
Chapter 10

UML-EXECUTABLE FUNCTIONAL

MODELS OF ELECTRONIC

SYSTEMS IN THE VIPERS

VIRTUAL PROTOTYPING METHODOLOGY

P.F. Lister, V. Trignano, M.C. Bassett and P.L. Watten
Centre of VLSI and Computer Graphics,
University of Sussex,
Brighton, BN1 9QH, UK
Tel: +44 1273 678050
Fax: +44 1273 678030

P.F.Lister@sussex.ac.uk

Abstract

This paper presents the use of UML-Executable Functional Models (UML-
EFM) in the context of the ViPERS virtual prototyping methodology [Lister et
al., 2004a, Lister et al., 2004b] for System-on-Chip design. The concepts, the
implementation and the experiments presented in this paper were developed at
the University of Sussex (UoS) in the Centre of VLSI and Computer Graphics
as part of an EU project [VIPERS]. The ViPERS methodology and its employ-
ment of the executable functional models have been developed to face the con-
temporary challenges of System-On-Chips by integrating key design method-
ologies with the graphical and interactive features of virtual prototyping. The
fast evolution in silicon technology and its consequences on the market of hand
held electronic products, is making the adoption of new design methodologies
mandatory, with modern techniques for the design, development and manufac-
turing of consumer electronics. Executable functional models provide a means
to simulate the target device in different phases of the design flow and analyse
its requirements (behaviours, interfaces, etc), architecture (HW/SW partitioning)
and finally its digital implementation. A key contribution includes the combi-
nation of an interactive 2D photorealistic model with its functional executable
model implemented as a UML state machine; the experiment is applied to an RF
home-based remote control used to control a cooking stack.

© 2005 Springer. Printed in the Netherlands.

161

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 161–178.

162 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Keywords: Virtual Prototyping; UML; SystemC; executable specification; handheld de-
vices; SoC modelling; ViPERS methodology.

1. Introduction

A close look at the market of consumer electronics reveals that nowadays
a significant slice of it is occupied by hand-held devices. The rapid advance
in silicon technology is enabling a substantial increase in the number of tran-
sistors per chip [ITRS, 2003]. This growth in complexity is parallel to other
phenomena, for example the shortened time to market, and the high competi-
tion among manufacturing companies. Designers and engineers are therefore
facing the dilemma of having to produce highly technological and complex
systems in a limited time. To reduce the gap between complexity and time to
market new design methodologies are being proposed. The ViPERS method-
ology links key trends in SoC design with modern interactive and graphical
features of virtual prototyping. At the heart of this methodology is the desire
to test virtual prototypes of electronic products at different stages of the design,
development and manufacturing processes.

The first step in the ViPERS methodology is the analysis phase and the con-
sequent derivation of an UML-executable functional specification. It is clear
from the research in the field of requirements and specification development
[RUP] that the specification work is unlikely to be confined to the period before
implementation begins. Determining accurate product requirements and spec-
ifications is a vital stage in the development of a commercially viable device
and executable functional models can help extend the value and meaning of the
requirements and specification phase to further ensure the validity of this work
prior to implementation [Kimura and Verlag, 2002]. Hence there is a need to
rapidly feed changes in the requirements into the implementation tool chain in
an evolutionary way. It is common for a design house to be given a written
specification for a prototype device. Often the specification is not complete
enough for the first resultant prototype to be satisfactory to the client, resulting
in some design iterations. If the design house were to build a virtual proto-
type or even several alternative schemes, the client can clarify the functional
specification before any hardware or software is built. The virtual prototype
is a form of communication and reference in addition to the functional speci-
fication and any other requirements of the design [Preece et al., 2002]. A key
aspect being highlighted is to ensure that effort spent in the early product defi-
nition phase should be reused as much as possible in the later implementation
and test of the device. Several methods of requirements gathering have been
explored including traditional written reports and UML based tooling. UML
[OMG, 2003] provides the means to document detailed requirements which
can lead, with the aid of software tools such as Rational Rose RealTime and

UML-Executable Functional Models in ViPERS 163

the use of state machines, to the production of the first behavioural model of
the electronic device. Rational Rose RealTime is built on the UML-RT profile
[Selic and Rumbaugh, 1998], which, due to its limited architecture and per-
formance modelling capabilities, should be considered complimentary to the
UML Profile for Schedulability, Performance and Time [OMG, 2002] (also
called the Real-Time UML Profile) standardised by the Object Management
Group (OMG). Rational Rose RealTime was chosen upon other UML real-
time software tools because of the intention by Rational Rose to implement a
SystemC profile [Sardini, 2002], which would simplify the route to hardware
for the ViPERS methodology.

If the graphical model has been implemented at this stage then the require-
ments can be explored through the connection of the graphical model to its
behavioural correspondent in UML as shown in Figure 1 and feedback from
the stakeholders can be gathered.

Figure 1 shows the refinement steps related to the ViPERS methodology
and the consequent creation of virtual prototypes that result from the four main
phases (analysis, design, implementation and test). Virtual prototypes are dis-
tinguished based on which phase of the design flow they are generated from,
and therefore which features of the target device they incorporate; each virtual
prototype implements an EFM. The virtual prototypes are:

1 Functional Prototype; this is a product of the analysis phase, where the
requirements and specification of the target product are analysed and
defined.

2 Architectural Prototype; this is a product of the design phase, where
architectural design takes place and hardware/software partitioning is
defined.

3 Digital Prototype; this is a product of the implementation and test
phases, where all the hardware and software blocks that constitute the
target electronic device are implemented and then tested.

To explore the use of UML-EFMs in the context of the ViPERS method-
ology this paper presents the combination of an interactive 2D photorealistic
model with its functional executable model implemented as a state machine in
UML with the support of Rational Rose RealTime. The SxUMLSocket Pack-
age is employed to link the state machine of the EFM to its correspondent
graphical model. Communication between the functional and the graphical
model conforms to a XML-like communication protocol which defines the cri-
teria that models need to be consistent with, in order to establish a connection
with each other and communicate.

Traditional UML techniques are used to explore the requirements of the tar-
get electronic product. Once the system has been specified purely by means of

164 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 10.1. EFMs allocation in the ViPERS methodology.

UML-Executable Functional Models in ViPERS 165

UML diagrams (class, sequence, use-case, activity, etc), Rational Rose Real-
Time is used to implement a state machine that describes the functionality of
the system. The ViPERS methodology suggests the use of UML state machines
for the creation of the functional model in this analysis phase. The model can
optionally be described in SystemC [SystemC], using the freely downloadable
toolkit or taking advantage of the graphical interface and automatic code gen-
eration that software tools as CoCentric System Studio from Synopsis offer.

The advantages offered by the use of UML-EFMs are clear when the simula-
tion environment is running and the functional model is linked to the graphical
model; the first analysis of the functionality of the target product can then com-
mence. Designers as well as investors, hardware engineers as well as end-users
with no technical background can test the usability of the product; interaction
is achieved, for example, by pressing a button or moving a slider on the graph-
ical model and viewing in real-time the changes on the display or other output
means. The designer can also view the progress of the simulation through
the graphical state machine at run time, and track the changes between states
that result from the interaction with the graphical model implemented in VDM
[Lister et al., 2004a] (virtual device model). VDM is an integrated develop-
ment environment which enables designers to create photorealistic models of
the target electronic product and define its interactivity through the scripting of
the graphical objects that constitute the model.

The interaction of the executable functional model with the graphical model
is a very effective approach to test features such as the graphical user interface
and user interactivity issues of the device prior to any implementation. The two
elements that make up the virtual prototype (graphical and functional model)
can be packaged together in order to be distributed between stakeholders or
end-users for feedback.

2. Executable Functional Model (EFM)

For the purpose of this paper we define the Executable Functional Models as
descriptions of a number of properties associated with the functionality of an
electronic system. They are independent executables which contain the means
to communicate with an external application for simulation purposes. The
nucleus of the ViPERS prototyping environment is VDM. Figure 1 shows that
executable functional models connected to a VDM graphical model constitute
the simulation environment of the ViPERS methodology.

The aim of the executable functional models is to simulate the behaviour of
the virtual prototype (functional, architectural and digital) through the design
and implementation stages. Based on a modified version of the ROPES pro-
cess [Douglas, 1999], as shown in Figure 2, the ViPERS methodology with

166 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

its environment provides the specific tools, libraries, packages, and services
needed to connect EFMs to the target graphical model.

EFMs are developed to test various features of the target electronic product;
features include: Itemized lists:

Functional properties,

Graphical User Interfaces and User Interactivity properties,

Architectural issues such as HW/SW partitioning,

Digital properties, explored through the verification of the completed
hardware/software implementation.

The ViPERS methodology currently provides support for two types of
EFMs, these are:

1 UML-EFM, which use Rational Rose RealTime and Visual Studio ver-
sion 6.0.

2 SystemC-EFM, which uses either:

(a) The SystemC free-toolkit and Visual Studio version 6.0 (Windows-
based),and

(b) CoCentric System Studio from Synopsys (Linux-based)

The first type of SystemC-EFMs was demonstrated in [Lister et al., 2004b]
and uses a SystemC-container application, developed by the ViPERS team, for
the communication of the SystemC free toolkit with the VDM model. The sec-
ond type uses a SystemC library for CoCentric, SxSockets Library [Trigano et
al., 2003] and a Linux-based application server - the local communication con-
trol service (LCCS). Drawbacks and advantages of the different approaches in
different stages of the methodology will be described in the following section
of this paper.

The communication framework which allows real-time simulations provides
a fast interaction mechanism between the functional and graphical model; the
framework relies on the passing of small tagged messages. Further considera-
tions on time-related issues for the simulation are explored later in this paper.

2.1 Executable Functional Models in UML (UML-EFM)

UML-EFMs are allocated in the analysis phase of the ViPERS methodol-
ogy to take advantage of the many aspects that a description language such as
UML. With its vast tooling support, it can bring to the definition of a system
when details of the implementation have yet to be defined [Douglass, 1999].
The models are developed as state machines using Rational Rose RealTime,

UML-Executable Functional Models in ViPERS 167

Figure 10.2. ViPERS modification of the ROPES process.

which provides a familiar framework for windows programmers. State ma-
chines are defined graphically and C++ code is added to the various states
and transitions. The model created represents a very high level description of
the system, the state machine in fact is supported by various diagrams (class,
structure, sequence, etc), as well as communication protocols to communicate
with other threads. UML-RT profile also introduces the use of capsules, which
are differentiated from classes by their dynamic behaviour; capsules are active
objects that represent system components, their internal behaviour is defined
by state machines and they communicate with each other through stereotyped
objects called ports which implement interfaces. The suggested approach for
the development of a functional description is to create the various classes and
diagrams which represent the initial high level description of the system. Once
the first design of the system is achieved, it can be refined by adding attributes
and operations that will be eventually used for the behavioural description of
the model. A capsule is then developed to incorporate the classes and give
dynamic support to the system; the behaviour is described with the use of state
machines. The communication protocol of the capsule needs to be defined so
that the designer can commence testing the capsule by injecting signals at sim-
ulation time. As soon as the model functions as expected the SxUMLSocket
package is integrated into the system to provide the means to communicate
with outside applications. The integration of the two capsules and the structure
of a basic UML-EFM are shown in Figure 3.

168 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 10.3. UML-EFM structure.

At this stage the functional model is an independent executable which is
ready to communicate with the VDM graphical model. The state machine
can be tested through enhanced visual means allowing users to interact with
the graphical model of the electronic model and view how the state machine
processes the input and output. The designer no longer needs to follow the
simulation through a visual representation of the state machine, which requires
a technical knowledge, but can actually interact with the virtual product as the
end user would.

Changes on the display of the graphical model or other outputs that the
model might possess are now the means by which the designer tests the func-
tionality of the target product.

Some of the benefits of using a UML state machine are:

Easy to implement

Fast to simulate

Can be used as an independent executable

Parts of the state machine can be reused in later stages of the implemen-
tation

The power of this approach during the analysis phase of the methodology is
substantial. UML-EFMs provide a very high level description of the target de-
vice, plus Rational Rose RealTime provides various tools to help the designer

UML-Executable Functional Models in ViPERS 169

in the development and debugging stages. Designers are provided with all the
means to test the usability of the target system, graphical user interfaces and in-
teractivity issues; the model can easily be modified or new ones can be created
to test different possibilities or to fix unexpected behaviours. Ideally designers
would develop a set of possible candidate solutions for the target product, from
which one would be chosen as the final design. The life of UML-EFMs in the
methodology is not over at this stage and there is a good possibility that the
designer will need to come back to it when technical constraints or unexpected
bugs make mandatory the redesign of certain features. The nature of the model
provides fast and ease means to achieve this goal. UML-EFMs have another
two possible major uses in the ViPERS methodology, these are:

1 Automatic translation to SystemC-EFM; issues related with the transla-
tion mechanism are outlined in the final section of this paper.

2 Reuse of state-machines parts in later stages of the design flow as embed-
ded code; this is highly dependent on the implementation of the state ma-
chine of the EFM, however Rational Rose RealTime provides the means
to create code for both platform-specific models (PSMs) and platform-
independent models (PIMs).

SxUMLSocket Package. SxUMLSocket Package is a UML Rational Rose
RealTime package that provides the classes, the communication protocol, and
the capsule needed to link the state machine describing the behaviour of the
system to an external application. The package was developed using Rational
Rose RealTime and Visual Studio version 6.0, and the generated code is C++.
The package includes the class diagram, the structure diagram, the sequence
diagram, and the state diagram that visually describe static and dynamic fea-
tures of the socket capsule.

Figure 4 shows three type of UML diagrams:

1 Class diagrams; which show the classes and their relationship, with rel-
ative attributes and operations, that are used in the socket capsule to
implement the server and its functionality. The class diagram contains
all the classes needed to support the socket capsule plus other classes to
support new developments. The class diagram includes:

Socket Capsule Stereotype. It is a stereotype capsule which repre-
sents the active object of the TCP/IP socket and therefore imple-
ments its behaviour.

Sock Class. It is the base class for both the server and the client
class.

Server and Client Classes. They define the functions and attributes
that are specific for the server and the client implementation.

170 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 10.4. SxUMLSocket Package, sequence and structure diagrams.

SockExcept Class. This class defines the exception cases for the
socket.

2 Sequence diagrams; these show the sequence of events, by the passing
of signals, between the socket capsule and the functional capsule (i.e.
the capsule that describes the behaviour of the target device)

3 Structure diagrams; which show the structure of the socket capsule. The
diagram shows the presence of a conjugate wired end port (remotecomm)
which represents the means for this capsule to communicate with other
capsules.

The socket capsule is implemented as a non-blocking server thread and the
dynamic features of it are described in its state machine, visually shown in the
state diagram of the capsule. Figure 5 shows that the state diagram consists
of one state and two transitions; the “waiting for messages” state, the “initial”
transition, and the “sending message” transition.

The operation of the socket capsule was purposely kept simple to allow de-
signers to change features when needed. After the initial transition, determined
by the initialisation of the socket capsule, the state machine enters the state and
waits through a non-blocking receive function call for messages from the client
model (VDM).

The non-blocking feature allows the capsule to perform other operations
while waiting for the client to send a message. Once the socket capsule receives
a message, it sends it to the EFM capsule to be processed by its state machine.
The sate machine will output a signal carrying the message to be sent back
to the VDM model, this signal will trigger the socket capsule to go through
the “sending message” transition, which will force the socket capsule to send

UML-Executable Functional Models in ViPERS 171

Figure 10.5. SxUMLSocket Package, state diagram.

Figure 10.6. Interaction between UML-EFM and VDM.

172 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

the message to the graphical model. Details of the sequence of events and
interaction that take place during a simulation between the two capsules (socket
and EFM), and the VDM model are shown in Figure 6.

3. Comparing EFMs

This section compares the use of the UML-EFMs previously described, with
the SystemC-EFMs in the context of the ViPERS virtual prototyping method-
ology. The aim of this comparison is to justify the specific allocation of each
model in the methodology and to reason a suggested approach over another
one in different phases. At present, the only SystemC-EFM that have been
built and tested by the ViPERS team and therefore supported in the ViPERS
prototyping environment are implemented in behavioural SystemC.

Previous work included the implementation of executable models in Sys-
temC [Vanderperren et al., 2002] with the aid of UML diagrams. However,
UML was not used to construct executable models, but only for architectural
modelling and therefore to demonstrate that the design could meet the require-
ments. One of the drawbacks of that approach was that engineers needed a
UML background in order to understand the design. In our approach the UML
model serves two purposes; first it can be used to graphically describe the sys-
tem, in which case a UML knowledge is needed, and secondly it can be used
in conjunction with a graphical model to execute its functionality in a real time
simulation. In the second case no knowledge is needed; the user simply in-
teracts with a photorealistic representation of the target product and studies its
behaviour.

UML-EFMs present substantial differences with SystemC-EFMs. The de-
velopment and use of UML-EFMs is almost entirely devoted to the first phase
of the methodology, the analysis, while the SystemC model can be refined to
RTL level within the same environment. A SystemC model offers the advan-
tage that it can be implemented at very different levels of abstraction, and each
level can be allocated in the methodology as part of the refinement process.
Another advantage (a consequence of the previous one) is the reusability of the
SystemC-EFMs; these models can ideally be reused from their first high level
implementation down to the timed (cycle accurate) models, by the refinement
process shown in the design flow for SoCs in Figure 1. But UML-EFMs have
two major advantages over SystemC-EFMs, which drove the ViPERS team to
explore their use in the analysis phase. These advantages are:

1 Ease of implementation. UML-EFMs are very easy to implement and
to modify which makes it a much better candidate when, in the analysis
phase, designers need to quickly put together and test the device and
possibly implement modified version of it.

UML-Executable Functional Models in ViPERS 173

2 Simulation speed. UML-EFMs provide real-time simulation speed,
which can ideally be achieved only by a high level SystemC descrip-
tion; that would strongly depend on the framework used (free-toolkit,
CoCentric, etc) and on the implementation style.

3 Industrial Standard. UML, as well as SystemC, descriptions conform to
an industrial standard and therefore are not tied to any particular propri-
etary tool.

The ViPERS team encountered considerable speed limitation when trying
to simulate a behavioural SystemC-EFM implemented in CoCentric; consid-
ering the issues related with the different platform (Linux), the model was
similarly re-implemented using the SystemC free-toolkit and the container ap-
plication [Lister et al., 2004b]. The new model performed better giving a near
to real-time simulation performance, but still not comparable with the simula-
tion speed of a corresponding UML-EFM.

From these comparison considerations we concluded that the best possible
solution for the ViPERS prototyping methodology was to employ both mod-
els in different phases in order to maximise their qualities and minimise their
weakness. However different routes from this are possible.

4. UML-EFMs and ViPERS Virtual Prototyping
Methodology

The final aim of EFMs is to be used in the context of a graphical simulation,
where the user does not need to know any detail about the underlying pro-
cessing of the EFM. At this stage of the development the benefits that virtual
prototyping can bring to standard SoC design methodology can be appreciated.
In the experiment presented here we linked together a UML-EFM of an RF re-
mote control to its graphical counterpart; the simulation with both VDM and
Rational Rose RealTime are shown in Figure 7. The experiment started with
a design team writing a requirement document for the remote control. The
document was simply a written document that attempted to describe the func-
tionality of the device and all the possible action the user could undertake. It
was clear from the start that an imagination gap was created between the un-
derstanding of the reader and the conceiver; another phenomenon was the fact
that some scenarios were accidentally missed by the author of the document
when trying to imagine all the possible scenarios.

Taking into consideration the popularity of UML in the field of require-
ments and specifications we produced a UML-type description document of
the system; the description was more detailed and some ambiguity that natu-
ral languages can easily introduce was eliminated but the imagination gap was
still not bridged. As described earlier in this paper, the adoption of UML to
describe a system has an advantage in the fact that it is an industry standard

174 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 10.7. A Virtual Prototyping Experiment.

but a drawback since a UML knowledge is needed in order to understand the
system. For this reason we decided to create a UML description that could be
executed, so that the system could be seen running while interacting with a vi-
sual model, which represents the input/output means of the UML model. The
UML description was then used as the basis for producing the UML-EFM of
the device, while graphics designers were developing the photorealistic model
of the remote control and determining its interactivity means.

The two models were then simulated, producing a fully functional virtual
prototype, which is referred to as a ‘functional prototype’ in the context of
the ViPERS methodology (to be distinguished from ‘architectural and digital’
prototypes shown in Figure 1). The team was able to test the behaviour of
the device by interacting with the graphical prototype, pressing buttons and
viewing the display updating. Considerations were made on the functionality
and interaction means of the remote, and the imagination gap was eliminated.
Figure 7 shows a use-case type diagram, where a user is interacting with the
remote control. At this stage of the simulation anyone can test the functionality
of the remote control since the mean is simply an interaction with the photo-
realistic model. Figure 7 also shows that the graphical representation of the
remote control is linked to a state machine. The state diagram shown in the
figure is running on Rational Rose RealTime and provides the functionality to
the graphical model. Users with a knowledge of UML are also able to follow
the simulation from the state changes and transitions in the state machine of
the remote control.

UML-Executable Functional Models in ViPERS 175

The practical experiment illustrated in this paper was conducted at the Uni-
versity of Sussex. Both the functional and the graphical model were built and
simulated on a windows-based PC with a 2GHz processor. The models com-
municate through TCP/IP sockets and therefore they can run on separate ma-
chines on a network to take advantage of the processing power; however the
experiment showed that in this particular case this was not necessary due to the
simple nature of the functional model.

5. Conclusions and Future Work

The experiment demonstrated the benefits that UML-EFMs can bring in the
analysis phase of an electronic product. The advantages of using an industry
standard such as UML were realised from the early stages of implementation.
The standard diagrams provided the means for communication and understand-
ing between the members of the team when trying to establish the requirements
of the product. The major benefit though was introduced by the simulation of
the EFM in conjunction with the VDM graphical model. The simulation envi-
ronment provided all the means for the team to test the behaviour, the graphical
interface and the input/output means of the target product. In the experiment
only the final virtual prototype is showed. This was the result of many changes
and iteration of both the graphical and the functional features of the initial pro-
totype. Comparisons with the SystemC models enabled the team to establish
the strength and the weakness of each approach and therefore locate their use
in a specific stage of the methodology.

The requirement for virtual prototyping to become part of a wide rang-
ing stakeholder evaluation process has driven the development of the ViPERS
methodology. Early feedback from the application example suggests signifi-
cant improvements can be made once stakeholder interaction is possible. The
visual realism of the remote has allowed discussion beyond the engineering
domain to more diverse stakeholders such as marketing and users. Although
more rigour is required to evaluate the benefits, it seems the narrowing of the
leap of imagination required to visualise the final product is a positive feature
of this approach.

Inevitably the ViPERS environment contains similar features to existing vir-
tual prototyping tools [Cybelius Software, Alita, RAPID], but our focus is on:

The nature of the graphics (photorealism)

– Alpha blending

– Sub-pixel investigation

– Special rendering

Route to hardware

176 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Our longer term research will be to apply the virtual prototyping of embed-
ded systems to the entire system environment.

The ViPERS environment successfully demonstrated the viability of link-
ing virtual prototyping to a SoC methodology. At present the linking can be
applied at every level but simulation might fail to be in real-time for low level
implementations. Further research will focus on the simulation of complex
systems and RTL implementations, and therefore deal with concurrency, time
constraints, scheduling and performance issues; emulation might be used to
speed simulation with low level models.

The ViPERS environment and the use of UML-EFMs successfully increased
the capability of separating user interfaces from behaviour; this allows testing
different interfaces without having to modify the functional description of the
prototype.

It is intended by the ViPERS team to further explore the link between UML
and SystemC for platform based designs. Companies such as Rational are pre-
dicting an imminent development of a UML.SystemC profile [Sardini, 2002].
It is included in the future work the development and design of other EFMs
at different abstraction levels. In particular the ViPERS team will implement
Transaction Level models (TLM) and Register Transfer Level (RTL) models,
perhaps with mixed HDL languages. TLMs will be produced to prove how a
substantially detailed model can still produce fast simulation in the ViPERS
environment, while RTL models will prove the link of the methodology down
to synthesisable code.

Future work includes the integration of the simulation in virtual environ-
ments [Lister et al., 2002] in order to enhance the experience and obtain a
more natural interaction of the user with pervasive electronic devices. Graphi-
cal models (2 and 3 dimensional) will be placed in their natural environments,
where users will be able to navigate through and interact with the devices and
view the changes not only through device outputs but also through the changes
in the virtual environment (e.g. the light in the oven being switched on).

Acknowledgments

This work was funded as part of the ESPRIT framework 5 VIPERS project
IST-2000-30023. We are grateful to our project colleagues for their construc-
tive interaction, particularly Javier Mendigutxia of IKERLAN SA. The cooper-
ation of our colleagues Teresa Riesgo and Eduardo de la Torre of Universidad
Politécnica de Madrid and Sabastian Pantoja of Celestica Valencia is acknowl-
edged. System TM is a trademark of the Open SystemC Initiative. CoCentric®

System Studio is a registered trademark of Synopsys, Inc. Windows XP®, Vi-
sual Studio® and Visual Basic® are a registered trademark of Microsoft Cor-

UML-Executable Functional Models in ViPERS 177

poration. Rational® Rose Real Time Studio is a product of IBM® Kylix TM
is a trademark of Borland® Software Corporation

References

Altia, Inc., http://www.altia.com [last accessed 29/07/04]
Cybelius Software, http://www.cybelius.com [last accessed 29/07/04]
Douglass, B.P. Doing Hard Time: Developing Real-Time Systems using UML,

Objects, Frameworks and Patterns, Addison-Wesley, 0201498375, 1999.
Douglass, B.P.Real-Time UML Second Edition, Developing Efficient Objects

for Embedded Systems, Addison-Wesley, 0201657848, 1999.
International Technology Roadmap for Semiconductors (ITRS), 2003 Edition.
Kimura, I. and Verlag, S. Product Development with Mathematical Modeling,

Rapid Prototyping, and Virtual Prototyping, ISBN 3-8322-0896-8, Chapter
1, June 2002.

Lister, P.F. Newbury, P.F. Watten, P.L. Senkoro, L. Dountsis, A. Midha, M.
Banerjee, I. Trignano, I. and White, M.Virtual Reality in Electronic Sys-
tems, Proceedings of 5th International Conference on Business Information
Systems, Poznan, Poland, April 2002. Pp. 390-394.

Lister, P.F. Watten, P.L. Lewis, M.R. Newbury, P.F. White, M. Bassett,M.C.
Jackson, B.J.C. and Trignano, V. Electronic Simulation for Virtual Real-
ity: Virtual Prototyping, Theory and Practice of Computer Graphics 2004
(TPCG04), Southampton, UK, June 2004.

Lister, P.F. Watten, P.L. Newbury, P.F. Bassett, M.C. Jackson, B.J.C. and Trig-
nano, V. Virtual Reality for Electronic Product Development of Hand Held
Devices, Design Automation and Test in Europe (DATE’04), Paris, February
2004.

Object Management Group, UML profile for Schedulability, Performance, and
Time, OMG document ptc/03-02-03, Needham MA, 2002.

Object Management Group, Unified Modelling Language (UML) – Version
1.5, OMG document formal/2003-03-01, Needham MA, 2003.

Open SystemC Initiative. See http://www.systemc.org/ [last accessed
29/07/04]

Preece, J. Rogers, Y. and Sharp, H. Interaction Design, beyond human-compu-
ter interaction, John Wiley and Sons, Inc. ISBN 0-471-49278-7, 2002.

RAPID virtual prototyping tools, e-SIM LTD, http://www.e-sim.com/ [last
accessed 29/07/04]

Rational Unified Process® for Systems Engineering, http://www.

rational.com/ [last accessed 29/07/04]
Sardini, A. SoC Design with UML and SystemC, European SystemC, 6.Users

Group Meeting, Lago Maggiore, October 2002.

178 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Selic, B. and Rumbaugh, J. Using UML for modelling Complex Real-Time Sys-
tems, white paper, rational (Object Time), march 1998.

Trignano, V. Bassett, M.C. Watten, P.L. and Lister, P.F. Extending SystemC for
high-level multi-platform SoC simulations, IEE Postgraduate Colloquium
on System-on-Chip Design, Test and Technology, September 2, 2003, Car-
diff University.

Vanderperren, Y. Sonck, G. van Oostende, P. Pauwels, M. Dehaene, W. and
Moore, T. A Design Methodology for the Development of a Complex System-
on-Chip using UML and Executable System Models, Forum on Specification
and Design Languages (FDL’02), Marseille, France, September 2002.

VIPERS Project references and web pages, http://www.upmdie.upm.es/
projects/vipers/ [last accessed 29/06/04]

