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Chapter Overview 
Identification of relationships among different biological entities, e.g., genes, 
proteins, diseases, drugs and chemicals, etc, is an important problem for 
biological researchers. While such information can be extracted from 
different types of biological data (e.g., gene and protein sequences, protein 
structures), a significant source of such knowledge is the biological textual 
research literature which is increasingly being made available as large-scale 
public-domain electronic databases (e.g., the Medline database). Automated 
extraction of such relationships (e.g., gene A inhibits protein B) from textual 
data can significantly enhance biological research productivity by keeping 
researchers up-to-date with the state-of-the-art in their research domain, by 
helping them visualize biological pathways, and by generating likely new 
hypotheses concerning novel interactions some of which can be good 
candidates for further biological research and validation. In this chapter, we 
describe the computational problems and their solutions in such automated 
extraction of relationships, and present some recent advances made in this 
area. 
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1. INTRODUCTION 

The scientific literature is an important source of knowledge for the 
scientist during the course of study of any research problem. The huge and 
rapidly increasing volume of scientific literature makes finding relevant 
information increasingly difficult. Content level information rather than 
collection level information is needed for scientific research. The availability 
of scientific literature in electronic format, such as Medline, has made the 
development of automated text mining systems and hence "data-driven 
discovery" possible. Text mining enables analysis of large collections of 
unstructured documents for the purposes of extracting interesting and non- 
trivial patterns or knowledge (Tan, 1999). Text mining has a very high 
potential for knowledge discovery, as the most natural form of reporting, 
storing, and communicating information is text. Informatics tools can assist 
the traditional hypothesis-driven research (Smalheiser, 2001). Many 
hypotheses are formed by extrapolating the current knowledge; for example, 
if we know that apoptosis in breast cancer is mediated by calpain, we can 
ask if apoptosis in other related cancer (e.g., ovarian cancer) is also mediated 
by calpain. 

The query "breast cancer" on Medline returned 128,171 documents on 
June 21, 2004. This shows the large volume of scientific information 
available in the form of text. It is impossible or impractical for anyone to 
read through all of these documents to find the relevant information. It is 
even more difficult to capture the knowledge in those documents. 
Researchers and scientists are challenged by this increasing knowledge gap. 
Associations among biological objects such as genes, proteins, molecules, 
processes, diseases, drugs and chemicals, are one such form of underlying 
knowledge. For example, Swanson (Swanson and Smalheiser, 1997) found 
an association between magnesium and migraine headaches that was not 
explicitly reported in any one article, but based on associations extracted 
from different journal titles, and later validated experimentally. 

In this chapter, we describe the progress made in the development of a 
complete "knowledge base" of associations among biological objects, such 
as those mentioned above, that are important for biologists to study and 
understand specific biological processes. The term object refers to any 
biological object (e.g. protein, gene, cell cycle, etc.) and relationship refers 
to an action one object has on another. Biological relationships discovered 
from literature and experiments can be used to set up templates for biologists 
to model a biological process and to formulate new hypotheses for guided 
laboratory research. 

The main goals of this chapter are to describe the progress made in: (a) 
developing a very large knowledge base, called BioMap, using the entire 
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Medline collection (over 14 million) of literature documents, and (b) 
developing an interactive knowledge network for users to access this 
secondary knowledge (BioMap) along with its primary databases such as 
Medline, GenBank, etc., in an integrated manner based on a specific area of 
problem enquiry. In order to build the BioMap and its associated access 
"window" (the knowledge network), various algorithms and tools need to be 
developed for: (i) identifying biological object names; (ii) discovering 
object-object relationships; (iii) creation of the knowledge base (BioMap); 
(iv) a hypergraph realization of the knowledge network (generating 
pathways and hypothesis) in response to a user query, and, (v) global access 
capability for the entire system. 

Identification of biological objects and their relationships from free 
running text is a very difficult problem. This problem is compounded by 
several factors, specifically, when multiple objects and multiple relationships 
need to be detected. Typically, the extraction of object relationships involves 
object name identification, reference resolution, ontology and synonym 
discovery, and finally extracting object-object relationships. We describe a 
multi-level hybrid approach that incorporates statistical, connectionist, and 
N-Gram models along with multiple dictionaries to handle the multi-object 
identification and relationship extraction problem for BioMap. 

The relationships thus discovered from the entire Medline collection are 
to be maintained in a relational database along with the specific links to 
literature sources, genes and protein sequence databases. A user can access 
this knowledge base using simple or complex queries, such as a disease 
name, a set of gene names, or any such combinations. Unlike in traditional 
databases, the outcome of a user query will be a complex set of data with 
multiple associations among them. Hence, the results of a query will be 
constructed as a knowledge network (knowledge view of BioMap) and 
presented to the user. 

The knowledge network is to be constructed as a hypergraph "on the fly" 
based on each user query. A hypergraph is an extension of a graph in the 
sense that each hyperedge can connect more than two vertices, thus allowing 
to connect relationships among multiple objects simultaneously. A system 
based on such a hypergraph model has a number of advantages: the model is 
independent from updates to the underlying databases; it enables the 
formation of hypergraphs from entities in different databases; it allows the 
system to be accessed by multiple users simultaneously, each with an 
independent hypergraph; further queries can be made to a hypergraph to 
obtain a better "focused" view of the knowledge base; it reduces the need to 
access the knowledge base multiple times when a hypergraph is to be shown 
to a remote user; and most importantly, the interaction with the user can be 
made faster when a query is made on the hypergraph since it is available in 
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the local computer memory. Furthermore, the edges and vertices of the 
hypergraph are "live" (made as hyperlinks) allowing the user to access 
primary data sources and bioinformatics tools pertinent to the information 
contained in the knowledge network. 

The key innovative features of the proposed BioMap are that it is 
adaptable and scalable, and that the core knowledge base will be constructed 
from a very large collection of documents (Medline) to make the system 
robust. The adaptation feature requires that the system should have the 
ability to learn new problem domains without having to rebuild the system 
as in the case of fully rule-based or grammar-based approaches. The 
scalability feature allows the system to continue to develop its knowledge 
base as new information arrives in the literature databases or information is 
incorporated from other data sources (e.g. Science, Nature, etc.). 

OVERVIEW OF THE FIELD 

2.1 Background 

Ever since the emergence of the field of Bioinformatics, it has been of 
great interest for both the informatics and the biology communities to 
develop automatic methods to extract embedded knowledge from literature 
data. Dealing with literature data in free running text is a challenging 
problem that has been well studied by natural language processing (NLP) 
and artificial intelligence (AI) communities with some success. For example, 
several works report relationship extraction among biological objects (Ono 
et al., 2001; Humphreys et al., 2000; Thomas et al., 2000; Proux et al., 2000; 
Marcotte et al., 2001; Oyama et al., 2002) and biological object recognition 
problems (Leroy and Chen, 2002; Tanabe and Wilbur, 2002; Krauthammer 
et al., 2000). Some work has also been reported on document clustering 
(Iliopoulus et al., 2001; Nobata et al., 2000) and pathway identification 
(Sanchez et al., 1999; Park et al., 2001; Ng and Wong, 1999). Current 
progress in supporting biomedical research activities through published 
literature can be broadly classified into two categories: (i) Biological 
information extraction (IE), and (ii) Development of "tools of the trade" 
bioinformatics tools. 

2.2 Biological Information Extraction 

Mining of literature databases to discover information relevant to 
biological relationships and pathways involves two key tasks: first, 
identification of biological object names, and second, identification of 
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relationships among these objects. Several works report research on the 
identification of biological objects. The most successful tagging system, 
described in (Fukuda et al., 1998), is a rule-based system, called PROPER, 
that was specifically designed to extract protein names from the text using 
proper noun dictionaries and a pattern dictionary. The results of the 
PROPER tagging method were evaluated using precision and recall and 
yielded an accuracy of 98.84% and 94.70% respectively. These results, 
however, do not include distinction between gene and protein names and 
leave out words that may not be in the target object list. Also, it was 
designed to tag only one object (i.e., proteins), which is not adequate for 
extracting different object names. 

Collier (Collier et al., 2000a) proposed a stochastic approach to tagging 
biological objects. Their model utilized 100 Medline abstracts using a pre- 
specified annotation method and used this data to train a Hidden Markov 
Model to tag similar objects. The results of this method, given as F-scores, 
combine recall and precision (Chinchor, 1995). In the case of tagging the 
proteins, the best F-score reported was 0.759 using the one hundred hand- 
tagged abstracts. For DNA it was significantly less at 0.472. The highest 
average F-score calculated was 0.728. It was assumed that the increased 
training data would improve the performance but how much more training 
data would be necessary to achieve performance above the desired F-score 
of 0.9 was not reported. 

In order to overcome the limitation of hand tagging, Hatzivassilou 
(Hatzivassiloglou et al., 2001) trained models using an extensive dictionary 
of unambiguous gene terms from the GeneBank database. Using a nine 
million-word corpus, they managed to distinguish between three biological 
entities using a Bayesian classifier with accuracy of 80%. A two-way 
classifier jumps up to an accuracy of 85%. The fact that accuracy starts to 
decline with the addition of more classes indicates that such a method would 
not scale up when tagging multiple object types. In conclusion, the current 
methods for tagging biological objects fall short because they either cannot 
tag more than one object (Fukuda et al., 1998) or they rely heavily on hand- 
tagged training data (Collier et al., 2000a). 

Natural language-based parsers have also been used on biological 
literature to extract relationships such as protein-protein interactions. For 
example, a full parser was used in (Yakushiji et al., 2000) to extract 
information from biomedical papers. One reported experiment consisted of 
179 sentences from an annotated corpus of Medline abstracts. The first 97 
sentences were used to determine the accuracy of the system. Out of 133 
argument structures in those 97 sentences, 23% were extracted uniquely, 
24% with ambiguity, and 53% were not extracted. Another NLP system 
reported in (Friedman et al., 2001) is called Genie, consisting of a term 
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tagger, preprocessor and parser. The term tagger uses BLAST (Atschul et 
al., 1990) techniques, specialized rules, and external knowledge sources to 
identify and tag genes and proteins in the text articles. The Genie system had 
a measured sensitivity of 54% and a specificity of 96%. Although the 
reported accuracy of the system is good, it does not take into consideration 
where the interaction takes place and under what conditions. 

A method to identify Gene-pair relationships from a large collection of 
text documents is reported in (Stephens et al., 2001). The goal is to discover 
pairs of genes from a collection of retrieved text documents such that the 
genes in each pair are related to one other in some manner. Details of this 
method are discussed in Section 3b(iv) under title "rFinder-I." The results of 
this study indicated that finding the actual nature of the relationship between 
proteins had a specificity of 67% in the unknown pathway and specificity of 
50% in the known pathway. The potential drawback of this approach is that 
it finds only gene-pair relationships; relationships that occur indirectly 
across sentences will not be found. Another study (Craven et al., 1999) 
proposed a learning method to extract relationships and organize these 
relationships as structured representations or knowledge bases. This study, 
primarily focused on protein related interactions, reports 77% precision and 
30% recall on a corpus of 633 sentences. EDGAR is another natural 
language processing system (Rindflesch et al., 2000) that extracts 
relationships between cancer-related drugs and genes from biomedical 
literature. Again, the scope is limited to few biological objects and their 
relationships. 

Recently, support vector machine (SVM) based approaches (Kazama et 
al., 2002; Steffen et al., 2003) showed promising results for biological entity 
identification. Using SVM, a named entity task is formulated as the 
classification of each word with context to one of the classes that represent 
the region information and entity's semantic class. The best results reported 
so far show a precision of 71.4% and a recall of 72.8%, corresponding to an 
F-measure of 72.1%, for the closed division for only gene name 
identification. 

In summary, the current methods for tagging biological objects fall short 
because they either cannot tag multiple objects or they rely heavily on hand- 
tagged training data. The techniques that are used for extracting relationships 
using NLP are too specific to be extended to new domains without creating a 
large number of new rules for new relationships. Also, most importantly, 
current approaches do not look into the creation of a "knowledge base" of all 
possible relationships for biological problem domain or domains, so that the 
research community can not only retrieve relevant literature but also retrieve 
and view the embedded knowledge. 
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2.3 Bioinformatics Tools 

Numerous bioinformatics tools also exist that closely or loosely connect 
to provide literature support for biomedical research. These systems have 
relied on annotation of the biomedical literature, with the most successful 
system being the Online Mendelian Inheritance in Man (OMIM) database 
and its associated morbid map (OMIM). While OMIM has been very 
successful in the development of an annotated disease-based database, the 
very nature of its annotation means OMIM onlypresents the well established 
and proven associations for a given disease. As such, the OMIM database is 
not capable of finding novel associations with respect to different diseases of 
interest. For example, for the discovery of novel gene-disease relationships 
one needs a list of all the possible gene-disease relationships, even if 
currently unproven, such that a scientist may find a weak gene-disease 
relationship that is strengthened by the addition of their own research data. 

Databases have been designed and tools built to search the biomedical 
literature as well. The best is PubMed, the searchable database related to 
biomedical literature present in Medline. This database, with over 14 
million references, is the most comprehensive listing of biomedical literature 
in the world. These tools can be used to download and parse the appropriate 
data to a secondary database that can be examined based on the users needs. 
Secondary databases that perform these functions include MedMiner, which 
allows one to query Genecards using terms related to physiologic pathways 
and receive back a list of genes involved in that pathway. In addition, gene 
or drug names can be sent to PubMed to identify the biomedical literature by 
searching the abstracts, Keywords, and MeSH terms. A useful function that 
is not present in MedMiner is the capability to comprehensively search for 
all genes related to a keyword. Thus MedMiner does not allow the desired 
degree of flexibility in user search terms and the comprehensive search of all 
key biological names. 

PubGene (Jenssen et al., 2001) uses a similar design to allow the user to 
query genes using the HUGO approved gene symbols in its database. This 
database contains relationships identified through searches of Medline and 
identifies pairs of genes that are mentioned in the same abstract or correlated 
by GO (Ashburner, 2000) classifiers. The PubGene query system returns a 
graphical representation of the gene-gene relationships mentioned in the 
same reference as the queried gene. However, the focus of the PubGene 
process is to identify gene-gene relationships and not gene-search term 
relationships ("search term" can be gene, protein, drug, etc.). 

In summary, the available databases offer useful information related to 
genes and their interrelationships in the biomedical literature, however, there 
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is a lack of a truly flexible user-driven data mining system for multiple 
biological objects, even for all genes. More importantly, most of the existing 
tools provide well established and proven associations in actively 
investigated areas and they do not provide information on associations that 
are less organized and obvious. The proposed BioMap and its associated 
tools described herein are designed to specifically address these issues. 

3. CASE STUDIES 

Different types of biological relationships can be extracted from literature 
documents. These include flat relationships, directional relationships, and 
hierarchical relationships. Flat relationships simply state there exists a 
relationship between two biological entities. Directional relations also 
indicate the direction of the relationship that actually applies, for example, 
"A inhibits B" or "A is inhibited by B." In this section, we present three case 
studies in biological association discoveries. The first two studies (described 
in section 3.1 and 3.2) illustrate in a comprehensive way all the problems 
arising in biological relationship finding and some computational approaches 
to their solutions. The second study deals with an important extension of the 
basic association discovery methods, i.e., using transitivity property to 
postulate implicit potentially novel associations. The third study looks into 
discovering directional and hierarchical associations using text mining 
approaches. 

3.1 Identification of Flat Relationships from Text 
Documents 

In this case study we present a Thesaurus-based text analysis approach to 
discover the existence and the functional nature of relationships between one 
single biological object (e.g. gene) relating to a problem domain of interest. 
The approach relies on multiple Thesauri, representing domain knowledge as 
gene names and terms describing gene functions. These Thesauri can be 
constructed using existing organizational sources (e.g., NCBI and EBI), by 
consulting experts in the domain of interest, or by the users themselves. 
Thesauri can also be constructed using automated vocabulary discovery 
techniques being developed by the Information Extraction (IE) or 
Information Retrieval (IR) communities. In its simplest form, a Thesaurus 
consists of a linear list of terms and associated concepts. The process 
involves Thesaurus-based content representation of the retrieved documents, 
identification of associations (relationships) and finally, detecting gene 
functionality from the represented retrieved document set. These primary 
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steps are described in detail in the following sections along with some 
experimental results. 

3.1.1 Text Document Representation 

The document representation step converts text documents into structures 
that can be efficiently processed without the loss of vital content. At the core 
of this process is a thesaurus, an array T of atomic tokens (e.g., a single 
term) each identified by a unique numeric identifier culled from authoritative 
sources or automatically discovered. A thesaurus is an extremely valuable 
component in term-normalization tasks and for replacing an uncontrolled 
vocabulary set with a controlled set (Rothblatt et al., 1994). Beyond the use 
of the thesaurus, the $idf (the term frequency multiplied with inverse 
document frequency) algorithm (Rothblatt et al., 1994) is applied as an 
additional measure for achieving more accurate and refined discrimination at 
the term representation level. In this formula, the idf component acts as a 
weighting factor by taking into account inter-document term distribution, 
over the complete collection given by: 

Where zk is the number of occurrences of term Tk in document i ,  
I, = log(N/nk) is the inverse document frequency of term Tk in the document 
base, N is the total number of documents in the document base, and nk is the 
number of documents in the base that contain the given term Tk. 

As document representation is conducted on a continuous stream, the 
number of documents present in the stream may be too few for the idf 
component to be usefully applied. To deal with this, a table is maintained 
containing total frequencies of all thesaurus terms in a sufficiently 
representative collection of documents as a base (randomly sampled 
documents from the source used as the training set). It is worth pointing out 
that such a table can be pre-constructed off-line before any on-line analysis 
of retrieved documents is attempted. The purpose of the document 
representation step is to convert each document to a weight vector whose 
dimension is the same as the number of terms in the thesaurus and whose 
elements are given by the above equation. 

3.1.2 Gene-pair Relationship 

The goal here is to discover pairs of genes from a collection of retrieved 
text documents such that the genes in each pair are related to one other in 
some manner. Whether two genes are to be related depends on somewhat 
subjective notion of "being related." We have investigated Gene-pair 
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discovery from a collection of Medline abstracts using the Vector-Space 
tfXidf method and a thesaurus consisting of Gene terms. Each Gene term, in 
turn, contains several synonymous keywords that are gene names. Each 
document di is converted to a M dimensional vector q. where Wik denotes 
the weight of the kth gene term in the document and M indicates the number 
of terms in a Thesaurus. Wik is computed by equation 1 described in Section 
3.1.1. 

It is clear that W. increases with term frequency Ij,. However, it ' k  
decreases with nk, i.e., if a gene term occurs in increasingly larger number of 
documents in the collection, it is treated as a common term and its weight is 
decreased. 

Once the vector representation of all documents are computed, the 
association between two gene terms k and 1 is computed as follows: 

association[k] [l] = W, * 4, k = 1 ... m, 1 = 1 ... m 

For any pair of gene terms co-occurring in even a single document, the 
association[k][l] will be non-zero and positive. However, the relative values 
of association[k][l] will indicate the product of the importance of the kth and 
lth term in each document, summed over all documents. This computed 
association value is used as a measure of the degree of relationship between 
the kth and lth gene terms. A decision can be made about the existence of a 
strong relationship between genes using a user-defined threshold on the 
elements of the Association matrix. 

3.1.3 Functional Nature of Relationships Between Gene-pairs 

Once a "relationship" has been found between genes, the next step is to 
find out what that relationship is. This requires an additional thesaurus 
containing terms relating to possible relationships between genes that a user 
may be interested in. This thesaurus is then applied to sentences, which 
contain co-occurring gene names. If a word in the sentence containing co- 
occurrences of genes matches a relationship in the thesaurus, it is counted as 
a score of one. The highest score over all sentences for a given relationship 
is then taken to be the relationship between the two genes or proteins. A 
score of as little as one could be significant because a relationship may be 
only mentioned in one abstract. A higher score, however, would be more 
likely to indicate that relationship because they are often reiterated in 
multiple abstracts. The following equation summarizes the relationship: 

S 

scor4kl [I] [m] = 1 pi ; (p i  = 1 : Gene,, Gene,, Re lation,,, all occur in sentence i) (3) 
i=l 
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where, S is the number of sentences in the retrieved document collection, 
pi is a score equal to 1 or 0 depending on whether or not all terms are 
present, and Genek refers to the gene in the gene thesaurus with index k, and 
relation, refers to the term in the relationship thesaurus with index rn. The 
functional nature of the relationship is chosen as arg,,, score[k][l][m]. 

The idea is to narrow down the search to a few relationships which the 
user can check. If a functional relationship cannot be found the user can still 
check against articles where the terms co-occurred to see if a function might 
have been missing from the function thesaurus containing the relationships. 
Overall, this will help the user to quickly develop potential pathways and 
speed up the process of finding genetic interactions. 

3.1.4 Experimental Results 

Two experiments show how this technique performs in accuracy and as a 
tool for discovering a legitimate pathway based on retrieved data. The list of 
potential relations used for both examples, determined manually using a 
Molecular Biology text book (Salton, 1989), is shown in Table 16-1. The 
first experiment uses the gene list shown in Table 16-2. 

Table 16-1. The Thesaurus of Relationships 

"activates, activator" "inhibits, inhibitor" "phosphorylates" 

"binds, binding, complexes" "catalyst, catalyses" "hydrolysis, hydrolyzes" 

"cleaves" "adhesion" "donates" "regulates" "induces" 

"creates" "becomes" "transports" "exports" "releases" 

"suppresses, suppressors" 

This list includes genes and proteins not taken from any particular 
pathway but is associated with cell structure and muscle cells. 

Table 16-2. Thesaurus of Genes (Unknown Pathway) 

"actinin" "actn2" "ankl,ankyrinW "atf4" "ca3" "CD36" "cd54" 
TOI"  "coxl" "CSE1" "cst3" "desmin" "FKBP51" "FKBP54" 

"FUS, TLS" "GAPDH" "hmsh2" "hrv" "hsp90" "importin" 
lllimw llmcm411 "myoglobin" "nebulin" "nfatc" "myosin" 

"nop-30" "NPI-1" "p55" "titin" "ubiquinone" "filamin" 

The training documents are created by taking an equal number of 
abstracts from the Medline database for each gene. Altogether, 5,072 
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abstracts were used. 

Figure 16-1. Graph showing relationships between genes in Known Pathway. The higher the 
Association strength the closer the genes appear on the graph. In this way the related genes 
are clustered together and can be picked out. 

A graphical presentation of thc unknown pathway (Table 16-2) is shown 
in Figure 16-1. The relationship discovery aspect of this method was 
excellent. This was verified by looking at the actual abstracts on the basis of 
which associations were computed. The strong central cluster includes 
proteins involved in construction of the cytoskeleton. The cluster containing 
CSE1 and importin are involved in thc process of recycling importin and the 
other cluster contains proteins involved in making a steroid receptor 
complex. More details about the results and discussions can be found in 
(Stephens et al., 2001). 

3.2 TransMiner: Formulating Novel, Implicit 
Associations Through Transitive Closure 

An important question in biological knowledge management is whether it 
is possible to generate novel hypotheses concerning associations between 
biological objects, based on existing associations as presented in the 
literature. We have developed a system called TransMiner, which aims to 
identify transitive associations by using graph theoretic properties, in 
particular the transitivity property, on an underlying association graph. A 
strong motivation for the use of such transitivity property was provided by 
Swanson (Swanson and Smalheiser, 1997) and his co-workers. The idea is 
that if, according to existing literature, object A is related to object B, and 
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object B is related to object C, then there is a likelihood of A being related to 
C, even though the last association may not have been explicitly reported. 
Moreover, considering such transitive (implicit) association between A and 
C, the likelihood of its existence is increased if more and more intermediate 
objects (object B) are found in the literature. Further, such transitive 
property can be extended through any number of intermediate nodes, as 
incorporated in the transitive closure of the original graph. Swanson 
developed a system called ARROWSMITH (Swanson and Smalheiser, 1997) 
that automated the one-step transitive relationship discovery process by 
considering only document titles and one intermediate node. TransMiner 
generalizes it by considering entire document abstracts (also full-text 
articles, if available) in addition to document titles, and also extending the 
transitivity property to the complete transitive closure of the original graph. 

Swanson made seven medical discoveries by analyzing medical literature 
and applying the one-step transitivity property on titles (including the 
famous prediction of the magnesim-migraine association, before it was 
biologically verified). Smalheiser (Smalheiser, 2002) a collaborator of 
Swanson used ARROWSMITH to discover that genetic packaging 
technologies such as DEAE-dextran, cationic liposomes and cyclodextrins 
are plausible candidates to enhance infections caused by viruses delivered 
via an aerosol route - despite the fact that no studies had been reported that 
examined this issue directly. 

Another novel feature of TransMiner is an iterative retrieval and 
association extraction process in an attempt to verify potential new 
associations from literature in an effort to overcome limited initial document 
set size. This prevents processing an inordinately large document set 
unnecessarily (possibly the entire MedLine!). 

3.2.1 Transitive Association Discovery - Methods and Techniques 

Relations are ways in which things can stand with regard to one another 
or to themselves (Honderich, 1995). Relation R is transitive if R (x, y) and R 
(y, z) imply R (x, z). In symbols, R is transitive if and only if VxVyVz 
((RXYARYZ) RXz). 

Transitive Closure: 

The transitive closure of a graph G is the graph G* such that there is an 
edge from vertex A to vertex C in G* if there is a path from A to C in G. The 
traditional Warshall's (Warshall, 1962) algorithm can be used to compute 
the transitive closure of the association graph. Given a directed graph G = 

(V, E) where, V is the set of vertices and E is the set of edges, represented by 
an adjacency matrix A[ij], where A[ij] = 1 if (ij) is in E, compute the 
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matrix P, where P[ij] is 1 if there is a path of length greater than or equal to 
1 from i to j. Thus, defining A' = I (the Identity matrix), and A' = A'-'.A 
for all i, where the matrix multiplication is Boolean, 

This algorithm extends paths by joining existing paths together. The 
transitive closure of a symmetric matrix (undirected graph) is also a 
symmetric matrix (undirected graph). 

Mining Direct and Transitive Associations from Potential Transitive 
Associations: 

The newly discovered potential transitive associations must be checked 
to see if those associations are indeed 'direct' (explicitly found in any of the 
Medline documents). We used an automated way (Algorithm 1) to find those 
associations that are direct and that are transitive, by submitting the two 
nodes (objects) of a potential transitive relationship to the Medline database 
with 'AND' operator in the query iteratively for all potential transitive object 
pairs. The documents will be retrieved only if both the objects are present in 
the document. For any pair of objects representing a potential transitive 
relationship, if the document set retrieved is non-zero, then by the principle 
of co-occurrence we can conclude that there exists a possibility of 
association between this object pair and that the association is direct. The 
association strength of these newly discovered 'direct' associations are given 
by the product of tf.idf weight of both nodes (objects) summed over all the 
documents retrieved for the object pair. The rest of the potential transitive 
associations with zero strength are implicit or transitive. These transitive 
associations are candidates for hypothesis generation. For these transitive 
associations there are no documents in Medline at present that have both the 
objects in their contents. 

Algorithm 1 : Transitive Association Discovery 
1. Potential transitive associations are the difference between the transitive 

closure (G*) and the initial association graph (G). 
2. Find the object pair for each potential transitive association and construct 

the Medline URL query using 'AND' operator. 
3. Retrieve documents for this object pair and calculate the association 

strength between the object pair. 
4. If the association strength is not zero, the association is direct. Keep the 

object pair in G* 
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5. If the association strength is zero, the association is transitive. Remove 
the object pair from G* 

6. Repeat steps 2, 3, 4, and 5 for all the potential transitive associations 
discovered to get G' that contains the initial direct associations G and the 
newly discovered direct associations. 

Ranking transitive associations: 

Ranking of the transitive associations that are new and potentially 
meaningful associations will help the user to select associations (hypotheses) 
that can be further investigated in detail. Transitive association strength 
cannot be calculated directly as done in the case of direct associations, as 
there is no co-occurrence in any document between the nodes "A" and "C" 
of a transitive association. The transitive association strength is defined as 
the sum of weight of all words "B" that co-occur with both nodes "A" and 
"C" of a transitive association (intersection of words that co-occur with A 
and words that co-occur with B). This is based on the idea that if there is a 
strong link in the form of A-B-C then the possibility of AC association 
becoming true is more. 

3.2.2 Experimental Results - Association Discovery among Breast 
Cancer Genes 

This validation study attempted to use TransMiner to extract gene-gene 
associations relevant to the disease of Breast Cancer. A list of fifty-six gene 
symbols related to breast cancer was made from Baylor College of 
Medicine, Breast Cancer Gene Database (Baasiri et al., 1999) and the 
Genecards database (Rebhan et al., 1997). These gene names are given in 
Table 16-3 and formed the dictionary for the validation study. 

Table 16-1. Fifty-six breast cancer genes 
APC APS ATM BCLl BCL2 BRCAl BRCA2 CCND1 
CDKN2A COLlSAl DCC EGF EGFR EMS1 ERBB2 ERBB3 
MSH2 MLHl FGF3 FGF4 FGFRl FGFR2 FGFR4 CHI 
GRB7 HRAS IGFlR KIT KRAS2 MYCLl IGF2R MCC 
MDM2 MET MYC NF2 NRAS PGR PHB PLAT 
PLG PRL PTH PTPN1 RBI SSTRl SSTR2 SSTR3 
SSTR4 SSTRS SRC TGFA TPS3 TSGlOl VIM WNTlOB 

The initial document set was 5000 Medline documents. The initial 
association discovery extracted 87 direct associations (i.e., association pairs 
with non-zero weights). This formed that initial graph G, in which the gene 
pair BRCA1-BRCA2 was found to have the highest association strength, 
which is expected. Application of Warshall's transitive closure algorithm on 
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G (to calculate the transitive closure G* of G) yielded 655 potential new 
transitive gene pair associations were obtained in (G* - G). The iterative 
retrieval and validation process identified 296 of them as direct associations 
(i.e., mentioned explicitly in the literature, although not mentioned in the 
5000 original documents) and the remaining 359 as transitive association. 

Figure 16-2. The initial direct associations among 56 gene symbols based on 5,000 Medline 
documents (blue edges), the direct associations discovered from potential transitive 
associations (blue dash edges) based on the presence of non-zero association in Medline 
database and the transitive associations (pink dash edges) 

Figure 16-2 is a color-coded graphical display of all the associations. 
Based on manual evaluation of the 87 initial gene pair associations 
discovered by TransMiner, 75 (86.21%) gene pairs were found to have some 
valid biological association. Similarly, out of 296 direct gene pair 
associations discovered from potential transitive associations, 237 (80.06%) 
gene pairs were found to have biological association based on expert 
evaluation. 

The detailed results and evaluations are available at 
http://sifter.cs.iupui.edu/-sifter/transMiner/TransMinerBCResults.html 
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3.3 Identification of Directional and Hierarchical 
Relationships 

The association discovery methods described in Sections 3.1 and 3.2 
does not take into account the directionality of the relationships. For 
example, if the relationship is "inhibits," then it is important to know which 
object is inhibiting the other object. The directionality finding process 
involves identification of the biological objects, the relationships, and the 
finally, the directionality. In this section, we describe each of these processes 
from a text mining context. 

3.3.1 Identification of Biological Objects 

We describe a hybrid method to address the specific challenges in object 
identification, where an object can be a gene, protein, cell type, organism, 
RNA, chemicals, disease, or drug. This consists of the following levels: 

1. Use multiple dictionaries to identify known objects. 
2. Use Hidden Markov Models (HMM) to identify unknown objects based 

on term suffixes, and, 
3. Use N-Gram models to resolve object name ambiguity. 

The tagging process begins with a Brill tagger (Brill, 1995) generating 
the POS. The process then continues with creating a dictionary of terms 
from databases (e.g. Swiss-Prot), for each class type (e.g. protein, gene, etc.) 
to be identified, and a dictionary such as WordNet (Brill, 1995), which 
contains the majority of other known nouns (e.g. lab, country, etc.) that may 
not be classified as a classified object. These dictionaries are to be single- 
token words, meaning they are very general in nature. To create these 
dictionaries, one would take a list of multi-token words (e.g. IkB inhibitor, 
RNA polymerase) which are defined in a class (e.g. protein) and then take 
the last word from each (e.g. inhibitor, polymerase). This can be described as 
WIWZWJ ... W, E MTD then w, E STD where MTD is the multi-token 
dictionary, and STD is the single token dictionary, and wi is the ith term in a 
multi-token word. The other piece of data the user needs is a set of training 
documents from the area for which the objects are to be tagged. 

Once the training data is obtained, two important steps are involved in 
the tagging process. First, an N-gram model describes a class (e.g. protein, 
gene, etc.) using the phrases of the surrounding context. Second, an HMM 
model describes a class based on the internal context. If abbreviations are 
present, then a separate HMM model is created to describe them using a 
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separate dictionary for each class where abbreviations commonly occur. 
Protein and gene classes would need this extra model to fully describe them 
as they often use abbreviations. 

N-Gram Models: 
An N-Gram model is used to disambiguate object tags. An N-Gram 

model is described as a simple Markov model where the probability of a 
word W I  in position n can be given by the following equation (Jurafsky and 
Martin, 2000): 

where P(wk I w,k$+,) is the probability that wk follows the previous N 
words. This is a simplification and assumes a word's probability is only 
dependent on the previous N characters. In order to calculate P(wk I w ~ $ + , )  
for each word in a given training corpus, the following general equation is 
used (Jurafsky and Martin, 2000): 

where c(w,"I~+,w,) is the number of times the previous N words are 
followed by w,, and C ( W , " I ~ + , )  is the total number of times the previous N 
words occur. Often times a given corpus is not sufficient to encompass all 
words that may be encountered in a given corpus. It is necessary to use 
smoothing to help describe more accurately the probability of a given word. 
One of the best methods used is the Good-Turing method and is described as 
(Jurafsky and Martin, 2000): 

for 1 5 c I k, where c is the original count of the word and Nc is the number 
of words counted c times. 

Object Disambiguation Using N-Gram Models: 
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The N in N-Gram is the number of words in a given pregram or 
postgram. For this tagging method, the N-gram model takes the phrase data 
that was obtained using an N-Gram training process and uses it to define the 
probabilities for each class given a phrase. This probability is defined as: 

C(phrase, ) 
P(c I phrase) = A4 

C(allphrases,) + C(phrase,) 
i=O 

where C(phrase,) is the number of times the phrase appears in class c, 
C(a1lphrasesc)is the number of times all phrases appear in class c, M is the 
total number of classes, and C(phrasej ) is the number of times the phrase 
appears in class i. 

For N-Grams, that have N > 1, it becomes necessary to set up the model 
so that if the match for the full length N-Gram is not found, then the (N-1)- 
Gram can be tried, and if that does not work, the (N-2)-Gram, etc., would be 
needed. This stepping down can continue all the way down to the l-Gram. If 
there is no match for the l-Gram then the N-Gram fails to classify the object. 
The stepping down also allows the best possible N-Gram that matches to be 
found. Of course, a probability obtained using an N-Gram will always be 
greater than that obtained using an M-Gram where M < N. The following 
two-step process finds a class for a word having a pregram, postgram, or 
both: 

1. Given a postgram and pregram, 
2. Return the class c having the maximum ~ ( c ,  I postgram) + P(c, I pregram) 

If the probability for the class is zero, it shows that the word is not 
represented by the model and that it would require additional processing. 
Typically, smoothing would be done (e.g. Add-One Smoothing, Good- 
Turing Discounting, etc.; see (Jurafsky and Martin, 2000)). 

Tagging of Abbreviations Using HMM: 
An HMM is used to classify words that are abbreviations composed of 

less than six characters. The size of six was chosen based on the observation 
that most abbreviations are less than six characters long. This is done using a 
separate set of dictionaries specified by the user that are example 
abbreviations of several words known to fall into a specific class (e.g. SPF-1 
is a known protein abbreviation) that is known to contain abbreviations. 
These abbreviations are used as training data for the HMM. This abbreviated 
HMM will be referred to as the short HMM (SHMM). In addition, there may 
be longer words which are comprised of unusual symbols but represent an 
important object (e.g. TrpI53->Gly, which represents a specific change in a 
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protein sequence). These longer words would have a separate HMM which 
will be referred to as the long HMM (LHMM). 

An HMM contains states that represent a defined character type and the 
events in the states represent the specific characters in the word. To separate 
different words based on their characters, the model uses two groups of 
states. These states are identical in that they represent the same character 
types, but are different in that one represents a character type for a particular 
word type while the other represents the same character type for another 
word type. Figure 16-3 shows an example of different states of an HMM 
model to distinguish between words and gene names. 

Figure 16-3. States of word tagger using HMM. 

In this example, the state S represents the starting state. Within each state 
is the event probability of a given character occurring and is defined as 
e[l](x[i]) where I is the state and x[i] is the ith character in sequence x. 
There is also a transition probability between each state showing the 
probability of going from one state to another defined as a[k][ l]  where k is 
the state that is being left and I is the new state being visited. 

The path is the sequence of states that occur and the probability of a 
given path for a sequence of characters is given by the sequence of states and 
the corresponding characters occurring in the sequence of characters. 
Formally, it can be expressed as follows (Durbin et al., 1998): 
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The ending state of the most probable path is used to determine what 
object type the word is. In order to get the most probable path, the Viterbi 
algorithm (Durbin et al., 1998) is used. 

3.3.2 Grouping Object Synonyms 

The second stage in the whole process is resolving object synonyms 
correctly. The grouping of synonyms becomes complicated when (i) 
Synonyms share words and (ii) when Synonyms do not share words. 
Consider, for example, when they share words: 

1. For the first time, somatolactin (SL) cells have ... 
2. The SL cells were ... 
3. The SL-immunoreactivity was mostly located in the granules of the cells 

All three highlighted words in the above sentences refer to the same 
biological object. Knowing that the word cells in sentence three means the 
same thing as SL cells in sentence two and somatolactin (SL) cells in 
sentence one would have led to additional information that would have been 
specific enough for a biologist to use. Not knowing this would have caused 
the information extracted to be too general in the sense that the word "cell" 
by itself can represent more than one cell (e.g. somatolactin cell, heart cell, 
gonadotrope, etc.). The second case is when they do not share words: 

I. Thyroid hormone receptors (T3Rs) are ... 
2. T3Rs are bound by ... 
3. It is foundon ... 
4. 

Here the highlighted word "it" has little in common with the other two 
words. How to identify pronouns becomes important as information can be 
lost if they remain ambiguous. 

In our approach, the word abbreviations are first processed through the 
PNAD-CSS algorithm (Yoshida et al., 2000). The abbreviations thus 
identified are used to group words together by merging words associated 
with the abbreviation with words associated with the full word from which 
the abbreviation was derived. In the first step in the grouping process, words 
are separated into their different classes (e.g. protein, gene). The next step is 
to build a generalized ontology and grouping of related words using a graph 
structure. The algorithms for this process can be broken down into two 
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parts: the insertion of words from a group into a tree, and the extraction of 
word and their synonyms. The extraction process will create two categories 
of relationship between terms: one is a direct relationship like that of a word 
and its abbreviation, and the other is a hierarchical type where one word 
refers to several different words but those words do not refer to each other. 
For example, if someone talks about proteins, this is referring to more than 
one protein and not necessarily related, while if someone is referring to a 
protein, it is encompassing only one protein and a method similar to the 
pronoun tagging should be used. 

A Grouping Example: 
Consider the following text passage: 
An anti-TRAP (AT) protein, a factor of previously unknown function, 

conveys the metabolic signal that the cellular transfer RNA for tryptophan 
( ~ T N A ~ ~ ' )  is predominantly uncharged. Expression of the operon encoding 
AT is induced by uncharged tRNATRP. AT associates with TRAP, the trp 
operon attenuation protein, and inhibits its binding to its target RNA 
sequences. This relieves TRAP-mediated transcription termination and 
translation inhibition, increasing the rate of tryptophan biosynthesis. AT 
binds to TRAP primarily when it is in the tryptophan-activated state. The 
53-residue AT polypeptide is homologous to the zinc-binding domain of 
DnaJ. The mechanisms regulating tryptophan biosynthesis in Bacillus 
subtilis differ from those used by Escherichia coli. 

The tagging process would yield: 

An <p>anti-TRAP (AT) protein</p>, a <p>factor</p> of previously 
unknown function, conveys the metabolic signal that the <rna>cellular 
transfer RNA for tryptophan</rna> ( < r n a > t ~ ~ ~ ~ ~  </ma>) is 
predominantly uncharged. Expression of the <dna>operon encoding 
AT</dna> is induced by <rna>uncharged t R N ~ ~ ~ < / r n a > .  
<p>AT(/p> associates with <p>TRAP</p>, the <p>trp operon 
attenuation protein(/p>, and inhibits its binding to its <rna>target 
RNA sequences</rna>. This relieves +>TRAP-mediated 
transcription termination</s> and <s>translation inhibition</s>, 
increasing the rate of <s>tryptophan biosythesis</s>. <p>AT</p> 
binds to <p>TRAP</p> primarily when it is in the tryptophan-activated 
state. The <p>53-residue AT polypeptide</p> is homologous to the 
<d>zinc-binding domain</d> of <p>DnaJ</p>. The mechanisms 
regulating <s>tryptophan biosynthesis</s> in <o>Bacillus subtilis</o> 
differ from those used by <o>Escherichia coli</o>. 

The Grouping Process will then generate: 
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Gmup 1 Gmup 3 
anti-TRAP (AT) protein cellular transfer RNA for tryptophan 
factor tTN ATRP 
AT uncharged tRNATRP 
53-residue AT polypeptide 

Gmw 2 Gmw 4 
TRAP opemn encoding AT 
tlp opemnattenuationpmtein 

It can be observed that grouping these words can greatly change the 
statistical nature of the terms when one word in the group is used for all 
other words in the same group, helping methods to achieve accurate 
statistical measures. 

3.3.3 Extracting Object Relationships 

The final step in the process is to extract relationships between the tagged 
entities. This process defines two types of relationships. The first is referred 
to as directional relationships. These relationships include for example, 
protein A inhibits protein B. In this case, a biologist not only needs to know 
what the relationship is but also the direction in which the relationship 
occurs. The second type of relationship is referred to as hierarchical 
relationships. This type of relationship would include, for example, the brain 
is part of the nervous system. The next two sections discuss the techniques 
used for each type of relationship. 

Directional Relationships: 
Directional relationships are found using a Hidden Markov Model. This 

is accomplished by generalizing words based on their POS tag or object tag 
so that the model encompasses a wide variety of relationships without 
having a lot of training data. The idea behind the scheme is that each 
relationship has a certain form. When a sentence is given to the model, its 
state sequence will contain the states created for a specific relationship 
classifying the sentence to be that relationship. The direction is detected by 
creating two event sequences, one where one of the objects in the 
relationship is classified as the subject while the other sentence has the other 
object classified as the subject. The model would then give the highest 
probability to the sentence with the correct subject, indicating the direction 
of the relationship. This is important as there may be instances where in one 
sentence the subject comes before the verb (e.g. protein A binds protein B) 
and in another it comes after the verb (e.g. protein B is bound by protein A). 

To understand this model, a short example showing how the model is 
built for two sentences representing the same relationship but having a 
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different position for the subject and object is shown. The two sentences are 
as follows: 

1. Protein A inhibits Protein B. 
2. Protein B is inhibited by Protein A. 

The sentences are then Brill tagged and the objects identified as: 

All possible relationships (e.g. protein-protein) that were defined by the 
user (during training) as directional are then extracted from the sentence to 
give the following possibilities: 

1. Possibilities for sentence 1 : <subject>Protein A</subject> 
<object>Protein B</object>, <object>Protein A</object> 
<subject>Protein B</subject> 

2. Possibilities for sentence 2: <subject>Protein B</subject> 
<object>Protein A</object>, <object>Protein B</object> 
<subject>Protein A</subject> 

A user would then define the type of relationship each sentence is and the 
relationship with the correct labeling. The produced event and state 
sequences needed to train the HMM would be as follows: 

1. Class for sentence 1 : Inhibits 
Event sequence: [subject][inhibits][object] 
State sequence: [subject][NBZ] [object] 

2.Class for sentence 2: Inhibits 
Event sequence: [object] [is] [inhibited] [by] [subject] 
State sequence: [object][NBZ][NMX] [by/IN] [subject] 

Once the event and state sequences are known, the parameters of the 
HMM are determined using the following equations (Durbin et al., 1998): 
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where akl is the probability of a transition from state k to state 1, ek(b) is the 
probability that an event b occurs in state k, Akl is the number of transitions 
from state k to state 1 in the training data, and Ek(b) is the number of times 
the event b occurs in state k in the training data. Once the model is trained, 
the relationship finding using the model can be carried out. For example, 
consider the following sample sentence: 

I. ADH is inhibited by alcohol. 

The sentence is tagged and the possible relationships extracted. 
Assuming one of the defined directional relationships is between a chemical 
and protein, the process produces the following two event sequences: 

1. [subject] [is] [inhibited] [by] [object] 
2. [object] [is] [inhibited] [by] [subject] 

The model generates the probability of event sequence 1 as 0.0 while the 
probability of event sequence 2 as 0.0625 (the actual algorithm is omitted 
here for the sake of brevity). Taking the higher probability, this produces the 
relationship that alcohol inhibits ADH as opposed to ADH inhibits alcohol. 
The general process for producing an event sequence for any sentence which 
is tagged can be given by the following process. 

1. If the word is a tagged object, make the event the object tag. 
2. If the word is not an object, make the event the word. 
3. For each possible directional relationship found, produce two event 

sequences where each object in the relationship is represented as the 
subject event, each object is also represented as an object event, and each 
sequence has one subject event and one object event. 

One advantage of this method is that it avoids the complex issues of 
creating rules encompassing all possible relationships that are needed in a 
rule-based approach. In addition, generalizing objects allow for more 
flexibility in the model and enables the detection of new relationships 
without having to define a specific event probability for an object which is 
not specified by the model in its unclassified form. Another advantage for 
using the HMM for classification includes the ability to overcome noise by 
allowing default event probabilities in cases where an event may not be 
defined. This allows sentences to be classified to their most probable 
classification despite the HMM not having seen the event sequence 
previously in training. In addition, the verb states (e.g. IVBZ, NMX) can 
be modified to include new verbs which define new directional relationships. 
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Hierarchical Relationships: 
The Hierarchical relationships take advantage of the fact that verbs are 

not important to the relationship. Hence, this type of relationship can be 
defined in purely statistical terms using only the parent and child of the 
relationship. This technique is closely related to the co-occurrences of the 
gene extraction process described in Section 3. This is different because 
before the association matrix was square and considered relationships 
between two objects that were classified in the same class. Now the 
relationship is defined in such a way that it considers relationships between 
any objects regardless of what class they are classified in. 

3.3.4 Experimental Results 

Various experiments were carried out to evaluate the performance of the 
system at all three stages of the process, namely, tagging, grouping and 
relationship extraction. Results on each are considered separately below. 

Tagging Performance: 
The tagging method was applied to 100 abstracts from Medline obtained 

using the keyword "pituitary." The results were quantified using the 
measurements precision, recall, and F-Score defined earlier. The N-Gram 
model's default phrase length was three, making it a 3-Gram model. The 
training data used for the 3-Gram was comprised of 2,000 abstracts obtained 
from Medline using the keyword phrase "protein interaction." 

The tagging performance using the dictionary only was only 50-60% 
despite using a large dictionary of words extracted from Swiss-Prot. The 
addition of the HMM and N-gram to the tagging process produced the 
results in Table 16-4 and has an average F-Score of 70%. The final step of 
the tagging process which made corrections for mis-tagged abbreviations 
greatly increased specificity and recall by eliminating false positives from 
the HMM tagged protein and gene objects, and increased recall for other 
object types as their formally mis-tagged abbreviations are tagged correctly. 

Experiments were also conducted by increasing the length of the 3-Gram 
model to a 4-Gram model, and only the protein object tagging performance 
increased slightly in both precision and recall. This can be expected 
considering the low number of 3-Grams found in the 3-Gram model, which 
would indicate an even lower number of 4-grams. Add to this the fact that 
the majority of 3-Grams that were found were surrounding the protein object 
type, it would be expected that the new 4-Grams found would most likely 
effect protein object tagging. 
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Table 16-4. Results of Genetprotein Classification 
Tag Type Correct Missed Recall Precision F-Score 
Protein 533 150 78% 67% 72% 
Gene 54 66 45% 57% 50% 
Chemical 115 44 72% 69% 71% 
Organism 305 130 70% 76% 72% 
Organ 171 96 64% 81% 72% 
Disease 202 93 68% 60% 64% 

Performance of Grouping: 
Performance of the grouping process used the same set of documents 

used for evaluating the tagging performance. A good way to measure the 
grouping performance is to see how it reduces the amount of information in 
terms of unique objects. The grouping showed a drop in the number of 
protein-protein relationships, cell-protein relationships, and organ-cell 
relationships. The grouping of synonyms thus greatly reduced the 
complexity of the data and helped objects to become more specific. The 
number of unique objects dropping by 24.7% indicates that an object may be 
written in many different ways. This is particularly true when looking at 
protein names. The drop of 38% in the relationships between proteins, due to 
grouping, directly shows the way in which the same protein takes on many 
different word forms. This drop is less when referring to the relationships 
between proteins and cells, indicating that the use of different names to refer 
the same cell object are much less common than that of proteins. This is 
further illustrated where the drop is only 2% for binary relationships 
between organs and cells. This would indicate that the use of different 
names for organs is almost non-existent. These results are expected as 
proteins are much more likely to take on different names in a document than 
a cell type or organ. 

The overall performance of grouping was obtained by going through ten 
grouped abstracts and counting the number of terms grouped correctly and 
grouped incorrectly. These results are shown in Table 16-5. 

Table 16-5. Performance of Grouping process 
# of Correct group # of Missed group # of Incorrect group 
terms terms terms Recall Specificity 
46 4 10 92% 82% 

Results on Object-Object Relationship Extraction: 
Directional Relationships: The HMM model was first trained using four 

directional relationships: inhibit, activate, binds, and same for the problem of 
protein-protein interactions and were trained for the directional HMM. When 
the model was used on the training set of sentences, it was found to have 
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recorded the relationships with a recall and specificity of loo%, which 
would be expected given the small number of relationships. 

The model was then tested against a larger corpus of text consisting of 
1,000 abstracts downloaded from Medline using the key word of "protein 
interaction." These abstracts were then tagged and grouped, and all possible 
protein-protein interactions were extracted without specification to direction. 
The possible relationships were then passed through the trained HMM to 
extract directional relationships. In all, there were 53 such relationships 
extracted of which 43 were correct giving a specificity of 8 1%. 

Hierarchical Relationships: To test the hierarchical relationships, the 
same pituitary corpus that was used to test grouping was used. Of these, 83 
were specific and accurate enough to be useful while 49 were either wrong 
or too general to be usehl giving a specificity of 65%. Having a threshold 
on the association value of 20 would change it to be 57 and 14, respectively, 
giving a specificity of 82%. More details about this work can be found in 
(Palakal et al., 2002c; Palakal et al., 2003). 

4. BIOMAP: A KNOWLEDGE BASE OF 
BIOLOGICAL LITERATURE 

In this section we present the progress made to develop a complete 
"knowledge base" of associations between biological objects that are 
important for biologists to study and understand specific biological 
processes. The main goals of this effort are (a) to develop a very large 
knowledge base, called BioMap, using the entire Medline collection of 
literature documents (over 12 million), and (b) to develop an interactive 
knowledge network for users to access this secondary knowledge (BioMap) 
along with its primary databases such as Medline, GenBank, etc., in an 
integrated manner based on a specific area of problem enquiry. The 
development of BioMap and its associated access "window" (the knowledge 
network), all of the text mining tasks that were discussed in the previous 
sections (such as identification of biological object names and discovering 
object-object relationships) will be utilized. The overall architecture of 
BioMap is shown in Figure 16-4. 

The BioMap system basically consists of a set of organism-specific 
Knowledge Bases, a collection of intelligent algorithms for biological Object 
Tagging, Identification, and Relationship Discovery, System Interface, and a 
User Interface. A multi-level hybrid approach that incorporates statistical, 
stochastic, neural network and N-Gram models along with multiple 
dictionaries are used to handle the multi-object identification and 
relationship extraction problem for BioMap as described in Section 3. 
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Figure 16-4. The overall organization of the BioMap System 

The rclationships thus discovered from the Medline collection are 
maintained in a relational database along with the specific links to literature 
sources, genes and protein sequence databases, popular bioinformatics tools 
such as PubGene, GO, etc., as well as links to image sources if the proof of 
relationships appear as images in the literature (as in the case of microarray 
experimental results). A user can access this knowledge base using any 
simple or complex queries, a disease name, a set of gene names, or any such 
combinations. Unlike in traditional databases, the outcome of a user query 
will be a complex set of data with multiple associations among them. 
Furthermore this network will be viewed in a hierarchical manner, allowing 
biologists to transcend the molecular view and see the physiological context 
from which a relationship is pulled. An example of the constructed 
knowledge network (knowledge view of BioMap) is shown in Figure 16-5. 
Knowledge outside of the hierarchical view can be pulled in, but the 
biologist will be able to specify what the context of the knowledge brought 
in is. For example, a biologist may start out looking at protein interactions 
shown to occur in the hippocampus of the human brain. The user may then 
choose to bring in additional interactions from the hippocampus of the rat 
brain. Undcrstanding the context in which different interactions are playing a 
role is a key in understanding the function of a biological object. Different 
context often mcans the biological object can have a different function as 
described recently in (Brill, 1995). This context view is often overlooked. 
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Figure 16-5. BioMap Knowledge represented as Hypergraph 

The knowledge network is constructed as a hypergraph "on the fly" 
based on each user query. A hypergraph is an extension of a graph in the 
sense that each hyperedge can connect more than two vertices, thus allowing 
connecting rclationships among multiple objects simultaneously. A system 
bascd on the hypcrgraph modcl has a number of advantages: the modcl is 
independent from updates to the underlying database; it enables the 
formation of hypergraphs from entitics in differcnt databascs; it allows the 
system to be accessed by multiple users simultaneously, each with an 
independent hypergraph; further queries can be made to a hypergraph to 
obtain a better "focused" view of the knowledge base; it reduces the need to 
access the knowledge base multiple timcs when a hypergraph is to be shown 
to a remote user; and most importantly, the interaction with the user can be 
made faster when a query is made on the hypergraph since it is available in 
the local memory. Furthermore, the edges and vertices of the hypergraph 
will be "live" (made as hyperlinks) allowing the user to access primary data 
sources and bioinformatics tools pertinent to the information contained in the 
knowledge network. 

In order to devclop such a derived knowledge-base of associations from 
the primary source of biological literature databases, several research issues 
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need to be resolved and these are described in the chapter. These include 
object identification (tagging), ambiguity resolution, synonym resolution, 
abbreviation resolution, and finally associations discovery and visualization. 
The knowledge network is a "window" to the BioMap's large knowledge 
base. Unlike traditional binary relationships among objects, BioMap's 
knowledge base has rich multi-way relationships such as that captured by the 
sentence "gene A inhibits protein B in pathway C in the context of disease D 
in organ E." This naturally leads to ternary, quaternary or even higher-order 
relationships and hence, to the notion of a hypergraph. A hypergraph is a 
generalization of a binary relationship graph (as described in the chapter) 
and is characterized by G = (V,E) where V is the set of vertices and E is the 
set of hyperedges. Unlike regular graphs where elements of E are pairs of 
vertices, denoting binary relationships, a hyperedge in a hypergraph is a 
subset of V and corresponds to a multi-way relationship of (possibly) more 
than two objects included in the subset. As in the case of binary edges, the 
multi-way associations (hyperedges) can be determined by co-occurrence 
based mining from BioMap's knowledge base. It is clear that the number of 
such possible hyperedges is combinatorially exponential with the number of 
objects, since, the number of subsets of a set A of cardinality n (i.e., the 
cardinality of the power set of A) is 2". This is in contrast to the binary 
graph, encoding binary relationship, where the number of possible 
associations (edges) is quadratic in n. Hence, any exhaustive attempt to 
check for all hyperedges will run into extremely high computational 
complexity, particularly since the total number of objects in the entire 
BioMap knowledge base is expected to be very large (in the hundreds of 
thousands). Hence, heuristic approximations are needed to limit the number 
of possible hyperedges. 

4.1 BioMap Knowledgebase 

The BioMap knowledgebase can be viewed as one large database or it 
can be conceptually divided by a concept such as organism to allow for 
greater scalability. The schema for the database is shown in the Figure 16-6. 
The Noun-Phrases table stores the extracted noun-phrases from text. This 
table is used for classifying these noun-phrases into different biological 
objects using various sources like UMLS, LocusLink etc. and machine 
learning techniques. These classified noun phrases are identified in the table 
Classified-Noun-Phrases that contains the type of object represented (e.g. 
organism) by this noun-phrase and the method used to classify it (e.g. 
dictionary), which are in turn stored in Categories and Methods tables. Each 
noun phrase can then be associated with a defined object through the 
Defined-Noun table. Relationships between defined objects can then be 
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stored in the Relationship table. Within the relationship table there is a 
typical binary relation between two objects but also dependencies on that 
relationship can be described using the Relationship and Object dependency 
tables. The dependency can be either positive or negative. In this way, more 
complex relationships can be described beyond the binary relationships. The 
Complex-Relationships table adds to this by creating objects made up of 
relationships between other objects (e.g. a protein complex is made up of 
binding relationships between proteins and in some cases RNA) 

Figure 16-6. BioMap database schema 

The BioMap knowledge base is implemented using Oracle 9i databases. 
The documents for each database are acquired from Medline. Once the 
database is populated and the noun-phrases are classified using different 
methods, they will form a basis for the knowledge network as discussed in 
the previous section, and they provide readily available data for testing and 
employing new techniques for object name resolution and other interesting 
text mining problems. 

A major step in the creation of the knowledge base is to populate the 
database with relevant information from the text documents. This process 
involves identifying objects such as Gene, Protein, Cell Type, Organ, 
Organcllc, Chcmical/Drug, and Disease, and was carried out using the multi- 
level approach described in the previous section. 
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In our prototype study, we used a set of 30,000 documents and used 
UMLS and LocusLink to identify and classify objects. UMLS is a major 
source to resolve the noun-phrases into a number of categories. As a second 
step to improve on direct matches to UMLS concepts, the MetaMap Transfer 
(MMTx) program was used to map the noun-phrases to UMLS concepts. 
The MetaMap Transfer API in Java is used for this purpose. Again, only 
unambiguous matches are considered that also give a maximum score of 
1,000. A score of 1,000 means that the mapping MetaMap came up with is 
the best one. The default parameters for the MetaMap are used. Overall, 
UMLS classifies the entities into a number of categories, which include 
genes, proteins, drugs/chemicals, and diseases, among others. The reason for 
the two steps used for UMLS is the following. Doing a direct match is much 
faster and the majority of entities resolved by the two steps is covered by the 
first step of direct comparison. MetaMap is used as an important second step 
to catch those noun-phrases that are similar but are not exact matches to a 
UMLS concept. LocusLink is then used for classifying gene names. 
LocusLink is a resource provided by NCBI that provides "genecentric" 
information for various organisms. LocusLink is particularly suited to the 
task as it has genetic information for multiple organisms. Currently 
"human," "rat" and "mouse" are being used to create BioMap. For each 
database for human, rat, and mouse, respective dictionaries of gene names 
are created from LocusLink. These dictionaries are then used to resolve the 
gene names in each respective organism's database. The noun-phrases that 
have not been resolved by UMLS are looked up in the LocusLink gene 
dictionary. If a match is found, then that entity is classified as "gene." 

4.2 Results and Discussions 

The results for entity name resolution for documents relating to human, 
rat and mouse are presented here. These results are based on the databases 
created using 30,000 documents from Medline and resolving noun-phrases 
using UMLS and LocusLink. The results are summarized in Table 16-6. 

Table 16-6. Results of Name Resolution using Dictionaries 
Noun-phrases UMLS LocusLink Total 
Human Total 789,551 

Classified 
Percentage 

Rat Total 
Classified 
Percentage 

Mouse Total 
Classified 
Percentage 
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UMLS is a major contributor for resolving the object names followed by 
LocusLink. UMLS has resolved the entities into 132 distinct categories. 
LocusLink has resolved roughly 2% of the total nounphrases into genes. 

As an example, from the experiments we have done, we consider some of 
the noun-phrases and walk through the process. In the first step of 
classification using UMLS, the noun "apoptosis" is classified as a "Cell 
Function." After that in the next step when we applied the MetaMap 
Transfer method, the noun-phrase "urinary infection," which was missed by 
the direct match method was mapped to "Urinary infection NOS (Urinary 
tract infection)" concept in UMLS, which belongs to a "Disease or 
Syndrome" category in the UMLS Metathesaurus. In the last step using 
LocusLink, let us consider the noun "FADD." The noun "FADD" was not 
classified by either UMLS methods, but LocusLink classified it as a gene. 

As discussed in the previous section and evident from sample results, a 
multilevel approach to resolving names is quite effective in identifying 
important entities using a specialized dictionary for those types of entities. 
However, as we can see from the above results, the dictionaries can resolve 
only up to 30% of the nouns. This may probably be improved to 40% by 
using more specialized dictionaries for more types of entities. However, 
there is only so much that can be achieved using only a dictionary lookup 
approach. There is clearly a need for sophisticated algorithms to successfully 
classify the entities. The machine-learning techniques such as Hidden 
Markov Models (HMM) and N-grams to tackle the entities left unresolved 
by the dictionary look up approach is currently being developed. 

The key innovative features of the proposed BioMap are that it is 
adaptable and scalable, and that the core knowledge base will be constructed 
from a very large collection of documents (Medline) to make the system 
robust. The adaptation feature requires that the system should have the 
ability to learn new problem domains without having to rebuild the system 
as in the case of fully rule-based or grammar-based approaches. The 
scalability feature allows the system to continue to develop its knowledge 
base as new information arrives in the literature databases or incorporating 
information from other data sources (e.g. Science, Nature, etc.). BioMap is 
novel in its ability to transcend typical views of data that only consider a 
small scope of objects and relations and allows for a global view of 
interactions among objects. It is hoped that this view will help biologists 
transcend the bottlenecks that keep them from relating findings at the 
molecular level to real physiological changes which characterize disease. 
Further discussions on BioMap can be found in (Kumar et al., 2004). 
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5. CONCLUSIONS 

The biological literature databases continue to grow rapidly with vital 
information that is important for conducting sound biomedical research. The 
objective of the research described in this chapter is to develop, for the first 
time, a scalable knowledge base (BioMap) of biological relationships from 
vast amount of literature data. The results of this research will significantly 
enhance the ability of biological researchers with diverse objectives to 
efficiently utilize biomedical literature data. BioMap will be a new type of 
"secondary" knowledge resource derived from primary resources such as 
Medline. It will be the "window" to every biomedical researcher who will be 
seeking knowledge from the literature databases, however, without being 
overwhelmed by its large volume. 

When the knowledge network is presented to the user as a rich 
hypergraph, it enables easier browsing of the content shown to the user. 
Each node in the hypergraph can be made to be rich in content. They can be 
clicked on to show a new hypergraph dynamically with the selected entity as 
the seed. They contain information such as citations from where the 
corresponding term is derived. The biological objects such as genes, 
proteins, drugs, etc., will be represented as nodes in a hypergraph. Hence, 
BioMap will not only be an effective aid for biomedical research, but also a 
teaching and learning tool for high school, undergraduate, and graduate 
students pursuing academic programs in biomedical sciences. Another 
significant contribution of this work is the ability of the system to efficiently 
discover associations not explicitly reported in any one document, but based 
on associations implicitly hidden in multiple documents. 
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QUESTIONS FOR DISCUSSION 

1. One of the problems in association discovery is determining the 
direction, if any, of a particular association. What can be some of the 
approaches in determining such directionality through text mining? 

2. Some of the approaches that can be used for object identification in text 
include rule (grammar) based, statistical, and connectionist or other 
machine learning approaches. What are the relative advantages and 
disadvantages of the different approaches? 

3. Since there seems to be the possibility of a variety or a bank of multiple 
taggers (object identifiers) designed using possibly different 
computational techniques, a question arises as to whether it is possible to 
improve the tagging performance further by combining them in a 
judicious way. What are some of the issues involved in designing such a 
meta-tagger? 
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4. The general hypergraph construction algorithm is believed to be 
computationally very complex. Why? What could be some of heuristics 
andlor approximations that can be used to make it more tractable? 

5. Information visualization: The user-specific knowledge graph (or, 
hypergraph) can be quite complex involving a large number of nodes and 
associations. What could be some approaches to visualizing such large 
graphs in a cognition-rich manner? 




