisingly, work has been performed in this area
only recently. A model accounting for the modification of the turbulent kinetic-
energy diffusion was proposed by Shih et al. (1987), and Huang et al. (1994)
showed that standard k–ε models have enormous difficulties in computing
the equilibrium layer of a subsonic boundary layer with variable density (k–ω
models are more successful in this respect).

One of the difficulties comes from the following reason. In the equilibrium,
constant stress zone, we have:

ρwu2
τ = −ρu′v′ = constant and − u′v′ ∝ k.

Therefore ρ̄k is constant, but k is not. In the equation for k, if the diffusion
term is kept proportional to ∂k/∂y, there exists obviously a diffusion term in
the constant stress zone. This term is a function of the density gradient, which
alters the balance between production and dissipation. As the constants of
these models are linked together, there is a possibility to compensate partially
this imbalance by adjusting one of the constants, for example the turbulent
Prandtl number for the diffusion of the dissipation rate. Guézengar et al.
(1999) and (2000) have used this possibility to compute boundary layers and
mixing layers. Catris (2000) and Aupoix (2002, 2004) have explored another
way by remarking that the diffusion term in the equation for k should be
based on the gradient of ρ̄k to recover equilibrium conditions. Although this
modeling brings a clear improvement, modifications to the equation for ε are
necessary to recover the influence of density gradient on the spreading rate of
the mixing layer. They do not reproduce the effect of compressibility on free
shear flows.

These adjustments are necessary to cure some pathological aspects of the
k-equation in models for incompressible flows. They should not hide more
precise compressibility problems, related to the existence of nonzero velocity
divergence, that result in two consequences for the k-equation: the existence
of a dilatation dissipation and of a pressure divergence term. These terms
represent the explicit effects of compressibility, because new terms appear in
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the equation. This behavior does not exclude the possibility of implicit effects:
compressibility may modify the solenoidal dissipation and the structure of the
fluctuating pressure field, even in the pseudo-sound approximation.

The first attempts to model compressible turbulence (Zeman, 1990; Sarkar
et al., 1991) concentrated on these explicit aspects. In order to proceed, the
source of the divergence terms needs to be identified. Dussauge et al. (1989);
Zeman (1990), and Blaisdell et al. (1993) used order-of-magnitude estimates,
analysis, and numerical simulations, and their conclusions supported the idea
that the strongest sources of velocity divergence are shocklets, not the heating
due to viscous dissipation in solenoidal fluctuations (see also Section 4.2). More
recent work, however, driven by DNS (Vreman et al., 1996; Freund et al., 2000;
Pantano and Sarkar, 2002; Section 4.6), has shown that in many supersonic
shear flows, dilatation dissipation and pressure divergence are negligible, and
the explicit effects cannot explain the anomalous spatial growth rate of mixing
layers. The arguments for a fourth-order scaling in Mt presented in Section 4.2
seem well confirmed, and high-compressibility regimes should be considered to
obtain a significant level of ∂u′

k/∂xk. Moreover, the analysis proposed by
Ristorcelli (1997) suggests that pressure divergence scales as M2

t (P/εs − 1).
This scaling implies that pressure divergence is important if Mt is not small and
if the flow is strongly out of equilibrium (P/εs �= 1). This explains probably
why subsonic models can often provide reasonable predictions of supersonic
boundary layers: in such flows Mt remains small and production balances
dissipation over most of the layer, so that dilatation dissipation and pressure-
divergence are small. The scaling suggests also that pressure divergence can
be important when production and dissipation are very different, that is, in
distorted or perturbed flows. This remains a domain that has not been fully
explored.

The implicit effects are more puzzling. The work by Aupoix (2004) shows
that, before taking compressibility into account, it is necessary to tune the
models to reproduce density effects. Equally, it shows that some improve-
ments are still needed to predict accurately the spreading rate of the subsonic,
variable density mixing layer. Vreman et al. (1996) have clearly shown that
the effect of compressibility in free shear flows is to change the structure of
pressure fluctuations and as a consequence, to reduce −u′v′. This means that
taking pressure divergence and dilatation dissipation into account does not
solve the central issue, and implies that the modeling of −u′v′ needs to be
revised. In two-equation models such as k–ε or k–ω, an eddy viscosity is used,
and the formulation of νt should probably be modified. One possibility is to
make νt a function of some local Mach number. Because the evolution of
−u′v′ is, to a large extent, related to the rapid part of pressure, the choice
of a gradient Mach number appears as a likely candidate. If more detailed
models such as Reynolds stress models, are considered, it is clear that the
focus should be put on the modeling of the pressure strain terms. Their rapid
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part is again related to the gradient Mach numbers, and the nonlinear part
(the return-to-isotropy in incompressible turbulence) depends on the turbulent
Mach number. Note that rapid distortion studies for compressible turbulence
have already proposed models for the dilatational part of the motion (Durbin
and Zeman, 1992; Jacquin et al., 1993; Simone et al., 1997). These models,
however, need to be extensively tested.

The previous considerations have dealt mainly with simple shear flows. The
problems that were raised are found equally in flows strongly out of equilib-
rium, as in shock/boundary layer interactions. Such interactions may consti-
tute new sources of vorticity, and of velocity divergence and of sound. They
may alter significantly the balance between these various elements, and en-
hance compressibility effects. The same points as discussed with respect to
simple shear flows will need to be addressed again, and the specific problems
related to the presence of a shock (production of vorticity, temperature, and
pressure fluctuations through the shock, flow separation, and shock unsteadi-
ness) will require extensive further studies. The review paper by Knight et al.
2003 gives a good overview of the ability of the current turbulence models to
predict such interactions. We must note that LES may also predict some of
these interactions very well, as shown at moderate Mach numbers by Garnier
et al. (2002), and that a great deal of new information is coming out of DNS
(Adams, 2000; Li and Coleman, 2003; Wu and Martin, 2004).




