
Chapter 3

Equations for Turbulent Flow

3.1 Definition of Averages

The complexity of the equations of motion is obvious. Even for incompress-
ible flows, the fact that the velocity and pressure vary with time and cover
a wide range of spatial scales precludes the prospect of a general analytical
approach. When the flow is compressible, the temperature and density be-
come additional variables, and the flow states become even more complex.
The complete problem can only be studied by experiment, or by direct nu-
merical simulations. Direct numerical simulations for compressible turbulent
flows have made great strides in recent years, as has the work in large-eddy
simulation (Lesieur et al., 1992), but because of practical limits on computer
memory and processing speed these computations are currently only possible
at Reynolds numbers typical of transitional flows. At Reynolds numbers cor-
responding to high-speed flight, analytical or numerical approaches have gen-
erally sought to reduce the amount of information contained in the solutions
of the Navier-Stokes equations by considering only the statistical properties
of the flowfield. The equations of motion are then written in terms of the
magnitudes of mean quantities. This operation by itself does not present any
major difficulties, but the resulting expressions contain more unknowns than
there are equations. This is the well-known closure problem. To “close” the
set of equations some empirical input is required, and the process of providing
this input is called turbulence modeling.

The mean quantities appearing in the equations can be found by ensemble
averaging (for flows where long-term variations occur in the flow state) or by
time averaging (where such long-term variations are absent). The definition
of the ensemble average f̂ is

f̂ ≡ lim
N→∞

1

N

N∑
1

nfn,

where f is taken at a given position and time, and N is the rank of the
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62 CHAPTER 3. EQUATIONS FOR TURBULENT FLOW

ensemble (that is, the number of data points taken). In the case where the
flow is statistically steady, which is the case for most of the practical examples
considered here, it is possible to use the ergodic hypothesis to replace the
ensemble averages by time averages (Hinze, 1975). If T is the mean integration
time, where T is sufficiently long for the mean to be stationary, then the time
average f is defined by:

f ≡ lim
T→∞

1

T

∫ t+T

t
fdt.

A number of simple rules govern this averaging procedure. For two arbitrary
variables f and g we have:

(f + g) = f + g, f = f, f · g = f · g,

where the mean is represented by an overbar. In addition, we assume that
the variables are sufficiently regular so that the operations of differentiation,
integration, and averaging may be inverted in order. That is,

∂f

∂xi

=
∂f

∂xi

,
∫

fdυ =
∫

fdυ,

and w = w + w′′ with w′′ = 0,

where the double prime denotes a fluctuation from the (temporal) mean. This
procedure is usually called Reynolds averaging, and the fluctuations are cen-
tered; that is, their mean is zero.

For compressible flows, Reynolds averaging can be used, but it is possible
to simplify the resulting equations instead by using mass averaged variables in
a procedure often called Favre averaging (Mieghem, 1949; Favre, 1965, 1976).
Here we define:

w = w̃ + w′

with
ρ̄w̃ = ρw,

so that
ρw′ = 0.

The tilde denotes the mass weighted average, and the single prime denotes a
fluctuation from the mass averaged mean. In this case, w′ �= 0. Because the
fluctuations are no longer centered, certain statistical results become difficult
to interpret. For example, the variances and covariances of two variables
no longer obey Schwartz’s inequality and therefore a correlation coefficient
can take a value greater than one. However, this decomposition has a great
advantage in that most of the resulting equations have much simpler forms
than the corresponding Reynolds averaged equations.
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3.1.1 Turbulent Averages

Because Favre averaging leads to a simpler notation, the mass averaged forms
of the equations have been used almost exclusively for the computation of
compressible flows. It is worth remembering that it is simply a convenient
notation: no formal simplifications result. We show in Section 3.2 that in the
continuity equation there is a physically important reason for preferring Favre
averages. In the momentum and energy equations, however, terms such as the
viscous terms and the dissipation terms are actually more complicated and less
amenable to physical interpretation when expressed in mass averaged form.

Because we are concerned with the statistical analysis of turbulent flows,
it is important to know which one of the decompositions is more physically
correct in formulating models and closure hypotheses. For example, in using a
gradient diffusion hypothesis do we use Reynolds averages or Favre averages?
Which variables must be used in defining a mixing length? There are no
clearcut answers to such questions, but closure relations are often the result
of interpolation schemes: they are always approximations of some kind, and
very often the uncertainties associated with the models are similar or possibly
greater than the differences between the two decompositions. In the same
spirit, it is often difficult to know what kind of averaging is performed by a
measuring instrument. Is the velocity derived from Pitot tube measurements
closer to a mass averaged value, or a Reynolds averaged value? Again, there is
no obvious answer. Similarly, when a hot-wire is operated at high resistance
ratio it is primarily sensitive to the fluctuating mass flux (see Section 1.7.1),
but the assumptions required to obtain the instantaneous velocity or its mass
weighted equivalent can lead to greater uncertainty in the data analysis than
the differences that arise by using either of the two decompositions.

We can make some of these statements more precise by comparing the two
types of averages and the relationships between them. We only discuss some of
the simpler relationships, and more complete presentations are given by Favre
(1976) and Cebeci and Smith (1974). As before, the single prime denotes a
fluctuation weighted by the mass, and the double prime a fluctuation in the
Reynolds decomposition. Consider the identity:

w = w̃ + w′ = w̄ + w′′.

By multiplying by the density and taking the mean, we obtain:

ρ̄w̃ = ρ̄w̄ + ρw′′ = ρ̄w̄ + ρ′w′′. (3.1)

Hence the difference between the mean quantities w̃ and w̄ is given by:

w̃ − w̄ =
ρ′w′′

ρ̄
. (3.2)
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This difference is a mean quantity which in general depends on the strength
of the mean flow gradients. The difference between the fluctuations w′ and w′′

is also a mean quantity:

w′ − w′′ =
ρ′w′′

ρ̄
. (3.3)

The distinction between the two decompositions therefore depends on the cor-
relation of the variable w with the density, which in turn will depend on the
particular flow under consideration. By way of example we can evaluate this
difference for the velocity fluctuations in a boundary layer on an adiabatic flat
plate. In Section 5.2, we show that in these flows the fluctuations in density
and velocity are connected by the approximate relations:√

ρ′2

ρ̄
= (γ − 1) M2

√
u′2

u
(3.4)

and

Rρu =
−ρ′u′√
ρ′2

√
u′2

≈ 0.8, (3.5)

where Rρu is the correlation coefficient between the velocity and density fluc-
tuations (Equations 3.4 and 3.5 represent one form of the Strong Reynolds
Analogy). To simplify the notation we sometimes use the single prime in the
statistical quantities, as we did in Equation 3.4. In that case the overbar de-
notes a Reynolds averaged quantity, and the tilde a mass averaged quantity,
and there should be no confusion. Also, we generally adopt the convention
V = ui + vj + wk, where u is the velocity in the streamwise direction, v is
in the wall-normal direction and w is in the spanwise direction. Using Equa-
tion 3.2 we find:

ũ − u

u
= Rρu (γ − 1) M2

t ,

where Mt =
√

u′2
/

ā is the turbulence Mach number (see also Section 4.5). A
typical maximum value for Mt in an adiabatic boundary layer with a freestream
Mach number of 3 is about 0.2 (see Figure 7.1), which leads to a maximum
difference between ũ and u that is less than 1.5%. For a strongly cooled wall
flow at Mach 7.2 (Owen and Horstman, 1972), the maximum value of Mt is
about 0.4, which gives a maximum difference between ũ and ū of about 5%, if
Equation 3.4 still holds for this case. It seems that for constant pressure adia-
batic boundary layers the differences between the conventional means and the
mass weighted means are small for boundary layer flows with Mach numbers
less than about 5. In mixing layers or jets, where Mt can take large values
even at relatively low Mach numbers, the differences between Favre averaged
and Reynolds averaged variables may become important at much lower Mach
numbers.
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Finally, consider some of the terms in the equations that contain a mixture
of the two types of variables. For example, terms such as ρ′u′

i and p′u′
i that

appear in the turbulent kinetic energy equation are formed by combining ρ′

and p′, that are variables which have a zero mean, and u′
i, that does not. As it

turns out, these variables have the same value, regardless of the decomposition
used. For example, if we begin with Equation 3.3 for the velocity fluctuation,
multiply both sides by a centered fluctuation c′′, and take the mean, we obtain:

c′′u′
i − c′′u′′

i = c′′
ρ′u′′

i

ρ̄
= −c̄′′

ρ′u′′
i

ρ̄
= 0.

That is,
c′′u′

i = c′′u′′
i .

Because these variables have values that are independent of the preferred de-
composition, we can choose one decomposition to model the terms and then
use the result in the other decomposition.

In what follows, we generally choose whichever approach leads to the sim-
plest representation. As we have seen, the connections between the two rep-
resentations are easily made, and in practical terms the differences between
corresponding variables are usually small for boundary layers in nonhypersonic
Mach numbers.

3.2 Equations for the Mean Flow

The full equations in Reynolds averaged and mass averaged form are given by
Cebeci and Smith (1974). Here we consider the continuity and momentum
equations, the energy equation, and the turbulence kinetic energy. Note that
the mean density and pressure are always expressed in terms of a Reynolds
average, and that ρ′ and p′ are used to denote fluctuations with respect to ρ̄
and p̄.

3.2.1 Continuity

The Reynolds averaged form is:

∂ρ̄

∂t
+

∂

∂xj

(
ρ̄uj + ρ′u′′

j

)
= 0, (3.6)

and the mass averaged form is:

∂ρ̄

∂t
+

∂ρ̄ũj

∂xj

= 0. (3.7)
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Figure 3.1. Control volume for mass conservation.

The equations show that ũj is the mean velocity of mass transport, which
is not true for uj. To illustrate the difference, consider the steady flow through
the control volume shown in Figure 3.1. Here, ũj is tangential to surface Σ
and normal to the cross-sectional areas σ1 and σ2. Because the flow is steady,
∂ρ̄/∂t = 0, and Equation 3.6 can be integrated over the volume defined by
these surfaces. Using the divergence theorem we obtain the Reynolds averaged
form: ∫

ρ′u′′
j njdΣ −

∫ (
ρ̄uj + ρ′u′′

j

)
n1dσ1 +

∫ (
ρ̄uj + ρ′u′′

j

)
n2dσ2 = 0.

The integrals over surfaces σ1 and σ2 represent the mass flow entering and
leaving the control volume. Note that the surface Σ is not the surface of a
stream tube because the mass flow across it,

∫
ρ′u′′

j njdΣ, is nonzero. This
conceptual difficulty does not occur if the same calculation is performed using
a control volume where Σ is tangential to ũj, and normal to the cross-sections
σ1 and σ2. Then the mass averaged form is:∫

ρ̄ũj n1dσ1 −
∫

ρ̄ũj n2dσ2 = 0.

Because there is no mass flow across surface Σ it represents a stream tube,
and therefore ũj is the mean mass transport velocity.

3.2.2 Momentum

The Reynolds averaged form of the momentum equation is:

∂

∂t

(
ρ̄ui + ρ′u′′

i

)
+

∂

∂xj

(
ρ̄uiuj + uiρ′u′′

j

)
= − ∂p̄

∂xi

+
∂

∂xj

(
τ̄ij − ujρ′u′′

i − ρu′′
i u

′′
j − ρ′u′′

i u
′′
j

)
, (3.8)

and the mass averaged form is:

∂ρ̄ũi

∂t
+

∂ρ̄ũiũj

∂xj

= − ∂p̄

∂xi

+
∂

∂xj

(
τ̄ij − ρu′

iu
′
j

)
. (3.9)
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Similar remarks to those made regarding the continuity equation can be made
here. Because mass conservation is inherent in the use of ũj, the mass averaged
equation is simpler. Moreover, the term ujρ′u′′

i in the friction term of Equa-
tion 3.8 does not appear in the mass averaged form and as a result Equation 3.9
is very similar in form to the momentum equation for incompressible flows.
The Reynolds stress in mass averaged variables is simply σij = ũ′

iu
′
j = ρu′

iu
′
j

/
ρ̄.

The difference between this term and ρu′′
i u

′′
j is mainly due to the term ujρ′u′′

i ,
because the triple velocity correlation is expected to be an order of magnitude
smaller than the other stress terms in Equation 3.8. The term ujρ′u′′

i is of the
same order as the other terms, and cannot be neglected (Spina et al., 1994).
However, the corresponding production term in the turbulent kinetic energy
equation is at least two orders of magnitude smaller than the production due to
ρu′′

i u
′′
j , and it is not important for the energy flow in a compressible boundary

layer.
At hypersonic Mach numbers, it is possible that the triple correlation

−ρ′u′′
i v

′′
j may become comparable to the “incompressible” Reynolds shear

stress, ρu′′
i u

′′
j , because ρ′/ρ ∼ M2u′′/U . Owen (1990) evaluated the various

contributions to the “compressible” Reynolds shear stress at Mach 6 through
simultaneous use of two-component LDV and a normal hot-wire. His results
indicate that −ρ′u′′

i v
′′
j is negligible compared to ρu′′

i u
′′
j . Even though density

fluctuations increase with the square of the Mach number, it should be remem-
bered that the main contribution to the Reynolds shear stress occurs in the
region where the local Mach number is small compared to the freestream value,
so this “hypersonic effect” may only be important at very high freestream Mach
numbers.

3.2.3 Energy

The total enthalpy is given by:

h0 = h + 1
2
uiui. (3.10)

Using the definitions given earlier, we have:

h̃0 = h̃ + 1
2

ρuiui

ρ̄
.

That is,

h̃0 = h̃ + 1
2
ũiũi + 1

2

ρu′
iu

′
i

ρ̄
, (3.11)

where h̃0 = ρh0

/
ρ̄, and h̃ = ρh

/
ρ̄. Using these definitions in Equation 2.19,

we obtain:

∂ρ̄h̃0

∂t
+

∂ρ̄ũjh̃0

∂xj

=
∂p̄

∂t
+

∂

∂xj

(
−ρu′

jh
′
0 + uidij − qj

)
.
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It is often useful to expand the stagnation enthalpy in terms of the velocity
and temperature. Hence:

h′
0 = h′ + ũiu

′
i + 1

2

(
u′

iu
′
i −

ρu′
iu

′
i

ρ̄

)
(3.12)

and finally:

∂ρ̄h̃0

∂t
+

∂ρ̄ũjh̃0

∂xj

=
∂p̄

∂t
+

∂

∂xj

(
ũidij + u′

idij − ũiρ̄u′
iu

′
j − 1

2
ρu′

iu
′
iu

′
j

)
− ∂

∂xj

(
qj + ρu′

jh
′
)
. (3.13)

3.2.4 Turbulent Kinetic Energy

The Reynolds averaged form is:

∂

∂t

(
1
2
ρu′′

i u
′′
i

)
+

∂

∂xi

(
uj

1
2
ρu′′

i u
′′
i

)
= −ρ̄u′′

i u
′′
j

∂ui

∂xj

− ujρ′u′′
i

∂ui

∂xj

+ p′
∂u′′

j

∂xj

− ∂

∂xj

(
p′u′′

j + 1
2
ρu′′

i u
′′
i u

′′
j

)
− viscous diffusion – dissipation, (3.14)

and the mass averaged form is:

∂

∂t

(
1
2
ρu′

iu
′
i

)
+

∂

∂xi

(
uj

1
2
ρu′

iu
′
i

)
= −ρu′

iu
′
j

∂ũi

∂xj

− ρ′u′
i

ρ̄

∂p̄

∂xi

+ p′
∂u′

j

∂xj

− ∂

∂xj

(
p′u′

j + 1
2
ρu′

iu
′
iu

′
j

)
− viscous diffusion – dissipation. (3.15)

The turbulent kinetic energy equations appear very similar, if one ex-
cludes the extra convection terms introduced by the Reynolds decomposi-
tion. However, the Reynolds averaged form contains the relative acceleration
ujρ′u′′

i (∂ui/∂xj) which represents the work per unit time required to acceler-
ate a fluid particle of a given mass. This term does not appear in the mass
averaged form, but its place is taken by ρ′u′

i (∂p̄/∂xi). That is, in the absence
of friction it is the pressure gradient that produces the force to accelerate the
flow. The Favre averaged form is simpler in its interpretation, in that the pres-
sure gradient term disappears in constant pressure flows, whereas the relative
acceleration term in the Reynolds averaged equation does not.

The closure problem is also evident from the above equations: the equa-
tions for the mean flow contain second-order mean products of fluctuating
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quantities, and the equations for the second-order quantities contain third-
order products. Equations for the third-order products can also be derived
from the Navier-Stokes equations but these will contain fourth-order prod-
ucts, and so on. If the Reynolds stress equations are to be useful, then at
some point the equations need to be closed; that is, the highest-order prod-
ucts need to be expressed in terms of lower-order products (ρu′

iu
′
iu

′
j in terms

of ρu′
iu

′
i, for example) so that the number of equations equals the number of

unknowns. In this process of turbulence modeling, most attention has been
focused on the turbulence kinetic energy 1

2
ρq2
(
= ρu′

iu
′
i

)
, despite the fact that

the turbulent kinetic energy does not appear in any of the mean momentum
equations. There are two main reasons for this: there are more data avail-
able on the behavior of the terms appearing in the turbulent kinetic energy
equation, compared to the equations for the components of the Reynolds stress

tensor, and the redistribution term p′
(
∂u′

j

/
∂xj

)
vanishes in an incompressible

flow.

3.3 Thin Shear Layer Equations

Thin shear layers are flows where the characteristic scale in the cross-stream
direction is much smaller than the characteristic scale in the streamwise direc-
tion. As a consequence, derivatives of mean quantities taken in the direction
across the flow are always much larger than similar derivatives taken in the
freestream direction. Typical examples include mixing layers, jets, wakes and
boundary layers where the pressure gradients are not too large. For this class
of flows, we can derive a set of approximate equations that are useful for the
understanding of compressible turbulent shear layers.

From a mathematical viewpoint, it is always a risky procedure to simplify
equations before solving them: any simplification will mean that the general
solution cannot be obtained. However, the complexity of the original equations
is so extensive that it is not possible to find the general solution and then
simplify the result for a particular case. This is true even when we consider
only the mean equations together with a closure hypothesis, and therefore it
is very attractive to try to use some empirical observations to derive a simpler
set of equations. Unfortunately, even with very simple closure schemes the
thin shear layer equations themselves cannot be solved analytically. It is also
widely recognized now that the thin shear layer equations are not a good
starting point for a calculation method. In complex flows where, for example,
streamline curvature and pressure gradients are present, the approximations
used in deriving the thin shear layer equations can lead to errors that are of the
same order as the errors introduced by the turbulence model (for a discussion
relevant to subsonic flow, see Hunt and Joubert (1979)). Current calculation
methods for turbulent shear layers now often use the full equations for the
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mean flow, and the approximations are made in the turbulence model, not
in the equations themselves. Any prediction method based on the thin shear
layer equations will lack generality, and will require various levels of additional
modeling to produce a reasonable level of agreement with experiment (see, for
example, Bradshaw (1973, 1974)).

Despite these limitations, the thin shear layer equations still play an im-
portant role. The equations are derived using empirical input regarding the
characteristic scales, which are then used in an order-of-magnitude argument
to identify the dominant terms in the original equation. This process helps to
provide some physical insight into the behavior of compressible turbulent shear
layers by establishing a basis of comparison with the incompressible case, and
by identifying the characteristic scales that govern the shear layer behavior.

In what follows, we use order-of-magnitude arguments to derive the thin
shear layer equations for compressible turbulent flows. It is useful to derive the
equations for the special case of the boundary layer, although the equations
also describe the behavior of other thin shear layers such as mixing layers, jets,
and wakes. Only zero pressure gradient flows are examined.

3.3.1 Characteristic Scales

To begin the derivation of the thin shear layer equations, we need to define the
characteristic scales for the order-of-magnitude analysis. Here we use U and
V as the scales for the streamwise and normal velocities, q′ for the turbulent
fluctuations, ρ∗ for the density, and L and δ for the distances in the streamwise
direction and the wall-normal direction, respectively. The velocity and density
scales are not defined very precisely, but if chosen properly they should be of
the same order of magnitude as the primary variables. For example, in the
outer part of the layer, we can assume that U could be taken as the freestream
velocity. The length scales are equally ill-defined, but again they should be
chosen so that the nondimensionalized derivatives are of order unity. Usually,
L is taken to be the distance from the origin of the boundary layer (in terms
of order-of-magnitude arguments, the difference between the virtual origin of
the layer and the beginning of the turbulent flow is not important). For the
outer flow, δ is taken as the local boundary layer thickness and the velocity
gradients in the direction normal to the wall will, by definition of ∆U , be of
order ∆U/δ, where ∆U , which does not depend on viscosity, will be specified
for each particular case. At reasonable Reynolds numbers it is a matter of
observation that δ/L 
 1. Near the wall, where the velocity gradients are
large, a new set of scales may be needed. The effects of viscosity dominate, and
the appropriate length scale is probably the thickness of the viscous sublayer δv.
The velocity scale for the mean flow should still be the freestream velocity, or
some fraction of it, except perhaps very near the wall where the velocity scale
should be defined using the wall stress. Thus there exist two distinct regions
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that scale with different similarity variables. In the inner layer, the viscous
stress is important, whereas in the outer layer the turbulent frictional stress
dominates. Depending on the region of the flow under consideration, one or
the other form of friction can become important, and in scaling the turbulence
quantities we must look carefully at the contributions of the turbulence and
molecular stresses to the total stress. Here, we consider the outer region first.
The arguments developed here are similar to the used by Tennekes and Lumley
(1972) and Cousteix (1989).

3.3.2 Continuity

For incompressible flow, the continuity equation may be written with the order
of magnitude of each term underneath, as follows,

∂ρ̄ũ

∂x
+

∂ρ̄ṽ

∂y
= 0 (3.16)

∆U

L

V

δ
.

We see that the two terms are of the same order of magnitude, and therefore:

V

∆U
∼ δ

L

 1.

In compressible flow, two additional questions arise: the effect of the den-
sity gradient on the order-of-magnitude argument, and the proper estimate of
the velocity gradient ∂ũ/∂x. The continuity equation (Equation 3.16) can be
written in the form

∂ρ̄ṽ

∂y
= −ρ̄

∂ũ

∂x
− ũ

∂ρ̄

∂x
.

To relate the density and velocity gradients, we need information from the
energy equation. Here, we consider the case of adiabatic layers in a perfect
gas, where the total temperature gradient is small enough to be neglected for
the purpose of order-of-magnitude arguments. That is,

∂T̃0

∂x
=

∂T̃

∂x
+

ũ

Cp

∂ũ

∂x
= 0.

If the pressure is constant, it follows that

∂ρ̄

∂x
= (γ − 1) M2 ρ̄

ũ

∂ũ

∂x

and
∂ρ̄ṽ

∂y
≈ ρ̄

∂ũ

∂x

(
1 + (γ − 1) M2

)
.
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Integrating from the outer edge of the layer yields:

ρ̄eṽe − ρ̄v =

y∫
δ

ρ̄
∂ũ

∂x

(
1 + (γ − 1) M2

)
dy,

where ρ̄eṽe is the wall-normal mass flux at the edge of the layer. For the outer
part of the layer, the orders of magnitude of both sides of this expression are

ρ∗V ∼ ρ∗ (1 + (γ − 1) M2
)
δ

(
∂ũ

∂x

)
.

To find the order of magnitude of ∂ũ/∂x, it is assumed that in the outer
layer that the time scales of the mean and turbulent motions, (∂ũ/∂y)−1 and
δ/q′, respectively, are of the same order, as in subsonic flows (Cousteix, 1989).
That is,

∂ũ

∂y
∼ q′

δ
,

which leads to the conclusion

ũe − ũ ∼ q′,

so that

O

(
∂ũ

∂x

)
=

∆U

L
=

q′

L
.

We need to find the magnitude of q′. It is shown in Chapter 5 that Morkovin’s
hypothesis applies to nonhypersonic boundary layers. As a consequence, we
find that the characteristic scale for the velocity fluctuations is (ρw/ρ)1/2 uτ ,
where uτ is the friction velocity. For an adiabatic plate, the ratio ρw/ρ has a
magnitude given by 1 + 1

2
(γ − 1) M2.

Finally, we obtain an estimate for the order of magnitude of the wall-normal
velocity:

V ∼ uτ
δ

L

1 + (γ − 1) M2(
1 + 1

2
(γ − 1) M2

)1/2 .

So a correction to the incompressible estimate appears that depends on Mach
number. However, for Mach numbers less than 5, the incompressible estimate
V /∆U ∼ δ/L remains valid, and it is used in the rest of the analysis.

3.3.3 Momentum

For the streamwise momentum equation we have:

ρ̄ũ
∂ũ

∂x
+ ρ̄ṽ

∂ũ

∂y
= −∂p̄

∂x
+

∂

∂x

(
−ρ̄ũ′2 + τ11

)
+

∂

∂y

(
−ρ̄ũ′v′ + τ12

)
, (3.17)
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where ũ′
iu

′
j = ρu′

iu
′
j

/
ρ̄, as before. First, we can show that the two terms in

the convective acceleration are of the same order. That is,

ρ̄ũ
∂ũ

∂x
∼ ρ∗U

∆U

L
,

and

ρ̄ṽ
∂ũ

∂y
∼ ρ∗V

∆U

δ
∼ ρ∗ (∆U)2

L
,

for moderate Mach numbers. As in the outer part of low-speed boundary
layers, we find that the second term in the acceleration is smaller than the
first one. Increasing the Mach number will increase the relative importance of
the second term, and the analysis suggests that in hypersonic boundary layers
both terms are of comparable magnitude. In mixing layers and jets, ∆U ∼ U ,
so that no inertial term can be neglected. In the general case, therefore, both
terms on the left-hand side must be retained.

Second, we note that when the friction (that is, the force due to shear stress
gradients) is small, the acceleration terms on the left-hand side are counter-
balanced by the pressure gradient. In general, the pressure gradient term can
be of the same order of magnitude as the acceleration terms and it must be
retained.

As a first step in considering the other terms on the right-hand side of
Equation 3.17, we can show that the viscous terms τ11 and τ12 are small in the
outer region. With Stokes’s hypothesis, we obtain:

τ11 = µ

[
2
∂u

∂x
− 2

3

(
∂u

∂x
+

∂v

∂y

)]
(3.18)

τ12 = µ

[
∂u

∂y
+

∂v

∂x

]
. (3.19)

For boundary layers on an adiabatic flat plate, we can use the approximation

µ
∂ui

∂xj

≈ µ
∂ũi

∂xj

,

where we have neglected terms of the type

µ

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)
.

As justification, consider, for example, µ (∂u′/∂y). Here,

µ
∂u

∂y
= (µ + µ′)

∂

∂y
(ũ + u′)

= µ
∂ũ

∂y
+ µ′∂ũ

∂y
+ µ

∂u′

∂y
+ µ′∂u′

∂y
. (3.20)
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The second term in Equation 3.20 is zero because µ′ = 0. If the gradients of u′

and ũ have comparable length scales (which requires that the density and veloc-

ity fluctuations have similar length scales), then the ratio (∂ũ/∂y)
/(

∂u′
/

∂y
)

has the same order of magnitude as ũ
/

u′. More precisely:

(
µ

∂u′

∂y

)/(
µ

∂ũ

∂y

)
=

u′

ũ
.

By using the Strong Reynolds Analogy (see Equations 3.4, 3.5 and Section 5.2):

u′

ũ
=

−ρ′u′

ρ̄ũ
= −Rρu (γ − 1)

u′2

a2
= −Rρu (γ − 1) Mt

2.

The term containing u′ is therefore negligible if the square of the Mach number
of the fluctuating velocity is small; that is, M2

t 
 1.
To estimate the order of the last term in Equation 3.20, we use the fact that

the viscosity varies with temperature according to (µ/µ0) = (T/T0)
ω, which

implies that µ′/µ = ω
(
T ′
/

T
)

for small fluctuations. If pressure fluctuations

are small, then µ′/µ = −ω (ρ′/ρ̄), and by using the same approximations
adopted for evaluating the second term in Equation 3.20 we find:(

µ′∂u′

∂y

/
µ

∂ũ

∂y

)
≈ ωRρu (γ − 1) M2

(
u′2

u2

)
(
µ′∂u′

∂y

/
µ

∂ũ

∂y

)
≈ ωRρu (γ − 1) M2

t .

So this term will also be negligible if the velocity fluctuations are subsonic (ω =
0.76 according to Equation 2.11). In any case, because ∂ũ/∂y is O(∆U/δ),
and ∂ṽ/∂x is O(V/L), we can now write τ12 ∼ µ (∂ũ/∂y). From the continuity
equation, we know that ∂ũ/∂x and ∂ṽ/∂y are the same order of magnitude,
and therefore τ11 ∼ µ (∂ũ/∂x). If the length scales fulfill the conditions noted
earlier, then (∂τ12/∂y) � (∂τ11/∂x), and

∂τ12

∂y
∼ µ∗∆U

δ2
= ρ∗U∆U

L

L

δ

µ∗

ρ∗Uδ
,

where µ∗ is the characteristic scale for the viscosity.
We see that if the Reynolds number ρ∗Uδ/µ∗ is large enough then the

viscous terms are negligible. Such flows are sometimes called “fully turbulent”.
This means more than simply requiring that the flow must have developed to
the point where there are no intermittent periods of laminar flow, as it does
in the region where the flow is still transitional. That is, we require the outer
flow to be independent of Reynolds number. Specifically, a wake parameter
that depends on Reynolds number is not permitted (see Chapter 7).
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Now we return to Equation 3.17. As the next step in approximating
the right-hand side, consider the turbulent friction, that is, the turbulent
shear stress. Experimental results taken in turbulent shear flows have shown
that all turbulent stresses have a similar order of magnitude, and the mag-
nitude of ũ′2, ṽ′2, and w̃′2 may be represented by q′2. A typical value of
−ũ′v′

/
q̃′2 is about 0.15, and therefore we can assume that −ũ′v′ is O(q′2) for

an order-of-magnitude argument. Hence the term ∂
(
ρ̄ũ′v′

)/
∂y will be of or-

der ρ∗q′2/δ, and because ∂
(
ρ̄ũ′2
)/

∂x will be of order ρ∗q′2/L, the shear stress

gradient will be the dominant term, as in subsonic flows (note that we need
δ/L 
 1 to be sure of this approximation). Also, the viscous part is of order
µ∗ũ/δ2, and the turbulent friction is larger than the viscous term by a factor

(ρ∗Uδ/µ∗)
(
ũ2
/

ũ′2
)
, which is always very large in the outer flow.

Finally, in Equation 3.17, because the term involving −ρ̄ũ′2 and the first
term in the convective acceleration are of the same order, we have

q′2

U∆U
∼ δ

L

in the outer layer. If ∆U ∼ q′, as in boundary layers and wakes, then q′/U ∼
δ/L, and if ∆U ∼ U , as in mixing layers and jets, q′/∆U ∼ (δ/L)1/2 as at low
speed. It is shown in Chapter 6 that the experimental evidence corroborates
this second result.

Subject to the approximations made so far, the boundary layer form of the
mean momentum equation for the streamwise direction is given by:

ρ̄ũ
∂ṽ

∂x
+ ρ̄ṽ

∂ṽ

∂y
= −∂p̄

∂x
+

∂

∂y

(
−ρ̄ũv + µ

∂ũ

∂y

)
. (3.21)

This equation has the same form as for subsonic flows, but of course ρ̄ and µ
are not constant in supersonic flows.

Consider now the mean momentum equation for the direction normal to
the wall, that is, the y-component momentum equation. The pressure gradient
across the layer ∂p̄/∂y is of special interest because all pressure disturbances
in a compressible flow propagate only along characteristic directions. If we
restrict ourselves to the outer region where the viscous terms can be neglected:

ρ̄ũ
∂ṽ

∂x
+ ρ̄ṽ

∂ṽ

∂y
= −∂p̄

∂y
− ∂

∂x
ρ̄ũ′v′ − ∂

∂y
ρ̄ṽ′2 (3.22)

ρ∗UV

L

ρ∗V 2

δ

ρ∗q′2

L

ρ∗q′2

δ
.

The terms on the left-hand side are all of the same order, and they are smaller
than the corresponding terms in the x-component momentum equation by a
factor V /U (or δ/L). Also, the first stress gradient is an order of magnitude
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smaller than the second, and by considering the estimate for q′/∆U , the tur-
bulent friction term can be shown to be much larger than the convection term
in the y-momentum equation. The reduced equation reads:

∂

∂y

(
p̄ + ρ̄ṽ′2

)
= 0,

and because
ρ̄ṽ′2

p̄
= γM2 ṽ′2

ũ2
= γM2

v ,

the pressure is constant across the boundary layer if the Mach number of
the normal velocity fluctuations is small (the approximation breaks down at
high Mach numbers, as first pointed out by Finley (1977)). This result may
be compared to the result for subsonic flows where the pressure is constant if
the dynamic pressure associated with the normal velocity fluctuations is small.
When M2

t 
 1, M2
v 
 1, and then the pressure is only a function of streamwise

distance: the pressure gradient term in the x-component momentum equation
is set by the conditions in the external flow, and, as in subsonic flow, we speak
of the pressure gradient being “imposed” on the boundary layer.

Within the viscous sublayer, the viscous terms need to be taken into ac-
count. In high-speed flows, we do not have many detailed measurements in
this region, but all indications are that for moderate Mach numbers the be-
havior is similar to that occurring at low speeds: the convection terms are
small, the anisotropy of the stresses is modified but the dominant terms are
still ∂

(
ρ̄ũ′v′

)/
∂y and µ∂ũ/∂y. Above all the total stress is constant and equal

to the wall stress, and because it may be shown by similar arguments to those
given earlier that the viscous terms in the y-momentum equation are an order
of magnitude smaller than the wall stress, we arrive at the same conclusion.
That is, the pressure is constant across the boundary layer when M2

t 
 1.
The condition that M2

t 
 1 has now appeared twice. From the results

given in Chapter 1, we know that ρ̄ũ′2
/

τw appears to be a nearly universal

function of the nondimensional distance y/δ where this function f is apparently
independent of Mach number and only weakly dependent on Reynolds number
(see Chapter 8 for further discussion). For a constant pressure boundary layer,

the maximum value of ρ̄ũ′2
/

τw occurs near the wall, and it is about 8 for an
adiabatic wall, as in subsonic flows. That is,

ρ̄ũ′2 = τwf
(

y

δ

)
implying that:

M2
t =

ũ′2

a2
= 1

2
CfM

2
e f
(

y

δ

)
,

which gives a maximum value for M2
t of about 4CfM

2
e . For a boundary layer

in a Mach 3 flow with Cf = 0.001, we have M2
t = 0.036, which is very much
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less than one. At Mach 5 with the same value of Cf , we get M2
t = 0.10

and γM2
v = 0.047 (near the wall ũ′2

/
ṽ′2 is about 6). This is still small,

but at Mach 10, we have M2
t = 0.40 and γM2

v = 0.18, which indicates that
under these conditions the pressure increases across the layer by about 20%
if the anisotropy of the turbulence remains about the same as at lower Mach
numbers. This result is interesting in that it implies that by measuring the
mean pressure distribution across the layer, we can estimate the Mach number
of the fluctuating velocity field and the extent to which compressibility is
influencing the turbulence.

3.3.4 Total Enthalpy

Because we know that gradients of a given quantity in the direction of the
mean flow are always much less than gradients in the direction normal to the
wall, the total enthalpy equation for a steady, two-dimensional boundary layer
becomes:

∂

∂x

(
ρ̄ũh̃0

)
+

∂

∂y

(
ρ̄ṽh̃0

)
=

∂

∂y

(
−ρv′h′

0 + uµ
∂u

∂y
+ k

∂T

∂y

)

=
∂

∂y

(
1
2
µ

∂u2

∂y
− ũρu′v′ − 1

2
ρu′u′v′

)
+

∂

∂y

(
k
∂T

∂y
− ρh′v′

)
. (3.23)

Clearly, the terms on the right-hand side of the energy equation are con-
siderably more complicated than the corresponding terms in the momentum
equation. In the viscous term, we find terms that are quadratic in fluctuating
velocity, and the diffusion of kinetic energy contains terms that are cubic in
fluctuating velocity. It is possible to neglect certain terms in some regions of
the boundary layer, but only at some values of the Reynolds number, and in
general all terms must be retained. However, the following approximations
appear to be reasonable:

µ
∂u2

∂y
≈ µ

∂ũ2

∂y
and k

∂T

∂y
≈ k

∂T̃

∂y
.

We can estimate the errors introduced by these approximations for the case
of a boundary layer on an adiabatic wall, using the procedure given in the
previous section, if we assume that the fluctuations in the total temperature
and the pressure are small. This would show that the approximations are valid
if u′/ũ, MMt and M2

t are all small compared to one. Thus the condition that
Mt 
 1 is necessary to obtain the usual form of the energy equation for a
boundary layer (see below).
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3.4 Summary

In summary, the equations of motion for a turbulent boundary layer in a
steady, two-dimensional, adiabatic supersonic flow are given by:

∂ρ̄ũ

∂x
+

∂ρ̄ṽ

∂y
= 0, (3.24)

ρ̄ũ
∂ũ

∂x
+ ρ̄ṽ

∂ũ

∂y
= −dp̄

dx
+

∂

∂y

(
−ρ̄ũ′v′ + µ

∂ũ

∂y

)
, (3.25)

ρ̄ũ
∂h̃0

∂x
+ ρ̄ṽ

∂h̃0

∂y
=

∂

∂y

(
−ρ̄h̃′

0v
′ + µũ

∂ũ

∂y
+ k

∂T̃

∂y

)

=
∂

∂y

(
−ρ̄h̃′v′ − ρ̄ũũ′v′ + µũ

∂ũ

∂y
+ k

∂T̃

∂y

)
, (3.26)

where we have neglected the term ρu′u′v′ compared to ρ̄ũũ′v′.
As we have noted, the condition M2

t 
 1 is necessary to write the usual form
of the boundary layer equations for supersonic flow. For incompressible flows,
the boundary layer equations are often called the thin shear layer equations
in that they also apply to free shear layers, mixing layers, jets and wakes,
although it should be understood that the approximations involved become
less satisfactory for flows that are not bounded by a wall, mainly because the
velocity fluctuations are generally larger and the layers grow relatively faster.
Similar considerations will apply for compressible flows with the additional
constraint that Mt is typically larger in free shear layers than in boundary
layers.

It was shown that the continuity and momentum equations for thin shear
layers in supersonic flows are identical to those in subsonic flow, as long as the
fluctuating Mach number is small compared to one. This formal analogy does
not prove that the turbulent fluxes are of the same nature at low and high
speeds. In particular, the validity of using turbulence models developed for
subsonic flows in calculations of supersonic flows must be verified. Throughout
this chapter, the fluctuations in velocity were linked to the fluctuations in
mass flux, pressure. and temperature, and therefore it is important to study
the behavior of these parameters in compressible flows, as we show in later
chapters.




