
Chapter 8

PREDICTABILITY IN REAL-TIME

SYSTEM DEVELOPMENT

Jinfeng Huang, Jeroen Voeten, Oana Florescu, Piet van der Putten and Henk
Corporaal
Faculty of Electrical Engineering Eindhoven University of Technology
5600MB Eindhoven, The Netherlands

J.Huang@tue.nl

Abstract The large gap existing between requirements and realizations has been a perti-
nacious problem in complex system design. This holds in particular for real-
time systems with strict timing constraints and critical-safety requirements. De-
signers have to rely on a multi-step design process, where design decisions are
made at different modelling levels. To ensure the effectiveness of this design
process, predictability should be well-supported by design approaches, allow-
ing designers to predict properties of future design outcomes based on exist-
ing design results. In this chapter, we first discuss the role of the semantics of
design languages and investigated how they can support a predictable design
process. Then, the deficiencies, w.r.t. predictability support, of existing design
approaches for real-time systems are illustrated by an example. Finally, a pre-
dictable design approach for real-time systems is introduced to overcome this
problem.

Keywords: Real-time, predictability, semantics, compositionality, composability

Introduction

The aim of real-time system design is to fill the gap between requirements
and the realization. However, due to the continuous increase of the functional
complexity of real-time systems, and because of stringent timing requirements
they have to satisfy, the design gap has increased tremendously. Since tra-
ditional code-centric design approaches are obviously not capable of coping
with this increasing complexity, designers have to resort to a multi-step design
process, where the system is specified and analyzed at different levels of ab-
stractions (see Figure 8.1). This design process usually involves requirement

© 2005 Springer. Printed in the Netherlands.

123

P. Boulet (ed.) Advances in Design and Specification Languages for SoCs, 123–139.

124 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Requirement

capture

System

modelling

System

synthesis

Figure 8.1. The multi-step design

capture, system modelling, and system synthesis. During requirement capture,
the system is specified at the most abstract level, which defines the needs and
constraints of the system. During system modelling, designers explore the de-
sign space at different abstraction levels, make design decisions through suc-
cessive design steps and finally propose a proper design solution, which serves
as a blueprint to synthesize a realization. During system synthesis, a model is
transformed into a realization, which is expected to meet desired properties.

To smoothen the design process and improve productivity, consistency be-
tween design outcomes has to be maintained during each design step. In other
words, predictability should be well-supported by design approaches, allow-
ing designers to predict properties of future design outcomes based on existing
design results.

The remainder of the paper is organized in four sections. In Section 1, We
show that semantics of a design language plays an important role for the multi-
step design process and has a direct impact on the support for predictability.
In Section 2, we will briefly explain the deficiencies of existing approaches in
supporting predictability during the design of real-time systems. To solve the
problem presented in Section 2, we introduce a predictable design approach
for real-time systems in Section 3. Section 4 concludes this chapter.

1. Semantics of design languages

Semantics of design languages has a direct impact on the thinking pattern
of developers and the meaning of design outcomes. According to the differ-
ent abstraction levels of design thoughts, three categories of design languages,
requirement, modelling and implementation languages, are involved in the de-
sign process.

Predictability in Real-time System Development 125

1.1 Requirement languages

Requirements express the needs and constraints that are put upon a system,
each of which is a property that must be present in realizations in order to
satisfy the specific needs of some real-world application [Kotonya and Som-
merville, 1998]. Usually, requirements are written in natural languages. How-
ever, due to the ambiguity of natural languages, complex concepts are usually
very difficult to specify precisely. This can result in errors and iterations during
the design process. Formal semantics is proposed as a solution to solve the am-
biguity problem. It is embedded in requirement languages to promote under-
standability of requirement specification, to facilitate the automatic checking
of requirement consistency and completeness, and to improve the traceability
of requirements during the multi-step design process 1.

1.2 Modelling languages

System modelling is the most challenging and creative activity of the design
process. During system modelling, designers need first to understand thor-
oughly the requirements, carefully explore the design space and finally devise
a design solution (model). The design model serves as the basis for later sys-
tem synthesis, the success of which depends to a large extent on the model
itself.

Due to the potential complexity of real-time systems, the modelling of such
a system is often accomplished by taking a number of steps. Each step only
considers a part of the system that is relevant to address some specific de-
sign problems. In addition to possessing adequate expressive power to assist
designers to specify desired aspects of the system and to analyze the system
behavior of interest at each design step, the semantics of a modelling language
should also support effective model transformations, which preserves proper-
ties of interest during the multi-step design process.

Model transformations: abstraction and refinement. Abstraction and
refinement are two elementary transformations performed during the design
process (as shown in Figure 8.2). Abstraction is the activity that tries to remove
(or hide) irrelevant information, which improves the comprehensibility of ex-
isting design models and facilitates the evaluation of different design solutions.
The major goal of the abstraction activities is to improve the understandability
of the design, enabling design decisions to be made. Refinement is the activ-
ity that adds more implementation details to models, thereby reducing the gap
between models and realizations. The major goal of refinement activities is
the implementability. Intuitively speaking, abstraction activities intend to clar-
ify what the system (component) can do, while refinement activities intend to
clarify how the functionality of the system (component) can be achieved.

126 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 8.2. Basic design activities

A design process can be considered as a set of abstraction/refinement ac-
tivities, which intends to fill the gap between the desired properties (what the
system should be) and the realization (how the system functions). The effec-
tiveness of model transformations can significantly affect the required design
time and cost. This holds in particular for large-scale systems.

In practice, compositionality (or composability) is often regarded as an im-
portant characteristic that the semantics of a modelling language should pos-
sess, in order to facilitate model transformations for complex systems, where
model transformations can be carried out on its subsystems.

Compositionality. The well-known principle of compositionality [Partee
et al., 1990] states that the meaning of a design description is a function of the
meanings of its parts and of the syntactic rules by which they are combined. It
is originally proposed to guide the association of the semantics and the syntax
of a design language and to assist designers in understanding the meaning of a
complex design description in a structured way.

Consider that a system (or subsystem) is represented by a tree structure,
where each leaf is a syntactic primitive and other nodes are combination rules.
Compositionality ensures that each syntax sub-tree can be understand indepen-
dently without the consideration of other parts of the tree. Due to the potential
complexity of the syntax tree, the semantic interpretation of a complex design
description can be far from simple. We can easily foresee that the interpretation
of a syntax tree with hundreds of levels, which is not unusual for a complex
design description, could easily grow beyond human’s understanding. There-
fore, compositionality alone does not promise that the meaning of a recursively
composed syntax tree can be understood easily.

However, when compositionality is applied to model transformations (ab-
straction/refinement), it offers many benefits to reduce design complexity and
to improve design efficiency. Compositional semantics divides a complex sys-

Predictability in Real-time System Development 127

Figure 8.3. Abstraction/refinement based on the compositional semantics

tem into a set of semantic components and ensures the semantical indepen-
dency of each component in the system. Thus, abstraction/refinement con-
cerning of the whole system can be achieved by local abstraction/refinement
for each component and the mapping of combinators to corresponding ones in
the other abstraction/refinement level (see Figure 8.3). Furthermore, the cor-
rectness of the abstraction/refinement activities can also be verified locally.

One example of design languages equipped with compositionality seman-
tics is CCS (Calculus of Communicating Systems) [Milner, 1989]. Based on
the compositional semantics of CCS, observation equivalence is defined, which
states that two models are observational equivalent if and only if both models
exhibit the same communication behavior to the external observer. The se-
mantic equivalence relation provides the theoretical basis for transformational
design approaches, where components of a high-level model are iteratively re-
fined into equivalent components with more details. In this way, observation
equivalence can effectively assist the abstraction/refinement of a design de-
scription. More detailed discussion about transformational design approaches
can be found in [van der Putten and Voeten, 1997], [Koomen, 1991]. Example
8.1 illustrated how abstraction/refinement activities can be carried out in CCS.

Example 8.1 Suppose that system S consists of two components P and Q,
which are depicted by:

P ≡ (a.b ‖ b)\b, Q ≡ (c.d ‖ c)\c and S ≡ P ‖ Q. (8.1)

The semantics of CCS allows designers to consider the abstraction of P and
Q independently from each other. In other words, no matter in what context
that P or Q are embedded, P can always be abstracted as P ′ ≡ a and Q as
Q′ ≡ d. An abstraction of S can be S′ ≡ a ‖ d. Conversely, P , Q and S are
possible refinements of P ′, Q′ and S′ respectively.

In summary, suppose S ≡ P1 ⊕ P2... ⊕ Pn is a system expressed by a lan-
guage with a compositional semantics, where P1, P2... Pn are components of

128 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

S and where ⊕ is a combinator of components. The compositional semantics
guarantees that abstraction or refinement P ′

1, P ′

2... P ′

n of P1, P2... Pn can be
carried out independently. Therefore an abstraction or refinement of S can be
S′ ≡ P ′

1
P ′

2...
P ′

n, where
 is the corresponding mapping of combinator ⊕
in S. In Example 8.1, ⊕ and
 are both the parallel compositional combinator
‖. In practice, S′ can be expressed in the same language as that used for S or
in a totally different language. For example, properties of a system written in
a requirement language can be abstractions of a system written in a modelling
language (see the next subsection composability).

Composability. The concept of compositionality is intuitively useful in
achieving effective abstraction/refinement during the design of complex sys-
tems. However, in practice, it is not always as effective as expected. An im-
portant reason is that it does not put any restrictions on the assignment of mean-
ing to combinators. As a consequence, semantical independency can always
be achieved by assigning trivial semantics to combinators [Zadrozny, 1994].
In practice, the combinator semantics for both abstractions and refinements
should be simple enough. For example, the semantics of the combinators ‖
and + in CCS is defined in a natural way and can be understood easily. The
abstraction/refinement of sub-processes in CCS also retains the original com-
binators.

In the context of concurrent systems, a more restricted “version" of compo-
sitionality is sometimes called composability. Composability states that prop-
erties satisfied by individual components of a system should be satisfied by
their parallel compositions [Sifakis, 2001]. For example, assume reactive sys-
tem S consisting of two parallel components P and Q has a timing response
property ϕ, which states that every environmental stimulus p must be followed
by a response q within 3 seconds. If P satisfies ϕ and the design language
supports composability, then S ≡ P ‖ Q should also satisfy ϕ.

More generally, consider a system S ≡ P1 ‖ P2... ‖ Pn expressed by a
language supporting composability, where P1, P2... Pn are components of S
and ‖ is the parallel combinator. Assume each component Pi satisfies property
ϕi respectively. Composability of a design language states that S satisfies the
simple logical conjunction of these individual properties (ϕ1 ∧ ϕ2... ∧ ϕn).
We can see that only the parallel operator (‖) and the logic conjunction (∧) are
used in composability and their semantics are defined independently from the
semantics of composed components.

1.3 Implementation languages

System synthesis is an activity that converts a model into a complete sys-
tem implementation while preserving the correctness of the model. During
this stage, the system is often depicted by an implementation language (such

Predictability in Real-time System Development 129

as Java, C and C++), the semantics of which is usually related with and con-
strained by the target platform. Due to the different notions and assumptions
made at the modelling stage and at the implementation stage, it is not always
straightforward to correctly transform a model into a realization. As a con-
sequence, it is difficult to guarantee the validity of the realization w.r.t. the
satisfaction of the desired properties, which have been verified in the model.

The difficulty of maintaining correctness between a model and its realiza-
tion is attributed to several reasons. First, during the modelling stage, certain
assumptions are often made about the semantics of modelling languages in
order to effectively explore the design space. These assumptions are valid at
certain abstraction levels, but they do not always hold for the semantics of
implementation languages. For example, to facilitate the analysis of the tim-
ing behavior of a model, it is often assumed that actions are instantaneous.
However, every action does take a certain amount of execution time in every
implementation language. Without carefully considering this difference during
system synthesis, the realization may exhibit an entirely different behavior than
the model does. Second, some primitives and operations defined in modelling
languages do not have direct correspondences in implementation languages.
For example, during system synthesis, parallel operations in the model is often
implemented by means of a specific thread mechanism offered by the target
operating system, which semantics is not always consistent with that of the
modelling language.

In most existing design approaches for real-time systems, system synthesis
is achieved mainly by a syntactic mapping, instead of by a semantic mapping
between the modelling and the implementation language. As a result, the syn-
thesized realization may exhibit a different system behavior than the design
model does. A more detailed investigation of real-time system synthesis will
be presented in Section 2.

2. Real-time system design approaches

In this section, we are going to evaluate whether existing design approaches
have adequate semantic support for real-time systems. We classify existing
approaches into two categories, platform-dependent approaches and platform-
independent approaches, based on the different timing concepts adopted. This
is a justifiable classification because approaches adopting the same concept
of timing often provide similar predictability support during the design pro-
cess. Briefly speaking, platform-independent approaches use a system vari-
able to represent time (denoted as the virtual time), while platform-dependent
approaches adopt the machine time to represent time progress. This implies
that the timing behavior of a system depends on the underlying computing
platform.

130 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

2.1 Platform-dependent design approaches: ineffective
model transformations

Platform-dependent approaches take platform computation constraints into
considerations at the modelling stage, and use the machine time to specify the
timing behavior in their modelling languages. Examples of these languages are
Rose-Rt [RoseRT], [Selic et al., 1994] and SDL-96. One major advantage of
using the machine time is that no extra (or new) timing concepts are introduced
other than those adopted in imperative languages such as C and Java. These
approaches are readily accepted by designers, who are familiar with imperative
languages. However, this timing semantics is often too ambiguous to support
model transformations. This is illustrated by the following example.

Example 8.2 Two synchronized processes P and Q: Consider a simple
real-time system (shown in Figure 8.4) consisting of two parallel processes P
and Q (P ‖ Q), each of which comprises an iterative code segment involving
timed actions. At the beginning of each iteration, P and Q synchronize with
each other. Then process P sets a timer with a 3-second delay and process
Q sets a timer with a 2.999-second delay. After the timer of Q expires, Q
sends a “rpl-sig" message to P . For process P , there are two possibilities:
1)P receives the timer expiration message and outputs the message “wrong";
2)P receives the reply message from Q, resets its own timer and outputs the
message “correct".

Figure 8.4. A system with two parallel processes P and Q

Here, we use a graphical modelling language based on SDL-96 to describe
the system (shown in Figure 8.4). In SDL-96, the timing semantics is given
in such a way that each action takes an undefined amount of physical time 2

[Graf, 2002] and the interpretation of timing expressions (such as timers) relies
on an asynchronous timer mechanism provided by underlying platforms [Leue,
1996].

Predictability in Real-time System Development 131

0S
syn_sig

x:=t1
1S

x=t1+t2
2S

suspend

x=t1+t2+t3 3Sx=t1+t2+t3+2.999

4S

0S
syn_sig

x:=0
1S

4S

Out

x=0

'
0S

syn_sig

x:=0

'
1S

rly_sig

x<3.00 and x:=0

'
2S

4

'S '
5S

Out

x=3.00

(a) Process Q

(b) An abstraction of process Q
(c) An abstraction of process P

Figure 8.5. The semantics of process P and Q

Suppose two processes P and Q are designed separately, which is often the
case in complex system design. Now, let us first look at the timing semantics
of process Q depicted in Figure 8.5(a), where x is a clock used to express
timing constraints on actions and x := 0 represents the setting of clock x
to zero3. The process first receives a “syn-sig” message, which takes time
duration t1. Before the next statement (set(qtimer ,now +2.999)) is executed,
the operating system might switch to other processes taking a total amount of
time t2, before it switches back to process Q. Then the timer is set and the
process is suspended (taking time t3) to wait for the timer expiration message.
Between the time that the timer expires and the time that process Q responds
to the time out message, again the operating system might take a total amount
of time t4 for the execution of other processes.

Execution times t1, t3 and t5 are neglectable w.r.t. most of real-time prop-
erties of interest in a modern computing platform. In the case that process
Q is the only active process running on the platform, t2 and t4 are zero. As
a consequence, Figure 8.5(b) can be considered to be a proper abstraction of
process Q. In a similar way, an abstraction for process P can be obtained,
which is depicted in Figure 8.5(c). In design practice, it is often assumed that
compositionality (or composability) is well supported. That is, the integration
of parallel processes can preserve the properties of the integration of their ab-
stractions. Therefore, the integrated system (P ‖ Q) is often reasoned about
through the abstractions. This would indicate that P should never output the
”wrong" message when it is integrated with process Q.

However, in certain circumstances, the platform-dependent semantics of
both processes does allow process P to output the “wrong" message in the
integrated system. For example, in Figure 8.5(a), when process Q is in state
S1, the underlying operating system can first make P the active process, then P
can set the timer and suspends itself, after which the operating system switches

132 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

back to Q, which sets a timer with an expiration of 2.999 seconds. If one con-
text switch, one timer setting, suspending one process together with the other
necessary scheduling execution take more than 0.001 seconds in total 4, the
timer of process P might expire before that of process Q. As a result, P out-
puts the “wrong" message.

From the above example, we can see that the abstraction of the integration
of a set of components cannot always be correctly reasoned about from the
abstraction of its components. To eliminate the unexpected behavior, designers
have to rely on ad-hoc way to tune the behavior of each component, involving
a tremendous number of design details of other components to be considered.
As a result, the design process is often time consuming and prone to errors.

Real-time scheduling is often adopted in practice to alleviate the problems
mentioned above for platform-dependent design approaches.

Real-time scheduling:. In the research domain of real-time scheduling, a
system is viewed as a set of concurrent tasks. A scheduler is used to manage
the activation and execution of tasks concurrently running in the system. It
assigns the computation time by giving different priorities to tasks. In general,
the task with a higher priority is scheduled before those with lower priorities.
The goal of real-time scheduling is to devise a priority assignment scheme to
ensure that every task can be accomplished in time. In principle, a feasible
schedule can eliminate unwanted interferences from other tasks, reducing the
ambiguity of the timing semantics of each task. However, real-time scheduling
lacks a consistent framework to integrate functionality and timing [Liu and
Joseph, 2001], and it is only suitable for a particular set of real-time systems,
such as periodic systems. Hence they are not a general solution to the design of
complex real-time systems. Especially interaction-intensive real-time systems
are difficult to design with scheduling theory.

2.2 Platform-independent design: ineffective system
synthesis

Contrary to platform-dependent design approaches, platform-independent
design approaches often adopt a virtual timing concept, which is independent
of any underlying execution platforms. Furthermore, the semantics of their
modelling languages often treats the time progress and the action execution
in an orthogonal way [Nicollin and Sifakis, 1991], which can reduce the am-
biguity of the timing semantics and improve the understandability of design
descriptions. In this semantic framework, system actions (such as communi-
cations and data computations) are timeless (taking zero time) and time passes
without any action being performed. On one hand, such semantics can pro-
vide sufficient expressive power to describe the timing behavior of a system.

Predictability in Real-time System Development 133

On the other hand, compositionality (or composability) is supported by the se-
mantics of their modelling languages and effective abstraction/refinement can
be supported during the design process. Furthermore, since actions are instan-
taneous, additional analysis code does not take up time, keeping the original
timing behavior of the system unchanged. A typical modelling language based
on this semantic framework is SDL-2000 [Z.100, 2000], which is supported by
the TAU Generation 2 tool (TAU G2 in short) released by Telelogic [TAU G2].
Other examples often used in academic contexts are timed automata or process
algebra, such as timed CCS.

The timing semantics of the design descriptions in Example 8.2 can also
be given in platform-independent semantic frameworks. In these frameworks,
t1 till t5 are all zero and we can always consider the semantics depicted in
Figure 8.5(b) for process Q to be a proper abstraction of that in Figure 8.5(a),
and the same holds for the abstraction of process P depicted in Figure 8.5(c).
Consequently, the abstraction of the combined system P ‖ Q can be captured
by combination of Figure 8.5(b) and Figure 8.5(c), in which process P should
never output the “wrong" message. We made the same model in TAU G2, and
the behavior of the system (P ‖ Q) was indeed as expected.

Although most platform-independent approaches provide sufficient support
in their modelling languages for predictable design, bridging the large semantic
gap between these modelling languages and implementation languages is still
not solved adequately (see Section 1, Implementation languages).

Automatic transformation of design models to realizations is a superced-
ing technique to manual transformation, the latter of which is inefficient and
prone to errors. In current practice, the automatic transformation is achieved
mainly by the syntactic mapping of syntax primitives and constructs between
two design languages, instead of by a semantic mapping. As a result, incon-
sistencies can be observed between the design model and the realization. For
example, actions are usually assumed to be instantaneous in the model, while
they do take a certain amount of physical time in the realization. Without care-
ful considerations of this semantic difference, the realization can exhibit faulty
behavior. Although the model in Example 8.2 made in TAU G2 is proven to
be correct, errors are observed in the automatically synthesized realization (see
Figure 8.6).

3. A predictable design approach

In the previous section, we have investigated the deficiency of the exist-
ing design approaches in supporting predictability for real-time systems. In
this section we introduce a design approach which can overcome this problem.
This approach has two distinct characteristics. First, the POOSL language is
adopted at the modelling stage, which is a platform-independent modelling

134 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

Figure 8.6. The output of a realization of two parallel processes P and Q

language. Second, the Rotalumis tool is used to automatically synthesis re-
alizations (C++) from POOSL models. Most importantly, the synthesis pro-
cedure is based on a formal linkage between between the semantics of the de-
sign language (POOSL) and that of the implementation language (C++), which
guarantees property-preservation between models and realizations.

3.1 The design language POOSL

In this section, we give a brief overview of the POOSL language (Parallel
Object-Oriented Specification Language), which is employed in the SHESim
tool and developed at the Eindhoven University of Technology. POOSL lan-
guage integrates a process part based on a timing and probability extension of
CCS and a data part based on a traditional object-oriented language [Voeten
et al., 1998]. For example, the system in Example 1 can be modelled by the
POOSL code shown in Figure 8.7(a). The expressive power of POOSL enables
designers to describe concurrency, distribution, communication, real-time and
complex functionality of a system using a single executable model. We have
successfully applied it to the modelling and analysis of many industrial sys-
tems such as a network processor [Theelen et al., 2003], a microchip manufac-
ture device [Huang et al., 2002] and a multimedia application [van Wijk et al.,
2002].

Similar to some other recent design languages equipped with adequate pre-
dictability support, the semantics of the POOSL language [van der Putten and
Voeten, 1997], [van Bokhoven, 2002] is also based on a two-phase execution
model, which guarantees the predictability support during system modelling.

The implementation of the two-phase execution model in simulation tool
SHESim is achieved by adopting so-called process execution trees (PETs). The
state of each process is represented by a tree structure where each leaf is a
statement or a recursively defined process method (an example is the PET of
P ‖ Q shown in Figure 8.7(b)). During the evolution of the system, each PET
provides its candidate actions to the PET scheduler and dynamically adjusts its
state according to the choice made by the PET scheduler. More details about
PET can be found in [van Bokhoven, 2002]. The correctness of PETs with

Predictability in Real-time System Development 135

Init()()

 a ! syn_sig;

 sel

 delay 3;

 out ! “wrong”

 or

 a ? rly_sig;

 out ! “right”;

 Init()()

 les.

Process P

Init()()

 a ? syn_sig;

 delay 2.99;

 a ! rly_sig;

 Init()().

Process Q

Scheduler

root

;

a!syn_sig
 sel

;

delay 3
out!“wrong”

;

a?rly_sig

out!“right”

;

Init()()

root

;

a?syn_sig ;

Init()()

;

a!rly_sig

delay 2.99

(a) POOSL code (b) Process execution trees

Figure 8.7. The P ‖ Q system in POOSL

respect to the semantics of the POOSL language is formally proven in [Geilen,
2002].

3.2 Rotalumis

The generation tool Rotalumis takes the POOSL model acquired during the
modelling stage as its input and automatically generates the executable code for
the target platform. To ensure property-preservation during the transformation,
a formal linkage between two semantic domains of the modelling and imple-
mentation languages is built based on the ε-hypothesis [Huang et al., 2003].
The ε-hypothesis requires that:

1 A model and its realization should have the same observable execution
sequence.

2 Time deviations between activations of corresponding actions in the
model and the realization should be less than ε seconds.

In the case that the ε-hypothesis is complied with during the transformation,
we could predict properties of the realization from those of the model. More
specifically, if the model satisfies a property P formally specified by MITL
(Metric Interval Temporal Logic)[Alur et al., 1991], we know that the real-
ization satisfies a 2ε relaxed property R2ε(P) of P [Huang et al., 2003]. For
example, a typical response property that “every input p must be followed by a
response q between 3 and 5 time units" is defined by formula �(p → ♦[3,5]q).
Its 2ε relaxed property is �(p → ♦[3−2ε,5+2ε]q). In case an upper bound
of the time deviation between the realization and the model is 0.01 seconds
and �(p → ♦[3,5]q) is satisfied in the model, we can conclude that property
�(p → ♦[2.98,5.02]q) holds in the realization.

136 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

The Rotalumis tool tries to satisfy the hypothesis by applying the following
techniques:

Process execution trees. POOSL language provides ample facilities to
describe system characteristics such as parallelism, nondeterministic choice,
delay and communication that are not directly supported by C++ or other im-
plementation languages. In order to provide a correct and smooth mapping
from a POOSL model to a C++ realization, PETs are used to bridge the se-
mantic gap between two languages. The data part of a POOSL model is di-
rectly translated into corresponding C++ expressions since no large gap exists
between their semantics. The process part of a POOSL model is interpreted
as a C++ tree structure whose behavior is the same as the PET implemented
in SHESim. As a result, the synthesized realization exhibits exactly the same
behavior as that in the model, if we interpret it in the virtual time domain.

On the other hand, the realization of a system needs to interact with the out-
side world and its behavior has to be interpreted in the physical time domain.
Since the progress of the virtual time is monotonically increasing, which is
consistent with the progress of the physical time, the event order observed in
the virtual time domain should be consistent with that in the physical time do-
main. That is, the PET scheduler ensures that the realization always has the
same event order as observed in the POOSL model. Therefore, any qualitative
timing property (such as safety and liveness) satisfied in the model also holds
in the realization.

Synchronization between virtual time and physical time. To obtain the
same (or similar) quantitative timing behavior in the physical time domain as
in the virtual time domain, the PET scheduler tries to synchronize the virtual
time and the physical time during execution. This ensures that the execution of
the realization is always as close as possible to a trace in the model with regard
to the distance between timed state sequences5.

Due to the physical limitations of the platform, the scheduler may fail to
guarantee that the realization is ε-close to the model (for some fixed ε value).
In this case, designers can get the information about the missed actions from
the scheduler. Correspondingly, they can either change the model and reduce
the computation load at a certain virtual time moment, or replace the target
platform with a platform of better performance.

With the aid of the Rotalumis tool, a property-preserving realization of Ex-
ample 1.2 can be automatically synthesized from a POOSL model.

4. Conclusions

To smoothen the system design process and improve design productivity, the
semantics of design languages should provide sufficient support for predictable

Predictability in Real-time System Development 137

design. More precisely, two aspects should be supported by the semantics of
design languages. 1) The semantics of design languages should support com-
positionality (and composability), thereby facilitating the design of complex
systems. 2) A formal linkage between the semantics of modelling and im-
plementation languages is necessary, which can serve as a basis for automatic
system synthesis.

In this paper, we investigate the support of the existing design approaches
for the above two aspects. The investigation is carried out in two categories
of real-time design approaches: platform-dependent approaches and platform-
independent approaches. Platform-dependent approaches adopt the physical
time as their basic timing concept, often lack sufficient support to model and
analyze complex real-time systems, and predictability is not well supported
during system modelling. On the other hand, platform-independent approaches
adopt the virtual time as their basic timing concept, which improves predicta-
bility during system modelling. But they are often ineffective in system syn-
thesis, due to the large semantic gap between modelling and implementation
languages.

To cope with the problems of existing design approaches, a predictable ap-
proach is proposed, which has two distinct characteristics. First, the POOSL
language is adopted during the modelling stage, the semantics of which pro-
vides adequate predictability support for real-time system modelling. Second,
the Rotalumis tool is used to automatically synthesis realizations (C++) from
POOSL models. Most importantly, the synthesis procedure complies with the
ε-hypothesis, which ensures that realizations keep the same qualitative and
quantitative (up to 2ε) timing properties as models. In paper [Huang et al.,
2004], a rail-road crossing system is presented, which is designed by applying
this approach. The analysis of property-preservation between the model of the
rail-road system and its realization is presented in [Florescu et al., 2004].

Notes

1. Although it is often unrealistic to formalize all the requirements of the desired system in practice,
we believe that critical timing and safety requirements should be precisely specified.

2. Physical time can be considered as machine time here.
3. Since the timing semantics of process Q is influenced by the underlying platform and other processes

running on the same platform, in general it is too ambiguous and (almost) impossible to be accurately
illustrated by state diagrams. Figure 8.5(a) only shows a part of the semantics of Q, which is already
sufficient to show the deficiencies of platform-dependent semantics.

4. In a complex concurrent real-time (software) system, the cost can far exceed 0.001 seconds due to
frequent context switches between many processes.

5. A timed state sequence is an execution of a system, in which a time interval is attached to every
state. If two timed state sequences are ε-neighbouring, they have the same state sequence and the least
upper bound of the absolute difference between the left-end points of corresponding intervals is less than or
equal to ε. For more information, see [Huang et al., 2003].

138 ADVANCES IN DESIGN AND SPECIFICATION LANGUAGES FOR SOCS

References

Alur, R. Feder, T. and Henzinger, T.A. (1991). The benefits of relaxing punctu-
ality. In Proceedings of the tenth annual ACM symposium on Principles of
distributed computing, pages 139–152. ACM Press.

Florescu, O. Voeten, J.M.P. Huang, J. and Corporaal, H. (2004). Error estima-
tion in model-driven development for real-time software. In In Proceedings
of Forum on specification and Design Language, FDL’04, Lille, France.

Geilen, M.C.W (2002). Formal Techniques for Verification of Complex Real-
time Systems. PhD thesis, Eindhoven University of Technology, The Nether-
lands.

Graf, S. (2002). Expression of time and duration constraints in sdl. In 3rd SAM
Workshop on SDL and MSC, University of Wales Aberystwyth, LNCS.

Huang, J. Voeten, J.M.P. and Geilen, M.C.W. (2003). Real-time Property Pre-
servation in Approximations of Timed Systems. In Proceedings of First
ACM & IEEE International Conference on Formal Methods and Models
for Codesign, Mont Saint-Michel, France. IEEE Computer Society Press.

Huang, J. Voeten, J. van der Putten, P.H.A. and Ventevogel, A. (2004). Pre-
dictability in real-time system development (2) a case study. In In Proceed-
ings of Forum on specification and Design Language, FDL’04, Lille, France.

Huang, J. Voeten, J.P.M. van der Putten, P.H.A. Ventevogel, A. Niesten, R.
and van de Maaden, W. (2002). Performance evaluation of complex real-
time systems, a case study. In Proceedings of 3rd workshop on embedded
systems, pages 77–82, Utrecht, the Netherlands.

Koomen, C. J. (1991). The design of communication systems, volume 147
of The Kluwer International Series in Engineering and Computer Science.
Kluwer Academic Publishers, Boston; London; Dordrecht.

Kotonya, G. and Sommerville, I. (1998). Requirement Engineering: Processes
and Techniques. John Wiley & Sons, Inc., New York.

Leue, S. (1996). Specifying real-time requirements for sdl specifications - a
temporal logic-based approach. In Proceedings of the Fifteenth Interna-
tional Symposium on Protocol Specification, Testing, and Verification, vol-
ume 38 of IFIP Conference Proceedings, pages 19–34. Chapman & Hall.

Liu, Z. and Joseph, M. (2001). Verification, refinement and scheduling of real-
time programs. Theoretical Computer Science, 253(1):119–152.

Milner, Robin (1989). Communication and Concurrency. Prentice Hall. ISBN
0-13-114984-9 (Hard) 0-13-115007-3 (Pbk).

Nicollin, X. and Sifakis, J. (1991). An overview and synthesis on timed process
algebras. In K. G. Larsen, A.Skou, editor, Proceedings of the 3rd Workshop
on Computer-Aided Verification, LNCS 575, pages 376–398, Alborg, Den-
mark. Springer-Verlag.

Predictability in Real-time System Development 139

Partee, B., ter Meulen, A., and Wall, R. (1990). Mathematical Methods in Lin-
guistic. Kluwer Academic Publishers.

Rational Rose RealTime. http://www.rational.com/tryit/rosert/

index.jsp.
Selic, B., Gullekson, G., and Ward, P.T. (1994). Real-time object-oriented mod-

eling. John Wiley & Sons, Inc.
Sifakis, J. (2001). Modeling real-time systems-challenges and work directions.

In Proceedings of the First International Workshop on Embedded Software,
pages 373–389. Springer-Verlag.

TAU Generation 2. http://www.taug2.com/.
Theelen, B.D., Voeten, J.P.M., and Kramer, R.D.J. (2003). Performance Mod-

elling of a Network Processor using POOSL. Journal of Computer Net-
works, Special Issue on Network Processors, 41(5):667–684.

van Bokhoven, L.J. (2002). Constructive Tool Design for Formal Languages
from semantics to executing models. PhD thesis, Eindhoven University of
Technology, The Netherlands.

van der Putten, P.H.A. and Voeten, J.P.M. (1997). Specification of Reactive
Hardware/Software Systems. PhD thesis, Eindhoven University of Technol-
ogy, The Netherlands.

van Wijk, F.N., Voeten, J.P.M., and ten Berg, A.J.W.M. (2002). An abstract
modeling approach towards system-level design-space exploration. In Pro-
ceedings of the Forum on specification and Design Language, Marseille,
France.

Voeten, J.P.M., van der Putten, P.H.A., Geilen, M.C.W., and Stevens, M.P.J.
(1998). System Level Modelling for Hardware/Software Systems. In Pro-
ceedings of EUROMICRO’98, pages 154–161, Los Alamitos, California.
IEEE Computer Society Press.

Zadrozny, W. (1994). From compositional to systematic semantics. Linguistics
and Philosophy, 17:329–342.

Z.100 Annex F1: Formal Description Techniques (FDT)–Specification and De-
scription Language (SDL) (2000). Telecommunication standardization sec-
tor of ITU.

