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Introduction

10.1 Outline

Since the early attempts at combining micro-fabricated transducers with in vitro
neurobiological systems (Gross, 1979; Gross et al., 1985), cultures of neurons
dissociated from the vertebrate nervous system have represented a convenient
choice for several reasons (Stengler and McKenna, 1994). Neurons can be easily
cultured over biocompatible substrates, grown in an incubator and maintained
under healthy conditions for several weeks or more (Potter and DeMarse, 2001).
This fulfills the requirements of the unconventional approach followed by MEA
investigators: instead of invasively probing a single neuron by means of (e.g.) an
intracellular glass-pipette electrode, let a population of neurons develop ex vivo
and grow around multiple probes, for extended periods of time, under noninvasive
conditions. On the other hand, the choice of cultured neurons is also related to
the in vitro development of functional synaptic contacts (Nakanishi and Kukita,
1998) and to the emergence of spontaneous patterned electrical activity (Kamioka
et al., 1996; Van den Pol et al., 1996). Thus, along a tradition of investigation
that is common to physics (Amit, 1989), the possibility of accessing a reduced
version of an active nervous system (Bulloch and Syed, 1992) constitutes a unique
opportunity for the investigation of network electrophysiology. Indeed, such an
approach makes it possible to dissect the interactions among individual neurons
of a network and to look for collective mechanisms at the cellular and subcellular
levels, through manipulation of the physicochemical conditions.

Under such perspectives, we review in this chapter electrophysiological data
obtained from networks of neurons dissociated from the rat neocortex and cultured
over arrays of substrate micro-electrodes (MEAs). In particular, we discuss a recent
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experimental approach for the study of cortical network electrophysiology, and
introduce a simple theory accounting for the emergence of the in vitro spontaneous
collective activity. We conclude with some remarks on the perspectives of novel
experimental protocols and mathematical modeling, as complementary tools to
MEAs and traditional electrophysiological techniques.

10.1.1 Relevance of the Study of In Vitro
Neocortical Networks

In the field of life sciences, we are assisting in an increase of interest for the func-
tion of biological networks of elements and for the complexity emerging from
the interactions and combinations of such elements (e.g., the dynamics of mo-
tifs in neuronal/genetic/metabolic/biochemical networks) (Milo et al., 2002). The
underlying inspirations of such a trend suggested interesting analogies with the
physics of semiconductors and with the development of modern digital electronics
(Grattarola and Massobrio, 1998). In fact, the design of semiconductor electron-
ics proceeded first from very simple devices interconnected in complex manners
(i.e., transistors and Boolean logic-gate networks), then evolved into a relatively
simple interfacing of highly sophisticated units (e.g., cluster computing, parallel
architectures, etc.).

In the case of the design of biological systems, evolution followed an opposite
path. It started from the simple combination of complex (bio)molecular com-
pounds (e.g., the assembly of a lipidic bilayer) and went on, assembling the ner-
vous system of mammals, which functionally appears as a highly intricate map
of networks, each composed of complex (sub)cellular elements. However, the
most recent phylogenic outcome of evolution, the neocortex, might reveal simpler
principles (Douglas and Martin, 1990), irrespective of its anatomical complexity
and heterogeneity. In addition, the very same basic electrophysiological processes
might be carried out by each small region of the neocortex, by a kind of general-
purpose canonical micro-circuitry. Actually, although there are several differences
from layer to layer, with regard to projections, cell density, morphology, and size,
a stereotypical organization seems indeed to dominate. For instance, Douglas and
Martin (1990) focused their proposal on a canonical building block, underlining
and emphasizing the tremendous recurrent excitation, estimated as 90% of the total
afferent excitation.

In such a context, and under the perspective of ultimately understanding how
the synaptic organization of the neocortex produces the complexity of cortical
functions, the convergence of a mathematical theory and experimental results is
imperative. Such an approach might be also devised to determine how many of
the details underlying single channels, dendrites, neurons, and synapses, play a
role at higher levels, and whether these details must be fully retained or largely
simplified, at the level of large-scale cortical processing description.

One possibility to challenge existing theories and to develop new ones, is
represented by the study of in vitro preparations as reduced and highly simpli-
fied neurobiological systems, with regard to the network-level electrical activity.
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Nevertheless, in vitro networks are generally not considered to retain enough details
and features of the in vivo cortical physiology (Steriade, 2001). This is certainly
true with regard to differences in neuronal morphology, firing patterns, and resting
properties, as well as in functional aspects and oscillatory organized activities. In
the case of cultured networks of dissociated cells, the bidimensional arrangement
of random synaptic contacts might be a reason for further skepticism.

However, keeping in mind such limitations and avoiding the tempting attitude of
incriminating isolated neuronal properties, channels, and molecules as responsi-
ble for complex physiological or behavioral processes, in vitro preparations might
still be invaluable research tools. Although cellular diversity and differentiation
are retained in cultures (Huettner and Baughman, 1986), it is very unlikely that
the precise “signature” of any canonical micro-circuitry is reproduced, as neuronal
connections randomly re-organize. However, strong excitatory recurrent coupling
characterize in vitro cultures (Nakanishi et al., 1999), and forms of collective elec-
trical activities arise spontaneously, sustained by recurrent synaptic connections
(Maeda et al., 1995). These constitute intermediate steps of investigation, crucial
to the understanding of in vivo cortical phenomena. Therefore, the inaccuracy of
in vitro networks in re-creating faithful replicas of in vivo functions may not rep-
resent an obstacle and, on the contrary, it is an ideal framework to develop novel
electrophysiological protocols and test theoretical interpretative frameworks.

In such a context, the MEA technique, by increasing the spatial resolution and
making it possible to chronically and noninvasively track collective network activ-
ity over time, is playing an instrumental role. Referring again to the analogy with
digital electronics, the availability of MEAs is providing the conditions for access-
ing the simultaneous electrical activity of several components, interconnected in
a functional circuit. We believe that a step in the direction of understanding the
general principles underlying the design of “digital computers” (the design of a
neocortex) may come from the understanding of how a subset of “transistors” and
“diodes” (neurons and synapses) performs concerted and not isolated functions.

10.2 MEA Experiments

10.2.1 Culture Technique, MEA Recordings, and
Single-Neuron Patch-Clamp

According to standard methods, cortical neurons can be enzymatically dissoci-
ated from the cortices of early postnatal rats, by exposing brain tissue slices to a
trypsin solution. After such a treatment, cells completely lose neurites and synaptic
connections and are plated on a MEA surface (Tscherter et al., 2001), previously
coated with substances promoting cell adhesion (Stengler and McKenna, 1994).
After just a few hours from plating, neurons start to elongate new neurites, establish
synaptic contacts, and, after a few weeks in culture, reach a mature stage (Kamioka
et al., 1996), and self-organize into a densely interconnected cellular monolayer.
Axonal and dendritic branches at this stage extend over 1 mm, resulting in a large
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number of functional synapses with neighboring cells (Marom and Shahaf, 2002;
Nakanishi and Kukita, 1998).

As already mentioned, by culturing dissociated neurons over MEAs, neuronal
somata as well as axons are allowed to develop close to the individual substrate
micro-electrodes. Such proximity makes it possible to extracellularly detect spon-
taneous spiking activity from one or more neighboring cells (Streit et al., 2001;
Bove et al., 1998; Grattarola and Martinoia, 1993). As this kind of signal trans-
duction procedure is noninvasive, electrical activity of in vitro networks can be
characterized as it progresses, evolves, and organizes, during long-term culture,
while preserving sterile and physiological conditions.

The MEAs employed in our experiments contained 68 platinum planar elec-
trodes, spaced 200 µm and laid out in the form of a rectangle. During each record-
ing session, channels showing neuronal activity were selected and recordings were
digitized to be stored on a hard disk, while monitoring multi-channel amplified
raw voltage traces with a custom oscilloscope software. The detection of extracel-
lularly recorded action potentials (i.e., fast voltage transients) and further analysis
were performed offline as previously described (Giugliano et al., 2004; Tscherter
et al., 2001; Streit et al., 2001). In a series of experiments, a patch-clamp technique
was employed in the whole-cell configuration (Hamill et al., 1981). The aim of
these experiments was to access the intracellular membrane voltage at the soma
of cultured neurons, and to characterize single-cell responses to current injection.
Therefore, network activity had to be suppressed by a cocktail of blockers of synap-
tic transmission. This consisted of D-2-amino-5-phosphonovalerate (D-APV) and
6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), which are competitive antago-
nists of the NMDA and non-NMDA glutamatergic receptors, respectively. Once
these substances were bath-applied, incoming synaptic activity and spontaneous
spiking were completely suppressed (see next sections and Figure 10.1). Such a
pharmacological manipulation makes it possible to study electrical properties of
individual neurons, under isolated conditions, as neurons receive no inputs from
the surrounding network, other than what is artificially injected through the patch-
pipette by the experimenter.

10.2.2 Development of In Vitro Electrical Activity

Before about seven days in vitro (DIV), most neurites do not reach neighbor-
ing neurons (Nakanishi et al., 2001) and the distributed electrical activity con-
sists in the emission of rare action potentials, as detected by individual MEA
electrodes (Kamioka et al., 1996). No spatial propagation of signals is observed
at this stage and no correlation characterizes neuronal activity at spatially dis-
tinct locations. Such spontaneous activity is completely abolished by tetrodotoxin
(TTX), a blocker of intrinsic neuronal spiking mechanisms, or by selective antago-
nists of glutamatergic synaptic receptors or by activation of GABAergic receptors
(Kamioka et al., 1996). This evidence suggests that at this stage, the network can be
regarded as an arrangement of uncoupled neurons, whose membrane voltage rarely
fluctuates, reaching an excitability threshold as a result of spontaneous synaptic
receptor activation.
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Figure 10.1. Synaptic bases of network-driven population bursts. A cocktail of pharmaco-
logical blockers of fast excitatory synaptic transmission was bath-applied while recording
intracellularly the membrane voltage of a neuron participating to population bursting (upper
trace, over 80 sec). As time passes and the number of blocked synaptic receptors increases to
saturation, the coupling between neurons of the network becomes weak and finally breaks,
as no PB occurs anymore. As the network synaptic drive decreases, a hyperpolarizing con-
tribution fades out, releasing resting membrane voltage to slightly more depolarized values
(dashed line). Finally, the cumulative inactivation (see Figure 10.8) of spike-emission pro-
cesses recovers, and the over-shoot amplitude of individual action potentials increases as the
fraction of inactive sodium channels decreases. Under these conditions, the subthreshold
voltage amplitude histogram was computed every 20 sec (lower panels: bars and circles):
at the beginning the distribution is well fitted (thick lines) by a double Gauss-function and
later by a single Gauss-function, while its mean slightly shifts to more depolarized values
(calibration: 5 sec/ 20 mV for the upper trace, 9 mV/0.05 mV−1 for the two lower-left panels
and 9 mV/0.12 mV−1 for the others).

Spontaneous presynaptic leakage of neurotransmitter molecules or glutamate
spill-over from neighboring synapses can explain such an activity phase (Maeda
et al., 1995). Such random uncorrelated firing evolves, at a later stage, into a
more organized firing pattern, consisting of isolated spikes and quite regular se-
quences of bursts of action potentials. These bursts, referred to as population bursts
(PBs), occur almost simultaneously across all the MEA micro-electrodes and are
not characterized by reproducible spatial trajectories, while propagating across the
network (Maeda et al., 1995). This phase characterizes cultured networks around 5
to 16 DIV and it is associated with structural changes, represented by an increase in
neurite elongation and by the formation of functional synapses (Nakanishi et al.,
2001; Nakanishi and Kukita, 1998). Individual neurons emit rare and irregular
spikes or bursts of action potential, superimposed on spontaneous voltage fluctu-
ations around a resting potential of about −60 mV (Nakanishi and Kukita, 1998),
similarly to what is observed in adult neocortex (Sanchez-Vives and McCormick,
2000). As time in cultures further advances, the propagation velocity of PBs across
the network increases, indicating the formation of an increasing number of reliable
synaptic connections. After about 30 DIV, the network reaches a stable condition
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Figure 10.2. In vitro chronic pharmacological manipulation of synaptic transmission in
cultured networks of neocortical neurons induces rebound phenomena as soon as control
conditions are restored. Homeostatic mechanisms of the population firing rate therefore co-
exist with heterosynaptic plasticities and participate in adjusting cellular and synaptic prop-
erties, to compensate for changes in synaptic drive. As a consequence, single-neuron prop-
erties as well as synaptic efficacies are dynamically regulated over time scales ranging from
hundreds of milliseconds to minutes and hours, in activity-dependent manners. (Reproduced
with permission from Nature Reviews Neuroscience; C© 2004 Macmillan Magazines Ltd.)

of maturation, exhibiting a richer and more elaborate temporal pattern of irregular,
synchronized population bursts (Marom and Shahaf, 2002; Kamioka et al., 1996;
Maeda et al., 1995). Maturation of the network is also associated with a transient
decline in the number of synapses, which is markedly related to activity-dependent
processes (Van Huizen et al., 1987) as well as homeostatic plasticity (Turrigiano
and Nelson, 2004; see Figure 10.2).

10.2.3 Population Bursting Is Driven by Network Interactions

The available electrophysiological and pharmacological data convincingly suggest
that the spontaneous electrical activity described above emerges as a collective phe-
nomenon, and is sustained by synaptic connectivity (see Figure 10.3). No intrinsic
neuronal pacemaker mechanisms have been reported so far, either to account for
the random spatial features of the origin and propagation of population bursts
(Maeda et al., 1995), or to explain correlations between collective activity and
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Figure 10.3. Cultured neurons, dissociated from neocortex, establish extensive functional
chemical synapses, a few weeks after plating. These connections have been studied with
simultaneous pair recordings by Nakanishi and collaborators (A) (calibration: 50 µm). Al-
though in vitro connectivity appears to be higher than in intact cortex, emission of a spike by
a presynaptic (excitatory) neuron usually evokes (B) weak subthreshold responses in post-
synaptic cells, for unidirectional (left) as well as bidirectional coupling (right). (Modified
and reproduced with permission, C© 1998–1999 Elsevier Ltd.)

plastic changes in synaptic efficacy induced by repetitive electrical stimulation
(Jimbo et al., 1999; Maeda et al., 1998). During the mature stage of these cul-
tures, synaptic connectivity of a generic neuron has been estimated to be generally
monosynaptic, with propagation delays of a few milliseconds, irrespective of the
spatial distance between cells, and to involve 10 to 30% of other neurons (Nakanishi
and Kukita, 1998).

Together with the large number of anatomical synaptic contacts (Marom and
Shahaf, 2002), and the strong correlation between activity and degree of develop-
ment of neurite outgrowth (Nakanishi et al., 2001; Kamioka et al., 1996; Muramoto
et al., 1993), these considerations support a network architecture able to sustain a
reverberating spiking activity through recurrent excitatory connections. Consistent
with the in vitro connectivity pattern, relatively restricted to spatially neighboring
sites, a mature cultured network could be therefore thought of as a homogeneous
chain of synaptically connected subpopulations (Giugliano et al., 2004). Each
population would then have some probability to initiate a PB, spreading to the
entire culture by means of sparse excitatory connectivity. Physical network sec-
tioning experiments of Maeda et al., (1995), and of Nakanishi and Kukita (1998)
are consistent with such an interpretation and with the hypothesis that synchronized
bursting is mediated by chemical synapses rather than by way of gap junctions
and/or diffusible factors.

10.3 From Single-Neuron Properties to Network Activity

As the electrical activity described in the previous section is an emerging popu-
lation phenomenon, it is relevant to investigate the quantitative conditions for its
occurrence. It is also of particular interest for network neurosciences to charac-
terize the cellular-level features of neurons and synapses, which play a major role
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at the network level. In fact, it is likely that an effective description of neuronal
integration and excitability at the cellular level will provide several benefits for
the prediction of the population-level activity, in analogy to the outstanding con-
tributions of the phenomenological (macroscopic) description of the ionic (micro-
scopic) mechanisms proposed by Hodgkin and Huxley (1952) for the generation
of an action potential. In particular, the characterization of single-neuron (input–
output) response properties, carried out under the appropriate conditions, has been
suggested as a fundamental step to predict and quantitatively interpret how a
population of neurons interacts. Such a view is strongly supported by several theo-
retical studies (Salinas, 2003; Mattia and Del Giudice, 2002; Brunel, 2000), where
single-neuron response properties have been exploited to derive predictions about
collective phenomena, such as the global spontaneous irregular activity (Amit
and Brunel, 1997), the emergence of fast network-driven oscillations (Brunel and
Wang, 2003; Fuhrmann et al., 2002), and of selective delay-activity states (Wang,
2001; Amit and Brunel, 1997).

10.3.1 How Can We Re-Create a Realistic Input to an
Isolated Neuron?

In vivo neocortical neurons continuously produce excitatory and inhibitory postsy-
naptic currents (EPSCs/IPSCs) (Destexhe and Paré, 1999). Such an intense activity
arises from the high degree of connectivity of intracortical afferents, spontaneously
active at very low firing rates, making postsynaptic membrane voltage fluctuate as
in a random walk (Destexhe et al., 2003; Abeles, 1991; Gerstein and Mandelbrot,
1964). This phenomenon is known to strongly affect intrinsic biophysical proper-
ties of neurons, as compared to TTX-induced resting conditions, and to modulate
their responsiveness to external inputs (Steriade, 2001; Gerstner, 2000; Destexhe
and Paré, 1999). In such perspectives, traditional in vitro electrophysiological pro-
tocols, which consist in the evaluation of the transient spiking response to an injec-
tion of DC current steps (McCormick et al., 1985), are completely inappropriate
to approach the single-neuron level (Holt et al., 1996).

Although it is apparent that the conditions in mature cultures are different from
those of an intact cortex, these considerations still hold when considering emerging
population activity. In particular, if we are to determine the effective single-neuron
response properties, we must employ a protocol that replicates conditions expe-
rienced by the same neuron, when participating in the network activity. Thus,
we immediately realize that nonstationarity characterizes the inputs to a neuron,
during each PB (see Figure 10.1). The amplitude distribution of the subthreshold
membrane voltage, recorded in current-clamp, indicates two alternating regimes:
a resting condition, with low variance, and an active phase possibly related to a
high-conductance state (Destexhe et al., 2003).

In the following, we consider only the active regime. In fact, invoking quasi-
stationary conditions, we later recover the nonstationarity and ignore such a sim-
plification (Giugliano et al., 2004). But how do we mimic all possible (stationary)
inputs to the network? As described in the previous sections, the whole-cell
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Figure 10.4. The overall synaptic input, resulting from stationary activation of a network
of presynaptic neurons, can be described as a random walk in time and characterized
by a Gauss-distributed stochastic process (i.e., by the central-limit theorem). The figure
reports the computer-simulated time course of the total synaptic input to a generic neuron,
quantified as conductance or current changes, from a presynaptic neuronal population of
increasing size, through identical independent AMPAr-mediated synapses (i.e., 10–10,000,
τI = 10 msec). The distribution of amplitudes approaches a bell-shaped profile (panels on
the right column) for as few as 100 synapses, each spontaneously active at a very low rate
of 5 Hz (calibration: 100 msec).

patch-clamp technique can be exploited to inject a desired stimulus waveform
into an isolated neuron and to measure the resulting input–output transformation.
In the recent literature, there have been several attempts at re-creating in vitro a
realistic network input (Silberberg et al., 2004; Chance et al., 2002; Fuhrmann
et al., 2002; Protopapas and Bower, 2001; Destexhe and Paré, 2000; Poliakov
et al., 1997; Mainen and Sejnowski, 1995). We followed Rauch et al. (2003), who
proposed to computer-synthesize a Gauss-distributed noisy waveform and to inject
it under current-clamp into the soma. Such nondeterministic stimuli are supposed
to re-create realistic fluctuations for a cell embedded in a large cortical network
(Figure 10.4; Destexhe et al., 2003).

10.3.2 The Extended Mean-Field Hypothesis

The theoretical framework, which inspires and motivates the approach of Rauch
et al. (2003), is related to a powerful mathematical technique that makes it possible
to predict the mean firing rate of a population of interacting neurons on the basis of
the discharge response of a single cell to a realistic noisy input (Amit and Brunel,
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1997). Further validating the hypotheses behind the use of noise injections, we
note that there is a higher, and considerably less structured, degree of in vitro
synaptic connections, compared to the in vivo cytoarchitecture. Moreover, because
the impact of a single EPSC/IPSC on the in vitro postsynaptic membrane voltage
is very weak in evoking suprathreshold responses (see Figure 10.3), the overall
current experienced by a generic postsynaptic neuron can be indeed approximated
by a diffusion stochastic process (see Figure 10.4 and Appendix; Fourcaud and
Brunel, 2002; Destexhe and Paré, 2000).

Such considerations are linked to the hypothesis that individual neurons in a
homogeneous active network cannot be distinguished in a statistical sense. In
fact, because of the very large number of (random) synaptic connections and the
presence of nonhomogeneities and noise sources, neurons roughly tend to instan-
taneously experience the same input current. Of course, each neuron will instanta-
neously receive a different realization of the same process, but its descriptors (i.e.,
current mean, variance, and correlation time length) are assumed to be the same. In
other words, each neuron experiences the same mean field, extended to the regime
of input fluctuations. Under such hypotheses, the characterization of the discharge
properties of a single neuron becomes statistically representative of the others, as
a whole.

10.3.3 The Noisy Current-Clamp Protocol

Because the nondeterministic stimuli described in the previous section account for
different presynaptic network architectures and regimes, let’s, for instance, indicate
by Ne/ i the number of excitatory/inhibitory neurons, characterized by stationary
mean activation rates fe/ i and projecting to a generic neuron with probability
Ce/ i . Under the hypothesis that synaptic inputs are approximately independent,
the distribution of the resulting postsynaptic somatic current amplitude becomes
Gauss-distributed, by the central-limit theorem (see Figure 10.4), with steady-state
mean m and variance s2 given by the expressions reported below (Rauch et al.,
2003):

m = NeCe〈Ie〉feτe − NiCi〈Ii〉fiτi

s2 = NeCe〈I2
e〉feτe/2 + NiCi〈I2

i 〉fiτi/2

where Ie/ i and τe/ i are the effective peak-amplitude and decay time constant at the
soma, for individual excitatory and inhibitory postsynaptic currents, respectively,
and the averaging operator 〈 〉 is intended across the population of synapses. In this
example, we can therefore inject a realization of a Gauss-distributed noisy current,
characterized by (m,s2), to recreate in an isolated neuron the input from such an
afferent network.

In a more general case, in our experiments we aimed at an exploration of the
plane (m,s2), although some of the combinations might not be consistent with
all possible network regimes. For any pair (m,s2), an iterative expression was
thus employed to synthesize a realization I (t) of a current to be injected, under
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Figure 10.5. Electrical response evoked by a noisy stimulus current that mimics a real-
istic input drive of cortical networks. The response is determined by either mean current
or random fluctuations. Each stimulus waveform was generated as an independent real-
ization of the stochastic Ornstein–Uhlenbeck process, fully specified by the steady-state
mean m, variance s2, and autocorrelation time-length τI (calibration: 1 sec). (Modified and
reproduced with permission, C© 2004, The American Physiological Society.)

current-clamp, in the soma of patched neurons (see Figure 10.5):

I(t + dt) = I(t) + (m − I(t))
dt

τI
+ s

√
2dt

τI
ξt, (10.1)

where ξt is a unitary Gauss-distributed random variable (Press et al., 1992), up-
dated at a rate of 5 kHz (i.e., dt = 0.2 msec). We fixed τe = τI = τI = 5 msec,
thereby focusing on AMPA- and GABAA-mediated synaptic currents (Destexhe
et al., 1994). As a neuronal output, we chose to estimate the steady-state mean
firing rate f as a function of m and s2. Actually, f (m, s2) is the only relevant
descriptor, under the assumption of the mean-field hypothesis, to predict the pop-
ulation firing rate (Amit and Brunel, 1997). Such a characterization allows us to
predict, in a self-consistent way, how population activity occurs in a network of
connected neurons, because the recurrent synaptic components can be described by
recursively considering m = m( f ) and s2 = s2( f ) (Giugliano et al., 2004; Amit
and Brunel, 1997).

10.4 Single Neurons Respond as Integrate-and-Fire Units

The results of single-neuron experiments have been summarized in Figures 10.6
and 10.7. As opposed to a DC stimulation, which elicits periodic and regular spike
trains, noisy current injection produces neuronal membrane voltage that evolves
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Figure 10.6. Steady-state amplitude distribution of subthreshold membrane voltage in
single-cell noise injection experiments. The amplitude distribution of membrane voltage in
single-cell noise injection experiments (open circles) is in good agreement with the math-
ematical model prediction (continuous thick line; see Appendix), although its parameters
were tuned to match the mean firing rates only (see Figure 10.7 and compare to Figure 10.1).
Panels A–D report the results from four different experiments, and in each subplot the volt-
age amplitude density distribution is plotted for increasing values of m, from left to right,
and of s from top to bottom, within the same panel. (Reproduced with permission, C© 2004,
The American Physiological Society.)

in time as in a random walk, leading to an irregular spike emission (Figure 10.5).
Its subthreshold amplitude distribution becomes bell-shaped, similar to what is
observed in vivo (but see also Figure 10.1), with mean and standard deviation
increasing with m and s2 (see Figure 10.6). Cultured neurons also showed very
similar response properties compared to neurons in acute slices (Rauch et al., 2003),
when repetitively stimulated by the same noise realization. This was shown to yield
a much higher precision in the timing of individual spikes in slices (Mainen and
Sejnowski, 1995), proving that the somatic spike emission mechanism of cultured
neurons is intrinsically reliable.

However, the most unexpected and interesting result is the following: as far as
the steady-state spiking frequency f is concerned, cultured neocortical neurons
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Figure 10.7. Results from six different single-cell noise injection experiments (see Figure
10.5). The current-to-discharge rate response of cortical neurons is captured with remarkable
accuracy in the plane (m,s2) by the simplified dynamics of a leaky integrate-and-fire model
neuron. Experimental responses were evaluated at the steady-state as a function of the current
mean m (markers), for increasing values of the fluctuation amplitude s, and compared to the
corresponding model best-fit prediction (lines). (Modified and reproduced with permission,
C© 2004, The American Physiological Society.)

respond as simple integrate-and-fire (IF) units (Figure 10.7; Giugliano et al., 2004).
Actually, the curves f (m,s2), collected for each cell at the steady-state, are repro-
duced with high accuracy by the response function �(m,s2) of an identified IF
model (see Equation (10.2) and Appendix). This proves that the biophysical and
morphological details of a neuron collapse into an extremely simplified quan-
titative description of neuronal integration and excitability, when studied under
appropriate realistic conditions.

10.4.1 Leaky Integrate-and-Fire Model

A single-compartment description of neuronal excitability was therefore enough
to account for the entire experimental data set. This is surprising, as the model
relies on a very small number of free parameters (i.e., 5), which were identified
in each experiment by numerical optimization techniques. Such a model is known
as the Lapicque’s or leaky IF (Tuckwell, 1988) and it has been extensively stud-
ied (Fourcaud and Brunel, 2002, Mattia and Del Giudice, 2002) and employed in
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large-scale network simulations (Reutimann et al., 2003). As opposed to biophys-
ically realistic models (Abbott and Dayan, 2001), the leaky IF is characterized
just by a single state-variable V , representing the membrane potential, and by a
reduced set of effective constant parameters, as follows.

C
dV(t)

dt
=

{
ḡ (E − V) + Im(t) if V(t) < ϑ

0, V(t) = H if V(E0) = ϑ and t ∈ (t0; t0 + τarp)
(10.2)

In the previous definition, the absolute refractory period and hyperpolarization
voltage following the emission of an action potential have been indicated by τarp

and H , respectively. Moreover, the integration operated by the neuronal mem-
brane is assumed to be passive and characterized by a voltage-independent ionic
conductance (g) and by a capacitance C . All the nonlinearities associated with the
emission of an action potential (Hodgkin and Huxley, 1952), have been lumped
into a fixed voltage threshold ϑ, therefore describing each spike as a highly stereo-
typed event that corresponds to a threshold crossing for V (see Appendix). Finally,
below threshold, the membrane voltage decays to its resting value E , when the
total membrane current Im(t) = 0.

10.4.2 Spike-Frequency Adaptation and Slow/Cumulative
Inactivation

In all the noisy current-clamp experiments, the temporal dynamics of the in-
stantaneous output firing rate f = f (t) was characterized by fast and frequency-
dependent adaptation components, which occur over a time scale of several hun-
dred milliseconds, and by a slower component, occurring over a time scale of
several seconds (Sanchez-Vives et al., 2000; Powers et al., 1999; Sawczuk et al.,
1997; Fleidervish et al., 1996; Douglas and Martin, 1990). These mechanisms, to-
gether with homosynaptic depression (Tsodyks et al., 2000), have been proposed
as candidates for the generation of oscillatory activities in the nervous system,
and related to the termination of the PB (Giugliano et al., 2004; van Vreeswijk
and Hansel, 2001). In order to account for the single-cell experimental recordings,
the IF model further incorporated a simplified adaptation current, describing the
contribution of intracellular calcium- and/or sodium-activated outward currents.
Im(t) was therefore identified as the sum of an intrinsic contribution IX (t), due to
adaptation mechanisms, and an external/synaptic current I (t). Each emitted spike
was then assumed to cause a sudden increase in the intracellular concentration
X (t) of the ions, involved in such an activity-dependent hyperpolarization current,
which was formalized as follows.

IX(t) = −αX(t)

τa
dX(t)

dt
= −X(t), X(t+0 ) → X(t−0 ) + τ−1

a (10.3)

The stationary effect of fast and slow adaptation processes at steady-state was
therefore captured by this simple mechanism, and it reduced the slope of the curve
�(m,s2) by the factor α (see Appendix).
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Figure 10.8. Slow inactivation of spike-generation mechanisms. Inactivation contributes
to determine the maximal steady-state spike frequency that cortical neurons are able to
sustain. Similarly to the effect of sodium/calcium-dependent potassium currents, such an
inactivation might participate in the termination of each population burst. A repeated in-
tracellular DC current stimulation (A), with very short interstimulus pauses, makes the
spike inactivation apparent. Such an inactivation slowly builds in time, and increasingly
affects (D) the amplitude, the interspike intervals, and the maximal upstroke velocity of
successive action potentials. (B) The same phenomenon affects neuronal responses under
noisy current-clamp. However, the voltage fluctuations, induced by the nondeterminis-
tic current component, may delay the expression of inactivation, and transiently reverse
it. (C) The cumulative character of such a slow inactivation can be revealed by deliv-
ering short hyperpolarizing current pulses, interleaved to DC current stimuli: inactiva-
tion can be reversed only partially (calibration: 1 sec/50 mV for (A–C); 10 msec/10 mV
for (D)).

However, an additional cumulative component, related to the inactivation of the
spike generation mechanisms, characterized neuronal responses (see Figure 10.8).
The presence of such cumulative inactivation was explicitly tested by extending the
protocol described in Fleidervish et al. (1996) and Schwindt et al. (1989), which
consists in a repeated pulse-stimulation lasting 1 sec, with a very short recovery
time. Under noisy current injection, and employing the same current realization for
each repetition, the same phenomenon occurred, although the voltage fluctuations,
induced by the nondeterministic stimulus waveform, could delay the onset of
inactivation at parity of m, and sometimes transiently reversed the inactivation for
a few tens of milliseconds, as compared to DC stimuli. For the sake of simplicity,
such an intrinsic inactivation was not considered in the IF model (but see Giugliano
et al., 2002).
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10.4.3 A Simple Model of Chemical Synaptic Interactions

Although we did not experimentally approach the effective characterization of
synaptic physiology so far, there are enough data available from the literature to
define a minimal model of chemical synaptic interactions between cortical neu-
rons in vitro (see also Giugliano (2000)). Consistent with the hypotheses under-
lying the current stimuli injected in single-neuron experiments, synaptic coupling
is described by current rather than conductance changes (see La Camera et al.
(2003) for a discussion). Interactions between any two connected neurons are
triggered by presynaptic emission of an action potential, after an effective delay
δ of 1.5 msec, which includes the axonal delay and the synaptic release latency
(Nakanishi and Kukita, 1998). Each postsynaptic current consists of an instanta-
neous rise to Je (i.e., the synaptic efficacy) and by an exponential decay with a
time constant τe = 5 msec (see Figure 10.3). In the case of a population of Ne

excitatory neurons, the total synaptic current Ii (t) into the neuron i is therefore
given by:

Ii(t) =
Ne∑
j=1

∑
k

JeCij e−(t−tjk−δ)/τe�(t − t j
k − δ) (10.4)

where {t j
k } are the times of emission of action potentials by the j th presy-

naptic neuron, Ci j is the connectivity matrix, and �(t) is the step function
(i.e., �(t) = 0, t < 0 and �(t) = 1, t ≥ 0). The probability of connection (i.e.,
Ci j = 1) was fixed to 0.3 to 0.4 (Nakanishi and Kukita, 1998), and the effect of
spontaneous synaptic release and of other sources of randomness (Maeda et al.,
1995) was incorporated as an activity-independent additional irregular synaptic
drive (Giugliano et al., 2004).

10.5 A Network of IF Model Neurons

The results presented and briefly discussed in previous sections indicate that an ex-
tremely simple mathematical model of neuronal electrical activity can be employed
to describe the discharge properties of individual dissociated neocortical neurons
cultured in vitro. Moreover, the experiments performed by patch-clamp allowed
us to identify the numerical parameters of such a description. Thus, such effective
values can be immediately incorporated in a model of a network of synaptically
connected IF neurons, to be studied and computer simulated with unparalleled
realism. We approached the study of such a model network in two ways: by di-
rect numerical simulation and by mean field theoretical analysis. For the sake
of simplicity, we focus on the electrical activity of a homogeneous population
composed only of excitatory model neurons. With the aim of comparing model
performances to real MEA data, we consider a set of experiments obtained in the
presence of bicuculline, a blocker of GABAA inhibitory synaptic receptors (see
Figure 10.9).
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Figure 10.9. Network activity emerging in dissociated cultures of neocortical neurons,
detected by MEAs. The raster plot (upper panels) indicates the time of occurrence of the
events extracellularly detected by 7 substrate electrodes, and below the resulting population
mean firing rate is reported (scale bars: 60 sec, 10 Hz). To compare the performances of
computer simulations to real network data, results from 4 MEA experiments in the presence
of bicuculline were considered, by simultaneously studying (lower panels) the coefficient
of variation (CV), and the mean of the interbursts intervals (IBIs) distribution, and of the
duration of the population bursts (PBd). Numbers associated with each marker help to
identify the same experiment in both plots and indicate the number of PBs, collected over
10 min of continuous recording. Computer simulations of the network of IF model neurons
reproduced the same features of the spontaneous patterned activity, simultaneously matching
the IBIs and the PBd, for increasing values of synaptic coupling. (Indicated by the arrows;
modified and reproduced with permission, C© 2004, The American Physiological Society.)

10.5.1 Computer Numerical Simulations

The numerical simulation of the network model described above consists in the
simultaneous integration of Equations (10.2) through (10.4), for each neuron of
the network (Giugliano et al., 2004), by an appropriate discrete-time algorithm
implemented on a desktop computer (see, for instance, Reutimann et al. (2003)). To
our surprise, as soon as we incorporated the features and parameters estimated from
the experiments into the model, spontaneous electrical activity arose and organized
into a population bursting. Although individual IF neurons of the simulated network
are not intrinsic burster cells (Smith et al., 2000; McCormick et al., 1985), and no
pacemaker mechanism had been explicitly introduced and localized in the model,
we assisted in the emergence of a repetitive transient networkwide synchronization
of electrical activity, strikingly similar to what we measured in a real network of
cortical cells cultured over the MEAs (see Figure 10.9, upper panel).

In these simulations, the spatial origin of the PBs varies randomly with each
PB, consistent with the lack of spatial structure in the network and with the
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(experimental) conclusions about the lack of a unique rhythm generator mech-
anism driving the network. As several investigators noted the regular/irregular
character of PBs (Wiedemann and Lüthi, 2003; Nakanishi et al., 2001; Maeda
et al., 1995), we took a careful look at the features of activity in our model. This is
quite relevant as the highly irregular character of neuronal firing is ubiquitous in in
vivo cortical physiology (Destexhe et al., 2003; Shadlen and Newsome, 1998). We
found that the frequency and the character of the simulated PBs depended strongly
on the synaptic connectivity and on the excitatory coupling Je. In particular, by
increasing Je, we indeed observed three different regimes: asynchronous irregular
firing,periodic synchronized bursting, and nonperiodic synchronized bursting.

First of all, in order to model a condition of very weak excitatory coupling
between neurons, or to mimic a very low connectivity, we set Je very small.
Under such conditions, the network of model neurons is characterized by low-rate
asynchronous spiking activity. Such a background activity is mainly determined
by activity-independent synaptic activation and only weakly by the contribution
of recurrent connections. No spontaneous PB occurs and any brief depolarizing
stimulus, even delivered to a large fraction of neurons of the network, does not
evoke spiking activity that persists more than the duration of the stimulus.

In terms of a theoretical interpretation that is discussed in the following sections,
we may conclude that under such conditions, the dynamics of the whole population
is dominated by a single low-rate stable state, as the recurrent synaptic feedback is
too weak to self-sustain a reverberating activity. We should note that, in our model,
the reliability of synaptic transmission remains unchanged and does not “mature”
with time (see Equation (10.4)). Anyway, at low firing rates, low values of Je

can also statistically account for low-probability synaptic release, characterizing
immature synapses (Tsodyks et al., 2000; Kamioka et al., 1996). As discussed at the
beginning of this chapter, such a situation approximates the early developmental
stage of cultured networks.

In another set of computer simulations, we substantially increased Je. A larger
value of Je may correspond to an increase in both the number and efficacy of
synaptic contacts, as observed in vitro during maturation (Muramoto et al., 1993).
Under such conditions, where the low-rate random spiking is still present and at
the same frequency, spontaneous PBs occur very frequently and regularly. Now,
even a brief external triggering stimulus successfully recruits neurons to produce
evoked PBs, whose duration is inversely determined by α, and independent of
stimulus strength.

Actually, in such a regime the global dynamics of the network is transiently
bistable: once a PB is started, adaptation slowly redefines the location and exis-
tence of the network stable states, until there is suddenly only a single stable state
at 0 Hz, similarly to what is observed after each PB in the MEA experiments (see
Figure 10.9, upper panel). In details, the adaptation hyperpolarizing currents IX (t),
which start to build up in every neuron recruited by a PB (see Equation (10.3)),
decrease the mean input current and therefore lower the output firing rate (see
Figure 10.7), until the recurrent synaptic inputs stop. This may be considered as
a kind of reset for the collective network activity. Later, the network is refractory
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as the mechanisms of spike-frequency adaptation recover (i.e., X (t) → 0), for a
time that is proportional to τa . In particular, we note that although the value of
τa can be estimated from the transient time course of f (t), upon current stim-
ulation, it is feasible that its actual value changes due to the degree of network
maturation.

Finally, for very strong synaptic coupling, the network loses its bistable transient
properties, and only a high-frequency firing characterizes the network. We doubt
that such a regime can be directly observed in vitro, because of the impact of addi-
tional adaptation mechanisms (Figure 10.8), and because of other metabolic con-
straints on neuronal firing (e.g., the activity of ATP-operated electrogenic pumps).
These processes act on a very long time scale, compared to a single spike, and they
would switch off network activity by down-regulating intrinsic neuronal excitabil-
ity (i.e., changing the profile of �IF). Such a scenario would probably result in a
synchronized bursting with very long burst-recovery intervals, and it would not be
always possible to evoke a PB by electrical stimulation, during the spontaneous
interburst intervals (Kamioka et al., 1996).

10.5.2 Theory

In the case of the network architecture discussed here, the statistics of the total
synaptic current received by a generic neuron are described by the following
recurrent mean field equations,

m(f) = NeCeeJefτe + m0 and s2(f ) = Ne Cee J2
e f τe/2 + s2

0, (10.5)

where f is the network mean firing rate and Je the effective peak-amplitude for the
individual postsynaptic currents. By m0 and s2

0 , we indicate two fixed parameters,
corresponding to the spontaneous neurotransmitter release and other sources of
randomness, independent of f by hypothesis.

As mentioned in the previous sections, the knowledge of the single-neuron
response function f (m,s2), identified in the experiments, lets us derive quantita-
tive predictions and interpretations on the collective network properties. This is
possible, under the same extended mean-field hypotheses that underlie the noisy
currents (Equation (10.1)), injected into real neurons, and it can be done without
running a single numerical simulation.

In fact, an in vitro network of synaptically interacting excitatory neurons may
be regarded as a single dynamical system. Its stationary states can be predicted and
interpreted, in the limit of an infinite number of neurons Ne → ∞, by employing
the mean-field equations (10.5) and studying �IF(m( f ), s( f )) as a function of f
(Amit and Brunel, 1997), in particular looking for its fixed points.

For the sake of clarity, we first consider the collective activity in the absence of
spike-frequency dependent adaptation (i.e., α = 0). Because of the simultaneous
dependence of �IF on m and s2, the collective firing-rate of the network may be
characterized by two stable dynamic-equilibrium states, in a range of synaptic
coupling Je (see Figures 10.10A and 10.11A). Such global activity configurations
correspond to the solutions f ∗ of the following self-consistent network equation,
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Figure 10.10. Prediction of the collective activity emerging in a homogeneous population
of excitatory neurons based on single-neuron response properties. (A) The plot represents
the profile of �IF(m( f ), s2( f )) as a function of network firing rate f , for increasing values
of the average synaptic efficacy Je. In a small range of synaptic coupling, the network
may be characterized by two distinct dynamic-equilibrium states for the collective activity
(α = 0, circles: stable states; star: unstable state). (B) �IF was then plotted as a function of
f , while comparing the instantaneous network response profile immediately before a PB
(resting) and after the complete buildup of adaptation currents IX , at the end of the same
PB (fully adapted). When the network is active at a low frequency regime frest, the impact
of the spike-frequency dependent adaptation is negligible and an additional equilibrium
stable state, at a high frequency fburst, may characterize the collective dynamics. However,
if a transition frest → fburst occurs, the adaptation starts to slowly build up, bending the
network response profile until no stable dynamic equilibrium state at high frequency can be
sustained anymore ( f (t) → fH ). Thus, it can be inferred that the actual network mean firing
rate will be flipping between two states, in an alternating and activity-dependent way, as
confirmed by computer simulations (see Figures 10.9 and 10.11). (Modified and reproduced
with permission, C© 2004, The American Physiological Society.)

further satisfying a stability condition:

f∗ = �IF(m(f∗), s(f∗))
d

df
�IF(f∗) < 1.

These solutions have been graphically identified as the intersection points of
�IF( f ) with the unitary-slope line, and marked as circles (stable) and stars (unsta-
ble states) (see Figure 10.10A).

When occupying a stable dynamic regime, the activity of the network is the result
of the interactions between the neurons, and a transition from one state to the other
can occur spontaneously in small networks. Actually, these transitions might be
the result of fluctuations induced by finite-size effects (Mattia and Del Giudice,
2002), or they can be triggered by an external brief stimulus (Figure 10.11).

10.5.3 Mechanisms of PB

Considering the full network model, where individual neurons keep adapting their
output rate as a function of activity (i.e., 〈X (t)〉 ∼ f (t)), it is possible to carry



10. Emerging Network Activity in Dissociated Cultures of Neocortex 263

Figure 10.11. Network bistability in the absence of adaptation and other sources of non-
stationarity in a homogeneous excitatory population, for a small range of synaptic coupling
Je (A). This is a direct consequence of the profile of the network response function, exper-
imentally characterized in Figure 10.7. A similar phase diagram can be considered for the
model network, including adaptation (B). By studying the quasi-stationary/instantaneous
stable states, it is possible to make quantitative predictions on the mean firing rates during
asynchronous regimes as well as during population bursts. The insets report the actual traces
of simulated network activity for different synaptic coupling, and compare the actual resting
and bursting activity levels with the predictions of the theory (black and gray dotted lines).
In both panels, black continuous and dashed traces indicate stationary and quasi-stationary
stable states, respectively. Dashed gray lines report the location of unstable stationary and
quasi-stationary equilibria, whose distance from frest determines the regular/irregular char-
acter of network oscillations. The markers represent the network mean firing rates, mea-
sured in computer simulations under different regimes. Although the simulated network
considered was very small, Ne = 100, the agreement between theoretical predictions and
numerical computer simulations is remarkable. (Reproduced with permission, C© 2004, The
American Physiological Society.)

out an approximate analysis. Provided that the mechanisms responsible for the
reduction of excitability (e.g., adaptation) act on a time scale (τa), much longer
than the single-neuron dynamics (c/ḡ), an analysis of the quasi-stationary equilibria
may be representative of the collective activity of the network. In other words,
by assuming that adaptation is delayed and transiently uncoupled from intrinsic
neuronal dynamics, we may consider it as frozen and determined by the previous
global conditions.

Let’s consider the situation of small Je: a low-rate stable regime frest is expected
to characterize the network dynamics, as it can be immediately determined from
�IF. By making explicit the dependence on α (see Equation (10.5) and Appendix),
we can write the following self-consistent equation and solve it to find the stable
solution frest,

frest = �IF(m(frest) − α frest, s(frest)).
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As confirmed by computer simulations, the instantaneous network firing rate f (t)
fluctuates around frest, as a result of finite-size network effects. However, each
neuron of the network instantaneously responds to its input drive according to a
quasi-stationary input–output response function given by

�IF(m − α frest, s),

with frest a constant. Neurons are therefore not experiencing immediately the
impact of adaptation. Thus, let’s assume that the network was at “rest”. We may
now determine the existence of any additional stable dynamical attractor f ∗. f ∗

must satisfy the following equation,

f ∗ = �IF(m( f ∗) − α frest, s( f ∗)).

f ∗ = frest is of course a solution of the previous equation, but for increasing
values of Je, f ∗ = fburst is also a solution ( fburst > frest, Figure 10.10B). Under
these circumstances there always exists an intermediate unstable equilibrium f ′

θ

( frest < f ′
θ < fburst), satisfying the previous relationship and separating the two

basins of attraction (Figure 10.10B).
Intuitively, when a fluctuation in the global activity of a “resting” network

is large enough to overcome the distance �′
θ= ( f ′

θ − frest), the stability of frest

may be (transiently) lost and the entire network synchronously shifts to a new
regime where f (t) = fburst. The unstable state is therefore acting as a no-return
point, similarly to what happens to the membrane voltage of a neuron during the
generation of an action-potential.

Anyway, such a regime cannot be sustained indefinitely, because fburst is not
a solution of the full, self-consistent equation, including the updated effects of
adaptation

f ∗ = �IF(m( f ∗) − α fburst, s( f ∗)).

Instead, such an equation is satisfied by f ∗ = fH ≈ 0 Hz, with fH < fburst (see
Figure 10.10B). Therefore, although adaptation progressively builds up in indi-
vidual neurons, network activity decreases and the locations of the fburst and f ′

θ

tend to approach and finally overlap, until their existence is suddenly lost (see
Figure 10.10B). When this occurs, the network dynamics suddenly converges to
fH and most neurons stop firing, similarly to the hyperpolarization experienced by
the membrane voltage after an action-potential. This accounts quantitatively for
the generation of PBs, as compared to direct network simulations (Figure 10.11B,
markers). By analogy, the amount of time spent in PB is therefore related to the
distance �′ = ( fburst − f ′

θ) and to the time requested by adaptation for the full
buildup (i.e., α and τa). Qualitatively, it can be concluded that for an increasing
Je, �′

θ decreases whereas �′ increases, thus the mean interburst interval (IBI)
decreases and the mean duration of PB (PBd) increases.

Finally, as in the previous case, such a new regime cannot be sustained indefi-
nitely, because fH is not a solution of:

f ∗ = �IF(m( f ∗) − α fH , s( f ∗)).
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The network will thus recover its resting activity level frest > fH , as described at
the beginning.

10.5.4 Variability of the IBIs Distribution

From the considerations developed so far, it is possible to interpret the regu-
lar/irregular character of the IBIs. In the last paragraphs, an analogy between PBs
and action potentials occurring in an excitable membrane was often proposed and
it is now exploited. In fact, similarly to the temporal evolution of the membrane
potential in the single-neuron IF dynamics, the activity of a network randomly
fluctuates as a result of synaptic noise. Occasionally, these fluctuations may be
large enough to overcome an excitability threshold (i.e., �′

θ). When this happens,
a major explosive event occurs ( f → fburst), and later the activity is strongly refrac-
tory to any further generation of PBs ( f ≈ fH ). The generation of PBs is somehow
similar to the generation of an action potential in a model of integration of a noisy
input. By mapping the population mean firing rate f into the membrane voltage of
an abstract IF model neuron, we make the previous comparisons explicit, setting
the resting membrane voltage to frest, the spike threshold to f ′

θ, the reset potential
to fH , and the absolute refractory period proportional to τa .

An increase in network synaptic coupling Je induces a decrease in the distance
f ′
θ − frest (see Figure 10.11B), so that the rate of threshold crossing is expected to

monotonically increase, while preserving an irregular character. Such predictions
were confirmed by the simulated network activity, where IBIs statistics are approx-
imated by a Poisson process with a refractory time (see Figure 10.9, lower panel,
dotted thick line). This is reminiscent of a widely studied balanced (i.e., drift-
free) integration process (see Shadlen and Newsome (1998)), where the threshold
crossings are determined by subthreshold fluctuations only, in a noise-dominated
regime.

10.5.5 Interpreting MEA Experimental Data

As anticipated, we conclude that the frequency and regular/irregular character of
spontaneous population bursting are intimately related to the synaptic strength
Je, and inversely, on the size of the network. The last dependence is associated
with the amplitude of random fluctuations in the population firing rate, which are
produced by finite-size network effects (Mattia and Del Giudice, 2002). At a parity
of network size, we predict and observe a rare and unpredictable occurrence of
short and irregular PBs, for intermediate values of Je, and a frequent and more
regular occurrence of longer and more regular PBs, for larger Je.

Here, we attempt to provide an interpretation of the MEA experiments, consis-
tent with the insights gained from the theory. This brings us to conclude that around
1 to 5 DIV, because the number and effectiveness of in vitro synapses are very low
(i.e., Je is small), no PB can occur because the network is intrinsically incapable of
self-sustaining (transient) reverberating activity of a PB. Later, the strong neuritic
outgrowth and synaptogenesis turn the network into a bistable device. We speculate
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that such conditions may correspond to an overshoot phase of in vitro network
development, consisting in an over-expression of branches and synaptic boutons,
resulting in a large Je. As described in the previous subsection, the recurrent con-
nections of the network can now transiently sustain a regular population bursting,
mainly determined and dominated by the recovery time constants of intrinsic
neuronal adaptation. Later, as the network reaches its mature condition, pruning
of a large fraction of synaptic contacts, or modulation of synaptic efficacy by
homeostatic processes (see Figure 10.2), makes Je substantially smaller. In such a
regime, the statistics of the simulated IBIs and PBd matched the results of the MEA
experiments, performed under pharmacological disinhibition (see Figure 10.9).

We propose the diagram of Figure 10.11 to summarize the prediction of the
theory, as well as the results of the computer simulation. Any pharmacological
and/or ionic manipulation of excitatory synaptic efficacy is expected to alter not
only the frequency and the regular/irregular occurrence of PBs, but also the inter-
burst spiking frequency, according to the trajectory indicated by triangles and the
dotted thick line of Figure 10.11B.

Lowering extracellular magnesium concentration, by increasing activation of
NMDA-receptors, is expected to unveil population bursting in a silent mature
culture (Robinson et al., 1993). Similarly, a decrease in the concentration of extra-
cellular calcium ions would tend first to drive a regularly bursting mature network
into a rare unpredictable bursting regime, and finally to abolish completely each PB
(Canepari et al., 1997). Therefore, the action of bath-applied drugs such as AP-V,
CNQX, cyclothiazide, or the modulation of extracellular ions such as Mg++ and
Ca++, largely involved in excitatory synaptic transmission, can be roughly mapped
as modulations of Je. The outcome of such a modulation depends of course on the
intensity and sign of these manipulations, as well as on the previous state of the
network (Turrigiano and Nelson, 2004).

From the phase diagram of Figure 10.11, it becomes clear that by a partial block-
ade of glutamatergic synaptic receptors, PBs disappear whereas asynchronous
isolated spiking activity may persist (Kamioka et al., 1996). A complete blockade
of synaptic transmission would remove also the background random activity, as
neurons become insensitive to the fluctuations induced by spontaneous synaptic
release (i.e., m0 = s0 = 0).

A final prediction of this theory consists in the monotonic dependence on Je

of the interburst firing rate (Nakanishi and Kukita, 1998; Maeda et al., 1998;
Canepari et al., 1997; Kamioka et al., 1996). The use of repeated extracellular
stimulation known to induce activity-dependent potentiation of synaptic efficacy
in a long-term manner, and corresponding to an increase in Je, is expected to:
(i) turn a previously spontaneously silent mature network into an active one by
increasing the probability of spontaneous PBs; (ii) turn a silent network, previously
nonresponsive to electrical stimulation, into a system that generates a PB upon
electrical stimulation; and (iii) increase the number of bursts per minute, while
increasing the number of spikes per burst (Maeda et al., 1998). Finally, a graded
modulation of synaptic efficacy Je is expected to induce a graded modification on
the network dynamics (Maeda et al., 1998).



A. Emerging Network Activity in Dissociated Cultures of Neocortex 267

10.6 Concluding Remarks

In vivo cortical processing naturally arises from interconnections among large
populations of neurons and simultaneous feedback from several brain structures.
Such conditions are of course completely lacking in isolated brain slices and cell
cultures. Nevertheless, approaching the in vitro network level from the knowledge
of single neurons and synapses, understanding how much complexity is the result
of the interactions and how much is intrinsic, does represent a powerful tool to
challenge our models and predictions on small-scale reduced problems.

In this chapter, single-neuron discharge properties have been investigated in dis-
sociated cultures of neocortex coupled to MEAs, demonstrating that a simplified
point-neuron IF model is an adequate description when network mean firing rates
are considered. It is significant that spike response properties of cultured neocor-
tical neurons qualitatively resemble those of cells in acute slice preparations. This
is of great importance as dissociated neurons might undergo a different ex vivo
development of intrinsic biophysical properties.

The same patterned activity, experimentally characterized in vitro by MEA
recordings, was reproduced in the simulated networks, and interpreted in terms
of the network-response properties, emerging from f = �(m,s). Matching with
MEA recordings is satisfactory, indicating that the discharge response properties to
noisy current stimuli and the experimentally characterized spike-frequency adap-
tation are indeed sufficient to account for the emerging collective activity, observed
in the experiments. Finally, it is interesting to note that the reduction driven by the
experimental data at the single-neuron level did not compromise the richness of
phenomena occurring at the level of a population.
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Appendix A

A.1 The Membrane Potential as a Diffusion Process

In order to characterize the spiking response of an IF model neuron under noisy
current inputs, it is convenient to normalize all voltages to the resting membrane
voltage E , and to introduce the probability density function PV (v, t) (Fourcaud
and Brunel, 2002; Fusi and Mattia, 1999; Abeles, 1991). Such a function gives
at any time t the probability that the membrane voltage V (t) approaches values
around v:

PV (v, t) dv = Prob{v < V (t) ≤ v + dv}. (A.1)
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Such a characterization accounts for the trajectories of the membrane potential,
resulting from any possible current input. In a generalized IF model, with a state-
and time-dependent intrinsic membrane current L(V, t) (Fourcaud-Trocmé et al.,
2003), the membrane potential evolves subthreshold as

C
dV

dt
= L(V, t) + I (t). (A.2)

When I (t) is a delta-correlated and Gauss-distributed process, with infinitesimal
mean and variance µ and σ2, respectively, V (t) is a stochastic diffusion process.
As a consequence, the probability density PV (v, t) satisfies an equation known as
the Fokker–Planck equation (Fourcaud and Brunel, 2002; Risken, 1984; Cox and
Miller, 1965):

∂

∂t
PV (v, t) = − ∂

∂v
φ(v, t). (A.3)

In the previous equation, the right-hand side is reminiscent of the gradient of a
flux of particles in a diffusion equation, and it can be identified as the sum of a
diffusive term and a drift-related term:

φ(v, t) = −σ2

2

∂

∂v
PV (v, t) + (µ − L(V, t)) PV (v, t). (A.4)

Readers interested in the derivation of Equation (A.3), may refer to the literature
(Risken, 1984; Cox and Miller, 1965).

A.2 The Current-to-Rate Response Function

By analogy with the diffusion of a substance in a medium, it is possible to identify
and evaluate the neuron spiking mean rate f (t) at time t , as the number of first-
passages V (t) = ϑ, in the time unit. This coincides with the definition of the flux
φ at the spike-threshold, because of the additional boundary conditions that must
satisfy Equation (A.3) (see below):

f (t) = φ(ϑ, t) (A.5)

At steady-state, such a quantity has been defined as the current-to-rate response
function (Tuckwell, 1988; Ricciardi, 1977); it was estimated experimentally in rat
neocortical neurons (Giugliano et al., 2004; Rauch et al., 2003) and indicated by
�IF(µ, σ2) as a function of the input current statistics.

As anticipated, appropriate boundary conditions must be specified to introduce
the nonlinearities of the IF dynamics (see also Fusi and Mattia, 1999). These are
related to the excitability threshold ϑ, the reset potential H , and the refractory
period τarp. The analogy with a process of diffusion in a medium can be pursued
identifying PV (v, t) as an instantaneous concentration, and discussing the way it
is restricted.

� At V = ϑ, in terms of an absorbing barrier, because the particles (i.e., neurons)
that are crossing such a threshold are “absorbed” at any time, and leave the
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interval (−∞; ϑ) to undergo refractoriness:

∀t, PV (ϑ, t) = 0 (A.6)

� At V = H , in terms of a discontinuity in the flux φ(H, t), due to the spike-reset
mechanisms and the consequent flow of previously absorbed particles, coming
out from refractoriness:

lim
ε→0

(φ(H + ε, t) − φ(H − ε, t)) = f (t − τarp) (A.7)

At any time t , PV (v, t) must further satisfy a normalization condition∫ ϑ

−∞
PV (v, t) dv +

∫ t+τarp

t
f (t ′) dt ′ = 1, (A.8)

because no neuron is allowed to have a membrane potential outside the range
(−∞; ϑ), unless it is refractory (i.e., no “particle” is destroyed or generated).

For the leaky IF (Equation (A.2)), we finally report the expression of the current-
to-frequency response function at the steady-state (Ricciardi, 1977), which can be
derived from Equations (A.3), and (A.6) through (A.8), by setting L(V, t) = ḡV
and dropping any temporal dependence:

f = φ(ϑ) = � =
[
τarp + τ

√
π

∫ (ϑ̂)

(Ĥ )
ex2

(1 + er f (x)) dx

]−1

(A.9)

where τ = C/ḡ is the neuron membrane time constant, erf(x) indicates the error
function (Abramowitz and Stegun, 1994), and

Ĥ = (H − µτ)/(σ
√

τ ), ϑ̂ = (ϑ − µτ)/(σ
√

τ ),

µ = m/C, σ = (s
√

2τI)/C.

We note that the current-to-frequency response function, employed for the fit
of experimental data curves (see Figure 10.7), incorporated the stationary effect
of the adaptation current IX (t) (see also Equation (A.3)). This is reintroduced
by replacing m with (m − α f ) in the previous expressions, obtaining an implicit
expression to be solved in f . In fact, adaptation currents affect only the steady-state
mean current without changing substantially the input variance (La Camera et al.,
2002).
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