
Chapter 2

MIXED NETS,

CONVERSION MODELS,

AND VHDL-AMS

John Shields
Lynguent, Inc.
P.O. Box 19325
Portland, OR 97280-0325

jshields@ieee.org

Ernst Christen
Synopsys, Inc.
2025 NW Cornelius Pass Rd.
Hillsboro, OR 97124

Ernst.Christen@synopsys.com

Abstract AMS hardware description languages like VHDL-AMS provide features for
modeling at discrete and continuous domains of abstraction and communicat-
ing between them. A mixed net arises in mixed-signal design as the result of
interconnecting components modeled in different domains, in particular when
connecting a discrete and a continuous port. Hardware description languages do
not support such connections directly. They require the insertion of an appro-
priate conversion model between the dissimilar ports. Using conversion models
correctly, a mixed net can be successfully partitioned and modeled with the de-
sired blend of accuracy and performance.

This paper explains mixed nets and their various configurations, setting the
requirements for needed conversion models. Conversion models are explained,
including criteria for what makes a good one. Strategies for partitioning a mixed
net and inserting conversion models are discussed. A proposal is made for ex-
tending VHDL-AMS to handle mixed nets and automatic insertion at elabora-
tion.

Keywords: VHDL-AMS,Verilog-AMS,mixed signal,conversion models,elaboration

© 2005 Springer. Printed in the Netherlands.

21

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 21–39.

22 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

1. Introduction

Our goal is to describe and simulate a mixed-signal system design with the
required accuracy. By reducing model complexity, more of the overall system
can be verified. But in order to verify some aspects, the most complex imple-
mentation models are needed. Mixed-signal HDLs like VHDL-AMS were de-
signed to support these modeling tradeoffs. The design process using VHDL-
AMS still leads to structural problems when switching between two models
designed to represent the same component in different domains. Solving these
problems efficiently requires conversion models to be systematically inserted.

1.1 Background and Motivation

Mixed-signal modeling involves using models in the discrete domain with
models in the continuous domain. With VHDL-AMS, one can create rich mod-
els of physical systems of many different energy domains. In an electrical sys-
tem, for example, the discrete domain is modeled by concurrently executing
processes that communicate through signals of some logic type like std logic.
The electrical nature in the continuous domain is modeled with differential-
algebraic equations of voltages, currents, and other unknowns. These models
may be conservative systems, i.e., a circuit obeying Kirchoff’s laws. They may
also be signal flow models, where a non-conservative quantity (most likely
voltage or current) flows through transfer functions.

A complete set of electrical components that can be used together for model-
ing a mixed-signal system will include digital models and both types of analog
models. One component may have a set of models in different domains de-
signed to be equivalent. Models that are from different domains have both dif-
ferent implementations and interfaces. Nevertheless, the interfaces are closely
related. There is an equivalence between corresponding ports, i.e., a given
logic signal port is equivalent to its corresponding electrical pin, voltage input,
etc. At the same time, the analog model interface may have additional ports
that are not relevant in the discrete model, such as power/ground connections.

Any component from the mixed-signal set may be connected to others to
form a system model. Component models from different domains may be
used interchangeably and should support flexible and efficient design styles.
It follows that suitable conversions must exist between the discrete, the signal
flow, and the conservative analog domains. Indeed, such conversion behavior is
at the heart of languages like VHDL-AMS. The system model can be modeled
in VHDL-AMS today. It turns out that suitable domain conversions must be
designed as models themselves and be part of the component set. Effective
system design styles can be supported if it is possible to specify reasonable
rules to insert conversion models automatically and to bind implementations
of such models to each instance of a conversion model.

Mixed Nets, Conversion Models, and VHDL-AMS 23

1.2 Design Styles

Composing mixed-signal systems from a set of components is a structural
task typically done best graphically, for example in a schematic entry system.
Nevertheless, portions may be written directly in the HDL or generated from
other design tools. A top-down design methodology leads from a high level
of design abstraction at the system or behavioral level to a lower level of ab-
straction going toward the physical implementation level. Moving top-down
in abstraction does not necessarily mean crossing modeling domain. Some
components may move from behavioral to rtl to gate level to switch level and
remain discrete models. The models ultimately exist as continuous models
at the analog circuit level, yet there may be no need to use them in a system
model for verification. If one can safely avoid using the circuit level model
in the system model, the designer asserts that the digital model is equivalent
to its analog counterpart. The designer further asserts that the component is
sufficiently decoupled at this level in the system such that its analog aspects
are accounted for and can be ignored.

There are few straightforward paths in top-down design for mixed-signal
systems. Digital subsystems are decomposed with significant synthesis sup-
port. Analog subsystems have comparatively little synthesis. If your mixed-
signal component set has analog components with a high level behavioral
model and low level implementation model, it supports both top-down and
bottom-up modeling. Designing an analog model may start with circuit topol-
ogy at the implementation level and be modeled upwards, or from a top-down
behavioral model and be modeled downwards. You adjust the parameteriza-
tion to meet specifications. If you require an equivalent model at another ab-
straction level, there are two cases to consider. From the behavioral model,
there is a creative leap to the implementation model and bottom-up verifica-
tion to establish their equivalence. From the implementation model, there is
a more organized and potentially automated transition upwards to the behav-
ioral model. Bottom-up verification for equivalence is the same task, but here
it takes the form of calibrating the behavioral model parameters to the imple-
mentation model.

Back at the system level, it may be ideal to simulate the entire system at the
analog implementation level. When you choose not to, there is no substitute
for bottom-up verification. As you proceed upwards in subsystem validation,
component models start at the lowest level of abstraction and are swapped for
equivalent models that are at higher levels of abstraction and/or cross domains
from analog conservative to analog signal flow to discrete.

The common denominator of the top-down and bottom-up design styles is
the need for a design composition system that is effective for hierarchical struc-
ture by providing flexible configuration of components and their underlying

24 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

simulation models. Schematic entry systems are effective, in part. They com-
pose the structure flexibly and may be made configurable enough, but there is
a difficult netlisting problem into the underlying HDL. VHDL-AMS can rep-
resent the structure provided the conversion models are explicitly included in
the system model. VHDL-AMS also has the underlying features for design
configuration that were intended to meet these needs. Unfortunately, they are
not usable where component interfaces change across domains.

1.3 Problem Definition

Design styles suitable for mixed-signal systems need interchangeable com-
ponent models from different domains, methods to efficiently switch between
them, and automatic conversions between domains in order to meet the sim-
ulation accuracy and performance goals. VHDL-AMS supports the modeling
needs for such components and the conversions, but lacks support to efficiently
describe the hierarchical structure of the resulting systems so they can be re-
configured easily. After reviewing the mixed net modeling and conversion
concepts, a solution to this problem will be proposed.

2. Mixed Nets and Conversion Models

A net consists of a root, typically a terminal, quantity or signal declared in a
block, and all ports connected to the root, including transitive connections. Its
structure is a tree. A mixed net is a net whose root and connected ports belong
to different object classes. In a typical mixed net, some leaves of the tree may
be terminal ports, other leaves may be quantity ports, and still others may be
signal ports. The root and the ports higher up in the tree typically only define
the connectivity between component instances; their semantics are usually not
of much concern. Nonetheless, these ports and the root must be declared to be
objects of a particular class: in VHDL-AMS, a terminal, a quantity, or a signal.

During simulation, it is the simulator’s task to determine a value for each
net, taking into consideration the contributions from the various ports that form
the net (or more precisely, the contributions from the behavioral statements
in which the names of the ports appear). VHDL-AMS defines semantics for
uniform nets, that is, nets whose root and ports are either all terminals, or all
quantities, or all signals. Other AMS languages have similar uniformity rules
for nets. Therefore, to perform a simulation, a mixed net must be split into
uniform portions using some partitioning strategy, and suitable code must be
inserted at the boundaries of the different portions of the net to convert between
the semantics of, for example, a terminal and a signal. The preferable way to
manage such conversion code is to place it in conversion models, which then
are instantiated such that they link the different portions of the net.

Mixed Nets, Conversion Models, and VHDL-AMS 25

2.1 Net Partitioning Strategies

There are many different ways to split a mixed net into uniform portions,
each with different properties. We discuss four strategies that embody different
ideas, using VHDL-AMS terminology.

User-Defined Partitioning. In this strategy, the user defines the root of the
net and each port of the net to have a particular object class: terminal, quantity,
or signal. The object classes represent different modeling domains. Instances
of conversion models are inserted between the formal and the actual of a port
association element if the formal and actual are of different object classes.
The benefit of this approach is that supporting it in VHDL-AMS requires few
language changes. Its drawback is that even in simple situations it may be too
difficult for a user to determine how to declare the ports in different parts of the
net to achieve a certain goal (performance, accuracy). For example, it is easily
possible that a mixed net might have several disjoint terminal nets (or nodes),
each with a different potential.

The remaining three strategies have two aspects in common: We ignore the
object class of the root and the intermediate ports and only honor the object
class of the ports that are leaves of the tree forming the net. We also consider
the object classes to correspond to abstraction levels, with a terminal being the
most detailed and a signal being the most abstract.

Partitioning Driven by Elaboration. This strategy considers, for each ver-
tex in the tree describing the net, the object class of the vertex and its immediate
children and converts this portion of the net to the most detailed of these object
classes. If the result is different from the object class of the vertex, then an
instance of a conversion model is inserted between the vertex and its ancestor.
The benefit of this approach is its simple elaboration rules. Its drawback is the
sensitivity of its result to changes of a leaf port: replacing a leaf port connected
higher up in the tree has more dramatic effects on the result than replacing a
leaf port lower in the tree. That is, a structural design change may lead to an
unexpected change in the mixed net representation and surprising behaviour.

Partitioning for Performance. The goal of this strategy is to minimize the
number of instances of conversion models. Sub strategies include: a) simu-
lating each mixed net as two or three uniform nets, each having a subset of
the topology of the mixed net, and inserting instances of conversion models
between the net replicas, and b) separating the signal net into two nets, one
connecting all ports with mode in, the other, connecting all other signal ports,
and inserting instances of conversion models between the terminal net (if any)
and each signal net. The advantage of this strategy is performance. Its draw-
backs are the complexity inherent in having multiple representations of a single
net and the difficulty of incorporating drive and load characteristics in the con-

26 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

version models without adding significant features to the language, such as the
capability to determine the fanins and fanouts of a port from inside a model.

Partitioning for Accuracy. In this strategy, a mixed net is converted in its
entirety to a uniform net whose object class is that of the most detailed object
class of the root or any port of the net. For example, if any terminal is con-
nected to the net, then the net is converted to a terminal. Instances of conver-
sion models are inserted between the net and any leaf port whose object class
is different from the object class of the net. The benefits of this approach are
its ability to accurately model drive and load characteristics at ports of a higher
abstraction level and its predictability, which makes it easy to understand. Its
drawback is the potentially large number of instances of conversion models,
and performance may be affected by the models of the lowest abstraction con-
nected to the net as well as by the number of conversion model instances

2.2 Categories of Conversion Models

The discussion about partitioning strategies yields the result that there is a
need for conversion models that convert between the semantics of terminals,
quantities, and signals. To also satisfy the VHDL-AMS rules about port asso-
ciation elements, which are based on the mode of the formal port, we end up
with seven categories of conversion models:

Terminal to signal with mode in (conservative to event-driven, com-
monly called a2d)

Signal with mode out to terminal (event-driven to conservative, com-
monly called d2a)

Signal with mode inout or buffer and terminal (commonly called bidi-
rectional)

Terminal to quantity with mode in (conservative to signal flow, called
TQ below)

Quantity with mode out to terminal (signal flow to conservative, called
QT below)

Quantity to signal with mode in (signal flow to event-driven, called QS
below)

Signal with mode out to quantity (event-driven to signal flow, called SQ
below)

Note that there is no possibility to have a bidirectional conversion model be-
tween quantity and signal because of the semantics of a quantity net.

Mixed Nets, Conversion Models, and VHDL-AMS 27

It is apparent from this list that a conversion model always has a direc-
tion, even in the case of a bidirectional conversion model, where the direction
changes over time, driven either by the operation of the conversion model or
by control information such as switching (on the signal end of the conversion
model) between high impedance (input) and driving (output) state.

Each category of conversion models is further parameterized by the type of
the signal or quantity or the nature of the terminal on either end of the conver-
sion model. Regardless of the partitioning strategy, any mechanism to bind a
category of conversion models to a particular implementation of a conversion
model must be rich enough to support this parameterization.

2.3 Implementation of Conversion Models

The language elements of VHDL-AMS are sufficient to implement any con-
version model, regardless of the particular combination of input and output
object and the corresponding types and/or natures. For an input or output ob-
ject of class terminal, this includes the possibility of converting between its
reference quantity (for an electrical terminal: the voltage w.r.t. ground) or its
contribution quantity (for an electrical terminal: the current flowing through
the terminal) and the value of the object at the other end of the conversion
model.

Conversion models between terminals and quantities are straightforward to
implement because of the closeness of the semantics of the two object classes.
A TQ conversion model is essentially a quantity source whose value is con-
trolled by the reference or contribution quantity of the terminal. Similarly, a
QT conversion model is either a quantity controlled across source or a quantity
controlled through source.

Conversion models between signals and quantities or terminals have some
similarities in that they involve converting between discrete time semantics
and continuous time semantics. For an a2d or a QS conversion model, this can
be accomplished, in general, using a threshold based approach that involves a
signal of the form Q’Above(E), where Q is a quantity and E is the threshold.
For a d2a or an SQ conversion model, the general approach is that of a con-
trolled source whose value is driven by the value of the signal. A bidirectional
conversion model combines the functionality of an a2d and a d2a conversion
model, possibly with some extra code to switch its direction. In the remainder
of this section, we will focus on a2d and d2a conversion models; SQ and QS
conversion models are essentially subsets of a2d and d2a. We further restrict
the discussion to conversion models with an electrical terminal and a signal of
type std logic.

The specific implementation of an a2d or a d2a conversion model can be
rather ideal, taking into consideration only the voltage (or current) and pos-

28 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

sibly the impedance at the terminal end, or very detailed, modeling the load
or driving characteristics of a particular technology such as cmos. In either
case, the conversion model can be parameterized to match the properties of a
particular physical device.

Ideal conversion models are the easiest to implement. As examples, we
show the implementation of ideal a2d and d2a conversion models converting
to or from a voltage. The a2d conversion model is based on a finite state
machine that drives the output to ‘1’ if the input voltage exceeds a threshold
vhi, to ‘0’ if the input voltage is below vlo, and to ‘X’ if the input voltage stays
between vlo and vhi for longer than a timeout. A possible implementation of
the model and the corresponding FSM are shown in Figure 2.3 and Figure 2.1
respectively [Christen, 1999].

The corresponding ideal d2a conversion model can be implemented as a
voltage source with an output resistance where both the output voltage and the
resistance are controlled by the signal value. A possible implementation of the
model is shown in Figure 2.2 [Christen, 1999].

To better reflect the load and driving characteristics of a particular tech-
nology, a model writer can write technology specific conversion models that
implement the load (for a2d) or the driving (for d2a) characteristics of the
technology. For example, the driving characteristics of a conversion model for
the cmos technology can be modeled by describing the channel properties of
the two transistors at the output of a cmos gate, with its operation controlled
by the input signal value. Conversion models with such detail typically need
additional ports that provide the power supply for the model and the reference.
They also have parameters that let the user parameterize an instance of the
model to reflect the driving properties of a particular port of a physical device.
The mechanism to bind a particular instance of a conversion model to a de-
sign unit with the necessary detail must therefore support the specification of
appropriate parameter values for that instance and the connection of its power
and reference terminals (and any other port that may be required, for example a
port that controls the direction of a bidirectional conversion model) to suitable
objects in the block in which the conversion model is instantiated.

3. Current Approaches to Automatic Insertion of
Conversion Models

Once appropriate conversion models have been designed and components
that give rise to their use are available, the designer focuses on the system
design task. The designer is engaged in structural composition tasks, and au-
tomatic insertion of conversion models is very desirable for improved produc-
tivity, repeatability, and correctness. There are automated solutions today, but
none that is well integrated with the VHDL-AMS language.

Mixed Nets, Conversion Models, and VHDL-AMS 29

library ieee;
use ieee.std logic 1164.all; use ieee.electrical systems.all;
entity a2d is

generic (vlo, vhi: REAL; – thresholds
timeout: DELAY LENGTH);

port (terminal ain, ref: electrical; signal dout: out std logic);
end entity a2d;
architecture Hysteresis of a2d is

type st4 is (unknown, zero, one, unstable);
quantity vin across ain to ref;
function level(vin, vlo, vhi: REAL) return st4 is

begin

if vin < vlo then return zero;
elsif vin > vhi then return one;
else return unknown;
end if;

end function level;
begin

process

variable state:st4 := level(vin, vlo, vhi);
begin

case state is

when one =>
dout <= ’1’;
wait on vin’Above(vhi);

state := unstable;
when zero =>

dout <= ’0’;
wait on vin’Above(vlo);

state := unstable;
when unknown =>

dout <= ’X’;
wait on vin’Above(vhi), vin’Above(vlo);

state := level(vin, vlo, vhi);
when unstable =>

wait on vin’Above(vhi), vin’Above(vlo) for timeout;
state := level(vin, vlo, vhi);

end case;
end process;

end architecture Hysteresis;

Figure 2.1. Ideal a2d Conversion Model

30 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

unkn
own

unsta
ble

zero

timeout

vin < vhi

vin > vlo

vin > vhi
dout = '1'

dout = 'X'

dout = '0'

vin > vhi

vin < vlo

vin < vlo

one

Figure 2.2. FSM For Ideal a2d Conversion Models

library ieee;
use ieee.std logic 1164.all;
use ieee.electrical systems.all;
entity dac is

generic (vlo : REAL := 0.2;
vx : REAL := 2.5;
vhi : REAL := 4.8;
ron : REAL := 0.1;
rwk : REAL := 1.0e4;
rof : REAL := 1.0e9;
tt : REAL := 1.0e-9)

port (signal din: in std logic;
terminal aout: electrical);

end entity dac;
architecture ideal of dac is

type rt is array(std logic) of REAL;
constant r table: rt := (ron, ron, ron, ron, rof, rwk, rwk, rwk, rof);
constant v table: rt := (vx, vx, vlo, vhi, vx, vx, vlo, vhi, vx);
quantity vout across iout through aout;
signal r, v: REAL;

begin

r <= r table(din);
v <= v table(din);
vout == v’ramp(tt) + iout * r’ramp(tt);

end architecture ideal;

Figure 2.3. Ideal d2a Conversion Model

Mixed Nets, Conversion Models, and VHDL-AMS 31

3.1 Netlisting

A common approach to automatic insertion of conversion models is based
on extending netlisting tools in a schematic-based design environment. A
schematics-based design is one captured and maintained using a schematic en-
try system. The schematics database is the master representation of the design.
A netlister converts the information in the schematic database to an HDL repre-
sentation. The netlister may insert conversion models automatically in the gen-
erated HDL source code. Often, annotation conventions in the form of global,
sheet, symbol, and wire properties may be defined to drive the netlister’s choice
of conversion models, actual parameters, and location of insertion. An exam-
ple of a robust implementation is the Synopsys Saber® Designer product. The
inherent limitation here is that the master representation of the design must be
in the schematics database in its entirety. Netlisting cannot insert conversions
within portions of the design described in the HDL.

3.2 Verilog-AMS

The second approach involves insertion of conversion models during the
elaboration phase of an HDL simulator. It is the more general and favored ap-
proach and applies equally well to schematics-based and HDL-based design.
In this approach, the identification of conversion models, definition of mixed
nets that require them, and specific locations for insertion are driven by fea-
tures supported by the HDL. Verilog-AMS is the first AMS HDL with such
features, and the discussion uses the terminology of this paper with Verilog-
AMS terminology in parenthesis.

Verilog-AMS provides a straightforward mechanism to define a conversion
model (connect module). It is distinct from a normal model (module) and re-
lies on imposing a direction to a port of a continuous nature (discipline). The
selection of a conversion model is driven by the explicit declaration of connect
rules, and a mechanism exists to bind parameter actuals to the model in that
declaration. These rules allow specifying conversion models between continu-
ous and discrete disciplines. Conversion between signal flow and conservative
disciplines does not require a conversion model; the meaning of such connec-
tions is defined by the discipline compatibility rules. The conversion model
insertion between continuous and discrete disciplines can be configured to in-
sert one model for all connections to/from discrete ports (merged rule) or one
model per port (split rule). This capability to insert one model for all connec-
tions depends on the ability of a conversion model to look outside itself at the
fanin/fanout of a port.

There are some lessons to learn. One shortcoming of the Verilog-AMS ap-
proach is due to its lack of strong typing in the base language. It is essential for
a user to understand the nature of every object (net) connected together in a hi-

32 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

erarchical net (signal) to understand the impact of automatic conversion model
insertion. Since it is possible to declare objects which are not strongly typed
with respect to their nature (discipline), Verilog-AMS provides a capability to
impose (force) a nature (discipline) on such objects. However, this discipline
resolution is complex to understand and allows one to coerce relationships that
may not make sense. It may lead to automatic model insertion in a manner not
related to domain conversion.

More significant issues exist with the definition of the discipline resolution
algorithm. There are two different algorithms that may be used by an imple-
mentation, basic and detailed, each allowing the insertion of conversion models
that depend on looking outside the model at the fanin/fanout of a port for rea-
sonable accuracy. (The basic algorithm virtually requires it.) This is a powerful
feature, but not required to produce an accurate model of the mixed net (sig-
nal). A tool may support either algorithm, although they produce significantly
different results. Therefore, Verilog-AMS designs that employ automatic in-
sertion of conversion models are not portable.

4. Automatic Insertion of Conversion Models in
VHDL-AMS

The following outline proposes new language features for VHDL-AMS
structural modeling and automatic insertion of conversion models. Broad re-
quirements are stated and the structural wire is introduced. Mixed nets may be
constructed with wires with good semantics for all connections. User config-
ured conversion models are inserted automatically where needed during elab-
oration. Open issues are noted.

4.1 Requirements

We believe that the following requirements must be met to provide robust
support in the language for structural composition of designs containing in-
stances of models at various abstraction levels.

1 Ability to configure a design with versions of components that differ in
modeling domain, but represent the same device, easily.

2 Ability to structurally connect to ports of such components such that
equivalent ports do not have to be re-connected, when models of differ-
ent domains are swapped in.

3 Ability to automatically insert conversion models between domains to
preserve an accurate representation of the design

4 Ability to model conversion at various abstraction levels (e.g. ideal, sim-
ple mos, detailed mos, etc.)

Mixed Nets, Conversion Models, and VHDL-AMS 33

5 Ability to specify additional interface elements of a conversion model to
be connected to model things like power supply accurately.

6 Ability to configure precisely and succinctly what conversion model is
instantiated at each instance of a mixed connection in the design.

7 Preserve all VHDL-AMS semantics for strong type and nature checking.

The first requirement is outside the scope of conversion model insertion, but
has a close relationship to it. With the current language definition, the instanti-
ation statement must be rewritten when its component interface changes, which
is what happens across domains.

4.2 The Structural Wire

The first feature needed for robust support of design composition provides
the ability to create mixed nets while preserving the strong typing of the lan-
guage. We propose to introduce a structural wire as a new object class into
the language. The kinds of objects of interest are the terminal, the quantity,
the signal and the wire. A wire is declared and may be used to connect to a
port of a model. The corresponding port formal may be any object (i.e., sig-
nal, quantity, terminal, or another wire). While the other object classes have
a specific subtype or subnature, a wire is purely structural and one is allowed
to connect a wire to anything. A wire does have a shape. The concept of its
shape refers to whether it is a scalar or a composite wire. A composite wire
may be an array or a record. The declaration of the shape of a wire has same
flexibility for arrays and records as subtypes and subnatures, as it builds on
the current language features cleanly: one thinks of declaring a wire to be of
the same shape as an existing subtype or subnature. The elements of a wire
are named in a similar fashion as the elements of an object of the associated
subtype or subnature: indexed names and selected names whose prefix is a
composite wire are supported. A subelement of a wire is a wire.

The proposed language extensions to support wires include the semantics of
wires and shapes, two attribute names that define the shape of a type or nature,
the syntax of a wire declaration, and trivial enhancements to the object and
interface declarations to include wires. The relevant new syntax elements are
as follows:

T’SHAPE
Kind: Shape.
Prefix: Any type denoted by the static name T.
Result: The shape of the type denoted by T.

N’SHAPE
Kind: Shape.

34 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Prefix: Any nature denoted by the static name N.
Result: The shape of the nature denoted by N.
wire declaration ::=

wire identifier list : shape indication ;
interface wire declaration ::=

wire identifier list : shape indication
shape indication ::=

type mark ’ SHAPE | nature mark ’ SHAPE

4.3 The Behavioral View of a Wire

There is a need to reference a wire as if it were a signal, quantity, or ter-
minal in behavioral code, but that is not allowed due to the strong typing of
the language. One workaround is to re-factor the design to always isolate the
behavioral code from its structural interfaces at the block interface level. But
that is as onerous as manual insertion of conversion models!

We believe that a better approach is to provide such access to a wire through
the concept of a view of a wire. A wire view specifies sufficient information
about the class, typing, and mode of access to satisfy all strong typing rules
of VHDL-AMS. In effect, one is saying this wire is viewed as an object of
the desired type or nature. Of course, this may ultimately imply automatic
insertion of an appropriate conversion model in the block where the wire view
is referenced. The proposed definitions for wire views are as follows:

W’TERMINAL(N)
Kind: Terminal.
Prefix: Any wire denoted by the static name W.
Parameter: A nature mark denoted by the name N.
Result nature: The nature defined by the nature mark N.
Result: A terminal whose nature is N.
Restrictions: N’SHAPE must match the shape of W

W’QUANTITY(T, mode)
Kind: Quantity.
Prefix: Any wire denoted by the static name W.
Parameters: T: A type mark denoted by the name T.

mode: The mode specifying how the quantity defined
by the wire view is used. Must be either in or out.

Result type: The type defined by the type mark T.
Result: A quantity whose type is T and whose mode is

as specified.
Restrictions: T’SHAPE must match the shape of W

W’SIGNAL(T, mode)

Mixed Nets, Conversion Models, and VHDL-AMS 35

Kind: Signal.
Prefix: Any wire denoted by the static name W.
Parameters: T: A type mark denoted by the name T.

mode: The mode specifying how the signal defined by
the wire view is used. Must be in, out, inout, or buffer.

Result type: The type defined by the type mark T.
Result: A signal whose type is T and whose mode is as specified
Restrictions: T’SHAPE must match the shape of W

4.4 The Elaborated Model of the Mixed Net

The wire object forms a part of a mixed net. When a VHDL-AMS design
is elaborated, the mixed net is elaborated. After semantic checks, a simulat-
able model will be produced, complete with automatically inserted conversion
models wherever needed.

The elaboration of a mixed net involves:

1 Insertion of wire views at each port association element where either the
formal or the actual, but not both, is a wire

2 Overall classification of the mixed net, which determines how it is mod-
eled.

3 Determining the specific type or nature of each of its wires.

4 Mode propagation and semantic checks of each connection to determine
validity

5 Binding of conversion models to each wire view

In a first step to classify a wire implementing a mixed net, each wire that is as-
sociated with an actual or formal that is not a wire is replaced by a wire view.
The object class, type or nature, and mode are obtained from the object associ-
ated with the wire. After this replacement has been made, each connection has
a formal and an actual that match in object class and type or nature, thereby
satisfying the strong typing of the language.

In the second step, each wire is converted to a terminal, a quantity, or a sig-
nal. If any wire view anywhere in the mixed net is a terminal, the entire mixed
net will be classified as a node. If not, but if there is a wire view that is a quan-
tity, the mixed will be classified as a quantity net. There are rules governing the
formulation of quantity nets to account for solvability. Finally, if all wire views
are signals, the entire mixed net will be classified as a signal net. In either case,
the nature of the node or the type of the quantity or signal net is obtained from
the appropriate wire views. The result of following these precedence rules

36 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

is to create a net that preserves the accuracy of the connected objects. Wire
conversion fails if a mixed net has incompatible wire views, for example two
wire views that are terminals of different natures, or two wire views that are
quantities of different types. In other words, automatically inserted conversion
models may only serve to convert between different domains. They are not a
back door to subvert strong typing.

When a mixed net has been classified to be of a particular class and type or
nature, it is elaborated as if it were a net of that class and type or nature. If it is
a quantity net or a signal net, each formal port that was converted from a wire
must be given a mode. The mode is determined using the modes of all wire
views of this port and of all formal ports with which this port is associated as an
actual. The rules guarantee that the language rules about modes at a connection
are satisfied.

The result of these steps is a consistent implementation of each mixed net at
the accuracy requested, and clearly identified locations where conversion mod-
els must be inserted. These locations are the locations of the wire views. Since
the properties of the converted wire are known as well as the properties of the
other end of each wire view, we have enough information to bind one repre-
sentative of a collection of conversion models to each wire view. Of course,
if the two ends of a wire view are type or nature compatible, no conversion is
needed.

4.5 Automatic Conversion Models and Wire
Configuration Rules

The remaining issue is the specification of a particular entity/architecture for
each instance of a conversion model and its proper instantiation. A wire con-
figuration specification identifies a collection or a class of wires and associates
binding information with the wire views of these wires. The wires may appear
in the port association list or the declarative region of the block in which the
wire configuration specification appears and any block nested within the block.

wire configuration specification ::=
for wire object specification

{ conversion specification }
end for ;

object specification ::=
terminal name list : nature mark
| quantity name list : [in | out] type mark
| signal name list : [mode] type mark

name list ::=
simple name { , simple name }
| others

| all

Mixed Nets, Conversion Models, and VHDL-AMS 37

A conversion specification associates binding information with wire views
of the wires identified by the enclosing wire configuration specification.

conversion specification ::=
for object specification binding indication ;

The binding indication of a conversion specification supports binding any
entity/architecture pair with a wire view specified by the combination of its
object specification and wire object specification of the enclosing wire config-
uration specification. For an a2d, d2a or bidirectional conversion model, this
includes architectures converting between the reference quantity or the contri-
bution quantity of the terminal involved and the object at the other end of the
conversion model. Additionally, the generic map and port map of the bind-
ing indication provide the means to associate the formal arguments and ports
of the conversion model specified by the binding indication with actual argu-
ments and ports. Semantically, the existing definition of a binding indication
must be extended slightly.

Wire configuration specifications may appear anywhere a configuration
specification may appear, and additionally in the declarative region of an entity.
They may also be separately specified in a configuration declaration. A wire
configuration specification applies to the elaboration of the region in which it
has been declared and in the sub hierarchy of the design rooted at that region,
unless it is superseded by a more specific rule. (It is a detail to state carefully
that there is a similar mapping of a rule declared in a block of configuration
declaration to sub hierarchies of the design.). A wire configuration specifi-
cation supersedes a prior rule if it specifies the same wire view, but appears
lower in the design hierarchy. There are other possible ways to map rules to
the design hierarchy, but that is a usability issue we don’t discuss here.

4.6 Examples

Digital and analog implementation of inverter model using explicit wire
views:

library ieee;
use ieee.electrical systems.all;
entity inverter is

port (wire input, output: REAL’SHAPE;
terminal supply: electrical);

end entity inverter;
architecture digital of inverter is

begin

output’SIGNAL(BIT, out) <= not input’SIGNAL(BIT,in);

38 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

end architecture digital;
architecture analog of inverter is

quantity vin across input’TERMINAL(electrical);
quantity vout across iout through output’TERMINAL(electrical);
quantity vcc across supply;

begin

vout == vcc – vin;
end architecture analog;

Wire configurations:
for terminal w1, w2: electrical

– named wires converted to terminals with nature electrical
for signal all: in std logic use entity work.mosa2d

port map (a=>wire, d=>signal);
end for;
for terminal others: electrical

– other wires converted to terminals with nature electrical
for signal all: in std logic use entity work.a2d

port map (a=>wire, d=>signal);
for signal all: out std logic use entity work.d2a

port map (d=>signal, a=>wire);
for quantity all: in REAL use entity work.tq

port map (a=>wire, q=>quantity);
end for;

4.7 Open Issues

There are open issues at several levels. Conceptually, we believe there is in-
sufficient information if a wire as a formal is assiciated with a quantity or signal
as an actual and the wire is converted to a node. In this situation, no informa-
tion is available as to what the mode of the corresponding wire view should be.
It is unresolved whether it is possible to support a connection association ele-
ment whose formal is a wire and whose actual is not a wire. Definitionally, we
have not worked out the semantics to make a wire configuration specification
applicable across a sub hierarchy of a design. The definition of the elaboration
semantics that involve the steps after a wire has been classified as either a ter-
minal, or a quantity, or a signal, are incomplete. Initialization of a net needs
further analysis. Many other places in the LRM need minor changes to support
the described functionality; these places have not been identified.

We chose a mixed net partitioning model for accuracy and rejected addi-
tional requirements that may improve performance by reducing conversion
model count. The complexity in language definition as well as for user, model
writer, and simulator implementor is judged not to be worth the potential gain.

Mixed Nets, Conversion Models, and VHDL-AMS 39

Perhaps there are some important use cases that we are overlooking. In any
case, adding support for such a partitioning strategy is not likely to invalidate
any of the proposed language changes, only to extend them.

5. Conclusion

There is need to support structural design methodologies in mixed-signal
modeling that lead to the creation of mixed nets. VHDL-AMS is effective
at describing a wide range of mixed systems, but structural decomposition or
bottom-up composition of mixed-signal components is not well supported. In
particular, connections across domains, that is, mixed nets, are not allowed.
The proposed language extensions provide the needed support for these me-
thodologies using the concept of a wire and automatically inserted conversion
models. It is possible to design good conversion models to effectively balance
accuracy and performance of the mixed net. The wire object class adds im-
portant structural flexibility to the language while, through the wire resolution
rules, preserving the strong semantics of the language type and nature system.
Rule-based automatic conversion model insertion supports accuracy with very
fine discrimination of what conversion model to use in any mixed connection,
yet makes it very simple to generalize about model choice. Overall, there is
a good opportunity to improve VHDL-AMS to support the re-configuration of
mixed-signal systems effectively. The authors are working through a formal
language change proposal for VHDL-AMS and welcome feedback.

References

P. Ashenden, G. Peterson, D. Teegarden: The System Designer’s Guide to
VHDL-AMS. Morgan-Kaufman Publishers; 2003.

E. Christen, K.Bakalar, A.M. Dewey, E. Moser: Analog and Mixed-Signal
Modeling Using the VHDL-AMS Language; Tutorial at 36th Design Au-
tomation Conference, 1999

IEEE Std. 1076.1 - 1999 IEEE Standard VHDL Analog and Mixed-Signal Ex-
tensions

Verilog-AMS language Reference Manual, Version 2.0. Open Verilog Interna-
tional; February, 2000.

