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Abstract Branch-and-price is a powerful framework to solve hard combinatorial 
problems. It is an interesting alternative to general purpose mixed in
teger programming as column generation usually produces at the root 
node tight lower bounds (when minimizing) that are further improved 
when branching. Branching also helps to generate integer solutions, 
however branch-and-price can be quite weak at producing good integer 
solutions rapidly because the solution of the relaxed master problem is 
rarely integer-valued. In this paper, we propose a general cooperation 
scheme between branch-and-price and local search to help branch-and-
price finding good integer solutions earlier. This cooperation scheme 
extends to branch-and-price the use of heuristics in branch-and-bound 
and it also generalizes three previously known accelerations of branch-
and-price. We show on the vehicle routing problem with time win
dows (Solomon benchmark) that it consistently improves the ability of 
branch-and-price to generate good integer solutions early while retaining 
the ability of branch-and-price to produce good lower bounds. 

!• Introduction 
Column generation is a powerful framework to solve hard optimization 

problems. It operates with a master problem that consists of a linear 
problem on the current set of columns, and a subproblem that iteratively 
generates improving columns. In case the master problem contains in
tegrality constraints on some of its variables, column generation and 
branch-and-bound are combined: This is called branch-and-price, see 
Barnhart et al. (1998) for a general introduction. Branch-and-price pro-
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vides the user both with a lower bound (when minimizing, as assumed 
throughout this paper) and integer solutions. Branch-and-price is known 
for providing tight lower bounds but it has sometimes difficulties to gen
erate rapidly good solutions because the linear relaxation of the master 
problem rarely has an integer solution. 

Local search (Aarts and Lenstra, 1997; Voß et al., 1999) is a com
pletely different optimization technique with opposite properties. Local 
search algorithms use operators to define a neighborhood around a given 
solution or set of solutions. This subregion of the search space is then 
explored to iteratively generate better solutions and various strategies 
such as metaheuristics are used to move from one neighborhood to the 
next so as to escape local minima. Local search algorithms are notori
ously effective at generating quickly excellent solutions. However, they 
do not provide the user with a lower bound on the objective. Hence 
the difference between the solution obtained and the optimal solution 
cannot be estimated and the user does not know if more time should be 
devoted to reach a better solution. 

In this paper, we present a general cooperation scheme between 
branch-and-price and local search that improves the ability of branch-
and-price to generate good integer solutions early while retaining the 
abihty of branch-and-price to produce tight lower bounds. 

In order to test this general hybrid scheme, we apply it to the vehicle 
routing problem with time windows (VRPTW). A number of indus
trial optimization problems are variations of the vehicle routing problem 
(VRP), which can be summarized as follows: Given a set of customers 
that each demand some amount of goods, a set of vehicles with given ca
pacity that must start from and return to a depot, and known distances 
between all customers and the depot, and every pair of customers, the 
objective is to establish for each vehiclenn an ordered list of customers to 
visit so as to minimize the overall distance travelled and sometimes the 
number of vehicles needed. A classical additional constraint is to specify 
time windows that restrict the time of the day at which each customer 
can be served: This defines the vehicle routing problem with time win
dows. Cordeau et al. (2002) review different methods to solve it. Among 
exact methods, branch-and-price has recently been apphed with success 
to this problem, see for example Desrochers et al. (1992); Kohl et al. 
(1999); Larsen (1999); Cook and Rich (1999); Kallehauge et al. (2001); 
Irnich (2001); Rousseau et al. (2002); Chabrier et al. (2002); Chabrier 
(2003); Irnich and Villeneuve (2003). Local search algorithms are also 
popular for solving the VRPTW, see for example Roch at and Tail-
lard (1995); Homberger and Gehring (1999); Gambardella et al. (1999); 
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Branch-and-price Generation of 
integer solutions 

Figure 4.1. Cooperation scheme. 

Cordeau et al. (2001); De Backer et al. (2000); Bräysy and Gendreau 
(2003a,b). 

The remainder of the paper is organized as fohows. Section 2 presents 
our general cooperation scheme between branch-and-price and local 
search. Section 3 details how our general scheme is applied to the vehi
cle routing problem with time windows. Section 4 gives computational 
results and discusses why our hybrid scheme works. Finally, Section 5 
summarizes our conclusions. 

2. General cooperation between 
branch-and-price and local search 

2,1 Description of the algorithm and discussion 
Figure 4.1 presents our cooperation scheme between column genera

tion and local search. The left hand side of the figure shows the usual 
relaxed master problem and subproblem of branch-and-price. Note that 
the subproblem could be solved by any optimization technique. On the 
right hand side two components for obtaining integer solutions are speci
fied. First, a mixed integer programming (MIP) solver is called regularly 
on the master problem with the current set of columns without relaxing 



102 COLUMN GENERATION 

the integrality constraints. If the MIP solver is called at the root node 
of the branch-and-price tree, the best integer solution found so far is 
used as the first solution of the MIR If the MIP solver is called at a 
node further down the branch-and-price tree, the best integer solution 
found so far might not be valid for the branching decisions taken at 
that node, hence it cannot always be used as a first solution. The effort 
spent on solving the MIP is controlled with a time or node limit. When 
this limit is reached, the exploration of the branch-and-price tree is re
sumed. Secondly, local search is also called regularly to solve the master 
problem, its initial solution being the best integer solution found so far. 
Unlike the MIP solver, local search is not restricted to combining ex
isting columns: Local search may not only provide better combinations 
of existing columns, but it may also introduce new columns. Hence the 
columns generated are more diverse which is likely to accelerate pricing, 
for example because it has thus greater chances to overcome degeneracy. 

The strength of our hybrid scheme is diversification by means of dif
ferent algorithms for solving the same problem. Branch-and-price obvi
ously benefits from local search that is more effective at finding feasible 
solutions. But in turn, local search benefits from branch-and-price that 
provides it with diverse initial solutions. Indeed, the main difficulty of 
local search algorithms is to escape local minima. To overcome this dif
ficulty, the strategy of various metaheuristics is to attempt to control a 
series of moves that increase the value of the objective function in order 
to reach a different and more promising region of the solution space. 
There exist even simpler diversification schemes that restart the same 
algorithm from the same initial solution but with different random seed 
initiahzation (see for example Alt et al., 1996, for a theoretical study 
of this strategy) or build a new initial solution as different as possible 
from the current local optimum in order to explore a hopefully differ
ent region of the solution space. In all cases, diversification is achieved 
at the cost of increasing the objective function. On the contrary, in 
our cooperation scheme, the mathematical programming component is 
a non-deteriorating diversification scheme for local search. Indeed, the 
upper bound for the master problem and the MIP cutoff are always up
dated with the value of the best feasible solution found so far. Hence, 
when the MIP solver finds a new integer solution or when the solution of 
the relaxed master problem is integer, it is by construction an improve
ment on the last local optimum found by local search: Diversification is 
achieved and the objective function is improved at the same time. This 
strategy has nonetheless a computational cost: solving a MIP is more 
expensive than classical diversification schemes. 
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Branch-and-price is an exact method, so it will in the end find the op
timal integer solution. Therefore our cooperation scheme is not so useful 
when exploring the branch-and-price tree to optimality. However, this 
complete exploration may find good integer solutions only late in the 
computation. Our cooperation scheme helps to find good integer solu
tions at an earlier stage, which has numerous advantages. First, the user 
can stop optimizing as soon as satisfied with the quality of the integer 
solution found and use the truncated exploration of the branch-and-price 
tree as a powerful heuristic that also provides tight lower bounds. Next, 
good upper bounds are helpful to solve the subproblem more eflFectively, 
for example by allowing to eliminate arcs from the shortest path sub-
problem in the VRPTW case, see for example Hadjar et al. (2001); Irnich 
and Villeneuve (2003). A good upper bound may also reduce the num
ber of iterations between master problem and subproblem at each node: 
Computing the so-called Lagrangean lower bound (LLB) while solving 
a tree node might allow to terminate the column generation process at 
that node before optimality, i.e. as soon as LLB is greater than the upper 
bound known so far, see for example Desrosiers and Lübbecke (2004). 
Finally, knowing a good upper bound early might help to explore only a 
relatively small number of nodes in the branch-and-price tree. Given a 
fixed branching strategy, a best-first exploration strategy guarantees that 
only the children nodes of a node with a lower bound smaller than the 
optimal objective value have to explored. In this sense, best-first search 
guarantees that a minimum number of nodes are explored. Knowing a 
good upper bound does not allow us to improve on this number. How
ever, best-first search can fail to produce good integer solutions until the 
very end of the tree exploration, this is why other exploration strategies 
such as depth-first search are often preferred, although they lead to a 
higher number of explored nodes. Our cooperation scheme allows the 
user to choose a tree exploration strategy such as best-first search that 
explores a small number of nodes because our scheme doesn't rely only 
on branching to generate integer solutions. 

2.2 Related work 

The first algorithms related to the cooperation scheme just described 
are the so-called mixed integer programming heuristics, such as pivot-
and-complement introduced by Balas and Martin (1980) or the diving 
heuristics described in Bixby et al. (2000). These heuristics are used in 
branch-and-bound (and branch-and-cut) to generate good integer solu
tions by taking heuristic decisions outside of the exploration of the tree 
when branching has difficulties in finding integer solutions. Our cooper-
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ation scheme between branch-and-price and local search can be seen as 
a generalization to branch-and-price of this use of heuristics in branch-
and-bound in so far as it achieves the same goal (generating integer 
solutions early without interfering with the tree exploration strategy) 
and new columns are also introduced while generating integer solutions. 

Our cooperation scheme also relates to the three following accelerating 
strategies for branch-and-price reviewed in Desaulniers et al. (2002): Us
ing local search to generate initial primal and dual solutions, generating 
further integer solutions for the master problem by rounding to 1 or to 
the next integer the fractional variables of its continuous relaxation, and 
post-optimizing with local search the best known integer solution after 
a given time limit. Our cooperation scheme is a generalization of these 
accelerating strategies for the two following reasons. First, in our coop
eration scheme, local search is called throughout the branch-and-price 
search and not only at the beginning or at the end of the optimization 
process. As explained in the previous section, this allows for fruitful 
interactions between the two components. Secondly, any local search 
method can be used in our cooperation scheme—Not just simple round
ing techniques. Very effective domain-specific heuristics can be used, as 
we will show on the vehicle routing problem with time windows. 

Finally, it should be mentioned that another existing strategy for com
bining local search and branch-and-price is to solve the subproblem with 
a local search algorithm. In our cooperation scheme, the local search al
gorithm generates new columns when solving the master problem. New 
columns can also be generated by directly solving the subproblem with 
a local search algorithm, as described for example in Savelsbergh and 
Sol (1998); Xuet al. (2003). 

2.3 Parameters settings 
A fair amount of tuning can be required so as to know when and for 

how long MIP and local search should be called. It obviously depends on 
the problem, but here are a few basic rules. Solving completely the MIP 
formulation of the master problem is time consuming so a time or node 
limit should be set and the MIP solver should preferably be called when 
we guess it has a good chance to find an improved integer solution, for 
example when the integrality gap between the best known integer solu
tion and the value of the current continuous relaxation is high, or when 
the number of integer-infeasible variables in the relaxed master problem 
is small. Local search should be called for post-optimization at least 
each time a new integer solution is found by MIP or when the continu
ous relaxation of the master problem is integer. If local search turns out 
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to find significantly more solutions than mathematical programming, it 
may be called more often, using as first solutions not only the solutions 
found by mathematical programming but also some of the solutions pre
viously found by local search itself, A simple adaptive scheme can be 
used, decreasing or increasing the frequency and the computation time 
allotted to MIP and local search according to their respective success 
rates. 

3, Application to the vehicle routing problem 
with time windows 

We now present the specific branch-and-price model and the heuristics 
we used for applying the general cooperation scheme just described to 
the vehicle routing problem with time windows. 

3.1 Branch-and-price model and solution 
techniques 

We used the following common model (Cordeau et al., 2002) where 
each column corresponds to a feasible route. Let { 1 , . . . , n} be the set of 
customers. For each feasible route r, let Xr be the variable defined by: 

J 1 if route r is used in the solution 

0 otherwise 

and let ĉ  be the cost of route r. The VRPTW 

min y ^ CrXr s.t. 
reR 

y SirXr = 1, Vi = 1, . . . 
reR 

Xr e {0,1}, yr eR 

is then written 

,n 

as: 

(4.1) 

(4.2) 

(4.3) 

where R is the set of all feasible routes with respect to the capacity and 
time windows constraints, and öir == 1 if customer i is visited by route 
r, and 0 otherwise. 

3.1.1 Decomposition into master problem and subproblem. 
The first difficulty of this model is that the number of feasible routes 

grows exponentially with the number of customers. We hence use column 
generation to generate columns on the fly. The model is decomposed 
into a master problem and in a subproblem. The master problem is 
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formulated as: 

imn2_]^CrXr s.t. (4-4) 

reR 

V^ Sij^Xr = 1, Vz = l , . . . , n (4-5) 
reR 

X ^ G { 0 , 1 } , "ireR (4.6) 

where R is the set of already generated columns. We solve in fact the 
continuous relaxation of the master problem, replacing (4.6) with the 
constraints 

Q<Xr<l, ^reR. (4.7) 

The subproblem is the following: 

n 

m i n Cr- — y^ TTiÖir 
reR ^-^ 

where (TT )̂̂ ]̂̂  is the dual price associated with (4.5). The subproblem is 
to be interpreted as a constrained shortest path problem on the original 
graph, where each arc (i, j ) is valued by its original cost (distance) minus 
the dual value 7̂^ associated with its starting extremity i. 

3.1.2 Branch-and-price and branching strategy. The sec
ond difficulty of this model is that, as stated in (4.6), Xr variables must 
take integer values in feasible solutions. Therefore the problem is solved 
with branch-and-price: 

1 Start with an initial pool of columns, for example generated by a 
simple heuristic. 

2 Solve the continuous relaxation of the master problem, replac
ing (4.6) with (4.7). 

3 Solve the subproblem with the dual values updated at step 2, and 
attempt to generate several constrained shortest paths with nega
tive reduced costs. 

4 Iterate steps 2 and 3 until no more new routes with negative re
duced cost can be generated. 

5 If the solution of the continuous relaxation of the master problem 
is not integer, branch and iterate steps 2 and 3 at each node. 



4 Branch-and-Price Heuristics 107 

We use the following branching rule on arcs. Let x* be the optimal 
solution of the relaxed master problem after the last subproblem itera
tion at the current node. If x* is integer, no branching is necessary. If a;* 
is not integer, let to = {io = depot, i i , i25 • • • ̂  V+i = depot} be the route 
such tha t XtQ is the variable with most fractional value in x*. X̂ Q < 1, 
hence for each k G { 1 , . . . , p } , there exist other routes that cover i^ and 
take a non-zero value in x*. For each route t such that xj" > 0 and that 
shares at least one node with to, there exists q G { 1 , . . . ,p} such that t 
covers iq but does not take arc {iq^iq^i) or arc (ig_i,i^). Indeed, every 
route in T is unique, hence t and to can have a common subsequence of 
nodes but necessarily differ from each other by at least one arc (which ini
tial or final extremity may be the depot). So, we enumerate the columns 
already generated and choose the first route t such that x^ > 0 and that 
shares at least one node with to- Then we choose (i^, ig+i) as branching 
arc where q G { ! , . . . , p} is the smallest index such that {iq^iqj^i) ^ t 
(or we choose arc {io = depot, i i ) if {iq^iqj^i) ^ tMq £ {!,... ,p})- The 
child nodes are then created as follows. In one branch, arc {iq^iqj^i) is 
forbidden. In the other branch, iq and i^+i are allowed to be taken in 
a route only if they are linked by arc {iq^iqj^i). In other words, in the 
second branch, every arc {iq^r) with r ^ iqj^i and every arc (s,ig-|_i) 
with s ^ iq are forbidden. This branching rule is very practical because 
it is easy to incorporate in the master problem and in the subproblem. 

3.1.3 Solv ing t h e subprob lem. The subproblem is solved 
with dynamic programming, with an adaptation of the label-based al
gorithm described in Desrochers (1988) so as to solve the elementary 
constrained shortest path problem. Details are given in a previous joint 
work with Alain Chabrier, see Chabrier et al. (2002); Chabrier (2003). 
The same idea was developed independently in Feillet et al. (2004). The 
motivation for generating only elementary constrained shortest paths in 
the subproblem is the following. If the distance used to compute the cost 
of routes conforms to the triangular inequality, then the optimal solution 
contains only elementary routes, whether cycles are allowed in the sub-
problem or not. Solving the non-elementary constrained shortest path is 
easier, so most column generation models in the literature allow cycles to 
be generated in the subproblem and sometimes add some mechanisms to 
partially eliminate non-elementary routes or improve the lower bound, 
see for example Houck et al. (1980); Kohl et al. (1999); Cook and Rich 
(1999); Irnich (2001); Irnich and Villeneuve (2003). These mechanisms 
are instrumental in solving instances with large time windows or with a 
large horizon because these instances are only loosely constrained by the 
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numerical data: It is entirely possible to build non-elementary routes 
and even to traverse cycles several times in the same route. 

In short, the label-based algorithm used to solve the subproblem de
velops as follows. Partial paths starting from the depot and visiting a 
number of customers are built. As in a typical dynamic programming 
algorithm, dominated partial paths are gradually eliminated: If partial 
path pi and partial path p2 both end at the same customer i, biat pi 
arrives sooner at i, has smaller accumulated demand, and is less expen
sive than P25 then partial path p2 can be eliminated. Indeed, for every 
extension of p2 to a complete path, pi could be extended in the same 
way and its extension would be less expensive than the extension of p2-
However, this dominance rule is no longer valid if we want to compute 
only elementary paths. Indeed, if the aforementioned extension of p2 
visits some customers that were already visited before i in pi, then pi 
cannot be extended in the same way as p2 because it would lead pi to 
visit these customers twice. We therefore change the dominance rule 
into the following: If partial path pi and partial path p2 both end at 
the same customer i, but pi arrives sooner, has smaller accumulated de
mand, is less expensive than p2^ and if the set of customers visited by pi 
is a subset of the customers visited by p2^ then partial path p2 can be 
eliminated. Refinements of this dominance rule are described in more 
details in Chabrier et al. (2002); Chabrier (2003). This implementation 
of elementary shortest path allowed us to solve to optimality 17 instances 
that were previously open (Chabrier et al., 2002; Chabrier, 2003), 9 of 
which have now been solved also by Irnich (2001); Irnich and Villeneuve 
(2003). 

3.1.4 Acceleration strategies. Various well-studied accel
erations of the above branch-and-price model allowed us to improve 
computational times. In particular, (4.5) is replaced by a set covering 
inequality: 

^SirXr>l, Vi = l , . . . , n . (4.8) 

reR 
As a consequence, integer solutions may cover some customers more 
than once, especially at the beginning of the branch-and-price process. 
Therefore, each time the MIP solver finds a new integer solution or the 
relaxed master problem produces an integer solution, we use a greedy 
heuristic that iteratively removes each customer visited more than once 
from all routes except from the route from which its removal would yield 
the smallest cost saving. This allows us to improve the integer solution 
and the resulting columns are also added to the column pool. 
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3.2 Heuristics 
3.2.1 Building an initial solution. Heuristics are used for 
two different purposes. A first heuristic is used to build an initial so
lution. This initial solution can be as simple as the trivial solution 
"one customer per route". In our cooperation scheme and in the pure 
local search scheme, we start with the solution generated with the sav
ings heuristic (Clarke and Wright, 1964; Paessens, 1988) adapted to the 
problem with time windows. 

Heuristics are secondly used to improve on a given solution. We used 
two local search algorithms, a relatively simple one and a more sophisti
cated one. Our computational results will demonstrate the effectiveness 
of our cooperation scheme with these two different examples of local 
search, which leads us to think that our cooperation scheme is likely to 
be applied successfully in different settings. This will also allow us to 
show that even a simple local search algorithm can improve the ability 
of branch-and-price to generate good integer solutions early. 

3.2.2 Large neighborhood search. We first implemented a 
Large Neighborhood Search (LNS) scheme based on constraint program
ming as described in Shaw (1998). Large Neighborhood Search proceeds 
by iteratively fixing some variables of the problem to their value in the 
current solution and solving a smaller subproblem on the rest of the vari
ables. For the VRPTW, this amounts to removing a set of customers 
from the current solution and inserting them back again to build a better 
solution. First a small number of customers are released. If no better 
solution is found during a given number of iterations, the subproblem is 
enlarged, that is more customers are released simultaneously, see Shaw 
(1998) for details. 

LNS turned out to be too slow for neighborhoods consisting of more 
than 20 customers. Therefore, in our pure LNS algorithm, we also use a 
restart mechanism for further diversification. When the size of the LNS 
neighborhood reaches 20, a quite different and possibly worse solution 
is built by an insertion heuristic. The customers are inserted in the 
"orthogonal" order of the current best solution: The first customer of 
each route is inserted, then the second customer of each route, etc. Each 
customer is inserted in its least expensive insertion point and additional 
routes are opened as needed. In the end, some customers are randomly 
moved from one route to another. The obtained solution is used as the 
next starting point for a new complete run of LNS. 

3.2.3 Guided tabu search. In the second phase of our work, 
we decided to use a highly effective implementation of local search for 
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vehicle routing problems: ILOG DISPATCHER. The neighborhood used 
in this case is the union of all possible 2-OPT (Croes, 1958; Lin, 1965), 
Or-OPT (Or, 1976), Relocate (insert a customer in another route), Ex
change (swap two customers of two different routes), and Cross moves 
(exchange the ends of two routes). The exact implementation is de
tailed in De Backer et al. (2000) and in Hog Dispatcher User's Manual 
(2002). As for metaheuristics, we use in this case guided tabu search 
which is a mix of guided local search (GLS) and tabu search. Its im
plementation is described in De Backer et al. (2000); Ilog Dispatcher 
User's Manual (2002). GLS introduced by Voudouris (1997) is a meta-
heuristic that helps hill-climbing algorithms to escape local optima. It 
relies on optimizing an adaptively modified cost function based on the 
original cost function, but penahzing features that appear often in a so
lution. At each iteration, the penahzed objective is first optimized using 
the hill-climbing algorithm. The penalized objective is then modified, 
increasing or decreasing the penalty of features according to their cost 
and to the number of iterations during which they have been penalized. 
This long-term memory mechanism enables to diversify the search. 

However, in the cooperation scheme, the solutions found by the MIP 
solver or when the solution of the relaxed master problem is integer 
already ensure the long-term diversification of the local search compo
nent. A mechanism for short-term diversification is nonetheless needed 
and this is ensured by tabu search. Tabu search (Glover and Laguna, 
1997) is a well-known effective metaheuristic. Basically, it escapes local 
optima by forbidding during a certain number of iterations (the tabu 
tenure) properties of moves recently performed or solutions recently vis
ited, unless a certain aspiration criterion is validated—For example, the 
moves lead to a better solution than the best known solution so far. If 
the tabu tenure corresponds to a small number of iterations, this is a 
short-term memory mechanism. 

De Backer et al. (2000) show that, as implemented in ILOG DIS
PATCHER for vehicle routing problems, Guided Tabu Search performs 
better than either simple Guided Local Search or simple Tabu Search. 

4. Computational results 

4.1 Benchmark 
All computational testing described in the next sections have been 

performed on the well-known Solomon VRPTW instances introduced in 
Solomon (1987), on which exact and heuristic methods for solving the 
VRPTW are often tested. We adopted the conventions used by most ex
act methods: The objective is to minimize overall distance independently 
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of the number of vehicles used; distances and travehng times are deter
mined by the Euchdean distance rounded downward at the first decimal 
place. The Solomon benchmark comprises two series of instances: 

• series 1, the vehicle capacity is limited and the planning horizon is 
rather short; 

• series 2 has vehicles with larger capacity and a longer planning 
horizon, which allows more customers to be served by the same 
route. 

Hence, instances of series 1 are easier to solve because they are less 
combinatorial: The total number of feasible routes for these instances is 
smaller than for instances in series 2. Literature has so far concentrated 
on series 1, with some notable exceptions: Larsen (1999); Cook and Rich 
(1999); Kallehauge et a l (2001); Irnich (2001); Chabrier et al. (2002); 
Chabrier (2003); Irnich and Villeneuve (2003)—See Cordeau et al. (2002) 
for a general survey. Solomon instances are further divided in three 
groups: For "R" instances, customers are geographically randomly dis
tributed; for "C" instances, customers are geographically clustered; and 
for "RC" instances, customers are alternatively random and clustered. 
Each instance is a 100-customer problem, from which a smaller problem 
is constructed taking into account only the first 50 customers. 

Tables 4.1 and 4.2 give the solutions with which we will compare our 
results in Sections 4.3 and 4.5. These reference solutions are the best 
results known to us, taken from the literature or our own experiments 
(see next section for a precise description of our methods), as indicated in 
the Origin column. Solutions marked with * have been proved optimal. 
When the optimum is not known, we take the best known lower bound 
for series 1 (indicated in italics). But as no good lower bound is known 
for the open instances of series 2, we take the best known upper bound 
instead. The number of vehicles corresponding to each upper bound is 
given in parentheses. 

4.2 Methods 
Recall that the approaches compared are: 

1 Our cooperation scheme between branch-and-price and local search 
(BP+LNS, BP+DISPATCHER). The MIP solver is called every 4 
minutes with a 1-minute time hmit. The local search algorithm is 
called for 10 seconds every 2 minutes and after a new and better 
integer solution has been found by branch-and-price. If the local 
search algorithm finds a new solution during a run, it is called 
immediately thereafter, again for 10 seconds. This very simple 



112 COLUMN GENERATION 

po p3 po pd pd po 
o 
O i 

-a 
CD 
00 

b 
o\ 

* 

h—' 

o 
en 

00 
CD 
CD 
CO 

CD 

* 

O 
hf:̂  

O^ 
t o 
cn 
rfi^ 

O l 

h - J 

o 
CO 

^ 
-a t o 
CD 

CD 

O 
t o 

CD 
O 
CD 

Ö 
1—' 
H-* 

o 

o 
4^ 
4^ 

b 
,—̂  
^ 

^ J ^ ^ J ^ ^ P^ 
o 
tr 
<t> 
<r̂  
P 

h - » 

CD 
CO 
CD 

1—1 

t o 
CO 
t*^ 
C i 

^ 
CO 

* 

O 
13-

(X> 
<rf-

P 

h-J 

CD 
CD 
CD 

CO 
Cn 
Cn 
CO 

H - i 

OX 
•X-

'bO P J^ 
o o 
o o 
^ "TT 

s O 

^ ^ (_j i 

CD 
CD 
CD 

~"—̂  
>̂  
P 
^ (D 
t ^ 
P 
c: 

OP 
(D 

(D 
<rh 

P, 

O 

^ 
05 
e -̂

EL 
„—^ 

\-^ CD 
CD 
CD 

O 
t r 

a> 
c-t-

p 

1—^ 
CD 
CD 
CD 

CD 
O i 
t o 
CO 

>̂. 
(—' 
* 

•-< 
p 

& 
E 

< 
}—! 
O 
P 
05 
pi 

^ 0) 

,,—̂, to 
o o CO 

O 
1^ 

0> 
Ci-

p 

1—' 
CD 
CD 
CD 

t o 
o 00 

^ 
1 — * 

^ 
* 

o 
p -

05 
ri-

P 

CD 
CD 
CO 

h - ^ 

• ^ 

Oi 

9^ 
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adaptive scheme allows us to call the local search algorithm more 
often if it succeeds, without slowing down too much the completion 
of the optimality proof after the optimal solution has been reached. 

2 Almost the same branch-and-price method as in the hybrid scheme, 
but used without local search. The minor differences with the 
branch-and-price and MIP scheme used in the cooperation are 
twofold: 

• The MIP solver is called more often (every 3 minutes instead 
of every 4 minutes) with the same 1-minute time limit for 
each run, so as to compensate for the lack of other heuristics 
to generate integer solutions. 

• In "BP r', the initial pool of columns is the trivial solu
tion built with one customer per route. In "BP 2", branch-
and-price starts from the solution generated with the savings 
heuristic, as in the hybrid scheme. 

3 The same local search method as in the hybrid scheme (LNS or 
ILOG DISPATCHER), but used alone. 

The parameters were chosen experimentally. We found out that it was 
more effective to call the MIP solver often and with a small time limit 
than less often with a longer time limit because failures of the MIP solver 
to produce new integer solutions appeared to come from the inexistence 
of improving columns rather than from the inability of the solver to 
optimize successfully the MIP model. Note that the allocation of time 
limits and call frequencies to the different components of the hybrid 
scheme renders the execution of the overall algorithm non-deterministic 
and computer-dependent. Yet such an allocation does make sense when, 
as is often the case in practice, the main objective is to obtain the best 
possible result in limited CPU time. 

All results were obtained with a one hour time limit for each instance, 
on a Pentium IV-1.5 GHz with 256 Mb of RAM, using ILOG CPLEX 
8.1.0, ILOG SOLVER 5.3 and ILOG DISPATCHER 3.3. 

4.3 Quality of integer solutions 
We now present the main results for the methods we have just de

scribed. Table 4.3 shows the quality of solutions obtained by each al
gorithm on each series of the Solomon benchmark, for 50-customer and 
100-customer instances. The quality of solutions obtained by each al
gorithm is measured as the mean relative deviation (in %) between the 
reference solution of Tables 4.1 and 4.2, and the upper bound obtained 
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Table 4-3. Quality of solutions obtained. 

A l g o r i t h m 

B P 1 

B P 2 

P u r e L N S 

P u r e D I S P A T C H E R 

B P + L N S 

B P + D I S P A T C H E R 

N u m b e r of 
c u s t o m e r s 

50 
100 

50 
100 

50 
100 

5 0 
100 

50 
100 

50 
100 

C I 

0 . 0 0 
0 . 0 0 

0 . 0 7 
0 . 2 9 

0 . 0 0 
0 . 0 0 

0 . 0 0 
0 . 0 9 

0 . 0 0 
0 . 0 0 

O.OO 
0 . 0 0 

Me; 

R l 

0 . 1 5 
2 . 4 0 

0 . 2 5 
2 . 3 7 

0 . 1 1 
2 . 9 6 

0 . 0 3 
1.06 

0 . 0 0 
1.70 

0 . 1 2 
1.47 

au r o l a t 

R C l 

1.15 
6 . 1 7 

1,32 
6 .05 

0 . 2 0 
3 . 9 3 

0 .12 
2 . 3 6 

0 . 2 5 
3 .62 

0 . 5 1 
4 . 4 6 

ive (lev 

C 2 

0 . 7 4 
6 .50 

0 . 6 8 
7 .80 

0 . 0 0 
2 . 6 1 

0 . 4 0 
0 . 0 0 

0 .12 
3 . 0 4 

0 . 7 5 
0 . 2 6 

i a t i o u 

R 2 

3 . 7 3 
8 .63 

3 .12 
7 .76 

1.69 
5 .85 

0 . 8 9 
0 .62 

3 .27 
6 . 0 8 

1.15 
4 . 1 3 

(%) 
R C 2 

2 .05 
5 .26 

2 . 5 0 
5 .60 

1.25 
7 . 1 8 

1.13 
1.66 

0 . 3 8 
3 . 9 3 

0 . 3 6 
2 56 

Al l 

1.33 
4 . 7 7 

1.32 
4 . 8 6 

0 . 5 6 
3 . 7 4 

0 . 4 2 
0 . 9 4 

0 . 7 5 
3 . 0 7 

0 . 4 8 
2 . 1 7 

N u u i h e r of t i u i e s 
o p t i u i a l i t y is 

r e a c h e d ( a u d prcive 

4 0 ( 3 7 ) 
17 ( 1 5 ) 

4 1 ( 3 7 ) 
17 ( 1 5 ) 

41 (-) 
12 (-) 

33 (-) 
13 (-) 

4 7 ( 3 4 ) 
19 ( 1 5 ) 

4 5 ( 3 8 ) 
20 ( 1 6 ) 

d ) 

by this algorithm. Recall that on series 2 the reference solutions are 
possibly sub-optimal upper bounds, hence the numbers given for this 
series are not necessarily upper bounds for the distance to the optimal 
solution. Table 4.3 also gives the number of instances for which each 
algorithm reaches and also proves (in parentheses) optimality. Recall 
that only pure branch-and-price and our cooperation scheme are able to 
produce optimality proofs. Note for comparison purposes that there are 
56 instances in each 50-customer and 100-customer category. The opti
mal solution is known for 53 instances of the 50-customer category, and 
38 instances of the 100-customer category. Figures 4.2 through 4,4 show 
the evolution of solution quahty over time for all 100-customer instances. 

Our first conclusions from this experimental data are the following. 
Combining local search and branch-and-price is consistently more eflfec-
tive than branch-and-price alone at obtaining good feasible solutions. 
On all series, on 100-customers and 50-customer instances, both our 
hybrids combining branch-and-price and local search (LNS or ILOG 
DISPATCHER) are as eff'ective as or, in most cases, more effective 
than branch-and-price alone. The improvement obtained by combining 
branch-and-price and local search is most often correlated with the per
formance of the local search algorithm used alone. As expected, our sim
ple LNS algorithm performs worse than the more sophisticated guided 
tabu search from ILOG DISPATCHER. In the same way, the cooperation 
scheme combining branch-and-price and LNS is outperformed in most 
series by the cooperation scheme combining branch-and-price and ILOG 
DISPATCHER. However, even a simple local search algorithm such as 
LNS can improve significantly the performance of branch-and-price. 

On the contrary, for pure branch-and-price algorithms, starting from a 
pool of columns built by a simple heuristic ("BP 2") does not consistently 
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improve on the same algorithm starting from a trivial solution ("BP 1"). 
Our tentative explanation is that the simple savings heuristic is not 
powerful enough to foster a significant diff"erence in performance. 

Let us examine a few examples of the 100-customer instances for more 
specific remarks. On series Rl, RCl and most significantly RC2, our co
operation scheme between branch-and-price and LNS outperforms both 
pure LNS and the two variants of pure branch-and-price. This illus
trates the useful interaction between the two components of the hybrid 
scheme, each optimizing the solutions found by the other component. On 
series RC2, branch-and-price outperforms pure LNS and our cooperation 
scheme performs nonetheless better than both. This shows the robust
ness of our cooperation scheme. Note that although BP+DISPATCHER 
significantly improves on pure branch-and-price BP 1 and BP 2, it does 
not give quite as good results as ILOG DISPATCHER used alone: ILOG 
DISPATCHER is especially effective at providing rapidly very good solu
tions for all series, hence it is difficult to outperform. But our cooperative 
scheme has nonetheless the advantage of additionally providing the user 
with a tight lower bound on the objective. 

4.4 What component finds integer solutions in 
the cooperation scheme? 

Let us now give more detailed results for each component of our hybrid 
scheme (branch-and-price and local search) so as to better understand 
why they succeed in finding good integer solutions early. Tables 4.4 and 
4.5 show for each component of the cooperation scheme the number of 
times it succeeds in finding a new and better solution, divided by the 
number of times this component was called (column %s for success), 
or divided by the total number of integer solutions found by all com
ponents (column %c for contribution). Statistics are aggregated for 
100-customer instances of Solomon series 1 and 2. 

Table 4-4- Integer solutions found with the cooperation BP+LNS. 

Component 

Relaxed master problem integer 
MIP 
Multiple visits heuristic 
Total LNS 
... when optimizing a solution found by: 

Branch-and-price 
LNS 

Series 
%s 

0.01 
5.92 

62.96 
27.22 

85.00 
21.12 

1 
%c 

4.65 
7.90 
7.90 

79.53 

23.72 
55.81 

%s 

0.01 
7.96 

80.00 
29,03 

64.70 
24.63 

Series 2 
%c 

1.85 
7.40 
7.40 

83.33 

20.37 
62.96 
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Table 4-5. Integer solutions found with the cooperation BP+DISPATCHER. 

Component 

Relaxed master problem integer 
MIP 
Multiple visits heuristic 
Total ILOG DISPATCHER 
. . . when optimizing a solution foui 

Branch-and-price 
ILOG DISPATCHER 

id by: 

%s 

0.04 
5.40 

35.71 
24.84 

63.73 
18.58 

Series 1 
%c 

11.81 
7.27 
6.81 

74.09 

26.36 
47.72 

%s 

0.09 
3.75 

45.83 
35.05 

50.54 
32.38 

Series 2 
%c 

7.14 
2.38 
4.36 

86.11 

18.25 
67.85 

The "Multiple visits heuristic" line refers to the greedy heuristic trans
forming a solution of the set covering formulation into a set partitioning 
solution, as described at the end of Section 3.1. It is mostly useful at the 
beginning of the optimization process: Afterwards, the upper bound is 
too tight to allow for customers to be visited more than once. Both our 
local search algorithms work on a model where each customer is visited 
exactly once. Therefore, the multiple visits heuristic cannot improve so
lutions found by local search. The line "Local search... when optimizing 
a solution found by branch-and-price" refers to the results of local search 
starting from a solution found when the relaxed master problem was in
teger, or from a solution found by the MIP solver, or from the output 
of the multiple visits heuristic optimizing a solution found by the two 
former methods. 

On all series, local search finds the majority of solutions: The good 
results of our cooperation scheme are naturally obtained first thanks 
to the great ability of local search to find good feasible solutions. The 
success rate of local search is much higher when starting from a solution 
found by branch-and-price than when starting from a solution found by 
local search itself. This illustrates the diversification mechanism: When 
branch-and-price finds a solution, it is far from the last local search local 
optimum, hence it is more likely to be improved by local search. 

4.5 Quality of lower bounds 

In this section, we compare the ability of each method to provide 
lower bounds and evaluate whether our cooperative algorithms retain 
the ability of branch-and-price to generate good lower bounds. Recall 
that local search algorithms do not provide lower bounds nor optimality 
proofs. 

Table 4.6 gives the mean relative deviation between the lower bound 
obtained by each studied algorithm and the reference solutions of Ta
bles 4.1 and 4.2 on the 100-customers instances of Solomon series 1 and 
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Table 4'6- Quality of lower bounds (100-customer instances). 

Instances Series 1 Series 2 

BP 1 -0.76% -0.34% 
BP 2 -0.77% -0.37% 
BP+LNS -0.77% -0.34% 
BP+DISPATCHER -0.75% -0.33% 

series 2. Recall that, on series 1, reference solutions are either opti
mal solutions or possibly sub-optimal lower bounds, therefore Table 4.6 
does not indicate for this series upper bounds on the distance between 
the lower bounds obtained and the optimum. Note also that on several 
instances (1 instance in series 1, 15 instances in series 2), none of the al
gorithms studied produces a lower bound on the objective: The one-hour 
time limit is too short to terminate pricing at root node. These instances 
are not taken into account for the computation of the mean relative de
viation in Table 4.6. The overall conclusion of Table 4.6 is that both of 
our hybrids between branch-and-price and local search (LNS or ILOG 
DISPATCHER) retain the ability of branch-and-price to generate good 
lower bounds. Note also from Table 4.3 that our cooperation scheme 
between branch-and-price and local search produces approximately the 
same number of optimality proofs as pure branch-and-price. 

4.6 Proof of optimality for previously unsolved 
instances 

We finally present result for two previously open instances which we 
solved to optimahty: R211 and RC204, both with 50 customers. Note 
that R211.50 was recently solved independently to optimality, as re
ported in Irnich and Villeneuve (2003). Table 4.7 gives for each instance 
the minimal distance and the corresponding number of vehicles. Ta
ble 4.8 gives the time in seconds needed to reach the optimal solution 
(^opt) and subsequently prove optimality (Ttotal)? and the number of 
nodes explored in the branch-and-price tree (nodes). We provide re
sults for pure branch-and-price (BP 1 and BP 2) and for our coopera
tion scheme between branch-and-price and local search (BP-I-LNS and 
BP+DISPATCHER). 

Note that BP-I-DISPATCHER is the only algorithm that solved in
stance RC204.50 to optimality. BP-f-LNS reached the optimal solution 
of RC204.50 but was not able to prove optimality within a week of 
CPU time. Pure branch-and-price (BP 1 and BP 2) also failed to solve 
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Table 4 • '^' Optimal values for two previously open 

Instance 

Cost 
Number of vehicles 

R211.50 

535.5 
3 

instances. 

Table ^,8. Proof of optimality for two previously open instances. 

R211.50 
Algorithm Topt Ttotai 

BP 1 115,100 196,868 
BP 2 103,600 126,648 
B P + L N S 214,100 300,184 
B P + D I S P A T C H E R 25,900 94,411 

nodes 

257 
85 

281 
85 

RC204.50 
Tljpt T'total 

152,100 
50,200 84,059 

RC204.50 

444.2 
3 

nodes 

1 

RC204.50 to optimality when given a week of CPU time. On this prob
lem with a long horizon and large time windows, it appears to be ex
tremely time consuming to compute interesting elementary constrained 
shortest paths. On the contrary, ILOG DISPATCHER succeeds in find
ing near-optimal routes within a reasonable time and branch-and-price 
can then find the optimal solution and prove optimality. This illustrates 
the fact that diversification for generating solutions but also individual 
columns is a key point of our cooperation scheme. 

BP-hDISPATCHER solves R211.50 to optimality faster than pure 
branch-and-price. The acceleration is especially visible when comparing 
the time needed to reach the optimal solution, but the total time includ
ing the optimality proof is also reduced. Note however that BP-hLNS 
slows down the resolution and explores more nodes that BP 2. The phe
nomenon is witnessed for BP 1. Recall that our branching strategy is 
not fixed: The branching arc depends on the pool of columns already 
generated, this is why the number of nodes explored can vary from one 
branch-and-price variant to the next. 

5, Conclusion 

In this paper we introduced a new general strategy for combining 
local search and branch-and-price. We showed with extensive compu
tational experiments on the vehicle routing problem with time windows 
that our cooperation scheme consistently improves the ability of pure 
branch-and-price to find good integer solutions early, while retaining the 
ability of branch-and-price to generate good lower bounds. The quality 
improvement of integer solutions generated is most often correlated with 
the effectiveness of the local search algorithm used, but significant im-
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provements can be obtained even with a simple local search algorithm. 
It remains to be seen if our cooperation scheme will be applied success
fully to different and more complex problems. We believe nonetheless 
that our results on a quite difficult problem and with two local search 
algorithms of varied effectiveness are encouraging. 

Our cooperation scheme generalizes three previously known accelera
tions for branch-and-price and can be applied to any branch-and-price 
model. It can also be seen as the generalization to branch-and-price of 
the use of heuristics in branch-and-bound. However, unlike most inter
esting heuristics for branch-and-bound, it is not domain-independent: A 
specific local search algorithm tailored to the problem at hand has to be 
written each time a different branch-and-price model is to be solved. We 
believe nonetheless tha t it is a step toward extending existing advanced 
strategies from branch-and-bound to branch-and-price. 
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