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Abstract: Early embedded software development, covering coding, testing, integration 

and validation, is one of the most important targets of TLM platform 

methodology. This chapter describes mainly the close relationship between the 

TLM platform and the software running on it. The description illustrates how

the software can benefit greatly from the early TLM platform availability. 

Reciprocally, hardware developers can also benefit from the early feedback on

their design when used by the software developers. The TLM platform can 

therefore be considered as the meeting point between hardware and software 

development teams.

Key words: software; Operating Systems; firmware; device drivers; application; protocol 

stack.  

1. INTRODUCTION

Nowadays, no hardware design of a system-on-chip is worth developing 

without any software to exercise its functions. The trend of “the smaller the 

better” in SoC design concept has rapidly pushed the role of software into

prominence during SoC hardware design process. While hardware aspects

are getting very tough to handle due to the ever-rising SoC complexity, the

weight of software aspects becomes more and more important in the overall 

system to manage new hardware functionalities and to replace certain

hardware features. 

This chapter highlights the brand-new role of software in conjunction 

with TLM platforms. It underlines the core idea of how system embedded
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software and TLM platforms could enhance and enrich each other in their 

respective missions. 

The conventional design approach allows a significant amount of the

software being developed, compiled and tested before any strict form of the 

hardware platform is made available. Only a specific part of software could

be developed when the detailed information tightly associated with the 

hardware is accessible in the form of RTL or emulation platform. This part is 

usually the toughest and longest to test and debug. Unfortunately, software

developers are always bound to wait quite long for such hardware platform 

in order to validate their development work. This is not only a costly time 

loss, but also an inefficient cooperation between hardware and software

designers for lack of a common development base. 

Despite the somewhat opposed design philosophies between hardware 

and software fellows, current SoC complexity is urging these two worlds to

work together in a new way leading to concurrent hardware/software design.

Time-to-market reduction and cost saving will be the successful culmination 

of such parallel hardware/software design. 

The idea of hardware/software co-design and co-implementation can be 

realized through a unique reference -the TLM platform-. Indeed, TLM 

platforms provide adequate and accurate hardware information for software 

designers much earlier than the conventional platforms such as RTL

platforms. This information must be sufficiently accurate for software 

designers to start developing, testing, and debugging the software code

closely associated with the hardware without pointless delay following the t

initial software development. In parallel, hardware designers can develop 

RTL platforms aimed at timing-accurate simulations, which are eventually

employed for logic synthesis. 

By the time the RTL design is complete, the software will have already 

been thoroughly verified on TLM platforms. The software design is thus 

ready to be integrated with the RTL hardware platform for system validation

within a much shorter time than the traditional approach. As a result, sound 

and solid concurrent engineering is achieved through the unique reference of 

TLM platform.

A closer study clearly reveals that software running on TLM platforms

can be classified into different categories according to their relationships 

with the hardware platform. This chapter will discuss extensively on the

software categories ranging from design requirements to the mutual 

expectation of benefits between software and its hardware counterpart.

Lastly, the chapter will draw a conclusion on how close collaboration

between hardware and software developers could lead to a virtuous circle.  
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2. SOFTWARE TARGETED FOR TLM PLATFORM 

Throughout the development of a new SoC platform, various teams 

participating in the hardware design are always interested in running 

software programs on the platform. Be it any team varying from RTL design 

to functional verification and integration, early software execution means 

early catching of hardware or software problems. More essentially,

executing software on the target platform helps to identify any potential

mismatch between software and hardware designs.

In spite of its very attractive advantages, getting ready the software for 

early phases of SoC design cycle should never be done at any inappropriate

cost of software development. The software should be executed on a 

development platform that is as close as possible to the final hardware 

platform. That will increase the probability of software reuse on the target

platform with very little or virtually no modification on the subsequent 

hardware platforms. Such reuses trim down not only the overall software

development time, but also the cost of refining software for these platforms.

A key parameter of developing the software targeted at running on TLM 

platforms is the immediate usability of the software in the current hardware

design process. It is not quite convincing to claim a software piece being 

developed early in a project useful if that software piece could only be l

validated on a later hardware platform. The software must be tested on the 

target hardware platform while it is being developed. To bring the software 

and hardware design in parallel, they must be managed in tandem for 

scheduling smooth meeting points that optimize their mutual enhancements.  

Running software programs on TLM platforms may appear easier than 

what it could really be for several reasons listed below:

1. TLM platforms are not real hardware platforms but abstract models t

for new platforms or IPs under design. To reach optimal uses of TLM 

platforms, software adaptations might be necessary.  

2. TLM platforms have diverse modeling varieties. Each model might 

involve subtle adjustments in the software to adapt for non-fully 

covered features such as interrupt request (IRQ) or input/output (I/O). 

3. Software compilations might require specific coding rules for proper 

program-runs in certain simulated environment of TLM platforms, for 

instance, compilations for handling timing issues on inexactly timed

platforms.

All these reasons seem coercive on the software development using 

TLM. These good reasons, however, will definitely lead to efficient software 

coding and better code quality if they are appropriately practiced. 
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2.1 Adequacy of Software and TLM Platform  

2.1.1 TLM Platform Accuracy and Availability for Software 

The software development through the TLM approach depends closely

on the modeling level of the corresponding TLM platform, which directly

reflects the level of accuracy of the target hardware platform. 

TLM platforms not reaching a minimal level of the functional behavior 

of the real platform may mislead designers to an erroneous software

development by masking certain mistakes or bugs. The harmful consequence 

would be giving the wrong impression that the software is validated and 

ready to run on the real hardware platform. If a TLM platform poorly

simulates the final hardware, very few software programs will be able to run

correctly on it. It may miss testing critical features for hardware validation.

The amount of time spent in such software development will be wasted and 

hence a higher global time-to-market.  

On the contrary, it is sometimes unnecessary to have all design features

simulated in TLM platforms if the whole process of concurrent 

hardware/software engineering is not significantly improved. Consider the 

following situation: Running natively compiled software on a timing-

accurate TLM platform will not give any clue to the final softwaret

performance on the target platform. For such case, instead of developing 

timing-accurate TLM platforms, it could be easier to insert annotations 

obtained from cross-compilation into natively compiled software codes for 

studying software performance. Such annotations provide accurate statistical 

timing information without considering hardware features like cache,

memory management unit (MMU) or write buffer, which could heavily

influence the software performance in simulation.  

Executing a software program on various functional TLM platforms has 

resulted remarkable outcomes. As an example, running a JPEG decoding 

program either on a PentiumIV with 1Mbyte of internal cache or on an

ARM926EJ-S with 16Kbyte of internal cache may yield vastly different 

performance results of latency and throughput. The results of executing the 

software on TLM platforms help to better analyze various aspects of the 

hardware and software relationships. The software efficiency and 

correctness on the simulated hardware or hardware modifications for 

facilitating software development are examples of such potential

improvements. 

More importantly, running software on functional TLM platforms brings 

mutual benefits to the two working parties:
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• Hardware Developers 

A live picture of how software programs utilize TLM hardware 

interfaces for real applications, which subsequently helps to improve 

the functional view of IPs on hardware platforms.

• Software Developers 

A live picture of how TLM hardware IPs react when software 

programs are executed on TLM platforms, which subsequently helps 

to improve the software implementation. 

Indeed, these mutual benefits require not only the appropriate modeling 

choices of TLM platforms tailored for varied software design purposes, but 

also the proper manner of developing software in the right perspective of 

TLM platforms available at different design phases. Such careful matching 

of software development with TLM platforms is what we mean by the 

“adequacy of software and TLM platforms”, which aims at optimizing the 

software development through the TLM approach.

2.1.2 Layering Software in TLM Platforms

To achieve such optimization, the software should be developed in

progressive layers corresponding to the different levels provided by TLM

platforms for simulation. This idea is illustrated by the development of a 

software driver for a UART sending and receiving characters on a given 

platform. The coding approach normally begins with a character-by-

character interface, although a direct memory access (DMA) can be used on

the final target platform. In the early design phase, an added-value feature 

like DMA may not be available yet in the hardware platform; besides,

adding DMA in the TLM platform may cause some undesirable time delay 

in simulation. Most of all, it might be inefficient to use DMA for handling

just a few characters because more management of registers and more

software managing I/O blocks will be involved for the same number of 

interrupts. Thus, it is best at this point to start developing the driver without 

supporting DMA. 

The good practice of the “layered” software coding through the TLM 

approach is strongly recommended. This concept is illustrated in the 

example of splitting a UART driver development into five phases as 

described in Figure 4-1. In the figure, each phase is represented by a task 

box. The size of each task box reflects roughly the relative amount of work 

dedicated for that particular phase with respect to the overall development. 
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Figure 4-1. Layered Software Development 

1. Development of basic functional features.

In this example, first phase focuses on developing a functional UART

driver managing simply character-by-character I/O interface. It is fast

to be developed for an early interface testing. 

2. Development of performance features and device options.

Second phase develops performance features and options of the

UART driver such as DMA access and cache management. Usually, 

these features can be easily inserted within the static conditional 

compilation. 

3. Development of added-value features.

To build a complete functional UART driver, all added-value features 

are developed in third phase; for instance, sleep/wake-up mode or 

performance counters. These features may be essential to help 

software designers in developing application software at higher level.

4. Development of time management features.

Fourth phase concentrates on developing time management features

of UART driver such as those for sleep mode or I/O completion

delayed interrupts, which are dynamically configurable through 

external parameters. These features are typically very close to 

hardware view.

5. Development of feature usage policy.

The final phase of “layered” software development determines the

policy of how and when all the optional and performance features

should be strategically employed. The mechanism of using all the

features developed in the four phases earlier is carefully refined in 

this phase.
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From the performance’s point of view, the cost of TLM transactions is 

not very dependent on the amount of the data transmitted. In the example of 

the UART driver development, sending the entire text of a message using a 

DMA will be much faster than using a character-by-character I/O. Although

the layered approach is valuable for the software development, using 

character-by-character I/Os in TLM platforms is inefficient due to their very 

long testing time: Assume that a character I/O takes N register accesses in 

the UART IP, i.e. each character will require N TLM transactions. Suppose

that for every UART access, the DMA makes M register accesses. If the

DMA is enabled, each DMA access to the UART IP can include any number 

of character I/Os, which will require only M TLM transactions. This will

certainly utilize TLM platforms much more efficiently. Therefore, such

performance features should be considered early enough in the design cycle 

to increase TLM platform overall efficiency. 

To conclude, there are three rules to respect for the optimal software 

development and execution on TLM platforms: 

1. Do not develop software too much in advance. It is not worth

developing the software for hardware features available very late or 

prone to change in the future. Time saving may turn out to be

worthless or extra delay may occur when hardware pieces are

available or modified later because of the adaptation time.

2. Organize software development tightly coupled with hardware design 

in layers adapted to IP functions. Basic but complete features should 

be clearly separated from optional parts. These features should be 

incrementally tested in phase with their addition in TLM platforms. 

3. Give priority in developing performance features and device options

for better software performance on TLM platforms. If this is not 

appropriately done, software developers may not make the most 

efficient use of TLM platforms (they may probably get discouraged to 

use the TLM platform due to its slowness).

2.2 Analyzing Software on TLM Platform 

As presented in Chapter 2, TLM methodology offers two distinctive

models of the hardware platform for software development, namely untimed 

TLM (PV) and timed TLM (PVT). The current section focuses on how the

software should be adapted for running on different models of TLM 

platforms.

Practical software properties will be provided throughout this section to 

demonstrate the global software quality improvement that could be brought 
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by each TLM model. Such improvements will be compared to what RTL

models and real chips can do for the software development today. 

2.2.1 Functional Accuracy

TLM platforms are designed to provide an accurate functional view of l

the final hardware platform so that any software with correct functional

behavior will be able to run on them. This may not include running the 

software with some non-functional aspects of the hardware platform such as

real speed, linear time, or event ordering. 

On top of the layered software development explained earlier, writing the

software that is independent of any timing or event ordering issues is another 

good coding practice reinforced by TLM. For example, assume that an I/O

starts with a register-write. The associated software should be ready to 

receive the I/O completion event at any time starting from the return of 

register-write operation. The same sort of the software functional behavior 

can sometimes occur on real chips because of I/O errors or suspended 

instructions due to interrupt handling. An untimed TLM platform, however, 

can offer the same advantage at much earlier availability!

Another example of analyzing the software functional behavior is

described hereafter. Imagine that a software code reads some data from an 

always-ready source and writes it to a sink. In the real life, the sink will take

some time to handle the data before it is ready to consume more data. 

Meanwhile, that extra delay will allow the software to perform other tasks.

In untimed TLM platforms, the sink may accomplish the task instantly or in 

very small simulation time. The software will thus be ready to keep getting 

data from the source and passing it to the sink. If the software is not able to 

handle such behavior, it will spend all its time moving data from the source

to the sink but nothing else! Running such software on TLM platforms will 

give the wrong impression that the functional behavior of either hardware or 

software is incorrect.  

As long as the TLM platform is functionally correct, it will provide an 

absolute time reference with strict event ordering although it may not be

time-accurate. Indeed, the root of the problem above is writing the software

with the assumption that the sink will take enough time to handle its data to

allow other tasks being scheduled. Two methods can handle this situation 

properly: 

1. Let the software manage its tasks in the round-robin such as simple 

executive runtime.

2. Let the software handle the I/O management on an event basis. It will 

require some software adaptations for TLM platforms. The same

problem may still occur if the software has too many events to
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manage. This method, however, helps to handle certain rare real life

situations that are probably never really tested in real chips.

This example clearly illustrates how the software should be adapted for 

the chosen model of TLM platforms for an appropriate analysis of the 

software functional accuracy. 

2.2.2 Global Time Accuracy 

The global time accuracy of TLM platforms is not an easy aspect to 

handle. The reason is that a system should be able to run even if it is not

time-accurate. Since timing is very often an important feature for the 

software, untimed TLM platforms cannot completely ignore the timing 

behavior. Instead of implementing the full timing, events are strongly 

ordered within each IP. There is no global order for events occurring in 

different IPs, meaning that delays between event occurrences of different IPs 

are not accurate.

Implementing the global time accuracy in the software is not particularly

difficult. The software, however, must be ready to manage this behavior 

proficiently. It is a bad coding practice to assume the order of two event 

occurrences in a system. For example, a timeout should be programmed to 

occur anytime after its scheduling without assuming that it may not occur 

before something else.

The major difficulty of implementing the global time accuracy in the 

software is the task management based on timing but not on event, for 

instance, time-sliced scheduling of Operating Systems. Such implementation

is usable only if the software can ensure that a task is able to complete a 

sufficient amount of work before a time-slice. The system could otherwise 

be reduced to switch from task to task with little or no time to perform

anything useful in between! In this case, the software may appear 

functionally correct but the execution result could be too far from the 

expectation of software developers. Software cannot do much to solve this

problem. Rather, the hardware platform should give some hints on the time 

evolution such as estimates of software time expenses. When running

software on untimed TLM platforms, software developers should somehow 

be ready to see some unexpected timing behavior of their programs. 

In contrast, it is quite a different matter to handle the global time

accuracy of the software on timed TLM platforms. Such platforms are able d

to provide the global time accuracy, i.e. a strong ordering of events for the

entire platform. The software can thus be executed more accurately with

respect to its timing behavior, including timeout, time-slice, or delay 

required by platform IPs in handling I/O events. Unavoidably, such timing
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accuracy is paid by a much less efficient software execution because there 

are more events to manage compared to those in untimed TLM platforms.

The global time accuracy of a given platform depends very much on the 

way of how IPs are implemented in the platform. If all IPs comply with the 

timed TLM constraints, the entire platform will be globally time-accurate.

Software programs may run only with approximate timings on the hardware

platform in cases where certain IPs are not timed TLM compliant, or native 

software compilation or non time-accurate ISS is employed. Nevertheless, it 

could be interesting to test the software in environments that are different

from the final timed platform. 

Obviously, it is more understandable to develop and test the software on 

timed TLM platforms with fine-grain timings than on untimed TLM

platforms with approximate timings. The most suitable choice for analyzing

the software behavior related to the global time accuracy is of course the 

timed TLM platform. Software programs, however, should run correctly 

without any code modifications on both untimed and timed TLM platforms.

2.2.3 Protocol-Timing Correctness 

When an external component is connected to a SoC, software developers

need to program the relative timings correctly for eliminating any potential 

communication hazards. This is probably one of the trickiest problems to

solve in the software because its failure cannot be easily detected on RTL

hardware platforms. The symptom of such problem is typically an unstable 

system that works properly for some time, but crashes suddenly with no

warning signs. 

Timed TLM platforms are the best spot to uncover such programming 

errors. For example, PVT platforms can effortlessly reveal insufficient wait

states for accessing a memory IP by comparing the number of wait states 

programmed by the software to its internal characteristics. To do so, the PVT 

memory controller validates if the time amount required by the memory

access is coherent with the number of wait states programmed. If the wait 

states are insufficient, the memory IP can send a notice thanks to the timing 

information held by TLM transactions.  

The concept explained in the example above, by analogy, applies to any 

other external controllers connected to SoC platforms via standard industrial

buses such as I2C, CAN, I2S, SPI, and so on. Once the first prototype board 

around a SoC platform is built, it is usually too late to fix an external

protocol-timing problem where platform controllers and external devices

sharing the same protocol fail to communicate. A “quick and dirty” way to 

overcome such hardware problems is to modify the software, which 
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unfortunately results in, most of the time, reduced performances and 

functionalities.

Protocol collision management is another protocol-timing test that can 

easily be set up thanks to TLM platforms. Some simple bus protocols such

as CAN or I2C are designed to solve collision issues by forcing a master to 

be a slave, which will consequently change the behavior expected by the

software. Protocol collision is a very difficult software behavior to test 

because forcing collision on hardware is a tough procedure that usually

requires special hardware to test all potential cases. Although a bus-cycle 

accurate platform can set up all types of collisions, timed TLM platforms are 

sufficient to set up global collision required by software developers at an 

earlier availability. In addition, the input of the TLM platform could be 

programmed to show such specific hardware behavior. Thus, it can provide

software developers with the ability to validate the actual software behavior 

on demand. 

2.2.4 Resource Overflow 

With the advent of SoC, software developers have somewhat lost a little

of the control they used to have over the unexpected limit reached by

performance. Consider the following case of resource overflow: a 100Mbps 

Ethernet controller together with a fast CPU can sustain an Ethernet flow 

close to the theoretical limit, particularly for full duplex mode without 

collision on wire. If the theoretical limit is far from being reached, software

developers can use a packet analyzer to examine the packets received by 

Ethernet driver from the controller. They might sadly notice that the packet 

is surprisingly in coherence with the speed announced by the application.

The only solution is to analyze deeper the packet flow between its input in

the Ethernet controller, and the interruption signaling for its availability in

the memory. 

In general, it is extremely hard to peek at the activities going on inside a 

SoC. But, there are so many hardware items involved in the packet 

management (IP, DMA, buses, caches, etc) that it is almost impossible to 

easily detect any bandwidth bottleneck. Resource overflow, on top of this

difficulty, is very often hidden by some hardware limitations in bandwidth,

access priority, etc. All these factors make this specific problem a real tough 

job to fix for software developers. In addition, RTL platforms are not exactly

the right solution due to their performance limitation. 

A good tactic to cope with resource overflow will be employing TLM

platforms because they provide adequate details and hints to guide software

developers in locating the problem. Timed TLM platforms optimize timing

measurements to avoid all hardware contentions in accessing resources on 
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the platform. As a result, it is easier to get the best performance 

measurements especially for cases where cycle-accurate ISS is applied. If 

the performance is satisfactory, software developers can proceed with a bus-

cycle accurate platform, which gives results on the miscellaneous hardware 

contentions that the system has to face for this particular test. With all these 

results, software developers will be able to locate the problem of resource

overflow.

2.2.5 Performance Profiling 

The foremost interest of executing software programs on TLM platforms 

is of course getting the software running on the target platform. Once the 

software gets up running properly, the next goal will be collecting early

performance results before the final hardware is available. Performance 

measurements are not only based on timings, but also start with non-timing

counters such as the volume of transactions exchanged by IPs. This job can 

be accomplished adequately by untimed TLM platforms. 

Untimed TLM platforms, however, cannot do much to obtain timing

results. Attempting this on hardware platforms may not be the best choice

because the measurement software itself could modify the overall timing of 

the platform. Since measurement mechanisms are embedded in the IPs, 

timed TLM and RTL platforms are both capable of evaluating timing results

without altering the overall timing of a given platform. Obviously, timed

TLM platforms are better options than RTL platforms for performance 

profiling thanks to their usual earlier availability.

Inconveniences may arise in common practices of performance profiling. 

Frequently, software needs to be modified to obtain profiling results. The 

measurement software is thus intrusive on the system platform. Sometimes,

the profiling procedure could be dreadfully time-consuming or the external

hardware required for extracting profiling results from a platform may not be 

available all the time. 

Through timed TLM platforms, however, all these inconveniences are 

straightforwardly resolved. Since measurement mechanism is embedded in

the platform IPs, performance profiling is independent of any software t

running on the platform. That will greatly reduce the workload of software

developers.

The example of latency profiling gives a better idea of how helpful timed 

TLM platforms could be for software performance profiling. Latency is very 

hard to finely measure when the software is running on the hardware 

platform. Such difficulty is particularly bitter for real-time systems that are

extra-sensitive to latency issues. Timed TLM platforms, nevertheless, can

run real-time software without any modification to conduct profiling such as 
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building the histogram of interrupt latency. Therefore, a software developer 

can get fine and accurate results without any modification of software, just 

by extracting the right profiling from its timed TLM platform.

2.2.6 Hardware Utilization

Running software on TLM platforms grants the ability to detect whether 

software makes the right use of hardware platforms. Additional non-t

functional code can be embedded in TLM platforms to validate if hardware

is utilized properly as expected by its design. Although hardware could 

tolerate certain bad or poor utilization by software, the resulting effects of 

such use are sometimes likely out of software expectations. 

Consider the example of UART transmit-character register. Under 

normal practices, it is not permissible to push another character into this

register if the previous character is not yet consumed. The hardware,

however, allows software to freely write characters in this register as many 

times as it wants, without any effect on the IP behavior. Most of the time,

overwriting character in such manner is a programming error. TLM 

platforms can help to verify the same sort of programming errors without 

much effort. As a result, software developers can obtain reliable hints on the 

potential programming errors in the software.

TLM platforms also provide interesting results about the software

utilization of particular hardware features. For the same register in the last

example, certain UART IPs allow software to push another character in the

register while the current one is being transmitted. This is a special feature to

reduce the latency between the end-of-transmit interrupt and the availability

of the next character to be transmitted, which software developers are invited 

to use as much as possible. Internal counters can easily be enabled to

measure how frequently this hardware feature is used by the software. 

Following the simulation, a statistical listing for the utilization of special

hardware features can be provided. Based on the list, software developers 

can learn better about the hardware utilization by their software 

implementations, whereas hardware developers can see the actual utilization

of hardware features in real cases.

2.2.7 Conclusion

After discussing on how untimed and timed TLM platforms can help 

software developers, Table 4-1 summarizes and compares the different kinds 

of software behavior that can be studied at different modeling levels.
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At first glance, the summary may mislead to the conclusion that bus 

cycle-accurate (BCA) platforms give the best software support. This could 

probably be true if the overall platform performance and setup work are not

considered. This is the reason why these two criteria usually determine the 

interest level of using a TLM platform model for running, testing, and 

debugging software before RTL and real hardware platforms are available. 

If these criteria are considered, BCA is certainly not the best option

because both untimed and timed TLM still provide faster performance than 

BCA, and are usually set up and integrated much quicker. Although RTL is 

the slowest for performance and construction, its vital hardware simulation 

capabilities make it necessary to be constructed (normally after TLM

platforms). Concisely, TLM platforms are the most compelling models for 

running and testing software before the real chip is available on silicon

wafer.

Table 4-1. Software Behavior Observed at Different Modeling Levels

Software Behavior PV  PVT  BCA RTL Silicon

Functional Accuracy Yes Yes Yes Yes Yes

Global Time Accuracy No Yes Yes Yes Yes 

Protocol-Timing Correctness No Yes Yes  No No

Resource Overflow No Yes Yes Yes No 

Performance Profiling Yes/No Yes Yes Yes Yes/No

Hardware Utilization Yes Yes Yes No No

Accurate Concurrency No No  Yes Yes Yes

PV = Untimed TLM BCA= Bus-Cycle Accurate

PVT = Timed TLM RTL= Register Transfer Level

Notice that the accurate concurrency is a behavior listed in Table 4-1 

without being discussed earlier. This is a critical behavior to analyze when 

two or more IPs try to access concurrently the same platform resource like 

bus or DMA. Such concurrency is part of the functional accuracy that can be 

implemented in TLM platforms. The accurateness of such concurrent 

collision, however, is not handled by TLM because it requires cycle 

accuracy to manage the interactions and requests of platform IPs.

2.3 Software Environments of TLM Platform 

Running software on TLM platforms depends not only on the platform

design, but also on the different environments in which the software will be

handled. There are four major TLM software environments, which will be

discussed in the coming sections:
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• Software Development Environment 

Describe how software is produced and debugged.

• Software Execution Environment 

Describe how software is executed on TLM platforms.

• Software Integration Environment 

Describe how software is integrated into TLM platforms. 

• Software Simulation Environment 

Describe how software gets input data and puts output data. 

As depicted in Figure 4-2, these four software environments correspond 

very well to the famous V-diagram for the life cycle of software. Each of the

environments prepares the necessary setting for performing the different 

software work at various phases.

Figure 4-2. Relating TLM Software Environments in V-Diagram 

2.3.1 Software Development Environment

TLM offers the great advantage of having a simulated hardware platform 

that can be either natively compiled for faster speed or cross-compiled for 

binary compatibility and higher accuracy. This dual compilation capability

therefore provides two development environments to software coding and 

implementation. 

The cross-compilation development environment requires embedding a

model for the targeted processor (usually called an ISS) in the TLM

platform. The software can then be compiled for the actual target processor 
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and simulated by the ISS. The software is thus isolated from the TLM

platform execution by the host system.

The native-compilation development environment merges the execution

of the software with the execution of TLM platform IPs by the host system. 

The software is link-edited with the TLM platform simulation code and 

executed as part of the complete platform process; the main characteristic is 

that software shares the same address space as the platform simulation code

itself.

TLM software development environment relies heavily on the decision 

made for software integration. Different integration methods require

different integration tools, for instance, native integration necessitates

different tools from cross-integration. According to the opted integration

method, the appropriate development tools must be applied; and that will 

determine the software development environment. 

Certain development tools, however, remain the same for either native or 

cross integration. A handful of examples include editors, source code 

generators, and particular compilation suites such as those using GNU tools. 

Sometimes, it is even compulsory to keep the same tools. Consider the 

example of GNU tools: If GCC and binutils are used, source code must be 

compiled exactly the same manner in either native or cross environment. The 

reason is that different compilers may actually require code adaptations due

to their different specific syntax or extensions.

Using two different development environments (and thus two different 

integration environments) reinforces software portability, especially if both 

have different compilers. Not only can the code quality be improved by

porting the software on two distinct environments, but more potentials 

problems can also be uncovered through different code compilations.  

Conversely, software may undergo the side effect of being sensitive to 

certain processor aspects listed below due to using two different central

processing units (CPU) in its development environment:

1. Endianness. The software must be ready to support any endianness 

(little, big, reverse, cross, etc) if the two processors (native and cross) 

have different ones. 

2. Assembler. If the software embeds assembly codes as C extension, the 

same function ought to be available for both processors; it should 

otherwise be replaced by a functionally equivalent but less 

performing C code.

3. Self-modifying code. If the embedded software uses self-modification, 

a similar feature must be made available in the native environment.

4. Data alignment and size. If the embedded software relies on specific 

data alignment and size, then the software must provide all used 

compilers with these requirements. 
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5. Addressing features. If the software relies on specific addressing 

features imposed by the final processor, they must be implemented by

any potential native processor.

In the software development chain, post-compilation tools for debugging 

and profiling could be very different between native and cross-compilation.

Software debuggers, in particular, can be totally different. The native 

debugger controls the running platform directly whereas the cross debugger 

controls the platform indirectly via a client-server architecture. Showing too 

many tiny details of the TLM platform to software developers is an 

additional problem of the debugger in native environment. It could be very

confusing for those developers who wish to debug their software but not the 

hardware. The native debugger should then be adapted to display only 

necessary information to software developers.  

Compared to debugging, software profiling on TLM platform is quite a 

different matter. It is only worthwhile for special cases as follows: 

1. Profiling conducted on natively compiled TLM platforms. Although

the results can be very different from the final platform, it gives some 

valuable hints on the behavioral performance of the platform during

early development phase, such as access counters. Calling graphs

might also be extracted in such profiling for early performance and 

execution path analysis. 

2. Profiling conducted on cross-compiled timed TLM platforms. Such

profiling provides the very first idea of software profiling with coarse-

grain timing before RTL hardware platform is available. 

2.3.2 Software Execution Environment 

TLM software execution environment is determined according to the

adopted development environment. Software reaching this phase should be 

ready to be executed for unit testing, either as native compilation or as cross-

compilation with an ISS.  

With such performance-reducing factor as ISS overhead in cross-

execution or hardware emulation, native execution is certainly the fastest 

execution environment. This is nonetheless not always a true statement

because timing issues in natively compiled codes are totally different from 

those in cross-compiled codes. For an example, a different timing in 

hardware could probably cause such an overhead that the software is

paralyzed, or it could probably run the software correctly in the native mode 

but masking some stubborn bugs that would only be visible under ISS

execution!
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One of the assumptions held in the previous example is that the compiler 

chain produces correct code in both native and cross cases. Running native

codes can help nothing in debugging cross-assembled parts or coprocessor 

specialized instructions. In addition, certain data representations cannot be

compiled because they are unavailable on native platforms, for instance, 

floating-point representations. 

The toughest challenge in software execution is the memory mapping of 

the software. It is quite straightforward for software cross executed with an

ISS. The software simply runs in the memory space defined by the ISS, i.e. 

the memory zone perceived by the software in the platform. The situation,

however, becomes trickier in native execution. The software is bound to run 

in the memory space defined by the local host, which could be different from 

the one programmed in the software for the final hardware platform. 

Consequently, the software needs to be relocated into this different 

memory zone. Addresses of memory layout might need to be translated to 

addresses not used by the underlying host system. Some software

adaptations are required to remap cross-compiled hardware addresses into

natively-compiled addresses without flaw. There is something similar to 

implement for register accesses. The reason is that they are not simple 

memory-mapped read and/or write accesses as in the cross-compiled 

environment, but requiring some modifications to fit the actual bus modeling

schema.

The register access remap should never be regarded as useless overhead, 

but rather as a good software coding practice. It allows the re-definition of 

hardware register accesses via generic read and/or write macros according to 

different compilation modes. Native compilation paves the way for software 

developers towards the first functional view on the final hardware platform;

meanwhile, it enables the implementation of valuable portability features in 

software.

Among all the possible native execution environments, the operating 

system (OS) emulation deserves a special hat’s off. Its goal is to abstract the 

interface between the OS and the hardware platform to set up a native

environment. In this environment, applications can run natively on the OS 

layer while the OS itself can run natively as well on the hardware platform.

Since the CPU used in the host machine is more powerful than the one in the

real hardware, such setting can reach very high performance by running

software on the simulated platform much faster than on the real hardware 

platform.
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2.3.3 Software Integration Environment 

TLM software integration environment provides the right setting to 

perform integration tests for a given system. It is not a simple task to

determine how TLM software should be integrated into a hardware platform,

especially when multiple solutions exist. One of the solutions is to

incorporate the embedded software into the simulated hardware. It suggests 

that the software interacts with the hardware in terms of reading or writing

data. These interactions are simulated as software actions on TLM platforms.

For example, a hardware IP register access is interpreted as calling the right 

function in the IP module of TLM platform to simulate the access.

When modifications are necessary, it is preferable to change the software

instead of the hardware for the reasons of cost, time, and workload. 

Therefore, it is sometimes desirable to separate software from hardware. An 

alternative solution could be compiling software for the target CPU and 

simulating IP accesses through an ISS.  

Bear in mind that performance is one of the main criteria for using TLM

platforms. In the alternative solution, performance is yet a problem because 

ISS is not as fast as native CPU. If performance is the main consideration, 

the most appealing solution could be native execution. The software must

then be link-editable in TLM platforms, and that could probably be a source 

of diverse problems. Some of the possible problems are listed below: 

1. TLM platform is link-editable through some external libraries that 

must be compatible with those of the software. If they use different or 

incompatible versions for the same library, the integration will fail 

because the same symbol may cover different functions. 

2. If the software defines external symbols that collide with those of 

TLM platform libraries, the same problem as in (1) will occur.

3. The software is obliged to compile with the definitions of TLM

platform that could potentially collide with those of the software.

4. The software may use process resources such as signals, memory 

mapping, and file descriptors in an incompatible manner with those 

on TLM platforms.

This list is non-exhaustive but enough to show the lurking problems that 

could appear anytime during the integration process. It is therefore hard to

decide beforehand if native execution is feasible, although it may appear 

attractive in performance. Anyway, a potential solution always exists, i.e. 

integrating software into a cross-compiled environment where the software 

runs independently of its hardware platform. 
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2.3.4 Software Simulation Environment

Once it has managed to execute and integrate correctly on the target 

platform, TLM software will proceed to the software simulation for 

validation and evaluation testing. The software usually cannot run alone in 

the simulation environment because the entire board holding the SoC is 

involved; meaning that some external input and output data flows are

required to conduct such simulation in a real environment.  

A simple way to establish connections between the platform and the

external world is to input/output data of platform IPs from/to local host files.

Its greatest advantage is the easy setup that enables software to run test 

samples promptly from the local host files. Such reference samples will

really be handy for debugging algorithm or platform behavior of certain final 

code, say protocol decoding. 

Connecting with local host file is not always sufficient. It is interesting to

connect IPs with real devices in certain cases; for instance, interfacing a card 

reader IP with a serial line, or bringing the actual character protocol into an 

UART IP to allow testing software on emulated hardware that is connected 

to real hardware. Such “real” connection can also be employed for buses like 

Ethernet or USB through the host system devices.

Another interesting aspect of the TLM simulation environment is its 

ability to report the input/output of hardware multi-media to the host. 

Consider the following example. If the software is designed to use an LCD

of a given size, it is quite straightforward to map the LCD on the host 

graphical window. That allows debugging the exact contents provided to

users without needing to write a single line of code, which is anyway not 

reusable on the final hardware platform. Essentially, this aspect is the most

remarkable difference of TLM simulator from an emulator that really entails 

interfacing with the software.

The greatest interest of exporting the simulation environment out of the 

platform is to provide total flexibility in the way of connecting the platform 

to the external world. Defining standard interfaces for internal IPs is a 

corollary of giving software developers such flexibility in the simulation. 

With this flexibility, software developers can simulate their design with the

external world in any way they wish (including incompatible simulations), 

and to any extent they wish (up to the complete simulation). The platform

with such interfaces needs not to embed any external input/output devices

such as graphical windows to simulate serial communication. As a result, the

platform is more portable from one system to another because the

communication will be standardized via an open socket protocol. 
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2.4 Conclusion

TLM platforms provide software developers with a brand-new interesting 

methodology to test the software in a hardware simulation environment.

Since the simulation is pure software, it is possible to set up different 

environments depending on the characteristics required by the platform, 

including accuracy, performance, connection to the external world, and so

forth. In fact, TLM has filled up the gap between software and hardware 

developers. A bridge is now constructed between these two teams to enable 

each of them to observe from their own perspective how their development

work is used by another team.

2.4.1 TLM Impact on Software Development 

TLM platforms provide software developers with a hardware base to

develop and more importantly, to test their software long before any pure

hardware emulation is available. This is particularly helpful for the new 

hardware IPs on which no software has ever been ported or written yet. The 

major advantage of such early software development and testing in the SoC

design cycle is to reveal any potential problem between hardware and

software prior to their delivery.

Developing software that can be simulated immediately on the target

platform is certainly beneficial. It helps to produce better software 

implementations in terms of portability and hardware utilization. In general, 

TLM reinforces good practices in software development process.

Based on TLM platforms, software developers can fully focus on the 

coding targeted for the final hardware platform without building any 

temporary dummy (and sometimes costly) hardware platforms. The software

can be simulated at different accuracy levels on TLM platforms in the 

different environments required by the software developers. Such 

conveniences grant software designers ample freedom to perform their job 

without waiting keenly for the first hardware platform. 

2.4.2 TLM Impact on SoC Design Flow

The overall SoC design flow has to be reconsidered when using TLM.

This is essentially the foremost impact of TLM on the SoC development. A 

TLM platform is regarded as the first hardware prototype wherein software 

developers can execute their code. Even a partially complete TLM platform

can interest software developers because it can already help debugging their 

code up to a certain extent.
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In brief, TLM can significantly alter the conventional manner of how a 

system-on-chip is constructed by creating more positive interactions between

hardware and software fellows. A veritable hardware/software co-design

will therefore be achieved through TLM approach.  

Another appealing advantage of TLM is the cost. The number of a given 

TLM platform can be multiplied as many as the host machines that it can use 

for running. Consequently, the number of software developers being able to

use this particular TLM platform is potentially unlimited at a given time. 

This advantage can rarely be provided by a typical hardware prototype such

as emulator due to the cost issues. Naturally, more engineers will be able to 

work on a SoC project in its early design phase based on TLM platforms. 

Figure 4-3 illustrates the time phases of the TLM-oriented hardware and 

software development. During the development of the untimed TLM 

hardware platform, a huge functional part of software programs can be 

developed. Once the untimed platform is ready, software designers can start

testing the written software on this platform. Certain time-level features can 

be added to the software codes based on the untimed platform. Through 

observing the software execution on the untimed platform, we can improve 

not only the codes but also the untimed platform. Meanwhile, hardware 

designers continue their work in conceiving the timed TLM hardware

platform. Once it is done, the further developed version of software codes

will be executed and tested on the timed platform. Based on the timing

information on the timed platform, software designers can further develop

the software for the hard timing parts. Such software execution helps not 

only to improve the software code but also the timed hardware platform. At 

the same time, hardware designers keep on their job to conceive RTL

hardware platform. Note that as the RTL hardware is ready, the software will 

have already been well tested on untimed and timed TLM platforms. Such 

“almost-final” software applications will be able to run quickly on the RTL 

platforms to reveal some hidden stubborn bugs.  
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Figure 4-3. Time Phases of TLM-oriented HW/SW Development 

The interactive design between hardware and software teams enhances 

the whole system design by visualizing their work to each other in a 

transparent manner. Hardware designers can observe how the software 

program utilizes the hardware platform while software designers can see 

how the hardware platform reacts to the software execution.

2.4.3 Illustration of Software on TLM Platforms 

After reviewing various aspects of the relationship between software and

TLM platforms, it is worth our time to discuss in details about the

development of different software families based on TLM platforms in the 

rest of this chapter. The discussion will lay emphases on the objectives of 

using TLM platforms, TLM-based development and execution approaches 

along with illustrations of practical examples. 

From an architectural point of view, software can be arbitrarily split into 

three layers as depicted in Figure 4-4. Each layer has a particular 

relationship with the hardware, and thus with TLM platforms.  
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Figure 4-4. Software Families Developed on TLM Platform

3. TLM-ORIENTED DEVICE DRIVERS 

3.1 Introduction to Device Driver 

Device driver is the closest software level to TLM platform as shown in 

Figure 4-4 earlier. The key role of device drivers is to abstract low-level

peripheral details to represent a generic programmable interface comprising

a number of predefined functions. Device drivers should be the only entity

accessing peripheral resources such as registers or shared memory. 

A common method of accessing peripherals is via register accesses. 

Usually, registers are gathered into a unique I/O memory area reserved for 

specific IP accesses. Since their behavior is peripheral-dependent, register 

accesses must be correctly implemented in TLM platforms with the accurate 

functions. Another way of accessing peripherals is by means of shared 

memory. A memory zone is reserved in TLM platforms for data exchanges 

between peripherals and device drivers. Such data exchanges are performed 

within the structures defined by the peripherals. 

3.2 Purposes of TLM in Device Driver Development 

3.2.1 Unit Test Development 

One of the very fundamental purposes of device drivers is to develop unit 

tests for a given IP on a TLM platform. Such device drivers run simple tests

to assure the proper implementation of platform IPs. The degree of 

correctness tested by them depends on the types of the underlying TLM

platforms, for instance, it is out of scope to test timing issues of an IP on the

untimed TLM platform.



Embedded Software Development 119

A device driver may cover more than a single IP if a DMA is coupled 

with the IP-under-test. In that case, the DMA will be tested as well but only

for its interactions with that particular IP-under-test, i.e. the device driver 

can only conduct partial DMA testing. 

3.2.2 Non-Regression Test Development 

Device drivers can be developed as simple software for performing non-

regression tests on TLM platforms. In the early phases of TLM IP

development, it is vital to run device drivers on the TLM models to verify

their correctness. As the design develops gradually into TLM models and 

becomes more complex, running the existing device drivers can be

considered as a good non-regression test suite, which can verify that the 

additional new features work properly without distorting the old features. 

Non-regression tests are usually totally independent of whether there is

an embedded processor or not within the platform. Thus, the same tests are 

portable on the different platforms integrating the same IPs. This is a great 

advantage to validate quickly the reutilization of IPs on various platforms. 

The only characteristics to modify from one platform to another will be the

base I/O address and the interrupt mapping.

3.2.3 OS/Firmware Device Driver Development 

The term “device driver” is indeed derived from the semantics of 

OS/Firmware. It represents a piece of software developed specifically to be

inserted into another piece of software that is more complex, i.e. the

OS/Firmware itself. The purpose of this extra software piece is to isolate 

low-level management of IPs in an independent module with some

externalized interface.

Device drivers serving for such purpose do not run alone as in the two 

previous cases, but rather in an environment with some constraints that will 

impose a particular way to use IPs. These constraints enforce a conventional 

manner of software coding, which may potentially improve the way that 

hardware is programmed.  

Despite some attempts to standardize the interfaces, device drivers are 

usually not portable from one OS/Firmware to another; hence leading to

different ways of using a given hardware. 

3.2.4 Experimentation of New Hardware Features

Another interesting purpose of device drivers is to exercise new hardware 

features for experimenting their different aspects such as programming ease, 
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performance improvement, programming examples, etc. Such experiments

can be quickly set up on TLM platforms to test tiny modifications on the

hardware before the real alterations. 

Since device drivers are final software pieces of larger models like

OS/Firmware, they can be modified independently from the rest of the whole

system to include new hardware features. It is therefore very easy to rapidly 

set up a model for hardware developers to build their intended design, and 

subsequently exercise this new design under a realistic software execution.  

As a result, hardware developers are able to verify the correctness as well 

as the resulting effects of their tentative design under the real scenario of 

software run. 

3.3 Approach to Device Driver Development 

This section focuses on the different approaches to developing device 

drivers. General rules of writing software targeted for TLM platforms are

presented in section 2.1. For device driver software, the methodology of 

layered software development remains valid for its development and testing.

Some additional aspects that deserve special attention will be explained 

extensively in this section. 

3.3.1 Interrupt vs Polling Management

Reporting occurrences of interrupt events within an IP is normally 

managed by setting a particular bit of the IP status registers. Optionally, the 

IP may forward a signal to an interrupt controller that will in turn monitor 

the CPU interrupt line. From the angle of software, there are two methods of 

managing IP events:

1. Synchronous Programming. Polling (i.e. reading continuously) the bit 

reserved for interrupt in the status register until the right value is

obtained.

2. Asynchronous Programming. The software executes standard 

procedures. Under interrupt occurrences, it is diverted to execute a

handler that has been previously associated to the interrupt. At the end 

of the handler, it will simply continue execution of the procedure at 

the point it has been interrupted. 

The two methods are not really independent in TLM platforms. The first 

method issues a TLM transaction whenever the status register is read or 

accessed. It thus induces a lot of overhead especially if the interrupt event 

takes quite some simulation time to occur. This is the appropriate choice for 
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coding interrupts in unit test software because there is normally no other 

software running than unit testing. 

Waiting for an interrupt as described in the second method is very close 

to the real situation on the real platform. It leaves no impact on TLM

platforms because the IP will initiate a transaction when the real interrupt is

routed to the interrupt controller. This method is suitable for testing the

interrupt mechanism of a system. It is particularly useful for device drivers

as they need to continue other tasks while waiting for the interrupt event to 

occur.

The software should take into account some unexpected behavior that 

could probably be induced by TLM platforms. One of the common examples 

is the approximate timing estimated by the untimed TLM platform, which

delays certain event occurrences. Asynchronous interrupt programming

assumes that the hardware will notify event occurrences with sufficient

delay, which allows the software to perform some useful job while waiting 

in background for the interrupt. The consequence is that the software may

not be able to do anything or even spend more time than expected in the

interrupt handler if the interrupt occurs too quickly. The same problem,

however, will not arise in the timed TLM platform since the timing is an

absolute reference, i.e. events setting an interrupt will consume the required 

time amount before their occurrences.  

Therefore, polling should be applied as much as possible in the untimed

TLM platform instead of asynchronous interrupts. However, if the

asynchronous interrupt modeling is required on untimed TLM platforms, 

interrupts must be expected to occur at any time. They can even occur in the

same instruction of the I/O that starts an interrupt, which can rarely happen 

in the real life.

3.3.2 Time Management 

Unlike interrupt controllers, certain IPs such as real-time clock, watchdog

or timer deal directly with time management. The software written for such 

IPs must be aware of the time events like time-slicing, time-out or time-

count for running on TLM platforms. 

Timing is locally accurate on the untimed TLM platform. From the

software point of view, events are locally ordered within a given IP. 

Consider the following example: a given IP with two timers programmed for 

sending interrupts at different dates will always send interrupt events in the

well-coordinated order. Now, consider two distinct IPs with a timer in each.

Even if the two timers are programmed in the same manner, IP events could 

occur in any order because both IPs are completely independent from each

other with unspecified relative timing approximation.
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Luckily, it is quite uncommon to depend on the relative timings between

different IPs to run a software program correctly. For instance, time-out is 

usually implemented on top of a timer by the software so that it can be 

ordered continuously. Although the simulated time difference remains

unpredictable, it brings no problem since the software usually relies on time

order but not on time difference.

Testing scope is quite restrictive for timing aspects on the untimed TLM 

platforms as the timing accuracy is not really measurable. Low-level design

is thus reduced to validating the functions of interrupt and status indicators.

The timed TLM platform, however, offers larger capabilities in terms of 

timing testing.

Another important point on timing is time-slicing. When a dummy or 

buggy C program executes a “for(;;) continue;” sequence, it will keep 

looping forever. It is always possible to stop this loop by sending an 

interrupt, e.g. character typed or time-out, which can divert the execution

from the loop and eventually stop the loop. Running such programs on an 

ISS is well handled by TLM platforms. The untimed TLM platform manages

this program by advancing its timeline from time to time, even if the ISS 

does not require any I/O on the IPs. For example, the time progression can

take place when the ISS runs an I/O access; the internal SystemC scheduler 

can then be called freely to move forward the timeline. For the timed TLM 

platform, the rule is much stricter since timing accuracy is required. The ISS 

must access the internal SystemC scheduler (even for nothing) in order to let 

other IPs running their codes at the right scheduled time.

The approach is totally different for natively compiled applications as 

they are integrated into the execution environment of TLM platforms. Bear 

in mind that TLM threads are non-preemptive. If any thread happens to loop, 

no other thread can preempt it from looping and the TLM simulation will

just loop forever. To let other threads run, a special thread layer such as OS 

emulation can be of great help by simulating multiple OS threads within the

same SystemC thread. An alternative solution is inserting some calls to the 

internal “sc wait()” function at the right locations. This function will

essentially give a chance to the system to progress its simulation. Such 

situation is one of the very few circumstances where the software must

cooperate directly with the TLM platform. 

To conclude, software running on the TLM platform, especially when 

natively-compiled, must be capable of handling unpredictable time 

management.
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3.3.3 Performance-Accelerating Hardware Features

It is a general comment that TLM platforms do not simulate hardware

fast enough. Although this is always a personal perception, such moderated 

simulation speed might actually be very useful to detect some problems that 

may appear unobvious on fast-simulating platforms such as the real

hardware platform.

As a matter of fact, the reduced simulation speed is frequently a “bug

amplifier”. A subtle bug occurring for a very short time period could 

probably be invisible during the simulation on the hardware platform. The 

same bug, however, may turn into a disaster in a TLM simulation and thus

much easier to be detected and fixed. 

Suppose that a driver for a slow-communication IP does not use a DMA

correctly. The real hardware platform works so fast that it may conceal this 

problem on regular uses. The problem can only be revealed by an integration 

test where other IPs are involved to use the slow-communication IP 

intensively. The system will give an abnormal response time that serves as 

an indicator of such problem. A TLM simulation, on the other hand, shows 

the abnormal response time immediately because such problem will give the 

character-by-character output (1 character per transaction) instead of the

message-by-message output (N characters per transaction) that should 

normally be provided by the DMA use. Since the overhead of a transaction

is not negligible, a unit test is usually sufficient to uncover the poor 

programming of the DMA. 

The similar problem can be encountered in cache programming. If the 

cache is badly used or unused, the number of accesses to the TLM memory

will be unacceptably high. Software developers will consequently notice a

bus overhead rapidly, and thus identify a cache-related bug.  

Therefore, the moderated simulation speed on TLM platform provides

users with an early detection of misused features. This is extremely helpful 

for revealing those directly related to the overall system performance but 

hidden in a small local area for a long time. Indeed, these are very tough

features to detect because they appear functionally correct. It is the reason 

why some software programmers may not see the advantage of TLM “bug 

amplifier” right in the beginning. Once they get more acquainted with TLM, 

they will definitely find this characteristic rewarding.  

3.3.4 Peripheral Error Management 

Another critical piece of device driver software is the management of 

peripheral errors. In common practices, this software piece is only ranked as

secondary level of importance because the priority is always given to



124 Chapter 4 4

programming the regular peripheral uses. Unfortunately, the quality of a

low-level code like device driver is not in the regular working parts, but 

rather in the error management and recovery. 

Through modifying specific values in the setting, debuggers are used to 

“set up” and reproduce an error to facilitate the analysis of a particular fault 

in details. This method, however, will get a little cumbersome when an error 

comes directly from hardware devices. Too many registers will have to be

set up in debuggers for such bugs. Some manual intervention or script-

writing in debuggers is even required for certain cases. Consequently, such 

errors become extremely difficult to regenerate or reproduce “correctly and 

accurately”, for instance, in non-regression tests.

Let us consider the error management of the Ethernet controller. Under 

normal working conditions, the Ethernet driver is not in charge of any errors. 

For high system load, the driver must nonetheless face plenty of severe

conditions such as input errors, buffer underflow, out-of-buffer, etc. Under 

these conditions, the driver may decide to reinitialize the Ethernet controller 

while a simple recovery procedure could be sufficient. This technique works

most of the time but it may result in catastrophic performance consequences. 

For this reason, it cannot give good quality software although it functions

correctly. 

Such hardware-related error management is a real pain for software

developers. It consumes much time in understanding and coding yet brings

too little visible functionality to the software. Most of all, testing errors that 

practically never occur in a real system is too huge a challenge. Hardware 

developers do have hardware devices to reproduce specific errors easily. 

However, these devices may not be available for software developers. Even 

if particular hardware test sequences can be set up, they will not be suitable

for software error management.

TLM platforms are sound solutions for handling peripheral error 

management in device drivers. Software developers can simply inject data

from the external world into the platform IPs to reproduce specific IP

hardware errors. This error injection helps to test the behavior of device 

drivers when the error actually appears. Since the error is managed by the 

software, error sequences can be produced in the IPs as many times as 

required for running the error testing at high level of confidence. 

3.3.5 Native Compilation 

Native compilation is the fastest TLM simulation system for software. 

Although irresistibly attractive, it must nevertheless be employed with 

meticulous care for a number of potential pitfalls. In particular, software

codes must respect the underlying restrictions rooted in the fact that the 
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software is link-editable with TLM platform codes, i.e. TLM platform codes 

will be embedded together with software for running. 

The most obvious restriction is the non-exclusive use of shared resources.

Software must never “monopolize” common resources shared with TLM 

platforms such as heap memory, signals, file descriptors, etc. For instance,

the signal handlers from software codes should never replace but add onto 

those already existing in TLM platform codes; in the same sense, the

allocation order of file descriptions should never be deduced from the one of 

the underlying OS algorithm. 

 Software codes must never be based on libraries or software compilation 

tools that are incompatible with those required by the TLM platform codes.

A simple example can be illustrated by GCC compiler. It is well known that 

the GCC-2.95 release is incompatible with the GCC-3.x release for C++ 

programs due to changing of name mangling algorithm. If a software 

program compiled with GCC-2.95 is link-edited with TLM platform codes 

compiled with GCC-3.1, the link-edit will fail indicating that a problem 

exists or worse, the link-edit will seemingly succeed but the execution will 

crash without any obvious reason. 

In the same line of idea, another interesting point is dealing with threads.

Threads used in a software program must be compatible with those used in

TLM platform; besides, they must respect the reentrancy programming

constraints of TLM platforms. In other words, only threads compatible with 

SystemC runtime are allowed for TLM-oriented software codes because 

TLM platforms are based on SystemC runtime. For example, only one OS 

thread is permissible in the OSCI runtime, which restricts uses of SystemC 

threads and those simulated within a SystemC thread. In addition, the 

software thread scheduling has to be compatible with the one used in 

SystemC. The reason is that SystemC functions are not required to be 

implemented as reentrant; for instance, the current thread scheduling of 

OSCI runtime is neither reentrant nor thread-safe. 

Debugging natively compiled software is much more complex as it is

based on the SystemC runtime. There are two major difficulties. First, 

software developers may perceive codes out of their control, i.e. TLM

platform procedures called when their own code access IP registers. Stack 

frames can be quite confusing as well because it may not be easy to locate 

the frames at the exact spot where the software really starts. Second, 

software developers may not see all of their threads if their codes are multi-

threaded. The reason is that their threads are embedded in SystemC threads, 

which may not be visible to debuggers, e.g. the current case for OSCI

runtime. Today, debuggers are not much adapted yet for certain non- 
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standard environments such as multi-thread wherein hardware and software

simulations are mixed.   

Despite all these pitfalls, most of our low-level software runs perfectly

well in the native execution environment. In fact, such pitfalls or constraints

appear mostly in very high-level software that will be discussed later on. In a 

nutshell, native compilation is a simple method to start working out low-

level codes. It also assists in rising code portability because the same code

should run in cross compilation as well where no such constraints apparently

exist.

3.4 Examples of TLM-oriented Device Drivers 

Without any practical examples, all the approaches described earlier 

could probably be too theoretical to digest. Let us zoom in on the details of 

some low-level software already running on TLM platforms through our 

development work.

3.4.1 SPI Controller Test 

The Synchronous Peripheral Interface (SPI) is a very popular protocol

widely used in the industrial environments to enable data exchange between 

a micro-controller and an external peripheral. Instead of plugging a given 

peripheral directly on a system bus, it is much easier to connect them 

through a serial interface whose major advantage is the reduction of 

communication pins. The SPI protocol is founded on the data exchange

initiated by a master to a slave at a clock rate determined by the master itself. 

At each clock signal, the slave must be ready to receive a bit and send out 

another.

SPI controller tests involve two strictly distinct parts: testing SPI master 

and/or slave. Data exchange is the principal of testing SPI controller. A fixed 

set of data must be provided to the SPI controller for exchanging between

the master and slave sides, the aim of which is to validate the SPI behavior. 

Let us take a closer look at testing an SPI master role (SPI slave role will

have a similar testing line). In such test, no SPI slave device is utilized.

Instead, it is replaced by a file containing data to be exchanged with the SPI

master. The SPI master is exercised by software actions; it also receives the 

input data from another file holding exactly what it expects to receive. When

the software sends a data item such as a byte or something larger to the SPI

master, the TLM IP of SPI master controller will read the next data item 

potentially being sent from the data file representing the SPI slave device.

The data read from the latter will then be placed in the registers of SPI

master as if it was received in the real situation. Depending on how the 
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software is programmed, the TLM SPI master may update its registers after 

storing this data. 

By comparing the data received from both master and slave sides (more

precisely, from their respective data files), the tests of sending/receiving SPI 

data are carefully conducted by the TLM SPI master controller. Complex 

data exchanges can certainly be set up, for instance, those including DMA or 

end-of-transmission interrupt. The validation of SPI data exchanges helps to 

justify not only the correct functioning of the IP, but also helps to verify the 

right software programming of the IP registers. With a successful validation

of SPI data exchanges, the same software should result in the same test 

behavior on the real hardware IP that is available later (provided that the SPI 

slave is correctly simulated by the data file). 

Testing a given IP is unfortunately not only limited to its functional tests

especially when the IP is synchronized with the external world. In particular,

it is impossible to test if the clock programming fits in as required by the 

slave since the test is not timed. The IP test set will be incomplete if there is 

no synchronization between the master and slave. If the master acts too fast, 

the slave will not be able to respond in time. However, the master will still 

sample the data line coming from the slave to deduce the value transmitted 

by the slave. This deduction could be incorrect if the timing is wrong. 

Although the timing programming may be validated statically on an untimed 

TLM platform, this may not be sufficient.

For that reason, there are two conditions to fully test an SPI IP. First, a

timed TLM platform is most of the time compulsory. Second, a mechanism 

allowing the simulated slave to analyze the timed master responses is

required for validating the correct timing of the master. This example 

illustrates how and when different TLM platform implementations should be

employed for various purposes. 

3.4.2 I
2
C Controller Test 

The inter-integrated circuit (I2C) bus is a bi-directional two-wire serial

bus providing a communication link between integrated circuits. The main 

difference of I2C from SPI is that I2C supports multi-master mode: I2C

allows multiple master devices to connect on the same bus to start the

communication at the same time. The collision is  resolved electrically, and 

only one master remains the master of the communication.

I2C is much more complex than SPI. SPI slave is equivalent to SPI

master except for the clock generation, whereas I2C slave and I2C master

exchange control information such as address, acknowledge, and start/stop 

right on the bus. This is a sophisticated feature needing software for testing.
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For this reason, it is essential to have at least two devices on the bus for 

testing I2C: a master and a slave. TLM platforms normally provide a single 

I2C controller that represents a single device on the bus, which supports

either multi-master mode or exclusive master-or-slave mode. Unlike SPI 

controller, the second I2C device cannot be replaced by a file because the 

control information exchanged on the bus will not be tested. The simplest

solution is therefore setting up another I2C controller on TLM platforms

exclusively for testing. It generates and validates the required bus control

information, and its mapping is done on unused addresses. 

Once the two devices are properly set up, the I2C controller test can start

from any mode. The major challenge of such test is to synchronize the test 

software precisely between two similar collaborative IPs. While sending 

information from one of the IPs, another IP must be controlled for its correct 

receiving of whatever previously sent by the first IP. Polling is not a good 

tactic because both IPs must be polled concurrently, but interrupts from 

either IP could arise in any order. 

The testing schema describe above is insufficient to test all I2C features.

For instance, the feature of master arbitration lost1 in the multi-master mode 

can only be tested when both IPs agree to set up the same testing condition.

Then again, this set up cannot be done by regular register I/O. The same 

problem may arise in testing all communication errors such as non-

acknowledge testing.

Just like SPI controller test, I2C controller test is capable of testing many

interesting functional features of the IP before the hardware is ready. It helps

to show that the platform runs correctly under standard conditions. This is 

essentially the first step towards getting a validated TLM platform for 

running real software programs, particularly real device driver codes.

3.4.3 PrimeXsys UART Linux Driver 

The ultimate goal of TLM platforms is not developing test software for t

IPs, but running actual device drivers that will be used on the real hardware 

platform. Certainly, all events especially errors cannot be triggered to occur 

as exactly as under real-life conditions. They will however be tested under 

standard conditions, thus representing the actual behavior most of the time.

An excellent illustration for this concept is the behavior analysis of a real 

device driver running on a TLM platform. Theoretically, a device driver 

should run correctly without any modification in the cross-compilation

1  A feature with an I/O starts functioning as a master, but the I/O will become a slave when 

another master wins the exclusive access to I2C bus (Arbitration).
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mode. Let us study the Linux device driver for the UART on the ARM

PrimeXsys platform. This driver is initially compiled with the rest of Linux

for the ARM PrimeXsys platform. It is then booted on an untimed TLM 

platform without any modification but some additional error messages for 

testing purposes. 

The experiment shows several interesting side effects. First, the output of 

messages is very slow. The usage message of ls command takes longer than 

the booting of Linux kernel to display. A closer examination reveals that the 

DMA is not configured by default for the UART even if the codes are 

identical. The driver is functionally correct except that an important feature, 

i.e. DMA, is missing. Although coded, this missing part is not visible

enough on the real ARM PrimeXsys platform. In contrast, TLM platforms 

manage to “amplify” this problem because the missing DMA changes the

behavior of TLM platforms significantly. Software using buffered C runtime 

stdio output routines such as printf, putc, and puts, running on TLM 

platforms with DMA display a message per transaction while those without 

DMA () display a character at a time. 

Once the problem is fixed, the DMA is enabled in the platform. Yet, the 

performance still does not show the expected results. All messages are 

output very quickly but a noticeable delay occurs between usage messages

of the Linux ls command. Another problem is then identified in the TLM 

code of UART IP. The added delays in the output for simulating the 

programmed UART baud rate actually slow down the entire simulation

process of UART driver, the reason of which is the ARM platform has

nothing else to do but displaying messages. By removing these delays, the

UART driver can finally give satisfactory performance results. Indeed, this

“discovery” is interesting because time characteristics must be simulated 

(even on untimed platforms) but with flexible and careful adaptation. 

To sum up, running the UART Linux driver on the ARM PrimeXsys

platform demonstrates the following benefits of TLM platforms:

1. Device drivers can run without any modification in cross-compilation. 

2. Missing performance features can be detected without any special 

tests on TLM platforms (e.g. DMA).

3. Poorly coded software is immediately revealed by running real 

software on TLM platforms. 

3.4.4 Native Device Driver 

Device drivers are not only coded for running in the cross-compilation 

mode. Running them in the native mode can be equally beneficial for 

software developers as long as certain coding rules are well respected. 
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Performance and code portability are the two chief advantages. Software 

programs can run much faster in the native mode than in the cross-

compilation mode, hence higher performance. They can also be compiled on 

a machine with different constraints such as data alignment, byte order, and 

language basic types to increase the code portability. 

Embedding the software codes of TLM platforms is a very distinctive 

characteristic of the native environment. It obliges the respect of the host 

execution rules, including reserved addresses, dynamic loading, name space 

pollution, etc. These obligations can be very tough barriers to deal with

when developing huge software pieces. It is not straightforward to execute 

both software programs and TLM platforms nicely in the same environment. 

Beware that all these problems may arise during a project, although huge

amounts of code have already been ported in such environment.

The first rule for developing native device drivers is to facilitate the 

contact point between software codes and TLM platforms. It is usually 

achieved by using IP register accesses. Such contact in cross-compilation is 

simply the simulation of a foreign instruction at a given I/O address, which 

is translated by the ISS into a TLM transaction. TLM platforms just need to 

issue the I/O and the corresponding results will be given back to the software

by the ISS during the simulation of the same instruction. The software in 

native compilation, conversely, must issue the required TLM transaction by 

itself. Therefore, the compilation of IP register accesses will need to be 

transformed into a TLM transaction at the lowest software cost. 

Wrapping in macro register accesses is recommended as a good software 

coding practice. It is particularly useful for increasing software portability 

onto those systems needing special instructions to access I/O spaces such as

I386. Such macro wrapping facilitates the definition of a separate set of 

macros for the native mode, hence leading to highly portable software. The 

macro wrapping cannot be applied if register accesses are coded as mapped 

address dereferences. The reason is that the address range in this case is 

more likely forbidden to be used in the host execution environment. The 

initial solution is thus code modification, which may entail additional time 

delay in the software development exclusively for native compilation.

Another point of attention is accessing the memory shared between the 

software and hardware for data representation. When everything is ready to 

be analyzed in an IP, the hardware normally expects to download from the

shared memory some data that is already formatted by the software. A good 

example is a DMA scatter/gather list. Such data representation is a real 

complex problem because: 

1. The simulated hardware may have different byte ordering from the 

host system. 
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2. The simulated hardware may align data in a way incompatible with 

the alignment rules of the host system. 

3. The software may use different data types for cross and native 

compilations, e.g. the “long” type of C language. 

There are several good practical rules applicable to solving this situation 

nicely, which are similar to those used for IP register accesses: 

a) Always use fixed length data types so that the field length definitions

are not ambiguous, e.g. “int32_t” type of C-99 language.

b) Always access shared data with macros that can be redefined 

correctly in case of incompatible byte ordering or alignment.

Name conflict is a much tougher problem to solve. Fortunately, it is not 

something that happens very frequently. This sort of conflict occurs when

the software uses an external name that is already defined by the TLM

platform. By some chance, the link-editor may detect this as an error. There

is however a slight risk that the link-editor may merge it quietly at the same 

location in the common data segment. That will very likely lead to

concurrent use of the same memory location by two modules without 

relationship. It is then easy to imagine the kind of errors provoked by this 

bogus situation. Such problems can arise either in static or dynamic link-edit 

where search results of external names are often hidden by high-level

functions..

Sadly, there are not too many solutions for this problem. To cope with it, 

avoid such naming conflicts by prefixing (or using different name spaces)

the external names and minimize using global variables. Name conflict is not 

a problem directly related to TLM platforms, but it is often encountered by 

software designers developing huge software pieces. 

Concisely, a very important point here is that TLM imposes good 

software coding practices to prevent some tricky problems from happening

during the earliest stage of the development.

4. TLM-ORIENTED OS/FIRMWARE 

4.1 Introduction to OS/Firmware 

Recall Figure 4-4 shown previously, the software family located above

device drivers covers OS (Operating System) and Firmware.  

OS is a higher-level software family responsible for integrating all lower-

level software pieces to set up a coherent view of the hardware management.

Such responsibility is generally entitled to Operating System or Executive 
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Runtime, which presents a programming interface to higher-level 

applications.

A key difference exists: Operating System shares CPU time between a 

large variable set of tasks that are scheduled only when they have something 

to do, whereas Executive Runtime shares CPU time between a small fixed 

set of tasks that are called at regular intervals for testing event occurrences

and performing potential job. A common point between them is the ability to 

manage the conflicts of resource accesses for an optimal use of the hardware 

platform. 

Operating System is essentially a piece of complex software for 

managing task preemption and switching, hardware interrupt dispatches,

collaboration between low-level device drivers, etc. The task management

role of Operating System is even more distinct when it provides real time 

functions. Executive Runtime, on the contrary, is considered as a simple task 

scheduler that neither has potential preemptions between tasks nor interrupt 

handling; and it has virtually no overhead for task switching. Both of them 

are of course relatively far from each other in terms of functionality, but they

will be considered and described collectively as a single entity called OS toS

cover the two task areas aforesaid. 

Another group of interesting software in this family is Firmware. It is the 

software piece responsible for driving some processing parts embedded on

the hardware platform. Firmware usually receives and manages specific jobs 

from an external entity. It therefore plays a mid-level role by unloading

some jobs that can be managed locally from the CPU. Such role can be

endorsed by running some software on a digital signal processing (DSP) unit 

to control certain IPs directly for high-level data exchanges with the CPU.  

4.2 Purposes of TLM in OS/Firmware Development 

Using TLM platforms throughout the development of OS/Firmware 

serves an important objective: it integrates all lower-level device drivers and 

executes them in parallel to detect software (potentially hardware) problems 

related to the interactions of multiple data flows. Such problem detection is 

either a direct mode by sharing a device driver between two data flows, or an

indirect mode where the activities on a data flow prevents another data flow

from being correctly managed. 

4.2.1 Integration Test Suite Development

As discussed earlier, unit tests are developed for testing a given IP 

individually (two IPs are required occasionally). Such tests are much limited  
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to testing a single IP without testing the rest of the platform IPs 

simultaneously. If all unit tests of a platform are pulled together, it is 

possible to set up an integration test suite provided that the unit tests are 

developed to run as either standalone tests or concurrent tests in common 

with other tests. 

Therefore, it could be quite easy to set up an integration test suite based 

on the available unit tests. For a given IP, all of its unit tests can be serialized

to form a set of unit tests reserved for this IP. Such unit test set for all IPs

can then be run collectively at the same time to exercise all IPs concurrently, 

hence leading to a proper integration test suite. 

This approach, nevertheless, is not that straightforward for untimed TLM 

platforms. Due to their untimed characteristic, setting an I/O transfer via a

register write is virtually immediate. Thus, no I/O parallelism can have 

effect in the set of IPs under test. Moreover, an interrupt will be triggered as

soon as a register access is completed if the interrupt mode for I/O

completion signaling is used. It is possible to chain all these tests in order to 

run them one after another. Yet, this is still not quite a real integration test 

suite.

The missing part is an executive runtime that can run one test after 

another. It should avoid running the entire test set of a given IP right after 

running the entire test set of another IP. A better way to handle this is 

running interleaved tests in order to exercise all IPs more frequently.  

On the contrary, an integration test suite can be set up very nicely on 

timed TLM platforms. The reason is that each I/O consumes some time to

signal its completion, and that consequently allows running multiple tests for 

different IPs in pseudo-parallelism. The term “pseudo” signifies the fact that 

I/O completion time is accurate but its progression is without cycle accuracy.

Integration tests should also be in charge of testing arbitration, i.e.

hardware conflict resolution. The typical examples of such conflict are two 

concurrent interrupts or I/O bus accesses. Interrupt conflicts can be validated 

on timed TLM platforms whereas bus access conflicts can only be tested on 

BCA platforms.

In brief, integration tests are merely some test set on untimed TLM

platforms; they provide much more interesting results on timed TLM

platforms; and finally give solid outcome on BCA platforms. Therefore,

TLM platforms should be considered as initial test platforms where 

integrations tests are executed and debugged before other further accurate

platforms are made available. 
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4.2.2 Quick Application Software Evaluation  

An attraction for using TLM platforms in OS/Firmware development is

the quick set up of a complete system integrating hardware and OS, whichk

aims at evaluating external higher-level application software. Throughout a

new SoC development, it is always a challenging mission to validate if the

design meets the software requirements until the software really runs on it. 

The early availability of TLM platforms allows software developers to get a

precise image of the final hardware platform for running software ahead of 

time.

Today, the standardization of interfaces and low-level services such as 

Windows, POSIX, OSEK, and iTRON has facilitated the implementation of 

such interfaces on top of a number of Operating Systems. As a result,

higher-level software can be ported much easier from one platform to 

another. Combined with TLM platforms, these interfaces and low-level

services offer high-level software developers a complete system that is ready 

to support high-level software. Depending on their levels of accuracy, TLM

platforms serve extensively as evaluation systems that support major OS 

available today.

A complete system consisting of OS, device drivers, and TLM hardware

platforms is essentially the very first integrated system accessible to high-

level software developers. Such a complete system holds several important 

characteristics as follows:

1. It is not restricted for large deployment since it is purely software; the 

number of systems available for using is thus not limited to just a few

fragile hardware boards. 

2. It implements a realistic system platform whose accuracy depends on

the accuracy of TLM components and the software integrated.

3. It provides a platform with a coherent behavior of all integrated 

platform parts, i.e. both hardware and software.

4.2.3  Closed Integrated Software Module 

During the development of OS/Firmware, TLM platforms also serve the

purpose of employing black box tests and pure binary software codes.  

TLM platforms are established as accurate representations of some

existing or upcoming real platforms Thus, they must support binary software 

codes intended for running on the real platforms in a transparent and reliable

manner. Software developers count a lot on this feature to prove not only the

accuracy of TLM platforms, but also the correctness of their software with t

respect to the real platforms. 
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Note that this particular characteristic is only necessary for cross-

compiled platforms because it is worthless to set up binary software for 

some platforms that will never exist. A prototype can hardly provide the 

same feature described here because it will never be accurate enough to run 

binary software codes as a black box test. This is also hindered by other 

reasons such as netlists, definitions of IP registers, component timings, etc.  

To conclude, running pure binary software codes on TLM platforms have 

two ultimate goals:

1. Validate the TLM platforms when the real hardware already exists 

with the same software.

2. Validate the software provided as binary codes with some extensions,

which are developed for supporting additional hardware features on a 

new platform compatible with some existing ones. 

4.3 Approach to OS/Firmware Development 

OS or Firmware developed for running on TLM platforms are not 

directly related to the hardware simulation. They should consequently be

less sensitive to certain low-level details implemented in TLM platforms. 

Bear in mind that OS/Firmware is a special software layer responsible for 

the employment policy of the mechanisms defined by lower software layers.

This is exactly where meticulous care must be taken to handle the

capabilities of TLM platforms correctly. The approaches to developing 

OS/Firmware mainly focus on how to get a complete hardware/software

system to run efficiently without wasting simulation performance in useless

tasks.

4.3.1 Active Waiting Loop Avoidance 

The foremost software quality is being able to utilize the underlying 

hardware at the optimal level. This is nevertheless quite a tricky game to

play with on a simulation platform such as TLM. Since the hardware parts of 

a simulation platform are merely some simulated models with various 

accuracies, certain programming techniques may appear inefficient in the

simulation run although they may work reasonably on the real hardware. The

main reason is that some trade-off between performance and accuracy must 

be made on simulation platforms.

 The active waiting loop is an example of the programming techniques

difficult to be adapted on simulation platforms. On the real platform, such

software will loop perpetually through a list of awaited events until one of 

the events finally occurs. The same software technique runs in the same way 

on TLM platforms but less efficiently, as the hardware event will only occur 
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when the software allows it to occur. The software run indeed prevents the 

parallel run of TLM platforms, which is supposed to raise the subsequent 

event waited by the software.  

This situation is similar to a deadlock but not fatal because the software 

might be preempted sometimes. Rather, active waiting loops are considered 

unproductive since the system cannot evolve during their execution. Keep in 

mind that events are driven by the hardware speed on the real hardware 

platform for which the real time is continuous, whereas events are driven by 

no previous activity on TLM platforms for which the simulated time is 

discrete.

Therefore, it will be wise to have useless software suspended until the 

next hardware event occurrence. The software should then loop again until it 

finds the occurred event. Since such software loop is sensitive to hardware

events, it is not easy to program it transparently for either the real or TLM 

platforms.

Actually, new requirements for low-power consumption on SoC have

helped to solve this tricky problem. Under this concept, any software with 

nothing constructive to perform will simply switch to the low-power mode 

to wait for the next event. Such switches are handled by some hardware 

interactions on TLM platforms, which can subsequently advance the system

to the following event in line. Essentially, this is what will really occur on

the real and TLM platforms. The low-power feature therefore avoids the

active waiting loops and enables the same binary software to be used on both 

platforms with equal efficiency. Without the problem of active waiting

loops, TLM platforms are once again ready to drive software towards the 

better use of the underlying hardware.

4.3.2 Hardware Interrupt Management

Interrupt management is another problem similar to the active waiting 

loop. Normally, starting an interrupt I/O on the real platform takes some 

time. The software will not just wait for the completion of the I/O event by

doing nothing. Instead, it will try to perform some other useful jobs while

the hardware processes the I/O work. This is feasible for the software only if 

the hardware takes long enough to notify interrupt events. As discussed 

earlier in the interrupt management for device drivers, receiving interrupts 

too early could be unfavorable as the software may not be able to perform 

other useful jobs or may even spend more time in handling the interrupts. 

This is particularly true for the management of input device events arriving 

at unknown (or very high) frequency. 

Looking at the whole picture of a system design, a given software should 

run equally well either on the real or TLM platforms. Similarly, polling and 
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interrupt modes implemented in the software should be valid for both

platforms despite their different performance behavior. 

Recall that OS/Firmware involves more than a single device driver.

There is a potential side effect of using immediate interrupt notices. It may 

happen that the software reads data from a hardware source that always 

acquires ready to-be-consumed data. On the real and timed TLM platforms, 

acquiring data consumes some time that the software can run other tasks

while reading data. However, on untimed TLM platforms, it occurs that

interruptions related to I/O completion are somewhat instantaneous

following their respective I/O activation, which may lead to a kind of 

apparent execution starvation for other processes. Polling is therefore the 

better solution for handling interrupts on untimed platforms.

To prevent such misbehavior that the software cannot avoid by itself,

certain safeguards must be provided in TLM platforms. These safeguards 

will serve as the guidelines to standardize the software codes running on 

different platforms, because software designers develop their software based

on the TLM platforms provided to them. 

4.3.3 Native vs Cross Execution Environments 

Native versus cross software compilations are discussed in sections 3.3.5

and 3.4.4 to describe the compilation nature of low-level software like

device drivers. Regarding higher-level software such as OS/Firmware,

software developers must consider carefully some different behaviors

introduced by its execution environment.

Performance is always much faster on a native platform than on a cross 

platform. This is the reason why most of the SoC developers tend to use

native compilations for their TLM platforms. Such high performance,

however, is not as easy to reach on OS/Firmware layers due to certain

processor-specific features that are tough to cope with; among them the most

noticeable ones are the virtual memory management, the code and/or data 

cache management, the execution and interrupt paths, which are clearly 

under the responsibility of OS/Firmware.

Another important concern for the execution environment is the strategy 

of software debugging. On the real hardware, software developers debug by 

either plugging in additional hardware pieces to control program execution

or embedding software debuggers in the OS/Firmware codes. The most 

common solution is based on the Joint Test Action Group (JTAG) and some

hardware extensions such as In-Circuit Emulator (ICE) or User Debugging 

Interface (UDI) for a complete execution control, while the latter is based on

the low-level CPU control.
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JTAG and other hardware-based solutions are not practical for TLM 

platforms because they are too dependent on the hardware availability. On 

one hand, embedded software debuggers can only be supported in cross-

compiled environments, but on the other hand, they can benefit from the

precise debugging information via a debugging server that can stop ISS at 

the granularity of an instruction. This is relatively much easier compared to 

the real platform on which software debuggers must trap current execution 

flow on the real processor by exception, hence causing an intrusive

debugging process. The direct impact of these differences is that the 

debugging strategies might not be similar between the real and TLM

platforms. For native platforms, the only debugging solution is using host 

debuggers with some proper adaptations as explained earlier in section 3.4.4. 

4.3.4 Virtual Memory Management 

An important software aspect dedicated to OS/Firmware management is 

the Virtual Memory Management, namely the handling of the mapping

between physical pages (the ones actually in memory), and their association

in the standard addressing schema. This is usually achieved either via a

Memory Management Unit (MMU) or via a TLB Translation Look-aside 

Buffer (TLB), internal to the CPU. 

Under the cross-execution, the ISS is responsible for such management,

and the TLM platform only receives accesses to physical addresses. This is

however a costly management as each memory access must be translated 

from virtual to physical addressing space, which relies on search tables. The

main advantage is that the accuracy of the management is high, and that all

MMU-related traps are notified to the OS. 

Since performance is the main problem of memory management, then it 

could be useful to take native compilation into consideration. The main 

problem now is to get the maximum possible accuracy in order to be in a 

simulation environment providing enough realism for software development. 

The first thing to remember is that the embedded OS and firmware

usually have nothing to do with on-demand page swapping (i.e. the ability to 

put unused memory pages on secondary memory such as disk drives). The

memory management is restricted to the ability of running multiple 

applications within a finite amount of memory, which is more of a memory

placement problem rather than virtual memory management problem: if all

of the applications are not able to fit into the available memory, then the

system cannot work safely. 

This is the reason why for OS/Firmware coming with source code, the 

most efficient approach seems to replace virtual memory management by the 
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dynamic placement of all the processes in the virtual memory of the TLM 

platform execution. The main advantage is the performance gain, as there is 

no overload of translating virtual addresses to physical ones (the code and 

data addresses are relative to a register and allocated memory areas being 

directly accessed). The main drawbacks, on the other hand, are the non-

protection of a process data against erroneous accesses (by itself or by other 

processes).

This solution can be applied with Linux, for which µClinux is the right 

and most efficient solution. The reason is that OS provides the same API not 

only to user-mode applications, but also to dynamically loadable kernel 

modules such as device drivers, file systems, etc. Such pieces of software

may be almost completely and transparently tested and debugged within a 

MMU-less environment, and then integrated into a cross-integrated TLM

platform with complete MMU support for final validation.

4.4 Examples of TLM-Oriented OS/Firmware 

The current section provides a brief description on some OS/Firmware 

examples already running on TLM platforms through our development 

work. These practical examples illustrate how some approaches described 

earlier are used. 

4.4.1 Quick Setup of Integration Test Suite 

As soon as a TLM platform is set up, the immediate subsequent step is 

running unit tests for every IP of a platform. These unit tests must be 

conducted IP per IP to evaluate the correct functioning of each IP. Once the

first step succeeds, the next step is running integration tests to validate the 

integration of all IPs in the TLM platform. This step is particularly important 

for validating the areas that necessitate arbitration for handling concurrent 

accesses to shared resources such as bus or interrupt controller. 

Since parallelization is required, an integration test must be written to 

deal with more than a single IP at a time. Moreover, integration tests need a 

test harness to optimize the pipelined execution of all IP unit tests and to

exercise all IPs in parallel on a given platform. The test harness referred to

here is indeed an Executive Runtime that schedules each task to manage a

single IP. It may also include interrupt management to validate the right 

functioning of the shared interrupts. Another advantage of the Executive 

Runtime is its ability to handle multiple IP tests such as the I2C controller 

test described in section 3.4.2. Test codes for each platform IP is placed in a
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different task scheduled by the Executive Runtime in order to retain the

paradigm of managing an IP per task.

A test set should be arranged to complete properly because an Executive

Runtime does not really stop by itself. It is vital to ensure that there is 

definitely nothing else to execute in order to terminate the integration test 

correctly. A good practice here is to let the underlying SystemC runtime

“discover” the simulation completion by having no more events to handle. In

this way, the simulation will exit without returning to the software; hence 

avoid having the Executive Runtime to deal with the test termination. 

4.4.2 OS on ARM PrimeXsys Wireless Platform 

The ARM PrimeXsys Wireless Platform (PWP) is an extendable

development platform whose description is open to the public2. Software

developers can understand this complex platform much better by running a

simulation on the TLM platform of ARM PWP.

Booting an OS on PWP aims at verifying the software behavior on both 

simulation and real platforms. It could be really challenging to boot an OS 

binary image on a cross-compiled platform if a bug appears in the OS code

execution. The core architecture assembler is the only accessible debugging 

level, which is unfortunately not so obvious to get information from. Bugs 

found in this type of simulations are usually related to some subtle behavior 

differences between the real and simulated hardware. If the source codes are

unavailable, tracking such bugs becomes much tougher.

The first right approach is to run an OS whose source codes are available, 

for instance, running Linux on PWP. In general, an ISS-embedded debugger 

is aware of the OS object format and thus capable of conducting symbolic 

debugging. If the debugger recognizes the structure of the internal threads,

the whole OS execution structure can be exposed through the debugger 

interface. As a result, the debugging process becomes much easier to control.

This process is a little more difficult in the case where MMU is handled by 

Linux because the debugger must understand the virtual memory translation.

In this case, it is easier to start running the platform with uCLinux, i.e. the 

Linux without MMU port. Once the PWP TLM platform is extensively

exercised by this OS, it is time to get some binary OS such as Windows or 

Symbian running on the platform.

Booting OS on TLM platforms is advantageous. It gets ready a complete 

platform for software developers to design high-level software. In addition, 

it helps to find missing or incorrect OS codes that are virtually invisible on 

2 Available at http://www.arm.com/products/solutions/PrimeXsysPlatforms.html 
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native platforms. A real-life example is the public code of PrimeXsys Linux

for the ARM926EJ-S platform. By comparing the TLM simulation to the

one of real platform, two errors are found in the public code. We notice that 

the bootstraps for cache enabling as well as the UART accesses to DMA are 

too slow on TLM platforms while they appear apparently correct on the real

platform. This example shows the direct advantage of TLM simulations. 

4.4.3 Native OS Emulation on Video Platform

The video platform is an interesting platform type to learn more about 

TLM concepts. As the video flood flows from one IP to another, the central

processor only acts as a director without a straight view of the video flood. 

IPs are generally complex hardware pieces that run some firmware on top of 

an internal micro-controller.  

Simulating precisely all IPs on a TLM video platform is not quite 

feasible because not all IP models are made available quick enough for 

software developers. It is possible to build accurate TLM models of these

complex IPs and integrate them as a single TLM platform. The resulted 

performance, however, is very likely to be slow. Bear in mind that one of the

primary goals of video platforms is the pipelining of the video flood. Video 

components are therefore designed to run in parallel. Each of them must also

run its associated code accurately, and that will consume many CPU

resources. Consequently, the sum of such consumption will result in a very 

slow platform. 

Running software on a simulated platform is nevertheless still very 

important for software debugging. A different approach must be adopted to 

cope with the problem of slow simulations. The proposed idea is splitting a 

given platform into simpler but meaningful hardware pieces for software

development. 

In other words, if the software perceives a specific IP block and its

associated firmware as a black box, then a single TLM model is conceived to

represent the whole IP block including the associated firmware. Sometimes, 

software developers may need to debug both software and firmware on the 

same platform. In that case, software developers must set up the platform in 

such a way that the internal IPs and their associated firmware are exposed. 

The benefit of such platform setup is the close simulation of the IPs 

whose associated software requires debugging, while maintaining the overall 

platform performance at an acceptable level through keeping other IPs as

efficient black boxes.

Native emulation is the suitable solution for working with the firmware

of complex IPs because it retains both performance and functional accuracy

of IPs. In addition, debugging the whole platform in native emulation allows 
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grabbing an image of the OS running on the central processor and the 

firmware running on the IPs of interest. Therefore, it is feasible to analyze

the interactions between all the software running on the different IPs at the

same time, or even in the same debugger session. 

Having TLM models as black boxes of IP hardware and their associated 

firmware may have some impact on the OS drivers managing these IPs. If 

the firmware is encoding/decoding a well-established algorithm such as MP3

or MPEG4, it will be quite straightforward to set up an IP model running the 

similar code but with different interfaces. There are two solutions for the OS 

driver:

1. adapting the driver to the simulation interface, i.e. a fast solution; 

2. adapting the simulation software to the IP interface, i.e. an accurate

solution.

Both solutions are valuable approaches that should be applied at different 

phases of the SoC design process, depending on the expectation of the 

software development. The accurate solution, however, should be retained 

once it is available because it allows debugging the actual OS driver.

5. TLM-ORIENTED APPLICATION SOFTWARE 

5.1 Introduction to Application Software 

Although the two lower-level software families i.e. device drivers and 

OS/Firmware bring interesting results, the ultimate goal of software 

developers is to get the final application running on TLM platforms as soon

as possible. This high level is probably the easiest to set up on TLM

platforms because it has very little or no relationship with the actual 

hardware programming.

Building and running a complete application on TLM platforms is an

ambitious objective to achieve. In common practices, applications normally

run on a prototype of hardware board whose central SoC is only a part of the

board. Today, the implementation cost of hardware prototypes is 

skyrocketing due to the explosive SoC complexity. Running applications on

a much more complete platform like TLM is therefore getting increasingly 

attractive for SoC developers. The TLM platform is not only a hardware 

platform that is accurate enough and available significantly earlier, but it is

also able to easily outperform the equivalent RTL platform.

By running the critical software parts interacting frequently with the 

lower-level software, software developers should gain enough confidence 

that the application is ready to be integrated as soon as the prototype of the 
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final platform is available. The critical software parts already layered and 

packaged as independent libraries such as protocol stacks, data stream

decoders, all sorts of data filters, graphical environments are among the most 

essential parts to be verified in this manner.

5.2 Purposes of TLM in Application Development 

5.2.1 Final Validation Test Development

Once integration tests are completed, validation tests can be started. A 

validation test exercises a given platform in the environment that it is 

specifically designed for running in. The principal idea is to define a set of 

representative test scenarios intended for the final platform execution, i.e.

the highest level of tests that a platform must go through for its validation.

Validation tests are crucial in assuring the accuracy of the integration of 

TLM platforms. These tests aim at demonstrating that TLM platforms

behave exactly as they are designed. If TLM platforms show their high 

fidelity to the hardware platforms, the same validation tests should provide 

the same level of confidence on the real hardware platforms. 

Since accuracy is a characteristic that becomes more critical close to the

end of SoC development, a validation test will emphasize more on the 

accuracy of a platform than on its performance. For this reason, running

validation tests can sometimes be very time consuming. The focus of 

validation tests is on the whole software rather than on the TLM platform 

because the objective is to try out the TLM platform in the real environment. 

It is vital to have validation tests running in a simulation environment 

that is as accurate as possible in order to test the internal behavior of the 

platform. Thus, TLM platforms must interact with the external world at the

highest possible accuracy. This requirement is less strict for the previous two 

lower-level software families because their main purpose, i.e. testing TLM 

platforms, is different from the one of validation tests for high-level

software. As such, validation tests can be considered as part of the

interoperability tests.

5.2.2 Performance Experiment 

While the OS/Firmware is sufficient to demonstrate that a platform is 

functional by itself, the application software is intended for providing

additional feedback from TLM platforms. More precisely, it places TLM 

platforms in a real application environment wherein non-functional results 

can be obtained from the whole system.
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Such non-functional results can be considered altogether as performance

results, covering timed profiling (e.g. latency, speed, throughput, deadline),

untimed profiling (e.g. counter, contention, bottleneck), and other factors

such as power consumption estimate, security evaluation, fault tolerance, 

resource footprint, etc. Without TLM platforms, it is almost impossible to 

assess these performance factors accurately since the whole application will

not run in a realistic environment. 

Running application software on TLM platforms is a good occasion to

conduct a brief benchmarking for the internal behavior of a platform or an

IP, i.e. behavior due to the fine-grain impact from certain hardware features

on the platform. Transactional analyses in this realistic benchmarking serve 

as accurate sources for significant decision-making in SoC development. To

perform such accurate simulations, timed TLM platforms are compulsory. 

5.2.3 Impressive Demonstration   

Running high-level software is not only useful for hardware and software

developers, but it is also valuable for other professionals involved in the SoC

project. A lively demonstration of a given application can be surprisingly 

rewarding for marketing crew as well as final users.

An impressive demonstration of the whole system is the real foundation

of communication for marketing crew. The demonstration is intended not 

only to prove the platform compliance with the requirements, but also to 

illustrate the impact of pulling all the requirements into the entire system. 

Final users, on the other hand, can start validating if the platform fits their 

design requirements without waiting for the first prototype. If the result is 

negative, there is still ample of time margin to modify the platform before 

the real hardware advances. After all, TLM platforms are simply some 

software pieces that can be easily altered.  

5.3 Approach to Application Software Development 

This section provides some general advices to develop application

software revolving around TLM methodology. 

5.3.1 Provision of Realistic Environments 

Developing a specific application targeted at an embedded system on a 

real chip is quite a different matter from developing the same application for 

running on a workstation or application server. The reason is that the

embedded system is a real environment with plenty of constraints in terms l

of computing resources, bounded memory size and less powerful CPU. On 
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the other hand, the workstation or application server protects the software 

developers from this realistic environment with their own software 

environment. Such unreal environment may tolerate certain programmingl

pitfalls that could become threatening on the real embedded system.

Therefore, application developers must be aware of this potential 

discrepancy and design their software tailored for the optimal use of the

computing resources.  

A significant part of the application software can be developed natively 

on workstations or servers without TLM platforms. Although well fitted on 

this untargeted foreign environment, the resulted software often triggers a 

disaster on the target platform. Several reasons can explain this situation. In 

general, the larger the SoC project, the more difficult the anticipations will

be. Collected below are among the most common examples: 

1. non-executable application due to the excessive memory consumption 

by the application itself on the target system; 

2. system crash due to some leakage in the resource consumption;

3. inefficient codes due to a slower processor; 

4. deadlocks of multi-threaded applications due to different scheduling. 

Looking at all these potential problems, it is absolutely critical to get 

ready a realistic environment for embedded applications as soon as possible.

Through a realistic environment, such problems can be detected in the early 

phases of the application software design ranging from development to 

execution and simulation. TLM platforms offer a 3-in-1 solution that covers

the three environments for bringing realistic effects, i.e. development, 

execution, and simulation environments.  

The development environment is the set of applications and librariest

necessary for building and debugging a given embedded software. Its early

use within the application design process enables the early detections of 

compilation problems, missing target library functionalities, and resulted 

image size to be loaded on the target platform. 

  The execution environment is the set of resources involved in the

embedded software execution. This is the heart of what TLM platforms have 

to offer to software developers. Running applications on such platforms give

software developers a realistic idea of any potential execution problems

hidden in their applications.

The simulation environment is the set of external devices connected to

TLM platforms. Its mission is to provide software developers with a realistic 

external simulation that will exercise the whole system hardware and 

software. Essentially, this environment simulates the application in the 

setting that it expects to run in. Such simulation is important for observing

the realistic aspects of the embedded system that depend very much on the

data exchanges with the external world.
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5.3.2  Attention to Application Performance

The amount of software to be run at the application level is huge. It is 

very likely to run on many loosely coupled IPs and split into a central 

application software with multiple firmwares around. Therefore,

performance becomes a core issue for using TLM platforms in order tor

extract quickly interesting results. If the accurate timing is one of the major 

expected results, native compilation is of little help.  

Running multiple loosely coupled software pieces in parallel provides

software developers with the ability to parallelize them easily. Although

platform IPs may seem independent from the angle of software, TLM 

platforms impose a certain level of serialization among them because they

interact altogether at the hardware level. Consequently, a very accurate TLM

platform from the hardware perspective may become much less efficient in

running an application software. It is therefore extremely important to 

choose the accuracy level of each TLM component very carefully for a 

system integration.  

Nevertheless, keep in mind that the host processor is usually much more 

powerful than the simulated hardware (for the majority of the simulated IPs 

except the central processor). The global performance of the TLM platform 

thus correlates with the ISS performance. Such correlation is also true for 

IPs running a firmware on a little embedded micro-controller turning at low 

speed. If the TLM platform embeds an ISS for this micro-controller, then the 

ISS performance will be high thanks to a simple code emulation as well as

the high relative speed between the micro-controller and the host processor.

Watch out: the firmware running on this IP could be an active loop waiting

for an event to be raised by another IP, and that may cause the system

temporarily doing nothing constructive for the platform evolution. Of 

course, this is another matter on a timed TLM platform as the relative 

performance of IPs are already taken into consideration.

To conclude, the challenge of running an entire application on a platform 

may turn out to be much tougher than expected. The challenge has no close

relationship with the hardware, but rather in validating the integration of all

software pieces. It may lead to coherent yet antagonistic directions from the

point of view of application performance.

5.3.3 Control on TLM-Specific Code Amount  

TLM and real platforms provide software developers with different but 

complementary advantages. TLM platforms, however, are not set up to run

huge applications due to a costly price to pay for the high accuracy, i.e. low 

performance. Yet, there is still a real interest to run huge software slowly on
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TLM platforms: obtain a level of internal observability that is almost

impossible to get from a real platform. 

When a TLM platform is stopped, all of the platform components are

stopped at the same time in the same state even though they are not tightly 

coupled. This is a very advantageous situation to examine the component 

states in details. Such convenience is not easily reachable on a real platform 

because everything is fit into a chip, which is only accessible through some

internal complex and indirect tracing mechanisms such as JTAG.

Software developers must refrain from writing too many software

specific to TLM platforms. This can be helpful at the early stages of a 

project in order to make use of native compilation. However, it becomes less

and less useful as the project advances because the platform will normally be 

more and more complete while adding new functionalities. Having such 

code at late phases might be mainly for catching some subtle bugs. It will

not be reused on the final hardware and thus can be considered worthless to 

be developed.

Bear in mind that TLM platforms are pure software. If the real hardware 

is available, it will certainly be more efficient to debug an entire application

on it than on the TLM platform (provided that lower software layers are 

sufficiently debugged beforehand on the TLM platform). Although subtle

bugs can be discovered faster on the real hardware, TLM platforms still 

merit a vital role at this stage to continue testing certain software parts

separately from the whole system view.  

In brief, software developers must wisely determine the software amount 

developed particularly for running high-level software on TLM platforms,

knowing that it is preferable to target final applications on the real platforms

for the reasons of debugging efficiency and code reusability.

5.4 Examples of TLM-Oriented Application Software 

Typical applications running on TLM platforms are those interoperating

different IPs through an embedded processor or micro-controller. Particular 

applications running on a single IP can be interesting for demonstration but 

not really valuable for debugging.  

5.4.1 Multi-Processor Platform Application

A multi-processor SoC platform (MPSoC) is a platform that embeds 

more than a single processor of the same type on which the system workload 

is distributed. Other main parts on MPSoC platforms include communication 

channels and potential managers to handle the multiple processors.  
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MPSoC are extremely complex platforms with more than one CPU to run 

the software that manages the whole platform, which consequently leads to a 

distributed management model. Such hardware implementations could be

too complex to understand for software developers. Rather, they should try 

to comprehend the TLM model of the platform and figure out  how to get it 

run. That will focus software developers on the problems related in running 

an application on these platforms, instead of understanding how the 

platforms work.

Communication is another interesting point to employ TLM models of 

MPSoC platforms. The reason is that the complex software running on 

MPSoC platforms always tries to split its workload on all platform resources 

for an optimal utilization. It is therefore fundamental to have an excellent 

control over the communication and data exchanges in order to master such 

platforms. The unified view and global fine-grain control of each processor 

through TLM platforms allow software developers to retrieve and analyze

the MPSoC platform behavior easily. These analyses can be accomplished 

without overlooking the subtle platform management normally handled by 

software such as cache coherence with DMA and shared memory. 

Typical MPSoC platform applications are generic parallel applications in 

which various tasks such as graphical encoding/decoding, network routing, 

scientific computations can be executed indifferently on any processor. The

goal of using TLM platforms for such applications is not really running the 

computations, but rather validating through small examples that the 

workload is well distributed among all of the processors. It is easier to 

conduct this sort of validation on the slow but accurate TLM platforms than

on the real hardware whose activities are much more difficult to control. 

5.4.2 Centralized Multi-Architecture Platform Application 

A multi-architecture platform denotes a platform that embeds multiple

processors of different types. The overall workload is distributed among allt

of the processors but these processors, unlike MPSoC platforms, do not play

the same role. Software must be split into pieces dedicated to each type of 

processors.

Multi-architecture platforms are usually called for applications dealing 

with the parallel handling of multiple data flows whose management is

centralized on one or multiple processors of the same type. Examples for 

these platforms include telephone, set-top box, and complex audio platforms.
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Since each processor is of different type on multi-architecture platforms, 

heterogeneity and synchronization are unsurprisingly the most difficult parts

to master. Indeed, communications in multi-processor platforms can be 

considered as a particular case of communications in multi-architecture 

platforms. High-level management applications are responsible for optimal 

distribution of the instantaneous workload to the right processor at the right 

timing. TLM platforms provide a real advantage by giving a high-level view

of different software pieces running on different processors. 

 The DSP plays a particular role as a multi-architecture platform. DSPs 

are not general-purpose processors but they can be continuously reloaded 

with a new program to perform a new function required at a given time.

Debugging DSPs is exceptionally complex because the software running on

some of the processors changes constantly. This characteristic could be a 

potential source of bugs that is not easy to detect and fix. To handle the 

communication between a CPU and a DSP, software developers need to 

obtain a coherent view of the software distributed on heterogeneous

processors all the time. 

5.4.3 Pipelined Multi-Architecture Platform Application

The pipelined multi-architecture platform is another kind of multi-

architecture platforms. This is a platform whose IPs are integrated in such a 

way that a data flow will stream from a specific IP to another specific IP 

through the whole platform. 

The role of the CPU on a pipelined multi-architecture platform is similar 

to the one of the centralized one, i.e. it organizes the data flow and manages

the external events. Typical platform examples are multi-media decoders. 

Getting ready the application software as soon as possible for such 

platforms enables the flow design validation and the early revealing of any 

potential bottlenecks that may threaten the overall platform performance.

These platforms usually consist of multiple IPs with micro-controllers that

run a firmware not modifiable until the next platform reset. The overall

software is split into multiple pieces that are loaded into their own target IP 

processors, which are independent from each other except for their 

synchronization.  

TLM platforms can simulate this type of complex platforms for 

validating not only the IP-dependent software individually, but also the

overall application that subsequently allows careful checking of certain 

platform aspects during debugging process.
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6. CONCLUSION

Running software on TLM platforms leads to splitting software in three 

layered categories that correspond to the three principal software-testing 

layers: unit test, integration test, and validation test. For each layer, TLM 

platforms offer software developers the simulated platform that they need for 

executing and debugging their software. The choice of the accuracy level of 

TLM platforms is crucial, as the software will appear to run less efficiently

on a more accurate platform. Figure 4-5 recalls the idea of relating different 

software families and environments in the V-diagram of software testing.  

Figure 4-5. Software Families and Environments vs Software Testing 

Developing a complete system based on TLM platforms can significantly

improve the methodology and the schedule of the hardware and software 

design. Software developers are able to test their codes on simulated but 

accurate hardware platform long before the real hardware prototype is ready.

Even after the real hardware is made available, TLM platforms continue to 

bring software developers important information that is not obtainable from 

the real hardware. Essentially, TLM platforms play the central role in 

hardware/software development as a common exchange platform between

these two development teams.

TLM platforms are also considered as the software bug amplifiers. They

reveal a more general behavior of the hardware, which is normally not easily 

accessible to software developers. This advantage reinforces good software

practices for software families ranging from low-level codes to software 

architecture layering. 

In conclusion, TLM platforms shorten the global time-to-market and 

raise the overall quality of SoC projects. Uncovering software and hardware 
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bugs long before the real platform availability considerably trims down the

cost of bug fixing. Last-minute patches can then be avoided most of the

time, giving software developers more time to work on performance issues. 




