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Abstract: The cylindrical steady-state model developed by Krogh with Erlang has served 
as the basis of understanding oxygen supply in living tissue for over eighty years. Due to 
its simplicity and agreement with some observations, it has been extensively used and 
successfully extended to new fields, especially for situations such as drug diffusion, water 
transport, and ice formation in tissues. However, the applicability of the model to make 
even a qualitative prediction of the oxygen level of specific volumes of the tissue is still 
controversial. We recently have developed an approximate analytical solution of a 
steady-state diffusion equation for a Krogh cylinder, including oxygen concentration in 
the capillary. This model was used to explain our previous experimental data on 
myocardial p02 in isolated perfused rat hearts measured by EPR oximetry. An acceptable 
agreement with the experimental data was obtained by assuming that a known limitation 
of the existing EPR methods-a tendency to over-weight low pO2 values-had resulted 
in an under-estimate of the p02. These results are consistent with recent results of others, 
which stress the importance of taking into account the details of what is measured by 
various methods. 

1. INTRODUCTION 

The cylindrical steady-state model developed by Krogh with Erlang has sewed as the 
basis of understanding oxygen supply in living tissue for over eighty years. The use of a 
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circulation unit with one axial capillary permitted a description of the oxygen transport in 
tissue using simple analytical functions. The simplicity of the Krogh-Erlang model, 
which was achieved by ignoring axial oxygen diffusion of oxygen and blood as an 
oxygen carrier, still attracts researchers even though more complex and potentially more 
accurate extensions of the concepts have been developed. These include more 
sophisticated mathematical models for oxygen transport in tissue (see reviews by popel' 
and Hellums et al.'), studies that take into account the vascular structure: and 
considerations of regulation of oxygen de1ive1-y.~. 

1.1. Incorporation of Axial Oxygen Diffusion 

One of the earliest and still widely used approaches is the Kety assumption6 that 
assumes a linear decrease of oxygen concentration in the capillary from the arterial to the 
venous end. Several groups have now calculated the effect of axial oxygen diffusion 
along the capillary by solving the diffusion equation using digital methods. Fletcher and 
schubert7 have developed a model that takes into account axial diffusion and wall 
permeability effects in perfused capillary-tissue structures. The venous boundary 
conditions and the characteristic "permeability coefficient" of the vessel wall were 
incorporated into the model. Lagerlund and LOW' included axial diffusion in blood and in 
surrounding tissue. In this simulation, it was assumed that the oxygen consumption of 
nerve tissue obeys Michaelis-Menten kinetics rather than zero-order kinetics, as had been 
assumed in the Krogh model. Analytical solutions for the radially averaged, axially 
distributed modified Krogh model were developed by Schubert and ~ h a n ~ . ~  In this model 
they averaged the tissue oxygen radially, using a mass-transfer coefficient to maintain 
radial transport, and adding axial diffusion in the capillary and tissue. 

1.2. Applications to Processes Where Hemoglobin is Not Involved in Oxygen 
Diffusion 

Using numerical methods and an advanced Krogh model,   abet'' simulated injection 
of a drug into a capillary and its diffusion in tissues, and obtained results that were close 
to the experimental data. Millard and  orm man" used a similar approach to describe 
substrate concentration in tissue. Using the Krogh approach, Rubinsky and peggI2 
developed a mathematical-model for the freezing process in biological tissue. Bischof et 
a1.I3; Devireddy and ~ i s c h o f ' ~  and Devireddy et a1.I5 have used the Krogh cylinder model 
to simulate water transport and ice formation in both isolated hepatocytes and whole 
tissue slices. 

These studies show that the Krogh model still has great applicability to make a 
qualitative prediction under different experimental circumstances. These results also 
demonstrate that the use of digital methods makes analysis more complex. We recently 
have developed an approximate analytical solution of a steady-state diffusion equation 
for a Krogh cylinder including oxygen concentration in the capillary. This solution was 
used to reanalyze our previous experimental data on myocardial p02 in isolated perfused 
rat hearts measured by EPR oximetryI6 without an oxygen carrier. 
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2. DIFFUSION EQUATION AND BOUNDARY CONDITIONS 

We considered a diffusion equation in a Krogh cylinder using cylindrical 
coordinates: 

boundary conditions in tissue Yo I r < R , 0 I z I L: 

and boundary conditions in the capillary 0 <r <ro, 0 I z I L: 

where U=U(r,z), Uc=U(r,z) are oxygen concentrations in tissue and capillary, 
respectively, Q is zero order oxygen consumption, D is oxygen diffusion coefficient, R 
and L are radius and length of Krogh cylinder respectively, ro is radius of capillary, V is 
speed of media in the capillary, and Uo is oxygen concentration in capillary at the arterial 
end of capillary. 

To solve the problem the following dimensionless variables and parameters were 
introduced: 
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Using these variables and parameters, one can write the dimensionless diffusion equation 
and boundary conditions: diffusion equation in tissue 

with boundary conditions: 

and in capillary: 

3. RESULTS AND DISCUSSION 

3.1. The Solutions of the Diffusion Equation in a Krogh Cylinder 

The solutions of the Eqs. (4)-(8) are expressed as follows: 

where: 

and: 

where: 

+ a 2 )  1 - 
cp, = 1 - ---- ~ + - C A , M ,  sin ynq? 

2au u " = I  
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and A, should be found from the following set of linear equations: 

3.2. Calculation Procedure and Results of Computing 

Using Eqs. (9)-(12), the discrete oxygen distribution in a Krogh cylinder was 
digitally derived (40x40 points) using numerical values of parameters for the rat heart 
that were chosen based on measurements of others and our experimental data. Linear 
Eqs. (12)-(12a) were solved using MathCAD software. This software also was used for 
all other calculations. Three modes of approximation (n = 3) were used for calculations in 
this modeling. 

The discrete oxygen distribution in the plane perpendicular to the capillary at any 
point zi of the capillary can be presented using the classical Krogh formula: 

where pOTP(zi) is the oxygen concentration in the capillary at the point zi, a = 1.32* 10" 
moles/mVmmHg is oxygen solubility, D = 1 *lo-' cm2/sec is oxygen diffusion coefficient, 
ro= 2.2 y m  is capillary radius, Q is oxygen consumption of 1 cm3 of tissue, 

R =d* is radius of Krogh cylinder, Dc = 2500 m d 2  is capillary density, rj is 

radial coordinate, and ro 2 rj 2R. 
Assuming that both the oxygen consumption of the tissue throughout the length of 

the cylinder as well as radially, and the linear velocity of the blood through the tissue are 
constant, Kety came to the conclusion that the oxygen concentration of the blood must 
fall linearly with distance as the blood traverses the capillary from arterial to the venous 
end. Blood is not involved in oxygen transport in isolated rat hearts perfused with 
crystalloid solutions. Therefore, using the Kety assumption, the oxygen concentration in 
the capillary a*pOTP(zi) can be expressed as follows: 

where is influent oxygen, F is flow rate per 1 cm3 of tissue, and L=0.02 cm is 
capillary length. 
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influent mm Hg 
Figure 1. Modeling of myocardial p02 at varying influent oxygen levels using the Krogh model with (a, b), and 
without axial oxygen diffusion (c, 4. p01 was derived using the LW of averaged EPR spectrum (a, c) and the 
mean p01 over Krogh cylinder (6, 4. Experimental data from several different isolated hearts are represented by 
different symbols.'6 

We found that the oxygen distribution derived using Eqs. (9)-(12) was significantly 
different from the distribution given by the classical Krogh model [Eqs. (13)-(14)l. In 
order to compare these two models with experimental data,I6 the mean p02 value <PO&, 
rj)> over Krogh cylinder was calculated using our analytical solution [Eqs. (9)-(12)] and 
the classical Krogh model with the Kety assumption [Eqs. (13)-(14)l: 

In those experiments, a constant flow experimental setup was used. When the effect 
of influent oxygen on myocardial p02 was investigated, the effect of p ~ 2 i n  on oxygen 
consumption was observed to be: [~=10~~*(45.9+0.148*~0~~")  moles/sec/g]. In the set of 
experiments where the effect of flow rate (F) on myocardial p02 was investigated, the 
effects of F on influent oxygen [p0?=313.3+469.9*F] and on oxygen consumption [Q = 
10-9*(87.5+125*~) moleslseclg] were found (flow rate was varied from 10 to 20 mllmin). 

Figures 1 and 2 show the results of these calculations. One can see that the solutions 
with axial oxygen diffusion give a better fit to the experimental results: the mean p02 
computed using measured oxygen consumption and flow rate is closer to the measured 
myocardial p02 in isolated perfused rat hearts. Of course, it is possible to improve the 
agreement with the classical Krogh model, but this requires increasing the oxygen 
consumption in the calculations to unexpected levels. 
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Flow rate, mllmin 
Figure 2. Modeling of myocardial p02 at varying flow rates using the Krogh model with (a, b) and without (d, 
c) axial oxygen diffusion. p01 was derived using the mean p02  over the Krogh cylinder (b, d) and LW of 
averaged EPR spectrum (a, c). Experimental data in isolated hearts are indicated by different symbols. 

In addition, Figures 1 and 2 also show that both calculations give higher p02 levels 
than were observed experimentally. We could get a result that was consistent with 
expected physiology and the model by assuming that a known limitation of the existing 
EPR methods-a tendency to over-weight low p02 values-had resulted in an under- 
estimate of the p02. The p02 at each point of the Krogh cylinder was simulated as 
individual EPR lines, and the experimentally observed EPR line was computed by 
averaging these 40x40 spectra. 

Then p02(EPR) = c+d*LW is derived using the LW of the EPRline(h), where a, b, c, 
and d are calibration coefficients derived by calibration of LiPc crystals in vitro (N=40). 
This assumption is equivalent to the assumption that small LiPc crystals are located at 
each point of the Krogh cylinder. The mean p02 value then was calculated using this 
averaged spectrum and the LiPc calibration. Using this approach, an acceptable 
agreement with the experimental data was obtained: both the dependences of pO2 versus 
flow rate and p02 versus influent oxygen were successfully described, Figures 1 and 2. 
We are developing methods of spectral analysis that will enable us to correct for the 
tendency to over-weight low values in a heterogeneous environment; in the future we 
should be able to utilize fully the improved model. 
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4. CONCLUSIONS 

The inclusion of axial oxygen diffusion in the Krogh model and the mean p02 value 
calculated using the LW of the averaged EPR spectrum lead to better agreement between 
the computed and the experimental p02 in the isolated rat heart for these experimental 
conditions. These results are consistent with recent results of others that stress the 
importance of taking into account the details of what is measured by various methods, so 
that they can be compared accurately with other results and evaluated properly by 
models. " 
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