
Chapter 6

ARCHITECTURE ANALYSIS AND SYSTEM

DEBUGGING
A Transactional Debugging Environment

Antoine Perrin and Gregory Poivre
STMicroelectronics France

Abstract: Given the complexity of SoC development in the nanotechnology, it has

become critical to fully validate the system performance at the early stage of

the SoC design flow. This chapter describes the tools and methods for

evaluating the overall SoC interconnect performance, for which the

commercial solutions are not yet available. The proposed methodology is

based on SystemC simulation using a generic IP Traffic Generator (IPTG) and

a powerful monitoring mechanism called SysProbe, which are applicable all

through the SoC analysis flow ranging from the transactional to register

transfer level (RTL) simulations. Such Traffic Generators model the system

IPs and the system traffic dependency with a refinement flow, while real

slaves or targets are used to generate the correct latency. The SoC architecture

is modeled either at the transactional or RTL level according to the

requirements of development costs, simulation speed and precision. SysProbe

provides the results of the architectural analysis to SoC architects.

Key words: transaction; architecture analysis; architecture platform; transactional

debugging; monitoring; transactional viewer; IP traffic generator; SysProbe;

traffic characterization; configuration file; initiator; target; interconnect;

communication model; memory structure model; cycle accurate model.

1. DEFINING SYSTEM-ON-CHIP ARCHITECTURE

1.1 Architecture Definition

Defining a SoC architecture and micro-architecture that will sustain the

real-time constraints of the targeted application is a great challenge. It is yet

207
F. Ghenassia (ed.), Transaction Level Modeling with SystemC, 207-240.

© 2005 Springer. Printed in the Netherlands.

208 Chapter 8 6

again another challenge to verify whether such an architecture or micro-

architecture fulfils the target real-time constraints.

Assume that every IP of a SoC is sustaining its real-time constraints, the

architecture/micro-architecture definition and verification with respect to the

SoC performance must then focus on the following critical components:

• communication structures1;

• shared memory controllers.

To help define these communication and memory structures, an

environment comprises the appropriate tools, models, and the associated

method must be made available. This environment addresses not only the

SoC architects working on the communication and memory structures, but

also the verification engineers verifying the compliance of the SoC

implementation with the application constraints.

Two main input categories are distinguished for this environment:

1. IP Traffic Characterisation.

Every SoC IP that influences the architecture definition must be

modeled in terms of the traffic it generates.

2. Application Real-time Constraints.

A given SoC targets a specific application or application domain. The

real-time constraints associated with this application must be made

accessible so that the estimated or measured SoC performance can be

compared to the performance results analyzed using the application

constraints.

The greatest challenge to implementing the methodology based on the

above environment is getting SoC architects, who currently use spreadsheets

to define the SoC architecture, to adopt this new approach. The appropriate

solution must therefore propose a very simple iteration cycle loop without

obligating the users to learn a new debugging language. The number of

components should also be reduced to the minimum by eliminating those

components that have no direct impact on the performance analysis and

system debugging.

The simplification of the SoC platform assembly can be attained by

adopting the SPIRIT automation strategy and the SPIRIT compliant tools

(see Chapter 7). The SPIRIT automation flow is a compulsory pathway to

implementing the new methodology described in this chapter, i.e.

transactional architecture analysis and system debugging. This automation

flow combines SoC components of various abstraction levels with high

1 Including FIFOs (first-in-first-out) used to access to the communication backbone.

Architecture Analysis and System Debugging 209

efficiency. The next section gives the list of the components constructing

this environment.

1.2 Components of Architectural Platform

The transactional debugging and architecture analysis environment is

composed of the following components:

• Analysis Tool (AT)

AT monitors a simulated system in order to provide the results that are

directly related to the target application constraints.

• Intellectual Property Traffic Generator (IPTG)

The IPTG reads a configuration file describing an IP in terms of its traffic

in order to re-generate the corresponding traffic on the communication

backbone. Advantages of using generic traffic generators include

avoiding time delay due to unavailable models, easier maintenance than

C models, and direct accesses to the traffic scenario for validation.

• Communication Model (COM)

The COM models the communication backbone of a SoC platform. It

serves during the analysis phase to help define the communication micro-

architecture features such as topology, arbitration, and FIFO size.

• Instruction Set Simulator (ISS)

The ISS is used for three cases. First, communication structures and

memory controllers are often programmed by a processor. During the

architecture analysis, the ISS is used to perform this programming task.

Second, the ISS is frequently used for the analysis of interrupts. Third,

the traffic generated by the processor must be taken into account as well.

The ISS can handle this task adequately. While the usage of ISS is

obligatory for the second purpose, the other two purposes can be served

just as well by using a generic traffic generator.

• Bus Functional Model (BFM) or Transactor

The BFM or transactor establishes and assures the correct integration and

communication between components of different abstraction levels. This

component allows a progressively refined model to be easily integrated

into a SoC platform throughout the design cycle, for instance, starting

from TLM IP, to BCA IP, and finally RTL IP.

• Memory Structure Model (MEM)

The MEM models the memory controller and the memory module with

enough details to accurately represent the access latency.

The components introduced above define the overall architecture of a

SoC platform as depicted in Figure 6-1. These components can be applied in

a modular manner to adapt for the specific context of a SoC design team.

210 Chapter 0 6

described hereafter as the starting point for defining specific approaches.

Figure 6-1. The Architecture of a SoC Platform

Three phases are undertaken as generic approaches, starting from the

early definition of the main SoC architectural components down to the

verification of the real chip performance.

1. Early Micro-Architecture Definition.

This definition is based upon IPTG, COM and MEM models. The

RTL model of the memory controller and the behavioral hardware

description level (HDL) memory model could probably be used if the

abstract models are not available. The analysis environment is

provided by the AT. This phase aims at defining the major micro-

architectural SoC features such as topology, FIFO size, arbitration,

and IP clustering.

2. RTL Performance Verification.

This verification is based on the IPTG and RTL implementations of

the components under study. The AT computes the performance

figures and compares them to the same features estimated during the

early micro-architecture definition. The IPTG configuration files

applied in the first phase are reused here to generate the identical

traffic. Indeed, this phase verifies if the communication and memory

models are in compliance with the equivalent RTL implementation.

3. On-Chip Performance Verification.

The third phase is based on the real chip. During the chip verification,

an on-chip performance monitor extracts traces from the chip activity.

generic approach to the SoC performance analysis and verification isA

Architecture Analysis and System Debugging 211

These traces are given as input to the AT that will subsequently

compute the performance figures and compare them with the

measured performance results on the RTL implementation. Some

discrepancies will be noticed because the traffic is generated by the

real IPs in this phase while it is generated by IPTG in the RTL model.

This comparison is very useful to understand how accurate the IPTG

configuration files are with respect to the real IP traffic. The third

phase verifies the accuracy of the IPTG versus the real IPs in the real

context.

2. TRANSACTIONAL DEBUGGING

2.1 The Need for Transactional Debugging

The current SoC generations are based on the multiple initiators/masters

and the multiple targets/slaves. A powerful routing system is required to

interconnect all of these IP blocks, for instance, OCP [1], STBus [2], and

AMBA3.0 [3]. The efficiency of a routing system in conducting the

performance analysis depends strongly on the functionality and the

programming of the system.

Today, the routing system has two drawbacks. First, the complexity of

the routing system continues to grow exponentially. Such growth makes it

impossible to carry out the conventional manual traffic analysis and

architecture study on paper. Although this manual analysis continues to be

helpful in defining the basic system architecture, a simulation tool must be

used to perform a complete traffic analysis and architecture study. Second,

the routing system may result in a system with mixed frequencies and a huge

number of IP instantiations of mixed protocols during the simulation of the

system integration.

If a problem occurs during the SoC integration, engineers will need to

check all components of the SoC platform simultaneously. This could be a

tedious and lengthy job. Consider that a routing connection includes 20

signals in average. If the integration problem occurs, engineers might have

to check up to thousands of signals! Each of these signals represents one line

in a traditional waveform viewer. Bear in mind that a real signification of r

these signals can only be interpreted by combining several signals.

All the problems described above have raised the need for an efficient

solution. This chapter describes our methodological approach, transactional

debugging. The principle of the transactional debugging lies in the

transformation of such signal combinations into a unified transaction, with

the intention to collect all the necessary information in the same location.

212 Chapter 2 6

By adopting the transactional debugging methodology, the debugging

effort is significantly reduced. In the example above, a direct advantage is

the reduction of 20-line simultaneous cross-check in a waveform viewer per

signal trouble-shooting.

Moreover, the transactional debugging helps to avoid the typical lengthy

and tedious study of the different bus protocols for understanding the bus

communication in a system. Not only are time and efforts saved, but the

analysis results of the transactional debugging are much more user-

understandable and user-interpretable than those of signal analysis.

Another interesting advantage of the transactional debugging is that all

types of protocols and abstraction levels could have the same representations

and attributes. In addition, there is at least a common set of parameters made

available for all kinds of point-to-point connections. The rest of the

parameters and transactional structures are defined by the communication

structure.

2.2 Definition of Transactional Debugging

Before getting into further details of the transactional debugging, certain

conceptual definitions are briefly described in this section.

A transaction is defined as a unified element representing a set of data

being exchanged. It includes a list of parameters with each characterized by

its name and value. These parameters can be called later as attributes of the

transaction. The transfer of a transaction is denoted by a starting and ending

date.

A transaction stream is a set of transactions occurring under a particular

context. For instance, transactions between two routing interconnections are

grouped as a specific transaction stream. According to the interconnection

properties, transactions can be overlapped. An overlap of transactions occurs

when a transaction starts its transfer on a stream before other transactions

previously stored on the same stream end their transfers. To indicate the

hierarchy between different transactions, logical relations can be defined to

represent their inter-relations; for instance, predecessor-successor or parent-

child relations.

The transactional information is fully compatible with the corresponding

signal information. Both of them can thus exist in the same environment.

Architecture Analysis and System Debugging 213

2.3 Transactional Debugging Environment

The transactional debugging is essential for the current SoC generations.

It raises the observation level from signals to transactions, and thus reduces

the complexity of the interconnection or communication representation.

To apply the transactional debugging environment in the SoC analysis,

some fundamental building blocks are required. First, monitors for all

interconnections of different abstraction levels must be made available.

Second, an environment supporting the transactional debugging needs to be

set up. Therefore, the AT must be equipped with a set of monitors and an

analysis environment for transactional debugging. Such AT environment is

called SysProbe, standing for System Probe.

The AT monitor is a Finite State Machine (FSM) that recognizes the

protocol of the communication structure in a SoC platform for extracting

information such as addresses and data transferred. The AT analysis

environment should support the recording, visualization, and analysis of

transactions. It should nevertheless be able to mange traditional signals too.

2.4 Monitoring Principles

In the transactional debugging, monitors are made available on a given

SoC platform for:

• different abstraction levels of the same communication structure;

• different communication structures.

Such monitors are built in different manner according to the associated

abstraction levels. Natively available in TLM, the monitor is only surveying

the actual TLM interface or communication function. Quite opposed to the

idea of cycle accurate monitoring as depicted in Figure 6-2, the transactional

monitor is composed of the following components:

1. Data Acquisition Components

Either group of modules listed below is in charge of data collecting:

a) Simulator Link Layer. Its role is to assure the connection between

the monitor and the simulator for a dynamic transaction recording.

The key advantage of such layer is to obtain transactions during

the simulation runtime session. The only disadvantage is that the

monitor must be manually instantiated before launching the

simulation. Through the SPIRIT design automation, this part will

be fully automated and transparent for end users.

b) Value Change Dump (VCD) File Parse. This module is another

option for data acquisition that is used in the post-processing

214 Chapter 4 6

mode. This method is not interactive because the results can only

be studied at the end of the simulation.

2. Finite State Machine

This module is responsible for extracting the signal information

collected by data acquisition components, and processing them into

the transactional information according to the associated bus protocol

before sending them to output modules.

3. Output Modules

There are several output modules for handling the simulation output:

a) Transaction Dumper. This module obtains the transactional

information from the finite state machine, prepares them into the

final database formats, and dumps them into the database.

b) Protocol Checker. This module has two missions. Its first mission

is to assure the transaction integrity by detecting protocol

violations that may affect the attribute integrity of the information.

To perform its first mission correctly, the protocol checker must

be able to verify a minimum set of the protocol rules. Thus, the

module is actually performing its secondary mission to verify

partially the protocol compliance.

c) Performance Analyzer. The analyzer records the native

information of the transaction such as latency, frequency,

occupancy, etc.

d) Transaction Linker. Based on a specific algorithm, the linker is in

charge of detecting the relationship between all transactions to

deduce a “system-level link” between all transactions.

e) Traffic Generator. This module creates a configuration file that

could be reused by IPTG.

The following are the main performance figures logged for performance

evaluation of a given SoC platform:

1. latency statistics;

2. pipeline statistics;

3. opcode distribution;

4. occupancy;

5. throughput;

6. bandwidth;

7. bandwidth occupation.

Architecture Analysis and System Debugging 215

Figure 6-2. Cycle-Accurate Monitoring Structure

As illustrated in Figure 6-2, the FSM is implemented in C++. Note that

the recording mechanism is implemented using SystemC Verification2

(SCV) library. This standard improves the inter-operability between ATs by

providing APIs for the transaction-based recording. Monitors used in the

transaction recording allow targeting all database formats (whose recorders

implement the SCV transaction dumping API with the same code through

the unified API provided by SCV). To manage a new SCV compliant

database format, the only action to perform is to link the new recording

library with the existing probe. Thus, designers can use their own analysis

environment such as text based, Cadence Incisive [4], or Novas Verdi [5].

2.5 Analysis Environment

The transactional debugging analysis environment consists of two parts:

• waveform viewer;

• user plug-in with query-in anry add-on debugging features. nd

2 SCV is the extension of SystemC for verification.

Further details on both parts are provided in the following sub-section.

216 Chapter 6 6

2.5.1 Transactional Viewer

The real-time debugging is fully linked with the high capabilities from

the AT to display transactions along with traditional signals. For this reason,

all the traditional operations applicable to the signal display should also be

applicable to the transactional display. Typical examples of such include

comparison, search, splitting transaction attributes (analogous to splitting

signals in a bus explosion), and expanding all transaction events occurring at

a particular time instant.

On top of these basic display functionalities, a transactional viewer must

take into account various aspects of transactional structure. It means that the

viewer should provide the capabilities of displaying transaction overlaps and

transaction attributes (with flexible control over which attributes to display).

Cadence Incisive and Novas Verdi are two powerful tools that support the

transactional display with high efficiency. Figure 6-3 shows the example of

SimVision transactional display from Cadence Incisive.

Figure 6-3. SimVision Transactional Display

2.5.2 Viewer Statistics Plug-in

The transactional monitor is delivered with a set of predefined queries,

SysProbe Analysis Generator (SPAG). These queries are automatically

generated for a given design based on a configuration file that depends on

the communication structure, COM. All of the COMs supported by the AT

Architecture Analysis and System Debugging 217

integrate a set of SPAG facilities. The results collected by these queries

serve as the basic traffic statistics for that design. Three groups of SPAG

queries are available as shown in Table 6-1.

Table 6-1. SPAG Query

Query Type Query Function

Generic Query Queries independent of COM.

COM Generic Query COM-dependent queries for full COM analysis.

Project Query Project-dependent queries.

Based on the viewer statistics, various performance evaluations can be

examined. As an example, typical analyses obtained through the Cadence

Incisive environment are (see Figure 6-4):

1. COM bandwidth;

2. COM opcode distribution;

3. COM memory map access;

4. COM memory map bandwidth;

5. COM latency statistics;

6. Initiator COM map access;

7. Link between query database table and wave viewers.

218 Chapter 8 6

Figure 6-4. Cadence Incisive Statistics Plug-in Environment

2.5.3 User-defined Statistics

In addition to the SPAG query set, users are allowed to define their own

set of queries. The user-defined query is based on the Cadence Incisive tool,

Transaction Explorer (TxE) [6]. This tool provides users with an easy way to

create specific queries by using the “browse button” where options are

proposed at every step of a query creation.

2.5.4 Embedded Software Plug-in

SysProbe is delivered with a software-profiling plug-in called SysProbe

Embedded Software (SPES). This plug-in associates the embedded software

with the program counter (PC) signal of a given design to allow performing

the hardware-software analysis. Results collected by SPES serve for creating

a correspondence between the software execution and the hardware

transactions recorded on the system.

Based on the disassembled code, SPES creates a correspondence between

source codes and assembly codes during the debugging process to enable

following the code execution by tracking the PC value. Although these

Architecture Analysis and System Debugging 219

principles seem similar to those used in common debuggers, SPES provides

complementary results that give additional benefits to post-mortem analyses

such as capabilities of moving at arbitrary execution time, going back during

execution, and software profiling.

SPES has two key features:

1. Software Execution Display

Note that SPES is not a debugger. As illustrated in Figure 6-5, SPES

provides a post-processing tool that allows hardware designers to

understand the software execution without adding an ISS.

2. Early Software-Profiling

SPES is used for profiling early software execution, particularly in

analyzing the functioning of the interrupt request (IRQ) for a given

SoC platform.

Typical services offered by SPES include:

1. Correspondence between the time cursor and executed source codes.

2. Correspondence between C and assembly codes.

3. Display of function calls as signals.

4. Replacement of bus opcode signals by corresponding function names.

5. Duration and frequency of function calls.

6. Execution number of a specific code line.

Instead of providing just a simple probe, the capabilities listed above can

be extended to provide a system view that relates the embedded software to

the whole system. Thus, SPES makes it possible to track the execution of

software commands in a system. Such ability allows analyzing the software

performance according to the system architecture, and determining the

arbitration influence on the speed of software execution.

220 Chapter 0 6

Figure 6-5. Embedded Software Plug-in of Cadence Incisive Environment

2.5.5 Transactional Link Plug-in

Transactions are characterized by particular relationships among them.

The analysis environment of the transactional debugging must support

features that describe the inter-transactional relationship.

The transactional viewer presented in section 2.5.1 supports such feature.

The transactional linker in the transactional monitor works very well in a

system where all the monitors can communicate together through the same

bus protocol.

This feature, however, is not supported in certain cases where several

heterogeneous systems coexist. A typical example is the simulation with

mixed abstraction levels. A specific plug-in is therefore developed to handle

this situation. As depicted in Figure 6-6, this transactional link plug-in

creates the virtual link between transactions using a post-processing engine.

This added feature is particularly useful to follow up the life cycle of

transactions. By tracking the transactional life cycle, any resultant

transaction during the simulation will be traced from its creation to its

ending. A currently unavailable feature is a tracking from transactions to the

resultant signals.

Architecture Analysis and System Debugging 221

Figure 6-6. Example of Transactional Flow Link

2.6 Verification Role of Transactional Monitors

On top of its role as an analysis tool, the transactional monitor also serves

as a verification tool for TLM IPs. The principle of such verification

methodology is described hereafter.

To begin with, RTL signals of an IP under test are extracted and

converted into transactions from an RTL test bench Based on this

information, the transactional monitor will generate a set of IPTG

configuration files.

Subsequently, a platform comprising an IPTG, COMs, and the TLM

model of the IP under test is constructed for validation. According to the

IPTG configuration files generated earlier by the transactional monitor, the

IPTG will generate the same traffic as monitored at the RTL level. Through

the comparison facility of the AT, the simulation results of the TLM IP are

compared to those of the RTL IP for verification purposes.

2.7 Comparison of Abstraction Levels

Communication structures become similar in a certain sense as they

approach the transactional level. At this point, including a subset of similar

information in the communication structure will help to detect easily the

discrepancy between different levels of abstraction.

A specific tool, TransCompare, is developed based on this concept. This

tool computes the divergence percentage and lists all the discrepancy points

of two traces. Such analyses can be purely functional or timed. Indeed, the

engine of TransCompare ignores the timing information. The timing

information is actually treated the same as any other transaction attributes.

222 Chapter 2 6

By allowing the user to select on which attributes a computation is

performed, TransCompare provides a direct access to both a pure functional

and timed comparison tool. In addition to this key role, TransCompare is

able to align the different naming conventions of transaction attributes from

different database. This feature allows the transaction attributes or

parameters to be correctly identified for comparison.

The main advantage of TransCompare is that it considers the transaction

as a data flow by extracting timing information as parameter or attribute of

the transaction. For this reason, this tool permits computing the functional

convergence of different transactions even if their timing is completely

irrelevant. An interesting added value of TransCompare is its transaction-

filtering mechanism. Considered as data flows, transactions are easily

filtered according to their attributes. Through this filtering mechanism,

transactions traced from an IP can be compared to its reference even if it is

in the integration phase. This method is also fully applicable to the

emulation traces using the VCD input features of the monitoring tool.

3. TRAFFIC GENERATOR

As introduced in section 1.2, the intellectual property traffic generator

(IPTG) is a critical component in a given SoC architectural platform. The

IPTG is a SystemC block that reads a traffic characterization file (i.e. IPTG

configuration file) as input, and subsequently re-generates the corresponding

traffic as output on the platform communication structure.

3.1 Principles

The IPTG is instantiated in a SoC platform following the same manner of

instantiating any other components. The ultimate goal of having an IPTG

instantiated for a given IP is to generate the traffic specific for that IP on a

SoC platform.

A typical SoC platform incorporated with the IPTG could include the

components at any of the abstraction levels listed below:

1. timed transactional level modeling (timed TLM);

2. bus cycle accurate (BCA);

3. register transfer level (RTL).

Architecture Analysis and System Debugging 223

Figure 6-7. SoC Platform with IPTG Instantiation

The structure of a SoC platform with an IPTG instance is depicted in

Figure 6-7. Note that the design under test shown in the figure represents an

IP or a subsystem under test. Once instantiated in a SoC platform, the IPTG

generates traffic on the ports of the communication model, COM. The COM

ports are coded at one of the three different abstraction levels mentioned

earlier: timed TLM, BCA or RTL.

As shown in Figure 6-7, the input to the IPTG is a configuration file that

holds the following information:

• full statistical traffic;

• optional refinement;

• opcode sequence list;

• IP characterization parameters such as frequency and data size.

According to the information of the configuration file, the IPTG re-

generates the IP traffic as the output. Another interesting feature of the IPTG

is that a simulation report of the traffic generation could be produced by the

IPTG for observation. In addition, a synchronization mechanism is

implemented in the IPTG to model the dependency between system events.

3.2 Core Implementation

The building concept of the IPTG is based upon the standard of Open

SystemC Initiative (OSCI). It is therefore fully compatible with the tools of

the mainstream EDA providers. Furthermore, the IPTG is equipped with the

randomization capability founded on SCV, which is an extension of

SystemC for verification. Since both OSCI and SCV are open sources, the

IPTG is a tangible solution totally free of charge.

TLM/BCA/RTL API

Architecture Platform

224 Chapter 4 6

3.3 Traffic Characterization

A given IP can be considered as a succession or a series of synchronized

processes. The IPTG considers any single process or any group of these

processes as behavior. An IP, therefore, is described by the IPTG as a series

of behavior where each of them represents a particular type of IP traffic.

There are two approaches to define and model the characteristics of the

IP traffic:

• Traffic Modeling. Define an IP by a set of behavior where each behavior

represents specific bus traffic as seen from the external world. The IP is

therefore viewed as a black box by users. The overall bus traffic of the IP

could be considered as different specific traffic pieces that represent

different IPTG behavior. The detailed information to configure these

traffic characteristics is specified in an IPTG configuration file. In

addition, there is a rather simple block to ensure a good consistency for

all the behavior switching and overlapping.

• IP Modeling. Define an IP by a set of behavior where each behavior

represents a specific internal IP traffic. This internal traffic is managed

by a bus plug-in interface to subsequently create the bus traffic. The bus

plug-in interface is represented by a FIFO with a threshold value and an

opcode list. As illustrated in Figure 6-8, the bus traffic generated by the

IP is split into two parts: (i) IP traffic that fills the FIFO, and (ii) FIFO

traffic on the bus.

Architecture Analysis and System Debugging 225

Figure 6-8. IP Modeling of IPTG

3.4 IPTG Configuration File

The IPTG configuration file is the key role of the IPTG methodology,

which serves to model the behavior of a given IP in terms of its traffic.

Indeed, the IPTG configuration file is a text file with a set of parameters.

Each parameter or more precisely, each keyword, is assigned a specific

value as an argument. These values are the essential pieces of information to

describe the IP traffic.

To ensure the development effectiveness and simplicity, users only need

to define a subset of the parameters in the IPTG configuration file. Other

parameters are kept optional. This flexibility allows not only a quick traffic

definition but also a later traffic refinement during the project development.

An IPTG configuration file is divided into two sections:

1. Header Section.

This section contains general description of an IP.

2. Behavior Section.

This section provides specific characteristic descriptions of an IP.

Each section holds a list of keywords that are either compulsory or

optional. The IPTG configuration file is written up by choosing the proper

keywords and assigning them with the corresponding argument values. A

particular grammar must be followed to develop both sections.

 An IPTG configuration file could be manually written by architects or IP

developers. The analysis tool, SysProbe, can also generate such a

226 Chapter 6 6

configuration file for a given IP. It monitors the RTL/TLM simulation of the

IP and generates the corresponding IPTG file as illustrated by Figure 6-9.

Figure 6-9. Generation of IPTG Configuration File by SysProbe

3.5 Synchronization

In order to manage synchronization issues, the IPTG incorporates a

mechanism where the IPTG behavior and the bus interface FIFO are

synchronized to get all the possible traffic combinations. Two approaches

are distinguished for implementing synchronization in IPTG methodology:

• Configuration file-controlled synchronization;

• User-defined synchronization.

Recall that there are two synchronization blocks depicted in Figure 6-8.

The synchronization block residing within the IPTG is controlled by a

configuration file while the user-defined synchronization block is external to

the IPTG.

3.5.1 Configuration File-Controlled Synchronization

The IPTG configuration file is extended to include the information of

timing constraints specific for each behavior of an IPTG. Such information

is characterized by a set of configurable parameters, which will be allocated

to the current transfer in a system. Controlled by these timing parameters of

the configuration file, the synchronization of an IPTG based platform can be

adequately respected. Two approaches can be distinguished in handling the

synchronization controlled by the IPTG configuration file:

• Linked Synchronization.

• Event-driven Synchronization.

Architecture Analysis and System Debugging 227

The linked synchronization is intended for “linking” certain IPTGs

together according to a set of predefined configuration rules. There are links

based upon various criteria such as:

a) Process-based synchronization: A given IP is modeled by a set of

processes (also called behavior). This mode assures synchronizing the

different processes within a given IPTG. It is also a synchronization

mode used to release time synchronization between processes coming

from different IPTG.

b) FIFO-based synchronization: As illustrated in Figure 6-8, an IPTG

can include a FIFO. Thus, several basic synchronizations have been

developed to guarantee the synchronization of such FIFOs between

different IPTGs. This feature is normally used to represent an IP that

includes several bus ports. Each port is representing by an IPTG.

Through such mechanism, the IP can be created by grouping all these

IPTGs together.

c) Block-based synchronization: a set of traffic generators consuming

data on a block-based policy; they are synchronized according to the

end of each block.

d) Others: other synchronization policies are available but will not be

described here.

Essentially, the linking synchronization coordinates the synchronization

between all the processes within an IPTG parameterized by the IPTG

configuration file. It also manages the synchronization between different

linked IPTGs that correspond to the same IP. Note that these are both

implementations for the “internal” synchronization of the IPTG blocks that

represent the same IP. The configuration file is responsible for coordinating

the different parts of the IP traffic. It is in charge of starting and stopping

different behavior pieces that correspond to that IP. The main behavioral

attributes parameterized in the configuration file for this purpose include:

1. random behavior succession;

2. randomization with increments or basic constraints;

3. single simulation for each behavior, i.e. no synchronization;

4. FIFO synchronization among different IPTGs.

On the other hand, the event-driven synchronization implements the

system synchronization by coordinating the different IPTGs that correspond

to the different IPs based upon some event-driven conditions. Such

synchronization mechanism is directly included in the traffic definition of

the IPTG configuration file.

Using the linked synchronization helps to obtain groups of IPTGs that

represent the IPs with several bus interfaces. However, a much more

228 Chapter 8 6

complex synchronization mechanism is needed to represent the real system

synchronization between these IPs. For this reason, an event-driven

synchronization mechanism is required.

One of the constraints to implement the event-driven synchronization

was the lack of the ability to change the synchronization mode without

recompiling the system synchronization policy. To solve this problem, such

functionalities are directly embedded into the configuration file of the IPTG.

During the creation of the IPTG configuration file, a synchronization

keyword (e.g. GEN and WAIT with an event name) can be embedded in

each process. If the system synchronization is enabled, then the overall

synchronization common to all IPTG will take care about these event during

the runtime.

By bringing together both the linked and event-driven methods, the

configuration file-controlled synchronization can implement quite complete

but rather basic system synchronization. This approach involves all the

IPTGs instantiated in a SoC architecture platform to create an overall traffic

of the system. It works well if all the major synchronization aspects are

independent of the routing system.

3.5.2 User-defined Synchronization

The user-defined synchronization is an alternative of refining the system

synchronization of the SoC architecture platform. This mechanism is

implemented in the form of an “external” block where the IP behavior or

process is programmed using several IPTG-specific C++ APIs. The event

occurrences related to the synchronization issues are managed by these

APIs. To do so, users simply need to develop single or multiple control

blocks to control the IP behavior. SystemC is strongly recommended as the

programming language for this purpose because it offers the built-in

synchronization blocks.

Although it allows users to fully program the desired synchronization, the

user-define synchronization necessitates a good command of SystemC from

the SoC architect and hence induces a significant coding cost. Furthermore,

the user-defined SystemC block cannot be overloaded during the simulation

runtime. A re-compilation is therefore unavoidable to adapt for this change.

Given the time and effort expenses in programming the user-defined

synchronization block, the untimed TLM SoC platform could be an

interesting alternative. Since the untimed TLM platform is indeed a fully

functional platform with the system synchronization implemented within, it

can thus be reused as some sort of “timing agent” to help defining and

describing the IP traffic on the platform. Based on such “functional”

descriptions, the corresponding IPTG configuration files are prepared by

Architecture Analysis and System Debugging 229

splitting the different behavior pieces according to the “functional”

synchronization. These descriptions are then connected to the matching

untimed TLM models on the untimed TLM platform in order to build a

“timed” TLM platform. As the untimed TLM platform implements very

complete system synchronization, the resultant IPTGs manage to cover the

most advanced parts of the IPTG synchronization. A rather comprehensive

study of the SoC architecture can be realized through the management of the

overall synchronization and data dependency by this method.

3.6 IPTG Simulation Report

The IPTG generates a simulation report at the end of each simulation. If

there are multiple IPTGs, a single simulation report is generated for all of

them. Two key roles of the IPTG simulation report are explained hereafter:

• Verification of Expected Traffic

The resultant traffic from a simulation will be compared to the expected

traffic as described in the IPTG configuration file for verification. If there

are any violations of the expected traffic, the simulation report will list

them out as warnings. The warnings will be shown at different levels

according to the degree of severity. The type of violation will be listed as

well, for instance, non-achieved bandwidth.

• Tracing Effectiveness of FIFO

The FIFO in an IPTG bus plug-in interface is traced by the simulation

report to study its effectiveness. First, a Value Change Dump (VCD) file

is traced. The VCD file contains the information of the FIFO traced

against time during the simulation. Second, a set of general statistical

information is computed for the FIFO throughout the simulation, for

instance, the maximum/minimum value of the FIFO. Figure 6-10 shows a

screen snapshot of the FIFO traffic effectiveness analyzed by the tool of

Cadence SimVision. Here, users can have a direct understanding of the

generated traffic with transactions and of the FIFO evolution with analog

signals.

The ultimate goal of producing an IPTG simulation report is to help the

platform architects to observe, verify, and eventually optimize the

effectiveness of a system.

230 Chapter 0 6

Figure 6-10. Studying Effectiveness of IPTG FIFO using Cadence SimVision

4. ISS INTEGRATION

An Instruction Set Simulator (ISS) is often required to complete the

architecture analysis of a SoC platform. Considering the complexity growth

of the current SoC design, the use of micro-processors has become

compulsory in most of the SoC design.

By using a timed TLM wrapper and the BFM library, the ISS can be

integrated into a SoC platform at the relevant level of the architecture study.

The ISS is utilized for three purposes (which will be detailed in this section):

1. COM programming;

2. interrupt analysis;

3. traffic generation.

Contradictory enough, the pitfall of using the ISS is actually driving the

complexity of the SoC platform much higher. The dependency on the ISS

core and the associated tool-chain are additional aspects to deal with.

Sometimes, the ISS could be the bottleneck of the simulation speed unless

the architecture exploration is conducted at the cycle accurate level. The ISS

will however become less accurate if the architecture analysis is performed

at the cycle accurate level.

Considering the irremediable tendency of using the ISS in the current

SoC architecture analysis, this section will briefly discuss the three main

purposes of integrating the ISS in a SoC platform.

Architecture Analysis and System Debugging 231

4.1 ISS for COM Programming

Most of the communication models (COM) and memory controllers of a

SoC platform require appropriate programming to assure the optimal system

performance. The system micro-processor is frequently held accountable for

this important task.

The IPTG can be used easily to program all the required registers of the

hardware IPs for this purpose. However, this method cannot guarantee the

same programming of the COM for the architecture validation and for the

real software delivery. This is the main reason why the ISS is still necessary

in running the SoC simulation. Therefore, SoC architects have to provide the

routines to configure the COM and other critical architectural components.

Another reason to include the ISS in the SoC simulation is the potential

need for updating the COM arbitration dynamically. The routines of the

COM arbitration may occur upon some interrupts. Unless the whole system

synchronization mechanism is successfully implemented by the IPTG, such

dynamic configuration can only be achieved by applying the ISS.

4.2 ISS for Interrupt Analysis

The second typical purpose of using the ISS in a SoC architectural

platform is to validate the correct execution of interrupts based on the real-

time constraints.

The SoC architectural platform tailored for this purpose focuses on the

ISS and the peripherals that generate interrupts. Other IPs (in the form of

IPTGs) are included on the platform only for generating the noise on the

interconnect and memory controllers, which assures the execution of the

interrupt codes according to real traffic constraints.

The analysis based on the noise generation serves as a preliminary study

of the platform interrupt and traffic. A more advanced study can be carried

out by using the IPTG of all IPs involved in the platform to generate a real

system-level traffic.

4.3 ISS for Traffic Generation

To better analyze a system, the SoC architectural platform should

consider the traffic due to the code fetching and the cache filling. In

addition, the architectural platform should also take into account the

functionalities executed by the system processor core such as the MP3

treatment in a multimedia platform.

Preferably, the ISS is used to execute the code to get the real traffic for a

given application. To simplify the simulation platform, however, the ISS can

232 Chapter 2 6

be replaced by an IPTG to simulate the cache refill accesses. Excluding the

ISS will certainly eliminate the dependency on the ISS-specific tool-suite

and debugger. The IPTG replaces the ISS by providing a generic trace that

includes all of the cache refill accesses.

Before replacing the ISS by the IPTG, a simple platform consisting of the

ISS and a memory is constructed to run the code. A monitoring tool is used

to probe the simulation traces to create the according traffic file. This traffic

file will be re-injected into the substituting IPTG. Then, a new configuration

file will be created for that IPTG so that the IPTG can replace the ISS in the

platform for any simulation.

5. GETTING READY ARCHITECTURE PLATFORM

This section describes briefly of how to get ready a SoC architecture

platform, covering the generic SoC architecture platform, communication

model (COM), memory structure model (MEM), and the accuracy trade-off.

5.1 Generic SoC Architecture Platform

Speaking of the SoC performance analysis, the SoC platform itself would

be the first thing to come across one’s mind. A SoC platform is typically

composed of several model blocks aimed for different purposes, for instance,

the communication model (COM), memory structure model (MEM), IPTGs

and other IP models.

All of these blocks could be modeled at any of the three different levels

of abstraction: timed TLM, BCA or RTL. These model blocks could coexist

in the same SoC platform though they might be modeled at the different

levels of abstraction. Bridges are used to enable the communication among

these blocks. Figure 6-11 gives a better picture of a SoC platform using the

IPTG methodology to perform the architecture analysis.

Architecture Analysis and System Debugging 233

Figure 6-11. Example of Generic IPTG Platform

5.2 Communication Model (COM)

The COM is the structural backbone of the SoC platform intended for

defining the communication micro-architecture features such as topology,

arbitration, and FIFO size. This communication backbone can be modeled at

any abstraction levels of timed TLM, BCA, or RTL, to embrace the

associated communication protocol of the SoC platform.

Considering the exponential growth of SoC design today, the architecture

of a typical SoC platform can easily involve around fifty initiators and tens

of targets. The results of such platforms could be undesirable. Hundreds of

incorrect or non-optimized routing systems may be produced along with

thousands of signals holding very different programming arbitrations. For

this reason, the very powerful analysis tool becomes a must in the current

SoC architecture analysis.

According to the requirements of simulation accuracy and speed, a timed

TLM or cycle accurate routing system is used in a given SoC project. The

trade-off between the different abstraction levels for the routing system is on

the account of SoC architects. Of course, the final choice is certainly

dependent upon the model availability.

A timed TLM simulation aims at the early SoC architecture exploration.

In this analysis phase, a very high number of simulation iteration loop is

IP
T

G
C

on
fig

ur
at

io
n

F
ile

s

234 Chapter 4 6

required to increase the coverage of architecture exploration up to the whole

system. Then, with the known inaccuracy percentage, it helps designers to

draw an initial routing structure by selecting the best suited COM type and

platform architecture.

To carry out the SoC micro-architecture validation or optimization, the

COM parameters need to be programmed accordingly. Thus, using the cycle

accurate model of the COM becomes compulsory in this phase. To avoid

wasting time in re-coding the COM into cycle accurate SystemC models,

various tools such as Tenison Vtoc [7] or Mentor H2C [8] are used to

translate HDL blocks into SystemC codes.

5.3 Memory Structure Model (MEM)

The MEM is a collective name designated for all models representing the

memory controllers and memory modules in the SoC platform. It can be

modeled at any different abstraction levels of timed TLM, BCA, or RTL, by

respecting the common rule of giving enough details to model the access

latency accurately.

To perform the SoC architecture analysis correctly, the TLM MEM must

be configured from an ASCII file extracted from the memory specification

or RTL simulation. The reason of configuring the TLM MEM is to model

the “real” timing of accesses. The delay induced inside the MEM is

computed based on several parameters such as previously-accessed address,

type, current access, etc.

The memory is often the bottleneck of a SoC due to the memory

contention. For this reason, it is recommended to model the MEM at its

fullest possible accuracy. This model can be the cycle accurate SystemC

model translated from HDL. It can also be the non-functional but cycle

accurate blocks, which does not respect the data consistency but the cycle

accuracy of transfers. This is indeed a cycle accurate memory controller

without implementing the functionality of memory accesses.

5.4 Accuracy Trade-off

The proposed methodology can ensure the compatibility of analysis at

different levels of abstraction. Nevertheless, this method is suggested as a

complementary solution to the spreadsheet study.

As illustrated in Figure 6-12, several studies are executed according to

the accuracy requirement during a project life. However, as an incremental

method, the analysis is always refined. Starting from a spreadsheet study, the

HW/SW partitioning as well as the basic COM and MEM choices are

realized. The spreadsheets required during this initial step are reused to

Architecture Analysis and System Debugging 235

program the IPTG configuration file. According to the model available,

timed TLM or cycle accurate simulations can finally be executed.

Figure 6-12. Accuracy Trade-off

6. EXAMPLE OF USING IPTG METHODOLOGY

This section provides a practical example of the SoC architectural

analysis through the IPTG approach. The same methodology is used across

several families of SoCs. One of this chip is the STB7100, a High Definition

Low Bit-Rate Video Decoder, developed by STMicroelectronics.

6.1 Functional View of STB7100
3

The STB7100 is the world’s first single-chip Set Top Box (STB) solution

supporting the High Definition H.264/AVC and VC1 specifications, which

are poised to enable the next generation of high quality consumer video

3 The information in this section is extracted from the website of STMicroelectronics at

http://www.st.com.

236 Chapter 6 6

systems and broadcast services. It also supports the H.264/AVC advanced

video decoding standard, Microsoft’s VC1 standard and high definition

MPEG-2. The STB7100 can be used in:

• cable, satellite, terrestrial and IP set-top box;

• DVD in consumer and automotive.

The STB7100 demultiplexes, decrypts, decodes and outputs HD and SD

video streams with associated multi-channel audio. A dual display

compositor provides mixing of graphics and video with independent

composition for TV/monitor and VCR outputs. SATA and USB interfaces

are provided to enable low-cost connectivity to hard-disk drives and low-

cost system expansion. The functionalities of STB7100 are summarized in

Figure 6-13.

The STB7100 can simultaneously decode multiple HD streams and

output the resultant video to two television sets, or display picture-in-picture.

Its CPU core is a high-performance 300MHz ST40, ST’s 32-bit RISC family

based on the SuperH™ architecture and widely used across digital consumer

applications. It supports all of the current STB operating systems and

middleware, with power to spare for software enhancements in the future.

The new device is based on an innovative video decoding architecture

which combines hardware and software techniques to allow systems to be

upgraded in the field to support new standards as they become available. For

Digital Video Recorder (DVR) applications it features embedded peripheral

interfaces - including serial, ATA and USB 2.0 - to allow external devices to

be added easily to an STB or DVD player, either during manufacture or by

the viewer, in order to provide additional functionality. Viewers increasingly

use digital video recording for program time shifting. Other peripherals that

could be connected to a set-top box through the USB interface include

digital cameras, printers, and memory cards.

Architecture Analysis and System Debugging 237

Figure 6-13. Functionalities of STB7100

6.2 Architecture Analysis of STB7100

As stated above, a typical Set Top Box or DVD SoC is built using:

• several CPUs: a host and several dedicated cores for audio and video

processing;

• hardware IPs: such as hardware assists, graphic processors, and

peripheral interface controllers, each of them behaving as an initiator

and/or a target on the routing system;

• One or several DDR memory controllers called LMI hereafter.

The conception of the communication model for such a complex SoC

starts with a spreadsheet-based analysis. The different working modes of the

system are listed and characterized. For each scenario, the requirements of

all the initiators are detailed then summed up in order to choose the memory

buffers locations and to size the memory interfaces. Then, in order to design

and validate in advance the interconnection between on-chip IPs and to

configure the traffic of the IPs, the whole system is modeled in SystemC at

transaction level.

This platform consists in several tens of IPTGs describing the behavior of

the CPUs and the IPs’ initiator side. The communication model is based on

simple switches and links available both in BCA and RTL. The MEM is

238 Chapter 8 6

made of the LMIs and of basic memories modeling the IPs’ target side. An

example of such platforms is shown in Figure 6-14.

Figure 6-14. Schema of a Communication Model

The IPTGs are modeled at TLM level and the COM and basic memories

at BCA level. The RTL model of the LMIs is used to obtain cycle accurate

behavior for these key components, which are the bottleneck of the system.

A TLM-to-BCA translator is then associated to each IPTG, and a BCA-to-

RTL translator to each LMI port.

The CPUs are, in a second step, replaced by their associated ISS. The

CPUs are configured in traffic modeling mode. The host is in charge of the

communication model and the memory controllers.

The other IPTGs are set in IP modeling mode. An important feature of

the IPTG is that it enables to model the dependencies between plugs of the

Architecture Analysis and System Debugging 239

same IP, thanks to the synchronization mechanism. Consider an IP that

works from memory to memory, the pipeline is stopped whenever a write

plug is full or a read plug is empty.

The analysis of a simulation performed on such a platform is

straightforward because the IPTG FIFO level is monitored. Any

over/underflow in a real-time IP is flagged and the percentage of pipeline

stopped time in decoder IPs is reported.

For each working mode of the IPs, a set of IPTG configuration files is

defined to model the worst case in terms of bandwidth consumption. Then,

scenarios of the spreadsheet analysis are reproduced, gathering the IPTG

configuration files of all the IPS, and a simulation is run for a portion of an

image.

When the performances are not met, the SysProbe transaction debugger

allows to observe directly internal nodes of the communication model and to

analyze the root cause of the performance drop off. A side advantage of this

approach is that the verification of the communication model’s RTL can be

done in the SystemC environment, using meaningful scenarios.

7. CONCLUSION

The methodology proposed in this chapter enables outlining a plug-and-

play architecture environment based on the platform assembly that requires

no new language learning.

The IPTG approach is put forward as a complementary solution to the

conventional architecture analysis on paper, which takes into account the

inadequacy of simulating a real system’s scenario at an accurate level. By

adopting this method, IP designers create directly the IP configuration file

that will be reused across various projects with high flexibility to update

various products. In brief, the very rewarding result of this methodology is

an analysis environment that is powerful yet easy-to-maintain.

REFERENCES

[1] OCP Specification, Available on the OCP Website: http://www.ocpip.org

[2] STBus Functional Specifications, Available on STMicroelectronics Public Support

Website: http://www.stmcu.com/inchtml-pages-STBus_intro.html, April 2003.

[3] ARM AMBA 3.0 Specification, Available on ARM Website: http://www.arm.com

240 Chapter 0 6

[4] Cadence Incisive (SimVision), Information available on Cadence website:

http///www.cadence.com

[5] Novas Verdi, Information available on Novas website: http://www.novas.com

[6] Cadence TxE, Information available on Cadence website: http//www.cadence.com

[7] Tenison Vtoc, Information available on Tenison website: http://www.tenison.com

[8] Mentor Graphics H2C, Information available on Mentor Graphics website:

http://www.mentor.com

