
Chapter 7

MODEL BASED TESTING AND REFINEMENT IN

MDA BASED DEVELOPMENT

Ian Oliver
Nokia Research Center
Helsinki
Finland

Abstract The Model Driven Architecture’s key principle is that of the mapping. An algo-
rithmic or otherwise mechanical way of generating new more platform specific
models from platform independent models with respect to some platform. These
mappings are always presented as devices driving the software development.
However it is clear that there are a number of uses for mappings and that the
idea can be extended to take into consideration not only software development
but transformation between differing underlying representations.

Mappings also have a key rôle in the methodology and in the way tests are
conducted. Development is coupled with the notion of refinement - that is a
mathematically strict way of ensuring certain (critical) properties from the ab-
stract to concrete models. To fully understand and utilise the mappings it is
necessary to construct and formalise a framework for these mappings and their
meanings (particularly in testing with refinement).

1. Introduction

Testing is probably the most critical issue with regards to software develop-
ment but is one of the most lacking areas in terms of practise [Binder, 2000].
Technologies such as model based testing [Offutt and Abdurazik, 1999], re-
finement and so on, are all well known; integrating these together is a critical
task for software engineering. There are a number of issues particularly when
integrating refinement that need to be discussed.

Model Driven Architecture (MDA) is a proposal by the Object Manage-
ment Group1 for a development framework in which the logic of the system
is separated from the logic of the underlying platform. The key points about
the MDA is that it formalises the relationship between that of a model and
that of the mapping between a pair or more of models by encoding algorith-

© 2005 Springer.  Printed in the Netherlands. 

107

P. Boulet  (ed.) Advances in Design and Specification Languages for SoCs, 107–122. 



108 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

mically methodological ideas and concepts. The idea, while arguably not rev-
olutionary is now practical because of the existence of a standard, extensible
modelling language (UML), domain specific meta-models and thus languages,
a meta-modelling framework (MOF) and standardised model interchange for-
mats (nominally based upon XML). This notwithstanding the development of
sophisticated processes, methods and experience of the software engineer.

Model Based Testing (MBT) is a development concept where the validation
and verification tests are generated directly from the models of the system un-
der development. Refinement is a well known, formally defined method for
ascertaining whether certain properties of a system are preserved across devel-
opment. However refinement as seen in methods such as the B-Method is very
strict and tied to one particular aspect of the model. Model based testing on
the other hand deals with many aspects of a model.

In this paper we describe how model based testing, model driven architec-
ture and the notion of refinement combine. We do not attempt to provide a full
mathematical treatment of this composition but to outline a number of impor-
tant issues when working with these technologies.

2. MDA Taxonomy

The MDA is a complex structure which takes into consideration many as-
pects of modelling such as the language, semantics and model management. In
figure 7.1 we show a simplified representation of the MDA meta-model written
using UML.

Model Language

Notation SemanticsMapping

* *
srctarg

written in

* *
composed ofcontains

* *

Figure 7.1. MDA Meta-Model

From this model we can clearly see the separation of concerns provided
by the MDA and embodied in the technologies on which it is based. For ex-
ample the UML [OMG, 2002b] makes the distinction between notation and
semantics. The UML is supplied with a weak semantics enough to suit nearly



Model Based Testing and Refinement in MDA Based Development 109

all development tasks and extensible enough for it to be customised to most
domains.

The meta-model shown here we have reconstructed from our experiences in
using the MDA and MDA-like approaches [Oliver, 2002b]. The primary issues
are the creation of a structure of mappings and the explicit representation of the
structure of a language.

2.1 Mapping Taxonomy

The mapping is the fundamental construct of MDA. The key point about
the mappings in the MDA is that they are of semantic nature and not syntactic
nature - that is they map the concepts in one language to the concepts in an-
other preserving the meaning. This in unlike the traditional syntactic mappings
found in many tools, for example, those that map UML classes to C++ or Java
classes - this is of course fine if the semantic gap between the diagram and the
code is almost non-existent.

The MDA as it stands does not define any taxonomy of mappings, this we
feel leads to some confusions about what a mapping is and what can be per-
formed by a mapping.

We therefore introduce a simple taxonomy2 of MDA mappings based upon
the idea that mappings can be broadly classified into three types: development,
transformational and code-generation. These can be seen in figure 7.2 - taxon-
omy in black, MDA meta-model in grey.

Development Transformation CodeGeneration

* contains

Mapping

Figure 7.2. MDA Mapping Taxonomy

Mappings may contain other mappings - particularly in the case of devel-
opment mappings which may utilise a number of transformational mappings
to produce their result. This relationship also solves the problem (discussed
below) of the transformation vs code-generation mapping - a transformation
mapping may contain a (or many) code-generation mapping(s).

Of course there can be much discussion about the structure of this taxonomy
and its classifications. One point certainly relates to code generation mappings:
are they development, transformational or some subtype of a transformational



110 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

mapping? We do not discuss these issues here as classifications have too much
of a philosophical nature.

Refactoring [Fowler, 1999] we consider the situation where we wish there
to be no formal mathematical connection between the source and target models
of the mappings. Refinement is the strongest of all the properties and insists
that strict relationships between the models exist. Retrenchment is presented as
a generalisation of refinement that deals with the situation where requirements
may change but we wish to preserve the ideas of refinement.

In this paper we concentrate more on the notions of refinement and retrench-
ment and what it means within the context of an MDA development process
that requires those properties to hold.

In [Oliver, 2002a] is a description of the space in which a model exists
known as the model matrix shown in figure 7.3. Here we can clearly see that
a model exists in a many dimensional space corresponding to various aspects
of the state and meaning of that model at any particular time. We concentrate
here on just the ‘vertical’ and ‘horizontal’ axes to which we give the names

Development or Vertical Mappings (shown in the model axis)

Transformation or Horizontal Mappings (shown on the support axis)

PI
M

PS
M

(RMA, Model Checking etc...)

M
od

el

Support

Version Control

x

y

z

Product Data Management
w

Figure 7.3. Model Matrix

We consider vertical mappings those that are conventionally in MDA par-
lance thought of as platform independent models (PIM) to platform specific
models (PSM) mappings, that is, those that change the abstraction level. Hor-
izontal mappings we consider not to change the abstraction level. Mappings
into programming languages are discussed separately.



Model Based Testing and Refinement in MDA Based Development 111

2.2 Development Mappings

Development mappings are those which change the abstraction level of the
model. That is they map platform independent models to platform specific
models. It is important to note that the terms ‘platform independent’ and ‘plat-
form specific’ are adjectives - they describe the relationship between any pair
of models in the development process rather than what a particular model is.

An important property of the development mappings is that they do not nec-
essarily imply any change of language in which the models are written. It
is conceivable that a model written using, for example UML 1.5 Core, will
continue to be written in UML 1.5 Core complete with the same semantics
throughout the development process - in this case the development mapping
only adds more detailed information into the model.

Normally it is the case that the language - or at least the semantics of the
language - changes to reflect the increasing concreteness of the model. For
example very platform independent models talk of classes in the broad object
oriented sense while platform specific models may introduce more concrete
semantics such that the notion of a class becomes closer to that of a database
table, VHDL process [Marchetti and Oliver, 2003] or C++ class [Stroustrup,
2000] for example. There is still much open research on development map-
pings and how they are implemented and what information is supplied. Broad-
ly speaking they can be considered the mapping of the structure, behaviour
and other aspects onto the architecture of system (at that level of abstraction)
[Boulet et al., 2004, Siikarla et al., 2004].

2.3 Transformation Mappings and Model Based Testing

Transformation mappings are those which do not change the abstraction
level of the model but rather extract information from the model. This is a sep-
arate issue from a development mapping where the semantics of the language
remains relatively comparable (eg: UML to UML-RT [OMG, 2002b, OMG,
2002a]). In transformational cases we have the situation where the language
change can be very great. We can show two interesting examples of this and
both relate to the issues surrounding ‘model based testing’ [Offutt and Abdu-
razik, 1999] and aspect-orientation [Elrad et al., 2002].

In the first example we can map models written using UML-RT into schedu-
lability analysis models [Oliver, 2003] which may be analysed by using a tech-
nique such as rate monotonic analysis [Klein et al., 1993]. Here the nature
of the mapping is defined such that each unit of execution (method, transition
etc) is mapped into an RMA task along with certain dependencies. This model
then requires the presence of another source model detailing the deployment
architecture of the UML system model. From this deployment model we can
ascertain where the scheduling points are in the model.



112 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

In the second example we map UML to a different modelling formalism -
the formal specification language B [Abrial, 1995]. B however is not object
oriented and its major constructor is that of a ‘machine’. This machine con-
struct fits neither the concepts of class, object nor component directly. The
transformation mapping between UML and B as described in [Snook et al.,
2003]. An example of an application of this mapping can be seen below as B
code and the class diagram in figure 7.43

MACHINE DSP0

/*" U2B3.6.12 generated this component from Package DSP0 "*/

SETS

DSP={thisDSP}; CELL; CHANNEL; DSP_STATE={boot,init,idle,traffic}

CONSTANTS

threshold

PROPERTIES

threshold : DSP --> INT

DEFINITIONS

disjoint(f)==!(a1,a2).( a1:dom(f) & a2:dom(f) & a1/=a2 => f(a1) union (a2)=0 )

VARIABLES

dsp_state, current,dspChannels,powerlevel,cellChannels, broadcasting

INVARIANT

dsp_state : DSP --> DSP_STATE & current : DSP +-> CELL ...

INITIALISATION

dsp_state := DSP * {boot} || current :: DSP +-> CELL || ...

OPERATIONS

gotoinit =

BEGIN

SELECT dsp_state(thisDSP)=boot

THEN dsp_state(thisDSP):=init ||

ANY xx WHERE xx:CELL THEN current(thisDSP):=xx END

END;

...

END

Figure 7.4. Simple Class Diagram



Model Based Testing and Refinement in MDA Based Development 113

A desirable property of transformation mappings is the reversal of the map-
ping. While moving from one representation to another presents us with the
opportunity to explore different aspects of the model, the relaying of the re-
sults in these models back to the original is necessary to allow full round-trip
modelling between the two representations. In the examples given this means
that the underlying semantics between the two representations is isomorphic
with respect to the transformed aspects.

The ideas of model based testing can be clearly seen in the above example
and how these ideas integrate. Each transformation mapping is a way of gen-
erating the test models from one or more aspects of the model. While utilising
these models is generally simple for testing purposes, showing how these test
models and their results fit together is more complex. This is where the ideas of
refinement help in defining how the test models should be utilised with regards
to the development of the system under test.

2.4 Programming Language Mappings

Programming language mappings present an interesting difficulty in this
taxonomy as it is unclear exactly whether their are developmental or trans-
formational in nature. If we take the case of a traditional UML modelling tool
where class diagrams are annotated with methods, types, syntax and code that
are of a given programming language, then certainly the mappings are transfor-
mational in nature. This is primarily because the mappings do not increase the
concreteness of the model but just translate it in to a pure C++ or Java form -
the model then is a just a graphical form of the programming language and the
mapping purely syntactic in nature. A syntactic mapping places a fixed set of
semantics on the nature of the relationship while a semantic mapping requires
more information (this may be fixed of course) to resolve into what structure
the relationship may be. In the case of Java this could mean Vector, Hashtable
etc.

If the mapping requires information (from the architecture or platform defi-
nitions) to generate the more platform specific model in order to complete the
mapping then the mapping is vertical in nature. Here the mapping is more
semantic in nature usually.

3. Example of a Refinement Based Methodology

The PUSSEE project4 constructed a methodology for the development of
hardware systems using UML and formal development processes. The metho-
dology discussed can be placed into an MDA context where the relationships
between the models being produced are realised as MDA mappings. Pictorially
the development process can be seen in figure 7.5



114 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Developed to

Refines

Code Generated To

Refines
Refines

Transformed To

Model Checker

Theorem Prover

processed by ....

processed by ....

<<model>> <<model>>

<<model>>

<<model>>

<<model>>

<<model>>

<<model>>

<<development>>

<<code generation>>

<<transformation>>

<<transformation>>

Refines

Developed to
<<development>>

<<development>>
Developed to

RIL

RIL

B

B

VHDL

SystemC
<<model>>

C

UML+HW/B Model
<<model>>

UML+B Model
Transformed To

Figure 7.5. The PUSSEE Process

The formal aspects of the methodology are realised by utilising a profile
of the UML [OMG, 2002b] known as UML-B [Snook et al., 2003] which in-
tegrates the B formal specification language [Abrial, 1995] into the UML as
its action and constraint languages. These UML-B models are then verified
for internal consistency and refinement properties [Morgan, 1990] by theorem
proving mapping from the UML-B to a pure B form (which the user does not
necessarily see). Subsequently this is then code generated into a target lan-
guage such as SystemC, C or VHDL [Hallerstede, 2003]. In addition to this
the models may also be mapped to the Raven Input Language (RIL) for model
checking with Raven [Ruf, 2001]. Refinement is ensured between the B and
RIL models. If both refine then this implies refinement of the UML-B model.

4. Refinement in MDA

Refinement [Morgan, 1990] is a property between models that states that
one model is a) linked to a former, less-refined model and that b) the refined
model reduces the state-space and non-determinism of the former model. Of
course in reality the refinement link between any pair of models is more com-
plex [Back, 1998].

Refinement therefore is a property of a relationship between two models
(and not a development tactic as is sometimes believed). Referring back to the
process described in figure 7.5 refinement is preserved if the following is true:

∀m1, m2 : Model | m2 ∈ DevelopedFrom(m1) • m1 � m2

However this simple equation contains not enough detail - we must consider
precisely which aspects of the model we wish to consider for refinement. This



Model Based Testing and Refinement in MDA Based Development 115

is particularly necessary in the case of UML which has no in-built method nor
refinement semantics. In the case of embedded systems, only a few critical
aspects at certain stages of development are amenable to refinement. For an
embedded system this might be just the schedulability characteristics [Klein
et al., 1993] or performance constraints. In the methodology described earlier
this might then be described:

As the PUSSEE-method is based upon the B-Method then the refinement
semantics are take directly from the B-Method. Here the refinement operator
takes its semantics directly5 from B-Method (specifically defined between the
B models).

Given a model M1 in UML-B we transform that model into its correspond-
ing B representation, that model we denote B1. Usage of a suitable B theorem
prover proves the consistency of the model (but not necessarily its validity). If
we develop M1 to M2 with some development mapping d which has the prop-
erty that its target model(s) must refine the source model we are stating that
any B representation of M2, ie: B2 must refine B1 in the sense defined by the
B-Method. Therefore we can state that M1 � M2 iff B1 � B2.

The case is similar when we map to our second target aspects - RIL. Again
the method is similar: M1 is mapped to R1, M2 is mapped to R2, and the
development step d preserves refinement iff R1 � R2.

However the refinement property of the development step d and thus M1 �
M2 is only true if we are only considering single aspects of the model. The
notion of refinement therefore has to be extended to take into consideration the
multiple-aspects that may be explored during the development of the model.

5. Model Refinement Generalisation

We have so far presented the semantics of refinement of a model based upon
the refinement of particular models that are transformed via an MDA mapping
from the source model. We can generalise this approach and thus define firstly
a number of types of refinement, that is refinement of particular aspects, and
then a more global idea of refinement based upon the whole set of aspects
being modelled and investigated.

Given a model M at any point in time we have a set of transformations T
that extract particular aspects from the model. Not all available transformations
need be applied to a model at every level of abstraction; deciding which to
apply is governed by the development method employed.

We define a development mapping d : Model → Model over which re-
finement is preserved,ie: m � d(m). We also define model Mn where n
denotes some point in time. For simplicity here we assume that n is an in-
teger greater than zero and that time is a set of discrete values 1,2,3 and so
on: Mn+1 = d(Mn). At any point in time we extract using a transformation



116 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

mapping on a model a number of aspects of that model. For example given a
model M where the set of transformation mappings T is {B,RIL} we obtain
AB and ARIL as models describing those particular aspects.

Our previous definition of refinement:

Mn � Mn+1 ⇒ ∀t : T • t(M1) � t(M2)

is too strong and can not take into account that not all transformations are
applied. At any point in time we have a model Mn and a set of transformation
applications An where An ⊆ T . Then refinement can be defined as:

(Mn, An) � (Mn+1, An+1) ⇒

An ⊆ An+1 ∧ ∀a ∈ An · a(Mn) � a(Mn+1)

If An+1 contains more transformation mappings than An these can not be
checked themselves for refinement as those members do not have any meaning
in Mn and thus across the pair of models.

This definition also ensures that as more aspects are checked then their prop-
erties must refine across all subsequent model pairs ensuring the property that
refinement is transitive.

This now gives us the definition of refinement across multiple aspects. Of
course what refinement means for a particular aspect of the model still depends
upon the methodology being employed for that aspect. In the case of B and B-
method this is already defined. In the case for schedulability analysis [Klein
et al., 1993] then as timing figures for a model decrease then refinement is
preserved. Some aspects do not necessarily have a well defined semantics for
refinement.

As we shall now see there are other considerations to make when working
with refinement and the interaction between aspects when working with mul-
tiple aspects.

6. Other Considerations

Refinement as a property of development is highly desirable, however there
are circumstances when the requirements do change and this then causes re-
finement to break. There are two particular tactics for dealing with this situa-
tion.

Also we have to consider the interaction between aspects. Aspects are often
considered to be orthogonal in nature, however, there are situations where a
change in the model which affects one aspect has repercussions for another
aspect - this can be seen for example when working with schedulability and
performance characteristics.



Model Based Testing and Refinement in MDA Based Development 117

6.1 Requirements Volatility

One of the major problems with refinement is that it assumes that the models
in question can be built in such a way that the final concrete model is a refine-
ment of the first, most abstract model. While this approach has some very real
advantages it is often the case that the initial set of requirements changes so
that one model may not refine the previous source abstract model.

One solution to this is that of retrenchment [Poppleton and Groves, 2003,
Poppleton and Banach, 2002] which introduces a relaxation of the rules of
refinement to allow for the situation where the models do not refine. This
situation can be easily catered for with MDA by providing information about
the retrenchment through a separate model.

Retrenchment requires the use of the notion of concession which defines
how the refinement relationship is weakened. In [Popplpeton and Banach,
2004] a semantics for retrenchment is given such that the retrenchment can
be expressed in terms of a refinement with respect to some universal model
in which the concessions are expressed. We can utilise this by creating an
addition model which contains the concessions. This approach though is still
experimental and support for dealing with the concession model does not exist
at this time.

Another approach is to rebuild the models by layering the features that have
been specified in the model [Back, 2002, Back, 2003]. A situation where the
refinement property of the development step can not be attained then the model
must be refactored [Fowler, 1999]. These techniques represent methods by
which one can overcome certain refinement restrictions. It may be possible
in the case of retrenchment to factor in the retrenchment ideas into the MDA
structure and refinement definition given in this paper. At present we have not
explored this in detail but the ideas are presented here to outline the future
areas of research.

6.2 Aspect Interaction

Our definition of refinement so far assumes that the aspects of the model are
orthogonal in nature. Some pairs (or more) of aspects may interact in such a
way that a change in one aspect may cause a failure of the refinement obligation
in another, seemingly, unrelated aspect.

This can trivially be seen if we are dealing with extracting memory usage
information where an change of functional specification may cause the amount
of memory consumed to increase, thus breaking the trivial memory refinement
property.

Aspect interaction is one thing that makes model based testing and the ap-
proach discussed here more difficult. It is always necessary to examine the
interactions. Categorically [Barr and Wells, 1990] this can be achieved by for-



118 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

mulating a universal structure that describes the interaction between the two
aspects. This is done by constructing a forgetful functor to each of the as-
pects to build the model of interaction. This is analogous to the retrenchment
universal model in [Popplpeton and Banach, 2004].

In most situations we can avoid the necessity of constructing such models
by ordering the transformation mappings for testing in such a way that cer-
tain aspects are only meaningful for refinement (of the particular system under
development) after certain amounts of development have already been com-
pleted.

For example, for schedulability analysis or memory usage analysis, these
aspects may need to be kept until later stages of development before refinement
can be utilised.

7. Methodology

MDA places much more emphasis on method rather than just notation or
process. The current MDA releases do not discuss in detail6 the relationship
between method and mappings which in our opinion is critical to the uptake
and use of MDA principles.

We are developing a model of this relationship which is used to help in the
development of methods which support MDA. The outline of this modelling
framework can be seen in figure 7.6.

Mapping

Model

Step Working Testing

Abstraction
Level

Method

targ src
**

*

*

*

*

*

*

defines

defines

utilises

can apply

used in

links

Mapping Taxonomy...

Figure 7.6. Method Meta-Model

We consider a method to consist of a number of method steps which act upon
various abstraction levels (at least one or two). At each abstraction level there
are a number of mappings that can be sensibly applied in that context. This is
the first step towards a ‘component based methodology’ - an idea where meth-



Model Based Testing and Refinement in MDA Based Development 119

ods are composed of a number of discrete techniques that can be composed
together [Ambler, 2003].

We divide the concept of model into two parts, one for models of the sys-
tem being built and one for models that facilitate some kind of testing. These
basically correspond to those models generated by development mappings and
those generated by transformation mappings respectively and thus demonstrat-
ing the relationship between the two basic types of mapping and the types of
model produced.

The development properties related to formality becomes more interesting
as we can assert on the sets of mappings for each abstraction level properties
about how strict the mappings have to be with regard to more abstract models.
It can be seen that weaker mappings (refactorings mainly) are best placed at
very high abstraction levels where prototyping and very exploratory work can
be carried out while stronger mappings such as those implying refinement are
used at more concrete levels.

8. Conclusions

We have presented here the outline of how one may utilise and add the
concept of refinement into MDA mappings to construct a formal development
method and described a simple taxonomy of MDA mappings, their basic prop-
erties and their relationship to methodology. Model Driven Architecture is
a very young and immature field although the concepts behind MDA can be
traced back to the CASE idea of the 1970/80s. One of the reasons behind this
immaturity is a large number of preconceived and unworked ideas regarding
what a model is and what a mapping is.

Two areas of particular interest at the moment are extending the taxonomy
to take into consideration operations [Alanen and Porres, 2003] such as model
union, intersection and so on.

The secondary area of interest is the semantics of (a) method. In figure 7.6
we only define a structure state desirable properties of commutativity across the
models produced with respect to the refinement and development relationships
[Barr and Wells, 1990]. As the number of methods that do exist are plentiful
the material to draw from here is large. One area of contention is that of the
idea of a method step and a mapping - it is not clear whether these terms are
actually different or whether they are isomorphic in nature.

Refinement offers much advantages when developing systems (usually in
software) with regards to the ensured preservation of necessary requirements
of the system being modelled. The addition of this concept into the MDA
framework provides a placeholder to introduce the ideas of formal develop-
ment in an MDA context. This we feel makes the idea more acceptable to the
engineer who can still work with familiar notations and if truth be said in a de-



120 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

sired rigorous way. Techniques such as retrenchment can be applied similarly
and offer a weaker approach when required.

The problem of feature interaction can be overcome in two ways, one by let-
ting the methodology take care of things and the other more rigorously through
defining what is the interaction between two aspects. Both approaches we be-
lieve are complimentary and still require work before advances can be made.

For the developer of a method a placeholder for the semantics of the re-
finement required in a given context provides the chance to introduce formal
development into a given MDA based method.

9. Acknowledgements

This work is partially supported by the EU Project PUSSEE - IST 2000-
30103. Many thanks to Jean-Raymond Abrial for some useful comments re-
garding refinement and methodology.

Notes

1. http://www.omg.org/mda

2. This by no means is a complete or “one true” taxonomy - many variations do exist but have yet
to be either documented or demonstrated. We defer the argument about what constitute a good or correct
taxonomy here to concentrate on the basic framework rather than a philosophical discussion

3. NB: B code listing is shown only partially for space reasons and the ellipses (...) show the missing
code):

4. EU Project: IST-2000-30103,Paradigm Unifying System Specification Environments for proven
Electronic design, http://www.keesda.com

5. actually only in part but we shall discuss this later
6. and nor should they possibly

References

Abrial, J-R (1995). The B-Book - Assigning programs to Meanings. Cambridge
University Press. 0-521-49619-5.

Alanen, Marcus and Porres, Ivan (2003). Difference and union of models. In
Lecture Notes in Computer Science 2863: <<UML>> 2003 Conference.
Springer. October 20-24.

Ambler, Scott W. (2003). The right tool for the job. Software Development,
11(12):50–52.

Back, Ralph (1998). Refinement Calculus: a Systematic Introduction. Springer-
Verlag. 0387984178.

Back, Ralph-Johan (2002). SFI: A refinement based layered software architec-
ture. In George, C and Miao, H, editors, Formal Methods and Software En-
gineering: 4th International Conference on Formal Engineering Methods,
ICFEM 2002 Shanghai, China, October 21-25. Lecture Notes in Computer
Science 2495. Springer.



Model Based Testing and Refinement in MDA Based Development 121

Back, Ralph-Johan (2003). Software construction by stepwise feature introduc-
tion. In Bert, D., Bowen, J.P., Henson, M.C., and Robinson, K., editors, ZB
2002: Formal Specification and Development in Z and B: 2nd International
Conference of B and Z Users, Grenoble, France, January 23-25. Lectures
Notes in Computer Science 2272. Springer.

Barr, Michael and Wells, Charles (1990). Category Theory for Computing Sci-
ence. International Series in Computer Science. Prentice Hall. 0-13-120486-
6.

Binder, Robert V (2000). Testing Object-Oriented Systems - Models, Patters
and Tools. Addison-Wesley. 0-201-80938-9.

Boulet, P., Cuccuru, A., Dekeyser, J.-L., Dumoulin, C., Marquet, Ph., Samyn,
M., Simone, R. De, Siegel, G., and Saunier, Th. (2004). MDA for SoC de-
sign: UML to SystemC experiment. In Müller, Wolfgang and Martin, Grant,
editors, Proceedings of UML-SoC 2004, DAC2004, San Diego, California,
June 6.

Elrad, Tzilla, Aldawud, Omar, and Bader, Atef (2002). Aspect-oriented mod-
eling: Bridging the gap between implementation and design. In Batory,
D, Consel, C, and Taha, W, editors, Generative Programming and Com-
ponent Engineering: ACM SIGPLAN/SIGSOFT Conference, GPCE 2002,
Pittsburgh, PA, USA, October 6-8, 2002. Lectures Notes in Computer Sci-
ence 2487, pages 189–201. Springer.

Fowler, Martin (1999). Refactoring: Improving the Design of Existing Code.
Addison Wesley. 0201485672.

Hallerstede, Stefan (2003). Parallel hardware design in B. In Bert, Didier,
Bowen, Jonathan P, King, Steve, and Waldén, Marin, editors, Proceedings
of ZB2003: Formal Specification and Development in Z and B. Lecture
Notes in Computer Science 2651. Third International Conference of B and
Z Users, Turku, Finland, June 2003, pages 101–102. Springer.

Klein, Mark H., Ralya, Thomas, Pollak, Bill, Obenza, Ray, and Harbour, Mi-
chael González (1993). A Practitioner’s Handbook for Real-Time Analy-
sis: Guide to Rate Monotonic Analysis for Real-Time Systems. Kluwer Aca-
demic Publishers.

Marchetti, Michele and Oliver, Ian (2003). Towards a conceptual framework
for UML to hardware description language mappings. In Proceedings of
FDL03, Frankfurt, Germany, Sept 2002.

Morgan, Carroll (1990). Programming from Specifications. Prentice-Hall.
Offutt, Jeff and Abdurazik, Aynur (1999). Generating tests from UML specifi-

cations. In The Second International Conference on The Unified Modeling
Language, Fort Collins, Colorado, USA, October 28-30. Springer.

Oliver, Ian (2002a). Experiences of model driven architecture in real-time em-
bedded systems. In Proceedings of FDL02, Marseille, France, Sept 2002.



122 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Oliver, Ian (2002b). Model driven embedded systems. In Lilius, Johan, Balarin,
Felice, and Machado, Ricardo J., editors, Proceedings of Third International
Conference on Application of Concurrency to System Design ACSD2003,
Guimarães, Portugal. IEEE Computer Society.

Oliver, Ian (2003). A UML profile for real-time system modelling with rate
monotonic analysis. In Villar, Eugenio and Mermet, Jean, editors, System
Specification and Design Languages. Kluwer Academic Publishers. 1-4020-
7414-X.

OMG (2002a). Response to the OMG RFP for Schedulability, Performance
and Time. Object Management Group, revised submission edition.

OMG (2002b). Unified Modelling Language Specification). Object Manage-
ment Group, version 1.5 edition. OMG Document Number ad/02-09-02.

Poppleton, Michael and Banach, Richard (2002). Controlling control systems:
an application of evolving retrenchment. In Lecture Notes in Computer Sci-
ence 2272. Springer-Verlag.

Poppleton, Michael and Groves, Lindsay (2003). Software evolution with re-
finement and retrenchment. In Refinement of Critical Systems Workshop,
RCS03. Department of Computer Science, Åbo Akademi University, Turku,
Finland.

Popplpeton, M R and Banach, R N (2004). Requirements validation by lifting
retrenchments in B. In Proceedings of ICECCS2004: IEEE International
Conference on Engineering of Complex Computer Systems, Florence, Italy.

Ruf, J. (2001). RAVEN: Real-Time Analyzing and Verification Environment.
Journal of Universal Computer Science, 7(1):89–104.

Siikarla, Mika, Koskimies, Kai, and Systä, Tarja (2004). Open MDA using
transformational patterns. In Model Driven Architecture: Foundations and
Applications MDAFA 2004, June 10-11 Linköping, Sweden.

Snook, Colin, Butler, Michael, and Oliver, Ian (2003). Towards a UML profile
for UML-B. Technical Report 8351, University of Southampton.

Stroustrup, Bjarne (2000). The C++ Programming Language - Special Edition.
Addison-Wesley. 0-201-70073-5.




