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Abstract This chapter discusses an appHcation of advanced planning support in 
designing a sea-transport system. The system is designed for Norwegian 
companies who depend on sea-transport between Norway and Central 
Europe. They want to achieve faster and more frequent transport by 
combining tonnage. This requires the possible construction of up to 15 
new ships with potential investments of approximately 150 mill US dol­
lars. The problem is a variant of the general pickup and delivery prob­
lem with multiple time windows. In addition, it includes requirements 
for recurring visits, separation between visits and limits on transport 
lead-time. It is solved by a heuristic branch-and-price algorithm. 

1» In t roduct ion 

Increased pressure on road networks and increasing transport require­
ments make companies look for new transport solutions. This spurred 
an initiative to create a new liner shipping service. The initiative came 
from a group of Norwegian companies who need transport between loca­
tions on the Norwegian coastline and between Norway and The European 
Union. While few producers on the Norwegian coast have sufficient load 
to support a cost efficient, high frequency sea-transport service, they 
can reduce costs and decrease transport lead-time by combining their 
loads on common ships. They agreed upon a tender (transport offer) 
which was proposed to a number of shipping companies. The tender 
specifies the number of cargos per week and time constraints for pickup 
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and delivery. It also states the requirements regarding ship-types and 
loading and unloading techniques. For rapid handling, all goods must 
be transported in containers. Finally the tender specifies the yearly 
payment each company will make to be part of this transportation sys­
tem. Today there are neither ships nor harbour facilities to support the 
proposed solution. Thus, major investments are necessary. Estimates 
indicate that investments in ships alone, can amount to about 150 mill 
US dollars. We present a model which calculates an optimal solution to 
the requirements in the tender. The model includes selection of an opti­
mal fleet composition, ship routing and visit-schedules. The problem is 
formulated as a set partitioning model and solved by a heuristic branch-
and-price algorithm. The next section presents the system requirements 
in more detail. In Section 3 the problem is compared to other fleet de­
sign and routing problems. Our choice of master and pricing problem 
is presented in Sections 4 and 5. The branching strategy is described 
in Section 6. Section 7 presents results, while Section 8 conclude with 
some remarks on the model choice and on the results. 

2. Problem description 
In this section we will first take a closer look at the ship requirements, 

and then describe requirements pertaining to customers transport de­
mand. 

To achieve fast transport, it is necessary to limit both the travel time 
and the loading and unloading time. Faster ships can substantially de­
crease the travel time. While traditional cargo ships travel at about 16 
knots, cargo ships can be designed to travel at up to 25 knots. With this 
speed a ship can travel from Trondheim to Rotterdam in 35 hours. This 
represents a reduction in travel time of about 20 hours compared to tra­
ditional cargo ships. Although higher speed increases variable costs, as 
fuel consumption for ships increase exponentially with speed, this may be 
outweighed by a reduction in the number of required ships, reduced in­
ventory costs and the need to satisfy customers' lead-time requirements. 
Combining tonnage leads to an increased number of port visits. To limit 
the loading and unloading time, ships need to use a roll-on roll-off tech­
nology. This means that cargo is rolled onto the ships by trucks and not 
lifted by cranes. The existing fieet of ships serving the North-Sea region 
cannot adopt this technology. Therefore the system requires construc­
tion of new ships. The shipping companies have in collaboration with 
the customers proposed a number of candidate ship-types. It is possi­
ble to construct any number of each candidate ship-type. The candidate 
ships vary in cost, capacity and speed. Some ships have properties which 



Ship Scheduling With Recurring Visits 227 

Table 8.1. Alternative visit-patterns for a customer with three visits per week and 
at least one day in-between visits. 

nr 

1 
2 
3 
4 
5 
6 
7 

Mon 

X 
X 
X 
0 
0 
0 
0 

Tue 

0 
0 
0 
X 
X 
X 
0 

Wed 

X 
X 
0 
0 
0 
0 
X 

Thu 

0 
0 
X 
X 
X 
0 
0 

Fri 

X 
0 
0 
0 
0 
X 
X 

Sat 

0 
X 
X 
X 
0 
0 
0 

Sun 

0 
0 
0 
0 
X 
X 
X 

prevent them from visiting particular harbours. The constructed ships 
win be used in full by the system. The fixed weekly cost of a ship covers 
crew costs, financial costs and maintenance costs. The financial cost of 
a ship equals the depreciation cost from constructing the ship. The vari­
able cost depends mainly on the fuel consumption, which is calculated 
as a function of the travel distance and speed. 

The tender includes transport of 68 cargos per week between 21 har­
bours, 20 in Norway and one in Rotterdam. The total transport volume 
is approximately 2000 containers weekly. All customers specify a pickup 
port and a delivery port, a weekly load and a frequency. The frequency 
states the number of shipments per week. The weekly load is distributed 
evenly among the shipments. For each shipment, there can be single or 
multiple time-windows for pickup and for delivery. If, for example a 
cargo can be collected between Monday and Wednesday but only within 
the opening hours of the port, there will be three time windows, one 
for each day. The maximum lead-time from pickup to delivery limits 
the time from when a cargo is picked up until it is delivered. Lead-
time requirements apply to perishable goods such as fish and to goods 
where customers require rapid delivery. Customers with multiple vis­
its per week, can demand a minimum time between visits or limit the 
number of visits during a given number of days. If a customer requires 
at least one day between visits in the pickup port and a ship visits on 
Monday, then visits on Sunday and Tuesday are forbidden. Table 8.1 
shows the seven feasible visit-patterns for a customer with three cargos 
and at least one day in-between service. If the customer instead requests 
not more than two visits per three days, there are 21 additional feasible 
visit-patterns. It is possible to enumerate all feasible visit-patterns for 
customers with separation requirements for the visits. If desired, this 
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Figure 8.1. An example showing how extending the planning period from one week 
to two weeks can improve the solution. 

can also be done for customers without requirements for separation of 
visits. 

To facilitate planning, companies want a weekly recurring visit-schedule^ 
similar to a bus-schedule. The visit-schedule must state the day when 
each visit is made, but does not restrict the time of day for making the 
visit. This implies that the same visit-pattern will be repeated each 
week for each customer. The visit-schedule is not given a priori, so the 
shipping companies must decide on an optimal visit-schedule which com­
plies with the customers requirements. Let a route denote a sequence of 
pickup and delivery visits on given days made by a particular ship-type. 
A recurring visit-schedule can be met by a set of weekly recurring routes, 
as cyclic routes with the duration of one week will visit the same cus-
tomer(s) on the same day each week. Alternatively, ships can use cyclic 
routes with a longer duration than one week. Then the requirement 
for weekly recurring visit-patterns at each customer must be fulfilled by 
combining routes. For example, if the route length is two weeks, two 
ships can alternate on visiting the same customers every second week. 
Figure 8.1 illustrates how it is possible to reduce costs by 50% by allow­
ing two-week routes instead of one-week routes. Figure 8.1(a) depicts 
a problem instance with four harbours. The most southerly harbour is 
Rotterdam and the other three harbours are on the Norwegian coastline. 
The three Norwegian harbours must be visited once a week to pick up 
cargo bound for Rotterdam. The numbers on the edges indicates the 
length of the edge in hours of sailing. Thus the route shown in 8.1(b) 
takes 250 hours ^ 10.5 days and it covers all visits. Thus two ships sail­
ing this route, starting one week apart will cover all visits in every week. 
On the other hand, if the maximum route length is set to one-week, the 
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three routes shown in Figure 8.1(c)-8.1(e) are required to cover ah visits, 
which means using an additional ship. 

The duration of the routes wih be a multiple of the length of the re­
curring visit-schedule, which is one week. Ship owners suggest a sensible 
duration for routes should be two weeks. This is therefore used in the 
further description. With a two week planning period, the planning pe­
riod includes two weekly visit-schedules. After two weeks, the plan is 
repeated. The ships travel on two week cyclic routes and visit the depot 
at least once during this time. The ships can be anywhere on their route 
at the start of the planning period. 
Based on the tender and on the candidate ship-types, the mathematical 
model produces: 

• a fleet of ships, 

• a published and fixed visit-schedule, 

• a recurring route for each ship. 

The model takes into account requirements for: 

• separation of visits to the same customer, 

• time-windows (multiple) for pickup and delivery, 

• visits on same days each week, 

• lead-time from pickup to delivery. 

The properties of the routes are: 

• start and end at the same harbour, 

• maximum route length (in weeks), 

• time for each visit, 

• load always less than ship capacity, 

• lead-time from pickup to delivery must be met, 

• time window constraints must be met, 

• port/ship compatibihty must be met. 

Unlike bus scheduling, the ships do not return back to the "garage" at 
regular intervals. However, one harbour is special and will be used as a 
depot. The southernmost harbour, Rotterdam, receives and sends large 
quantities of goods from and to Norwegian harbours. Since Rotterdam 
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is relatively far away from Norway, we can safely assume that optimal 
routes never bring goods destined for Norway, to Rotterdam and back 
to Norway. Thus, after unloading and before reloading, ships will be 
empty in this harbour. Because of the large portion of cargo destined 
for Rotterdam, all ships will travel from Norway to Rotterdam at least 
once during a planning period. Hence, Rotterdam is used as the depot 
for all ships. Ships can leave from the depot at any time during the 
week. The ships are allowed to visit the depot again within the route, 
but they need to return to the depot and discharge all cargo within the 
maximum route duration. It is possible to include additional depots, 
in particular, if the assumption that ships will always be empty in the 
depot still holds. 

The model assumes deterministic transport demand. This is based on 
data from each of the collaborating companies. The sensitivity of the 
solution to changes in demand is further discussed in Section 8. 

3. Similar problems in the literature 

3.1 Sea-transport 
Ship scheduling and fleet planning often involves decisions which rep­

resent large monetary values. Constructing or acquiring a ship costs 
millions of US dollars and daily operation costs amounts to thousands 
of dollars. Improved utilization and fleet planning can lead to great 
benefits. This should motivate the use of decision support. Accord­
ing to Ronen (1993), optimization based decision support was not often 
applied in the shipping industry before 1993. This lack of interest, (Ro­
nen, 1983), explains as a result of strong traditions for other planning 
methods as well as a range of operational factors in which sea transport 
problems differs from vehicle routing problems. In a more recent re­
view Christiansen, Fagerholt and Ronen (2004) report on an increase in 
the number of studies for maritime transport planning. As most of the 
studies consider industrial and tramp shipping, the literature on liner 
shipping problems is still sparse. This does not reflect the development 
in global capacity in finer shipping, which was nearly doubled from 1991 
to 1995. 

Most liner shipping problems consider fieet size and mix in addition 
to fleet deployment. Cho and Perakis (1996) present models for routing 
and fleet design in a liner shipping problem. They present a LP model 
for a problem with a fixed fleet of ships and a set of candidate routes. 
This becomes an IP problem when the number of ships is allowed to vary. 
The IP problem minimizes the costs of satisfying customers demand by 
assigning ships to routes. The candidate routes are suggested by the 
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planners. In a later application Powell and Perakis (1997) expand on 
the issue of fleet deployment and include penalties for days when ships 
are idle. Fagerholt (1999) describes another model for a liner shipping 
system. Because of limited total route duration, all routes are generated 
a priori. Then, from a set of predefined alternative ships, the least costly 
ship is assigned to each route and set partitioning is used to select among 
the routes. The limitation to all three approaches is that they only work 
on relatively constrained problems. In contrast to the former studies, 
Rana and Vickson (1991) present a profit maximization model which 
constructs routes of favourable visits and selects routes from this set. 
They apply a Lagrange decomposition approach to solve the problem. 
By relaxing the demand constraints, the problem is decomposed into one 
problem for each ship. 

Christiansen (1999) describes another decomposition approach to solve 
an industrial shipping problem with transport of only one bulk product, 
but it also involves managing inventory held at the ports. Therefore, it 
includes decisions on both load quantity and routes. The solution ap­
proach uses Dantzig-Wolfe decomposition. Suggestions for routes and 
load quantities are generated in a subproblem. The master problem se­
lects routes that minimize cost while controlling inventory levels. This 
problem is solved by a heuristic branch-and-bound algorithm with gen­
eration of new columns when needed. 

3.2 Related problems 
Similar problems to the liner shipping problem are found in freight 

transport, train scheduling and in the airline industry. Such problems 
are often referred to as service network design problems, see Crainic and 
Laporte (1997). 

The demand requirements with sets of legal visit-patterns at each 
customer are similar to those given in periodic VRP (PVRP) problems. 
Cordeau, Gendreau and Laporte (1997) present the currently known best 
heuristic for the PVRP. However, as their method uses the fact that all 
routes in the P V R P last for only one day and also do not have pickup 
and delivery, their method is not directly relevant to our problem. 

4* Mathematical model formulation 
The model constructs a fleet of ships, a visit-schedule and routes. 

A Dantzig-Wolfe decomposition is applied to formulate a set partition­
ing problem which is in turn solved by a branch-and-price algorithm. 
Desrosiers et al. (1995) reports that this approach has been successfuUy 
applied to numerous routing and scheduling problems while Barnhart et 
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al. (1998) discuss how this method can be used to solve various classes 
of integer models. 

The decomposition gives a master problem and a pricing problem. The 
master problem selects, from a set of candidate routes, routes which 
minimize the cost of satisfying customers requirements. With a huge 
number of possible routes only a subset of routes can be included in the 
master problem. New routes are generated in the pricing problem and 
added to the master problem. Dual values from the master problem are 
used to modify the objective function of the pricing problem to encourage 
new routes for poorly serviced cargoes. With delayed column generation, 
new routes are generated throughout the branching process. When no 
improving routes can be found the algorithm terminates. As further 
described in Section 5, heuristic methods are used to solve the pricing 
problem. This gives a heuristic branch-and-price algorithm. 

The system must service a given number of cargos. Each cargo has an 
origin and a destination node. There may be time window constraints 
on pickup and delivery and possibly lead-time constraints for dehvery 
of the cargo. Since new ships will be constructed, ship characteristics 
are not fixed. In theory, both speed and capacity of the ships could be 
modelled as continuous variables. However, shipping companies prefer 
some standardization. Therefore speed and capacity are modelled as 
stepwise functions. This results in a finite number of ship-types. There 
is no limit on the number of ships of each type, 

4.1 The master problem 
The master problem selects routes from a subset of all routes. Re­

call that a route is a sequence of pickup and delivery visits on given 
days made by a particular ship-type. There are two ways to model the 
composition of routes for the planning problem. One approach is to 
construct routes which last for the duration of the planning period in 
the pricing problem. This way, only complete routes are selected in the 
master problem and selecting a route also involves using a ship. Alter­
natively, a collection of shorter routes can be proposed to the master 
problem. Then a sequence of shorter routes for each ship are selected 
in the master problem. This requires additional constraints on the daily 
utilization of unique ships. Both approaches have been tested. The 
approach with complete routes gave better results. Therefore only this 
approach is further described. 

The plan for one planning period is repeated at the end of the period. 
With complete routes which last for the duration of the planning period, 
a ship travels exactly one route. A ship can be anywhere on its route 
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at the beginning of the planning period. In other words, a route which 
start from the depot on day d in the planning period will wrap around 
and finish on day d — 1 \n the planning period. Let S denote the set of 
ship-types 5, and TZ^ denote the set of candidate routes r for ship-type 
s. With complete routes, the cost of using a ship can be included in the 
cost for the route, C^, and calculated in the pricing problem. 

Let the variable z^ be one if route r, with ship-type 5, is used. There 
are no restrictions on how many times each ship-type can be used, so 
diff'erent routes which use the same ship-type can be selected simulta­
neously. However, a particular route r can only be used once, as each 
visit can only be made once, so z^ € {0,1}. The master problem selects 
routes z^ to minimize system costs, while ensuring that all requests are 
served. The cost minimization objective is given in (8.1). 

min^}_^CX- (8.1) 
seSreR^ 

Each customer requires one or more shipments per week between its 
pickup port and its delivery port. The cargos which belong to one cus­
tomer are identical in terms of load, lead-time requirements, origin and 
destination. Let Q denote the set of all ports, and g denote a partic­
ular pickup or dehvery port. Note that ports are customer-specific so 
that different ports may correspond to the same geographical location. 
The term "harbour" refers to a particular geographical location. A visit-
pattern gives the legal days d of visit at port g in compliance with the 
separation requirements for the port. Each port g must be visited ac­
cording to one of its feasible visit-patterns. Since customers want weekly 
recurring visits a one-week visit-pattern is repeated for each week in the 
planning period. With a one week recurring visit-schedule and a two 
week planning period, each visit-pattern consist of 14 days. Let V de­
note the set of all days in the planning period. Within these 14 days, a 
weekly pattern is repeated two times. Let V^ denote the set of feasible 
patterns p for port g. The first week d = { 1 , . . . , 7} of a visit-pattern 
with visits on Tuesday, Thursday and Saturday, can be expressed by: 
{M^gi^... ^M^y} = [ 0 1 0 1 0 1 0 ] . The variable u^ is one when pattern 
p is used for port g, B^^^ is one when route r with ship s visits port g 
on day d. Restriction (8,2) requires that if a route visits port g on day 
d, then a visit-pattern p with a feasible visit on day d must be selected. 

Y,Y.^ldr4-J2^9d^' = ^ "^^eg, deV. (8.2) 
ses reR^ peV9 

These pattern matching constraints can be reformulated as partition­
ing constraints by replacing the service pattern M^^, by the "inverse". 
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The "inverse" representation is: {M^^,,.. ,M^7} = [ 1 0 1 0 1 0 1 ] . In 
addition, restriction (8.4) ensures that exactly one pattern is used for 
each customer. This requirement also ensures that all cargos are served 
exactly once. The master problem can now be expressed as: 

m i n ^ ^ C'^z'^ (8.3) 

subject to 

Y.ul = l ygeg, (8.4) 
peV9 

J2T.^Ur4+YlMP^,uP = l ygeg, d€V, (8.5) 

<6{0 ,1} VsG<S, reW, (8.6) 
uPgE {0,1} ygeg, per. (8.7) 

The combination of routes selected in the master problem must visit 
each port on days which comply with a feasible visit-pattern for the 
port. Selecting a visit-pattern fulfills both the requirement for weekly 
recurring visits and for separation of visits. In addition, it ensures that 
all cargos from/to the port are collected or delivered. Since pickup and 
delivery restrictions are fulfilled in all routes which are proposed by the 
pricing problem, it is sufficient with a pattern restriction in either the 
pickup port or the delivery port for each customer to ensure that all 
shipments are made. In this system the customers want both regular 
departures and arrivals of goods and therefore most customers specify 
separation requests in both pickup and delivery ports. 

Constraints (8.4) and (8.5) have dual variables iTg and Sgd respectively. 
Since constraint (8.4) does not involve the route variable z^^ only the dgd 
duals infiuence costs in the pricing problem. 

5, The pricing problem 
When solving the master problem using delayed column generation, 

columns must be added during the branching process. Finding or gen­
erating suitable columns to add to the master problem is known as the 
pricing problem. Only columns with negative reduced costs are added 
to the master problem, since only these may go into the basis. 

The reduced cost of a route equals the violation of the corresponding 
constraint in the dual linear program. Thus, the reduced cost ĉ ,V of 
route r E R^ is: 

7^7r,5 _ ^is _ Y " ^ \ ^ JDS r 
^s,r ~ ^ r ^ Z^ -^gdr^gd' 

geG dev 
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Adding a negative reduced cost column corresponds to adding a vio­
lated inequality in the dual linear program. If no negative reduced cost 
column exists, the optimal solution of the restricted master problem is 
also optimal for the complete master problem. The pricing problem 
consists of finding one or more legal routes with negative reduced cost. 

The pricing problem is represented in a directed graph with edge 
weights. For each pickup (or delivery) port g and for each day d, cre­
ate a node i, where i = f{g^d). Furthermore, add a depot node 0 and 
add edges from the depot node to all pickup nodes and from all delivery 
nodes to the depot node. Also add edges between all feasible node pairs. 
A node pair (i, j ) is feasible if there is sufficient time to visit i before 
visiting j given the time windows of i and j . The cost C^ of a route r 
sailed by ship 5, consists of a fixed cost and a sailing cost. The fixed 
cost is independent of how we use the ship. The sailing cost, however, 
is proportional to the distance traveled by the ship. Both costs depend 
on the ship-type used. 

The sailing cost can be assigned to edges going into the visits. Given 
a dual vector S , the value of dual ög^ can be subtracted from the edge 
going into node i = f{g^d). In this graph, the reduced cost of a route 
equals the length of the path in the graph consisting of a sequence of 
nodes corresponding to the visits on the route in that order. 

To allow routes to wrap around the to the beginning of the planning 
period, append a copy of the network, less the depot node, to the end 
of the horizon. Add arcs from all delivery nodes in this network to the 
original depot node. Then solve one subproblem for each ship-type and 
for each day in the planning period. 

Since the reduced cost of a route is equal to the length of the path 
in the above graph, the pricing problem can be solved as a shortest 
path problem with additional constraints that disqualify illegal routes. 
This problem is commonly known as a resource constrained shortest path 
problem (RCSP). In our case the additional constraints will make sure 
that all routes comply with the capacity, pickup and delivery, time-
windows, lead-time and visit-pattern requirements which are described 
in Section 2. 

Several methods have been proposed to solve the resource constrained 
shortest path problem, see Mehlhorn and Ziegelmann (2000). However, 
when dealing with non-additive "difficult" constraints like "pickup before 
delivery", "time windows", and "visit-patterns" only dynamic program­
ming algorithms have been used to solve the problem. Dumas, Desrosiers 
and Soumis (1991) were the first to propose a dynamic programming al­
gorithm for the pickup and delivery problem with time windows used in 
a column generation setting like this. 



236 COL UMN GENERA TION 

We solve the resource constrained shortest path problem with a heuris­
tic two Phase algorithm. First, we use the fact that most cargos go 
between Rotterdam and ports on the Norwegian coastline. Because of 
this, we can assume that all ships will visit Rotterdam at least once in 
a planning period, either to pickup cargo, to deliver cargo or both. As 
explained in Section 2, since Rotterdam is relatively far away from the 
Norwegian ports we can assume that a ship unloads all cargo whenever 
it visits Rotterdam and does not carry cargo between two Norwegian 
ports through Rotterdam. 

Following our assumptions, a route is comprised by a number of tours 
starting and ending with an empty ship in Rotterdam. Phase I of the 
algorithm will generate these tours and Phase II will collect the tours 
into complete routes. The fixed cost of using a ship of type s, is added in 
Phase IL A heuristic dynamic programming algorithm is used to solve 
Phase I and a /c-shortest path algorithm with a feasibility check is used 
to solve Phase II. The two phases are described in detail below. 

5.1 Creating tours 
Creating good legal tours is the main part of the pricing problem. 

With a planning period of two weeks the problem involves 272 visits 
on 10 different ship-types. This is more than similar algorithms have 
been able to solve. Running an exact dynamic programming algorithm 
on problem instances of this size is too time-consuming because of the 
combinatorial complexity. A heuristic dynamic programming algorithm 
is designed in order to make the problem practically solvable. 

The basic idea of the algorithm is similar to previously proposed dy­
namic programming algorithms for solving resource constrained shortest 
path problems, see Dumas, Desrosiers and Soumis (1991). We start with 
an empty ship in Rotterdam and extend the route to each of the ports. 
For every visit, we create a new label which contains all relevant infor­
mation on the route so far. We check that candidate visits do not make 
the route illegal, i.e. we check that; 

• We do not deliver a cargo that has not yet been picked up. 

• We do not visit Rotterdam with any cargos bound for other ports. 

• The ship has available capacity for picking up the cargo. 

• The visit is made within an open time window. If there is a later 
time window, we wait. 

• The visit is consistent with a visit-pattern for this node, especially 
if the same visit has been made previously on this route. 
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• We still have time to deliver all onboard cargos within their lead-
time and within the planning period. (This corresponds to solving 
a travelling salesman problem with time windows by complete enu­
meration for the earliest cargos). 

If any of the constraints are violated, the route is not extended to 
make the visit. As stated, the number of states created in the dynamic 
programming algorithm has to be pruned further in order to run the 
algorithm in practice. Thus, a number of heuristic constraints that the 
routes must satisfy are added. For each visit we check that: 

• The waiting time is no more than 12 hours. We enforce this rule 
since good routes will not have long periods of waiting in ports. 

• All cargos on the ship bound for a particular harbour are delivered 
when a ship visits the harbour. We enforce this rule since we 
expect that good routes will unload the cargos as soon as possible 
to make room for picking up more cargo. 

• The route should not change direction more than five times on the 
Norwegian coast line. We enforce this rule since we expect that 
good routes will not make too many detours. 

• All deliveries can be made without changing directions, if the route 
has already changed direction five times. 

These additional constraints help prune away unpromising routes while 
running the dynamic programming algorithm. However, many routes 
will comply with these constraints, so additional pruning is needed. For 
this purpose the algorithm is constrained to a limited subsequence of 
visits for every state we create. For a given state, we list all possible 
visits we can make next. Each visit is assigned a score based on the route 
so far and on the best continuation of the route. Instead of creating new 
states for all possible next visits, we pick the three best scoring pickups 
and the three best scoring deliveries and create states only for those. The 
score equals the reduced cost of the visit in question plus the minimum 
reduced cost of delivering the cargos on board after this visit. Thus, the 
best subsequences of a given visit may change in every pricing iteration 
since the dual variables have changed. Also, the best subsequences of a 
visit may be different depending on which day we make the visit, since 
we have a different dual variable for every visit for every day of the 
planning period. 

We use dominance to further reduce the number of dynamic program­
ming states. If two states are placed on the same node and have made 
the same number of pickup and deliveries and one state has arrived there 
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day 21 

Figure 8.2. An auxiliary graph representing tours. 

before the other with a lower reduced cost and one has been at least as 
far north as the second state, the second state is removed. This is done to 
remove unpromising routes that are similar, but inferior, to other routes 
at an early stage. Whenever the ship visits the depot, it has created a 
complete, legal tour. If the tour has negative reduced cost, it is saved 
in our pool of tours. The tours are not added directly as columns in the 
master problem, since they are typically much shorter than the planning 
period. Instead, tours from the tour pool are combined to create full 
length routes, which are added to the master problem. 

5.2 Combining tours 
Given a pool of tours created by our dynamic programming algorithm 

described above, the pricing problem is reduced to combining one or 
more tours into legal, full length routes. This is done by running a 
/c-shortest path algorithm on an auxiliary graph, which is defined as 
follows: 

• For every day in the planning period, we add a node in the auxihary 
graph. The nodes constitute a time-line. 

• For every node, we add an edge from the node to the next node 
on the time line. The edge weights are 0 on these edges. We do 
not add an edge going out of the last node. 

• For every tour found in Phase 1, we add an edge from the node 
corresponding to the start time to the node corresponding to the 
end time of the tour. The edge weights are calculated in every 
column generation iteration as the reduced cost of the tours. 

The graph layout is shown in Figure 8.2. The weights on the edges 
representing the tours equal the reduced cost of the tours. Minimum 
reduced cost combinations of tours can be found by a shortest path 
algorithm on the graph in Figure 8.2 with node i as source and node 
i + 21 as target. To handle tours that cross the end of the planning 
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period (e.g. a tour that starts on day 18 and ends on day 4), another 21 
nodes are added to represent day 1 to 21 in the next planning period. 

Combining tours with conflicting visit-patterns gives infeasible routes. 
Conflicting visit-patterns occur if tours visit the same customer on days 
which do not match any legal visit-pattern. A constrained shortest path 
algorithm can be used to find a legal minimum cost combination of 
tours. Since we wish to return more than one combination in every 
pricing iteration, a constrained /c-shortest path algorithm can be used to 
solve the pricing problem. 

Traditionally, this problem has been solved by a dynamic program­
ming algorithm, where states are expanded by combining tours, whilst 
checking that the combination of tours are legal with respect to the 
visit-patterns. However, checking whether two tours have contradicting 
visit-patterns is rather time consuming. Furthermore, most tour com­
binations will be legal. For these reasons, the time-consuming check is 
not performed in the A:-shortest path algorithm. Instead we first run 
an unconstrained fc-shortest path algorithm as proposed by Carlyle and 
Wood (2003) to find a number of shortest paths which may or may not 
be legal. This algorithm first identifies the shortest path. Then it re­
turns ah paths which are within a factor of 1 -f- £ of the shortest path for 
some specified e. This is done by enumerating subpaths while checking 
if candidate subpaths can be extended to paths of acceptable length. 
Afterwards, a rather expensive visit-pattern check examines the routes, 
starting with the cheapest route and continuing until the desired number 
of legal routes has been found. Whenever an illegal combination of tours 
appears, this combination is inserted into a data structure which allows 
fast lookups. If the same tour combination appears in a later pricing 
iteration, it can be discarded without running the expensive check. In 
fact, the fast lookup can also be done in the fc-shortest path algorithm, 
to avoid combinations, which have already been found illegal. A tree 
data structure with a sorted sequence of tour-numbers as keys is used to 
provide the fast lookups. 

The running time of the fc-shortest path algorithm depends on the 
number of paths to return. Therefore, only a small number of paths 
are returned early in the convergence. If there are too few legal paths 
within these paths, the number of paths to return is increased and the 
algorithm is re-run. In practice, the fc-shortest path algorithm by Carlyle 
and Wood (2003), combined with a post-check and a fast lookup data 
structure performs very efficiently. 

Both the Phase I algorithm which creates tours and the Phase II 
algorithm which combines the tours are run for every ship-type and every 
day in every pricmg iteration. The fixed cost of using a particular ship-



240 COL UMN GENERA TION 

type is added to the cost of each route in Phase IL Once a tour has been 
added to the tour pool, it is never removed. Hence, all generated tours 
are available for the tour combining algorithm in later pricing iterations. 

6, Finding integer solutions 
The optimal solutions to the linear relaxation of the master problem 

will generally not be integer. This means that in the optimal solution 
to the relaxed problem, more than one route variable at fractional value 
cover the transport of some cargo. Constraints (8.5) which include route 
and pattern variables ma}/ also permit the transport of some cargo by 
pattern variables at fractional values. The pattern variables will be in­
teger in solutions where all the route variables are integer. If all pattern 
variables are integer, the resulting problem is a general pickup and de­
livery problem with time-windows. While it is hard to rank patterns, 
problem knowledge can be used to identify desirable routes. Therefore, 
the branching scheme works on the route variables, driving them towards 
integer values. This will simultaneously give integer pattern variables. 

6.1 Branching on pairs of visits 
We apply the branching strategy proposed by Ryan and Foster (1981) 

which has proven successful in a number of set partitioning applications. 
Recall that a row in the constraint matrix correspond to a particular 
visit on a given day. Following the Ryan-Foster branching strategy, it 
is possible to choose two rows k and / in the matrix such that the sum 
of route variables where the corresponding visits occur consecutively is 
strictly between 0 and 1. This corresponds to choosing two visits (ni, di) 
and (712,(̂ 2)5 where a visit is defined by a pickup (or delivery) n̂  of a 
cargo group and a day dj. Given two visits, on the first branch, demand 
that the pickup (or delivery) ni on day di is followed by the pickup (or 
delivery) 712 on day d2> On the second branch, demand that the two 
visits are not made consecutively on those specific days. 

The master problem changes on both branches, since we must remove 
variables which violate the branching restriction. On one branch we 
must remove all route variables which make one of the two visits ni on 
di or 722 on (i2, but not both. On the other branch we must remove all 
route variables which make both visits ni and 712 consecutively on the 
specified days. The variables are not permanently removed, but rendered 
inactive, so that they can be easily put into the master problem again in 
other branches of the branch-and-bound tree, To prevent generating and 
adding violating variables to the master problem, the pricing problem 
needs to be changed. In any node in the branch-and-bound tree, the pric-
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ing problem must reflect the restrictions of the branch. Phase II of the 
pricing algorithm works on a pool of tours, represented by edges in a di­
rected acyclic graph. To avoid generating routes violating the branching 
constraints, all tours which violate the constraints are removed. Again, 
the tours are not really removed, but merely hidden so that they can be 
easily restored in other branches of the branch-and-bound tree. We do 
not branch on consecutive depot visits. All branching decisions are im­
posed within the tours which means that the branching decisions do not 
restrict the combination of tours which is done in Phase II of the pric­
ing algorithm. However, it is necessary to prevent generating new tours 
which violate branching constraints. Hence, the dynamic programming 
algorithm, which constitutes Phase I of the pricing algorithm, checks if 
any branching constraints are violated when building the tours, discard­
ing the violating tours. 

6,2 Using problem information in branching 
Although the above branching strategy will work for any choice of vis­

its (ni,(ii), {n2^d2)-> the performance of the branching strategy is much 
improved by selecting a sensible pair of consecutive visits. This is guided 
by knowledge of the problem and by information from the fractional so­
lutions to the master problem. For every pair of rows in our constraint 
matrix (i.e. for every pair of days and every pair of pickup/deliveries) a 
score is calculated based on this information. In a depth first strategy 
we branch on the pair of rows with best score. 

As mentioned, the score is based on knowledge of the problem instance 
and information from the fractional solution at hand. The information 
from the problem instance tells us whether two consecutive visits fit 
well together. For example, if the visits are far apart in either time or 
geography, the visits receive a low score, which implies that the visits do 
not fit well together. More specifically, for a visit in node ni on day di 
followed by a visit in n2 on day d2 the following factors are used in the 
score calculation: 

• A penalty proportional to the distance between ni and n2. 

• A penalty proportional to the time difference di-d^ less the average 
travel time from ni to n2. 

• A penalty if the direction of cargos does not fit. For example, if 
ni is a pickup of a cargo bound for a harbour north of ni and n2 
lies south of ni, the ship will need to go south to n2 and then go 
north later on. Such detours are penalized. There are 14 cases 
similar to the above where the directions of two cargos do not fit 
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and where making the visits consecutively gives a detour. In aU 
cases the penalty is proportional to the length of the detour. 

The choice of visits to branch on should also be guided by the frac­
tional solution at hand, since routes with high fractional values in an 
optimal LP-solution are likely to be good routes in an IP-solution as 
well. The sum of fractions is calculated for every day and every consec­
utive pair of visits. The sum of fractions for a particular visit pair is 
the sum of the values of the route variables that make both these visits 
on these days. The sum of fractions is added to the score, so that a 
high sum of fractions results in a higher score. This is based on the 
assumption that routes chosen in the optimal solution to the relaxed 
master problem are similar to the routes in an optimal solution to the 
IP master problem. 

As stated, the pair of visits with the highest score is selected for 
branching. This pair constitutes visits which we think are likely to be 
made consecutively on a route. On the first branch these visits must be 
made consecutively on two specific days and on the other branch they 
can not be made consecutively. Since we pick pairs of visits which fit 
well together, we will follow the first branch most often, which is the 
stronger of the two since it fixes the two visits together. 

7, Computational results 
The heuristic branch-and-price algorithm described in Section 6 has 

been implemented and tested on test instances based on data provided 
by the collaborating companies. As could be expected, our results show 
that there are substantial savings in making two-week planning periods 
compared to one-week planning periods. The best solution found using 
a one-week planning period requires 15 ships and has an objective value 
of 20.28, whereas the best solution found using a two-week planning 
period only requires 13 ships and has an objective value of 17.67 per 
week. This constitutes a saving of 14.8%. In Table 8.2 we show some 
details of the performance of the branch-and-price algorithm on the two 
test instances. 

The two week planning period is advantageous compared to the one 
week planning period because it allows a greater fiexibility in the length 
of the tours. Where all the tours in the one week planning period are 
between 5 and 7 days long, the tours of the two week planning period 
are between 4 and 13 days long. Hence in the two week planning period 
each ship make either a single long tour, two medium tours or a short 
tour and a longer tour. In the one week planning period all ships make 
medium length tours. 
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No. of constraints 
No. of columns 
No. of B&B-nodes 
No. of pricing itr. 
CPU time (sec.) 

Best solution found 
No. of ships 
Cost pr. week 

1 week instance 
624 

1624 
45 

124 
440 

15 
20.28 

2 week instance 
1170 

10128 
107 
565 

40 576 

13 
17.67 

Table 8.2. The table shows details of running the branch-and-price heuristic on the 
test instances based on data provided by the collaborating companies. 

8. Concluding remarks 
We have chosen to solve the problem using column generation. An­

other approach would be to enumerate all possible combinations of fea­
sible visit-patterns in all ports. This would give a finite number of alter­
native visit-schedules. For each visit-schedule one could solve a pickup 
and delivery problem with time windows and with lead-time as the only 
additional requirement. Unfortunately, the number of visit-schedules 
renders this approach impractical. The problem has 78 ports each with 
an average of 7.1 alternative patterns. This gives about 78̂ --̂  (10^^) alter­
native visit-schedules or problems to solve. Various heuristic approaches 
could also be used. However, most would have difficulties incorporating 
the separation of visits, recurring visits and lead-time constraints. Since 
these restrictions require considering all routes simultaneously. 

Demand is modelled as fixed. This is realistic, as the companies will 
have to pay for the requested capacity irrespective of whether or not 
they use it. Likewise the shipping company must guarantee a minimum 
transport capacity to each partner. It is likely that unused capacity will 
be traded among the partners and also sold to customers outside the 
system. This way there can be room for some variations in the load. 
The shipping companies need to consider whether they assume a net 
increase in total transport load and thus want to use ships with surplus 
capacity. 
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