
Chapter 1

INTRODUCTION TO RECONFIGURABLE

HARDWARE

Konstantinos Masselos1,2 and Nikolaos S. Voros1

1
INTRACOM S.A., Hellenic Telecommunications and Electronics Industry, Greece

2
Currently with Imperial College of Science Technology and Medicine, United Kingdom

Abstract: This chapter introduces the reader to main concepts of reconfigurable
computing and reconfigurable hardware. Different types of reconfiguration are
discussed. A detailed classification of reconfigurable architectures with respect
to the granularity of their building blocks, the reconfiguration scheme and the
system level coupling is also presented.

Key words: Reconfigurable hardware, reconfigurable architectures, reconfiguration,
reconfigurable computing

1. RECONFIGURABLE COMPUTING AND

RECONFIGURABLE HARDWARE

Reconfigurable computing refers to systems incorporating some form of
hardware programmability–customizing how the hardware is used using a
number of physical control points [2]. These control points can then be
changed periodically in order to execute different applications using the
same hardware. Reconfigurable hardware offers a good balance between
implementation efficiency and flexibility as shown in Figure 1-1. This is
because reconfigurable hardware combines post-fabrication programmability
with the spatial (parallel) computation style [2] of application specific
integrated circuits (ASICs), which is more efficient in comparison to the
temporal (sequential) computation style of instruction set processors.

Due to the increasing flexibility requirements (e.g. for adaptation to
different evolving standards and operating conditions) that are imposed by
computationally intensive applications such as wireless communications,

15
N.S. Voros and K. Masselos (eds.), System Level Design of Reconfigurable Systems-on-Chips, 15-26.
© 2005© Springer. Printed in the Netherlands.

16 Chapter 16

devices need to be highly adaptable to the running applications. On the other
hand, efficient realizations of such applications are required, especially in
the resources they use during deployment, where power consumption must
be traded against perceived quality of the application. The contradictory
requirements for flexibility and implementation efficiency cannot be
satisfied by conventional instruction set processors and ASICs.
Reconfigurable hardware forms an interesting implementation option in such
cases.

F
le

x
ib

il
it

y

Area/Power

Dedicated/Direct

Mapped Hardware

(ASIC)

Embedded

Reconfigurable

Logic/FPGA

Reconfigurable

Processor/FPGA

Application Specific

Instruction Set Processor

(ASIP)

Instruction Set

DSP (TI 320CXX)

Embedded

General Purpose

Instruction Set

Processor

(LP ARM)

Factor of 100-1000

Post fabrication

programmability

Spatial computation

style

Temporal

computation

style

Limited

parallelism

Unlimited

parallelism

Figure 1-1. Positioning of reconfigurable hardware

There are also other reasons why to use reconfigurable resources in
system-on-chip (SoC) design. The increasing non-recurring engineering
(NRE) costs push designers to use same SoC in several applications and
products for achieving low cost per chip. The presence of reconfigurable
resources allows the fine tuning of the chip for different products or product
variations. Also, the increasing complexity in the future designs adds the
possibility of including design flows, which can require costly and slow
redesign of the chip. Reconfigurable elements are often homogenous arrays,
which can be pre-verified to minimize the possibility of having design
errors. Also the post-manufacturing programmability allows correction or
circumvention of problems later than with fixed hardware.

1. Introduction to Reconfigurable Hardware 17

2. TYPES OF RECONFIGURATION

The next paragraphs describe different types of reconfiguration.

2.1 Logic reconfiguration

A typical logic block reconfigurable architecture contains a look-up table
(LUT), an optional D flip-flop and additional combinational logic. The LUT
allows any function to be implemented, providing generic logic. The flip-
flop can be used for pipelining, registers, state holding functions for finite
state machines, or any other situation where clocking is required. The
combinatorial logic is usually the fast carry logic used to speed up fast carry-
based computations such as addition, parity, wide AND operations and other
functions. The logic blocks located at the periphery of the device can be of
different architecture dedicated to I/O operations.

The logic blocks are grouped to matrices overlaid with a reconfigurable
interconnection network of wires. Interconnection network reconfiguration is
controlled by changing the connections between the logic blocks and the
wires and by configuring the switch boxes, which connect different wires.
The reconfiguration of both the logic blocks and the interconnection network
is achieved by using SRAM memory bits to control the configuration of
transistors. The functionality of the logic blocks, I/O blocks and the
interconnection network is modified by downloading bit stream of
reconfiguration data onto the hardware.

2.2 Instruction-set reconfiguration

The concept of instruction-set reconfiguration refers to the hybrid
architectures consisting of microprocessor and reconfigurable logic. The key
benefit is a combination of full software flexibility with high hardware
efficiency. One promising approach is the reconfigurable instruction set
processors (RISP), which have the capability to adapt their instruction sets to
the application being executed through a reconfiguration in their hardware.
The result is a reconfigurable and extensible processor architecture, which
could be tailored closely to the designers' specific needs.

Through the adaptation, specialized hardware accelerates the execution
of the applications. If shared resources are used in the adaptation, the
functional density is also improved. By moving the application-specific data-
paths into the processor, a remarkable improvement in performance
compared to fixed instruction-set processors can be achieved. At the same
time, designing at the level of instruction-set architecture significantly
shortens the design cycle and reduces verification effort and risk. On the

18 Chapter 18

other hand, new methodologies, tools and processor foundations are
required. Automated extension of processor function units and associated
software environment - compilers, debuggers, instruction simulators etc., are
also the key points to success.

Different systems with different characteristics have been designed.
Usually two main design tasks are involved:

1. What is the type of interfaces between the microprocessor and the
reconfigurable logic?

2. How to design the reconfigurable logic itself?
Each of them contains many trade-offs. The common classification of the
reconfigurable processors could be made according to the coupling levels of
reconfigurable logic. The concept of coupling levels applies also without a
reference to reconfigurable processors. As shown in Figure 1-2, there are
three types of coupling levels:

Memory

I/O Bus

Main Bus

Processor

RFU Co-processor

Attached processor

Figure 1-2. Basic coupling levels of reconfigurable logic

1. Reconfigurable functional unit (RFU) - the logic is placed inside the
processor, the instruction decoder issues instructions to the
reconfigurable unit as if it were one of the standard functional units of
the processor. In this way, the communication cost is very small, so
the speed could be easily increased. This is also the most promising

1. Introduction to Reconfigurable Hardware 19

approach because it can be used to accelerate almost any
application [1].

2. Coprocessor - the logic is next to the processor. Communication is
done using a protocol.

3. Attached processor - the logic is placed on some kind of I/O bus. With
the coprocessor and attached processor approaches, the speed
improvement using the reconfigurable logic has to compensate for the
overhead of transferring the data. This usually happens in applications
where a huge amount of data has to be processed using a simple
algorithm that fits in the reconfigurable logic.

2.3 Static and dynamic reconfiguration

There are two basic reconfiguration approaches: static and dynamic.

2.3.1 Static reconfiguration

Static reconfiguration (often referred as compile time reconfiguration) is
the simplest and most common approach for implementing applications with
reconfigurable logic. Static reconfiguration involves hardware changes at a
relatively slow rate. It is a static implementation strategy where each
application consists of one configuration. The main objective is to improve
the performance.

Configure Execute

Figure 1-3. Principle of static reconfiguration

The distinctive feature of this configuration is that it consists of a single
system-wide configuration. Prior to commencing an operation, the
reconfigurable resources are loaded with their respective configurations.
Once operation commences, the reconfigurable resources will remain in this
configuration throughout the operation of the application. Thus hardware
resources remain static for the life of the design (or application). This is
depicted in Figure 1-3. Much higher performance than with pure software
implementation (e.g. microprocessor approaches), cost advantage over

20 Chapter 10

ASICs in certain cases and conventional CAD tool support are the main
advantages of this technology.

2.3.2 Dynamic reconfiguration

Whereas static reconfiguration allocates logic for the duration of an
application, dynamic reconfiguration (often referred to as run time

reconfiguration) uses a dynamic allocation scheme that re-allocates
hardware at run-time. This is an advanced technique that some people regard
as a flexible realization of the time/space trade-off. It can increase system
performance by using highly optimized circuits that are loaded and unloaded
dynamically during the operation of the system as depicted in Figure 1-4. In
this way system flexibility is maintained and functional density is
increased [9].

Configure Execute

Figure 1-4. Principle of dynamic reconfiguration

Dynamic reconfiguration is based upon the concept of virtual hardware,
which is similar to the idea of virtual memory. Here, the physical hardware
is much smaller than the sum of the resources required by all of the
configurations. Therefore, instead of reducing the number of configurations
that are mapped, we instead swap them in and out of the actual hardware, as
they are needed.

There are two main design problems for this approach: the first is to
divide the algorithm into time-exclusive segments that do not need to (or
cannot) run concurrently. This is referred to as temporal partitioning.
Because no CAD tools support this step, this requires tedious and error-
prone user involvement. The second problem is to co-ordinate the behaviour
between different configurations, i.e. the management of transmission of
intermediate results from one configuration to the next [8].

1. Introduction to Reconfigurable Hardware 21

3. CLASSIFICATION OF RECONFIGURABLE

ARCHITECTURES

In this section reconfigurable hardware architectures are classified with
respect to several parameters. These parameters are described below:

• Granularity of building blocks This refers to the levels of
manipulation of data. In this chapter we distinguish three types of
granularity: fine-grain which corresponds to bit-level manipulation of
data, medium grain manipulating data with varying number of bits and
coarse-grain granularity which implies word level operations.

• Reconfiguration scheme Systems can be reconfigured statically or
dynamically. Dynamically reconfigurable systems permit the partial
reconfiguration of certain logic blocks while others are performing
computations. Statically reconfigurable devices require execution
interrupt.

• Coupling This refers to the degree of coupling with a host
microprocessor. In a closely coupled system reconfigurable units are d

placed on the data path of the processor, acting as execution units.
Loosely coupled systems act as a coprocessor. They are connected to a d

host computer system through channels or some special-purpose
hardware.

3.1 Classification with respect to building blocks

granularity

The granularity criterion reflects the smallest block of which a
reconfigurable device is made.

In fine-grained architectures, the basic programmed building block d

usually consists of a combinatorial network and a few flip-flops. The logic
block can be programmed into a simple logic function, such as a 2-bit adder.
These blocks are connected through a reconfigurable interconnection
network. More complex operations can be constructed by reconfiguring this
network. Commercially available Field Programmable Gate Arrays (FPGAs)
are based on fine grain architectures.

Although highly flexible, these systems exhibit a low efficiency when it
comes to more specific tasks. For example, although an 8-bit adder can be
implemented in a fine-grained circuit, it will be inefficient, compared to a
reconfigurable array of 8-bit adders, when performing an addition-intensive
task. An 8-bit adder will also occupy more space in the fine-grained
implementation.

22 Chapter 12

Reconfigurable systems which use logic blocks of larger granularity are
categorized as medium-grained [6, 7, 10, 11, 17]. For example, Garp [6] is
designed to perform a number of different operations on up to four 2-bit
inputs. Another medium-grained structure was designed specifically to
implement multipliers of a configurable bit-width [7]. The logic block used
in the multiplier FPGA is capable of implementing a 4x4 multiplication. The
CHESS architecture [11] also operates on 4-bit values, with each of its cells
acting as a 4-bit ALU. The major advantage of medium-grained systems
when compared to the fine-grained architecture is, that they better utilize the
chip area, since they are optimized for the specific operations. However, a
drawback of this approach is represented in a high overhead when
synthesizing operations which are incompatible with the simplest logic block
architecture.

Coarse-grained architectures are primarily intended for thed

implementation of tasks dominated by word-width operations. Because the
logic blocks used are optimized for large computations, they will perform
these operations much more quickly (and consume less chip area) than a set
of smaller cells connected to form the same type of structure. However,
because their composition is static, they are unable to leverage optimizations
in the size of operands. On the other hand, these coarse-grained architectures
can be much more efficient than finer-grained architectures for
implementing functions closer to their basic word size. An example of
coarse-grained system is the RaPiD architecture [4].

A very coarse granularity is the case when the simplest logic block is
based on an entire microprocessor with or without special accelerators.
Examples of such architectures are the REMARC [12] and RAW [13]
architectures.

3.2 Classification with respect to reconfiguration scheme

3.2.1 Statically reconfigurable architectures

Traditional reconfigurable architectures are statically reconfigurable,
which means that the reconfigurable resources are configured at the start of
execution and remain unchanged for the duration of the application. In order
to reconfigure a statically reconfigurable architecture, the system has to be
halted while the reconfiguration is in progress and then restarted with the
new configuration.

Traditional FPGA architectures have primarily been serially programmed
single-context devices, allowing only one configuration to be loaded at a
time. This type of FPGAs is programmed using a serial stream of

1. Introduction to Reconfigurable Hardware 23

configuration information, requiring a full reconfiguration if any change is
required.

3.2.2 Dynamically reconfigurable architectures

Dynamically reconfigurable (run-time reconfigurable) architectures allow
reconfiguration and execution to proceed at the same time. The different
reconfigurable styles of dynamic reconfiguration are depicted in Figure 1-5
and discussed in the following paragraphs.

Single context dynamically reconfigurable architectures

Although single context architectures can typically be reconfigured only
statically, a run-time reconfiguration onto single context FPGA can also be
implemented. Typically, the configurations are grouped into contexts, and
each context is swapped as needed. Attention has to be paid on proper
partitioning of the configurations between the contexts in order to minimize
the reconfiguration delay.

Multi-context dynamically reconfigurable architectures

A multi-context architecture includes multiple memory bits for each
programming bit location. These memory bits can be thought of as multiple
planes of configuration information [3, 15]. Only one plane of configuration
information can be active at a given moment, but the architecture can

Figure 1-5. The different basic models of dynamically reconfigurable computing

I

In

g

24 Chapter 14

quickly switch between different planes, or contexts, of already-programmed
configurations. In this manner, the multi-context architecture can be
considered a multiplexed set of single-context architectures, which requires
that a context be fully reprogrammed to perform any modification to the
configuration data. However, this requires a great deal more area than the
other structures, given that there must be as many storage units per
programming location as there are contexts. This also means that multi-
context schemes are mainly used in coarse-grain architectures.

Partially Reconfigurable Architectures

In some cases, configurations do not occupy the full reconfigurable
hardware, or only a part of a configuration requires modification. In both of
these situations a partial reconfiguration of the reconfigurable resources is
desired, rather than the full reconfiguration supported by the serial
architectures mentioned above.

In partially reconfigurable architectures, the underlying programming
layer operates like a RAM device. Using addresses to specify the target
location of the configuration data allows for selective reconfiguration of the
reconfigurable resources. Frequently, the undisturbed portions of the
reconfigurable resources may continue execution, allowing the overlap of
computation with reconfiguration. When configurations do not require the
entire area available within the array, a number of different configurations
may be loaded into otherwise unused areas of the hardware. Partially run-
time reconfigurable architectures can allow for complete reconfiguration
flexibility such as the Xilinx 6200 [18], or may require a full column of
configuration information to be reconfigured at once, as in the Xilinx Virtex
FPGA [19].

4. COUPLING

The type of coupling of the Reconfigurable Processing Unit (RPU) to
the computing system has a big impact on the communication cost. It can
be classified into one of the four groups listed below, which are presented
in order of decreasing communication costs and illustrated in
Figure 1-6:

• RPUs coupled to the I/O bus of the host (Figure 1-6.a). This group
includes many commercial circuit boards. Some of them are connected
to the PCI bus of a PC or workstation.

• RPUs coupled to the local bus of the host (Figure 1-6.b).

1. Introduction to Reconfigurable Hardware 25

• RPUs coupled like co-processors (Figure 1-6.c) such as the REMARC
- Reconfigurable Multimedia Array Coprocessor [12].

• RPUs acting like an extended data-path of the processor (Figure 1-6.d)
such as the OneChip [16], the PRISC - Programmable Reduced
Instruction Set Computer [14], and the Chimaera [5].

Figure 1-6. Coupling of the RPU to the host computer

REFERENCES

1. Barat F, Lauwereins R (2000) Reconfigurable Instruction Set Processors: A Survey. In:
Proceedings of IEEE international Workshop on Rapid System Prototyping,
pp 168-173

26 Chapter 16

2. Brodersen B (2002) Wireless Systems-on-a-Chip Design. In: Proceedings of 3rd

International Symposium on Quality of Electronic Design, pp 221-222
3. DeHon A (1996) DPGA Utilization and Application. In: Proceedings of ACM/SIGDA

International Symposium on FPGAs, pp 115-121
4. Ebeling C, Cronquist DC, Franklin P (1996) RaPiD Reconfigurable Pipelined Datapath.

In: Lecture Notes in Computer Science 1142 – Field Programmable Logic: Smart
Applications, New Paradigms and Compilers, Springer Verlag, pp 126-135

5. Hauck S, Fry TW, Hosler MM, Kao JP (1997) The Chimaera Reconfigurable Functional
Unit. In: Proceedings of the 5th IEEE Symposium on Field Programmable Custom
Computing Machines, pp 87-96

6. Hauser JR, Wawrzynek J (1997) Garp: A MIPS Processor with a Reconfigurable
Coprocessor. In: Proceedings of IEEE Symposium on Field-Programmable Custom
Computing Machines, pp 12-21

7. Haynes SD, Cheung PYK (1998) A reconfigurable multiplier array for video image
processing tasks, suitable for embedding in an FPGA structure. In: Proceedings of IEEE
Symposium on Field-Programmable Custom Computing Machines, pp 226-235

8. Hutchings BL, Wirthlin MJ (1995) Implementation approaches for reconfigurable logic
applications. Brigham Young University, Dept. of Electrical and Computer Engineering

9. Khatib J (2 Configurable001) Computing.rable Availableting. at:lable http://www.geocities.com/
siliconvalley/pines/6639/fpga

10. Lucent Technologies Inc (1998) FPGA Data Book, Allentown, Pennsylvania
11. Marshall A, Stansfield T, Kostarnov I, Vuillemin J, Hutchings B (1999)

A Reconfigurable Arithmetic Array for Multimedia Applications. In: Proceedings of
ACM/SIGDA International Symposium on FPGAs, pp 135-143

12. Miyamori T, Olukotun K (1998) A quantitative analysis of reconfigurable coprocessors
for multimedia applications. In: Proceedings of IEEE Symposium on Field-
Programmable Custom Computing Machines, pp 2-11

13. Moritz CA, Yeung D, Agarwal A (1998) Exploring optimal cost performance designs for
raw microprocessors. In: Proceedings of IEEE Symposium on Field-Programmable
Custom Computing Machines, pp 12-27

14. Razdan R, Brace K, Smith MD (1994) PRISC Software Acceleration Techniques.
In: Proceedings of the IEEE International Conference on Computer Design,
pp 145-149

15. Trimberger S, Carberry D, Johnson A, Wong J (1997) A Time-Multiplexed FPGA. In:
Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines,
pp 22-29

16. Witting RD, Chow P (1996) OneChip: An FPGA Processor with Reconfigurable Logic.
In: Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines, pp
126-135

17. Xilinx Inc. (1994) The Programmable Logic Data Book
18. Xilinx Inc. (1996) XC6200: Advanced product specification v1.0. In: The Programmable

Logic Data Book
19. Xilinx Inc. (1999) VirtexTM: Configuration Architecture Advanced Users Guide’

