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Abstract Although the possibihty to combine column generation and Lagrangian 
relaxation has been known for quite some time, it has only recently 
been exploited in algorithms. In this paper, we discuss ways of com­
bining these techniques. We focus on solving the LP relaxation of the 
Dantzig-Wolfe master problem. In a first approach we apply Lagrangian 
relaxation directly to this extended formulation, i.e. no simplex method 
is used. In a second one, we use Lagrangian relaxation to generate 
new columns, that is Lagrangian relaxation is applied to the compact 
formulation. We will illustrate the ideas behind these algorithms with 
an apphcation in lot-sizing. To show the wide applicability of these 
techniques, we also discuss applications in integrated vehicle and crew 
scheduling, plant location and cutting stock problems. 

!• Introduction 
In this chapter we consider (mixed) integer programming problems in 

minimization form. Obviously, lower bounds for such problems can be 
computed through a straightforward calculation of the LP relaxation. 
Dantzig-Wolfe decomposition and Lagrangian relaxation are alternative 
methods for obtaining tighter lower bounds. The key idea of Dantzig-
Wolfe decomposition (Dantzig and Wolfe, 1960) is to reformulate the 
problem by substituting the original variables with a convex combina­
tion of the extreme points and a linear combination of the extreme rays 
of the polyhedron corresponding to a substructure of the formulation. 
Throughout the paper, we will assume that this polyhedron is bounded. 
Therefore, only the extreme points are needed. This substitution results 
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in the master or extended formulation, which contains the hnking con­
straints from the original compact formulation and additional convexity 
constraints. When solving the LP relaxation of the master problem, 
column generation is used to deal with the large number of variables. 
Starting with a restricted master problem which contains only a small 
subset of all columns, we generate the other columns when they are 
needed. This is done by solving a so called pricing problem in which one 
or more variables with negative reduced costs are determined. After each 
execution of the pricing procedure, we calculate the optimal value of the 
LP relaxation of the restricted master problem, VRDW- This provides 
an upper bound on the optimal value of the Dantzig-Wolfe relaxation, 
VDWt which itself is a lower bound for the optimal IP value vp. When 
a simplex algorithm is used to solve the restricted master problem, we 
obtain optimal values of the dual variables corresponding to the linking 
and convexity constraints. These values are used in the pricing problem 
to check if we can generate new columns with negative reduced cost. If 
we find such columns, we add them to the relaxed master problem and 
reoptimize, otherwise we have found the optimal value of the Dantzig-
Wolfe relaxation VDW- This value will usually be tighter than ^p, the 
value of the LP relaxation of the original compact formulation. 

In Lagrangian relaxation, the complicating constraints are dualized 
into the objective function. Given a specific vector of positive multi­
pliers /, the Lagrangian relaxation problem always gives a lower bound, 
^LR{1)J on the optimal IP value vp. The Lagrangian dual problem con­
sists of finding the maximum lower bound: VLD =" max^>o VLR{1)' Typi­
cally, the latter problem is solved using an iterative procedure, where in 
subsequent iterations, the Lagrangian multiplier vector I is updated and 
we solve a new Lagrangian problem with these updated multipliers. In 
this chapter we focus on the subgradient method (Fisher, 1985, e.g.) for 
approximating the optimal multipliers, although more advanced meth­
ods such as the bundle method (Lemarechal, Nemirovskii and Nesterov, 
1995, e.g.) or the volume algorithm (Barahona and Anbil, 2000) exist. 

There exists a strong relationship between Dantzig-Wolfe decompo­
sition and Lagrangian relaxation. It is well known that when the La­
grangian relaxation is obtained by dualizing exactly those constraints 
that are the linking constraints in the Dantzig-Wolfe reformulation, the 
optimal values of the Lagrangian dual, VLD^ ^^^ the LP relaxation of 
the Dantzig-Wolfe reformulation, VDW^ a,re the same. In fact, one for­
mulation is the dual of the other (Geoffrion, 1974; Fisher, 1981). Fur­
thermore, the optimal dual variables A for the linking constraints in the 
master problem correspond to optimal multipliers / for the dualized con­
straints in the Lagrangian relaxation (Magnanti, Shapiro and Wagner, 
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1976). Moreover, the subproblem that we need to solve in the column 
generation procedure is the same as the one we have to solve for the 
Lagrangian relaxation except for a constant in the objective function. 
In the column generation procedure, the values for the dual variables 
are obtained by solving the LP relaxation of the restricted master prob­
lem, whereas in the Lagrangian relaxation, the Lagrangian multipliers 
are updated by subgradient optimization. 

Both approaches have advantages and disadvantages. Lagrangian re­
laxation provides a lower bound on the optimal IP value vp at each 
iteration of the subgradient algorithm, but no primal solution is avail­
able. In many applications, the dual information is used in a heuristic 
fashion to obtain a primal solution. On the other hand, column genera­
tion directly provides a primal solution at each iteration, which can be 
used to construct feasible solutions for the MIP in a rounding heuris­
tic. Further, the Lagrangian lower bound can be computed without 
much difficulty at each step of the column generation process. There are 
also differences in the computational implementation and convergence 
behaviour. The subgradient algorithm is usually stopped after a fixed 
number of iterations, without the guarantee of having found the opti­
mal value VLD (Fisher, 1985). However, the subgradient optimization 
for updating the Lagrangian multipliers is computationally inexpensive 
and easy to implement. The simplex optimization of the master prob­
lem, on the other hand, is computationally expensive and a tailing-off 
effect, i.e. slow convergence towards the optimum in the final phase of 
the algorithm, is generally observed (Barnhart et al., 1998; Vanderbeck 
and Wolsey, 1996). The use of problem specific information can guide 
the choice of the Lagrangian multipliers and can lead to a faster conver­
gence, whereas we do not have the same freedom in the column genera­
tion approach where the master problem provides the values of the dual 
variables. 

In this chapter we will discuss how the relationship between Dantzig-
Wolfe decomposition and Lagrangian relaxation can be exploited to de­
velop improved algorithms combining the strengths of both methods. We 
discuss two ways in which the two techniques can be combined efficiently. 
To be more specific, Lagrangian relaxation can be applied to the master 
problem to approximate the optimal values of the dual variables or it 
can be used on the original compact formulation of the problem to gen­
erate good columns. However, notice that we will only discuss column 
generation within the framework of DW decomposition, but it can also 
be considered as a general LP pricing technique. For the combination 
of column generation and Lagrangian relaxation within this framework, 
we refer to Löbel (1998); Fischetti and Toth (1997). In order to explain 
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the general principles within the framework of DW decomposition in 
Section 2, we use the example of capacitated lot-sizing. In Sections 3-5, 
other applications and their specific implementation issues are discussed. 

2. Theoret ical framework and basic approaches 

2 A Prel iminaries 

We will illustrate the basic approaches for combining column genera­
tion and Lagrangian relaxation using the Capacitated Lot-Sizing Prob­
lem (CLSP). In this problem we determine the timing and level of pro­
duction for several items on a single machine with limited capacity over 
a discrete and finite horizon. For a more comprehensive description, we 
refer to Kleindorfer and Newson (1975) or Trigeiro, Thomas and Mc-
Clain (1989). Let P be the set of products { 1 , . . . , n} with index i and 
T the set of time periods { 1 , , . . , TTI} with index t. We have the following 
parameters: da is the demand of product i in period t; SQ, vci and hci 
are the set up cost, variable production cost and holding cost for product 
i, respectively; vti is the variable production time for product i and capt 
is the capacity in period t. There are three decision variables: xu is the 
amount of production of product i in period t] su is the inventory level 
of product i at the end of period t; yu = 1 ii there is a set up for product 
i in period t, yu = 0 otherwise. The mathematical formulation of the 
CLSP is then as follows: 

min ^ Y^isciyu + vcixu + hciSu) (9.1) 

subject to Si^t-i + Xit = dit + su Vi E P.Wt e T, (9.2) 

xit < Myu Vi eP.yte r , (9.3) 

J2^^i^^t < capt V t e r , (9.4) 
ieP 

yu G {0,1}, Xit > 0, Sit > 0, 5̂ ,0 - 0 yieP.yteT, (9.5) 

The objective function (9.1) minimizes the total costs, consisting of 
the set up cost, the variable production cost and the inventory holding 
cost. Constraints (9.2) are the inventory balancing constraints: Inven­
tory left over from the previous period plus current production can be 
used to satisfy current demand or build up more inventory. Constraints 
(9.3) are the set up forcing constraints: If there is any positive produc­
tion in period t, a set up is enforced. In order to make the formula­
tion stronger, the ^big M' is usually set to the minimum of the sum of 
the remaining demand over the horizon and the total production which 
is possible with the available capacity. Next, there is a constraint on 
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the available capacity in each period (9.4). Finally, there are the non-
negativity and integrality constraints (9.5). We let VLS and VLS denote 
the optimal objective value for problem (9.1)-(9.5) and its LP relaxation, 
respectively. 

Decomposition approaches for this problem hinge on the observation 
that when we disregard the capacity constraints (9.4), the problem de­
composes into an uncapacitated lot-sizing problem for each item i. Let 
S^ be the set of feasible solution for subproblem i: S^ — {{xit^yu^Sit) \ 
(9.2), (9.3), (9.5)} and S = U G P ^ " - In the Dantzig-Wolfe decomposi­
tion, we keep the capacity constraints in the master problem and add a 
convexity constraint for each item (Manne, 1958; Dzielinski and Gomory, 
1965)). The new columns represent a production plan for a specific item 
over the full time horizon. Let Qi be the set of all extreme point pro­
duction plans for item i; Zij is the new variable representing production 
plan j for item i] cij is the total cost of set up, production and inventory 
for production plan j for item i and Tijt is the capacity usage of the 
production in period t according to plan j for item i. The LP relaxation 
of a restricted master problem then looks as follows: 

(9.6) 

(9.7) 

(9.8) 

(9.9) 

where Qi is a subset of Qi. Additional columns (variables) are generated 
when they are needed, using the information of the optimal dual variables 
^t (^ 0) and TTi of the capacity and convexity constraints, respectively. 
In the pricing problem, we check for each item i if we can generate a 
new column by solving the following subproblem: 

rc*(A,7r)=: min y^\sciyit+vciXit + hciSit)-Y^vtiXitXt-7ri. (9.10) 

If such a column with negative reduced cost is found, we add it to the 
restricted master problem, reoptimize this problem and perform another 
pricing iteration; otherwise we have found the optimal Dantzig-Wolfe 
bound, VDWLS-

In Lagrangian relaxation, the capacity constraints (9.4) are dualized in 
the objective function with non-positive multipliers / = {/i, 2̂? • • • ^ Im}' 

VRDWLS = mm 2 ^ 2 ^ Cij< 
'^PjeQi 

subject to V^ V^ '^ijt^ij ^ capt 

'^PjeQi 

y Zij = 1 \/i E P^ 

jeQi 

Zij > 0 yieP, Vj G Q^. 

Hj 

yteT, 
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VLRLs{l) = ^ min V" y^isciyu + vcixu + hciSu) 
^ '̂ ' ^ iePteT 

+ Y^lticapt-Y^vtiXity (9.11) 
teT \ ieP / 

Note that we use here non-positive Lagrangian multiphers in order 
to show the similarity with the non-positive dual variables A. The La­
grangian problem also decomposes into single item uncapacitated lot-
sizing problems. For each item i we have the following subproblem: 

We see that the subproblem of calculating the minimum reduced cost 
(9.10) in the Dantzig-Wolfe decomposition and the subproblem in the La­
grangian relaxation (9.12) are identical, except for a constant in the ob­
jective function. The solution of the Lagrangian dual problem gives the 
maximum lower bound VLDLS = max/<o VIRLS{1)' In iterative steps, the 
multipliers are updated in order to attain this Lagrangian dual bound. 
Let X = (x^x, Xĵ25 • • • 5 ^im' • • •' ^ni' ^n2^ • ' ' ' ^nm) ^^ '̂̂ ^ optimal pro­
duction quantities for the Lagrangian problem (9.11) with multipliers l^ 
at iteration fc, then the following standard subgradient update formulas 
(Fisher, 1981) result in a new vector of multipliers l^'^^: 

l^^' - min 10,1^ + ßk leapt -J^^^i^it) ) t - 1 , . . . ,m, (9.13) 

22teTi^^Pt-z2ieP^^i^it) 

Equation (9.14) determines the step-size, where 0 < a < 2 and the 
value ub is an upper bound on v^s-

During column generation, the value of the restricted master problem 
^RDWLS provides an upper bound on the optimal Dantzig-Wolfe relax­
ation value VDWLS' However, a lower bound can be easily calculated as 
well. Let rc*(A,7r) be the minimum reduced cost for subproblem i with 
the current optimal dual variables A and TT, then 

^ r c * ( A , TT) + VRDWLS < VDWLS < VRDWLS- (9.15) 



9 Combining Column Generation and Lagrangian Relaxation 253 

This lower bound is actually equal to the Lagrangian lower bound 
using the current optimal dual variables A as multipliers: 

ieP teT 

ieP ieP ieP teT 

ieP 

where in the final step, equivalence between XIZGP '̂ ^ + ^teT ^tcapt and 
^RDWLS follows from LP duality. This lower bound was already pro­
posed by Lasdon and Terjung (1971) who used column generation to 
solve a large production scheduling problem. It has also been discussed 
for other specific problems such as discrete lot-sizing and scheduling 
(Jans and Degraeve, 2004), machine scheduling (Van den Akker, Hurkens 
and Savelsbergh, 2000), vehicle routing (Sol, 1994), a multicommod-
ity network-flow problem (Holmberg and Yuan, 2003) and the cutting 
stock problem (Vanderbeck, 1999). A general discussion can be found in 
Wolsey (1998); Martin (1999). Vanderbeck and Wolsey (1996) provide 
a slight strengthening of this bound. The bound can be used for early 
termination of the column generation procedure, reducing the tailing-off" 
efi'ect. For IP problems with an integer objective function value, we can 
also stop if the value of this lower bound rounded up is equal to the 
value of the restricted master problem rounded up. 

2*2 Using Lagrangian relaxation on the 
extended formulation 

Instead of using the simplex algorithm to obtain the optimal dual vari­
ables of the (restricted) master problem, one can also use Lagrangian 
relaxation to approximate these values. Cattrysse et al. (1993); Jans 
and Degraeve (2004) apply this technique for solving a variant of the 
capacitated lot-sizing problem. A similar integration of Dantzig-Wolfe 
decomposition and Lagrangian relaxation is also used for the generalized 
assignment problem (Cattrysse, Salomon and Van Wassenhove, 1994), 
and integrated vehicle and crew scheduling which is the topic of Sec­
tion 3. 

In order to approximately solve the LP relaxation of the restricted 
master problem (9.6)-(9.9), we dualize the capacity constraint (9.7) into 
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the objective function (9.6) with non-positive multiphers It: 

VLR-RDw{l) = m i n ^ ^ cijZij 

teT \ i^Pj^Q, J 

(9.17) 

subject to ^ Zij = 1 \/ie P, (9.18) 

Zij > 0 Vi G P, Vj G Qi, (9.19) 

The problem decomposes into subproblems per item that are easy 
to solve, because taking the column with the lowest total cost for each 
item results in the optimal solution. The optimal Lagrangian multipliers 
are iteratively approximated via a standard subgradient optimization 
procedure. At the end of a subgradient phase, the Lagrangian multipliers 
It are an approximation of the optimal dual variables A^ Next, the 
optimal dual variable ni of the convexity constraint for item i can be 
approximated by the value pi as follows: 

Pi = min Cij - Y^ ItTijt . (9.20) 
jeQi \ ^^rj. J 

The Lagrangian multipliers It and pi can be used to generate new 
columns in the pricing subproblem (9.10). The new columns are added 
to the restricted master problem and in a subsequent step the optimal 
dual variables A and IT for the updated restricted master problem are 
again approximated by Lagrangian relaxation. 

Given the Lagrangian multipliers It and p^, we can still compute a 
lower bound: 

^ r c * ( / , p ) +VLR.-RDW{1) < VDWLS' (9.21) 
ieP 

This can again be proven by starting from the Lagrangian relaxation 
^LRLs{l) (9.11), which gives a valid lower bound for any / < 0: 

VLRLS{1) = ^VLRLSA^^) " X^Pi + X ] P̂  + X ] ^tCapt 
ieP ieP ieP teT 

= Yl ^̂ *̂(̂ 'P) + ^P^ + Y1 ^^^^P^ 
ieP ieP teT 
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tcapt 
ieP ieP^^^^ \ teT / teT 

ieP 

What are the advantages of approximating the optimal dual variables 
by Lagrangian relaxation instead of computing them exactly with a sim­
plex algorithm? Bixby et al. (1992); Barnhart et al. (1998) note that 
in case of alternative dual solutions, column generation algorithms seem 
to work better with dual variables produced by interior point methods 
than with dual variables computed with simplex algorithms. The latter 
give a vertex of the face of solutions whereas interior point algorithms 
give a point in the center of the face, providing a better representation 
of it. From that perspective, Lagrangian multipliers may also provide a 
better representation and speed up convergence. Computational exper­
iments from Jans and Degraeve (2004) indicate that using Lagrangian 
multipliers indeed speeds up convergence and decreases the problem of 
degeneracy, Lagrangian relaxation has the additional advantage that 
during the subgradient phase possibly feasible solutions are generated. 
The subgradient updating is also fast and easy to implement. Finally, 
this procedure eliminates the need for a commercial LP optimizer. 

2*3 Using Lagrangian relaxation on the compact 
formulation 

This approach is based on the observation that when the Lagrangian 
relaxation is obtained by dualizing exactly those constraints that are 
the linking constraints in the Dantzig-Wolfe reformulation, the same 
subproblem results. Consequently, the solutions generated by the La­
grangian subproblems can also be added as new columns to the master 
problem. This was first proposed by Barahona and Jensen (1998) for a 
plant location problem and by Degraeve and Peeters (2003) for the cut­
ting stock problem. These applications are discussed in Sections 4 and 
5, respectively. It has also been applied successfully to the capacitated 
lot-sizing problem (Degraeve and Jans, 2003), that is used again to illus­
trate the technique. The procedure essentially consists of a nested double 
loop. In the outer loop, optimal dual variables for the restricted master 
problem (9.6)-(9.9) are obtained by the simplex method. In the inner 
loop, the Lagrangian subproblem of the compact formulation (9.11) is 
solved during several iterations, each time with dual variables which are 
updated with a subgradient optimization procedure. A generic proce­
dure is depicted in Figure 9.1. 
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Initialization 

1. Solve master:v „ 

2. Get dual variables X: 
Solve pricing problem 

6. Add new 
columns 

YES 

5. Solve Lagrangian problem 

4. Update 
Lagrangian multipliers / 

3. Compute Lagrangian 
bound: v^^(/) 

Figure 9.1. Outline of algorithm. 

After initialization, the LP relaxation of the restricted master problem 
(9.6)-(9.9) is solved (Box 1). Next the optimal dual variables A and TT 
are passed to the pricing problem (9.10), which is then solved to find 
a new column (Box 2). If the reduced cost is non-negative for each 
subproblem, then the Dantzig-Wolfe bound VDW is found. Otherwise, 
the inner loop starts (Box 3), where in the first iteration the Lagrangian 
bound VLR{1) (9.11) is computed, using the optimal dual variables of 
the restricted master problem. This bound is then compared with the 
objective value of the restricted master problem VRDW- ^OT a pure 
integer programming problem with integer coefficients in the objective 
function, the procedure terminates if both values rounded up are equal, 
and the Dantzig-Wolfe bound equals [t̂ D̂V̂ l̂ — \^LR{1)]' For a mixed 
integer programming problem, the algorithm may be terminated, if the 
difference between both values is smaller than a pre-specified percentage. 
Other stopping criteria could also be checked. For instance, Barahona 
and Jensen (1998) stop the inner loop after a fixed number of iterations. 
If no stopping criteria are satisfied, then the Lagrangian multipliers are 
updated using subgradient optimization (Box 4). The value ub in (9.14) 
is an upper bound on VLD^ and therefore, ub can be set equal to the LP 
bound of the last solved restricted master problem VRJJW^ since VRDW ^ 
^DW == VLD' Next the algorithm proceeds with solving a new Lagrangian 
problem, with the updated multipliers (Box 5). The Lagrangian bound 



9 Combining Column Generation and Lagrangian Relaxation 257 

is computed again and the inner loop continues, until a stopping criterion 
is met. Next, we switch back to the outer loop. We add to the restricted 
master problem the columns with negative reduced costs (obtained in 
Box 2) and the ones generated in the inner loop if they are not yet 
present (Box 6). 

The main advantage of this procedure is that the LP relaxation of 
the master problem does not need to be solved each time to get new 
dual variables necessary for pricing out a new column. Solving the LP 
relaxation to optimality is computationally much more expensive than 
performing an iteration of the subgradient optimization procedure. At 
each subgradient iteration, a new column is found and these columns are 
expected to be "good" because the Lagrangian multipliers prices converge 
towards the optimal dual variables of the LP relaxation of the restricted 
master problem. A second advantage is that we can stop the column 
generation short of proving LP optimality of the master problem, be­
cause the Lagrangian relaxation provides lower bounds on the optimal 
LP value. Barahona and Jensen (1998) mention this fact as the main 
motivation for performing a number of subgradient iterations between 
two consecutive outer loop iterations. This procedure tries to combine 
the speed of subgradient optimization with the exactness of the Dantzig-
Wolfe algorithm. In addition, the procedure provides a primal solution 
on which branching decisions or rounding heuristics can be based, which 
is not the case if only subgradient optimization is used. Computational 
results from Degraeve and Jans (2003) indicate that this method speeds 
up the column generation procedure. With this hybrid method, it takes 
about half the time to find the lower bound compared to the traditional 
method. 

3. Application 1: Integrated vehicle and crew 
scheduling 

In this section we discuss the application of a combined column gen-
eration/Lagrangian relaxation algorithm to the integrated vehicle and 
crew scheduling problem. Vehicle and crew scheduling are two of the 
most important planning problems in a bus company. After a short 
problem description, we present a formulation for the integrated prob­
lem (in case of multiple-depots) to which we apply the approach outlined 
in Subsection 2.2. Some interesting, recent references on the integrated 
problem are Frehng (1997); Haase, Desaulniers and Desrosiers (2001); 
Freling, Huisman and Wagelmans (2003) for the single-depot case, and 
Gaffi and Nonato (1999); Huisman, Freling and Wagelmans (2003) for 
the multiple-depot case. 
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3,1 Problem description 
The multiple-depot vehicle and crew scheduling problem (MD-VCSP) 

can be defined as follows. Given a set of trips within a fixed planning 
horizon, it minimizes the total sum of vehicle and crew costs such that 
both the vehicle and the crew schedule are feasible and mutually compat­
ible. Each trip has fixed starting and ending times, and can be assigned 
to a vehicle and a crew member from a certain set of depots. Further­
more, the travelling times between all pairs of locations are known. A 
vehicle schedule is feasible if (1) all trips are assigned to exactly one 
vehicle, and (2) each trip is assigned to a vehicle from a depot that is 
allowed to drive this trip. From a vehicle schedule it follows which trips 
have to be performed by the same vehicle and this defines so-called vehi­
cle blocks. The blocks are subdivided at relief points^ defined by location 
and time, where and when a change of driver may occur and drivers 
can enjoy their break. A task is defined by two consecutive relief points 
and represents the minimum portion of work that can be assigned to a 
crew. These tasks have to be assigned to crew members. The tasks that 
are assigned to the same crew member define a crew duty. Together the 
duties constitute a crew schedule. Such a schedule is feasible if (1) each 
task is assigned to one duty, and (2) each duty is a sequence of tasks 
that can be performed by a single crew, both from a physical and a legal 
point of view. In particular, each duty must satisfy several complicating 
constraints corresponding to work load regulations for crews. Typical ex­
amples of such constraints are maximum working time without a break, 
minimum break duration, maximum total working time, and maximum 
duration. 

3*2 Mathemat ica l formulation 

Let Â  =^ {1, 2 , . . . , n} be the set of trips, numbered according to in­
creasing starting time. Define D as the set of depots and let s^ and 
t^ both represent depot d. Furthermore, for the crew we distinguish 
between two types of tasks, viz., trip tasks corresponding to trips, and 
dh-tasks corresponding to deadheading. A deadhead is defined as a pe­
riod that a vehicle is moving in time or space without passengers. E^ is 
the set of deadheads between two trips i and j . 

We define the vehicle scheduhng network G^ — (F^, A^), which is 
an acychc directed network with nodes V^ = Â^̂  U {5^,t^}, and arcs 
A^ ^E'^yj [s^ X N^) U {N^ X t^). Note that Â ^ is the subset of Â  that 
can be serviced by depot d, since it is not necessary that all trips can be 
served from each depot. Let cf^ be the vehicle cost of arc (i, j ) G A^, 
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Furthermore, let K^ denote the set of duties corresponding to depot 
d and /^ denote the crew cost of duty k e K^^ respectively. Moreover, 
K^{i) denotes the set of duties covering the trip task corresponding to 
trip i G N^^ which means that we assume that a trip corresponds to 
exactly one task. K^{i^j) denotes the set of duties covering the d/i-tasks 
corresponding to deadhead (i, j ) G A^, Decision variable yf, indicates 
whether an arc (i, j ) is used and assigned to depot d or not, while xf 
indicates whether duty k corresponding to depot d is selected in the 
solution or not. The multiple-depot vehicle and crew scheduling problem 
(MD-VCSP) can be formulated as follows. 

min^ E 4yi + J2Ilfk4 (9.22) 

subject to V E yfj ""1 Vi G Â , (9.23) 

J2 E 4 = 1 îeTV, (9.24) 

E 4 - E yß = 0 ^deD, Vi € iV^ (9.25) 

E ^' - E yi = o WeD,^ie N^ (9.26) 
keK'i{i) j : {i,j)€.A'' 

E 4 - 4 = 0 "^dG D, V(i, j) G A'', (9.27) 
keK''{i,j) 

xf e {0,1} w eD, yke K'^, (9.28) 
46(0,1} \/d€D,^ii,j)eA'^. (9.29) 

The objective is to minimize the sum of vehicle and crew costs. The 
first three sets of constraints, (9.23)-(9.25), correspond to the formula­
tion of the vehicle scheduling problem. Notice that in this formulation 
constraints (9.24) are redundant. However, it is useful to have these 
constraints when we relax constraints (9.25), as will be done in the algo­
rithm. Constraints (9.26) assure that each trip task will be covered by 
a duty from a depot if and only if the corresponding trip is assigned to 
this depot. Furthermore, constraints (9.27) guarantee the link between 
vehicles and crews. That is, a vehicle performs deadhead (i, j ) if and 
only if the corresponding d/i-task is assigned to a driver from the same 
depot. 

Notice that this formulation is already an extended one. We would 
obtain a similar formulation, if we would apply Dantzig-Wolfe decompo-
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sition on a compact formulation of this problem. Desrosiers et al. (1995) 
show how such a transformation can be applied on the multicommodity 
flow problem with resource constraints, which has as special case all kind 
of vehicle and crew scheduHng problems. 

3,3 Algorithm 
Below we flrst give a schematic overview of a combined column gen-

eration/Lagrangian relaxation algorithm to solve the MD-VCSP. After­
wards, we discuss the steps related to Lagrangian relaxation (1,2 and 4) 
in more detail. For details about the other steps, we refer to Huisman, 
Freling and Wagelmans (2003). 

STEP 1 Find an initial feasible solution and take as initial set of columns 
the duties in that solution. 

STEP 2 Solve a Lagrangian dual problem with the current set of columns 
approximately, i.e. perform some subgradient optimization steps to up­
date the multipliers. This gives a lower bound for the current restricted 
master problem. 

STEP 3 Modify multipliers to prevent that columns are generated twice. 

STEP 4 Generate columns (duties) with negative reduced cost and up­
date the set of columns. 

STEP 5 Compute an estimate of a lower bound for the (full) master 
problem. If the gap between this estimate and the lower bound found in 
Step 2 is smah enough (or another termination criterion is satisfied), go 
to Step 6; otherwise, return to Step 1. 

STEP 6 Construct feasible solutions by applying a Lagrangian heuristic. 

To approximate the optimal value of the restricted master problem 
in Step 1, we use the relaxation of model MD-VCSP, where the equal­
ity signs in the constraints (9.25)-(9.27) are first replaced by "greater-
than-or-equal" signs. These constraints are subsequently relaxed in a 
Lagrangian way. That is, we associate non-negative Lagrangian mul­
tipliers /̂ ,̂ Af, jif^ with constraints (9.25), (9.26), (9.27), respectively. 
Then the optimal solution of the remaining Lagrangian subproblem can 
be obtained by inspection for the x variables and by solving a large 
single-depot vehicle scheduling problem (SDVSP) for the y variables. 

The values of the Lagrangian multipliers obtained after applying a 
subgradient algorithm can be used to generate new columns. However, 
to assure that all columns in the current restricted master problem have 
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non-negative reduced costs such that the corresponding duties will not 
be generated again in the pricing problem, we use an additional pro­
cedure (Step 3) to update the Lagrangian multipliers after solving the 
Lagrangian relaxation. This can be done with a greedy heuristic, that 
modifies these multipliers i j such a way that columns in the current 
restricted master problem K^ have non-negative reduced costs and the 
value of the Lagrangian function does not decrease. We denote /^ as 
the reduced cost of column k G K^, which is equal to 

fk- T. ^i- E 4 ' (9-30) 
ieN{k4) {i,j)eA{k4) 

where N{k^ d) and A{k^ d) are the set of trip tasks and d/i-tasks in duty 
k from depot (i, respectively. The heuristic is described below (see also 
Freling, 1997; Carraresi, Girardi and Nonato, 1995): 

for each column k e K^ with /^ < 0; 
fd 

^'^ \N{k^d)\l\A{k^d)\'' 
for each trip task i € N{k,d): Xf := \f + ö\ 

for each d/i-task (i, j ) G A{k^d)\ ji^j := ji^j + 5\ 

update the reduced costs for all columns / G K and I > k. 

Finally, we will discuss Step 4, where we compute an estimate of a 
lower bound for the master problem given a lower bound for the current 
restricted master problem. The latter bound, denoted by $'(/^, A,/i), is 
obtained in Step 1. Then the expression: 

^'{K,X,ß) + Y, E ™in(/fc'0) (9-31) 

is a lower bound for the (full) master problem for each vector {n^ A, /LX). 
This can be proven in a similar way as in Subsection 2.2. Therefore, we 
will skip this proof here. 

Notice, however, that we do not calculate this lower bound in each 
iteration, since for generating new columns it is not necessary to calculate 
the reduced costs for all of them. Therefore, we estimate this bound 
in each iteration by taking only into account the reduced costs of the 
columns that we actually add to the master problem. This estimate 
can be used to stop the column generation part of the algorithm earlier 
without exactly obtaining a lower bound. 
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Table 9.1. Computational results MD-VCSP. 

# trips 

# iter. 
cpu m. 
cpu p. 
cpu t. 

# found 

gap (%) 

80 

17.4 
154.7 
148.7 
317.5 

10 

5.37 

100 

25.2 
403.9 
510.7 
942.3 

10 

5.31 

160 

36.8 
982.8 

3529.8 
4721.3 

4 

5.75 

200 

39.5 
1641.5 
4769.5 
6675.0 

2 

6.52 

3,4 Some results 
The algorithm presented in the previous subsection has been used 

to solve several problem instances arising from real-world applications 
as well as randomly generated instances. In Table 9.1 we summarize 
some of the results for randomly generated instances with two depots 
(see Huisman, Freling and Wagelmans, 2003). We report the average 
number of iterations of the column generation algorithm, and the av­
erage computation times for the master problem (cpu m.) and pricing 
problem (cpu p.), respectively. Furthermore, we give the total average 
computation time for computing the lower bound (cpu t.). These aver­
ages are computed over the instances for which a lower bound is found 
within 3 hours of cpu time on a Pentium III 450MHz personal computer 
(128MB RAM). Therefore, we also report the number of instances (out 
of 10) for which we actually found a lower bound. In the remainder 
of the table, we report the average gaps between the lower and upper 
bounds. Notice that all computation times are mentioned in seconds. 

In Table 9.1, we only provide results for instances up to 200 trips, 
since for larger instances we were not able to compute a lower bound 
within 3 hours computation time. The average gaps between the fea­
sible solutions and the lower bound are about 5% for those instances. 
However, for large instances we can still use the suggested algorithm to 
compute feasible solutions by terminating the lower bound phase after a 
maximum computation time and then continue with Step 5. In practice, 
this is already quite satisfactory. Therefore, these types of algorithms 
can be used to solve practical problem instances in an integrated way. 

4, Application 2: Plant location 
Barahona and Jensen (1998) apply the procedure described in Sub­

section 2.3 to a plant location problem with minimum inventory. Given 
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a set N of customers, each requiring a set of parts Di C P^i E N^ where 
P denotes the set of all parts, and a set of M possible locations, the ob­
jective is to minimize the total costs such that every customer is served, 
a bound on the total number of warehouses is not exceeded and a service 
criterion is met. The total costs consist of a fixed costs / j , for j G M, if a 
warehouse is opened at location j , a transportation cost Cij if customer i 
is served from warehouse j , and an inventory cost hjk^ if part k is stored 
in warehouse j . A part must be stored in a warehouse if a customer, 
requiring that part, is assigned to the warehouse. The service criterion 
implies that a given percentage of the total demand must be delivered 
within a certain time limit. Let yj be 1, if warehouse j is opened, and 
0 otherwise, let Xij be 1 if customer i is assigned to warehouse j , and 0 
otherwise, and let Zjk be 1, if part k must be stored in warehouse j , and 
0 otherwise. Then the model can be stated as follows. 

min Y^ fjVj + J2Y^ «̂î 'i + 5] Z] î̂ Ĵfc 
jeM i&N jeM jeM keP 

subject to 2_. ^ij — 1 yi E N, 
jeM 

/ , / J dij^ij ^ )̂ 
ieN jeM 

Yl % - ^^ 
jeM 

Xij < Vj Vi € N, \/j e M, 

Xij < Zjk Vi € N, Vj EM, \/kE Di, 

Xij, yj,Zjk € {0,1} Vi € A ,̂ Vj EM, ykE P. 

(9.32) 

(9.33) 

(9.34) 

(9.35) 

(9.36) 

(9.37) 

(9.38) 

The objective (9.32) is to minimize the total costs, i.e. the sum of 
fixed costs for opening warehouses, transportation and inventory costs. 
Constraints (9.33) impose that every customer must be assigned to one 
location. Constraint (9.34) is the service criterion, i.e. suppose that 
the company would like that 95% of the demand can be served within 
two hours, then t equals 95% of the total demand and dij is equal to 
the demand of customer i, if the travel time between i and j is less 
than two hours, and 0 otherwise. Constraint (9.35) implies that at most 
L locations can be opened. Constraints (9.36) and (9.37) define the 
relations between the variables, i.e. a customer can only be assigned 
to a warehouse, if the warehouse is open (9.36), and, if customer i is 
assigned to a warehouse, then all parts Di of customer i must be present 
in the warehouse (9.37). 
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The Dantzig-Wolfe reformulation consists of implicitly considering ev­
ery possible assignment of customers to locations. Hence, the objective 
function and constraints of (the LP relaxation of) the master problem 
correspond to (9.32)-(9.35) and the original variables are replaced by a 
convex combination of the extreme points of the polytope defined by 
(9.36)-(9.38). Barahona and Jensen (1998) show that the pricing prob­
lem is equivalent to a minimum cut problem. They observed that the 
convergence of the Dantzig-Wolfe algorithm is very slow for this prob­
lem and that the lower bound obtained by adding the reduced cost of 
the columns that price out to the value of the current restricted master 
problem, is very poor in the first iterations of the Dantzig-Wolfe algo­
rithm and improves only slowly. After solving the LP relaxation of the 
current restricted master problem, they perform a fixed number of sub-
gradient iterations on the original problem to improve the bound, using 
the master problem's optimal dual variables as starting values for the 
subgradient procedure. Next, all columns are added to the LP relaxation 
of the restricted master problem, which is then re-optimized. If the new 
optimal objective value and the Lagrangian lower bound are close to each 
other, then a heuristic is apphed to obtain an integer solution. They are 
able to obtain good solutions for problems with about 200 locations, 200 
parts and 200 customers within about one hour of computation time on 
a RS6000-410, using OSL (IBM Corp., 1995) to solve the LPs. 

5. Application 3: Cutting stock 

Degraeve and Peeters (2000) use a combination of the simplex method 
and subgradient optimization to speed up the convergence of the col­
umn generation algorithm of Gilmore and Gomory (1961) for the one-
dimensional cutting stock problem (CSP). This procedure is used to 
compute the LP relaxation at every node of the branch-and-price tree 
of the algorithm described in Degraeve and Peeters (2003). The CSP 
can be defined as follows. Given an unlimited stock of a raw material 
type of length c and a set of n items with widths wi^,.. ^Wn and de­
mands d i , . . . ,cfn, cut as few raw material types as possible, such that 
the demand is satisfied and the total width of the items cut from a raw 
material type does not exceed its length c. Let P be the set of all feasible 
cutting patterns, or 

P=LeZl: Y^WiPi<c\. (9.39) 
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Let Zp be the number of times pat tern p is selected in the solution, 
then the Gilmore and Gomory formulation can be stated as follows: 

minY^Zp (9.40) 
peP 

subject to / J p z ^ p > di Vi € 1 , . . . ,n , (9,41) 

peP 

Zpe { 0 , 1 , 2 , . . . } \fpeP, (9.42) 

The objective function (9.40) minimizes the total number of cut raw 
material, whereas constraints (9.41) are the demand constraints and con­
straints (9.42) the integrahty and non-negativity restrictions. The LP 
relaxation of (9.40)-(9.42) can be solved by column generation, where 
the pricing problem is a bounded knapsack problem, if one does not al­
low that the number of items present in a cutting pat tern exceeds the 
demand, i.e. Pi < di. 

Using the procedure described in Subsection 2.3, Degraeve and Peeters 
(2000) are able to achieve a substantial reduction in required CPU time 
to solve the LP relaxation of (9.40)-(9.42). Like Barahona and Jensen 
(1998), they use a hmit on the number of subgradient iterations in the 
inner loop of Figure 9.1, but, in addition, the inner loop is interrupted, if 
a new column has non-negative reduced cost, or if the Lagrangian bound 
rounded up equals the master problem's objective value rounded up, as 
explained earher in Figure 9.1. If this last condition holds, the Dantzig-
Wolfe lower bound is found. Otherwise, all different columns generated 
in the inner loop are added to the restricted master problem. First it 
is checked if the value of the best Lagrangian lower bound rounded up 
is equal to the value of the new restricted master problem rounded up. 
Then, the algorithm can be terminated, otherwise the next iteration of 
the outer loop continues. 

Table 9.2 presents the results of the computation times for cutting 
stock instances with 50, 75 and 100 items for 4 different width inter­
vals given in the first row, in which the item widths are uniformly dis­
tributed. The demand is uniformly distributed with an average of 50 
and the raw material length equals 10000. The experiments were run 
on a Dell Pentium Pro 200Mhz P C (Dell Dimension XPS Pro 200n) 
using the Windows95 operating system, the computation times are av­
erages over 20 randomly drawn instances and given in seconds. The 
LPs are solved using the industrial LINDO optimization library version 
5.3 (Schräge, 1995). The columns labelled "DW" present the traditional 
Dantzig-Wolfe algorithm and the columns labelled "CP" present the re­
sults of the combined procedure of Figure 9.1. We observe that the 

file:///fpeP
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Table 9.2. Computational results, Cutting Stock Problem. 

int 
n 

50 
75 
100 

[1,2500] 
DW 

0.44 
1.14 
3.19 

CP 

0.21 
0.47 
0.84. 

[1,5000] 
DW 

1.47 
4.82 
15.96 

CP 

0.52 
1.12 
2.05 

[1,7500] 
DW 

0.67 
4.26 
14.78 

CP 

0.46 
1.14 
3.99 

[1,10000] 
DW 

0.14 
0.53 
1.65 

CP 

0.10 
0.27 
0.73 

reduction in CPU time is higher, when the number of items is higher, 
and can be as high as a factor 8. 

6, Conclusion 

We discussed two ways to combine Lagrangian relaxation and column 
generation. Since this combination has not been used quite often, there 
are many interesting research questions open. For example, should we 
use another method to approximate the Lagrangian dual, e.g. a multi­
plier adjustment method? Furthermore, when implementing such algo­
rithms one has to make decisions with respect to issues such as column 
management. 

In the first method, we used Lagrangian relaxation to solve the ex­
tended formulation. Therefore, no simplex method was necessary any­
more, which has several advantages. First of all, it decreases the prob­
lem of degeneracy and speeds up the convergence. Furthermore, master 
problems with a larger number of constraints are most often faster solved 
with Lagrangian relaxation than with a LP solver. We showed this by 
solving the multiple-depot vehicle and crew scheduling problem. 

In the second method, Lagrangian relaxation was used to generate 
new columns. It is an effective method to speed up convergence of the 
Dantzig-Wolfe column generation algorithm. The method seems to be 
quite robust, since it gives good results on three totally different prob­
lems, and this without much fine-tuning of the parameters. Several issues 
can be further investigated. For example, how many subgradient itera­
tions do we allow in the inner loop of Figure 9.1? This is also related to 
the number of columns that we want to add in an inner loop: All new 
columns, the ones with negative reduced cost or only the ones with the 
most negative reduced cost? Adding more columns leads possibly to a 
faster convergence, but larger restricted master problems are also more 
difficult to solve. Do we initialize the multipliers in the Lagrangian re­
laxation part with the best Lagrangian multipliers of the previous step, 
with the optimal dual variables provided by the simplex algorithm for 
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the current restricted master problem, or some combination? Clearly, 
there are ample opportunities for research into the effective combination 
of column generation and Lagrangian relaxation. 
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