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1. Some History

The first attempts to evaluate quantitatively the complexity of a system
have been related to complexity of cells, organisms, and humans. Fascinated
by the complex nature of the living things, a group of young mathematical
biologists applied in the 1950s the Shannon theory of communications [1]
to assess the information content of the living matter [2-5]. The analysis
made by Rashewsky [4] provided the first proof that life on earth cannot
emerge as a random event, because the probability for such an event would
be incredibly small. Two different approaches have been used in defining
the information content. The first one proceeded from the elemental com-
position of the living matter (C, N, O, etc.) and is the predecessor of what is
nowadays called compositional complexity. Rashewsky’ topological infor-
mation has been based on partitioning the atoms in a structure according
to both their chemical nature and their equivalent topological neighbor-
hoods. Mowshovitz [6] developed further these ideas to define complexity
of graphs. Minoli[7] introduced his combinatorial complexity of graphs,
proceeding from the count of the graph vertices, edges, and paths.

In parallel with these attempts, another definition of information con-
tent has been advanced by Kolmogorov [8]. His algorithmic information
has been defined as the minimal length of the program that exhaustively
describes a given system. This type of information measure has found
a broad application in computer sciences. The relevance of algorithmic
information in describing structural complexity, however, is low [9], which
limited its application to chemistry, whereas in biology it has found some
application in assessing the genome complexity.
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Shannon’s information has been widely applied in chemistry in the form
of information indices, characterizing different aspects of chemical struc-
ture [10-16]. These structural descriptors have been commonly used for
quantitative structure-property and structure-activity relationships (QSPR
and QSAR). However, only few of them have satisfied the requirements
for a complexity measure [17]. Bertz introduced in 1981 his molecular
complexity index applying Shannon’s equation to the distribution of the
two-edge subgraphs in molecular graphs [18]. That was the starting point
of a systematic search in chemical theory for relevant measures of molec-
ular complexity, a search that shifted the focus from information theory to
molecular topology and graph theory. A series of requirements have been
formulated for a structural descriptor to be a complexity measure [19-21].
along with hierarchical concepts of molecular complexity [22,23]. A num-
ber of high quality measures of topological complexity have been devised
during the last 7-8 years [24-31]. Complexity of chemical reaction net-
works has also been addressed making use of the spanning subgraphs of
these cyclic graphs [32-35].

In the meantime, in the middle of 1980s, complexity theory emerged
as a new integrative branch of science. The emphasis in the new theory
was put on the complex dynamic systems, systems characterized by non-
linear dynamics and emergent events. The quantitative aspects of the the-
ory, related to random graphs, did not bring exciting results. The situation
changed radically only when it was realized that any dynamic evolution-
ary system could be adequately presented by a network (a graph) that is
non-random. Thus, complexity theory has found its universal language to
describe systems as diverse as discrete space-time, the living cell, ecosys-
tems, financial markets, World Wide Web, and social systems. This opened
the door to the introduction of general methods for characterizing systems
complexity, not only as information-based compositional complexity but,
most essentially, as topological complexity of the network representing the
system.

This chapter aims at elucidating the methods for quantitative assess-
ments of networks complexity. It borrows from the rich arsenal of such
methods developed during the last 25 years in chemical graph theory and
chemical information theory. Being devised in a sophisticated way so as
to distinguish the complexity of the multitude of molecules, these methods
will be presented in a form adapted to the very large size of networks in
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biology and ecology. New graph invariants having properties of complex-
ity measures will also be presented. Examples of cellular and ecological
networks will be analyzed with the methods presented.

2. Networks as Graphs

Networks are well characterized both quantitatively and as structural
patterns or motifs by graph theory, which has at least 150 years of ex-
tensive development and application. Graph theory as a branch of dis-
crete mathematics has been brought to life to solve specific problems from
three different areas of science. Leonard Euler in 1788 constructed the
first graph to solve the famous mathematical puzzle for the Königsberg
bridges, a problem that is a predecessor of the transport and communi-
cation sets problems of our time. Rudolf Kircchoff in mid 19th century
reinvented graphs and developed their theory to solve fundamental prob-
lems of electrical sets, a work of great value for the electronic networks
of the 21st century, as well as for the complex chemical reaction networks.
The third root of graph theory is in structural chemistry, which in the last
part of 19th century was trying to determine the number of isomers, chem-
ical compounds having the same atomic composition but different spatial
structure.

The variety in the graph theoretical background produced a variety of
non-standardized terminologies. In this chapter, we shall follow mainly the
manner the terminology is used in chemical graph theory. Cellular networks
are molecular networks, and we believe that the use of terms like “wirings”
coming from electrical and computer engineering should be avoided in de-
scribing living things. This section introduces some basic graph theoretical
notions and descriptors needed for the network topological and complexity
analysis.

2.1. Basic notions in graph theory [36-38]
A network is defined by the set of V vertices (nodes, points), {V }≡{v1,

v2, . . . , vV }, and the set of E edges (links, lines), {E}≡{E1, E2, . . . , EE}.
The edge {ij} is the line that emanates from vertex i and ends in vertex j .
A subgraph is a graph obtained from the parent graph by deleting at least
one edge or a vertex with its incident edges. A loop is an edge that begins
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and ends in the same vertex. A multigraph is a graph in which some pairs
of vertices are linked by more than one edge. Simple graphs are graphs
having no multiple edges and loops. In a complete graph, KV , any two
vertices are connected by an edge. A directed graph is a graph having at
least one directed edge. Directed edges are termed arcs. Graph without any
directed edge is undirected. The graph is connected when there is a path
between any pair of vertices in it; otherwise the graph is disconnected. A
path in the graph is a sequence of adjacent edges without traversing any
vertex twice. A path graph, PV , is a graph containing only one path. A
star-graph, SV , is a graph containing one central vertex and V -1 branches
of length one edge. A walk is an alternating sequence of vertices and edges,
each of which could be traversed more than once. The walk length is the
number of edges in it. A cycle is a path that starts from and ends in the
same vertex. Graphs containing at least one cycle are called cyclic graphs.
Trees are graphs containing no cycles. A spanning tree is a connected
acyclic graph containing all the vertices of the graph. Graph components
are connected subgraphs or vertices that are not connected to each other.
Euler’s theorem relates the number of vertices V , edges E , independent
cycles C , and components K :

C = E − V + K (2.1)

Figure 5.1 illustrates the notions introduced.

a) b) c)

d)

 2
1 3

e)

1.2

3.34.1

0.75   1
f)

Figure 5.1. a) A disconnected graph with three components. b) A simple connected undi-
rected graph. c) A directed graph. d) A complete graph with three cycles (the enveloping
cycle is not counted, because it is not an independent cycle). e) A multigraph with a loop:
1, edge; 2, double edge; 3, loop. f) A weighted graph.
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2.2. Adjacency matrix and related graph descriptors
Two vertices j and i are called adjacent when they are connected by an

edge {i,j}. The adjacency relation is quantified by the term ai j = 1, and
the no adjacency one by ai j = 0. The number of the nearest-neighbors of a
vertex i is termed vertex degree, ai . Vertex degree distribution is an ordered,
usually descending set of vertex degrees, {Vord}≡{vmax , . . . , vmin}. The
sum of all vertex degrees in a graph defines its total adjacency, A. The
matrix containing all adjacency relations in a graph G is called adjacency
matrix, A(G). The vertex degree of vertex i is calculated as the sum over all
entries in the i th row of adjacency matrix. Similarly, the total adjacency of
graph G, A(G), is calculated also as the sum over all matrix elements, ai j :

ai =
V∑

j=1

ai j ; A(G) =
V∑

i=1

V∑
j=1

ai j =
V∑

i=1

ai (2.2a,b)

Undirected graphs (G) have adjacency matrices that are symmetrical
with respect to their main diagonal, ai j = a ji . In directed graphs (DG), the
symmetry of adjacency matrix is destroyed. Examples are shown in Fig. 5.2.

The vertex degrees of graph 2 shown below are actually out-degrees;
they count the outgoing edges but not the incoming ones. Similarly, A(2)
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1                                                 2

 A(1) =

1   0  1  1  1  0  0   3 
2   1  0  0  1  0  0   2 
3   1  0  0  1  0  0   2  
4   1  1  1  0  1  0   4 
5   0  0  0  1  0 1   2 
6   0  0  0  0  1  1  1

 v   1  2  3  4  5  6    ai

    A(2) =

1   0  1  1  1  0  0   3 
2   1  0  0  1  0  0   2 
3   1  0  0  1  0  0   2  
4   0  1  1  0  1  0   3 
5   0  0  0  0  0  1 1
6   0  0  0  0  0  0  0 

 v   1  2  3  4  5  6    ai

A(1) = 14                                          A(2) = 11

Figure 5.2. The undirected graph 1, the directed graph 2, their adjacency matrices A(1) and
A(2), and total adjacencies A(1) and A(2), respectively.
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out-degree one {3, 3, 2, 2, 1, 0}. The in-degrees are calculated by summing
over each column, which for vertices 1 to 6 results in the set of in-degrees
2, 2, 2, 3, 1, 1, producing again Ain(2) = 11. One may generalize that the
in- and out-adjacencies of the directed graph are equal and smaller than the
adjacency of the parent undirected graph:

Aout (DG) + Ain(DG) = A(G) (2.3)

The adjacency matrix of a graph provides also some generalized de-
scriptors of network connectivity like the average vertex degree <ai> and
connectedness (or connectance), Conn:

< ai > = A

V
; Conn = A

V 2
= 2E

V 2
(2.4a,b)

For the undirected graph shown above, Eq. (2.4) produces
<ai> = 14/6 = 2.333, and Conn = 14/36 = 0.389 (or 38.9%). The
directed graph is less connected that the undirected graph with the same
number of vertices and edges, as can be seen from the values obtained,
<ai> = 1.833 and Conn = 0.306, respecitively.

When dealing with undirected graphs, connectedness is frequently de-
fined slightly differently as Conn′ = 2E/V (V −1). Here, V(V−1)/2 is the
number of edges in the maximally connected graph (complete graph) hav-
ing the same number of vertices. Connectedness is therefore a measure for
the relative graph connectivity defined within the 0 to 1 range (or within
the 0-100% range, after multiplying by 100). Formula (4b) defines graph
connectedness in a more general manner, taking into account also the po-
tential availability of non-zero diagonal adjacency matrix entries, aii = 1.
The total number of matrix entries in this case is V 2, not 2E/V (V −1). A
non-zero diagonal element of adjacency matrix stands for a loop, which is
an edge emanating from and ending in the same vertex. A loop represents
self-interaction of the species described by the network nodes. Such are, for
example, protein dimers in protein-protein networks, cannibalistic species
in ecological food webs, and others.

2.3. Clustering coefficient and extended connectivity
The vertex degree ai , which counts the nearest neighbors of a vertex i ,

is not the only local connectivity descriptor. More detailed information on
the vertex neighborhood is contained in the clustering coefficient, ci . It is
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defined as the ratio of the number of edges Ei between the first neighbors
of the vertex i , and the maximum number of edges, Ei (max) = ai (ai−1)/2,
in the complete graph that can be formed by the nearest neighbors of this
vertex:

ci = 2Ei

ai (ai − 1)
(2.5)

Applying Eq. (2.5) to the nondirected graph 1 shown in the foregoing,
one obtains for the clustering coefficients the values c5 = c6 = 0, c4 =
1/3, c1 = 2/3, and c2 = c3 = 1. In the corresponding directed graph 2, the
clustering coefficient of vertex 4 goes down to zero.

More detailed description of graph connectivity takes into account the
second and further neighborhoods. This can be done both locally and glob-
ally. The second clustering coefficient ci

′ counts the edges between the
second neighbors of vertex i , and again compares that count to the number
of edges in the complete graph that could be formed by all second neigh-
bors. Globally, the layers of second, third, etc., neighbors are taken into
account in calculating the graph nth–order extended connectivity [39], nEC.
The calculation is performed by an iterative procedure, which at each step
recalculates the vertex degree of each vertex as the sum of vertex degrees
of its first neighbors, as obtained in the previous iteration:

n EC =
V∑

i=1

nai =
V∑

i=1

∑
j ad j i

n−1a j (2.6)

One may thus form a vector of the extended connectivities of increas-
ing order, {EC}≡ {0EC, 1EC, 2EC, . . . }, the zero-order term in which is
the total graph adjacency, defined by Eq. (2.2b). Illustration of the iter-
ative calculation of the first several kEC – terms of graph 1 is shown in
Figure 5.3.

2
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3
4    2    1

177

9   5    28

7

27  11 523

17

0EC = 14  1EC = 38  2EC = 100

Figure 5.3. Iterative calculation of the first- and second-order extended connectivity of
graph 1 (The null-order is identical to the total adjacency of the graph).
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2.4. Graph distances
In Section 2.1, a path in the graph was defined as a sequence of adja-

cent edges between two vertices without traversing any intermediate vertex
twice. The distance di j between vertices i and j is the shortest path be-
tween them. The distance matrix D(G) of graph G is a square V × V matrix,
which for undirected graphs is symmetrical with respect to the main diag-
onal. The sum over the matrix row entries is termed vertex distance degree
of simply vertex distance, di . The sum over all distance matrix entries is
called graph distance, D:

di =
V∑

j=1

di j ; D(G) =
V∑

i=1

V∑
j=1

di j =
V∑

i=1

di (2.7a,b)

The average vertex distance (degree) <di> and average graph distance
<d> (called also graph radius or average path length or average degree
of vertex-vertex separation) are also defined:

< di > = D

V
; < d >= D

V (V − 1)
(2.8a,b)

Examples illustrating distance matrix and derived descriptors are shown
in Figure 5.4.

For graphs having loops, the denominator of Eq. (2.8b) changes to V 2

to include the diagonal elements of the distance matrix. Distance degree
distribution {di}≡ {d1, d2, . . . , dV }, and distance magnitude distribution
{d}≡ {n1, n2, . . . , nV } are also defined from the distance matrix, where
ni is the frequency of occurrence of distance with magnitude i . Vertex ec-
centricity, ei , is the maximum distance between vertex i and any of the
remaining graph vertices. The largest vertex eccentricity is termed graph
diameter. The vertex(es) with minimum eccentricity is defined as graph
center [36]. An extended graph center definition [40,41] assumes the min-
imum eccentricity as a first criterion in a hierarchical series of criteria,
which also includes the conditions for the minimum distance degree, and
the minimum distance degree sequence, DDS. The latter is an ascending
sequence of the distance magnitudes 1n1 2n2 3n3. . . (dmax )nmax , with each
distance frequency ni as an exponent. An iterative vertex/edge centricity al-
gorithm IVEC has been developed for the cases when the three hierarchical
conditions do not suffice [42].

The distance degree distributions of graphs 1 and 2 are those given in the
di columns of the matrices, whereas the distance magnitude distributions
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D(G) = 52, <di> = 8.67, <d> = 1.73
D(DG) = 34, <di> = 5.67, <d> = 1.62      

D(1) =

1   0  1  1  1  2  3   8      
2   1  0  2  1  2  3   9      
3   1  2  0  1  2  3   9       
4   1  1  1  0  1  2   6      
5   2  2  2  1  0  1   8      
6   3  3  3  2  1  0  12 

 V  1  2  3  4  5  6  di

D(2) =

1   0  1  1  1  2  3   8 
2   1  0  2  1  2  3   9 
3   1  2  0  1  2  3   9 
4   2  1  1  0  1  2   7 
5   -  -  -  -  -  0  1  1  
6   -  -  -  -  -  -   0  0 

V  1  2  3  4  5  6   di

1

 2

3

4  5 6
1

2

3

4 5 6

1 2

Figure 5.4. Distance matrices D(1) and D(2), total distances D(1) and D(2), average dis-
tance degrees <di>, and average distances <d>, of the undirected graph 1, and the directed
graph 2, respectively.

of the two graphs are {d(G)} ≡ {14, 10, 6} and {d(DG)} ≡ {11, 7, 3},
respectively. The vertex eccentricities in graph 1 are e = 2 for vertices
4 and 5, and e = 3 for the other four vertices. This specifies vertices 4 and
5 as graph centers according to the classical definition of Harary [36], and
determines the graph diameter to be equal to 3. The extended graph center
definition eliminates vertex 5, due to its larger distance degree (8 vs. 6),
and leaves vertex 4 as a single graph center.

Several remarks should be made here related to the distances in directed
graphs. Strictly speaking, directed graphs like graph 2 are disconnected,
due to the lack of paths between some pairs of vertices, like the missing
paths from vertex 6 to all other vertices. The distance between such pairs of
vertices is equal to infinity, which makes the calculation of the total distance
in directed graphs impossible. For practical purposes, one might discard
such matrix entries as done in D(2) above. However, as pointed out by
Neuman et al. [43], the distance estimates produced in that way could be
totally misleading. Indeed, in comparing the distance estimates for graphs
1 and 2, e. g., <d(2)> = 1.62 <<d(1)> = 1.73, one may come to the
wrong conclusion that the vertices in the directed graph 2 are closer to each
other than those in the parent graph 1. One way toward resolving these
difficulties will be shown in Section 5. Another approach to the partial
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disconnectedness of directed graphs was proposed by Newman et al. [43],
who introduced the notion of strongly connected, as well as in- and out-
component. A strongly connected component of a directed graph is a
subgraph all vertices in which are connected by a finite path. The out-
component contains vertices that can reach the strongly connected compo-
nent but cannot be reached by any vertex of the strongly connected com-
ponent. Conversely, the in-component contains all the vertices that cannot
reach the vertices of the strongly connected component but can be reached
from them. In the directed graph 2, used in our examples, one can discern
a strongly connected component formed by vertices 1-4, which can reach
each other, as can be seen in the distance matrix D(2) above. Vertices 5 and
6 form an in-component; they can be reached from the strongly connected
component. The graph lacks an out-component.

Another feature of directed graphs is that the distance degrees di defined
by Eq. (2.7a) as sums over the matrix row entries are in fact distance out-
degrees, di (out). The distance in-degrees, di (in), which are obtained as
sums over the distance matrix columns

di (in) =
V∑

i=1

di j (2.7c)

are no more the same with their out-counterpart, because the directionality
of graph arcs destroys the symmetry of the matrix. One may illustrate
this point by comparing the two distributions for graph 2: {di (2, out)} ≡
{9, 9, 8, 7, 1, 0} and {di (2, in)} ≡ {12, 7, 4, 4, 4, 3}. Indeed, the total
number of in- and out-distances in a directed graph must be equal. Vertices
with large distance out-degrees may be of interest in the network analysis
as important input nodes, whereas those with large distance in-degrees
characterize essential output nodes.

Graph centers cannot be rigorously defined in directed graphs containing
pairs of vertices with infinite distance between them. However, eliminating
such vertices as potential graph centers, one may assess the remaining
vertices with the same three criteria discussed above. In- and -out distances
may define in principle different vertices as graph centers. In the example
with the directed graph 2, vertex 4 is classified as out-center by its minimum
out-eccentricity value e4 (out) = 2 = min (vertices 5 and 6 are excluded
from the competition of distance out-degrees). There is no competition for
the in-center, which is in vertex 6, the only vertex that can be reached by
all other vertices (all other vertices are excluded).
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2.5. Weighted graphs
An essential generalization of the notion of graph, going beyond topol-

ogy, enables the application of graph theory to every aspect of cellular
networks. One may ascribe different vertex and edge weights, wii and wi j ,
to match essential parameters of network species and their interactions. Ver-
tex weights might characterize the level of expression of network species,
as measured by mass-spectra, microarrays, HPLC, 2-D gel chromatogra-
phy, and other methods. The edge weights in metabolic networks might
characterize the enzymes expression. An edge weight in networks build of
protein complexes denotes the number of proteins two complexes share.
Other applications of weighted graphs exist or might be anticipated.

An edge or vertex weight could be any nonnegative natural number.
(Weights having both positive and negative values has to be renormalized
in order to enable using Eqs. (2.9-2.12). Weights can also be integers, as is
the case with multigraphs, in which more than one edge connects some pairs
of vertices. Another example is molecular networks, the different chemi-
cal nature of the atoms in which is sometimes labeled with vertex weights
showing the number of their valence electrons. The weighted adjacency
matrix, WA(G), has the edge weights wi j as nondiagonal elements, and the
vertex weights as diagonal elements, wii . All graph-invariants derived from
the adjacency matrix of a directed or nondirected simple graph can be re-
defined for a weighted graph. Included here are the weighted vertex degree,
wi , and the corresponding weighted vertex degree distribution,{wmax , . . . ,
wmin},weighted adjacency, WA(G), the average weighted vertex degree,
<wi>, the weighted connectedness, WConn, the weighted cluster coeffi-
cient, wci , and the weighted extended connectivity of order k, kWEC:

wi =
V∑

j=1

wi j ; WA(G) =
V∑

i=1

V∑
j=1

wi j =
V∑

i=1

wi (2.9a,b)

< wi > = WA

V
; WConn = WA

V 2
(2.10a,b)

wci =

∑
j ad j i

wi j

wi (wi − 1)
(2.11)

nWEC =
V∑

i=1

nwi =
V∑

i=1

∑
j ad j i

n−1w j (2.12)
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3. How to Measure Network Complexity

3.1. Careful with symmetry!
There is a long-term controversy in the literature whether complexity

of a structure increases with its connectivity or rather it passes through a
maximum and goes down to zero for complete graphs. This is illustrated in
Figure 5.5 with an example taken from Gell-Mann’s book [44] “The Quark
and the Jaguar”. The example includes two graphs with eight vertices; the
first one is totally disconnected, whereas the second one is totally connected
(complete) graph. It is argued that the two graphs are equally complex. The
arguments in favor of this conclusion are based on the binomial distribu-
tion of vertex degrees in random graphs (Figure 5.6). Additional arguments
in favor of such views come from Shannon’s information theory [1]. Ac-
cording to it, the entropy of information H (α) in describing a message of
Nsymbols, distributed according to some equivalence criterion α into k
groups of N1, N2, . . . , Nk symbols, is calculated according to the formula:

H (α) = −
k∑

i=1

pi log2 pi = −
k∑

i=1

Ni

N
log2

Ni

N
bits/symbol (3.1)

where the ratio Ni /N = pi defines the probability of occurrence of the
symbols of the i th group.

In using Eq. (3.1) to characterize networks or graphs, it is the vertices
that most frequently play the role of symbols or system elements. When
the criterion of equivalence α is based on the orbits of the automorphism

a b 

Figure 5.5. Which graph is more complex: the totally disconnected graph a or the complete
graph b?
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Vertex Degrees

C
o

m
p

le
xi

ty

Figure 5.6. The binomial distribution of vertex degrees in random graphs is used as an
argument that complexity of graphs passes through a maximum with the increase in
connectivity.

group of the graph, all vertices of the totally disconnected graph belong to
a single orbit, and the same is true for the vertices in the complete graph.
Eq. (3.1) then shows that the information index I (α) = 0 for both graphs.
The same result is obtained when the partitioning of the graph vertices
into groups is based on the equality of their vertex degrees, all of which
are zeros in the totally disconnected graph, and all of which are of degree
N − 1 in the complete graph.

The logic of the above arguments seems flawless. Yet, our intuition tells
us that the complete graph is more complex that the totally disconnected
graph. There is a hidden weak point in the manner the Shannon theory is
applied, namely how symmetry is used to partition the vertices into groups.
One should take into account that symmetry is a simplifying factor, but not
a complexifying one. A measure of structural or topological complexity
must not be based on symmetry. The use of symmetry is justified only
in defining compositional complexity, which is based on equivalence and
diversity of the elements of the system studied.

3.2. Can Shannon’s information content measure
topological complexity?

A different approach to characterizing structures by Shannon’s theory
was proposed in 1977 by Bonchev and Trinajstić in a study on molecular
branching as a basic topological feature of molecules [15]. The approach
was later generalized by constructing a finite probability scheme for a graph
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[16]. Let the graph is represented by some kind of elements (vertices, edges,
distances, cliques, etc.); let also assign a certain weight (value, magnitude)
wi to each of the N elements. Define the probability for a randomly chosen
element i to have the weight wi as pi = wi / �wi , with �wi = w , and
�pi = 1. The probability scheme thus constructed

Element 1, 2, . . . , N
Weight w1, w2, . . . , w N

Probability p1, p2, . . . , pN

enables defining a series of information indices, I (w), with Shannon’s
Eq. (3.1).

Considering the simplest graph elements, the vertices, and assuming the
weights assigned to each vertex to be the corresponding vertex degrees, one
easily distinguishes the null complexity of the totally disconnected graph
from the high complexity of the complete graph. The probability for a ran-
domly chosen vertex i in the complete graph of V vertices to have a certain
degree ai is pi = ai / A = 1 / V , wherefrom Eq. (3.1) yields for the Shannon
entropy of the vertex degree distribution the nonzero value of log2V .

Our preceding studies [17, 45-47] have shown that a better complexity
measure of graphs and networks is the vertex degree magnitude-based in-
formation content, Ivd . Shannon defines information as the reduced entropy
of the system relative to the maximum entropy that can exist in a system
with the same number of elements:

I = Hmax − H (3.2)

The Shannon entropy of a graph with a total weight W and vertex weights
wi is given by a formula derived from Eq. (3.1):

H (W ) = W log2 W −
V∑

i=1

wi log2 wi (3.3)

The maximum entropy is obtained when all wi = 1:

Hmax = W log2 W (3.4)

From Eqs.. (3.2-3.4), substituting also W = A and wi = ai , one obtains
the equation for the information content of the vertex degree distribution
of a graph, Ivd :

Ivd =
V∑

i=1

ai log2 ai (3.5)
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3 4 5 

6

7

  8

Ivd =          6                                     6.75                                8                       10

9
10

11
12 13 14 15

Ivd = 16.75                      21.51              22.26                  33.51                     40

Ivd =    10.75                                11.51                           15.51                 16.26

Figure 5.7. Thirteen graphs with five vertices ordered according to their increasing com-
plexity, adequately matched by the values of the information index for the vertex degree
distribution.

The analysis has shown that the Ivd index satisfies the criteria for a
complexity measure and can be recommended for assessments of network
complexity [17, 45-47]. It increases with the connectivity and other com-
plexity factors, such as the number of branches, cycles, cliques, etc., as
shown in the series of graphs in Figure 5.7. The increase in the number
of branches increases the complexity index, as seen in the sequences of
graphs 3 → 4 → 5, 6 → 7 → 8, 9 → 10, and 12 → 13. The number of
cycles is a considerably stronger complexity factor, as demonstrated in the
sequence of graphs with one to five cycles: 6 → 9 → 12 → 14 → 15.

3.3. Global, average, and normalized complexity
A variety of graph-invariants have been examined as measures of topo-

logical complexity [48-50]. Since they are directly applicable to networks,
we shall review some of the most promising ones, systematizing them in a
scheme discussed below.

A series of connectivity descriptors was introduced in Section 2.2. Total
adjacency A is the count of all pairwise neighborhood relationships, ai j =
1, each of which denotes a link directed from vertex i to vertex j . Total
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adjacency is thus equal to the total number of directed edges in the graph.
In nondirected graphs, one usually equalizes total adjacency to the doubled
number of edges, A = 2E . Each nondirected edge {ij} in these graphs is
in fact an abbreviated notation for two directed edges, one from i to j,
and the second one from j to i, respectively. One might then abandon the
tradition, and use the symbol E for the total number of (directed, in- and
out-) edges in both directed and nondirected graphs, i. e., to use E for the
total number of nonzero adjacency matrix entries ai j . We may summarize
this analysis by interpreting the redefined total adjacency A as a first level
topological complexity measure, and term it graph (or network) global
edge complexity, Eg

A =
V∑

i=1

V∑
j=1

ai j =
V∑

i=1

ai = Eg (3.6)

A similar reinterpretation may be made to the average vertex degree
<ai>, and connectedness, Conn, introduced by Eq. (2.4b). One may call
the average vertex degree thus defined average edge complexity, Ea , the
averaging being defined per vertex. On its turn, connectedness can be re-
garded as normalized edge complexity, En , because it is redefined as the
ratio of the global edge complexity Eg = A = Eand the number of edges
in the complete graph with loops at each of its vertices, E(KV ):

< ai > = A

V
= Eg

V
= Ea ; Conn = A

V 2
= Eg

V 2
= En (3.7a,b)(19a,b)

When the graph contains no loops, the denominator of Eq. (3.7b) may be
replaced by the V(V-1), eliminating thus the potential contributions from
the adjacency matrix diagonal elements of the complete graph.

We have thus presented three individually introduced connectivity de-
scriptors, as three versions of the simplest topological complexity measure:
the global, average, and normalized edge complexity. We shall use this
triple scheme in presenting other, more sophisticated measures of network
complexity. Such more advanced complexity indices are needed because
connectedness (the relative edge complexity) is a descriptor that counts
only the total number of vertex interconnections, but does not account for
the specific way these connections occur. At the same connectedness two
networks could differ in their complexity by orders of magnitude. It may be
anticipated that the global measures will be of major use in characterizing
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pathways and small networks, whereas the large networks will be better
assessed by the average and relative complexity measures.

3.4. The subgraph count, SC, and its components
What would be the next step in the search for more adequate network

complexity measures? We started in the preceding subsection with counting
the simple subgraphs, the edges, and called this descriptor edge complex-
ity. It seems logical to continue with counting the subgraphs containing
two edges. The importance of the two-bonds molecular fragments for the
properties of chemical compounds has been early understood,and the total
number of these fragments is known in chemical theory as Platt’s index [51].
Bertz used this index as a measure of molecular complexity [17], calling
the two-edge fragments “connections”. He also constructed an informa-
tion complexity measure proceeding from the distribution of the two-edge
subgraphs into equivalence groupsb [18]. The Platt index is considerably
better complexity measure than the number of edges. At the same number of
edges the Platt index increases rapidly with the presence of complexifying
factors like branches and cycles.

Such an example is shown in Figure 5.8, in which graph 1 having two
cycles is compared to the path graph 16 having the same number of seven
edges. The number of two-edge subgraphs is denoted as 2SC, meaning

1                                                               16

1

2

3

4 5  6
1         2        3         4         5         6         7        8 

Graph 1: 124, 134, 142, 143, 145, 213, 214, 243, 245, 314, 345, 456 
E = 7, 2SC = 12, 2SCa = 2, 2SCn = 0.5, Conn = 1SCn = 0.233

Graph 16: 123, 234, 345, 456, 567, 678  
E = 7, 2SC = 6, 2SCa = 0.75, 2SCn = 0.036, Conn = 1SCn = 0.125

Figure 5.8. The larger complexity of graph 1 as compared to graph 16 is demonstrated by
the total, average and normalized number of two-edge subgraphs 2SC,2SCa, and 2SCn, re-
spectively, as well as by the graph connectedness Conn, which is identical to the normalized
number of edges, 1SCn .
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2nd-order subgraph count (vide infra). The corresponding average and rel-
ative substructure counts of 2nd-order are also shown.

The two graphs differ considerably by their complexity, because the path
graph 16 lacks any complexifying structural features, whereas graph 1 in-
corporates two cycles. Connectedness, Conn, does not reflect to a sufficient
degree this difference in complexity of the two graphs (Conn(1) : Conn(16)
= 1.9), whereas the normalized two-edge complexity 2SCn of graph 1 is
shown to be much higher than that of 16 (0.5 : 0.036 = 13.9).

In calculating the 2SCn values:

2SCn =
2SC

2SC(KV )
(3.8)

we made use of the formula derived [52] for the 2nd-order subgraph count
of the complete graph KV :

2SC(KV ) = E × (ai − 1) = 1

2
V (V − 1)(V − 2) (3.9)

The analysis performed in chemical graph theory has shown that the Platt
index still fails to mirror some complexity structural patterns, and the search
for better measures has continued. A next logical step would be to use the
number of three-edge subgraphs, 3SC. Such an index has been used in chem-
ical graph theory as Gordon-Scantleburry index [53], however, it has not
been tested as a complexity measure. Instead, Bertz and Herndon proposed
in 1986 the idea to use the total subgraph count, SC, which includes sub-
graphs of all sizes, including the graph itself, regarded as a proper subgraph
[54]. The idea remained unused until the late 1990s, when Bertz [26,27] and
Bonchev [9, 24, 25, 28, 29] independently and simultaneously developed
the approach in detail. Bertz applied the SC global index to the synthesis
planning in organic chemistry, while the present author derived explicit SC
formulae for some basic classes of graphs, and the represented the total sub-
graph count as an ordered set of counts of subgraphs having a given number
of edges. The set {SC} begins with the number of vertices V , regarded as
null-order index, 0SC, followed by the number of edges E , as first-order
index, 1SC, the two-edge subgraphs, as the second-order index, 2SC, etc.:

SC = 0SC + 1SC + 2SC + · · · + E SC (3.10a)

{SC} = {0SC, 1SC, 2SC, . . . , E SC} (3.10b)
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Illustrating the formulas, one obtains for graph 1 the total subgraph count
SC = 90, and the set of its null- through seventh-order terms {SC} = {6,
7, 12, 20, 22, 16, 6, 1}. The calculations were performed with the program
SUBGRAU developed by Rücker and Rückerm [55].

In assessing the complexity of large networks, formulas (22a,b) lead
to combinatorial explosion. By this reason, one might recommend using
for such purposes only the first-, second-, and third-order subgraph count,
whereas the higher orders and the total count could be calculated for path-
ways and small subnetworks. It is worth mentioning that connectedness (or
connectance), which is used almost exclusively in characterizing dynamic
networks, appears naturally as the normalized first-order term in the series
(22a,b). One might anticipate a broader application of the higher terms,
particularly 2SCn and 3SCn , due to their much higher sensitivity to the
complexifying details of the networks. For the normalizing of these terms
one may use the formulas we derived for the three-edge subgraph count
3SC of the complete graph KV , as well as for its components, the counts
of triangular, linear, and star type three-edge subgraphs:

3SC(KV ) = 1

6
V (V − 1)(V − 2)(4V − 11) (3.11)

3SC(KV , triangle) = 1

6
V (V − 1)(V − 2) (3.12)

3SC(KV , linear) = 1

2
V (V − 1)(V − 2)(V − 3) (3.13)

3SC(KV , star) = 1

6
V (V − 1)(V − 2)(V − 3) (3.14)

The comparison of the third-order subgraph counts of graphs 1 and 3,
20 vs. 5, shows again a considerably higher complexity of graph 1 as com-
pared to the assessment based on the graph connectedness (connectance).
One may also recommend to use for more detailed characterization of
complex networks, the separate counts of the three kinds of three-edge
subgraphs – triangles, stars, and linear ones, 3SCt , 3SCs , and 3SCl , which
were previously shown to produce high correlations with physicochemical
properties [56].
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3.5. Overall connectivity, OC
The subgraph count presentation as an ordered set of components with

increasing size may be regarded as a part of a more general scheme [57]. The
latter defines a certain overall graph-invariant X , by the sum over the values
this invariant has for each of the subgraphs. Also, the contributions of all
subgraphs having k edges are combined in single term, k X . An ordered set
{X} on all k-terms is also constructed, and the initial terms k = 0,1,2,3,. . . ,
called null-, first-, second-, etc. order terms, can be independently used to
characterize the graph properties.

X =
E∑

k=1

k X ; {X} = {0 X, 1 X, 2 X, . . . , E X} (3.15)

In addition, one can also define the average value of X per vertex, Xa , as
well as its normalized value, 0 ≤ Xn ≤ 1:

Xa = X

V
; k Xa =

k X

V
(3.16a,b)

Xn = X

X (KV )
; k Xn =

k X
k X (KV )

(3.17a,b)

The scheme can be further detailed by using within each k X term the counts
of subgraphs of different topology, e.g., for three edge subgraphs the counts
of triangles, stars, ane linear (or path) graphs [56].

The simplest graph-invariant that can be incorporated into this scheme
is the subgraph count, SC, as shown in the foregoing. The next basic can-
didate is the graph adjacency A, defined by Eq. (2.2b). By summing up the
adjacencies of all k th-order subgraphs k Gi , with k = 0, 1, 2, 3, . . . , E , one
defines [28,29] the overall connectivity OC(G) of the graph G:

OC(G) =
E∑

k=1

kOC =
E∑

k=1

∑
i

k Ai (
k Gi ⊂ G) (3.18a)

{OC} = {0OC, 1OC, 2OC, . . . , E OC} (3.18b)

Equations. (3.18a,b) yieldfor graph 1 the overall connectivity value
OC = 936, and the set of its 0- to 7-th order terms: {OC} = {14, 38, 101,
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210, 264, 212, 83, 14}. It should be mentioned that in the first publications
defining overall connectivity [24,25], the latter was termed topological
complexity and denoted by TC. This name was later changed [28,29] to
overall connectivity to account for the fact that this is not the only measure
of topological complexity.

According to the general scheme, the overall connectivity index can
also be presented as averaged per vertex, and in a normalized form. To
facilitate the calculation of the first-, second-, and third-order normalized
index, Eqs. (3.19)-(3.21) were derived, along with Eqs. (3.22)-(3.24) for
the three different topological shapes of the three-edge subgraphs:

1OC(KV ) = V (V − 1)2 (3.19)

2OC(KV ) = 3

2
V (V − 1)2(V − 2) (3.20)

3OC(KV ) = 1

6
V (V − 1)2(V − 2)(16V − 45) (3.21)

3OC(KV , triangle) = 1

2
V (V − 1)2(V − 2) (3.22)

3OC(KV , linear) = 2V (V − 1)2(V − 2)(V − 3) (3.23)

3OC(KV , star) = 2

3
V (V − 1)2(V − 2)(V − 3) (3.24)

The overall topological indices scheme, defined by Eqs. (3.15-3.17),
has also been applied to other graph invariants, such as the Wiener number
[58-60] and the Zagreb indices [56,61,62]. These overall indices have also
shown properties of complexity measures.

3.6. The total walk count, TWC
Rücker and Rücker have proposed [30,31] a similar scheme for assess-

ing the graph complexity by the total walk count, TWC. This complexity
measure is obtained by counting all walks lwi of all lengths l, the maximum
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walk length being limited by the graph size:

TWC =
V −1∑
l=1

lWC =
V −1∑
l=1

∑
i

lwi (3.25)

For graph 1, one finds TWC = 1154 {14, 38, 100, 272, 730}. The length-
one walks are just the doubled number of edges, since each of the two ends
of an edge is used as a walk starting point. There are two types of walks of
length two: forward and back along the same edge (1→2→1) and forward
along two adjacent edges (1→2→4). Each of these two types then gener-
ates two different types of walks of length three, with the third step back-
side (1→2→1→2; 1→2→4→2) or along a different edge (1→2→1→4;
1→2→4→3) , etc.

2

1

3

4 5 6

1

Scheme 5.1.

The number of walks of length l, is obtained from the l th power of the
adjacency matrix. For calculating the normalized lWCn indices, one has to
use Eq. (3.26) derived for the respective value in the complete graph with
the same number of vertices. One would then find for graph 1, 2WCn =
0.253 and 3WCn = 0.133.

lWC(KV ) = V (V − 1)l (3.26)

Like the subgraph count and the overall connectivity, the total walk
count is an adequate measure of graph complexity, showing patterns of
regular increase with the graph size, connectedness, and the basic structure
complexifying factors such as the number, size and the kind of intercon-
nectedness of the graph cycles and branches [31]. Figure 5.9 illustrates
these conclusions, providing the same ordering of increasing complexity
of graphs 3 to 15 like the one produced in the foregoing by the Ivd index.
The complexity measures discussed in Section 3 have all been previously
published. In the next Section 4, we report some new developments.
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3 4 5 

6

7

  8

SC = 11                                    17                             20                        26 
OC =     32                                    76                            100                      160
TWC =   58                                   106                           140 150

9
10

11
12 13 14 15

SC = 29                             31                                54                         57
OC = 190 212 482                       522
TWC = 178                           214                              300                       350

SC = 61                    114                 119                      477                      973 
OC = 566 1316 1396 7806                  18180
TWC = 337                    538                 608                     1200                   1700 

Figure 5.9. Thirteen graphs with five vertices ordered according to their increasing com-
plexity, adequately matched by the values of the subgraph count SC, overall connectivity
OC, and the total walk count TWC.

4. Combined Complexity Measures Based
on the Graph Adjacency and Distance

4.1. The A/D index
Networks with high complexity are characterized by both high vertex-

vertex connectedness and small vertex-vertex separation (the small-world
concept of Watts and Strogatz [63]). Therefore, it seems logical to use
both quantities in characterizing network complexity. The ratio A/D =
<ai>/<di> of the total adjacency and the total distance of the graph or,
equivalently, the ratio of the average vertex degree <ai> and the average
distance degree <di>, may be regarded as a logical approach to such
a complexity measure. At a constant number of vertices, the A/D index
has a minimum value in path graphs, PV , which are characterized by low
connectivity and long distances. In contrast, the A/D ratio has a maximum
value in the complete graphs, KV , which are maximally connected and all



214 Chapter 5

of their vertices have only a unit distance separation. The classes of star
graphs, SV , and monocyclic graphs, CV , are of intermediate complexity
and their A/D indices are between these two extremes.

A/D(PV ) = 2(V − 1)

V (V − 1)(V + 1)/3
= 6

V (V + 1)
(4.1)

A/D(KV ) = V (V − 1)

V (V − 1)
= 1 (4.2)

A/D(SV ) = 2(V − 1)

2(V − 1)2
= 1

V − 1
(4.3)

A/D(CV , odd) = 2V

2V (V 2 − 1)/8
= 8

(V 2 − 1)
(4.4a)

A/D(CV , even) = 2V

V 3/4
= 8

V 2
(4.4b)

As shown in Eq. (4.2), the A/D index of the complete graph is equal to
a unity; therefore, all graphs have their A/D values within the 0 to 1 range.
Like all normalized complexity indices this index decreases rapidly with the
graph size for path graphs, monocyclic graphs, and other weakly connected
graphs, the distance in which dominates strongly over adjacency. Some
degeneracy of the index (having two or more nonisomorphic graphs with the
same A/D ratio) should be expected, because both the total adjacency A and
the total distance D are degenerate. What might be a more serious problem
is the insensitivity to some more subtle topological features of branching
and cyclicity, which sometimes produces incorrect assessments of graph
complexity (See Table 5.1, and the examples in the next subsection). Yet, the
fine details of topological structure might be inessential when dealing with
large networks, for which the A/D index could prove to be a sufficiently
accurate measure of structural complexity. For smaller subnetworks and
particularly pathways, perhaps a better recommendation would be to make
use of the new structural index presented in Section 4.2.
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Table 5.1. The newly defined complexity index B matches well the complexity
ordering of six-vertex graphs with the same connectedness (Fig. 5.4) as produced by
four other complexity measures

Graph A/D B = �ai /d SC OC TWC Ivd

17 0.250 1.833 62 535 852 15.06
18 0.231 1.636 56 475 754 14.75
19 0.231 1.567 52 426 598 14.00
20 0.231 1.464 43 329 450 12.75
21 0.222 1.558 53 444 708 13.75*
22 0.222 1.544 49 394* 662 14.00
23 0.222 1.483 49 396* 556 13.51
24 0.222 1.464 37 264 372 12.00
25 0.214 1.439 44* 343* 564 13.51
26 0.214 1.417 48* 386* 540 13.51
27 0.207 1.408 45 354 602 13.51
28 0.207 1.354 42 318 480 12.75
29 0.194 1.260 37 266 490 12.75

*The three pairs of values denoted by asterisks indicate the few cases in which the new
complexity index B produced inversed graph ordering as compared with the ordering
resulting from the four known complexity measures.

4.2. The complexity index B
The ratio bi = ai / di of the vertex degree ai and its distance degree di is

a local invariant with interesting centric properties. It is ≤ 1, the equality
occurring for the central vertex in the star graphs, as well as for every vertex
in the complete graph. The sum over the bi values of all graph vertices may
be expected to behave similarly to the A/D ratio, with less degeneracy, and
more sensitivity to local topology. We define this sum as a new complexity
index B:

B =
V∑

i=1

ai

di
(4.5)

Several equations derived for the bi and B indices shed some light on
the properties of these complexity descriptors. In complete graphs, KV , in
which ai = di = V −1, and bi = 1 for every vertex, the B index is simply
equal to the number of vertices V :

B(KV ) = V (4.6)
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In star graphs, SV , in which the central vertex c is of degree V −1, and
all other vertices are terminal (t) with degree 1, one obtains

bt = 1

2V − 3
; bc = 1; B(SV ) = 3V − 4

2V − 3
(4.7a,b,c)

In (mono)cyclic graphs, CV , all vertices have degree two, and have the
same distance degree. The expression for the latter differs slightly for the
odd- and even-membered cycles:

CV (odd) : b = 8

V 2 − 1
; B = 8V

V 2 − 1
(4.8a)

CV (even) : b = 8

V 2
; B = 8V

V 2
= 8

V
(4.8b)

The B index values begin at B = 3 for the odd-membered cycles and at B
= 2 for the even-membered cycles, and gradually decrease with the cycle
size to the zero limit at V → ∞.

In the path graphs, PV , the two terminal vertices are of degree 1 and
all others are of degree two. The formulas for the local bi indices depend
on the position i = 1, 2, 3, . . . , V of the vertex, counting from the end of
the chain. Different equation is obtained only for the central one or two
vertices c:

bi = 2ai

V 2 − (2i − 1)V + 2i(i − 1)
(4.9a)

bc(odd) = 8

V 2 − 1
; bc(even) = 8

V 2
(4.9b)

No closed form equation can be obtained for the B index of path graphs.
However, the presence of the V 2 term in the denominator of the local bi

and bc indices shows that at large path length they, as well as well the
B index, will tend to zero considerably faster than the respective indices
for the monocyclic graphs, which decrease with V only linearly.

The testing of the new complexity measure with graphs 3 – 15, used in
Section 3 to demonstrate the behavior of other complexity measures, has
shown a perfect match with the ordering produced by the subgraph count,
overall connectivity, total walk count and the information on the vertex
degree distribution (Figure 5.10).
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Figure 5.10. With few exceptions for the A/D and Ivd indices all the six complexity measures
match the increase in complexity of graphs 3 through 15.

The A/D index also captured the basic complexity features in this series
of graphs to increase with the number of branches and cycles. However, it
is less sensitive to subtle details of graph topology, which resulted in three
inverse orderings and three degeneracies.

B ordering: 3(1.105) → 4(1.294) → 5(1.571) → 6(1.667) → 7(1.677) →
8(1.783) → 9(2.200) → 10(2.211) → 11(2.410) → 12(2.867) → 13(2.943)
→ 14(4.200) → 15(5.000)

A/D ordering: 3(0.200) → 4(0.222) → 5(0.250) → 7(0.313) = 8(0.313) →
6(0.333) → 10(0.400) → 9(0.429) = 11(0.429) → 12(0.538) = 13(0.538)
→ 14(0.818) → 15(1.000)

Additional comparisons between the new A/D and B indices and the
four selected known complexity measures are shown in Table 5.1 for the
13 six-vertex graphs from Figure 5.11. Once again, the B index captures
the complexity features of the graphs examined much better than the A/D
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17 18
19  20 

22

21

23 24 25

26 27

   

28 29

Figure 5.11. Thirteen graphs with six vertices and sis edges used as a test for the sensitivity
of the complexity measures.

ratio. The A/D index not only shows high degeneracy but in the degenerate
quartet and triplet of graphs it produces the same complexity estimate for
graphs that all other five indices distinguish drastically, e.g., 18 and 20,
21 and 24, and others. The B index generates the same ordering as the
total walk count TWC, and has minimal number of reorderings (denoted by
asterisks in Table 5.1) with the subgraph count SC, the information index
for the vertex degree distribution Ivd , and the overall connectivity index
OC, the latter four indices not producing identical orderings as well. The
B index has also a single degeneracy, slightly worse than OC and TWC
with no degeneracy, and better than SC with two, and Ivd with even six
degenerate values. All this characterizes the index B introduced here as
a convenient measure of graph complexity, a measure that shows similar
behavior to other well established and sensitive complexity measures, and
does not require substantial computational time.

5. Vertex Accessibility and Complexity
of Directed Graphs

In Section 2.4 we have discussed the misleading results that are obtained
for the graph radius (the average path length or the average graph distance)
in directed graphs when one simply neglects the infinite distances between
the pairs of vertices for which no path exists, and averages the remaining
distances. Such calculations would produce the false impression that the
radius of directed graphs is smaller than that of the parent undirected graph.
A correcting procedure that restores the normal distance ratios between
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the parent undirected graph and the directed graphs generated from it was
recently described [45]. It introduces a parameter called vertex accessibility,
Acc(DG), which accounts for the degree to which the vertices in directed
graphs are mutually accessible via finite paths. The vertex accessibility of
a directed graph DG is defined as the ratio of the number of finite distances
in the directed graph, Nd(DG), and the total number of distances in the
parent undirected graph Nd(G):

Acc(DG) = Nd(DG)

Nd(G)
(5.1)

In Eq. (5.1), Nd(G) = V 2 (the squared total number of vertices V ) in
the general case of connected undirected graphs with loops. In that case,
Nd(DG) includes also the number of loops, as given with all dii = 1 appear-
ing in the main diagonal of the distance matrix. If no loops can in principle
exist in a certain type of networks, then Nd(G) = V(V−1) should be used.

Equation (5.1) enables obtaining a more realistic estimate of the average
path length <d > in a directed graph. Dividing <d > = D/Nd , by the
vertex accessibility, one normalizes this quantity to the case of complete
vertex accessibility. The adjusted average distance (adjusted average path
length), AD(DG):

AD(DG) = < d >

Acc
= D × V 2

N d
2

(5.2)

thus defined, is larger than the average distance in the parent undirected
graph, and can be used for comparisons of the average degree of separation
in directed graphs. As in Eq. (5.1), for DGs without loops V 2 can be replaced
by V (V −1). The calculation made for the vertex accessibility of directed
graph 2 (see the distance matrix of this graph in Section 2.4) produces
ACC(2) = 21/(6 × 5) = 0.7. From here, with Eq. (5.1) one obtains for the
adjusted average distance of this graph, AD(2) = 1.62/0.7 = 2.31. Thus,
the unrealistic value of 1.62, after the adjustment turned from smaller to
considerably larger than the corresponding value of 1.73 for the parent
undirected graph 1.

Vertex accessibility can also be used to define a more realistic measure
of the connectedness of directed graphs. The new measure might be termed
accessible connectedness, AConn(DG):

AConn(DG) = Conn(G) × Acc(DG) = Conn(G) × Nd(DG)

Nd(G)
(5.3)
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Illustrating Eq. (5.3), the calculation for the directed graph 2 results in
AConn(2) = 0.214, down from the unadjusted value of Conn(2) = 0.306
calculated in Section 2.2, a value that was unrealistically close to that of
the parent undirected graph Conn(1) = 0.389.

Similar adjustment may be made to the A/D index of directed graph.
Substituting the misleading distance D by its adjusted counterpart AD, one
defines the A/AD complexity measure of directed graphs.

Some classes of directed graphs are of interest, because of the special
relations existing for their vertex accessibility and the adjusted indices
derived from it. Such is the special class in which all edges are directed
and their direction is the same (all linear or clockwise, etc.). It can be
easily shown that for monocyclic and complete graphs of this class, there
is a complete accessibility of all vertices, at the cost of considerably larger
average path length than that of the parent undirected graph. Thus, the
directed graph DC6 has a total distance of 90, a vertex distance of 15, and
an average distance of 3, whereas its parent undirected graph C6 has a total
distance of 54, a vertex distance of 9, and an average distance of only 1.8.
The directed graph DK5 has a total distance of 30, a vertex distance of 6,
and an average distance of 1.5, as compared to the parent complete graph
K5 having a total distance of 20, a vertex distance of 4, and an average
distance of 1.

The directed path graph and star graph shown in Figure 5.12 do not have
complete vertex accessibility. The actual accessibility, the adjusted average
distance, and the adjusted connectedness can be assessed by the following

C6 K5 P5 S5

Figure 5.12. Special subclasses of directed graphs belonging to the classes of monocyclic,
complete, path, and star graphs, respectively. The DCV and DKV subclasses shown have a
complete vertex accessibility. Directed star graphs DSV have the highest accessibility when
a half of the arcs are incoming to and the other half of the arcs are outgoing from the central
vertex.
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formulae:

Acc(DPV ) = 1

2
; AD(DPV ) = 2(V + 1)

3
;

AConn(DPV ) = 1

2V
(5.4a,b,c)

Acc(DSV , odd) = V + 3

4V
; Acc(DSV , even) = V2 + 2V − 4

4V (V − 1)
(5.5a,b,)

AD(DSV , odd) = 8V (V + 1)

(V + 3)2
; AD(DSV , even)

= 8V (V − 1)(V 2 − 2)

(V 2 + 2V − 4)2
(5.6a,b,)

AConn(DSV , odd) = V + 3

4V 2
; AConn(DSV , even) = V 2 + 2V − 4

4V 2(V − 1)

(5.7a,b,)

6. Complexity Estimates of Biological
and Ecological Networks

Networks are universal means for analyzing systems in their entirety,
and for capturing the systems complexity patterns [64]. Not surprisingly,
after the revolution in network theory started [65] in 1999, and the focus
has shifted from random networks to dynamic evolutionary ones [66] up
to a half of all working papers of the Santa Fe Institute of Complexity have
been devoted to networks [67]. The physical nature of the network nodes
and their interactions is inessential in this analysis. In biological networks
nodes can represent proteins [68-71] or protein complexes [72], genes [73-
75], metabolites [76-78], neurons [79], etc. The type of “interaction” that
connects two nodes in the network in an edge or arc could also vary from
chemical binding to regulatory effects to signal transduction to nerve im-
pulse. There are also networks in which there is no real interaction but the
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edge may stand, for example, for the presence of the same species (pro-
teins or genes) in different complexes. In food webs, the nodes represent
different kind of biological species, while the type of interaction is “who is
eating whom”. However different systems the networks may represent, they
all have common features and share common structural patterns based on
the connectivity of their constituents. Complexity measures make possible
the characterization of these common network features in a general quan-
titative scale, providing thus the means for comparisons and quantitative
evolutionary models.

6.1. Networks of Protein Complexes
Proteins tend to associate with each other forming complexes. The size of

these complexes may vary within a rather broad range. Figure 5.13 presents
the network of protein complexes taking part in the RNA metabolism
of Saccharomyces Cerevisiae (data taken from Gavin et al. [72]). The
28 complexes contain 692 proteins, which amounts in average to almost
25 proteins in a complex, the actual sizes ranging from 2 to 133 complexes.
The complexes are denoted by sequential numbers as given in the Supple-
mentary Table 5.3 of the data source [72]. Each edge in Figure 5.13 stands
for sharing proteins between the corresponding two complexes. The exact
number of shared proteins is not shown as edge weights, due to the graph
complexity. In the majority of cases the pairs of complexes share only
one protein. In four cases, the number of shared proteins is between ten
and fifteen. The calculations of the complexity measures of this weighted
undirected graph are also performed for the basic topology of the parent
non-weighted graph.

The graph actually shows the giant component (a term used to denote the
graph component that incorporates the majority of vertices) of the network,
the latter also containing three complexes that not share proteins with other
complexes. The giant component is highly connected with a 106 non-
weighted edges or basic adjacency of 212. This leads to average basic vertex
degree of 8.48, and connectedness of 0.353. The corresponding values
based on the edge weights are: weighted vertex adjacency of 1124, average
weighted vertex degree of 44.96, and weighted connectedness of 1.87.
This high connectedness evidences for the high stability against attacks
or mutations, and indicates the importance of the RNA metabolism for
the cell survival. High adjacency/connectedness values are obtained also
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11

15 13

20

9

17

10

196

14

16

18

26

2

27

4

1

53

8

23

12

22

721

Figure 5.13. The network of the protein complexes functional group of RNA metabolism in
Saccharomyces Cerevisiae. The complexes sequential numbers and connectivity table are
those from Gavin et al. [72]. A pair of vertices are connected by an edge when they share
at least one protein. (Not shown are three complexes that do not share any proteins). The
high complexity of the network indicates the high stability of the RNA metabolism against
random attacks and mutations.

for the networks of protein complexes responsible for transcription/DNA
maintenance/chromatin structure, and for protein synthesis and turnover
(Table 5.2). The comparison of the connectivity descriptors in Table 5.2
also allows concluding that the biological functions of signaling, cell cycle,
and cell polarity and structure are more vulnerable against such attacks.
Similar conclusions can be drawn from Table 5.3, which presents the values
of the more recent complexity measures calculated for the weighted graph
(not shown) derivative of graph given in Figure 5.13. The six measures
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included: the two normalized subgraph count descriptors, 2SC and 3SC,
the two normalized overall connectivity indices, 1OC and 2OC, the nor-
malized information index for the vertex degree distribution, Ivd,n , and the
newly developed A/D index, order the protein functional groups in a sim-
ilar manner. They all single-out the functional group of protein complexes
involved in the RNA metabolism as the most complex one, the next two
places being occupied alternatively by the group controlling transcription,
DNA maintenance, and chromatin structure, and the one of protein synthe-
sis. The A/D index reproduces with a single exception the same ordering,
and thus demonstrated its potential as complexity measure. It should be
mentioned, that all our calculations were performed with data [72] that
comprise about a quarter of all yeast proteins. Accounting for all protein
complexes will indeed change the complexity measures values. One may
anticipate that the availability of the complete set of data will enable the
complexity estimates of performance stability of the biological functions
related to cell cycle, cell polarity and structure, and signaling. One may also
expect the major conclusion about the three groups of biological function
that are best protected against any kind of damage to be confirmed by such
more complete analysis.

6.2. Food webs
Food webs are presented by directed graphs, because the interaction

between the species is in the great majority of cases unidirectional (the
pray cannot eat the predator). Other examples of directed networks are
gene regulatory networks and cellular signal transduction networks. It has
been shown [64, 81, 82] that the more complex directed networks have a
specific structure. It includes in- and out-components, a strongly connected
component and a tube (Figure 5.14). The nodes in the strongly connected
component are accessible to each other. These nodes have also incoming
edges (arcs) originating from the out-component, and outgoing arcs directed
to the in-component. Vertices from the in-component can also be directly
connected to vertices of the out-component thus forming a tube.

As shown in the St. Martin island wood web [83], analyzed below
(Figure 5.15), this specific hierarchical structure of directed networks is
not always possible. The web incorporates 42 trophic species with a total
of 205 interactions. The network of this ecological system is rather com-
plex. Nevertheless, it does not have even a triplet of mutually accessible
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Strongly
    connected 
   component

Out-
Component

In-
Component

Tube

Figure 5.14. A typical structure of a complex directed graph.

vertices, which to form a strongly connected component. What appears as
more essential and always preserved in such networks is their hierarchical
structure, based on the principle of downstream interactions. In Figure 5.15,
the St. Martin island wood web is presented schematically by two different
directed graphs. The first graph is composed of six ordered layers A to
F. The species of each layer can eat all downstream species, and in a few
cases another species of the same layer. This graph shows explicitly only
the interactions between the pairs of neighboring layers. The total amount
of interactions between all pairs of layers is shown as edge weights in the
second graph in Figure. 5.15, the vertices in which depict the six layers of
web species.

The connectivity of the St. Martin’s island food web can be characterized
by the values of the average vertex degree, ai = 4.88, and that of connected-
ness (connectance) = 0.119. (Both values are just half of the corresponding
values for the parent undirected graph.) The normalized 2SC and 3SC com-
plexity indices are equal to 0.0673 and 0.0193, respectively. These values
are the same for the directed graph and its undirected parent graph. The
first three overall connectivity indices, 1OC, 2OC, and 3OC, are calculated
in separate in- and out-terms (in: 0.0387, 0.0119, and 0.0037, and out:
0.0328, 0.0093, and 0.0028, respectively). The sums of the pairs of in- and
out-terms, are equal to the corresponding parent undirected graph values.
Therefore, the calculation of the in- and out-terms makes sense mainly
when comparing different directed graphs DGi originating from the same
parent undirected graph G. In the case of DGs obtained from different Gs,
one may use for approximate estimates the complexity measures as cal-
culated for the corresponding parent graphs. The normalized information
index on the vertex degree distribution also correctly reproduces the lower
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Figure 5.15. The connectivity of the StMartin island food web [83] is illustrated in two
directed graphs formed by the hierarchically ordered layers A to F. The trophic species of
each layer (numbered after [83]) can eat only downstream species and, in few cases, species
of their own layer. The connectivity shown explicitly in the upper (unweighted) graph is
that between the pairs of neighboring layers only. The edges of the lower (weighted) graph
show the total number of interactions between all pairs of layers. The calculations of the
complexity measures of the St. Martin’s food web, however, are made proceeding from the
entire directed graph with its 42 species and 205 directed interactions.
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complexity of the directed graph relative to that of the parent undirected
graph (Ivd,n (out) = 0.367, Ivd,n (in) = 0.388, Ivd,n (G) = 0.401).

There is no such correspondence between the distance measures of di-
rected and parent undirected graphs, due to the lack of paths between
some pairs of vertices in the DGs. Thus, while the undirected St. Martin
graph has 1722 vertex-vertex distances, in the directed graph they are only
446 (205 × 1, 209 × 2, 32 × 3). The total distance calculated from these
is 719 vs. 3308 in the undirected graph. Comparing the average distances
of the two graphs would be misleading, because it would show the vertices
of directed graph to be closer to each other than they are in the undirected
graph (1.61 vs. 1.92). The things come back to normal after calculating
the accessibility of the DG vertices (Eq. 5.1), Acc = 0.259, wherefrom Eq.
(5.2) produces the more realistic value of <d(DG)> = 6.22 > 1.92. More
realistic estimate of the directed graph connectedness may also be obtained
by Eq. (5.3), accounting for the limited vertex accessibility: AConn(DG) =
0.031 < Conn(DG) = 0.119, the latter value being unrealistically close
to that of the undirected graph connectedness (0.238). Similar correction
might be made for the A/D complexity index introduced in Section 4.1.
This index shows a pattern of continuous increase with the increase in the
network complexity. However, the value calculated for the directed graph,
A/D(DG) = 205/719 = 0.258 is larger than that of the undirected graph,
A/D(G) = 410/3308 = 0.124. The higher complexity of the undirected
graph can be correctly assessed by adjusting the A/D index by multiplying
it by the accessibility index (0.258 × 0.259 = 0.067 < 0.124).

The different complexity indices order the food web in a similar man-
ner (Figure 5.16). The connectedness index cannot distinguish two pairs of
food webs (St. Martin Island/Lake Little Rock, Conn = 0.119, and Skipwith
Pond/Coachella Valley, Conn = 0.328/0.323), whereas the latter are well
discerned by the subgraph count and overall connectivity indices. Con-
versely, 2OC and 3OC cannot well discriminate Ythan Estuary and Canton
Creek food webs.

Many studies have shown than a higher connectivity and complexity
means a higher network stability [84,85]. One may thus expect the Skip-
with Pond and Coachella Valley food webs to be very stable to attacks
and environmental changes. As recently shown [45] the Skipwith Pond
ecosystem could survive even the elimination of half of its best connected
trophic species in the food web. The least complex webs examined—those
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Figure 5.16. Complexity comparison of seven food webs (data from Dunne, Williams,
and Martinez [83]) show the Skipwithpond and the Coachella Valley food webs to be the
most complex ones, and the Canton Creek and Ythan Estuary to be the least complex
ones. Complexity measures 1 to 6 correspond to connectedness (connectance), second- and
third-order subgraph count, and first-, second-, and third-order overall connectivity [24-29].

of Ythan Estuary and Canton Creek—may be expected to be more vulner-
able. To verify this conclusion, we modeled the specific attack on this web
by subsequently eliminating its highest-degree vertices. It was found that
after eliminating the first 13 such vertices, which corresponds to a 2-fold
decrease in the web connectedness and to a 12-fold decrease in the web
complexity as described by the 2SC and 1OC indices, the network splits
into a large and a small component (Figure 5.17).

7. Overview

In this chapter, we reviewed some of the complexity measures, which
were shown in previous publications to be appropriate for assessments of
network complexity. A clear distinction was made between the two types of
complexity: the compositional and the structural (topological) ones. Four
topological complexity measures were presented in detail: the information
on the vertex degree distribution, the subgraph count, the overall connectiv-
ity, and the walk count. The last three were presented as ordered sequences
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Figure 5.17. Stability analysis of the Ythan Estuary Food Web. The web splits into two
pieces after eliminating the 13 highest connected vertices. The complexity measures used are
the connectedness, the second-order subgraph count, and the first order overall connectivity.

of terms corresponding to subgraphs with increasing number of edges.
Equations were derived for the first several orders of each of the complexity
descriptors, which will facilitate their application to large scale networks.
In addition, each of these measures was presented in three versions: total
(or overall), average, and normalized (within the 0 to 1 range) ones. Two
new complexity indices were proposed based on the combined use of the
adjacency and distance matrix of the network. These indices unite the in-
tuitive ideas of structural complexity resulting from high connectivity and
small vertex separation (the “small world” concept). Important corrections
were introduced to the way the total distance and the connectedness of di-
rected graphs are calculated, by accounting for the mutual accessibility of
network vertices. The mathematical tools introduced were illustrated with
numerous examples, including protein-protein interaction networks and
food webs. The authors anticipate a wider use of the presented complexity
measures for the characterization of network topology, which usually does
not go beyond connectedness (connectance), cluster coefficients, and graph
radius.

Despite of the rapid development of complexity theory during the last
20 years, one can still face questions like: “Can we measure complexity,
and, if we can, why?” We hope that this chapter answers explicitly the first
question. As for the second one, we would like to remind the words of
Lord Kelvin, said 150 years ago: “One cannot describe the Laws of Nature
unless he uses numbers.” Are there laws of nature related to complexity
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of systems? Up to very recently, there was no clear idea how to define
complexity as a universal property of systems in nature and technology.
The situation changed dramatically after Barabási [65] proposed in 1999
to consider the nonrandom dynamic networks as a universal language to
describe complexity and evolution of systems. Life sciences have found in
cellular networks (protein, gene, and metabolic ones) their long searched
tool to describe the work of the biological machine as a whole. It is believed
that the next 10-15 years will be the most important ones in the history of
biology and medicine. The theory of network complexity will play an
important role during this exciting time.
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15. D. Bonchev and N. Trinajstić, Intern. J. Quantum Chem. Symp. 16, 463-480 (1982).
16. D. Bonchev, InformationTheoretic Indices for Characterization of Chemical Structures.

Research Studies Press, Chichester, UK (1983).



Quantitative Measures of Network Complexity 233

17. D. Bonchev, Shannon’s Information and Complexity in, Mathematical Chemistry Se-
ries: Complexity in Chemistry, Vol. 7, D. Bonchev and D. H. Rouvray (eds.), Taylor &
Francis, London (2003) pp. 155-187.

18. S. H. Bertz, J. Am. Chem. Soc. 103, 3599-3601 (1981).
19. S. H. Bertz, J. Chem. Soc. Chem. Commun. 209 (1981).
20. D. Bonchev, The Problems of Computing Molecular Complexity, in Computational

Chemical Graph Theory, D. H. Rouvray (ed.), Nova Publications, New York (1990)
pp. 34-67.
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