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I.  INTRODUCTION

The most frequent molecular model used for electrolytic electron
transfer since the 1930s is similar to the Franck-Condon (FC) principle1

for spectral electronic transitions. Kinetic activation occurs until a
rapid radiationless electronic transition becomes possible. Following
FC and the equivalent Born-Oppenheimer approximation‚2 it is assumed
that classical nuclear motion during the electronic transition is slow
enough to be negligible. In condensed media‚ the potential energy of a
reactant involves an extended number of nuclei and many degrees of
freedom. To reconcile the energy requirements in condensed media
with electron transfer has resulted in many ingenious mechanistic
proposals. Charged molecules surrounded by rather tightly-bound
solvent dipoles have potential energies different from vacuum values
because of the presence of the surrounding dielectric solvent. These
tightly-bound “Inner Sphere” solvent dipoles may or may not be free to
move before rapid electron transfer of FC type.
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Since the 1950s‚ the surrounding dielectric solvent has usually been
considered to determine kinetics because of its assumed immobility
during rapid electron transfer. Efforts to summarize reaction rate
evidence in the 1970s3‚4 and more recently5‚6 have failed to leave the
theory in a satisfactory state.

This chapter reviews electron transfer models‚ develops molecular
models of the solvent surrounding ions of different types to provide a
more complete picture of the orientational changes taking place‚
especially in cases where electron transfer is combined with atom
transfer‚ where assembly of a solvation sphere is required during the
process. Finally‚ the activation energies of some charge-transfer
processes are given.

II. THE FRANCK-CONDON PRINCIPLE AND ELECTRON
TRANSFER

1. Historical Development

The electrochemical FC principle can be traced to 1931 papers by
Franck and Haber on photochemical electron transfer7 and by Gurney
on electrochemical hydrogen evolution.8 Landau’s publication on
gaseous electron transfer followed in 1932.9 The electron makes a
single‚ rapid transition from a donor to an acceptor state in which all
heavy particle motions are frozen in time. The electronic transition may
be adiabatic‚ i.e.‚ with a transition probability of unity with no tunneling
through an energy barrier‚ or non-adiabatic‚ i.e.‚ with tunneling.
Transitions may take place with or without radiation or photon
absorption. Gurney’s model8 for proton dissociation from the
ion10 with simultaneous electron acceptance from a metal energy level
introduced the concept‚ accounting for the overpotential11‚ the Tafel
equation12 and its Butler-Volmer extension‚13‚14 then recently confirmed
by Bowden.15 The ion10 was formalized as the oxonium or
hydronium ion by Bernal and Fowler.16

Gurney8 used Hund’s molecular orbital model10 for to deduce
that its dissociation energy was 8.3 eV‚ close to the 7.9 eV value
estimated using a thermochemical cycle.17 A thermally activated
ion10 with one bond randomly stretched to a higher potential energy
state was postulated to accept an electron from a metal electrode level
and spontaneously “fly apart” (sic) to since the force between
a neutral hydrogen atom and a water molecule would always be
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repulsive. The final state products would be in the same nuclear FC
configuration as that of the activated initial state. For radiationless
electron transfer‚ the potential energy difference between the initial and
final states must be equal to that of the electron in the metal level. The
probability of a given transition is given by the product of the (inverted)
Fermi-Dirac distribution for electrons in the electrode multiplied by
both the Boltzmann distribution for activated ions and the electron
tunneling probability through any energy barrier which may be
present18‚19 Gurney linked the increased potential energy of the
activated state of to the energy difference between this
excited state and that of the products in the same configuration by
supposing that the potential energy-distance terms for the initial and
final states were broadly linear‚ with similar positive and negative
slopes for reactant bond-stretching and for product repulsion. Then

where is equal to the potential energy difference
between the ground states of the reactants and products in the same
nuclear configuration‚ giving an expression containing only the metal
electron energy level. Integration over all metal energy levels gives a
rate exp –0.5E/RT‚ where E is the reactant ground state energy.
Gurney thereby accounted for what was later called the symmetry
factor‚ approximately 0.5. The activation energy is therefore
represented by the energy to reach the crossing point between the
energy-distance curves for reactants and the products‚ after the
difference between their absolute energies is removed by subtracting
the potential energy of reaction. Bowden’s earlier theory15 supposed
that adsorbed dipoles of a certain critical energy carrying a partial
charge were laid down on the electrode surface. The Boltzmann
distribution then gave an exponential expression between rate and
voltage or overpotential‚ with a fractional term because of the partial
charge. The first excited level for the proton vibration lies at +16.2kT17

above the +24.3kT ground state for the symmetrical three-dimensional
oscillator at 298 K‚ so in the absence of other interactions‚
bond-stretching is very improbable. The ground state of the ion
must therefore carried on a classical thermally-excited translational-
vibrational subsystem of neighboring water molecules‚ so the classical
energy of the entire solvated ion must be the excited state.

Later‚ Gurney pointed out the irreversibility of his model‚ since the
transfer of electrons from hydrogen atoms to metal levels is
improbable.20 He also considered metal deposition21 using Morse-
function energy-distance diagrams for the reactants and products‚ so
that the reaction energy pathway may be represented by “joining
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together the curves” on their repulsive sides‚ giving a low barrier
between reactants and products. This is analogous to the early Eyring
and Polanyi reaction energy barriers derived from Morse functions‚22

which were followed by the 1935 Eyring absolute rate expression‚23

following Herzfeld.24 In 1935‚ Horiuti and Polanyi considered the
activation energy barrier for adsorbed atomic hydrogen to be the
crossing point of the reactant and product energy states.25 Butler26

extended Gurney’s 1931 theory to adsorbed hydrogen‚ implying that the
electron makes an instantaneous FC transition‚ i.e.‚ no time is allowed
to form a true transition state.

Bates and Massey27 extended Landau’s work on gaseous systems in
1943. In 1952‚ Platzmann and Franck28 applied similar concepts to the
spectra of halide ions in solution. Randles29 and Libby30 respectively
applied the FC principle to electrochemical reactions and homogeneous
electron transfer between isotopic ions. Libby used the hydrogen
molecule ion as a model‚ because its vacuum energy levels were known.
He stressed that the FC principle would apply‚ since the velocity ratio
for water molecule and electron motion would approximate the square
root of their mass ratio‚ i.e.‚ 200. Libby also introduced a “catalysis”
concept for FC electron transfer by “complexing the exchanging ions in
such a way that the complexes are symmetrical providing their
geometries are identical to within the vibration amplitude involved in
zero point motion.” In other words‚ electron transfer is more likely if
the initial and final state structures are identical. He considered that the
electron wave function could only effectively penetrate the coordination
shell of the ion if two reacting ions were bridged by an ion of opposite
charge on closest approach. Assuming that the classical Born changing
equation31 could be applied to the ion energy‚ then the difference in free
energy between the z and z + 1 states would be:

where e is the electronic charge‚ is the static dielectric constant of the
medium and r is the ion radius in both the initial and final states‚
following the FC principle. This expression would lead to a small
energy barrier because of the high value of for water‚ so he
postulated a much smaller value close to an ion. He also suggested
that the effective dielectric constant to be used for high-frequency
electron motion would be the optical infrared value‚ i.e.‚ the square of
the IR refractive index n‚ or about 1.8.
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2. Inner and Outer Sphere Concepts

In 1954 Weiss32 used Bernal and Fowler’s simplified solvation model‚16

with an “Inner Sphere” of ionic coordination‚ i.e.‚ a small spherical
double layer around the ion of charge ze‚ followed by a sharp
discontinuity at radius the edge of the “Outer Sphere” or “Dielectric
Continuum.” He used a simple electrostatic argument to determine the
energy to remove an electron at optical frequency from the Inner
Sphere:

where c is the coordination number of inner sphere water dipoles of
dipole moment and is an optical frequency dielectric constant for
the inner sphere‚ if this is physically meaningful. He used the Born
charging equation was to estimate the energy change on both low
frequency and optical frequency transfer of charge ze from the inner
sphere to a vacuum at infinity:

The difference between the two expressions would be the residual
energy left in the dielectric continuum on transferring the charge at
optical frequency under FC conditions‚ i.e.‚ permanent dipoles remain
in their original positions during charge transfer. Weiss noted that the
expressions only apply in the region of bulk dielectric constant‚ beyond
the “Debye sphere” immediately surrounding the solvated ion.33 Debye
estimated its radius as 11‚ 31‚ 57‚ and 88 Å for mono-‚ di-‚ tri- and
tetravalent ions respectively.16‚33 As is discussed in Section III‚ the
distances beyond which water reaches its bulk dielectric properties are
in fact much less than these.

Weiss considered that the total energy on removing an electron
from the central ion (of initial charge z + 1) at optical frequency to
infinity should be on the order of:

The “Outer Sphere” part of this expression is similar to the
functions used by Landau34 and Mott and Gurney35 for the polarization
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due to displacement of a charge in a polar medium (c.f.‚ Platzmann and
Franck28). Weiss did not make use of this expression to estimate the
height of the homogeneous electron exchange energy barrier which
must be overcome by thermal vibrational-rotational energy. He
assumed that the energy charge on discharging one ion and charging
another in a homogeneous exchange reaction is equal to the algebraic
sum of the optical frequency continuum terms for charge and discharge
from the standard states (a vacuum at infinity)‚ plus that of the Inner
Sphere energy changes‚ plus the energy of assembly of the ions in the
initial state. The latter is where the e and r terms are the
individual charges and radii. Weiss also said nothing about the crossing
points of energy terms for reactants and products in or out of
equilibrium‚ although he did point out that if weak interaction occurs‚
the probability of transition will be low and must be determined using
the Landau-Zener adiabatic transition expression (see below). He also
discussed electron tunneling‚ and was careful to distinguish between the
transition of the reactant through the adiabatic “barrier” to the products‚
and electron tunneling through a Gamow energy barrier.18‚19

Electron tunneling of Gamow type was discussed by (R. J.)
Marcus‚ Zwolinski‚ and Eyring in 1954-55.36 The rate was given by a
transition state model with an activation energy term containing
coulombic repulsion and reorganizational energy differences between
reactants and products‚ multiplied by a frequency factor containing the
tunneling coefficient. Somewhat similar approaches were taken by
Laidler and coworkers.37-39 Refs. 38 and 39 considered the possibility
of some inner sphere rearrangement before electron transfer‚ with a
change in solvation energy corresponding to a change in ion size. The
concept of Inner Sphere and Outer Sphere reactions‚ depending on the
type of activated state‚ was introduced by Taube.40

3. Dielectric Continuum Theory

The next developments of the FC approach were in papers by (R. A.)
Marcus‚41-49 and a later series from the Soviet Union. About the same
time Hush50 introduced other concepts‚ to be discussed below. The
early work of Marcus41 considered the Inner Sphere to be invariant with
frozen bonds and vibrational coordinates up to the time of electron
transfer. The “classical subsystem” for ion activation has its ground
state floating on a continuum of classical levels‚ i.e.‚ vibrational-
librational-hindered translational motions of solvent molecules in
thermal equilibrium with the ground state of the “frozen” solvated ion.
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The movement of a permanent or induced dipole changes the energy of
the ion by Coulomb’s law. The Inner Sphere dipoles are frozen‚ so only
those in the outer sphere can move to change the potential energy of the
central ion‚ reducing the system to the external electrolyte and the
electron to be transferred. To avoid the difficulty of summing the
energy changes imparted to the ground state of the ion due to dipole
movements at progressively greater distances‚ the medium may be
regarded as a dielectric continuum‚ and that the electron may be
regarded as a charge distributed over the surface of a conducting
spherical condenser of radius r‚ a non-physical adjustable parameter
accounting for the ion solvation energy. The application of the FC
principle results in a polarization of the environment of the charge on
rapid electron transfer.

The early papers of Marcus41‚42 describe an activated state X* with
the electronic configuration of the reactant(s) and the Outer Sphere
atomic configuration of the activated product X. A collective
displacement vector describes outer motions in a classical Hooke’s law
elastic medium. Microscopically‚ this would have Gibbs free energies
of for induced dipole charges where the electronic

polarizability51 and  are the electronic mass and
frequency. The maximum energy of rotating permanent dipoles of
moment at distance r from charge ze is Marcus first looked
at the medium macroscopically‚ regarding it as a dielectric with
complete dielectric saturation in the Inner Sphere surrounding the ion.41

He then considered partial saturation of the dielectric‚ with averaged
dielectric constants.42 A permanent dipole vector u cannot keep up with
the sudden change of field under FC conditions‚ so it leaves a residual
Gibbs energy in the medium 42‚49 where is the polarizability
per unit volume. The classical induction equalities are

integrated over the dielectric volume not
occupied by the reactants‚ where P is the polarization vector dV or
dipole moment u per unit volume‚ and E is the corresponding field.
Two P and E terms are distinguished‚ according to their frequency
response‚ for nuclear and molecular motions‚ and for
electronic motions.41‚42 Later‚ a paniculate charge‚ rather than dipole
description of the electrolyte was given‚ to account for a multipolar
medium.43

The most probable X* and X were obtained by setting the
differentials of the Gibbs energy of and the difference
between those of X* and equal to zero. The sum
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is set equal to zero to define the crossing point for the X*
and X electron states‚ where m is an undetermined Lagrangian
multiplier. The (Gibbs) energy of activation is the residual Gibbs
energy barrier in the dielectric on FC charge transfer‚ after allowance
for the Gibbs energy of reaction. The latter is F* – w* at
where w* is the Gibbs energy of the initial state‚ and is given by the
volume integral:

where the final two terms are the Born charging equation expressions
for the w*‚ the Gibbs energy of the components‚ with two initial
components with charges and radii E* is the volume-
element dependent field vector due to the activated initial electronic
state‚ and E is the value simultaneously present (in FC terms) in the
final electronic state. It will be recognized that the integral of the first
term inside the bracket is an energy of assembly under static dielectric
conditions‚ whereas that of the second is the energy charge on going
from reactants to products at optical frequency.

By conservation of energy‚ F* – F must be equal to
where is the standard Gibbs energy of reaction‚ is any

electronic entropy change on electron transfer‚ and w** is the work
required to bring the activated reactants and activated products from
infinity. The second minimizing condition‚ i.e.‚ gives:

The volume integrals were evaluated by substituting
using the Coulomb’s law assumption that the E terms are given by the
vector sum of the negative gradients of the potential due to each charge

at distance i.e‚ in the space outside of the reacting
particles. Within the particles‚ the usual Born charging assumption for
conducting spheres makes the E terms zero. The terms contain

and The integral of the former from to
infinity is and that of the latter is where at
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closest approach. The first term inside the bracket in Eq. (6)‚ after
subtraction of the last two terms on the right‚ becomes and the
integral of simplifies to
Multiplied by this is the reorganizational
energy. The multiplier m is calculated from Eq. (7)‚ and substituted in
Eq. (6). Libby’s concept (c.f. Eq. 1) considered the energy charge on
changing charge to be proportional to e.g.‚ However‚ all
the z terms cancel in the Marcus equations‚ leaving only the amount
of charge transferred in the forward and backward processes‚ i.e.‚ by
one electron unit so that the activation energy remains at the lowest
level. The system is symmetrical‚ the electronic energy curves for the
reactants and products being exactly similar and parabolic. This is
because of the use of the expressions containing to
give the continuum energy changes‚ i.e.‚ m acts on the differential of the
energy of a state‚ i.e.‚ on its field‚ and not on its Gibbs energy. To
quote Marcus‚ “in the absence of specific interactions‚ the (separate
Born charging formulas for each reactant will hold at all separation
values)‚ since in the equation (for charging) each ion would merely see
another charge‚ and the surrounding medium‚ in both the
homogeneous and electrode cases”.44

The reorganizational energy of the system‚ was defined as the
residual or inertial energy in the dielectric when the atomic
configuration of the reactants (i.e‚ that in the Outer Sphere) is equal to
that of the products. If the length of the many-dimensional reaction
coordinate from the ground state of the reactants to that of the products
is put equal to x‚ then where k is a constant. Ignoring the small

terms‚ the similar parabolic terms for the reactants and
products are vertically separated by The position of the crossing
point‚ mx‚ along the reaction coordinate is given by a simple
geometrical argument as This gives a geometrical
identity to the Marcus m. The Gibbs energy of activation is then
equal to the energy at this crossing point‚ i.e.‚

The reorganizational energy was calculated using the Born
charging formula energy differences for the ion with its primary
solvation sheath under static and optical conditions‚ using the difference
between the squares of the charges Thus‚ for the
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homogeneous electron transfer reaction between two ions of radii and
at the closest approach distance

The electrode case may also be thought of as involving two ions‚
one having infinite radius. However‚ Marcus considered that there was
also an image charge situated at R', twice the distance of the reacting
ion from the electrode.44-46 Thus‚ was given by:

We should note that for water‚ is negligible‚ and the infrared
value of is about 0.55. The overall rate is multiplied
by a frequency equal to the collision number and by the concentrations
of the reactants.

Other Marcus papers correlated theory and experiment.48‚49 He
discussed adiabatic and non-adiabatic homogeneous transfer‚ pointing
out that the degree of broadening and splitting between the electron
energy terms of reactants and products is related to the lifetime of
each excited state via the uncertainty principle‚ i.e.‚ where

is the broadening‚ and is the corresponding splitting‚ i.e.‚ the
overlap or interaction energy between reactants and products. The
splitting is about 0.6‚ 6.0‚ and 60 kJ/mole for electron transition
times of and so rapid electron transitions will
greatly reduce the Gibbs energy of activation. The FC‚ i.e.‚ Born-
Oppenheimer) approximation for water dipoles will hold at least to

where the amount of splitting is negligible. Marcus indicated47

that the calculated electron tunneling probability determined by
modeling the solvent energy barrier between the reacting species36

could be used to determine the amount of splitting‚ since the transition
time is where is the tunneling probability and is the electron
frequency in the reactant. Thus‚ is approximately This
can be used in the Landau-Zener formula 9‚52 or in more exact and
general procedures53 to determine the probability of non-adiabatic
reactants to product transitions. Thus‚ the use of as a prexponential
term in the rate equation36‚39 is incorrect. The Marcus papers generally
assume adiabaticity‚ unless proved otherwise.  He pointed out48 that no
theory existed (indeed exists) for the large- to medium-overlap Landau-
Zener transition at a metal electrode‚ because the multiplicity of levels
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allows electrons to make unsuccessful transfers to one level‚ and
successful ones to another during the cause of small fluctuations in
space‚ energy‚ and time. Electrons would emerge at energies of ±2-3kT
of the Fermi level‚ as Gurney had approximately demonstrated by
integration.8 A similar procedure to that of Gurney integrated to the
band edge energy54 was used by Gerischer for semiconductor
electrodes.

4. Activation via the Dielectric Continuum

The Marcus theory used thermal activation via collisional interactions
to overcome the electrostatic (or other) energy barriers. The Soviet
school55-59 used a similar dielectric continuum concept derived from
work by Platzman and Franck28 and Pekar60 for radiationless transitions
in polar crystals‚ and by Lax61 in polyatomic molecules (see also
Frohlich‚ Ref. 62). The work is most accessible in later review
articles.57-59 It used Pekar’s Hamiltonian description of the energy of
the medium derived from nonequilibrium thermodynamics‚ rather than
the classical electrodynamics used by Marcus. Unlike Marcus‚ they
regarded the dielectric continuum as capable of activating the
discharging ion via coupled harmonic electrostatic motions. The Born-
Oppenheimer approximation was used to separate the wave functions of
low-frequency dipole vibrations from high-frequency electronic
vibrations. Dipoles performing small oscillations around the
discharging ion may each contribute one vibrational energy quantum
(about 0.016kT at 298 K for a frequency of or about
eV on a molar basis). Thus‚ 1300 dipoles are required for an activation
energy of 0.5 eV‚ in a radius of 20 Å‚ corresponding to a large
polaron.58‚59 The charge is transferred over a distance of about 6 Å‚
which is on the order of‚ and probably less than‚ the distance through
which dielectric saturation occurs close to the discharging ion (the
correlation radius of the dipole moments). The theory was considered
valid at 20 Å‚ but was considered less so at 6 Å‚ because of vibrational
frequency dispersion due to dielectric saturation at small distances59

(c.f.‚ Marcus42 ). However‚ the theory of small polarons63‚64 allowed
estimates to be taken to smaller ions and charge and energy transfer
distances.

The transition probability was calculated using the Landau-Zener
equation for homogeneous adiabatic electron transfer‚ and for the
electrode case with very weak coupling‚ for which an exact solution
exists. In many cases‚ the rate was expressed with a non-calculable
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preexponential interaction Hamiltonian for the overlap terms. The
polaron approach differs from normal thermal activation. The latter
may be regarded as via acoustic waves that result in collisions. The
activation frequency is a collision number for Marcus‚ and the
frequency of long-wave coupled dipole vibrations for the Soviet school.
However‚ both are of the same order of magnitude at ordinary
temperatures (about One difference between the Marcus
continuum theory and that of the Soviet school is the nature of the
energy corresponding to the electron terms‚ which Marcus regarded as a
Gibbs energy‚ because it uses the Born charging equation. However‚

results from the difference between two Born charging
equations and is largely temperature-independent‚59‚65 so has the
properties of potential energy.

5. Inner Sphere Rearrangement With “Flow of Charge”

Hush‚ followed by others40‚66 assumed that all rearrangement did not
necessarily occur in the Dielectric Continuum. His early papers50

appeared to take exception to the assumption of FC restrictions. He
considered that adiabatic and non-adiabatic FC electron-transition
processes of gas-phase type were not appropriate for electron-exchange
reactions in solution at metal electrodes. The eigenfunction of the
transferring electron might flow between reactants and products over a
relatively long time‚ the behavior of the dielectric medium governing
the course of the reaction. This implies a transition state of “normal”
type with an energy col‚ where the electron density differs from that of
the initial or final state by an amount equal to the symmetry factor. The
slow change in charge density as the reaction proceeds implies an
adiabatic process. The energy along the reaction coordinate would then
only contain ion-solvent interactions‚ not electronic terms. These
interactions were given simple forms‚ i.e.‚ an energy of cavity formation
in the solvent‚ which is largely independent of charge‚ the ion-dipole
interaction depending linearly on charge‚ and a Born charging energy
depending on the square of charge. No induced dipole effects (also
depending on the square of charge) were considered. A further
simplification assumed that energy changes resulting from the overall
change of charge from reactants to products would overwhelm the
differences resulting from the small changes in ligand-ion bond-length.
Thus‚ the changing energy along the reaction coordinate due to ion-
dipole interactions will be given by where is the dipole
moment of water‚ q is the fraction of electronic charge at a given point
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on the reaction coordinate‚ and is the approximately constant ion-
dipole distance. As charge flows in‚ the energy of the system at
equilibrium must be corrected by an amount proportional to the change
of charge.

The charge-transfer barrier due to ion-permanent dipole
interactions was rather small‚ and since ion-induced dipole terms

were ignored‚ the only place to seek a charge-transfer barrier
was in the Born charging energy. This varies as where is again
the Bernal and Fowler16 Born ionic radius‚ approximately the radius of
the solvated ion. To a first approximation‚ like may be considered
constant‚ so that the (positive) change in energy on going from charge z
to z – q is where B is the Born continuum energy
multiplier‚ equal to (Eq. 3). To correct the energy after
charge q has been transferred to the equilibrium value for the overall
process the absolute (positive) energy
difference between the initial and final states‚ must be multiplied by q
and subtracted from   giving:

which differentiation shows has a maximum at q* = 0.5‚ so that the
Gibbs energy of activation under equilibrium conditions is

For this is about 49.6 kJ/mole‚ which is
reasonable. Replacing by where f is F/RT
adds the overpotential‚ to the expression. Differentiation now shows

a maximum at so that which
except for the multiplier is identical in form to the Marcus
Eq. (8)‚ with C equivalent to Marcus and The
electrochemical symmetry factor is therefore equal to

In a later paper‚67 Hush further developed his theory and compared
it to that of Marcus. He took into account a change in ion-ligand
distance in the inner sphere by adding a Mie repulsive energy to
the ion-dipole electrostatic term where A is constant‚ n is
large (9-12)‚ and c is the coordination number. By setting the derivative
equal to zero and eliminating A (assumed to be constant along the
reaction coordinate) from the equilibrium expressions for the states with
charges z and z – q‚ we obtain:
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where the values refer to equilibrium states‚ and q replaces Hush’s
to avoid confusion with the Marcus Mie’s equations of
type have an equilibrium energy equal to Again
ignoring ion-induced dipole effects‚ the energy associated with the inner
sphere is approximately given by the ion-dipole term‚ with m = 2
and B proportional to z. Using (12):

As before‚ can be expanded as
far as the quadratic terms the energy change along the reaction
coordinate above the ground states of the reactants and products in
equilibrium. The first two binomial terms vanish‚ so:

Again q* = 1/2‚ so and is rather small
(7-11 kJ/mole). Hush considered to be of the total
activation energy‚ the remainder being Outer Continuum energy. Since
it again contains q(1 – q)‚ introduction of the overpotential as before
again gives a symmetry factor where

A complete model must include the induced dipole term. If it is
initially assumed that is invariant‚ this is

This has the same form and properties of the Born charging
term‚ again giving a symmetry factor proportional to overpotential.
Without the aid of further simplifying assumptions‚ it is not possible to
obtain any exact expressions to show the behavior of the terms when
is allowed to vary. Hush’s expansion to the binomial quadratic term
leads to a harmonic approximation. This suggests that the equilibrium
force constants may be used to estimate the energy changes‚ since these
will include the effect of the ion-dipole and ion-induced dipole terms in
harmonic approximation. However‚ the way in which force constant
change as z – q changes is unknown‚ although if z – q is identified with
bond order‚68 the relationship between the force constant and this term
may be linear. Another possibility is the use of a relationship between z
and the enthalpy of solvation‚ Assuming the straight line log-log
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relationship for the Inner Sphere where K‚ x are constants‚
expansion of gives and:

where For ions of valence 1-4 in the same
range of atomic weight‚ a good case may be made for the enthalpy of
solvation being approximately proportional to If the inner sphere
part follows the same relationship‚ the approximation in (14) becomes
exact‚ with C" = K.  The symmetry factor will again be of the form

In his 1961 paper‚67 Hush modified his outer sphere energy
equation by changing the term to the Marcus expression

because the electron transition time‚ though longer than
that under FC conditions‚ would still be short compared to solvent
molecule motion. This proposition will be discussed later. The q value

at the highest point of the energy surface (q*‚ Hush’s is then
apparently formally identical to the Marcus m. The comparison of the
Marcus and Hush crossing terms is indicated in Figure 1. Hush used
similar expressions to those of Marcus for the continuum parts of the
reorganizational energy in the homogeneous and heterogeneous
electron transfer cases‚ but he correctly pointed out that R' in Eq. (10)
for the heterogeneous electrode reaction at infinite dilution should be
left out in the real solutions which are normally studied.67 Equation (9)
would therefore somewhat understate the activation energy. Hush used
the collision number for the mean frequency for crossing
the barrier‚ where is the reduced mass of the activated complex. He
considered that reaction would be adiabatic‚ since the energy gap
between the upper and lower electronic states at the crossing point
should be about 0.03 eV or 2.75 kJ/mole‚ the order of magnitude of
crystal interactions for transition metal ions. This is sufficient to give a
transition probability close to unity.67 This corresponds to a transition
time for the electron states on the order of allowing a
continuum energy expression containing In a later paper‚69

Hush attempted to generalize his model‚ introducing some of the Soviet
school ideas into the continuum description using the Kubo model for
the small polaron.70 He also discussed adiabatic cases. He treated all
vibrations‚ in both the inner and outer spheres‚ as quadratic functions of
frequency tensors operating on the vector differences between the
equilibrium positions of the initial and final states.69
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Figure 1. Two-dimensional potential energy surfaces in equilibrium (A)
and out of equilibrium (B) for Marcus41-49 Outer and Inner Sphere and
Hush Outer Sphere;67‚69‚176 (C) Hush Inner Sphere50‚67‚176 in and out of
equilibrium y-axes: Nominal energy x-axes: Nuclear configuration as
a function of change of charge. C shows activation energies of 3.75
units at equilibrium (transition state charge 0.5)‚ 2.4 units at –3.0 units
energy displacement (transition state charge 0.4‚ mean symmetry factor
0.45).
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Whether the electron transition time is is debatable. It
corresponds to a single FC transition time‚ whereas the postulate of
“flow of charge” to the inner sphere suggests a change in electron
probability over time‚ i.e.‚ a multiplicity of electron transfers between
the donor and the acceptor‚ with the electron spending progressively
larger amounts of time on the acceptor as the transitions proceed. Each
of these may be regarded as a single radiationless FC electron
transition. Between transitions‚ a small amount of bond-stretching
occurs. Thus‚ a finite number of molecular vibrations of the reactant
occurs as the charge changes from z to z – q and the ion-ligand bond
lengthens. The symmetrical stretching frequencies71 for typical 3+ and
2+ transition metal ions are about 390 and corresponding to
periods of and respectively. Thus‚ a
reasonable minimum time for a flow of charge might be about

corresponding to about 5 vibrational periods. In the absence of a
molecular energy model for the continuum (as distinct from the Born
charging concept)‚ it is difficult to give an opinion as to whether this
time is sufficiently short for the polarization energy term containing

to apply. The relaxation time for distant continuum
dipoles may be about 57 The classical expression for the
limiting value of the Langevin function for small in fields of energy
less than kT at some distance from an ion is 72‚73 If has
its bulk value at r = 10 Å (see Section III) the values will be 0.03
and 0.02 for the transition z = 3 to z = 2‚ corresponding to a change in
the angle of a water dipole to the field of 89° to 88°. To go from the
torsional equilbrium position for a state z to a state z – 1 will require
only a small fraction of a period. If this scenario is correct‚ the more
distant continuum may always be in equilibrium with the changing field
under Hush’s “flow of charge” concept.

6. Inner Sphere Rearrangement and Force Constants

The first Inner Sphere treatment to use force constants to estimate
energy changes between valency states in isotopic homogeneous
electron exchange reactions under FC conditions was given by George
and Griffith‚74 following Orgel.75 The reactants (e.g. and are
considered to be at the distance of closest approach with excited inner
spheres. If the difference in distance between the ion and the c identical
ligands in the ground state is d‚ in its excited state has the ligand-ion
bonds in compression through a portion of this distance‚ whereas
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has its bonds stretched. For radiationless FC electron transfer‚ the sum
of the potential energies of the two reactants above their ground states
should be equal to that of the two (identical) products. The degree of
harmonic compression of each of the n inner sphere bonds of force
constant f in the reactant is x‚ and the degree of stretching of the n
bonds of force constant f in is On instantaneous conversion to
the products‚ becomes with its bond stretched by the amount

and becomes compressed by d – x. The condition for
radiationless transfer is therefore

which can only be true if i.e.‚ the excited system
is symmetrical. Possible activation energies are each equal to the sum
of the energies of the excited levels of the two reactants above their
ground states. Using the symmetry condition‚ each must be equal to

The most probable is the minimum value at
where Thus‚ the minimum value of the activation
energy for a homogeneous redox exchange reaction (i.e.‚ at a Gibbs
energy of reaction equal to zero) will be given by the reduced force
constant expression:

Marcus generalized this reduced force constant expression to
account for other cases‚ e.g.‚ homogeneous reactions between different
ions.44‚46 This harmonic approximation under FC conditions implies the
reaction energy surface represented by the intersection of two
parabolas‚ which are similar in the Marcus generalization. Thus‚ the
relationship between Gibbs energy of inner sphere activation and the
Gibbs energy of reaction is given by an equation of the same form as
Eq. (16). As in the Hush approach‚ the inner and outer sphere energies
at all stages of reaction are additive.

For the electrode case only one ion is involved‚ and it has been
stated that U* would be half of the value given by Eq. (16).76 When the
electrode is a reactant‚ the electron energy is the Fermi Energy‚8 and
there is only one activated reactant. In thermodynamic equilibrium‚ the
Gibbs energy of the grounds states of the reduced and oxidized species
are equal. Consider the harmonic portions of the energy-distance
curves for the reactants and products as in Figure 2‚ in which the
equilibrium ligand to ion distances are and respectively. Writing

as in the homogeneous case‚ solving for the point of
intersection gives the activation energy under equilibrium conditions‚
i.e.‚
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Figure 2. Two-dimensional potential energy
surfaces in equilibrium for the heterogeneous
(electrochemical) equivalent of the George and
Griffith74 homogeneous case involving Inner
Sphere bond-stretching. y-axis: Nominal
potential energy. x-axis: Nominal ion-water
molecule distance. where are
the equilibrium distances of the initial and final
states‚ giving a crossing point energy U* under
equilibrium conditions of
where c is the coordination number and f‚ f' are
the force constants of the initial and final states.

For probable f‚ f' values (f = 2.8f'‚ Sections IV-4‚ IV-9‚ VI-1)‚ Eq.
(17) is indeed about half of Eq. (16).

7. The Franck-Condon Approximation

The FC or Born-Oppenheimer approximation is physically clear if the
activation energy barrier is in the Dielectric Continuum. The reacting
ion is activated by some collisional or vibrational-librational means
from the classical Boltzmann thermal pool‚ so that the rate of activation
is equal to the rate of arrival of energy‚ which is equal to a characteristic
classical electrolyte frequency. The electron transfers when its energy
exceeds that of the barrier due to the inertia of the solvent permanent
dipoles. Marcus41-49 consistently supposed that the medium may be
regarded as a dense gas phase with a collision frequency‚ which in its
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simplest form for the heterogeneous case is given by per
unit area of electrode (c.f.‚ Hush). For a typical transition metal ion
coordinated by six water molecules‚ this is about or

when divided by the width of the reaction zone It may
be equally logical to regard a liquid as a mobile solid‚ with a range of
classical frequencies to a Debye limit of restrahlen type‚ such that

where c is the velocity of sound‚ is Avogadro’s
number‚ and V is the molar volume.77 This is equal to for
water‚ which is close to kT/h at 298 K). After
multiplication by a 5 Å reaction zone width‚ this corresponds to 

Levich stated that there are two types of polarons in polar
liquids‚ namely acoustic polarons and optical polarons‚ with molecular
vibrations in the same and opposite directions‚ respectively. He only
considered optical polarons as important for energy transfer. However‚
an equally good case could be made for acoustic polarons.

Another evident mechanism for energy transfer to activated ions
may be by bimolecular collisions between water molecules and solvated
ion reactants‚ for which the collision number is
where n is the water molecule concentration‚ and are the radii of
the solvated ion and water molecule of reduced mass With

and 1.4 Å‚ this is The Soviet theoreticians believed
that the appropriate frequency should be for water dipole librations‚
which they took to be equal This in fact corresponds to a
frequency much lower than that of the classical continuum in water.78

Under FC conditions‚ the net rate of formation of activated molecules
(the rate of formation minus rate of deactivation) multiplied by the
electron transmission coefficient under nonadiabatic transfer conditions‚
will determine the preexponential factor. If a one-electron redox
reaction has an exchange current of at 1.0 M concentration‚
the extreme values of the frequency factors ( and
correspond to activation energies of 62.6 and 49.4 kJ/mole respectively
under equilibrium conditions for adiabatic FC electron transfer.

8. The Tafel Slope

Electrochemical kinetic measurements show that many reactions have a
rather constant Tafel slope over a wide overpotential range. This is true
for both redox79 and combined electron- and atom-transfer reactions‚
particularly proton transfer.3‚80 None of the approaches discussed above
account for the experimental facts. References 41-50‚ 55-59‚ and 67 all
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give a curved Tafel slope in which the symmetry factor depends linearly
on overpotential. In the Marcus and Soviet FC approaches‚ this results
from the intersection of two similar parabolas as electron energy terms
in molecular configuration space. For the (apparently) non-FC Hush
inner sphere expressions‚ it may result from the binomial square-term
approximations used. Introduction of into the harmonic force
constant expression given in Eq. (17) gives a rather complex expression
corresponding to the intersection of two dissimilar parabolas‚ giving a
curved Tafel plot.

Further problems occur with combined electron- and atom-transfer.
Marcus81 modified his electrostatic theory for bond-breaking and
forming cases by using Johnston’s semi-empirical bond-energy-bond-
order (BEBO) model.68 This does not significantly straighten the log
current density-overpotential dependence.3 The first Soviet evaluation
of bond-breaking was applied to proton transfer82. The first difficulty is
the energy gap between the n = 0 and n = 1 vibration states for protons
in the bond in solvated of 16.2kT at 298 K‚ so the
probability of the proton occupying higher vibrational states and the
proton vibrational partition function are small. Thus‚ Ref. 82 considered
the proton to undergo FC reaction in its ground state‚ which floats on
the classical levels of the electrolyte thermal bath‚ which are continuous
from to ca. to 78 As discussed
earlier‚ thermal activation was considered to be via coupled librations‚
not modified gas-phase collisions. The proton could move from its
initial to final state over a short distance (0.5 Å) by tunneling. The exact
mechanism releasing it from its “cage” of water molecules was not
addressed. In heavy particle transfers‚ e.g.‚ chlorine evolution from
chloride ion‚ a tunneling transition could not occur‚ so the
corresponding theory required ingenious modifications.83 The use of the
FC expressions resulted in the same curved log plot as that for
redox reactions. These approaches were criticized on the grounds that
rotational-librational-vibrational exchange may be enough to give a
sufficient number of excited proton states to sustain the reaction‚ and
because the energy fluctuations resulting from coordinated dipole
reorientation in the continuum would be too small to allow activation4a.

Later publications of the Soviet group attempted to straighten the
log plot‚ starting by postulating straight electron energy terms.59

Later proposals included transitions from excited proton states‚ and a
dynamic ionic atmosphere which could modulate the charge on the
proton‚ abandoning strict FC conditions.80‚84 A semiclassical treatment
of the inner sphere was introduced for redox processes.85 The hydrogen
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evolution process was regarded as a supermolecule reaction‚ in which
the introduction of anharmonicity could result in linear Tafel
behavior.86 Later papers80 and reviews of proton87 and heavy particle
discharge88‚89 regarded the system in a similar way. A recent review90

regards redox processes (simple electrochemical electron transfer or
ECET reactions) as FC Outer Sphere transfers‚ whereas for reactions
involving ion-atom electron transfer (electrochemical ion transfer‚
ECIT)‚ e.g.‚ iodide/iodine‚91 it proposes that the FC condition should be
relaxed.

The theory of charge transfer is apparently still in an unsatisfactory
state. Few developments have occurred over the past twenty years‚ and
theories are still not in good accord with experiment‚ particularly for the
Tafel slope. It is claimed that introduction of anharmonicity into the
intersecting terms under FC conditions can result in straight Tafel
lines‚79‚86 but no molecular calculations substantiate this. A problem in
developing an improved theory are the fact that the energy of
interaction of ions with the Dielectric Continuum is restricted to Born
charging‚ which has no molecular basis. The second problem is the fact
that simple models of the Inner Sphere‚ even if they include ion-dipole‚
ion-induced dipole‚ and dipole-dipole repulsion terms‚16‚92‚93 still result
in bond lengths and force constants which do not agree with
experimental values.71 EXAFS results show an inner sphere
coordination number of 6 for typical transition metal ions‚ and the inner
sphere ion-ligand bond is rather short‚ i.e.‚ 2.0-2.1 Å.94 Addition of
quadrupole terms95 is not enough to correct the simple theoretical
models (see Appendix). Although solvation energy can be represented
as a nominal power series to include the change of dielectric constant
with field strength‚96 this is not helpful in understanding the physics of
solvation.

III. INTERACTION OF IONS WITH POLAR MEDIA TO
DIELECTRIC SATURATION

1. The “Electrostatic Continuum”

The model used for ion solvation energies since the work of Bernal and
Fowler16 has considered simple electrostatic interactions between the
ion and the permanent and induced charges on solvent molecules‚ plus a
term for estimating the work involved in importing the ionic charge
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from its standard state at infinity to the neighborhood of the ion situated
in the Electrostatic or Dielectric Continuum. The Born charging
equation31 for the Continuum treats the ion as a Gaussian sphere with a
solid metallized surface (i.e., a spherical condenser) of nominal radius

to which small elements of electronic charge are slowly and
reversibly transported from infinity. The sphere has a minute initial
charge, and work is done in bringing up each succeeding element. The
resulting integration in a medium of static dielectric constant gives a
Gibbs energy of If the Gibbs energy of the ion in vacuo at
infinity is arbitrarily zero, then the value in the medium of static
dielectric constant is The assumption of
infinitesimally slow, reversible charging is hardly appropriate for a
change in unit electronic charge in a time period of seconds.
The application of Born charging to electron transfer has been recently
reviewed.97 Objections have been raised to the validity of the
calculation, particularly in regard to the indivisibility of the electronic
charge.* 93,98 If the same argument were applied to an electron, the
charging energy and the corresponding relativistic mass would be
impossibly large.97 The equation also does not take into account partial
or complete dielectric saturation near the ion, whose effective Born
radius cannot in any case cannot be considered as a perfectly
conducting sphere. It also does not take into account the differences in
experimental Gibbs energies between positive and negative ions of
similar radius.98,99 It has been claimed that the expression for the “self-
energy” of an ion interacting with the Continuum is free the above
objections.42 This is integrated from nominal ionic
radius to where is the field in volume element dV of state A.
This integral gives which when subtracted from the in vacuo
value gives the same expression as Eq. (3).100 The Born charging
energy and the self-energy expressions are formally identical, and both
derive from the work of charging a molecular spherical condenser with
fractional multiples of electronic charge. Thus the use of “self-energy”
instead of Born charging42 still depends on the validity of the Born
charging assumptions. Born charging will be replaced here by a
molecular model for the continuum interaction. In it, the standard state

* “If an ion can be treated as a conducting or non-conducting sphere, of radius    , and
the solvent as a uniform medium of unvarying dielectric constant D, electrostatic theory
can provide an explanation of the energy and entropy of the ions. The first supposition is
possibly, and the second certainly, false...” (Ref. 17b, p. 881).
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of the solvent dipoles is for the liquid state at infinity and for the ion it
is its vacuum value. The model may be regarded as one in which
dipoles are transported from infinity and assembled around the ion.

2. The Electrostatic Gibbs Energy in a Continuous Polar Medium

The equilibrium electrostatic Gibbs energy of an isolated volume
element dV of a state A in vacuo containing a polarization vector
is where is the electric displacement vector‚ assumed
constant within dV‚ and is the dipole moment per unit volume
induced by the local field. In a real medium‚ a multiplicity of
polarization elements are present‚ all of which contribute to a
polarization field    In addition‚ the imaginary cavity containing a
reference dipole contributes a cavity field‚     which locally decreases

Hence‚ there is an internal field    in dV‚ whose value is
The polarization element interacts with this field‚

which results from the vector sums of the polarizations induced in other
volume elements. The energy summed over all volume
elements is equal to the sums of the individual interactions of the
polarization in one unit with that of the polarizations in all other
elements. Hence‚ the energies are associated with each
pair of units‚ and therefore each must be divided by 2 to avoid double
counting.

The local internal field    is produced by an external field To
account for the Onsager cavity101 in the medium (see below)‚ the ratio
of to is for the sake of generality. By definition‚
the microscopic or local static dielectric constant in element dV‚ which
may be a function of the (external or internal) field. Since

the total electrostatic energy in the volume element dV is
given by:

where (–) represents the overall sign of the term‚ is the (+) work
required to create the polarization when the external field     is
applied‚ i.e.‚ when the electric displacement is switched on. This
work is usually expressed as the integral of the charge e associated with
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the dipole multiplied by the Onsager cavity field     and by the
element of distance dl through which the charge e is extracted by the

field‚ i.e.‚ the expression 102  While         is produced by and

reacts with the internal field‚ its value is conventionally given in terms
of the measurable external field. If the molecular polarization is
proportional to the internal field      so that

where is the number of solvent dipoles per unit volume
and is the molecular polarizability of the medium in dV‚ this
integral becomes

So‚ provided is proportional to the external field‚ i.e.‚
is constant‚ will be exactly equal to This will

certainly be true for solids‚ in which permanent dipoles in fixed
positions realign themselves along the field. In liquids‚ essentially free
rotation of dipoles is assumed‚72‚73 but the creation of polarization in
each volume element by an applied field to give a time-averaged
realignment still requires extraction of charge along the field vector‚
i.e.‚ work to create the polarization. The total electrostatic energy in dV
with constant is therefore i.e.‚

This shows that the induction is reduced by
from the vacuum value‚ not by as implied in derivations putting the
interaction energy equal to 99‚100

The local field consists of the difference between and the vector
sum of the displacement vectors     from all charges in the system
acting in the same direction as The definition of the macroscopic
dielectric constant is This corresponds to the definition from
Gauss’s theorem for parallel fields                  where  is the charge
density on a surface. Comparison of the capacities of a generalized
parallel-plate condenser in vacuo and filled with a medium of dielectric
constant shows that and 100

where is the counterfield induced by the applied external field
is the induced moment per unit volume; is the

number of molecular dipoles of individual moment per unit volume;
is their electronic polarizability; is the Langevin function; and

the total optical frequency and molecular (inertial)
polarization in element A. Because and

it follows that must be generally equal
to i.e.‚ since the derivation does not depend
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on any particular model for the condenser. If is constant in dV‚
then must also be constant. This expression for is valid for a
uniform parallel field and for a spherically uniform charge density and
field distribution. It is at least approximately correct for a spherical
distribution in which the charges (dipoles around an ion) are not
continuous (see Appendix). We shall now use three simple
assumptions: (i) The center of the sphere is occupied by an ion of
charge ze‚ e being the electronic charge; (ii) the electrostatic energy in
dV‚ may be
summed from    to infinity to give the total energy present in the
medium outside a sphere of radius (iii) and are
constant throughout the medium. The validity of (ii) and (iii) will be
examined below.

Since for both a point charge and for a charge uniformly
distributed over a surface‚ and dV is where a is the ion-dipole
center distance‚ the electrostatic energy due to the presence of an ion in
the surrounding dielectric continuum of dielectric constant may be
approximated by the integral:

i.e.‚ it is numerically equal to the Born charging energy of the ion
regarded as a spherical condenser of radius compared with the
corresponding value in vacuo. It is therefore either a Gibbs or
Helmholtz free energy‚ since liquids have very small isothermal
compressibilities. However‚ the “Continuum” is no longer continuous‚
but molecular‚ and the distance defining the energy of interaction of
the charge ze with the Dielectric Continuum is now clearly defined. It
is not the radius of a “hard” solvation sphere treated as a hypothetical
metallic spherical condenser‚ but the distance from the ion to the dipole
centers of the first layer of solvent molecules for which the solvent has
bulk values of and Integration will be inaccurate
when and da are of similar order of magnitude and the total energy



may result from the approximation for the volume
element, the effect of multipole terms, and from the approach to
dielectric saturation. By substituting the exact expression

for dV in Eq. (19), putting the radii of the inner
edges of the nth and (n + 1)th shells equal to 2r(s + n – 1/2) and 2r(s + n
+ 1/2) respectively, where r is the effective solvent molecule radius, and
s is constant, we obtain:

The theory of the dielectric constant of liquid water considers it to
consist of rather freely rotating approximately tetrahedral superdipole
groups.72,73 Its radial distribution function103 shows closest neighbors at
the hydrogen-bond distance of 2.9 Å, and second nearest neighbors at
about the tetrahedral diagonal distance, i.e., 4.74 Å, with no defined
structure beyond. If we assume the superdipoles to be close-packed, the
volume of each five-molecule group from the bulk density of water will
be i.e., their effective radius will be 2.98 Å. Allowing
for, e.g., 8% defects suggests that 2.9 Å is a reasonable effective radius,
so that the dipole center of a time-averaged water molecule may be
considered to be located at the center of the shell of thickness 2r = 5.8
Å.

The series was summed to 20 terms, then extrapolated to infinity
using the integral, which is a good approximation for the small residual
energy. Values of s in the range 0.08 to 0.3 were selected,
corresponding to superdipole center distances varying from 6.30 Å to
7.55 Å. As discussed in Section IV-8, these values lie around a
reasonable range for encountering free water superdipoles from a
central ion, the shorter ones being distance from a small tetrahedral 1+
ion, and the longer one for 3+ ions. The calculations showed that
putting in Eq. (19) equal to in Eq. (20) understates the interaction
calculated by the integral compared with the summation, whereas

The relation reconciles the two. At s = 0.09,
61% of the interaction is in the first shell, and 77% is in the first and
second shell. At s = 0.18 and 0.3, the values are 58%, 75%, and
55%,72%.
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decreases in large finite steps with increasing a. Other inaccuracies

putting equal to 2r(s + 1 – 1/2), i.e., the first shell edge, overstates it.
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Since Bernal and Fowler,16 the charging radius in the Born
equation has been put equal to the Inner Sphere radius, or
approximately the ion to water molecule center distance plus 1.4 Å. At
least for 1+ ions, this gives a fairly good approximation to the Gibbs
energy of interaction of the ion with the outer Dielectric Continuum if

and are constant throughout the medium. High-valency ions are
discussed in Section IV.

We note that contain initial multipliers
and where –L is 98 For water at

298.2 K, the ratio is 1.023.

3. The Approach To Dielectric Saturation

When varies with the ion field as dielectric saturation is

Here, is the integral dielectric constant, i.e., the value
corresponding to the measured values of and When is not
constant, the work to create may not be equal to
When is a function of we require a means of calculating

with various functions verifies that this gives the net energy of

where are always positive and negative, respectively. Thus, in
general:

4. Polarization

In the Marcus nomenclature,41,42 the polarization in polar liquids is u- or
e-type. The u-type is due to reorientation of molecular dipoles by an

approached, and become nonlinear:

interaction of with i.e.,

both and We use the integral 42 Testing
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librations at This is followed by small infra-red bands for

range to beyond (Dogonadze and Kornyshev104). The
assumption that all nuclear motions are a single u-type is an
oversimplification, but the e-type has special properties. Its
polarization vector is always considered proportional to the field at
accessible field strengths, and it always lies along the field vector. In
general:

where is a function of but the electronic or optical
polarizability is not, with limitations to be discussed
later. may be subdivided into two types of molecular displacement
polarizations, namely free or hindered rotations, and translational
or electrostrictive motions, In a uniform applied field, only the
first is significant. However, in the non-uniform field near an ion, both
types will occur, since the dipole will move up-field to maximize its
interaction energy until the coulombic force is opposed by non-
electrostatic contact forces. In a uniform field, non-polar molecules
show no rotation since is always parallel to the field. In a non-
uniform field, electronic induction will cause translation of non-polar
molecules, giving ut-type polarization.

Only has been generally considered in the literature. It may be
written where is the effective value of the permanent
dipole moment of a molecule in the polar medium, lying at a time-
averaged angle to the internal field Because of electronic
polarization due to the fields of neighboring permanent dipoles,
differs from the vacuum value, In the absence of a field, the
permanent dipoles perform thermal motions around positions
determined by their attractive and repulsive forces. The net
electrostatic forces averaged over all polar solvent dipoles are always
attractive, whereas the non-electrostatic contact forces are always

applied field. Its time constant is comparatively long
depending on the type of motion and the degree of molecular
association). In water, maximum absorption occurs in the broad Debye
bands of frequencies followed by thermal infrared
resonance absorption corresponding to restricted dipole rotations or

intermolecular vibrations to The e-type results from high-
frequency distortion of electronic orbitals by the applied field in the
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repulsive.105 The classical statistical mechanical distribution of
values is given by the Langevin function, 106 i.e.,

where and is a further effective dipole moment value
which depends on the structure of the polar solvent, i.e., the attractive
and repulsive forces between individual dipoles. It is the moment of the
smallest average pseudo-freely-rotating spherical specimen of the polar
medium, containing at its center.72 Equation (25) should be
rigorous provided that the structure of the polar medium is everywhere
uniform, there are sufficient dipoles in each population for Stirling’s
factorial formula to reasonably apply, and the energy levels of the
dipoles are classical and continuous, permitting an integration to obtain
the partition function.

The molecular ul-polarization induced in dV by the external field
in a polar solvent is given by:

From Eq. (25), for small x, and Under these
conditions:

Thus, from Eqs. (24) and (27):

where q is a generalized value of The last expression is the
Kirkwood equation72 for the static dielectric constant of associated
polar liquids. From Eq. (26), in general:

These equations were first derived by Debye,33,107 with the assumption
that the relationship between and was for a Lorentz cavity
containing a medium with the macroscopic dielectric constant and no
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permanent dipole, when By elimination of with
for this cavity is

Moving the term to the denominator of the left side of the first
part of Eq. (28) gives the Clausius-Mossotti equation. Onsager101

showed that this theory was incorrect for media containing permanent

the permanent dipole) is Frölich108 considered that if

terms) Lorentz cavity with a dielectric constant then its field within
the Onsager cavity will be times the vacuum value, i.e.,

This expression is limited by the dimensional constraints
of the Onsager and Lorentz cavities,108 and will fail in non-uniform
radial fields near an ion. For water and the practical
value of can be adjusted to agree with that of

independent of and results from the dipoles’ own fields.101 In the
medium of dielectric constant is:

where the terms are respectively the cavity and reaction fields, where r
is the dipolar molecule radius.101,108a Frölich108a showed that only the
first term is important for permanent dipoles, since the second only
changes the absolute value of the dipole moment, which may be
regarded as an adjustable parameter.

5. The Static Dielectric Constant of Water

The effective value of in Eq. (28) may be calculated using various
assumptions. Kirkwood72 proposed that for associated liquids is

where is the electrostatic radial distribution function

is a point dipole in the center of a relatively large (in molecular

medium of dielectric constant i.e., the electron cloud surrounding

dipoles, and that was if the imaginary cavity containing
the dipole has a dielectric constant of unity. Before the hypothetical
introduction of its dipole, but with the field switched on, opposite walls
of the cavity were already polarized by the opposing charges of
neighboring liquid dipoles, partly aligned along the direction of the
field. Thus, the cavity already contained a virtual dipole before
introduction of real dipole, increasing both its net value and that of the
cavity field. The corresponding factor101 for a dipole bathed in a

The total local field is equal to the vector sum of the Onsager
cavity field and the Onsager reaction field.101 The latter is
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summed over the selected molecule and its partners in space. He
substituted for where z is the number of closest neighbors
whose moments are an angle and is the value averaged
over all possible orientations. Neglecting second-nearest neighbors and
multipole effects, he assumed a quasi-tetrahedral structure for water
with 4 nearest neighbors,16 each dipole being at the O–H bond angle,

taken as (in reality, 52.25°*). Each hydrogen bond on the central
water dipole is directed towards the of the oxygen on the
neighboring molecule, which are also at an angle to the dipole, and
perpendicular to the O-H bond plane. Assuming that free rotation109 of
the hydrogen bond, the effective moment of the neighboring water
dipole along the axis of rotation is which is in turn at
52.25° to the dipole axis of the central water molecule. Hence, the
effective value of in Eq. (28) for torsion of the tetrahedral four-
molecule water cluster is Simple electrostatics99

shows that the averaged vector sum of the fields of the 4 nearest
neighbors along the axis of is where a is the
distance between dipole centers. This increases the value of the
vacuum moment due to the dipole field electronic polarization, i.e.,

hence:

where a is the effective hydrogen bond length of 2.9 Å at 298 K,103

which Kirkwood took as 2.75 Å. From Eqs. (28) and (31), we obtain:

For water, with Kirkwood’s
original assumptions (Q = 4.47) give an excellent value (78.0 at 298
K). However, the use of the more realistic 52.25° and 2.9 Å (Q = 3.44)
gives 63.9.

The radial distribution function was obtained by Pople,103 c.f.,
Harris and Alder,110 Haggis, Hasted, and Buchanan.111 Pople showed
that Kirkwood’s assumption of complete hydrogen bonding in the first
shell with none in the second was oversimplified. The first shell
dipoles are bonded to the second via bent hydrogen bonds of bending

*  Discussed in Ref. 99, pp. 10-12.
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force constant g, so that the Kirkwood expression
should be summed over all shells and replaced by

where is the number of dipoles in the ith shell,
which lie at angle to the central dipole. For the first shell,

is The second shell has one repulsive
and two attractive orientations with

Pople found the effect of each shell on the
static dielectric constant using the values from the radial distribution
function. With g/kT = 10 at 273 K, the relative contributions of the
first, second, and third shells were found to be 1.20, 0.33, and 0.07, and
the temperature dependence of the dielectric constant showed good
agreement between theory and experiment.103

6. The Dielectric Constant at High Field Strengths

Approaching dielectric saturation, is no longer proportional to
and we require a usable expression for as a function of

The interaction of such fields with
dipole moments of D will result in interaction energies of less than
0.1 kT, far from the saturation requirement Several
equations have been suggested to relate and 114-117 (see Ref. 113)
Theories of the dielectric constant in high fields by Debye,33,107 Sack,118

and Webb119 using the obsolete Lorentz cavity approach are only of
historical interest. They show a much slower recovery from dielectric
saturation with distance from an ion120 than those based on the Onsager
cavity.* The first attempt to extend the Onsager-Kirkwood theory to
high fields was by Ritson and Hasted,122 who used empirical

Grahame117 and Conway, Bockris and Ammar120 used the normal Poisson distribution
between potential and charge density i.e., under conditions of a

field-dependent dielectric constant. Buckingham121 showed that this is incomplete if
there is a gradient of and The Maxwell relation is

equation becomes

the general attractive orientation being

Malsch112 showed that appeared to be proportional to for

*

the second term arising from the differential. Hence, the complete Poisson
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expressions similar to Eq. (29)** to calculate parallel and
perpendicular to the radius vector of a (univalent) ion as a function of
the field and distance. They did not discuss the validity of their
approach, but they used to obtain the dielectric constant.
Since by definition, their expressions are
identical to the differential dielectric constant 108b. The results
show a very rapid fall in at distances less than Å from a
univalent ion, the fall being more rapid along the radius than
perpendicular to it.

Booth73 used Frölich’s108 modification of the Onsager
expressions101 for the cavity field in non-associated polar liquids, and
corresponding modifications of Kirkwood’s equation for associated
polar media. Booth’s assumptions in deriving Eq. (28) for the
Kirkwood case are important to determine the validity of his final
expressions. He used the Onsager-Frölich cavity field ratio

as the value for in the Langevin function,
pointing out that the cavity field expression would be exact only if

i.e., is everywhere small and constant. To make the calculation
tractable, he assumed the validity of Eq. (30), and that so that
Eq. (30) became:

for simplicity. Using Frölich’s Lorentz

model, first indicating that and
where is the angle between the axes of

nearest neighbor moments, and is the angle between the axes of the
nearest neighbors of a given molecule. He used 1/3 for i.e., he

inside and one outside. However, the error is not serious since the calculations and
graphs are correct.

The reaction field is small and independent of and so he put

cavity with the dipole in an medium108:

where A and B are structure-dependent constants, both unity for a non-
associated (Onsager) liquid. For water, Booth73 used a tetrahedral

** Their equations for the Onsager theory put in the Langevin function, instead of one
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protons in the water molecule. Hence and
Booth’s equations73 for (high fields) and (low

fields) are:

where Making the same assumptions

as Booth’s, Kirkwood’s expression for
would give:

From the Clausius-Mosotti equation, with
and with at 298 K, can be

taken as 1.76. Using Eq. (36) gives (2.03
D, Debye units) for or 2.04 D if the correct (1.484), rather than the
approximate (1.5), value of q is used. In contrast, with the correct value
of Eq. (37) gives 1.92 D. The value of using Booth’s
preliminary model73 is i.e., 2.09 D, assuming that

generalized values of A and B, with a value of
to give the correct result for in Eq. (36). This reduced the

2.54 D. Kirkwood suggested that should be that for the moment of
the central water molecule, whereas the torsional term in the Langevin
function should be that for the group of associated molecules
preventing the rotation of the central dipole. Hence Booth’s result for B

seems reasonable, at least for low fields,
provided that longer-range effects are ignored, and the cavity field
assumptions hold. Booth’s final calculation125 increased the value of B
by 10% to 1.1(7/3), by reducing the value of A from 1,0 to 0.909 to

took to be 180-109.47°, and 1/27, the approximate value for
[90°–(109.47°–104.5°)], where 104.5° is the angle subtended by the

is used to calculate the value of  from Eq. (36).
Calculations by Coulson and Eisenberg123 from the charge

distribution of water molecules suggest a value of about 2.42 D at 298
K due to induction by the fields of surrounding dipoles. In an
erratum124 to Ref. 73, Booth used a statistical analysis to derive more

value of B from to 7/3, giving A = 1, which increases to
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account for the effect of distortion of the Onsager cavity field when the
field is non-uniform close to an ion, therefore no longer parallel within
the cavity. This results in a value of equal to 2.31 D. Booth also
thought that the reaction field (Eq. 31) might also influence the value of

in intense fields, and proposed a small correction in the opposite
direction to account for this. A further effect maintaining the value of
the dielectric constant as the field increases may result from
electrostriction, which should locally increase 125 In view of the
uncertainties in Booth’s assumptions and calculations, a nominal value
of 2.02 D is initially used here. This may be regarded as the local value
of the dipole moment when the effect of the Lorentz-Frölich expression
cavity expression containing has broken down due to dimensional
constraints. The dipole moment value will be modified as necessary to
enable a best fit to experimental bond-lengths for the inner sphere.

If the Langevin function in Eq. (35) is expanded* to the second
term, we obtain:

This is only valid for but owing to the form of
the series, it is a good approximation for values < 1.2. The change in

using Eq. (38) and the general relation:*

where from rearranged Eq. (38) is After
differentiation and solving for we obtain:

The expansion of L(x) is
where is the (2n)th Bernouilli number. The three terms

0.4411). For large x (x > 1.5), gives accurate results (0.4379 at x =
1.5). Thus, from Equations 35 and 36, where p is the even term power
series in the square brackets.

in field from that at limitingly low fields, i.e., may be written
by reintroducing the Onsager-Frölich cavity field, instead of the factor

*

to give quite accurate results to x = 1.5 (for x = 1.5 or L(x) = 0.4381, its value is
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which is a generalized form of the Van Vleck,114 Böttcher,115 and
Schellman116 equations, which are applicable to weak fields

The term in Schellman’s Eq. (19)116 is equal to XB2.

7. Inadequacies of the Booth Theory

Although Booth separated the electronic and permanent dipole
polarization, Buckingham121 contended that omitting polarization
energy from the potential energy function may affect The
interactions between pseudo-freely-rotating superdipole groups of
effective moment 124 may be estimated using Pople’s
geometry103 for the first to third, and second to fourth neighbors at
minus and plus the tetrahedral angle to each other, which results in a
third nearest neighbor distance of a = 7.35 Å with a nearest neighbor
distance of 2.92 Å. The maximum displacement at this distance due to
a rotating superdipole is 24,000 which will result in only a

Lorentz cavity term for closest-neighbor groups, and taking
the mean interaction between each pair103 as with

we find it to be –0.008kT, far less than the free rotation
requirement. For this, the thermal energy per rotational axis should
exceed twice the electrostatic interaction energy per axis. Essentially
free rotation coupled to partial hydrogen bonding of the larger groups
therefore can occur, whereas the individual dipoles are not free. The
specific heats at constant volume for liquids are explained by supposing
that hindered rotations or librations with an energy barrier
occur.126 Similarly, the large change in the static dielectric constant on
melting in polar media, going from a small temperature-independent
value to a large value proportional to the Langevin polarizability 1/T
suggests very different of solid and liquid dipoles (c.f.,
nitromethane127).

Buckingham objected to calculating via the averaging (i.e.,
Langevin) function, since this assumes a simple solution before the
problem is fully stated. However, this seems to be the only realistic
method of handling the problem. Pople’s modified treatment of
Kirkwood’s dipole clusters103 in which the internal field distorts
hydrogen bonding between shells outside of the first cluster, has been

small change in from the vacuum value (Eq. 35). Ignoring the
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discussed in Section III-4. Pople did not consider that work must be
done to bend the hydrogen bonds when the field is applied. This is
because hydrogen bonds are continuously making and breaking, so that
the bent bond is the statistical average, and no net work is required to
go from one configuration to the next. This will be true until the field
becomes sufficiently great to orient, then twist, and finally to
completely line up the individual dipoles in a superdipole group,
resulting in a breakdown of the local water structure.

A further objection by Buckingham was Booth’s use of the rigid
dipole in a Lorentz cavity containing a medium of refractive index
which will certainly break down at short distances. Booth also assumed
that is field-independent, which will not be true in intense fields.
Buckingham and Pople128 showed that the induced dipole was in fact a
power series in the odd terms of and could not contain the even
terms, which would have no directionality. The permanent dipole value
is also a series, with weak field and strong field terms.128 Following
Debye,129 Buckingham121 showed that the electronic polarizability may
be anisotropic. Hence, the dielectric constant is also a
power series, this time with even terms in for an isotropic material to
avoid directionality (c.f., the expansion of the Langevin function,
footnote under Eq. 38). However, Booth had pointed out the even
power series would not be valid in intense fields, which would
themselves introduce anisotropic effects.125 Thus, the expression for the
dielectric constant as a function of the field becomes completely
nominal. Buckingham also showed that (c.f., Ritson and
Hasted122), which he called the incremental dielectric constant, was
also a power series of even terms, each in the series for being
multiplied by n + 1. This is easily verified by differentiation.

8. The Dielectric Constant as a Function of Displacement

The best-known empirical expression for as a function of is
Grahame’s.117,130 Its differential form with vector notation dropped, an
with isotropic and constant is:

where b and m are constants, the latter considered by Grahame to lie
between 0.5 and 2.117 Here was defined by Grahame as the
differential dielectric constant or dielectric coefficient,44,108b,122 i.e.,
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Buckingham’s incremental dielectric constant. The corresponding
integral dielectric constant given by Booth’s equation124 is
the integral of Eq. (42) between the limits 0 and divided by Its
value depends on the value of m, and is:

for m = 1 and m = 0.5, respectively. It has been stated39,99 that Eq. (42)
was based on the theoretical ideas of Booth,73,124,125 but this does not
appear to be the case, since it predates Booth’s work. Grahame130

compared these expressions with Booth’s after his first

compared with Booth’s 11.9 for However, Booth’s
value corresponds to a distance of only 2.0 Å from a univalent ion.
Values at such high displacements are irrelevant, since Booth’s
assumptions concerning water structure break down as approaches 3,

Eq. (38) may be written:

Equation (45) has the same form as Eq. (42) with m = 1, but it
represents the integral dielectric constant. The value of

with
calculated from Eq. (36) using the experimental value of

Units of b are For units of

publications,73,124 using b* derived from
Malsch’s results.112 He showed a rather good correspondence between
the two expressions, particularly for m = 1. For m = 0.5, Grahame’s
integral predicts slightly lower values for moderate fields (e.g., 73.3

i.e., for fields greater than about This is discussed later
in this Section. Equation (43) (m = 1) was used by Laidler and

compared with 73.5 for Booth’s expression for
corresponding to 3.75 Å from a univalent ion). At very high fields, Eq.
(44) predicts higher values than Booth’s expression (e.g., 19.4

coworkers37,131 with to examine the dielectric
behavior of water near ions and their electrostatic repulsions.

The relationship of Eq. (42) to Booth’s is of interest. For

*
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This we may put equal to b'/m, where m is unknown. The
quantity b' is analogous to Grahame’s b, but is an integral quantity

derived from Malsch’s experiments with fields up to 833
112 The correctness of Malsch’s data has in any case

been questioned, since he did not allow for adiabatic heating.132 As
Grahame pointed out,117 m does not enter into the term in the
binomial expansion of Eq. (42). We can infer the value of m by
comparing the coefficients of these and the term in expansions of
Eqs. (35) (see Eq. 38 footnote) and 42, i.e., and

giving m = 7/13 = 0.538. This approximate fitting using the
first two terms provides a starting point to give a simple and convenient
function mimicking Booth’s. As might be expected, the error is least at
small to relatively large fields (at vs. 61.18 for
Booth, a difference of –0.8%). It becomes greater as fields increase,

slightly adjusted with m = 0.5 in Eq. (42),
gives a very good fit with Eq. (35), as Figure 3 shows. At
the error is –0.05% compared with Booth, with –5.8% at
This use of smaller m values can further improve accuracy in very high
fields (e.g., m = 0.485, –1.0% at but small changes then
occur at lower fields (+0.09% at

Why this equation fits so well is clear from the expansion of Eqs.
(42) and (35). In weak fields and Eq. (42) becomes

which corresponds to Eq. (41), whereas Eq.
(35) may be written:

be used to mimic

derived from the experimental rather than a differential quantity

e.g., at it is 10.3, vs. 11.9 for Booth, a difference of–
15%. All things considered, representing Eq. (42) as an expression for
the integral, rather than the differential dielectric constant, using a

In intense fields, approaches and it is easily verified
by calculation that in Eq. (46) coincides closely with (1

from Eq. (42) for Thus
Grahame’s Eq. (42) with m = 0.5 may act as an excellent replacement
for Booth’s expression (Eq. 35) for the integral dielectric constant to
simplify calculation, if necessary. It also suggests a function which may
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Further progress requires an expression for as a function of
i.e., as a function of distance from an ion. From Eqs. (35) and (36), the
Booth expression for in terms of is:

This expression may determine the relationship between as a
function of in intense fields, e.g., for x > 3, when the approximation

applies. However, it assumes classical statistics, so it
will require a quantum correction for x values in this range, assuming
that the Langevin function is still applicable. For smaller values of
Eq. (48) may be solved graphically. A more transparent expression for
small values would be useful. Equation (42) with m = 1/2 leads to a
quartic equation in which may be simplified by expansion to a cubic

with substitution of Eq. (47) into Eq. (42). This gives a simple and
useful approximation:

with which is rather accurate for
above which the classical theory may in any case not be applicable.
The value of both and b will depend on temperature and solution
composition and concentration.

How the polarization opposes the displacement in intense fields
can be shown by using the approximate expression for derived
from Eqs. (45) and (49):

Since is close to unity for associated polar liquids,
only depends strongly on the value of the electric displacement. From
Eq. (50), to a good approximation up to x = 2.5:

So long as and are proportional to the polarization
produced can oppose the displacement. When tends to its high-

expression. A solution is the use of Booth’s approximation and
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field value of 1 – 1/x starting at about x = 3 the
polarization can no longer oppose the displacement, so falls rapidly.

For Eq. (35) gives at
whereas Eq. (42) with m = 0.5, and Eq. (49), both with
give and 53.2 at the same displacement, corresponding to
distances of 2.55 Å, 3.60 Å, and 4.41 Å from ions with z = 1, 2, and 3
respectively. In this range of and the Booth expression may be
in error as the structure of water begins to break down in high fields. At
smaller values of the error would much less, e.g., for x = 1, the
values are 73.6 and 73.5, respectively at i.e., distances
of 3.75, 5.31, and 6.50 Å for z = 1, 2, 3. For x = 2 the corresponding

limiting value of should cover all requirements for calculations
involving the outer solvation sphere and corresponds to a upper limiting
value of x and which may be reasonably consistent with Booth’s
simplifying assumptions. This is further discussed in Section III-12.

So far the mean Gibbs energy of interaction between an ion and a
single dipole (Eq. 18) has been ignored. This should not be confused
with the effective potential energy to describe the dynamics of
superdipoles of effective moment The moment

of the central dipole of each superdipole group is
The latter, multiplied by the field and

is the potential energy required to torque the central
dipole to a thermally-averaged angle to the internal field. The Gibbs
energy of interaction between an ion and a single dipole (from Eq. 18)
at low to moderate fields is while the
Langevin potential energy is i.e., their ratio is
where A and B are from Eq. (35). From Eq. (49), this becomes

At when the Booth theory
predicts at an value of (6.7, 9.4, and 11.5 Å
from ions with z = 1, 2, and 3), the Gibbs energy of interaction is
already 0.33kT. At it has become 3.3kT, and at
This approaches the strength of hydrogen bonds, so water molecules
will become successively stripped from the tetrahedral super-dipole,
and the associated Kirkwood-Booth structure will finally approach that
of a non-associated Onsager liquid. The tetrahedral group will first line

superdipole to the field is then This

values would be 63.5 and 64.0, with and 2.86, 4.04,
and 4.95 Å. The extent of structure-breaking at x = 3 (i.e., when the
interaction energy between the librating or rotating dipole and the
cavity field is 3kT) is indicated by the fact that the average angle of the
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up with the three nearest dipoles and the central dipole towards the ion,

giving a B value > 4* . The initial increase in B, i.e., increase in x, will
result in an approximately 30% decrease in but both of these are
more than compensated by the increase in B in the expression for
energy of interaction. As B decreases to the Onsager value of 1.0, the
interaction energy becomes slightly more negative, but the dielectric
constant will show an increase of ca 25% over the original value, since
x becomes smaller. Whether these changes are significant is difficult to
tell, since they should be approximately compensated by the fact that
Booth’s assumptions regarding the Onsager-Frölich cavity field for
and the Lorentz cavity for will begin to fail. As stated earlier, the
Langevin derivation assumes free rotation. The transition from free
rotation to vibration occurs at per degree of freedom. At
energies above the limit, the fraction of molecules still capable of
rotation will drop rapidly. Most molecules will be vibrating in
alignment with the field. Thus, the mean angle to the field will drop
more rapidly than predicted by the Langevin function, which in any
case will require a quantum correction. Hence, under intense-field
conditions, Booth’s “bottom-up” approach to the dielectric constant
would be best replaced by a “top-down” analysis.

For dipoles close to an ion, it may be assumed that the interaction
between the permanent moment and the ion displacement may be given
by rewriting Eq. (23) as follows for a single dipole:

where is defined in Eq. (22). This assumes that the Lorentz and
Onsager cavities have disappeared, so and the permanent
moment has reverted to its vacuum value. The angle between the
moment and the displacement can be assumed to be 0. The induced
dipole will be calculated separately. Since we
obtain from Eq. (22):

Booth124 suggests 5, but this seems unlikely. The tetrahedral group will be expected to
take up an orientation with the base of the pyramid towards the ion. Two the base water
molecules can rotate to align themselves in the direction of the ion, while the other must
be bent through about 50°. The other two dipoles will be less affected by the field.

*
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which is equivalent to the familiar expression used by Bernal and
Fowler,16 in which the negative term is the repulsive energy
per dipole due to the presence of all other dipoles in the system, and

is the work to detach the selected dipole. This work may be
calculated by integration:

where are the values corresponding to the lower limit of
structure-breaking, and are the values close to the ion. However,
in view of all the uncertainties given above, may be equated to the
work of breaking one hydrogen bond (although some degree of
hydrogen bonding may be possible at the side of the dipole away from
the ion).

We now note that in Eq. (35), the local dielectric constant is
equal to so that it may be calculated in a “bottom-up”
manner if the average geometries of successive shells of dipoles are

dipoles per shell increases as so the summation should be carried out
until sufficient accuracy is achieved. Section IV attempts to do this for
the inner, second, and third shells.

9. The Ion-“Continuum” Interaction in Polar Liquids

From Eqs. (18), (23), and (24):

Using Eq. (49), which is valid to Eq. (44) may put in the
form:

known. The dipole field is proportional to but the number of
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After putting expanding, and integrating from to the
result is:

where and (with a in Å). We are
interested in values for z = 3 of about 5.2 Å, where the terms
corresponding to the advent of dielectric saturation make no more that
about an additional 0.04% contribution to the total Gibbs energy of
interaction of the ion with the continuum.

Buckingham96 reached a similar conclusion using a Born “self
energy” argument. Instead of using with

electrostatic energy density in dV, 133, integrated from 0 to
multiplied by integrated from to He expanded

in an even power series,121 concluding that the distances in second
and higher water dipole shells made the higher terms negligible, thus
dielectric saturation there could be ignored.

As in Eqs. (19) and (20), the integration here is to and so
represents the infinite dilution case. In the relatively concentrated (0.1-
1.0 M) solutions used in electrochemical kinetic experiments, the
summation or integration should be taken over the appropriate number

of shells to electroneutrality. Since the Debye-Hückel approximation*

will not apply to such cases, this will not be identical with the Debye
reciprocal length, but may be given by a pseudo-lattice
approximation.134

It follows that an equation of Born type, but based on different
physical principles (Eq. 56) is a good approximation for the continuum
energy in dipolar liquids up to the onset of dielectric saturation at x = 3,
provided it is integrated from an appropriate distance somewhat less
than that of the superdipole center of the innermost solvation shell from
the central ion. This corrected radius will differ from the distance from
the ion to the dipole centers of the solvation shell under consideration
by about 50% more than the radius of a water molecule.

* The Poisson equation should in any case not be applied where there is a gradient of E,
e.g., in radial geometry121, see footnote on p. 207.

integrated from to he used its equivalent differential for the
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10. Induction Effects

Moelwyn-Hughes93 examined the ion-solvent interaction energy outside
of the first coordination shell or Inner Sphere by a non-Born charging
method using the same Inner Sphere induction term as Bernal and
Fowler16 and Eley and Evans,92 i.e., with

(c.f., discussion under Eq. 18). He also used the Inner Sphere
expression for the nuclear part of the polarization, i.e., without
no dielectric constant or orientational term The use of this

(incomplete)** expression (see Eq. 18) for the nuclear part of the
polarization led him to believe that the interaction between an ion and
permanent dipoles outside the first coordination shell could be
disregarded, since it results in a physically meaningless integral for the
Gibbs energy, i.e.,

The correct expression for this interaction to L(x<3), i.e.,
(Eq. 19) has the same form as that for the induced

dipole energy The use of the combined expression
with (Eq. 19) ensures that it contains the induced
electronic component, equal to about 2.3% of the total at 298 K.

11. Polarization of ut Type

The possible presence of polarization of ut type induced in the
non-uniform field rather close to an ion, but still within the validity of
the assumptions of Eq.s (48)-(51), (57), and (58) is a possible source of
error. Physically, ut polarization consists of dipole translation along
field towards the ion, increasing the local value of and

To examine this requires knowledge of the binding forces and
energies between water molecules. The potential energy Mie function
for each pair is137

Marcus43a, following Mandel and Mazur135, and Brown136 stated that many earlier
expressions for the polar term for intermolecular energy were incomplete or wrong.

**
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where A, B, and C are constants, d is the distance between the dipole
centers of nearest neighbors, and are structural factors covering
interactions with next-nearest and subsequent neighbors. B is the sum

where Z is the number of electrons, of frequency

D,123 giving Ref. 137 assumed no dielectric
constant in the summation of to infinity, which cannot be correct.
No dielectric constant may be required between nearest neighbors (see
later discussion), but an term is required for next-nearest and
subsequent neighbors. Since this will be large, longer-range
interactions and may be neglected.

The minimum energy for two pairs of nearest neighbors, is 49.18
in liquid water.138 The hydrogen bond distance d is 2.76 Å at

the melting point and 2.9 Å at 293 K.103,138 C is where f is a
function of the nearest-neighbor angles, with a maximum value of 2.137

Putting the differential of Eq. (60) equal to zero at d = 2.9 Å, and using
Eq. (60) with equal to ergs per dipole pair gives A =

and i.e., The
number of nearest neighbors in liquid water138 is actually about 4.4-4.6.
With this correction, C falls to but Pople103 indicated
that using more than 4 nearest neighbors is unjustified, since the larger
numbers result from the partial collapse of the second shell. The
expression for the interaction of two dipoles139 inclined at half of the
H–O–H bond angle of 104.45° 140 gives f = 1.23. The simplest model
for the charge distribution95 is derived from Rowlinson,141 but it places
all of the negative charge on the oxygen, rather than located
symmetrically out of the H-O-H plane.142 Better models will include
the lone pair geometry143,144 or use the central force potential145 using
repulsive terms for H...H and O O, and an attractive-repulsive
potential well for O H.

Duncan and Pople (DP)143 placed the lone pairs at ±60.1° to the
dipole axis. With one end of each molecule aligned at this angle, and
the other aligned at half of the bond angle gives f = 1.30. These values
assume that the field corresponds to that of a simple dipole of
vanishingly small length. An accurate calculation using the DP charge
distribution (Section V) shows much higher local fields than predicted
by the assumption of simple dipoles at distances of 2.9 Å from the
oxygen atom. The fields in line with the H–O axes are ca. 40% higher

of two terms, the first being the dispersion energy,

the second being the electronic induction energy,137 where
may be put equal to an effective liquid water dipole moment, e.g., 2.42
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than those for an oriented dipole with the Coulson-Eisenberg
moment,123 and those along the sp hybrid orbital–O axes are 10%
higher. This explains why the calculated dielectric constant is
somewhat low.103

The above results give us the possibility of calculating the
distortion of the water structure in the shells surrounding the
coordination shell or inner solvation sphere of an ion, and an estimate
of magnitude of the electrostrictive or translational polarization energy
in the continuum to the point of partial dielectric saturation near an ion.
The inner shell for 2+ and 3+ ions is a puckered
trikisoctahedron,39,146,147 with dipoles in two overlapping layers at
different distances. The dipoles in the (distorted) shell next to the eight
outer trikisoctahedron dipoles for ions with z = 3 have centers
averaging approximately 5.0-5.2 Å from the central ion. Looking at the
system from a simple one-dimensional viewpoint (i.e., along the
direction of the electric displacement), it is possible to set up a series of
simultaneous equations involving the differentials of Eq. (60) and the
differential of to give the forces between the various layers.
These equations can be solved graphically after being all set equal to
zero to allow the amount of electrostriction between the layers to be
estimated. The results show that z = 3, the distance between a water
dipole with its center initially situated at 5.2 Å from the ion before its
charge is “switched on” will translate down the field. However, the
one-dimensional translation will be hindered by lateral compression, so
that the effective translation will be only about 0.025 Å. A dipole
initially situated at 5.5 Å will correspondingly move by 0.02 Å. A
dipole situated in the next shell, at about 9 Å from the central ion will
move by Å. The movement in subsequent shells will be
negligible. The corresponding increases in interaction energy
(proportional to is about 2% at 5.2 Å for z = 3, and 1.8% at 5.5 Å.
The cumulative motion in the shell at 8.0-8.3 Å (about 0.03 Å) results
in increase of about 1.5%, a percentage which falls slowly in
subsequent layers (e.g., 3% at 10.9 Å). Both the small displacement,
and the small change in interaction energy are approximately
proportional to so these figures must be multiplied by about 0.44 for
z = 2, and by 0.11 for z = 1. A calculation to determine the energy in
individual shells suggests that the predominant terms
adds about 1.5% to the total electrostatic energy in the continuum
measured from r = 5.2 - 5.5 Å for an ion with z = 3, about 0.7% for z =
2, and less than 0.2% for z = 1. The electronic polarization energy
terms will be similarly affected. For z = 3 and r = 5.2
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The estimated electrostrictional molar volume change
(0.144 x 18) is This is in good agreement with the
estimates of Desnoyers, Verrall, and Conway148 for this field strength.
The effect of the term on the interaction energy of
interaction up to dielectric saturation is small, but not negligible.

12. Quadrupole or Multipole Effects

A trigonometrical calculation96 shows that an water quadrupole-ion
displacement interaction energy at ionic (charge ze) distance a from the
dipole center is:

where partial charges are on the protons and oxygen, 1, y are the
dipole length and half of the distance between the partial positive
charges, is the angle of y to the plane containing a and the dipole axis,

and is the mean angle of the dipole axis to the field. The
± signs before the angle independent quadrupole terms refer to positive
and negative ions respectively, i.e., if a is measured from the dipole
center, the interaction energy to a positive ion is more negative than that
of an equivalent simple dipole. In most texts, ion distance is measured
from either the geometric center or center of gravity of the water
molecule. The latter is situated about 0.066 Å from the oxygen atom,
so a further term must be added within the
square brackets. The effect of the differently defined quadrupole
moment may be to reverse the difference between the ions at constant a
(see Appendix).

Equation (61) is for a simple molecular quadrupole.
Assuming free rotation, the average value of giving a ratio
of the mean quadrupole to dipole interaction equal to
or from Eq. (50) and the definition of

After inserting numerical values,* this is

with a in Å. Multiplying Eq. (57) by this amount and
integration from to gives:

* Dipole length l = 0.5871 Å, bond angle 104.45°, bond length 0.9584 Å140, hence y =
0.7575 Å.

Å, the estimated dielectric constant is 63.5 from Eq. (35), and
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where t is defined under Eq. (57). For z = 3 and the first
quadrupole term contributes only about 0.1% to with negligible
contributions for higher terms. The same argument should be applied
to DP multipoles in Kirkwood tetrahedral groups, but there is no reason
to believe that the result would be very different.

13. At Dielectric Saturation

The local dielectric constant is only
for a constant, parallel field. The factor 4 in will become
smaller at small distances, when individual dipoles are no longer parts
of quasi-continuous shells of charge (Appendix 1). Within the limits of
his assumptions, Booth rather rigorously obtained an expression for
containing the Langevin function, whose derivation uses the Boltzmann
distribution and classical statistical mechanics. These may both become
invalid for a small cohort of dipoles whose interaction with the field
approach kT. In a parallel field, a large number of dipoles of all
energies may be readily found, so that Stirling’s formula for factorials of
large numbers used in deriving the Boltzmann distribution depends
should be satisfied.

In radial fields near an ion, the population of Langevin dipoles in a
given interaction range becomes rapidly less with decreasing ion-dipole
distance, e.g., in a shell of thickness 5.8 Å with a center at 6.3 Å there
are about 20 superdipoles, with about 5 times as many in the next shell.
A less approximate Stirling expression

gives an acceptable value for N! even for small N (–7.8%, – 4.0%,
–2.7%, –1.4% for N = 1, 2, 3, 6 respectively). The modified
Boltzmann distribution then is approximately:

where is the number of molecules in the ith state of energy in a
total population of N molecules. The numerator and the partition
function f in the denominator contain the weighting factor
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for each As a minimum (see above), we are interested in values
corresponding to a fraction of the subpopulation of molecules in the
first shell for 1+ ions, whose motions (see below) have transitioned
from free rotations to large amplitude librations under the influence of
the ion field. The distortion in the energy distribution function is to
give smaller weighting factors for large and small The smaller f
values will result in smaller mean thermal energies than the classical
Boltzmann values, which will generally result in smaller mean angles of
the dipole to the field, i.e., somewhat smaller effective values of near
the ion than Booth’s theory predicts. This error will become
progressively less so for successive shells.

The Boltzmann distribution assumes no interaction between
molecules, i.e., an ideal system. When dipoles are oriented by a strong
field, they interfere with each other. In relatively weak fields, free
rotation of solvent dipole groups occurs, as the Kirkwood-Booth model
of the low-field value of the dielectric constant requires. The
Schrödinger equation for a rigid rotating dipole cluster of effective
moment undergoing planar rotation in an internal electrostatic field

is:

angular displacement from E is kinetic energy, and
with as in Eq. (34) and equal to the distance from an ion. The
other symbols have their usual meanings. This equation has one total
energy minimum at Similar wave equations with two minima (at

and for hindered rotation in a crystal) and for three-dimensional
rotation with n minima (at etc., for hindered internal
rotation of, e.g., groups within a molecule rotating in space) have
been evaluated.149,150 The eigensolutions for such equations transition
from those for a non-degenerate free rotation (when V << 0.25kT) to
approximately those for a harmonic vibration (when V >> 0.25kT).
From Eqs. (35) and (36), this transition will occur at practically the bulk

value at 7.3, 10.3, and 12.6 Å from ions with z = 1, 2, and 3
respectively. For z = 1, this is a little beyond the center of the first
Continuum shell, while for z = 3, it is closer than the center of the
second shell. At the center of the first Continuum shell at 6.3 Å for z =
1 ions (Sections III-2 and IV), Eqs. (49) and (35) show x = 0.34 and
= 77.8. For z = 3 ions at 7.6 Å, the corresponding values are x = 0.72

where is the mean angle between the dipole and the field, is the
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and Under these circumstances, Booth’s assumptions
(including the use of the classical Boltzmann distribution may still
approximately apply), and the superdipoles with maximum energy of
kT per axis will be performing large-amplitude librations. The
frequency of free rotation of superdipoles under energy
equipartition conditions at 298 K is estimated as in
Section VI-1. The libration frequency151 will be slightly less at

Both are well within the classical range, so quantum
corrections to the energy function are not required. Thus, we conclude
that while physically, Booth’s assumptions and the approximations
considered here may still have value to x = 3, in reality, they can be
abandoned at x = 0.3-0.75. At higher field strengths, the dipoles
become fully oriented and dielectric saturation rather suddenly occurs.

We therefore arrive at Eq. (53), the classical expression used by
Bernal and Fowler16 for the inner sphere, with the addition of a small
additional term, which may be regarded as a term for the break-
up of the solvent structure, which can be replaced by an estimate of the
energy to break the structure of water.

14. Summary of Ion-Solvent Interactions

The above discussion shows that the electrostatic free energy of
solvation can be divided into an coordination shell or inner solvation
sphere in which is close to 1, where the interaction depends only
on and an outer solvation sphere where the interaction
depends to a good approximation on Eqs. (55)-(57), but in which the
electrostatic Gibbs energy may be approximated by the integral in Eq.
(58), which resembles the Born charging equation, but it is obtained in
a different way with a more definite physical meaning.

An accurate estimate of the electrostatic Gibbs energy of
interaction between an ion and the polar molecular “continuum” should
be summed to the point of electroneutrality over all time-averaged
solvent molecule charge positions and configurations, but a sufficiently
accurate expression may be obtained by the above integration from a
carefully chosen minimum distance. This distance is the weighted mean
of the dipole center distances in the first shell of the continuum
surrounding the solvated ion, minus a correction term equal to about
2.00 Å. Almost 60% of the continuum energy is typically in the first
“outer” shell, which is characterized by a somewhat lower dielectric
constant than the bulk value estimated by the Kirkwood-Booth
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theory.72,73,124,125 However, since the local value of the dielectric
constant, enters into the final energy expression via a factor

the overall change in Gibbs energy due to the change in dielectric
constant is small. Grahame117 reached a similar conclusion using Born
charging in conjunction with the differential dielectric constant, Eq.
(42).

To a good approximation, the quadrupole or multipole model of
the water molecule may be considered to be a dipole to estimate the
electrostatic Gibbs energy of interaction with the continuum. Booth’s
expressions73,124,125 for the dielectric constant break down more rapidly
in large radial fields than in parallel fields. The dielectric constant to be
used under these conditions can only be determined by evaluating the
opposing local counterfields. The limit corresponds to where
Booth’s model would begin to be increasingly inaccurate if it were still
physically relevant. Because of the abruptness of the change from high
values of the local dielectric constant to essentially vacuum values,
Bernal and Fowler’s division of the energy of interaction of an ion and a
dipolar solvent into Inner and Outer Spheres16 is justified.

IV. THE INNER SPHERE(S)

1. Multivalent Cations as Trikisoctahedra

A model is given here for multivalent cations with large Gibbs energies
of hydration with “puckered” trikisoctahedral39,146,147 primary or inner
solvation shells. These dipoles are in direct line-of-sight of the ion and
have an intense interaction with the displacement in a given volume
element dV. It has been suggested that they may be surrounded by
monomeric water, depending on the ionic charge152, but this improbable
given the discussion in Sections III-12 and -13. Multivalent single-
atom anions should behave like cations, but large multiatomic anions
should have a single-shell structure.

It has been generally assumed16,92,93 that the Langevin function
for these dipoles will be close to unity. Because of the close line-

of-sight interactions, the assumptions required for the presence of
Onsager and Lorenz cavities fail under these conditions. Frölich’s
requirement108 that the cavity must be a spherical volume large enough
to have the dielectric properties of a macroscopic specimen, and contain
a sufficient number of charges to be treated by classical statistical
mechanics cannot be so next to an ion, where the internal to external



field ratio will be close to unity, and the effective moment should
be close to the vacuum value (discussed under Eq. 37).

Booth’s theory73,124,125 predicts that will fall to in intense
fields, however the space involved in ion to nearest-neighbor-dipole
interactions is not bathed in an electronic medium. The ion itself is not
polarized, since there is no net field in spherical symmetry. Thus,
should be unity for the primary shell and other nearest-neighbor
interactions, c.f., Bernal and Fowler,16 Eley and Evans.92 The dipole
fields opposing the ion dielectric displacement may be
calculated from the fields of nearest-neighbor and more distant dipoles
to obtain the local dielectric constant Components
of determine the repulsive energies between pairs of dipoles, and
produce the net external field  whose internal field
creates induced dipoles. Previous work10,92,93,152 has generally ignored
the effect of the dipole fields on induction, which can lead to
considerable error for high-z ions with up to 14 trikisoctahedral dipoles.
At dielectric saturation, the Gibbs energy of ion-nearest-neighbor-
dipole interaction is given by Eqs. (52) and (53), with and
close to unity, with close to With we
obtain the equivalent of the Bernal and Fowler expression16 for the
inner sphere ion-permanent dipole interaction:

in which is the energy per dipole due to the presence of all
other dipoles in the system, and is the work to detach the dipole
from its environment in the presence of In principle, may be
calculated (Eq. 54). Work is first required to orient the axes of freely-
rotating transient groups of superdipoles, then more is needed to detach
water molecules from these. Per dipole, this may be equated to the
work of breaking a maximum of one hydrogen bond, since some
hydrogen bonding should always be possible in the direction away from
the ion.

The inner sphere of relatively small ions is generally accepted to
have 4 or 6 dipoles in symmetrical tetrahedral or octahedral
coordination, depending on the ion size and charge. In principle, these
might respectively accommodate 4 and 8 other oriented intercalated
dipoles as a second shell. In the tetrahedral case, the second dipole
group would be at  from the first, where is the tetrahedral
angle, i.e., at 70.53°. In the octahedral arrangement, the second set are
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at i.e., at                 from the first. The octahedral
arrangement is most frequent with high-z ions with octahedral d-
orbitals, which make at least some contribution to their solvation
energies.153

If the ion-dipole center distance is 2.75 Å and the overall packing
corresponds to the closest approach distance for water (taken as 2.76
Å), then the second set of dipoles are 15% further away than the first,
whereas if it is 2.5 Å, the second group are 31% further away. The
concept of a tightly bound inner shell and a more loosely bound second
shell offers a good explanation for the coordination number (c) and
hydration number (n). 154,155

Inner sphere equilibrium solvation energy calculations have
generally used rather simple models, rather than attempting to
determine the energy well parameters. Bernal and Fowler16 included
ion-permanent dipole and ion-induced dipole terms with Van der Waals
attractions and Mie ion-water repulsions, with no exact calculations.
Eley and Evans92 replaced the permanent dipole term by point charges,
and Moelwyn-Hughes93,98 used Mie repulsive terms. Since the
quadrupole concept was introduced,96,141 a quadrupole term has
generally been added to the permanent dipole term.154 Often154,156 no
Mie repulsion term has been used, the ion-dipole distance being taken
as the ion crystal- plus water molecule radii, where a reactive wall
occurs. Such a model cannot give a correct description of the energy
well and the force constant.  The pair potentials144,157 used in molecular
dynamic simulations in recent years are also rather simple, and do not
use the feedback of electrostatic fields.145,158

2. Inner and Second Sphere Energies

From Eq. (18), the potential energy of interaction of permanent
and induced dipoles close to an ion may be written:

where are the work to create the dipoles, are the
dipole field vectors along the ion displacement and axes, and the
terms are the Mie repulsions between the dipole, its closest neighbors,
and the ion. The factor 1/2 in the terms avoids double counting.
Following Eq. (18), giving:
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The work to break up the superdipole structure in associated polar
liquids is small compared with We see that the repulsive
interaction between the induced electronic dipole and the total dipole
field along the displacement axis has disappeared, i.e., all repulsive
energy terms for each and pair are included in their work of
formation, and repulsive terms containing only involve those
between permanent dipoles, giving an important simplification. If

required, the appropriate quadrupole corrections can be added to the
values along the axis of each but this greatly complicates the

calculations. By definition:

The dipole field creating along the ion displacement axis is a
geometrical function of all permanent dipole and induced dipole
terms for a system of n dipoles:

where the terms are geometrical factors associated with the
displacements for jth dipoles of each type. If appropriate, these may
contain the optical refractive index A similar equation is written for
each and the simultaneous equations are solved for each for the
given system geometry. The net field along the ion
displacement axis is thus obtained from Eq. (68), giving the local
dielectric constant A simple illustration
for two dipoles of induced moment with centers at distance x from an
ion, both permanent moments inclined at to the ion displacement
has Rearranging:

The first water molecule model used here assumed for simplicity that the negative
dipole charges are at 0.15 Å from the oxygen atom center, in the H-O-H plane

92, 159.

This was modified as necessary as the fitting proceeded. This model results in a dipole
length of a 0.436 Å. At the distances considered (with x at about 5 times the dipole
length), the repulsive terms for a dipole differ from those of an aligned water quadrupole
by less than 1%. However, both the axial field term, and the potential energy of
interaction estimated from the point charges are 12-13% higher than those for the
corresponding and terms for the corresponding quadrupole approximation.

*
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where g is the appropriate geometrical factor, the numerical factor
2.377zx (with x in Å) is the ratio

For the dipole array in question, and putting
the dipole field along the axis of each dipole will

be so the interaction energy of one dipole with the

*

with nominally equal to
is2.02 D, and At typical values

of x for z = 1, is such that is rather small (e.g., It
becomes much more important for z = 3. This is performed for all
dipoles in the system until the necessary accuracy is obtained. Often it
is only necessary to consider dipoles of one type in a single shell, as
above. Some properties of such an assembly of permanent dipoles may
be illustrated by considering a simple model of a line of permanent
dipoles with an effective number of closest neighbors equal to n (a
Madelung constant for the line160), at a closest neighbor distance
The dipole displacement at an angle to a line intersecting the center
of a dipole at an angle at a distance and where are the
angles subtended by the planes containing the angles and and a

reference plane containing the line (Figure 4)* is given by139:

others is where the 1/2 avoids double counting. The dipole
field perpendicular to the line opposing the displacement

The field orienting the dipole array isbe equal to
will

so
allowing to be calculated. For simplicity, is assumed
independent of but the electron distribution will be anisotropic
due to the directional nature of the chemical bonds.99,121 The electrical
potential energy of each permanent dipole is:

The description of the angles is unclear in Ref. 139.
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Figure 4.  Dipole field angles.  ABCD is a reference plane.

where the term is the potential energy of a dipole in the
undisturbed dielectric fluid. Equation (73) minimizes at for

and at at
To illustrate the properties of a spherically symmetrical dipole

assembly around an ion, we first consider only permanent dipoles to see
the effects of counterfields and repulsion terms. If the examination of
second and third shells shows little effective energy for permanent
dipoles, there is no point in examining induced dipoles, since the
induction fields will be negligible. In spherically symmetrical systems
are more complex than the above examples, but show similar
characteristics. The axial field terms due to each neighbor type
depend on the angles via a multiplier equal to

where is the angle between
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the displacement axis and the line joining the centers of neighboring
dipoles of the ith type, and is the angle to the dipole to the plane of
these neighbors. Molecular models shows that rotation away from the
plane to a point mid-way between nearest neighbor sites reduces overall
interactions to a minimum. The angular rotations, are then ±60° for
tetrahedral, and ±45° for octahedral symmetry.

The repulsive fields between symmetrically arranged dipoles in
the same shell along their axes are

where is the geometrical
of the ith type. From geometrical considerations.

The potential energy of interaction of an ion with a single solvent
permanent dipole in a spherical shell is given by:

If required, the attractive interaction can be represented by the
quadrupole expressions (Eqs. 61 and 62), and the     field term can
be estimated assuming point charges. This results in the appearance of
additional terms in and higher powers. These refinements will be
ignored for the present.

Equation (74) minimizes for for any given value of x, and for
x at any given value of We can find the distance at which is
equal to unity in simple systems (tetrahedral, octahedral) by
differentiating Eq. (74) with respect to and putting         equal to
unity in the equilibrium condition. For tetrahedral groups for
x > 1.594 Å for univalent ions, assuming an effective value of in
water = 2.02 D, to be refined as required. However, the minimum
energy with would be at 0.362 Å i.e., at

which is physically meaningless. In tetrahedral
symmetry, the corresponding figures are x > 2.676 Å for with
minimum potentials are x = 1.394 Å for z = 1, and 0.697 Å for z = 2.

Graphical calculation* shows that the function is unstable, with no
potential well, if x and are allowed to vary simultaneously where this
is physically meaningful. A symmetrical group of dipoles will then
move down the field towards the central ion, and will go from

Graphical simulations were performed using the graphing calculator function on an
Apple Macintosh PowerPC personal computer.

factor

*
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unity to successively smaller values as the repulsive energy term
increases, but the energy of attraction still continues to increase as x
becomes less, until the Mie repulsive energy terms between the ion and
the dipoles, and between the dipoles themselves, take effect.

Because of the instability of the functions, we are justified in
making the simplifying assumption that the dipole axes are aligned
along the displacement axis in the high fields close to the ion, when the
basic assumptions for the theory of the Langevin function have broken
down. It has been suggested that this may not occur, to allow for the
possibility of more favorable hydrogen bonding to associated water
molecules.161 This is discussed in the Appendix, which shows that the
effective dipole axis for multipoles may not coincide with the normal
symmetrical dipole axis.

3. Dipole Nearest Neighbors

In tetrahedral symmetry, there is only one first shell interaction (nearest
neighbor, n = 3), whereas in octahedral symmetry, there are both
nearest-neighbors (n = 4) and second-nearest neighbors on the other
side of the ion (n = 1). The interactions between the first shell and the
second may be handled similarly. In this case, the geometry of the axes
is not an isosceles triangle and the equations for calculating the angle
expressions in the terms are more complex, but the principles are the
same. Since the problem is a many-bodied one, reasonable simplifying
assumptions are needed to make it tractable. The first is that
for the inner shell. Hence, the weak interactions of second-shell dipoles
with the central ion, along with the various repulsions, may give a
term in the second shell. For the second shell of a trikisoctahedron,
there are three nearest-neighbor interactions between a second shell
dipole and first shell dipoles, and three second-nearest-neighbor
interactions. There are three nearest-neighbor interactions between
second shell dipoles, three second-nearest neighbor (diagonal)
interactions, and one diagonal interaction with the dipole on opposite
side of the ion.

So far, all interactions have assumed that can be considered to
be a dipole. This is a good approximation for repulsions, but not for
attractive interactions at shorter range, which require a multipole
approach to improve accuracy. Since all calculations were numerical, it
was easy to regard the water molecules as having point charges. For
simplicity, in initial simulations the center of each positive charge was
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at each proton, separated by 2 x 0.757 Å, and the center of negative
charge was considered to be at the molecular center of water16,159 or
0.15 Å from the oxygen nucleus, i.e., a dipole length of 0.436 Å with
an effective charge of esu for a moment of 2.02 D.
Changes were made as needed to improve fitting. The interaction
energy (in ergs) of a cation with a fully-aligned permanent quadrupole

symmetry with were located nominally at 2.5 Å, to be adjusted
to account for experimental energy values and force-constants. In
setting up the preliminary equations, electrostatic repulsions were
expected to predominate in the loosely-bound second shell, so Mie
repulsions between nearest-neighbor water dipoles were first of all
ignored, as were attractive London dispersion forces, i.e., crystal
field effects, since these are overwhelmed by ion-induced dipole
terms for 2+ and 3+ ions. This procedure is the same as eliminating
the Mie repulsive terms by differentiating, setting to zero, and
minimizing the energy expression.98 For the two trikisoctahedron shells
and the “Outer Sphere,” three simultaneous equations were used, with
water-water repulsions and dipole-dipole repulsions for all possible
dipole pairs included between the first two shells, and the system was
iterated until it was self-consistent.

The nearest neighbor distance between a first shell dipole and one
in the second shell was initially assumed to be the diameter of a water
molecule (2.76 Å). Under these conditions, the distance between the
central ion and the center of a second shell dipole is 3.30 Å when the
primary shell ion-dipole center distance 2.5 Å. After various iterations
described below, the view that adjacent water molecules had their
geometric centers at 2.76 Å was abandoned.

The first problem for trikisoctahedral symmetry was to find the
minimum energy configuration for the second shell. One assumption
made was that rotation of the dipole in the second shell was the same as
that in octahedral symmetry, i.e., towards diagonal neighbors, or
towards one nearest neighbor in the first shell. Molecular models show
that there appear to be nine second-shell nearest-neighbor pairs in
which one neighbor lies on the plane containing the dipole centers and
the central ion. In these cases, the second nearest neighbor lies on a
plane of rotation inclined at 54.74° to this plane. Of the remaining three
pairs of nearest neighbors, one has both neighbors lying on the plane

at an ion-dipole center distance a (in Å) will then be

A test was conducted on the eight identical dipoles of the second
shell of a trikisoctahedron. The inner six dipoles in octahedral
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joining their centers and the central ion, one has one neighbor at
+54.74° to the plane with the other at +90°, and the other is at +54.74°
and –90°. Similarly, of the twelve diagonal pairs, nine are at 60° and 0°
to their plane, one has both dipoles on the plane, and two pairs are at
+60° and ±54.74°.  If are the angles between the planes of rotation
and the plane which includes the dipole centers and the central ion, and

is the (common) angle on each plane of rotation between the
corresponding dipole and the displacement axis on the plane of rotation,
the required functions in Eq. (72) may be calculated. We find that

are equal to are
are and

are When these are inserted into
Eq. (74), complex expressions result, which contain sums of

and terms. The latter have
alternate ± signs whose values depend on the method of counting. They
certainly cancel for and they appear to cancel (or nearly cancel)
for all values of They were therefore ignored. The repulsive terms
between one second shell dipole and the seven other second shell
dipoles were then calculated. The interaction between the three first
shell nearest neighbors assumed a rotation towards one neighbor, and
angles of 120° with the remaining pair, with opposite rotations in
respect to the positions of the inner shell second neighbors. A simpler
expression was obtained for the interactions between the first and
second shell dipoles, since the first shell permanent dipoles were
assumed to have It is clear from Eqs. (67) and (68) that
interacts repulsively with the due to the permanent dipoles, whereas

does not, so only the effects of the permanent dipoles in the first shell
on those of the second need be considered. Having determined the
orientations and fields of the permanent dipoles, the values of the
induced dipoles can then be determined by calculating the relative field
multipliers in Eq. (70), and solving the simultaneous equations for each
shell.

The potential energy of each of the eight second shell permanent
dipoles is given by
where is the second shell ion-dipole center distance (3.30 Å in this
example), and the factor 245.8 is in The
potential thus obtained corresponds to the potential energy change in
solvating a gas-phase ion with a gas-phase dipole. To obtain the
approximate Gibbs energy of solvation of a gaseous ion by liquid water
in the second shell, a quantity equal to the energy of the number of
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hydrogen bonds broken per water molecule surrounding the ion should
be removed. This average number is uncertain. However, at least one
hydrogen-bonding position (i.e., two half-bonds) is blocked by the ion.
In tetrahedral symmetry, it is possible to argue, from geometrical
considerations, that the effective value is one hydrogen bond per water
molecule95, but in octahedral symmetry the geometry makes this less
certain. However, the equivalent of one hydrogen bond per solvating
water molecule, or about is plausible and was adopted.
In addition, there is the work of forming a cavity in the liquid large
enough to contain the ion and its oriented solvation shell(s). The radius
of the cavity may be put equal to the distance b to the centers (strictly,
the dipole centers) of the first shell of bulk water molecules (i.e., of
“continuum” water). The energy to form such a cavity can be estimated
electrostatically, or more simply from the surface energy, of water.
The energy of formation of the cavity is but it will include other
terms such as those for the formation of straight or bent103 hydrogen
bonds, which are accounted for separately. The compressive forces in
the cavity are opposed by an unknown repulsive Mie term acting over
part of b, which is ultimately borne by a repulsive terms between the
ion and the first shell of water molecules. However, we can estimate
the value of this term by putting the differential of the electrostatic and
Mie energy terms equal to zero to determine the equilibrium condition
when the opposine forces are equal.93,98 If the Mie energy term
depends on where q is a fraction, it can be put equal to
where A' can be eliminated from the equilibrium condition at which
is Thus, is and the total energy of
cavity formation is We will see below that for an ion of z =
3, is about 6.2 Å. Thus, the energy of cavity formation is about

ergs for a trikisoctahedron of 14 water molecules, or 280 kJ/14
per mole of water molecules. This corresponds almost exactly to the
energy of one hydrogen bond.

4. Initial Simulation Results for First and Second Trikisoctahedron
Shells

Some EXAFS data on metal ion-oxygen distances are available for
hexaaquo transition metal ions.94 These are generally about 2.1 Å for
2+, and 2.0 Å for 3+ ions, and correspond to those determined by X-ray
diffraction in crystals.94 Some symmetrical breathing mode vibrational
frequencies are also available, allowing force constants for a reduced
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mass equal to that of one water molecule to be calculated.71,162 They
are about 390 and for 2+ and 3+ states.

The ion-dipole interaction may be approximately expressed as
where the first term is for Mie repulsions and the

second is the effective sum of the ion-permanent dipole and
ion-induced dipole interactions and electrostatic
repulsions. The latter are dominated by the repulsions in the first and
second shells (see later discussion), which are generally proportional to

From the equilibrium condition, where is the
equilibrium ion-dipole center distance at the bottom of the energy
well. Writing and expanding the powers of to
the quadratic terms, the first binomial terms vanish and we obtain:

where f is the force constant. Both the ion-permanent dipole and ion-
induced dipole terms are significant. The force constants vary between
approximately and for 2+ and 3+ ions where r is the ratio
of the bond lengths in the 3+ and 2+ states, depending on the relative
importance of the two terms. The relative frequencies  will
therefore vary by factors of between 1.65 and 2.6, the most likely value
being about 2, which is much more than the experimental result.

Initial simulation results showed that second shell water molecules
regarded as dipoles aligned along the axis of the displacement, i.e.,

for all z values, thus simplifying the problem. The equilibrium
position of the second shell could not be determined by assuming that
nearest-neighbor water molecules were located at between 2.76 and 2.9
Å apart. Repulsive Mie energy terms between water molecules were
added to the electrostatic attractive and repulsive forces added to
reproduce experimental solvation energies, the best fit being n = 12.
Other powers in the range 9-14 and exponential expressions163 were
examined, but these were less satisfactory for bond-length reasons. The
value of the dipole moment was chosen to give the best fit, starting with
2.02 D (Eq. 36).

Bernal and Fowler16 and Eley and Evans92 suggested that positive
ions should align along the dipole axis since they considered the
negative charges to be on the centerline, on or close to the oxygen,
negative ions aligning more or less along one O–H bond axis.
Verwey161a went further in considering that positive ions should also be
off axis, following his earlier suggestion161b that the negative charges
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and bonds are arranged tetrahedrally. These “Verwey Positions” would
be stabilized by allowing three hydrogen bonds towards the bulk

solvent, rather than only two161a.*
Early calculations in the present work for higher-valency ions

assumed water dipoles of Rowlinson type in axial positions, using both
dipole and point-charge calculations. Any refinement with DP
multipoles in the Verwey and axial positions (see Appendix for z = 1)
requires considerable time and effort, and is unlikely to give radical
changes, since it results in only slightly different bond-lengths. For
positive ions, the Verwey positions may be favored because the dipole-
dipole interactions appear to be more attractive in the most favorable
rotational orientations for four tetrahedral or six octahedral dipoles
(average about +1.7kT per dipole at 298 K for the octahedral case at a
dipole center-positive charge distance of 2.1 Å, compared with +10.8kT
per dipole for aligned dipoles. For tetrahedral solvating dipoles, see
Appendix). Whether this is enough to offset the lower positive ion
attraction in the Verwey position compared with that for oriented
dipoles and to swing the balance for 2+ ions and particularly, 3+ ions,
for which a much larger part of the interaction is via induced dipoles,
remains to be seen. Since the electronic polarizability is not
isotropic,121,129 it may maximize along the dipole axis, giving a further
reason for steering the water molecules in this direction (see Appendix
2).

The Mie term used for second-shell water molecules was the same
as that used following Eq. (60) per pair).
However, there is no net potential energy in the combined first and
second shells due to water molecule repulsions. The second shell
molecules press the first shell inwards, and are repelled by the ion Mie
terms, so the repulsive energies cancel.

The two simultaneous equations for the first and second shell
energies were solved to obtain the induced dipoles in the second shell,
which gave and for z = 4+, 3+, and 2+
respectively. For z = 1, a large value of 9 was obtained, giving
counterfields of opposite sign, with giving

(3.6kT) for the induced dipole interaction. This effect
is an artifact, which would disappear if a third shell is considered. The
corresponding values for the second shell, ignoring the effects of

From Pople’s work103, these would be bent, since a solvated ion has a moment of
inertia at least as great as that of a water superdipole.

*
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counterfields due to the third or subsequent shells (see below), were
2.02, 2.32, 2.96, and 0.93 for z = 4+, 3+, 2+ respectively. Thus, the
overall interactions for the eight members of the second shell of the
trikisoctahedron situated at a distance                       from a central ion
with a primary shell ion-dipole center distance of 2.50 Å with the
above assumptions represent about 20%, 18%, and 18% of the total
solvation energies of about –8,300, –4,600, and for z
= 4+, 3+, and 2+ ions.

Similar functions were examined for and 2.8 Å.
Somewhat less negative values of the interaction were found at both
distances. At 2.8 Å, the packing of the first shell is more open and x is
slightly shorter than at 2.5 Å (3.164 Å vs. 3.30Å), giving higher
repulsions. At 2.3 Å, the first shell is more densely packed, squeezing
the second shell dipole out to 3.35 Å, reducing the net interaction
somewhat. Further examination showed that at x = 2.5 Å, a marginally
higher net interaction was possible if the nearest-neighbor distance was
increased to give slightly reducing the repulsive terms.

5. The Third and Fourth Shells

Assuming for the moment complete water molecule separation from
superdipoles, the third trikisoctahedron shell can have 24 or 12 dipoles,
occupying the space between one in the first shell and two in the
second. A reasonable range of first shell ion to water molecule center
distance for high-z and low-z ions is from 1.9 Å to 2.6 Å. The
oriented second shell dipoles then have ion-to-center distances of
3.428, 3.429, 3.426, and 3.327 Å for values of 1.9, 2.0, 2.1, and 2.6
Å respectively, illustrating the squeezing effect on the second shell as

becomes shorter. The 24 third shell dipoles lie at distances of
4.454, 4.504, 4.571, and 4.882 Å at the same respective distances.
The z = 4 case at a bond-length of 1.9 Å slightly squeezes the first shell
water molecules to a distance of 1.344 Å, less than the normal radius of
1.38 Å. The second shell water molecules do not interfere with those in
the third shell for z = 1, 2 and 3, but do for z = 4, giving a center-to-
center distance of 3.01Å, rather than 2.9 Å.

The alternative second shell of 12 dipoles lie adjacent to two
second shell dipoles, equidistant from, and touching, two first shell
dipoles. However, due to interference from second shell dipoles, their
closest approach is the same as that for the 24 dipoles shell discussed
above. The third or fourth shells are more complex to model than the

Electron Transfer Reactions With and Without Ion Transfer 241



second sphere, so approximations were made as required. The most
important terms were the symmetrical repulsions between the second
and third shell dipoles, rather than the more neutral terms resulting from
repulsions in the first and third shells. The latter orient added dipoles to
a greater value, reducing repulsive interactions. We may rewrite Eq.
(35) as

for intense fields, where is assumed to equal
Approximate interactions were obtained by solving Eq. (76) graphically
for at the appropriate distances for 24 dipoles, assuming the above

values for z = 4+, 3+, 2+, and 1+, respectively, and nominally
putting equal to 2.0 D. The results are shown Table 1 for overall
interactions per permanent dipole for third shells of 24 dipoles in
kT units at 298 K. The final column contains the corresponding
electronic induced dipole interaction from Eq. (55) with i.e.,
using and

The dielectric constants have reasonable values, considering that
the packing of 24 dipoles around the trikisoctahedron preserves the
four-nearest-neighbor water structure. Induced electronic dipole effects
at this distance are small for z < 4. Whether a 24 or 12 dipole model is
reasonable is obtained by estimating the volume of the shell extending
from the inner to the outer edge of the 24 dipole distance (i.e.,
where is the water molecule radius of 1.38 Å) for z = 4. This volume
is which would contain 23.5 (i.e., 24) water molecules
at the bulk water density. For z = 4, the total interaction per dipole is
about 3 times the hydrogen bond energy, so the water structure will be
significantly broken. After subtracting the hydrogen bond energy, the
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total interaction will be about 12% of the total solvation energy. For
z = 3, the total interaction energy will be about 1.7 times the hydrogen
bond energy, i.e., about –335 kJ/mole, slightly more than 7% of a
typical –4,600 kJ/mole total solvation energy. For z = 2, no water
breakdown will occur, and the energy of the shell will be about 19% of
a typical –1,900 kJ/mole solvation energy. The effect for z = 1 is
similar.

The fourth shell was also examined assuming single dipoles with
moments approaching the vacuum value, and no Onsager or Lorentz
cavities to give an upper interaction limit. Fourth cell packing was
irregular, with distances varying from about 6.0 6.7 Å, 6.1 6.8 Å, 6.2
6.9 Å, and 6.7 7.4 Å for the greatest interactions for z = 4 to z =1
respectively. The calculated and permanent dipole interaction
were 12.63, 13.97, 14.81, and 15.28, and 7.65kT, 4.06kT, 1.70kT and
0.31kt respectively. For z = 4, the induced dipole interaction was
0.40kT, so the total interaction is almost equal to the hydrogen bond
energy and a dipole in the fourth shell should still just be attached to a
more distant nearest neighbor. However, the value (about 2.1)
would suggest no free rotation. Multiplication of the dipole moments
by the Lorentz cavity terms for the critical z = 4 case gave a
dielectric constant of 20.29, increasing the
interaction energy value to 7.89kT by increasing the apparent
dipole moment. The addition of an Onsager cavity term

in the Langevin function increased to 29.27 with
and gave a slightly higher value of

8.14 kT. However, is decreased by the higher dielectric constant
to 0.17kT, partly offsetting this effect. Finally, the use of Booth’s
second set of assumptions for the superdipole moment (A = 1, B = 7/3,
Eq. 37) gives a local dielectric constant of 64.67 with

and of 8.30kT, just less than the
hydrogen bond strength.

The above shows the lack of sensitivity of to the value of or
the underlying assumptions, which is clear from the form of the
expression which mainly depends on the value of

which is almost exactly proportional to to (Eq. 50). The
water structure may be just broken in the fourth shell for z = 4+, but not
for z = 1+, 2+ ,3+. Calculation shows that the corresponding dielectric
constants for the fourth shell using Booth’s assumptions are close to the
bulk values for z = 1+, 2+, 3+ (76.20, 74.19, 70.59 respectively), with

values of 0.300, 0.720, and 1.173, values of 0.099, 0.232, and
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0.359, and values of 0.32kT, 1.80kT, and 4.32kT at 298 K. These
all correspond to the Dielectric Continuum range. The fifth shell for
z = 4 (at about 8.4 Å) gives a dielectric constant of 73.72,

and Again, this is in the Continuum
range.

6. “Bottom-Up” Modeling of the Third Shell

Since the effects of the third shell are not negligible for high-z ions, it
was approximately modeled using the same simultaneous equations as
those for the second shell, i.e., to take a “bottom-up” calculation of the
dielectric constants rather than using Booth’s “top-down”
method.73,124,125 As expected, adding the third shell slightly reduced the
net interactions in the second shell. Again, the principal conclusion was
that the third shell for z = 2 would not show sufficient interaction to
break the structure of water. Thus for z = 1, the second shell may
considered the start of the Continuum Bora-like term, where Booth’s
Langevin function should still apply. For z = 2 and the above
dimensional assumptions, it is the third shell, and for z = 3 and 4, the
fourth shell.

The effect of the first sphere fields on the interactions in the third
shell was small. A spherical shell of charge should be equivalent to that
of an equivalent single charge at its center. However, shells consist of
dipoles with discrete lengths and thicknesses with equal and opposite
charges on each side. The central charges should therefore cancel,
giving no net external or external field. However, the shells considered
here are neither continuous, and they interpenetrate geometrically. For
more remote molecules within the continuum electrolyte, the tendency
to see no dipole field from either successive shells towards the ion, or
from shells farther away from the ion, will become more apparent (see
Appendix). The local dipole field will then largely result from nearest
neighbor dipoles within the same shell. We note that the Kirkwood-
Booth theory of the dielectric constant72,73 only involves nearest
neighbors, and ignores longer-range interactions.

7. Simplified Modeling

If the innermost sphere can be treated independently of the second, it
would simplify calculation. This can be tested by considering induced
dipoles in the first shell independently of the second using Eq. (73), or
via those in the second shell using two simultaneous equations based on
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Eq. (72). The simultaneous calculation using the previous dimensions
shows for the inner shell to be 1.469, 1.018, 0.570, and for
z = 4+, 3+, 2+, and 1+ respectively. Disregarding the fields of the
second trikisoctahedron shell gives 1.622, 1.172, 0.721, and
respectively. Thus, the second shell may be disregarded for z = 1+, but
not for z = 2+, 3+, 4+. Accurate modeling for z = 4+ requires all three
shells.

The attractive interaction per dipole is and the
total equilibrium interaction, including the repulsive permanent dipole-
dipole and Mie repulsion terms, was typically about 85% of this value,
assuming that the Mie repulsion term varies as This may be
demonstrated by determining the equilibrium point by setting the
derivative equal to zero.93,98 Moelwyn-Hughes93,98 used a simple
analysis with a Mie term, but he overstated the terms by not
considering the effects of the inner shell repulsive fields on their
creation. If these are not included, the corresponding values at

are 2.196, 1.648, 1.098, for z = 4+, 3+, 2+, and 1+
respectively. The error in the equilibrium energy is small (ca. 1%) for
z = 1, where the minor interactions with the second shell have little
effect. Ignoring the second shell overstates the interaction energy by
about 6% for z = 2, falling to 4.5% for z = 4. In view of the
uncertainties introduced by minor order terms (e.g., crystal field
interactions and induced electronic dipole-dipole dispersion) these may
be ignored, or the terms for z = 2+, 3+, 4+ may be reduced by a
nominal multiplier, e.g., 0.95. Finally, if can be
estimated from the vector sum of the dipole fields, it is clear from Eqs.
(68)-(70) that the overall interaction of each dipole in a given shell,
with all dipoles assumed to be oriented along the ion displacement,
dropping vector notation, and neglecting is:

The first term in this useful and easily-handled expression combines the
ion-permanent dipole energy and its repulsive interaction with
all permanent dipoles (compare Ref.
16).
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8. The “Continuum” Energy

The Born-like Continuum energy term may be reasonably accurately
replaced by an integration (Eq. 19), the lower limit being a point
between the inner edge and the center of the first shell of superdipoles.
The upper limit has usually been considered to be the Debye length
determined from the linearized Poisson-Boltzmann distribution,44 but
this cannot apply in the electrolyte concentrations used in kinetic
experiments. For these, the distance at which the sum of the
surrounding positive and negative charges around an ion, plus is own
charge, becomes zero is relevant. Milner164 attempted to determine the
virial of such systems, taking into account the interactions between all
charges present. If is the molecular salt concentration whose
complete dissociation produces cations and anions of valences
and the anionic and cationic charge concentration at distance ‘a’
from a selected cation are and
where and For electroneutrality, the charge
on the reference cation must equal the total surrounding charge, i.e.,

where is the closest approach distance for cations and anions. For a
selected anion, we have At high dilution the integral is
where  is the Debye reciprocal length, so Eq. (78) should be divided
by to give the correct result. Since it uses a non-linearized
Boltzmann distribution and does not involve the Poisson equation, it
should be applicable at higher concentrations than the Debye-Hückel
theory. Activity coefficient calculations using this method165 show a
cube-root dependence of activity coefficient on concentration to about
0.1 M,166,167 after which the Robinson-Stokes solvent activity
corrections168 become controlling.

For a 1:1 electrolyte at a randomly-chosen closest approach
distance of 7.16 Å, Eq. (78) divided by predicts an electroneutrality
length of 10.4 Å at 0.1 M, where is 9.6 Å, and

would be 17.0 Å. If salt-like effective lattice spacings134,166,167

* This should be a summation, but numerical integration is sufficiently accurate.
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occur in higher concentrations, then by analogy with the mean energy of
an ion in a lattice, the electroneutrality distance will be given by
where ‘a’ is the mean cation-anion distance and is a Madelung
constant.160 Assuming a rock-salt-like lattice, ‘a’ would be 28.6 Å and
13.3 Å at 0.1 M and 1.0 M, and is 1.748. The effective
electroneutrality distances may then become very short in electrolytes
used in practical experiments or devices, e.g., 16.3, 7.6, and 4.2 Å in

0.1, 1.0 and 6.0 M 1.1 electrolytes.*

As indicated in Section III-2, the Continuum may be modeled as
spherical shells of five-molecule water superdipoles with an effective
radius of 2.9 Å. Their real radius is the distance between nearest
neighbors (2.9 Å), plus the radius of a water molecule (1.38 Å). They
therefore interpenetrate or interlock as in gears in free rotation,
accounting for the effective number of nearest neighbors at 298 K of
about 4.4, rather than 4.95,103,138 Similar interpenetration with the
solvation shell of ions is likely, with an average 2.9 Å nearest-neighbor
distance between outer superdipole molecules and ion solvation shell
molecules. We note that the moments of inertia, therefore equipartition
energy rotation rates, for 1+ ions and water superdipoles are similar,
permitting coupling of rotations. However higher valency
trikisoctahedral ions have considerably higher moments of inertia, give
rotation rates about a factor of two less than superdipoles. This will
encourage energy exchange, and also push the superdipoles somewhat
farther out on average. Molecular models suggest that the superdipole
centers lie at 4.9-5.0 Å beyond the Inner Sphere dipole centers for 2+
and 3+ ions, and at 3.8-3.9 Å for 1+ ions. These distances must be
corrected to give the correct value in the integral in Eq. (19) to
approximate the Continuum interaction energy. With the effective
electroneutrality distances given above, the first two Continuum shells,
containing about 75% of the total energy summed to infinity, are the
only ones of importance in 0.1 M 1:1 electrolytes. In 1.0 M 1:1
electrolytes, only the first shell, with 55-60% of the energy to infinity, is
important. In 6.0 M 1.1 electrolytes, the Continuum energy effectively
disappears.

As noted in Section IV-5, 4+ cations will have a layer of single
somewhat oriented water dipoles of moderate around the

Energy calculations for ionic lattices show Molten salts can form transient
dipoles and multipoles as ion pairs and clusters, but it is unlikely that these contribute to
a dielectric constant. For charge transfer in molten salts, the equivalent of an FC process
is the change in electroneutrality length as valence changes.

*
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trikisoctahedron. This should be separately modeled, but a good
approximation may be had by adding 5.0 Å to the inner shell center
distance, correcting to give and integrating, since for

is close to unity.

9. Solvation Energy Estimates

Calculations for higher-valency ions were performed early in the study.
In the Rowlinson molecular model,141 the vacuum dipole center lies at
0.293 Å from the oxygen center, whereas in the DP model,143 it lies at
0.1225 Å. The water molecule structure used initially placed partial
positive charges on each proton as in the Rowlinson model, but placed
the negative charges at the molecule center,16,159 which gives reasonable
values for the solvation energy difference between positive and negative
ions at constant oxygen distance and for the ion-oxygen distance for
multivalent ions.95,170 Both point charge and simple dipole models were
used. The force constants and frequencies71 calculated from the energy
wells were satisfactory for the symmetrical breathing three-dimensional
oscillator for 2+ ions, but those for 3+ ions give higher frequencies (see
discussion, Section IV-4). The experimental values for 3+ ions must
refer to cooperative modes between the first and second
trikisoctahedron shells. In later work, the exact DP multipole model
was used instead of a simple dipole model. Recomputing with DP
multipoles in both the Verwey and dipole axial positions is desirable
(see Appendix), but it is unlikely to radically change the model, because
calculations were made to fit experimental values, and changes in
dipole orientation would only result in slightly different bond-lengths
for each assumed dipole moment value.

Some early computations for cations are given below. In all cases,
the loss of two hydrogen bonding positions per water molecule was
assumed (i.e., 20.9 kJ/mole of water), and the dipole is in the axial
position. In the Verwey positions, only one hydrogen bonding position
may be assumed to be lost. Solvation energies are the “quasi-absolute”
values from Ref. 95. p. 106. Distances are ion to dipole center.

Monovalent cations, tetrahedral results:

–542.7 kJ/mole, first shell at 2.500 Å (Continuum –181.3
kJ/mole; 33.4%).

–428.0 kJ/mole, 2.782 Å (Continuum –168.7 kJ/mole;
39.4%)
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–344.3 kJ/mole, 3.068 Å (Continuum –156.7 kJ/mole;
45.5%)

–323.0 kJ/mole, 3.157 Å (Continuum –154.5 kJ/mole;
47.7%)

–298.7 kJ/mole, 3.269 Å (Continuum –151.0 kJ/mole;
50.6%)

Monovalent cations, octahedral results:

–542.7 kJ/mole, 2.680 Å (Continuum. –173.1 kJ/mole;
31.9%)

–428.0 kJ/mole, 2.978 Å (Continuum –161.0 kcal; 37.6%)

–344.3 kJ/mole, 3.267 Å (Born –150.7 kcal; 43.8%)

–323.0 kJ/mole, 3.356 Å (Born –147.9 kJ/mole; 45.8%)

–298.7 kJ/mole, 3.466 Å (Born –144.4 kJ/mole; 48.3%)

Typical early results for multivalent ions:

z = 2: Total solvation energy taken as –1852.3 kJ/mole. Inner
octahedral shell at 2.641 Å, outer trikisoctahedral shell (8 water
molecules) at 4.185 Å. Inner shell to outer shell dipole-dipole
center distance 3.243 Å. Inner shell, 56.34%, Outer shell,
14.51%, Continuum, 29.15% of net solvation energy. Inner shell
induced dipole 1.036 D, outer shell induced dipole, 0.200 D.
Inner shell dielectric constant, 1.862. Outer shell dielectric
constant. 3.960.
z = 3: Total solvation energy taken as –4495.5 kJ/mole. Inner
octahedral shell at 2.499 Å, outer trikisoctahedral shell at 3.951
Å. Dipole-dipole center distance 3.050 Å. Inner shell, 50.24%,
Outer shell, 15.04%, Continuum, 34.75% of net solvation
energy. Inner shell induced dipole 1.986 D, outer shell induced
dipole, 0.372 D. Inner shell dielectric constant, 1.677. Outer
shell dielectric constant. 3.587.
z = 4: Total solvation energy taken as –8082.9 kJ/mole. Inner
octahedral shell at 2.409 Å, outer trikisoctahedral shell (8 water
molecules) at 3.800 Å. Dipole-dipole center distance 2.927 Å.
Inner shell, 56.65%, Outer shell, 14.47%, Third shell (24
dipoles) and Continuum, 28.88% of net solvation energy. Inner
shell induced dipole 2.990 D, outer shell induced dipole, 0.566
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D. Inner shell dielectric constant, 1.599. Outer shell dielectric
constant. 3.396.

Comparison of the above ion-dipole center distances with
experimental EXAFS 2+ and 3+ ion-oxygen distances (e.g., 2.1 Å, 2,0
Å respectively)94 show them to be too long. Taking 50% of the total net
solvation energy to be in the innermost shell and using the DP multipole
dimensions with ion dipole center distances of 2.205 Å and 2.095 Å for
2+ and 3+ respectively to correspond to the experimental ion-oxygen
distances, after a careful correction of the dipole center distance to
allow for electron displacement in forming the induced dipoles gave a
result later used in estimating redox activation energies. Fitting this
time used the vacuum value of the permanent dipole moment (1.86 D),
and was based on Eq. (77). The counterfield values were split into two
parts after a series of iterative processes. One part (29.4% of the total
for 3+ ions, 34.6% for 2+) was associated with inner shell permanent
dipole repulsions, proportional to and the second was associated
with dipoles and superdipoles external to the inner sphere. The latter
counterfield may be put equal to i.e., for most purposes, it
may be assumed to be proportional to For 3+ ions with an assumed
net solvation energy of 4468.4 kJ/mole, the inner sphere dielectric
constant was 1.988, and for 2+ ions with an assumed net solvation
energy of 1879.4 kJ/mole it was 2.515. Since energies were fitted to
enthalpies, the values obtained for each solvating water molecule may
be considered as enthalpies. These energies were
–158.95kT and –72.09kT (T = 298.16 K) before correction for the
ground state of the three-dimensional oscillator. The calculated force

constants were 475,460 and 166,880 dynes/cm* for 3+ and 2+, giving
frequencies of and the latter in excellent
agreement with experiment.71 The corresponding values were
3.23kT and 1.91kT, i.e., the zero-point energies for the three-
dimensional six-member oscillator are 4.85kT and 2.87kT.

This work suggested that the distances obtained for monovalent
cations were also too long. For the inner and second shell were
examined on this basis, and a fit could be made at a first shell ion-
dipole center distance of 2.253 Å, with an induced dipole of 0.461 D

with a second shell just apparent at 4.560 Å, where the
induced dipole was 0.050 D This distance is certainly too
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short, and about 2.7 Å appears more probable, when the second shell
largely disappears.

A modified Bernal-Fowler model appears to be a reasonably good
approximation for monovalent ions, in which the first layer of water is
fully oriented, the second layer has some orientation, and following
layers may be treated as Continuum, with good accuracy. The
Continuum energy term derived as described varies from about 46% for
large ions to 35% for small ones.170 It may be approximately fitted by
log-log plots, e.g., if the total water quadrupole or dipole energy in the
first shell is the total solvation energy in the same units is

with in kJ/mole in kcal/mole,
in kT] for univalent ions, before correction to account for

lost hydrogen bonds. The same model is also a good approximation for
trikisoctahedral 2+ – 4+ ions, provided second (and for 4+ ions third)
oriented shells are considered. About 50% of the energy is then in the
first shell, 14% in the second, and the rest in the Continuum. Whether
the Verwey positions should be used requires further consideration.

The calculations described above for multivalent ions, or univalent ions
with a single positive charge center (e.g. were relatively
straightforword. However, in any solvated ion system without a
definite single charge center, computational problems are more
complex. For solvated protons, calculation must be matched to
experimental information. The O O in has been placed in
the range 2.45 Å (based on the radii of O, H, and OH under strong-
bond conditions, i.e., for and to 2.5 Å (for the short
hydrogen bonds in acid salts such as These are discussed on
p. 98 of Ref. 170, but 2.55 Å is also given on p. 118, with a possible
preferred value of 2.49 Å in The length is determined by
the requirement for a sufficiently high proton tunneling rate to permit
conduction via “hopping”.171 Preliminary modeling used a flat
configuration for the three dipoles solvating with a single +
charge close to the O, with three dipoles in the plane of the three
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protons. This results in the lowest repulsions, including those with the
“top” (Figure 5). The structure was taken as a flat pyramid
with bond angles of 115°, bond lengths of 1.02 Å, and an estimated
dipole moment of 1.49 D (p. 55-56 of Ref. 170). The latter was used to
estimate the bonding electron positions143b, with a lone-pair–oxygen
distance as in water.

To estimate the interactions, the Halliwell and
Nyburg170,172 values for the overall enthalpy of solvation (1090.8
± 10.5 kJ/mole, 262.7 ± 2.5 kcal/mole), an acceptable estimate for the
proton affinity of water (711 ± 8 kJ/mole, 170 ± 2 kcal/mole, Ref. 168,
p. 58), and the Continuum energy determined by the fitting procedure
(Section IV-9) were used as a starting point. This resulted in a distance
between O in and the water dipole center of ca. 2.45 Å, i.e., an
O O distance of only 2.18 Å. If the proton charge is equally shared
by the three H atoms, each of the three identical solvating
molecules (called here “bottom” molecules) may be considered to lie
next to 1/3 of a proton charge. First attempts to iterate using 2.49 to
2.45 Å O O distances for the “bottom” molecules gave values
ranging from –27.5kT to –38.0kT respectively. For the “top” the
values varied between –13.3 and –16.2kT, assuming O O distances
between and the “bottom” of 2.24 Å and 2.46 Å. The latter
distances were chosen to represent a minimum of two O radii (2.24 Å)
and the O O distance corresponding to two water radii with the
oxygens facing each other [2 x (1.38 – 0.15) Å]. At 2.46 Å, the
induced dipole for each of the “bottom” was about –4.1kT,
assuming an effective dielectric constant determined separately from
the dipole counterfields for ion of about 2.96. The “bottom” dipole-
dipole repulsive energies (one half of two pairs each) were about
+0.7kT, while the “top”–“bottom” repulsions (one half of one pair)
were +1.4kT. The “top” water molecule lay at an equilibrium O O
distance of 2.67 Å from the O in Its induced dipole energy was
estimated as –1.2kT, and its repulsive energy (one half of three pairs of
dipoles) was about +4.2kT. After correction for the equilibrium values
of the inverse 12-power repulsions, obtained by differentiation, it was
estimated that the “bottom” equilibrium energies should be adjusted by
–0.5kT, and the “top” by +2.6kT.

These results may be of the correct order with a reasonable
estimate of the magnitude of the continuum term using the scaling
expression for monovalent ions. They are therefore in the range 430-
520 kJ/mole (102-125 kcal/mole) before conventional correction of
about 84 kJ/mole (20 kcal/mole) to account for broken hydrogen bonds,
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and before zero-point energy corrections. These are somewhat larger
values than those derived by Halliwell and Nyburg172 by extrapolation,
including Outer Sphere contributions. The small induced electronic
dipoles were ignored.

This Version A geometry placed the “bottom” dipoles in the plane
of the three protons of the solvated in an apparently preferred
position minimizing dipole-dipole repulsions. Further calculation
showed that the minimum energy position lay with the dipole axes
below and at 46.8° to the perpendicular to the plane of the three protons
in The motions of the bottom were rather loose, with a kT
energy difference for 55.9° – 46.8° and 46.8° – 35.0°. The
corresponding O O distances were 2.62 Å and 2.48 Å, with 2.54 Å at
the minimum, within the requirements of Ref. 170. The interaction
energies for the “bottom” and “top” dipoles were –22.6RT and –33.9kT,
corresponding to a total (including Continuum) interaction of –510
kJ/mole (–121 kcal/mole) before hydrogen bond and zero-point energy
correction. This time, the “top” water molecule lay at an O O
distance of 2.93 Å due to the higher repulsions of the three “bottom”
dipoles to the “top” dipole in the 46.8° rather than the planar 180°
positions. In this Version B case, the effective dipole moment was
taken as 2.138 D (see Appendix), with a DP dipole center at 0.1225 Å
from the oxygen center.143

A problem with the Version A and B geometries was the
inconsistency of the repulsive terms, which varied in a purely
arbitrary manner by more than a factor of 3 for the “bottom” water
molecules, and by a factor of 23 for the “top” water. Using
experimental data for water to allow a common repulsive term to be
calculated based on the average water O–O bond distance provided a
different approach. The time-averaged three-dimensional energies (in
kT units at 298 K) of water superdipoles may be:

where r (Å) is the average O O bond distance in water, A is the
repulsive term for neighboring molecules in an inverse 12 power field,
and 0.0574 is the correction term for 4-fold coordination summed over
all molecules.173 The corresponding term for inverse 6-power induced
dipole-induced dipole and electron dispersion force attractions is
0.4495.173 The average permanent dipole-dipole interaction is
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discussed below. Setting the derivative equal to zero gives the mean
energy in terms of the mean distance

(including the zero-point energy of the three-dimensional oscillating
dipole) is known to be –9.92kT from the latent heat of evaporation, and
the multiplier may be readily calculated.173 The mean three-
dimensional dipole-dipole and repulsion terms may be
obtained if is assumed to be 2.707 Å, the mean O O distance in
liquid water estimated from its density. From the gas-phase moment,
the dipole-dipole term is

where are the angles measured in the same sense
between the axes of the dipoles and the line joining their centers in a
plane containing their centers, and are the angles subtended by
the axes and perpendiculars passing through their centers. The
maximum value of the angle term is 2, and a comparison of the
experimental value at suggests that the vacuum moment
applies, giving A = +823,986. However, this approach assumes that
water molecules are distributed in a diamond lattice, so improvement
was required.

A simple model for associated water was needed in which oxygen-
oxygen repulsions in water could be equated to those in
which required examination of the energy and associated structural
changes on the addition of an unsolvated proton to a liquid water
superdipole. Pople’s modification103 of Kirkwood’s72 static water
dielectric constant model assumes restricted rotation with bent
hydrogen bonding between tetrahedra. The dipole to central dipole

 value, including second-and later-shell bending is given by the
Langevin function of a rather large number, so The dipole
moment of each nearest neighbor along the axis of the central dipole is

where is the mean liquid water moment. Using Eqs. (31-
(35), the total moment induced by the four first shell dipoles along the
length of each central dipole is where a is the mean
dipole-dipole center distance. The total dipole (Eq. 35) along this
axis is where n is the number of nearest
neighbors, and i refers to the ith shell. Hence,
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The superdipole
moment so Putting the
experimental values in Eq. (36), X = AB = 2.765. Thus,
with and a = 2.90 Å,

Pople103 assumed that the lone pairs and the –OH bonds were both
at 105°. The DP angle143 for the lone pairs is 122.2°, which gives a lone
pair O–H bond angle of However, the
bond is not quite aligned in the lowest energy trans and cis states (see
below), being at +63.05° and –49.8° to the line of centers respectively.
Hence, cos (122.2/2) should be replaced by an averaged cosine, e.g.,
0.55. Thus, using a modification of Pople’s expression,

where g is the bending force constant of the
hydrogen bond. This gives Lg/kT = 0.904, and g = 10.4, in excellent
agreement with Pople’s value obtained from the radial distribution
function of water.103 The contribution of the second and higher shells
will reduce the effective value of in the expression for A, giving a
smaller g value. The g energy term is where is the
deviation from the minimum value of For small this
corresponds to above the minimum, so g has the form, if not the
dimensions, of a force constant. For small the curvature of the
calculated energy well for hydrogen bonds (see below) corresponds to
g = 13.7kT, which becomes less at larger values of due to
anharmonicity. Energies of ±kT were calculated at an average of 26°
on either side of the most probable trans energy well, i.e., Lg/kT =
cos26 = 0.899, i.e., g/kT = 11.25, in good agreement with Pople’s
estimate from the radial distribution function.

From with we obtain
for the effective dipole moment in liquid water from the 298 K

bulk dielectric constant. When this is used to estimate the cohesive
energy between water molecules in approximately tetrahedral
superdipoles at dipole-dipole or O O distances of 2.9 Å, the results
are about a factor of three too small. The simple dipole-dipole model
for water was therefore replaced by a DP multipole-multipole point
charge model for hydrogen bonding (c.f., Lih173), and the interactions

* Since is determined by the counterfields from the second and further shells,
increasing incoherence with rising number of shells will tend to compensate for the
increasing value of the summation as the number increases, so its effective value will be
close to unity. An experimental value of derived from the bulk dielectric constant is
used here, which will give an effective value.
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between two DP multipoles at a 2.900 Å O O distance were
calculated using the same approach for the interaction between positive
and negative charges and DP multipoles (Appendix 2). A non-
coulombic inverse 12-power repulsion based on the O O distance was
assumed.

The most consistent values showed energy minima with the nearest
neighbor H–O–H plane lying at angles of +63.05° and –49.8° to the line
joining the oxygens of neighboring water molecules. The nearest
neighbor has one lone pair almost facing one O–H bond in the first
molecule. In the first case, this energy minimum corresponds to the
nearest neighbor H–O–H plane in the trans position relative to the non-
bonding O–H bond in the first molecule. The combination of attractive
and repulsive coulombic terms, combined with the assumption that the
inverse 12-power repulsive potential operates between the O O atom
centers results in the bonding lone pair of the neighbor not being
exactly in line with the line passing through O–H...O. It lies 1.95°
below this line of centers, pointing in the direction of the non-bonding
O–H bond in the first molecule. With the H–O–H plane in the neighbor
in the cis position relative to this O-H bond, the bonding lone pair in the
neighboring molecule lies at 11.30° below the O–H...O line. These are
indicative of bending or kinking of the hydrogen bond.103,158b Before
correction for second-nearest-neighbor dipole-dipole interactions (see
below), the minima lie at –10.48kT in the trans position, and –8.73kT
in the cis position. Removal of the mechanical constraint of a linear
O–H...O coordinate will require considerable computing, but it will
result in very little difference to the calculations, since libration of the
H–O–H plane between +93° and +41° and –23° and –75° in the trans
and cis cases respectively results in energy increases above the
minimum of +kT. The maximum between the trans and cis states
occurs with the H–O–H plane at 10.7° below the O–H...O line, pointing
towards the non-bonding O–H in the first molecule. This maximum lies
at only +3.04kT. The maximum with the H–O–H plane in the other
direction lies at –1.8° below the 0–H...O line, and is equal to –7.19kT.
Thus, transitions from the trans to cis positions via libration will be
easy. They will also be easy by free rotation around the O–H...O bond.
As before, calculations showed that induced dipole terms could be
neglected.

The distances between the dipole centers of the four outer water
molecules (4.6 – 4.85 Å) were probably sufficient for the dipole
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approximation of their electrostatic interactions to be reasonable.*

After some somewhat tedious calculations, these energies proved to
vary from +1.90kT (outer of Type A, bonding with their O–H
bond, both in the trans-trans configuration) to –1.09kT (one Type A
outer and one Type B bonding via a lone pair, both cis-cis). This
permitted the most probable configurations and values of the average
hydrogen bond to be determined, after differentiation and using the
usual equilibrium assumption. All trans gave –9.65kT, all cis –9.25kT,
and cis-trans-cis-trans –9.48kT, while the others were A cis,trans, B
trans,trans –8.81kT; A trans,trans, B cis, trans, –9.16kT; A cis,cis, B
trans,trans, –8.12kT; A trans,trans, B, cis,cis, –8.19kT. Thus, this
study showed the mean H-bond energy to be –9.65kT, i.e. 23.9 kJ/mole
(5.72 kcal/mole). However, a further term to be estimated is the
induced dipole-induced dipole term, although it is debatable whether
this should be counted in the hydrogen bond calculation (the same is
true of dispersion forces). The induced dipole-induced dipole term is

where is an effective dipole moment along that axis.
For two water molecules linked in the hydrogen bond positions, the

total coulombic attraction in the trans position at x = 3.061 Å (O O
distance 2.9 Å) before correction for the inverse twelve-power
repulsion is –14.29kT which may be put equal to

where Q is a geometrical factor. This gives an effective
value of 4.108 D, which can now be used to calculate With

(assumed isotropic) equal to is –0.72kT.
The inverse twelve-power repulsions corresponding to this term are

where a is the twelve-power repulsion distance
(assumed to be 2.9 Å). Hence the net change in overall hydrogen bond
energy due to the induced dipole-induced dipole term is only –0.34kT.
For a hydrogen bond between two water molecules, the value of the
displacement vector A is about three times less than that for the
corresponding vector at a water molecule solvating From the
discussion following Eq. (48), this is precisely the range of A in which
a rapid transition from the bulk value of the static dielectric constant to
dielectric saturation takes place, so that effective local dielectric

*  Calculations for two water molecules with their dipole axes and one lone pair each
parallel (i.e., in parallel Verwey positions for positive ions, as would be possible in a
Helmholtz double layer) in which an accurate DP point charge model was compared with
a simple dipole model showed the latter to be 11.6% high at 2.0 Å separation, and 4.6%,
1.5%, 0% high at 2.25, 2.5, and 2.75 Å, and 1.4%, 2.6%, and 3.3% low at 3.0. 3.5. and
4.0 Å.
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constant will be quite large. Hence induced dipole-induced dipole
effects may be neglected.

As is shown in Appendix 2, the DP multipole model143 for water
accounts very well for the differences in solvation energies of positive
and negative ions. It also gives an excellent value of the hydrogen bond
energy. This suggests that Stilinger and Raman’s ST2 potential144,157

frequently used in molecular dynamic calculations, is too over-
simplified to give a good account of detailed interactions between water
molecules. The same conclusion is also likely to be true of the central
force potential (CFP).145,158 A major concern is that these analyses
permit “stacking” of water molecules around an ion, (e.g., in 9 or 10
random coordination in one geometric shell), which is counter-intuitive
to what would be expected geometrically if all of the appropriate
coulombic forces are considered. The same argument applies to
improved quantum simulations using quantum path integral and Born-
Oppenheimer (BO) potential energy surface in the combined local-
density-functional method (BO-LDA-MD) for and 175
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2. Solvation

The inverse twelve-power O O repulsion constant (in units of
at 298 K) derived from the last hydrogen-bond calculation was

This permitted a calculation of solvation, regarding
each component with bond lengths and angles 1.02 Å and 115°;

in the Verwey position) as DP multipoles. For simplicity, the
lone pair–O distance was assumed to be at the same as in

and the bonding electrons are at the same proportionate distance along
the bond. The preliminary result showed an exact alignment along the
line of the O–H bond in and the lone pairs, with a “bottom”

coulombic attraction (corrected for the inverse twelve-power
repulsions) equal to –33.72kT (at 2.653 Å O O distance, with the
H–O–H plane pointing towards the “top” position), and –29.55kT (at
2.671 Å, with the plane pointing in the opposite direction).

Before refining these values, and adding dipole-dipole repulsions
and induced dipoles, the “top” was examined to see if it would
influence the most probable “bottom” position. Because DP multipole
point-charge calculations are tedious, some simplifying assumptions
were made. The lone pair points directly at the O in the “top”

whose lone pairs point downwards in either a symmetrical or
Verwey position. However, the repulsions between the 6 bond
electrons and the 4 “top” lone pair electrons appear to steer the
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latter to a dipole axial position. The dipole approximation gives a good
account of the interaction energies between multipoles in in-line dipole
axial positions at distances beyond 3.00 Å, so the ion may be
regarded as a dipole with a superimposed charge. Its dipole moment
was calculated to be 1.383 D, rather than 1.49 D (p. 55-56 of Ref. 170),
with a dipole center at 0.040 Å from the O. The positive charge was
regarded as being shared by each proton. With the “bottom” H–O–H
plane pointing upwards, the net attractive energy was –12.71kT at an
O O distance of 3.213 Å, whereas pointing downwards, the energy
was –10.65kT at 3.220Å. Respective energies were (multipole
attractions) –17.50kT and –17.41kT, dipole-dipole
repulsions) +3.75kT and +3.73kT, (induced dipole attractions, effective
local –0.70kT and –0.69kT, and “top”–“bottom” dipole-
dipole repulsions, +0.29kT, and +0.32kT, and (inverse twelve-power
repulsions) +1.45kT and +1.42kT. Thus, all energies indicate that the
“bottom” H–O–H plane facing upwards is favored. Induced dipole-
induced dipole effects are only about –0.05kT, which requires an
increase in twelve-power repulsions by +0.02kT. The net “top” energy
is therefore –12.74kT.

A detailed model of the “bottom” gave a net energy of
–38.62kT at 2.599 Å. The energies were (multipole attractions)
–53.82kT, (“bottom” dipole-dipole repulsions) +1.47kT,
(“top” to “bottom” dipole-dipole repulsions), +0.10kT,
(induced dipole attractions, effective local –4.84kT,

induced dipole-induced dipole attractions, effective local

–0.12kT and (inverse twelve-power repulsions) +18.60kT.*

No further iterations in the energy of the “top” to account for
minor changes in the “top” to “bottom” repulsive energies due to the
change in “bottom” O O distance from 2.653 Å to 2.601 Å were
considered necessary given the limits of accuracy of the calculation.
Thus, the net solvation energy of the Inner Sphere is –128.6kT (–318.8
kJ/mole, –76.2 kcal/mole) before zero-point energy correction. The
bonding of each of the three “bottom” lies in a rather broad
potential energy well. Their calculated stretching frequency force
constant was 91,500 dynes/cm. The  values for the non-degenerate
joint three-dimensional symmetrical vibration of the “bottom”

*
 The “bottom”  librate in a very shallow energy well with an amplitude of over

100°. This is because the dipole-dipole interactions go from positive to slightly negative
on rotation through 90°. At the same time, the attractive interactions become less
negative.
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estimated from the properties of an almost flat regular pyramidal
molecule were 1.42kT, with a ground state lying at 2.12kT. The well
energy for the “bottom” lay at the ground state of +2.12kT
between 2.481 Å and 2.766 Å. The additional thermal energy required
to attain a minimum distance of 2.45 Å for effective proton tunneling
for conduction [Ref. 170, p. 98] was +1.58kT (3.90 kJ/mole, 0.93
kcal/mole). The stretching force constant for the “top” was 7,990
dyne/cm, with a ground state of 0.23kT (hv = 0.46kT). Corrected for
the ground state energies, the Inner Sphere energy was –126.5kT
(–313.5 kJ/mole, –74.9 kcal/mole). The correlation function gives a
total energy including the Continuum of –207.4kT (514.0 kJ/mole,
122.9 kcal/mole). A Continuum integration with a lower limit of 3.9 Å
gives –175.7 kJ/mole (–42.0 kcal/mole) for the Continuum energy,
giving –489.2 kJ/mole (–116.9 kcal/mole) total. Both are before
correction for lost hydrogen bonds. The latter is probably the most
reliable value.

On “switching on” a proton in a five-molecule tetrahedral water
cluster, two hydrogen bonds of Type B are converted into “bottom”

hydrogen bonds, their only major motion being a shortening
of the bond, accompanied by minor sideways translations and rotations
to account for changes in bond angle. One Type A water molecule
detaches, rotates through about 107° and translates to allow for the
change in angle as one lone pair on the central water molecule becomes
a pair of bonding electrons. The “top” Type A water molecule detaches,
rotates through about 120° and translates sideways (Figure 5). Taking
bulk water as the ground state, the solvated ion must have minus
four hydrogen bonds (–95.7 kJ/mole, –22.9 kcal/mole) added to its
Inner Sphere solvation energy. The net energy for the “top” is
only –3.09kT, so it will be highly labile. Taking the outer Continuum
energy into account using the best result given above gives a solvation
energy of –393.5 kJ/mole (–94.0 kcal/mol). Assuming –711 kJ/mole
(–170 kcal/mole) for the proton affinity of water, the result is in good
agreement with Halliwell and Nyburg’s value of –262.7 ± 2.5
kcal/mole.170,172
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VI. SOLVATION AND CHARGE-TRANSFER

1. FC Redox Processes

Although hetero- and homogeneous electron transfer has normally been
held to occur under FC conditions, especially for nonadiabatic or
weakly coupled processes, there are suggestions in the literature90 that
“for adiabatic reactions with strong coupling between the redox couple
and the metal surface, electron transfer occurs gradually as the system
moves along the reaction coordinate.” As we have seen in Section II-5,
this appears to have been the intent of the original Hush theory,50 which
he recently reviewed in the context of later work.176 If the flow of
charge q during the reaction is rather slow at
298 K, as in normal transition state bond-breaking/making), the
Continuum dipoles should be able to keep up their motion with the
change of field, so that there will be no Continuum outer-sphere
activation energy term. The transient superdipoles72 in water have a

value (Eq. 34) of and a moment of inertia
. Remote from an ion, their rotational period is

(frequency at the equipartition energy value. Their
lifetimes will be a few periods, perhaps For superdipoles
centered at 8-9 Å from z = 3 and z = 2 ions (corresponding
approximately to the first superdipole shell, containing about 50% of
the total Continuum energy), the Langevin energy interactions with the
central dipole are 0.94-0.75kT and 0.63-0.5kT respectively,
corresponding to Langevin angles of 72.8-74.3° and 78.3-80.6°. The
time to rotate from the equilibrium 3+ to 2+ position and vice versa will
be approximately h/kT. FC conditions apply to
complete electron transfers proceeding much more rapidly than this.

The 2+/3+ transition in the Marcus model or its successors
involves only small Inner Sphere changes in solvation molecule
coordinates in the radial direction to and from the ion. Electron transfer
under FC or Born-Oppenheimer conditions demands that an activation
energy in the outer Continuum should resist one-electron transfer via a
continuum inertial term where r' is an effective
intermediate reactant-product radius. To avoid error, can be

* Marcus (Appendix to Ref. 44) suggested substituting a mean differential dielectric
constant for as dielectric saturation is approached.
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estimated from the Continuum solvation energy
which is about 35% of the total interaction energy for typical 2+/3+
ions (Section IV-9). This gives an average of about 170 kJ/mole for

and 96 kJ/mole for Hence,
neglecting work-of assembly terms, the Marcus equilibrium inertial
energy is about 24 kJ/mole (0.25 eV, 9.7kT). In a 1.0M solution
usually used for kinetic experiments, will be about 50% of this
(Section IV-8), far less than experimental equilibrium activation
energies.90,177

We are therefore forced to search for an Inner Sphere activation
energy term. A model of the reaction coordinate for the Inner Shells of
2+ and 3+ ions based on the latest Section IV-9 model is given in
Figure 6. It shows a stretch of 0.11 Å in equilibrium ion-dipole center
distance on going from the 3+ ion at 2.095 Å to the 2+ ion at 2.205 Å.
These are equivalent to ion-oxygen distances of about 2.0 and 2.1 Å.
The intersection of the terms is at 1.043kT per oscillator, at 2.140 Å.
Before correction for the ground states of the three-dimensional
oscillators, the equilibrium energies of each inner sphere water
molecule were –159.70kT and –72.21kT at 298 K. The inner sphere
dielectric constants for 3+ and 2+ were 1.988 and 2.515, the inner
sphere repulsive counterfields being respectively 29.4% and 34.6% of
the total counterfields. The corresponding force constants were
475,000 and 167,000 dyne/cm, giving frequencies of

hv = 3.23kT) and hv = 1.91kT). Corrected
for the 3hv/2 ground states, the inner sphere energies are 953.3kT
(2363 kJ/mole, 564.9 kcal/mole) and 430.4kT (1068 kJ/mole, 255.2
kcal/mole).

The 6 x 1.043kT barrier height must be reduced by about
to give an overall height of only about +2.41kT. The

barrier height in the second shell is small enough to be neglected.
Including the maximum value (9.7kT) of the Continuum term, and
before any reductions for coupling of reactant-product energies, the
total Inner plus Outer value is +12.1kT per ion (0.31 eV, 30.0
kJ/mole, 7.2 kcal/mole). It should also be noted that even after
correction for the oscillator ground states, the reactant and product
energy wells are at equal enthalpy, not equal free energy. The
correction to place the curves at electrochemical equilibrium, will
further reduce the barrier height.

Because of the small activation energy, the Tafel plots will show
considerable curvature. An obvious problem is that the anharmonicity
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rotation to assemble, e.g., the ion or the solvation shell of a
simple ion will be about As Section VI-1 shows,
the time for equilibrium Langevin angle change during or following a
one-electron transfer is so the Continuum can keep up
with this process under non-FC electron transfer conditions controlled
by the motions of water disassembly and solvation shell assembly. The
rate of the step is high under conditions where the
Gibbs energy for the step is close to zero, i.e., the electrocatalyst (e.g.,
platinum) is at or near the top of the electrocatalytic volcano.183 The
corresponding activation energy must be low, which is in line with the
requirements and activation energy for proton conduction171 via rotation
of solvated and water supermolecules and proton “hopping” (Ref.
170, p. 96).

As in the redox case (Section VI-1), we will first discuss the
reaction under FC conditions, corresponding in part to the Dogonadze-
Levich model,82 and somewhat analogous to Fawcett’s EITC

* Sic, i.e., the electronic charge of the intermediate or transition state.

protons axis is about Hence the time for an incomplete
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argument for the inner sphere energy terms71 cannot be used to
straighten out the Tafel slope, since the form of the wells near the
energy minimum is nearly parabolic, even though they are distorted
upwards in the direction of the ion, and downwards away from it. We
must seek an explanation elsewhere for the straight experimental Tafel
lines in the careful work of Curtiss et al.177

2. FC Proton Transfer

Proton transfer is a more demanding case than simple electrochemical
electron transfer (ECET)90 redox processes. It involves coupled ion-
electron transfer or electrochemical ion transfer (ECU), recently
described90 as a process in which partial loss of the solvation sphere
occurs, adsorption is involved, with “for univalent ions......the
occupation number* changes gradually (adiabatically) as the ion
approaches the surface,” which is reminiscent of Hush.50,176 Schmickler
et al.90,91,178 and others179 have generally used the extended Anderson-
Newns adsorption model180,181 for such processes, using Kramers
modifications182 of transition state theory.

The period of a single water molecule rotating around the oxygen-
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models.184,185 It is helpful to consider the reaction in the anodic
direction. From the model for proton solvation in Section V-2, the
Continuum activation energy term under FC conditions would be
98.8/4 = 24.7 kJ/mole (0.26 eV, 10.0kT). The crossing point between

where the two water molecules on the
left side are respectively of Type A and B (i.e., no rotation is required
for assembly) was calculated in the same way as Figure 6. It occurs at a
bond length of 2.710 Å, and is at 1.1kT above the minimum at
For water, the stretching force constant is about and
hv for the three-dimensional oscillator is 0.61kT so the
ground state for each Type A–B molecule is at 0.31kT. The correction
for the ground states of the stretching frequencies
[(l/3)(3/2)(l.58+0.61)72 per water molecule, i.e., –0.55kT] gives a total
of +1.1kT activation energy for the two Type A–B molecules. The
other two water molecules required to form must either detach
from their H-bonded state (requiring about +9.7kT each), or rotate to
some compromise position between initial and final states. Calculation
shows that 90° rotation from the minimum energy position to the
approximate half-way point requires an energy equal to +8.23kT above
the minimum. This option will be energetically preferred. Again, this
must be corrected for the ground state energies. The bending
frequency, as calculated here (c.f., Pople103) is or
(hv = 1.36kT). The value for solvated is probably about 50%
higher, so the correction is –0.85kT per water molecule. Thus, the total
energy to assemble the Inner Sphere in a compromise configuration
between that of the reactants and the products is +15.9kT. With the
Continuum term, we have a total activation energy under equilibrium
conditions of +25.9kT (0.67 eV, 64.2 kJ/mole, 15.3 kcal/mole). If
assembly of the solvation shell of the adsorbed proton under
equilibrium conditions occurs from the solvation shell of the electrode,
i.e., the Helmholtz double layer, the net energy of assembly will be the
same, since the Helmholtz layer must be reconstituted after proton
discharge. The value +25.9kT for proton discharge is much too large,
as the results of  and Ross186 (discussed below) indicate.
Platinum is at the top of the Volcano, so the reaction takes place
under equilibrium conditions close to zero overpotential.183
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3. The Inertial Term

Libby30 and Weiss32 both stressed the inertial energy present in the
Continuum as the energy barrier to FC electron transfer, which we have
seen in Section VI-1 requires a relaxation time of about

to accommodate itself to the change in charge.
Weiss considered that the inertial energy was always the inertial energy
difference between the solvent surrounding the reactants and products
in their ground states, i.e., for a change of z to z + 1,

In contrast, Marcus41-43 considered that the barrier
could accommodate itself to a compromise position between reactants
and products prior to electron transfer, so that his
corresponding to Weiss’s barrier expression for a one-electron transfer,
is reduced at equilibrium to by intersection of similar parabolic
energy terms for reactants and products. This arises from his use of

(Sections II-3 and III-2) integrated over the
electrolyte volume outside the reactants, where the field term is the
difference between the excited and final states in the same
configuration, and m is the Lagrangian undetermined multiplier used in
minimizing. How the system can rearrange itself to a compromise E*
value (not a thermal energy value) prior to and in anticipation of
electron transfer requires discussion. If the solvent model is imagined
to have coordinated harmonic thermal electron oscillations for reactants
and products (ions of different valency for homogeneous redox
processes, and a typical ion and one of infinite radius for electrode
reactants) then such a model may be envisioned.

However, the Continuum model developed Section III-2 is
molecular and has no place for such coupled oscillators. The remote
rotating superdipoles can influence the free energy of a reacting ion if
the average value of the cosine of the Langevin angle is permitted to
change because of changes in the energy distribution in the solvent.
Bockris and Sen examined this problem 4,187 using an equivalent to the
expression for the potential energy V of remote dipole-ion
charge interactions in the classical maximized entropy Maxwell-
Boltzmann calculation for the mean energy [V] in the averaging
expression:
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where is the fraction of the number of molecules with a potential
energy in the angular interval and This was
evaluated for classical small energy intervals by integrating the
numerator and denominator as usual. The mean square energy was
then evaluated by substituting for in the left numerator. The
standard deviation gave the fluctuation of the system
from thermodynamic equilibrium about the mean value. The probability
of a large number (N) dipoles having a cumulative random fluctuation
from the mean is equal to the very small Gaussian distribution

value so the probability of providing sufficient

energy to overcome any Born-Bjerrum inertial or Marcus activation
energy barrier would be very small. This work has not received much
attention.188 The probability may also be determined via the
relationship between the Langevin angle and the total dipole energy
from the Boltzmann distribution103:

We replace the energy in the numerator and denominator by
where is the kinetic energy of the population of

dipoles which itself has a subset of energies depending on the
value of in the potential energy term u. The second and more
distant shells contain a sufficient number of superdipoles to make the
Stirling approximation and the Boltzmann distribution reasonably
accurate. The terms cancel, so is
independent of the kinetic energy. This again implies that activating the
ion via electrostatic coupling in the electrolyte is improbable.

The Soviet school model considered that Outer Sphere or dielectric
continuum dipoles perform small harmonic vibrations at a relatively
low frequency.58,59 The implication of vibrations is that the minimum
of the potential energy of interaction i.e.,

must be greater than where is the relevent kinetic
energy of the superdipole.151 This may be taken as the equipartition
energy for rotation in the two dimensions at right angles to the field
vector. If we assume that the first layer of superdipoles is centered at
8.6 Å from a trivalent ion, with their structures intact, and the bulk
dielectric constant still applicable, their maximum interaction with z = 3
will be –0.6kT, so they will be librating. In principle, such a model
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may be described by the electrostatic equivalent of the ferromagnetic
effect, in which residual polarization is present because of order-
disorder phenomena,189 but such an explanation cannot be used for
liquids. In any case, the next layer of superdipoles centered at a
distance of 13.9 Å from the ion, will be rotating with a maximum
interaction energy of – 0.2kT for z = 3. These interactions are at an
effective temperature greater than that of the electrostatic equivalent of
the Curie point in ferromagnetism, so built-in polarization cannot occur.
We should note that the period of rotation

where is the total energy, will decrease from shell to
shell as ‘a’ increases and B becomes less. However, at the same time,
the maximum interaction between superdipole groups in adjacent shells
remains constant at about –0.4kT, providing a coupling mechanism
overriding the fall in B. It would be expected that nearest neighbor
superdipole groups will rotate in opposite directions, so that they line
up in the linear nose-to-tail position perpendicular to the field vector,
and are in the parallel nose to tail position parallel to the field vector.
Again, it is difficult to see how these motions influence the electronic
energy of an ion.

In conclusion, the barrier height to FC change transfer, as
envisioned by Weiss,32 may be correct. In a 1.0M electrolyte, it would
be about 50 kJ/mole (0.5 eV, 20kT, 12 kcal/mole). This appears to be
of the correct order.90,177 However, an alternative view is discussed
below.

VII.  NON-FC CHARGE TRANSFER

1. Water Molecule Rearrangement in Solvation Shell Assembly

The driving force for rearrangement of water molecules before
instantaneous FC proton-electron charge transfer presents a problem. A
five-molecule water superdipole assembly might acquire +25.9kT of
thermal energy, but there will be a low probability that its subsequent
rearrangement will direct it towards that for an intermediate state for FC
electron transfer and proton discharge. This is not necessarily true for

the simple linear rearrangement required for redox valence change, but
the “half-way” rearrangement of water molecules from their normal
aqueous state to that for a solvation shell in a 0 to ±1 transition and vice



270 A. J. Appleby

versa must require some “steering” activity. The present discussion
applies to such transitions.

For these, a different process is suggested, which may be related to
Schmickler’s concepts.90,91,178 The activation energy for such a process
may be less than that for FC electron transfer. If this so, the lower
activation energy process with more probable rearrangement
possibilities will be kinetically favored. In the suggested process,
electron transfer occurs slowly over so that the moving
molecules during the assembly of the Inner Sphere solvation sheath are
“steered” by the slow acquisition of charge, i.e., by the change in
where is the wave function of the transferring electron and is its
complex conjugate. Such processes must be adiabatic since the transfer
probability as a function of time must be high. The Outer Sphere or
Continuum energy term will then disappear, since the inertial energy of
its dipoles can keep up with the relatively slow change of field. A
simple model for such a mechanism seems to be that of Hush.50,176 He
considered a “flow of charge” from state “ze” to “ze±e” during an
apparently slow charge transfer process in which a sequence of ground
states of intermediate charge occur. He only considered changes in ion-
dipole interactions during the process (Section II-5), which resulted in
activation energies much less than experimental values. After Marcus’
early publications,41 he therefore added an outer Continuum inertial
term.67 This effectively canceled his concept of slow flow of charge.

2. Non-FC Redox Electron Transfer

If an induced dipole term is added to Hush’s50 permanent dipole term,
the resulting activation energies are illustrated by the following simple
argument. The permanent- and induced-dipole terms along the reaction
coordinate may be approximated by where m lies between
2 and 4, with B constant. Combining with an inner sphere repulsion

and minimizing using the derivative, the equilibrium energy well
at is A is approximately constant and
equal to so where z,
z – 1 are the initial and final valence states. Eliminating the terms
gives where the values are equilibrium
potential energies. This energy expression is formally similar to
Johnston’s bond-energy-bond-order (BEBO) transition state model.68

The energy in excess of along the reaction coordinate is
where z – q is an intermediate charge, and y



Electron Transfer Reactions With and Without Ion Transfer 271

contains the overpotential. are and
respectively, with negative. Expansion as far as the

quadratic binomial terms gives where
The derivative is zero when

The activation energy is therefore
which is identical in form to the Marcus

expression,41,42,44,50,67,176 and will therefore show the same type of Tafel
curvature and change of symmetry factor with overpotential as that
identified in Section II-8.

In early simulations of non-FC ECET, separate ion-permanent
dipole and ion-induced dipole terms were used, along with Hush’s
assumption that A could be considered to be constant on going from
reactants to products. This imposed restrictions introducing inaccuracy,
so a model was used based on that in Section VI-1 for 2+ and 3+ ions.
Reasonable assumptions made were (a) the ion-dipole center distance
was proportional to the change in fractional charge on going from 2+
(2.205 Å) to 3+ (2.095 Å) which is reasonable since the and
terms in the permanent and induced dipole energies can be expanded to
linear expressions with good accuracy, and (b) any changes in the outer
counter-field terms were also linear functions of the change in fractional
charge.

The calculated non-FC barrier between the 2+ and 3+ states is
shown in Figures 7A and 7B. The initial and final states are corrected
this time for the ground states of the oscillators (Figure 7A). Motions
along the reaction coordinate consist of the three-dimensional
symmetrical stretching frequency and any independent stretching
frequencies of the inner sphere oscillators, and those perpendicular to it.
If and are the reactant, intermediate, and product ground state
energies, it is reasonable to suppose for motions
perpendicular to the reaction coordinate. Along the reaction
coordinate, it is assumed that motion is governed by the time constant
of the Continuum superdipoles. The vibrational partition function in
the transition state may therefore be replaced by in the usual
way, where is the transition time for reactants to products, giving
the preexponential frequency factor kT/h. If the barrier height with the
two minima at equal energy is A, the minima may be adjusted so that
the ground state energies are equal, then using the Brønsted rule, the
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Figure 7. Calculated two-dimensional energy surfaces for heterogeneous non-Franck-
Condon transition of the three-dimensional 6-oscillator trikisoctahedral Inner Shells of
3+ and 2+ ions at (A) equal potential energies after ground state energy correction; (B)
at equal ground state free energies. Barrier height in B +22.9kT at 298 K (+56.9
kJ/mole, +0.59 eV, experimentally +0.59 eV177).

height of the barrier to the energy minimum for the intermediate
becomes Alternatively, as in
Figure 7, it may be done graphically. The barrier height is then
32.26kT. If kT/h appears in the preexponential, a further kT should be
added to give the Arrenhius energy,

Since we are concerned with the Arrenhius activation energy under
equilibrium conditions, a further correction should be made for the
change with the system in equilibrium under standard conditions, i.e.,
considering the relative standard entropies for for equal to
–137.7 and –315.9 J/mole-K,190 a difference of –178.2 J/mole-K. The
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Continuum entropies98 relative to vacuum values are about –40.2 and
–90.4 J/mole-K (Section III-1), a difference of –50.2 J/mole-K. We
should point out that the assimilation of the oscillator potential energy
to a portion of the 298 K experimental ion enthalpy may be somewhat
in error (c.f., discussion for protons191), and the difference between the
2+ and 3+ entropies in Ref. 190 is 21% higher than for Latimer’s
original values.192 In consequence, there is some uncertainty that the
calculations truly represent equilibrium. However, the barrier height in
Figure 7B is 56.9 kJ/mole (0.589 eV, 22.9kT, 13.6 kcal/mole), in very
good agreement with the experimental value of 0.59 eV.177 Other
calculations showed that the activation energy is closely proportional to
the oscillator energy in the transition state or to the mean solvation
energy, in agreement with other work.185 It is also roughly proportional
to the mean charge on the transition state and to the change in bond-
length at constant mean charge.

We should bear in mind that chemical processes in liquid media193

(which should include at least some electrochemical processes) may
follow the classical Berthoud-Hinshelwood expression for the reaction
rate, in which internal classical vibrational modes reduce the potential
energy of activation by a term involving some effective number ‘s’ of
classical oscillators per molecule to give i.e., 194,195

This will show an temperature-dependent which requires further
study.

Assuming trikisoctahedral ions with average effective radii of 4.0
Å, that of the inner shell (Section IV-9) in collisions with single active
water molecules (radius 1.4 Å), a collision frequency (Section II-8) of

is obtained. Assuming an effective reaction layer
thickness of twice the mean second trikisoctahedron shell radius, i.e.,
10.8 Å, with an activation energy of 22.9kT at 298 K would yield an
apparent rate constant of at this temperature. The use
of kT/h as the frequency factor at ambient temperature)
or the frequency of superdipole transition between redox states

c.f., the period in Section VI-1) gives
and respectively. The experimental

value177 is Considering the assumptions made, the
agreement may be considered good. As has been pointed out91 the
interpretation of kinetic data is often distorted by double layer
effects.196



274 A. J. Appleby

3. Proton Transfer and Other ECIT Processes

Before correction for ground states, the Version C model for proton
solvation, giving importance only to ion-dipole averages (which may
introduce some error) gave a total barrier height of only 6.81kT for all
four water molecules (Figure 8). The ground states of the initial states
were 2.35kT (one three-dimensional and one linear oscillator), and the
estimated value for the hydrogen-bonded products was 1.45kT, giving a
correction of 1.9kT. The same procedure as that for the redox case was
used to estimate the ground state energies of the transition state as an
increase in barrier height of 1.24kT, so the barrier height falls from
6.81kT to 6.15kT. The next question is the activation energy associated
with the discharge process where has

Figure 8. Calculated two-dimensional energy surfaces for heterogeneous non-Franck-
Condon transition between and at equal potential energies, before
correction for ground states. Barrier height +6.15kT (+15.2 kJ/mole, +0.16 eV) after
correction for ground state energies.



Electron Transfer Reactions With and Without Ion Transfer 275

at equilibrium. An attempt to examine this (along with the other
hydrogen electrode steps) was made by Bockris and Srinivasan197 using
the semiempirical Eyring-Polanyi approximation198 of the Heitler-
London method to calculate the potential energy surface. This method
is simple to use for normal chemical processes involving atom
exchange, but it is not so clear how it should be used for
electrochemical processes, i.e., how the terms for different species,
particularly the electron, are to be accommodated at equilibrium.
Attempts to apply it appear to show low barriers at equilibrium,
although the assumption that the metal water interaction (the third
interaction in a pseudo three-atom process process) can be
ignored leads to incorrect results, as simulations carried out in the
present work have shown. The reaction between the emerging and

a pseudo-two-atom process, is so strongly exothermic that a
barrier would not be expected, as in, for example, 199

Thus, the total activation energy of proton discharge under equilibrium
conditions appears to be very low, even less than that for water dipole
rotation (16.3 kJ/mole in liquid water, about four times less than in
ice),200,201 which partially contributes to it. Any contribution
corresponding to the formation of  from H and is similar
mechanistically to the tunneling transfer of between water
molecules.171 The crossing of the FC potential energy surfaces for this
process is shown on p. 99 of Ref. 170. The barrier is low enough and
thin enough to be transparent to protons.

At overall and electrochemical equilibrium and under
equilibrium conditions for the intermediate at the Volcano
maximum, the barrier must be further corrected for the absolute entropy
of which from thermal cell studies202 is about –20.9 J/mole-
K. 203,204 Thus using the Brønsted rule, barrier should be lowered by

or 1.26kT at 298 K, giving a final value of 12.1 kJ/mole
(0.126 eV, 4.89kT, 2.90 kcal/mole), which may or may not represent
the potential energy of activation rather than the experimental
Arrhenius energy, i.e., for a transition-state process with a
preexponential kT/h.

and Ross186 have studied the hydrogen oxidation reaction
(HOR) on well-characterized Pt(110)(1x2), (100) and (111) surfaces in
0.05 M as a function of temperature. The basic Pt(110)(1x1)
surface consists of parallel lines of atoms separated by the unit cell
length ‘l’ (3.924 Å), with each atom in the line separated by nearest-
neighbor distance Each rectangle of four atoms has a further atom
at its center, situated below the plane of the others, giving a ridge
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and furrow surface structure. The surface atoms have 6 missing nearest
neighbors, whereas the furrow atoms have 2. This is an unstable
configuration, and surface restructuring readily occurs, e.g., on
annealing. The resulting (1x2) configuration has every other surface
row missing, giving furrows twice as wide, with hexagonally close-
packed (111) sides (4 missing nearest neighbors) at an angle of 54.74°
to the perpendicular to the surface. To maintain numerical continuity,
the surface has hexagonal steps to higher surface layers, giving terraces
with missing row configurations. Unlike atoms on the (111) surface,
which have 3 missing nearest neighbors, the surface atoms and furrow
atoms are different in properties according to their number of closest
neighbors. Pt(100)(1x1) is also known to reconstruct to a hexagonal
form known as (5x20) from its LEED pattern under certain conditions,
but the (1x1) surface was stable at the potentials examined.186 Per
the Pt(110)(1x2) surface ideally has 0.707 surface atoms, 1.414 atoms
in the furrow sides, and 0.707 at the bottom, i.e., 2.818 in all. Ideally
the surface packing density is 2.309 and 2.000 atoms per for the (111)
and (100) planes.

The Tafel slopes for hydrogen oxidation obtained by and
Ross186 at 274 K were A. (110)(1x2), RT/1.94F; B. (100) RT/0.49F
(high current density), RT/1.47F (low current density); and C.
RT/0.73F. The corresponding exchange currents and equilibrium
activation energies were 0.98, 0.60, and at 303 K and 9.5,
12, and 18 kJ/mole, respectively.186 The authors considered that the
corresponding mechanisms were A. dissociation (reverse combination)
rds, rapid discharge (Tafel-Volmer, Process 1), B. electrochemical
dissociation rds, rapid discharge (Heyrovsky-Volmer, Process 2), and
C. either Process 1 or 2, respectively. A. is in good agreement with the
expected value for the Tafel rds under high intermediate coverage
conditions, with no other possible fit (low coverage results in a
chemical limiting current). There are three possibilities for B: a switch
from a second electron transfer step (Volmer) rate-determining under
low coverage conditions to a first step (Heyrovsky) as overpotential
increases, or the opposite at high coverage. Finally, it may represent a
first electron transfer rds at high coverage, with a sudden switch to low
coverage at an overpotential of +40 mV. C is considered later.

When filled with the lines of atoms at the furrow tops of
Pt(110)(1x2) are still unoccupied.186 Even so, the weak structure shows
a lattice expansion of 10% compared with 2% for the other low-index
surfaces.186 Unlike Pt(100), adjacent sites are available for Tafel
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dissociation, which is favored under high coverage conditions in the
limited overpotential range (0.05 V) examined.

Following the reduction of a partial coverage (to about 0.33)204 of
adsorbed anions (bisulfate),186,204 the well-prepared (100) surface is
fully covered (to one per Pt atom) by under-potential-deposited
hydrogen in the potential range of interest, which follows a
Frumkin isotherm, i.e., its free energy of adsorption falls linearly with
coverage as sites are occupied and sideways forces and lattice
expansion progressively occur.186 Alternatively, the isotherm may be
regarded as a succession of overlapping fractional Langmuir isotherms,
whose average free energy for each segment reduces with coverage.
The last segment, completing the total coverage, represents a small
fraction of the total area whose free energy at this differential coverage
is zero or rather negative. This fractional part of should be the
major contributor to the overall anodic reaction intermediate, i.e. only a
small part of the overall surface area should be active. The marginal

species, i.e., that with the weakest adsorption, may be the reaction
intermediate at small anodic overpotentials at high local coverage, and
the Heyrovsky rate-determining step switches to the Volmer step under
high coverage conditions on the (100) surface as overpotential
increases.

In the potential range of interest, the hexagonal (111) surface is
filled by whose Frumkin peak is broad, indicating a large
value, where r is the change in free energy of adsorption with the
coverage Over the 0.15V examined, the electrode is in the medium
coverage range. Examination of the complete kinetic equation for
Heyrovsky rate-determining, Volmer in pseudoequilibrium under these
conditions, including the preexponential terms and the
exponential terms, where is the slope,183

shows that a RT/0.73F Tafel slope may be readily fitted to this process
over two decades. This provides an explanation for Case C, the (111)
surface. Thus, on the (111) and (100) surfaces, the extrapolated
Heyrovsky reaction appears to have activation energies of 18 and 12
kJ/mole respectively186 under  equilibrium  conditions  at  high
coverage, whereas the Tafel process has an activation energy of 9.5
kJ/mole under the same conditions on the Pt(110)(1x2) surface.

High coverages imply small experimental Arrhenius preexponential
terms, which were (110) 0.043 (100) 0.070
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(111) 0.570 * assuming to be temperature-
independent. If one assumes a dihydrogen solubility moles/liter,
with kT/h at 303 and a reaction zone thickness of 2.8 Å
corresponding to one water molecule diameter, we obtain a theoretical
preexponential factor of
Taking into account the surface packing densities, this indicates that on
average only 1 surface atom pair in surface atoms is active on
the (110)(1x2) plane for Tafel dissociation; and 1 in on the
(100); and 1 in on the (111) for the Heyrovsky reaction.

Under cathodic conditions, the low activation energies require
correction for the corresponding overpotential deposited hydrogen

cathodic reaction intermediate under high coverage conditions.
These have been examined by Conway and coworkers204,205 as part of a
somewhat controversial study of hydrogen evolution in sulfuric acid on
platinum single crystals, which apparently shows much higher cathodic
rates compared with the and Ross186 micropolarization data,.
The at is equal to giving
r values of 5.7kT, 3.8kT, and 0.2kT for the (110), (100), and (111)
faces. With the cathodic process (Heyrovsky rds at high
coverage, Tafel slope RT/2F) extrapolated from moderate to high
overpotentials should have activation energies at equilibrium of about
18 and 17 kJ/mole on the (111) and (100) faces, that on the (110) being
unknown. At cathodic overpotentials, assuming a temperature-
independent a barrier of this height will only allow a
change in rate of 3.2 decades from the exchange current value before
the process becomes activationless.206 This presents a difficulty,
because data for platinum (which appear acceptable, because of the
techniques used) show a linear Tafel behavior up to 207-209

The only apparent explanation is a basic difference between the
exponential and preexponential terms on single crystal and
polycrystalline platinum. Bowden’s early work, dating before careful
elimination of adsorbable impurities, reported an activation energy of

on polycrystalline platinum, the higher value being on
old electrode surfaces. At the lower activation energy value, this would
allow 5.25 decades of rate change before the activationless condition
occurs, making the results of Kabanow207 and Bockris and Azzam209

Bowden’s early work, dating before careful elimination of adsorbable impurities,
reported an activation energy of on polycrystalline platinum, the higher
value being on old electrode surfaces. This suggests a preexponential value of about 0.5

204,205

i.e.,

*
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plausible, though not mutually in agreement, since the latter showed
hysteresis at very high current densities.

The hydrogen evolution reaction on mercury has an exchange
current of about an equilibrium activation energy of ca.
80 kJ/mole,204 and therefore an Arrhenius prexponential factor of 50

about 100 times greater than that on Pt(111). A convincingly
straight composite Tafel plot210 (potential independent using
results of Bowden and Grew211 at low current density, of Bockris and
Azzam,209 and finally the apparently unpublished results of Nürnberg212

extends from       The plot may be simulated
without using the pseudoequilibrium assumption for coverage,
since the back reactions are negligible at high cathodic overpotentials,
where the forward rates for the electrochemical Volmer and Heyrovsky
steps are high. Taking platinum to be at the top of the Volcano, the
effective Heyrovsky rate constant on mercury will be increased by

compared with that on platinum, where is
again the Bronsted slope, and is the positive difference in the
free energy of adsorption of between platinum and mercury. The
rate constant of the Volmer reaction is correspondingly reduced by

and that of the Tafel reaction is increased by
A general expression for the rate of the overall

Heyrovsky-Volmer process is where
the back reactions have primes and the k values contain the
and electrochemical rate terms, but not the and (1 – ) terms, which
are reflected in the denominator. A similar more complex (quadratic)
expression may be written for the Tafel-Volmer mechanism.

Assuming that (for is (1 – where is the symmetry
factor for changes in on the opposite side of the energy barrier,
the best fit for for mercury for the Tafel plot is +68kT or about
168 kJ/mole more positive than the value for platinum, i.e., –83
kJ/mole, putting it very close to the low adsorption energy leg of
Trassati’s Volcano plot213 shown by Conway.204 The Volmer reaction
should always rate-determining, with a potential-independent Tafel
process to overpotentials of about –0.9 V, when it is overtaken by the
Heyrovsky process as the fast step. The Brønsted slope of this leg,
referring to the Volmer rds, is 0.32. On platinum, this rds has a rate of
about Using this value results in a slightly steeper slope of
0.37, close to the 0.4 used in the simulation. It is also in good
agreement with the presumed difference between the equilibrium
activation energies on mercury and platinum (about 60 kJ/mole, or 0.36

210

to
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x 168). An activationless process will occur a sufficiently high current
density. Again assuming a potential-independent this would occur at

or at higher values if some change of at very high
overpotentials take place. This may be occurring at the highest current
densities shown in Ref. 210.

4. Tafel Plots for Redox ECET and ECIT Processes

The mechanisms discussed above for redox processes gives pseudo-
parabolic V-i dependencies after binomial expansion of the energy
terms, leading to Tafel curvature. The interesting result is the value of

the transfer coefficient, which (in intervals of 4kT from equilibrium,
or 0.1028 eV) is 0.432, 0.418, 0.403, 0.388, 0.373, and 0.359 (anodic);
and 0.554, 0.539, 0.525, 0.511, 0.502, and 0.483 (cathodic). In these
ranges, the effective charge on the transition state varies from +2.439 to
+2.366, and from +2.432 to +2.524. The anodic and cathodic transfer
coefficients at equilibrium correspond exactly to the fractional charge
between the reactant and product at equilibrium, but deviate from it at
higher overpotentials. This deviation is small in the anodic direction,
but progressively much greater in the cathodic direction. Similarly, the
sum of the anodic and cathodic transfer coefficients at constant rising
current density deviates progressively from unity. An experimental
anodic for to at about 1 decade from equilibrium is
0.425.90,177 The above results seem to be in good agreement with this,
and Tafel behavior within experimental error occurs over about 5
orders of magnitude.

However, this model of kinetic behavior requires further
discussion. The usual argument used to claim an experimental
“straight” Tafel slope for the case of high overvoltage metals for
hydrogen evolution at low coverage has assumed intersection of
reactant and product energy curves, for example, those of Despic and
Bockris214 for metal deposition, extended later to the proton transfer
case (Ref. 5a, p. 345, c.f., Bockris and Matthews215).   The latter
calculation is not very different from the intersection of Marcus
continuum parabolic terms for reactants and products occurring high up
one of the “legs” of the reactant parabola to give a rather constant Tafel
slope of somewhat less than 2RT/F, c.f., Fischer.216 However, such an
intersection (after subtraction of the electron energy term on an absolute
scale between reactants and products) implies that the reaction occurs
under FC conditions, cf. Gurney, Ref. 8, and Figure 9A.
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Figure 9. Illustration of how change in Fermi energy (EF) acts on the energy
barrier. E = potential energy; C = Nuclear configuration; = density of filled
metallic states in metal electrode. (A). Gurney’s model8 with initial (I) and
final (F) states at the same potential. (B). Non-Franck-Condon transfer in
equilibrium. (C). Non-Franck-Condon transfer out of equilibrium.
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Differing models for the transfer coefficient and symmetry factor,
including a history of the terminology, were instructively reviewed by
Bauer in 1968.217 Parsons (1951),218 c.f., Plonski (1969),218 regarded it
as equal to the fractional charge on the transition state, whose charge is
mid-way between that of the initial and final states in a given step, and
whose electrochemical potential is thereby governed by the solution
potential. Vetter219 regarded it (the Durchtrittsfaktor) as being the
result of a Durchtrittsreaktion, in the sense of an unspecified stepping
through from one state to another (c.f., Ref. 208, p. 151). Audubert
considered it to concern the transfer of kinetic energy to potential
energy of an ion to overcome the barrier. However, it has also been
associated with the way in which charge (electronic or ionic) is
exchanged between the electrode and the solution, considered
illustratively in Ref. 221 along with other interpretations, i.e.,
intersections of energy slopes.214 Another view made it the work
required in transferring charge through the double layer.222 In some
cases, it is the value of a parameter measured along the reaction
coordinate, in others it is an energy at right angles to it. In equilibrium,
the anodic and cathodic symmetry factors must equal unity, so that the
Nernst equation emerges under reversible conditions.217 However,
away from equilibrium, this may not be so.

In a first approximation under non-FC conditions, the Tafel slope
may be attributed to the action of the change in the free energy of
electrons (i.e., the change in Fermi level of the electrode with respect to
the electrostatic energy of the ions in the solution) on the fractional
electronic change on the transition state. However, a persuasive case
can be made that the experimental Volcano relations and Tafel slopes
represent the same phenomenon.

The former must influence the barrier height following the
Brønsted rule by acting on the ground state of adsorbates. Thus it
would seem that the Tafel slope represents the same effect. The
Brønsted rule should probably be examined using the Eyring-Polanyi-
Heitler-London model of the potential energy surface (Section VII-
3),197,198 which yields cumbersome expressions in which the roles of the
electron and overpotential are not clear. An approximation of the
cross-section of the surface by using the BEBO model68,210 with fitting
of parameters to an assumed (experimental) activation energy under
equilibrium conditions shows similar results to the model given above,
i.e., translation of the barrier maximum towards the products as
adsorption energy increases, with a corresponding change in

where n* is the bond order (for the reactants) at the

220
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maximum, and p is close to unity. Again, the sums of the transfer
coefficients at the same cathodic and anodic current densities
progressively recede from unity as current density increases. A better
physical formulation of the system which attempts to explain the
experimental linear Tafel slopes is required.

5. Linear Tafel and Brønsted Slopes

In equilibrium, the electrochemical potentials of the reactants and
products are equal. When an overpotential is applied, the reaction
becomes irreversible. The Gurney FC model of an electrochemical
process involving neutralization of an ion under radiationless transfer
conditions may be used to illustrate some general observations.
Radiationless transfer under non-FC conditions only changes the length
of the abcissa, since it allows nuclear movement during the completion
time for electron transfer. Integration of the Gurney expression for the
rate of, e.g., proton discharge8 in the anodic and cathodic directions223

results in two expressions which may be equated at equilibrium. In
previous work, this was used to derive an exchange current223 under
these conditions, which contains (as expected from other less precise
quasi-thermodynamic considerations224) no major electronic parameter
of the electrode material (e.g., Fermi level or work function) apart from
an (integrated) small preexponential electronic density-of-states term.
However, it does show that the condition of radiationless electron
transfer does involve the fact that the Fermi level of the electrode has an
energy identical with the barrier maximum. Thus under equilibrium
conditions, the free energy (very close, if not precisely equal to, the
potential energy225) of the electrons is in equilibrium with the top of the
thermal energy barrier, not with the ions in solution. When an
overpotential is applied, the reaction becomes irreversible, and part of
the free energy corresponding to the overpotential of the half-cell
reactions becomes generated enthaply, i.e., The radiationless
transfer condition still of course applies, and the Fermi level in the
electrode must still be at the same energy level as the top of the thermal
barrier (Figure 9). In effect, application of an overpotential or the
driving of the overall reaction in either the anodic or cathodic directions
must drive the thermal barrier up or down according to its average
charge at the peak. Taking a simple case, neutral species on one side of
the barrier will not be affected by the change in potential, whereas
singly-charged species on the other side will have their electrochemical
potential changed by ±eF. The transition state will have its
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electrochemical potential changed by This is illustrated in Figure
9, which gives some logic to the potential energy surface sections given
without explanation by Gardiner and Lyons,226 and Glasstone, Eyring,
and Laidler.227

For redox processes, there is some evidence of Tafel slope
curvature for certain processes under certain circumstances.228,229

These may be a partial result of double layer effects.196 In other cases
experimental Tafel plots which are close to linear appear.177,230 The
controversial question of possibly varying with temperature231,232 will
not be discussed here, although double layer effects196 may often be
responsible.

Because the observed Volcano relationships in combined ion-
electron ECIT processes show similar linearity characteristics to the
Tafel slopes, a similar explanation for this behavior appears probable.
As discussed in the previous section, the BEBO approximation may be
used to estimate the potential energy surface for normal bond-forming
and bond-breaking processes. However, the Brønsted slope for these
neutral molecule processes is only close to 0.5 when the enthalpy of
reaction is zero. It deviates considerably from 0.5 at positive and
negative enthalpy values, and at equal positive and negative enthalpy
values the Brønsted slopes do not add up to unity. The argument is
made above that under conditions of constant potential energy of
adsorption of a neutral adsorbed intermediate (e.g., under
equilibrium conditions, the overpotential, i.e., the change in Fermi level
of the electrode, only acts on the charge of the transition state, and may
not influence it. Similarly, the change in potential energy of adsorption
of a neutral reactant on the electrode surface at constant overpotential
may also not change the charge on the transition state in a reaction of
ECIT type. This is because this charge is governed only by the
configuration of the forming or dissolving solvation shell, partly within,
and partly without, the Helmholtz double layer. The physical model for
this was sketched out by Conway and Bockris for metal deposition
processes.233 This configuration may be determined entirely by
effective (in the Duncan-Pople sense) permanent dipole energies along
the water molecule configurational vector, together with those resulting
from the induced dipole. Setting the derivative of the simple
electrostatic expressions for these energies equal to zero under
equilibrium conditions determines the barrier maximum and the charge.
This rather simple concept provides a consistent picture for ECIT
processes involving adsorption.
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VIII. CONCLUSIONS

It was at first apparent that one of the major problems in the
understanding of the rates of different types of charge-transfer
processes (those involving direct electron transfer, ECET, and ion plus
electron transfer processes ECIT), was the failure to have a good model
for solvation energy, both for the Inner and Outer Sphere. The former
had a simple model,16,92 but the latter had no molecular basis at all, only
a conceptual electrostatic charging process31 whose physics breaks
down for electronic charges. Initial work looked at both of these
concerns. The first was brought reasonably up to date, and the second
was given a molecular basis. In addition, the whole problem of
dielectric saturation was examined. After examining a number of
alternative charge transfer processes, it appeared that activation energy
effects concerning the Outer Sphere may in many cases be discounted,
since many adiabatic reactions appear to proceed via non-FC processes
in which the Outer Sphere dipoles or superdipoles have enough time to
accommodate the changing charge on an ion as a function of time. The
problems of the Outer Sphere and the approach to dielectric saturation
may therefore be neglected in many cases. While an Outer Sphere
explanation to certain charge transfer rate phenomena (particularly
those which may be anadiabatic) is not discounted, non-Born-
Oppenheimer or non-Franck-Condon phenomena may better fit the
facts, as was suggested for proton transfer in earlier reviews.234 Under
adiabatic conditions, the process with the lowest free energy of
activation will be the preferred one. If the activation energy contains an
Outer Sphere term, it would be expected to change rapidly with ionic
strength, reaching about 50% of the infinite dilution value at 1.0 M, and
disappearing in very concentrated solutions, e.g., 6.0 M. This may be
used as an experimental test.

A relatively constant Tafel slope for reactions not involving
adsorption, and those involving adsorption with complete charge
transfer across the double layer, distorted by second order effects, may
also be explained in terms of a non-Franck-Condon process. Since
adsorbed intermediates in charge transfer processes also show
adsorption energies depending on potential in the same way as the
potential energy barrier maxima, these should also follow the same
phenomena.
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APPENDIX

1. Applicability of

The inverse square law determines that the electric field inside closed
shells of uniform charge distribution is zero. Hence, only the induced
charge adjacent to a spherical condenser of radius ‘a’ with total charge
q (equivalent to the charge on the central ion) need be considered as the
opposing charge which reduces the field. If this charge is q' , then the
field at the surface is While the total induced
polarization vector in any spherical shell with uniform dielectric
properties surrounding a fixed molecule or charge necessarily
vanishes,72 the total scalar polarization in a shell of thickness 2s is

Hence, and
When a approaches 2s, the exact expression for

should be used, so that becomes
This may be only approximate when

the shells contain only small numbers of discrete charges, e.g., in
molecular dipoles around an ion.

If we consider a uniform spherical shell of thickness 2s (the width
of the volume of space containing a single molecular dipole), in which
the moments are oriented by a central charge giving an electric
displacement it is clear from the inverse square law that the
effective layers of equal positive and negative charge each produce
equal and opposite fields at all points outside the shell. Thus, the only
field outside the shell is that of the polarizing change at its center. If we
consider an internal or external point located at a distance b (point b)
from the center of such a shell of polarization of radius a, then the total
moment in a ring of the shell located symmetrically around a line
joining the center and point b is equal to where is
the angle subtended at the center of the sphere by the center and
circumference of the ring. The electric field due to the polarization in
the ring at point b from the center of the sphere is given by

where d is the distance between point b and a point on the
circumference of the selected ring, and is a function of the angles
between the polarization in the ring and that of an imaginary dipole
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lying at point b along the line joining point b and the center of the
sphere. is equal to 137 from
the system geometry, where is the angle subtended at the ring by
point b and the center of the sphere. Since and

is where
Hence:

The field is zero for the special case where b = 0 and a = r. The general
result is:

which is zero for all values of b except when b = a, when the lower limit
is d = 0 and the expression is infinite, i.e., closed inner and outer shells
of polarization do not contribute to the polarization field of the selected
shell for which b = a. To determine the polarization field at the dipole
center of a selected dipole in this shell, we integrate the value of d from
a lower limit equal to the distance between the center of the selected
dipole and the start of the next shell, i.e., the distance s. Thus the field
due to the shell at b = r without the field of the selected dipole is:

Thus, the polarization field at the selected dipole is and
the external field  at the dipole is     However,

so and equals in
radial geometry, provided that the number of dipoles in the shell
considered is enough to make an integration (instead of a summation)
sufficiently accurate. The same should be true for the polarization field
at a selected solvated ion of e.g., diameter 2d, which may be several
times 2s, but for which the shell thickness is 2d rather than 2s.

Equation (86) shows that must be large compared with s, but
this will be true even for the first shell of continuum dipoles. However,
the treatment no longer applies at short distances, when overwhelms
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The dipole field equation used in the derivation is reasonably
accurate at distances of a few Å. The use of for the
volume of each ring instead of
will understate the volume, but the largest error occurs because of the
non-continuous nature of the polarization distribution in the shell. The
polarization in a shell of dipoles of radius a (measured to the dipole
centers) was accurately estimated numerically for i.e.,
with a hydrogen-bond distance of 2.9 Å, a = 4.62 Å. This distance
represents an approximate lower limit for the first continuum shell for
univalent ions. The result obtained for the value of was
79% of the value for As expected, small residual fields were
found outside and inside the shell. The summation improves as ‘a’
increases to higher values. The effect of this summation of polarization
fields will be significant at short distances, and it means that Eq. (87)
will therefore overstate the value of and understate the values of
and the interaction energy between the central ion and the surrounding
continuum dipoles.

2. An Appropriate Model for Water Molecule Orientation

An introduction to the problem of inner sphere orientation is given in
Section IV-4. Solvated monovalent negative ions apparently have more
negative solvation energies than positive ones when both have the same
ion-water distance.95,98,170,172 This has been explained by dipole98 and
simple quadrupole models.95 Consider an ST2 potential quadrupole142

often used in molecular dynamic calculations142,144,145,157 with charges
+2e' , –2e'  with polar coordinates y, and z, respectively from the
molecule center and a line along the dipole axis joining it and an ion
(charge e) at distance ‘a’. Assuming a “hard wall” interaction, the
potential interactions between the quadrupole and the ions in the dipole
axial position are:

Expanding to the third binomial term and ignoring all terms higher than
gives:
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for negative (+,–) and positive (–,+) ions. At constant distance,
differences must be in these terms, since induced dipoles, Outer Sphere
interactions, and repulsive terms should cancel.170 Thus:

A convenient monovalent ion-water center distance in Halliwell
and Nyburg’s correlations170,172 is 2.924 Å i.e,
when the solvation energy difference between negative and positive
ions is –41.8 kJ/mole, i.e., 16.86kT/c per water molecule at 298 K,
where c is the coordination number. The modified95 Rowlinson
quadrupole141 has a partial charge e'  = +0.33e on each proton with
–2 x 0.33e on the oxygen (vacuum moment 1.86 D, bond length and
angle 0.964 Å and 105°). With the origin at the molecule center (0.15
Å from oxygen), y = 0.880 Å,  z = 0.15 Å and
positive ions (–27.18kT) in the axial position16,92,95 have enthalpies of
solvation 3.67kT more negative than axial95 negative ions (–23.51kT)
at a = 2.924 Å. A more accurate point charge analysis gives –4.20kT
difference (–26.03kT and –21.83kT for positive and negative ions).
The only way to obtain a more negative solvation energy for negative
ions compared with positive ions aligned along the dipole axis is by
changing the off-axis charge. If  is less than 53.57° at the same y
value, the result is reversed, but this is unrealistic.

If we now consider the Verwey positions,161 if the negative charges
are considered to be on the oxygen,95 a point charge calculation shows
that for negative ions, the maximum interaction at 2.924 Å is
–23.38kT with the ion-oxygen axis ±21.8° above and below the O–H
bond direction, compared with –20.77kT when it is exactly aligned in
the Verwey position (and –21.83kT on the dipole axis, above). For
negative ions, the Verwey positions are stable, i.e, do indeed lie at
marginal minima, but for positive ions, the only stable position is on the
dipole axis at –26.03kT, and the Verwey positions (at 60.1° to the
dipole axis) are unstable, and are significantly less negative.
Considering the similar situation with the negative charges at the
molecule center, for negative ions, the minima lie at –25.12kT and at
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±14.2° above and below the O–H bond direction, with –21.03RT along
the dipole axis. Again, for positive ions, the only stable position is the
axial one, at –25.79kT.

Thus, using these simple quadrupole approaches, we may be led to
believe that the electrostatic stabilization energy for positive ions will
be more negative than that for negative ions due to the effects of the
off-axis charges. A pre-quadrupole approach, ignoring off-axis
charge,98 gives –23.06kT and –28.05kT for positive and negative ions
at a = 2.924 Å, i.e., the difference of –4.99ckT is approximately correct
if c = 4. The real charges are indeed off-axis, and the DP multipole143

should be a much more realistic molecular model. In it, the protons
(+e, +e) are at +0.586 Å from the oxygen atom center (+6e) along the
dipole axis, offset at ±0.764 Å (bond angle 105°). The lone pairs (–2e
each) on the oxygen are located at right angles to and at ±0.275 Å
above and below the proton-oxygen plane, at –0.158 Å along the dipole
axis. The bond electrons (–2e each) may be located along the proton-
oxygen bonds at +0.334 Å from the oxygen atom center along the
dipole axis, offset at ±0.443 Å gives a dipole moment of 2.138 D (See
Section V-1) to account for induction. The 8+, 8 charge separation
means that the DP dipole length is very short (0.0557 Å for 2.138 D)
compared with the 0.586 Å Rowlinson length, and its dipole center is at
+0.1187 Å (at 2.138 D) from the oxygen compared with the Rowlinson
value of +0.243. Thus, the dipole center for each lies on different sides
of the water molecule center at +0.15 Å.

Appropriate coulombic potentials were used to obtain ion-DP
multipole interactions at a = 2.924 Å. Instead of the “hard wall” model
used above, a repulsive +A/(a + q)12 interaction was assumed, where q
is the ion-oxygen distance. The complete expression was differentiated
to obtain the minimum potential at a = 2.924 Å. First the ions were
assumed to lie along the dipole axis, giving a net interaction of
–23.11kT for positive ions, and –19.99kT for negative ions, where the
repulsive potentials were 16% and 17% of the total coulombic
interaction respectively. Thus, the gross coulombic interactions for the
DP model were –0.8kT (3.1%) and –1.6kT (7.3%) greater in this
configuration than those for the corresponding point-charge Rowlinson
model, which assumed a smaller dipole moment (1.86 D). Thus, in
both point-charge calculations, positive ions situated at the same
distance from the water molecules show greater interaction than
negative ions. However, if the Rowlinson and DP models are regarded
as simple dipoles, the first yields a greater interaction for negative ions,
whereas the opposite is true for the second, due to the differing position
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of the dipole centers with regard to the molecule center. The
Rowlinson dipole model gives an approximately correct answer, but it
is too artificial to be useful.

Point-charge interactions for the ion-DP multipole were then
examined as a function of a, and as a function of the angle of the
molecule. At typical distances, the orientation giving the most negative
gross electrostatic potential for negative ions was in line with each of
the H–O bonds, i.e., the Verwey161 position. However, this was not true
for positive ions in the O-lone pair direction, unless ‘a’ is very short. In
the Verwey positions at a = 2.924 Å, the net interaction energies were
–18.16kT for positive ions, and –23.54kT for negative ions, with
inverse 12-power repulsions calculated from the minima equal to 18.6%
and 22.8% of the gross coulombic potentials respectively.

Positive ions in the dipole axis position have more negative
potentials than those in the Verwey position. The most negative
position should be favored, which would result in the Verwey position
for negative ions, and the dipole axis position for positive ions. This
would result in similar potentials for both negative and positive ions at
a = 2.924 Å. One of the reasons why the Verwey position is preferred
is the greater opportunity for retained hydrogen bonding, whether
complete or “bent”.103 The hydrogen bond is about –10kT (–5.95
kcal/mole, 24.9 kJ/mole103). It is usually assumed95 that two half
hydrogen bonds are broken per water molecule of solvation, so that on
the dipole axis positive and negative ions under the above conditions
will have effective partial solvation potentials of only about –13.11kT
and –9.99kT, before induction effects are taken into account. In the
Verwey positions, one half-bond is broken, giving –13.16kT and
–18.54kT. With a = 2.924 Å, the DP dipole centers in neighboring
Verwey positions of least repulsion at c = 4 (one cis and one trans pair)
are about 4.8 Å apart, which makes the dipole-dipole interaction a
reasonable approximation. These orientations give dipole-dipole
interactions of +0.88kT per dipole for positive ions compared with
+1.52kT when aligned along the dipole axis. The effect of this is likely
to be marginal.
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