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A b s t r a c t This chapter presents a formulation for the job shop problem based 
on Dantzig-Wolfe decomposition with a subproblem for each machine. 
Each subproblem is a sequencing problem on a single machine with time 
windows. The formulation is used within an exact algorithm capable of 
solving problems with objectives Cmax, T'max, as well as an objective 
consistent with the Just-In-Time principle. This objective involves an 
irregular cost function of operation completion times. Numerical re­
sults are presented for 2 to 10 machine problems involving up to 500 
operations. 

1. Introduction 
The job shop problem is a classical scheduhng problem (French, 1982) 

that consists of scheduling n jobs on m machines. A single machine pro­
cesses one job at a time and a job is processed by one machine at a time. 
Processing of one job on one machine is called an operation. The length 
of an operation is fixed; once begun, an operation may not be inter­
rupted. The sequence of machines is known for each job. This sequence 
defines precedence constraints between the operations. The sequence of 
jobs on each machine must be determined so as to minimize a function 
of the operation completion times. This chapter considers problems in 
which jobs do not necessarily involve operations on all machines, but 
only on a subset of machines. This problem is occasionally referred to 
as the general job shop problem. 

The problems considered in this chapter can be classified using the clas­
sical notation such as (J|ri,di|Cmax), {J\n,di\Tmax) and {J\ri,di\JlT). 
The job shop problem is NP-hard in the strong sense (Rinnooy Kan, 
1976; Garey and Johnson, 1979) and is one of the hardest problems to 
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solve in practice. The most successful exact algorithms use a branch and 
bound procedure. See McMahon and Florian (1975); Lageweg, Lenstra 
and Rinnooy Kan (1977), Barker and McMahon (1985); Carlier and 
Pinson (1989), and Brucker, Jurisch and Sievers (1994). 

Three branching schemes are generally used: conflict resolution in the 
disjunctive graph (Roy and Sussman, 1964), generation of active sched­
ules (Giffler and Thompson, 1960), and time oriented branching (Marten 
and Shmoys, 1996). The conflict resolution scheme produces a complete 
schedule at each node of the branch tree; schedules thus produced may, 
however, violate the machine constraints. Two descendants are obtained 
by selecting two operations in conflict and imposing an order on them. 
In the generation of active schedules scheme, schedules are constructed 
sequentially from the root of the tree to a terminal node. A node of 
the branch tree is associated with a feasible schedule for a subset of op­
erations. Barker and McMahon (1985), by contrast, propose a scheme 
that obtains a feasible schedule for all operations at each node of the 
branch tree. This procedure branches by rearranging operations in a 
critical block to yield an improved schedule. The head-tail adjustment 
proposed by Brinkkotter and Bruckner (2001) is also of this type. 

A lower bound may be obtained by relaxing the machine constraints 
for all machines except one, to yield m scheduling problems on a sin­
gle machine with time and precedence constraints (n|r^,(i2,prec|Cmax)-
While this problem is NP-hard, even large instances of it may be solved 
efliciently (Carlier, 1982; McMahon and Florian, 1975). The maximum 
value found for the m problems gives a lower bound for the job shop 
problem. Lageweg, Lenstra and Rinnooy Kan (1977) discuss this bound, 
as well as many others obtained by relaxing one or more aspects of the 
scheduling problem on one machine. Balas, Lenstra and Vazacopou-
los (1995) propose an improvement that considers delayed precedence 
constraints between operations. They used the resulted bound within 
the shifting bottleneck heuristic of Adams, Balas and Zawack (1988). 
Brucker and Jurisch (1993) obtain a bound derived from two-job schedul­
ing problems. Problems are solved in polynomial time using a graphical 
method. Numerical results show that the bound obtained in this way is 
superior to that obtained from single-machine scheduling problems if the 
ratio between the number of machines and the number of jobs is large. 

Other authors propose a relaxation of the problem based on a math­
ematical formulation. Fisher (1973) uses Lagrangian relaxation to solve 
problems with min-sum type objectives. He dialyzes the machine con­
straints and conserves precedence constraints. This method is tested 
on eight problems involving up to five jobs and four machines. Hoit-
omt et al. (1993) present an augmented Lagrangian approach for the 
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weighted quadratic tardiness job shop problem. They obtained feasible 
solutions within 4% of their respective lower bounds for 125-145 job 
problems with 1 to 3 operations per job. Fisher et al. (1983) propose 
two aggregate-constraint formulations for the objective Cmax, in which 
either the precedence or machine constraints are grouped into a linear 
combination. While these formulations yield a better bound than those 
obtained from single-machine scheduling problems or Lagrangian relax­
ation, the effort required discourages any search beyond the root of the 
search tree. 

Currently available exact methods are not capable of solving large-
scale problems. Carher and Pinson (1989) solved the famous 10-machine, 
10-job problem of Muth and Thompson (1963), more than 25 years af­
ter its pubhcation. Applegate and Cook (1991) have solved some 150, 
225-operation problems using many families of cutting phases and some 
good heuristics to find feasible solutions. However, some problems of 
150, 200, 225-operations stayed unsolved. Brucker et al. (1994) have 
solved problems having up to 300 operations on a Sun 4/20 workstation. 
Optimal solutions of some of these problems require close to five days of 
CPU time. 

In view of the difficulty of the job shop problem, algorithms should be 
developed to address the special structure of the problems encountered 
in industry. This chapter describes an efficient exact algorithm to solve 
problems with many jobs and few operations per job. Such problems 
appear more and more frequently in manufacturing, where increasingly 
versatile machines are capable of processing jobs with few changes per 
machine. The real problems from Pratt & Witney presented in Hoitomt 
et al. (1993) have this property (1 to 3 operations per job). 

Most algorithms are designed to minimize the total length of opera­
tions (Cmax) a.nd are poorly adapted to other objectives. In practice, 
however, other objectives such as minimizing inventory costs or penal­
ties arising from delivery delays are frequently more interesting. While 
the objective Tmax has been examined in the context of the one-machine 
scheduling problem, it has received httle attention with regard to the 
general job shop problem. Furthermore, the literature contains virtu­
ally no discussion on exact methods for irregular functions of comple­
tion times. This chapter discusses objectives such as. the total length 
of operations (Cmax)? the maximum tardiness (T^ax) and an objective 
consistent with the Just-In-Time principle. 

The algorithm presented here is of the branch and bound variety. A 
lower bound is obtained using Dantzig-Wolfe decomposition, (Dantzig 
and Wolfe, 1960). Unlike Fisher, we use a primal approach and relax 
precedence constraints rather than machine constraints. A primal ap-
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proach yields faster convergence; furthermore, precedence constraints 
play a reduced role in problems involving few operations per job. The 
solution to the master problem provides a lower bound for the job shop 
problem, which is incorporated into a branching scheme based on con­
flict resolution. This formulation can be adapted to several objectives, 
including irregular functions of completion times. This is not the case 
for the aggregate-constraint formulation of Fisher et al. (1983), which 
is only valid for minimizing Cmax-

The Dantzig-Wolfe decomposition was used for parallel machine sched­
uling problems by van den Akker et al. (1995) and Chen and Powell 
(1999a,b, 2003). This scheduhng problem does not involve precedence 
constraints and is simpler than the job shop scheduling problem. The 
column generation algorithms proposed by these authors are straightfor­
ward translations of the algorithm for vehicle routing problems presented 
by Desrochers et al. (1992). The present chapter proposes a column gen­
eration algorithm for a more complex problem. 

More references on methods using constraint programming, meta-
heuristics, neural networks, can be found in surveys on the job shop 
scheduhng problem by Blazewicz et al. (1996) and Join and Meeron 
(1999). More recent work using constraint propagation was presented 
by Dorndorf et al. (2000, 2002). 

2. Mathematical formulation 
We consider n jobs (index j ) , m machines (index i) and N operations 

(indices u^ v). Let pu be the time required for operation u^ iu the machine 
on which operation u is to be carried out, Vu the earliest time at which 
operation u may begin and du the latest time at which operation u may 
end. 

Precedence relations are contained in the set 

A = {(?i, v)\u and v are successive operations of the same job, 

and u preceeds v} 

and pairs of operations carried out on machine i are contained in set 

Bi = {{'̂ ) v} \ u y^ v^ and iu = iv =" i}) i = 1 , . . . , m. 

The job shop problem is formulated using a min-max type objective 
function. We consider a function gu{Cu) of completion time Cu for op­
eration u. We assume that the function gu{Cu) is piecewise hnear, but 
not necessarily monotone. We define ^max, a variable that takes the 
maximum value of the quantities gu{Cu) for all operations u. 

We define the following variables, 
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Cu* completion time for operation Uj u = 1^... jN^ 

^max» cost of the solution. 

The job shop problem can be formulated as follows. 

min^max (10.1) 
S.t. •gm^x>9u{Cu) U=1,,,,,N, (10.2) 

Cu<Cy-py {u,v)eA, (10.3) 

ru+Pu<Cu<du u = l,.,,N, (10.4) 

Cu<Cv-pvyCv< Cu -Pu {u,v} e Bi, i ==: l , . . . , m . (10.5) 

We minimize a min-max type function of the operation completion 
times (10.1)-(10.2) under precedence constraints (10.3), time constraints 
(10.4) and machine constraints (10.5). The machine constraints are dis­
junctive and require that two operations carried out on the same machine 
may not occur at the same time. These constraints make the problem 
non-linear and hence difficult to solve. The next section reformulates 
the job shop problem using Dantzig-Wolfe decomposition. 

3, Decomposition 
We have formulated the job shop problem as a non-linear problem 

with disjunctive constraints. Relaxing the precedence constraints yields 
a problem that is separable by machine. Each problem corresponds to 
a single-machine scheduling problem whose solution provides a lower 
bound on the job shop problem. This idea is apphed within the frame­
work of Dantzig-Wolfe decomposition. 

Constraints used to compute the objective (10.2), as well as the prece­
dence constraints (10.3), are left in the master problem. The time con­
straints (10.4) and machine constraints (10.5) are transferred to the sub-
problems. Each subproblem generates schedules for one machine. The 
master problem selects a convex combination of the generated schedules 
that satisfies the precedence constraints. The Dantzig-Wolfe decompo­
sition provides the optimal solution for a linear problem, and for the job 
shop problem, it provides a lower bound. This bound is better than that 
obtained by ignoring the precedence constraints, because of the exchange 
of information between the master problem and the subproblems. 

3.1 Master problem 
The following notation is used in the master problem formulation. 

Clii set of schedules that satisfy the time constraints (10.4) and machine 
constraints (10.5) for machine i, i — 1, . . . ,m, 
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C!^i completion time for operation u in schedule /i, u = 1,...,A^, 

Hfi : variable associated with schedule /i, V/i E Hi, i — 1 , . . . , m. 

The master problem is then: 

s.t. 

mmpmax 

E yhCu< E yhCl:-Pv y{u,v)€A, 

E y/i = 1 i = l , . . . ,m, 
heüi 

Vh > 0, v/i e Oi, i = l, 

(10.6) 

(10.7) 

(10.8) 

(10.9) 

, m. 
(10.10) 

The master problem is formulated using variables associated with 
schedules for a single machine. Its objective is to find a convex com­
bination of schedules for each machine such that the precedence con­
straints (10.8) are satisfied and the cost (10.6)-(10.7) is minimized. The 
convex combination constraints are given by (10.9) and (10.10). 

The set of schedules for machine i is not convex, because of the ma­
chine constraints (which are disjunctive). This set contains a polytope 
for each ordering; each point in a polytope corresponds to a schedule 
for the ordering associated with the polytope. Polytopes are bounded, 
because of the time windows and have a finite number of extreme points 

Machine 1 Machine 2 

Jobl / O-

Job 2 

2 
[0,8] 

\ / 
I I 

3 
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-^, ^ ( 4 
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Figure 10.1. A job shop problem. 
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Figure 10.2. Schedules for machine 1. 

and no extreme rays. The master problem obtains schedules as convex 
combinations of points in the set fi^. These schedules belong to the con­
vex envelope of f̂ ,̂ but not necessarily to the set Q^i itself. Conv(n^), 
the convex envelope of f]̂  is the convex combination of a finite set of 
extreme points; the union of the finite number of orderings on machine 
i of the finite set of extreme points of the polytope for this ordering. 
Because Vti C Conv(n^), Dantzig-Wolfe decomposition provides a lower 
bound for the job shop problem. 

A job shop problem with two jobs, two machines and four operations 
is illustrated in Figure 10.1. All operations last two units of time. Job 
processing may begin at time 0, and must be completed by time 10. 
Figure 10.2 illustrates all feasible schedules for machine 1, which make up 
two polytopes associated either with the ordering 1-3 or the ordering 3-1. 
Each point in the set corresponds to a schedule for these two operations. 
The convex envelope of this set contains schedules that may be selected 
in the solution of the Dantzig-Wolfe decomposition. 

Since there is a large number of sequences for each machine, it is 
impossible to enumerate all of them in a job shop problem unless the 
number of operations on each machine is very small. There is an even 
greater number of extreme schedules, which represent extreme points of 
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schedule polytopes for all sequences. The master problem considers only 
a subset of schedules for each machine. New schedules are generated by 
subproblems as necessary. 

3.2 Subproblems 

Subproblem Si finds the schedule at minimum marginal cost for ma­
chine i. Dual variables for the master problem are denoted as follows: 

7̂ i > 0 -u = 1 , . . . , A/', Constraints for computing the objective (10.7), 

(^uv ^ 0 (u^v) G A, Precedence constraints (10.8), 

Â  i = 1 , . . . , m. Convexity constraints (10.9). 

Column /i* of minimum reduced cost Ch* for subproblem Si is such that 

c/.* = min̂  1 Y.^^Su{Cli)+ J2 Yl ^^^^^ 
(^lilin^i u\iu=iv\{u,v)eA 

~ 2^ Z ^ ^vuC^ - Xi 
u\iu=i v\(v,u)eA 

(^w|z-u=z u\iu=i \v\{u,v)eA v\{v,u)eA 

E (7«5u(C^) + «̂ «C )̂ = mm 
u\iu=i 

> - Xi 

>-Xi 

where Wu = Ev\iu,v)eA^uv - Ev\{v,u)eA^vu 
and g'^iCli) = -fu9u{Cll) + WuCt u=l,,,,,N, 

Subproblem Si is formulated as follows: 

min E g'uiCu) (10.11) 

u\iu=i 

s.t. ru-\-pu<Cu<du u\iu^i, (10.12) 

Cu <Cy-pvVCy<Cu~Pu {u, ^} G A- (10.13) 

This subproblem is a sequencing problem on a single machine with 
time constraints and an objective of minimizing a piecewise linear func­
tion of the completion times: n\ru^du\Ylgu{Cu)' The problem is difficult 
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because the cost function is irregular (the weights Wu may be positive or 
negative and the function gu{Cu) is an irregular function). This problem 
is solved using a dynamic programming algorithm. A dynamic program­
ming state is associated with a set of operations X and cost function 
Gx{t)' The function Gxif) gives the minimum cost of a feasible sched­
ule that carries out all operations of X and ends at the latest at time 
t. The functions Gx{t) are evaluated by stages. At stage /c, functions 
are evaluated for sets having k operations, using function values for sets 
containing (fc — 1) operations. Details of the algorithm may be found in 
Gelinas and Soumis (1997). 

At each iteration of the Dantzig-Wolfe algorithm, the master problem 
is solved using the simplex algorithm. The solution provides the values 
of the dual variables, which are then used in the subproblems to obtain 
new schedules, that is, new columns for the master problem. Columns 
are added to the master problem if their marginal cost is negative, giving 
rise to a new iteration. The procedure terminates when each subproblem 
generates a column with nonnegative marginal cost. The solution to the 
master problem is then the optimal solution for all columns, whether or 
not they are considered explicitly. 

3,3 Branching 
Dantzig-Wolfe decomposition provides a lower bound for the job shop 

problem. Although the solution satisfies the precedence and time con­
straints, it may violate the machine constraints because Qi C Conv(f2^). 
If all machine constraints are satisfied, the solution is optimal for the job 
shop problem. Otherwise, there are operations carried out concurrently 
on the same machine. In this case, a pair (n, v) of operations that conflict 
on one machine is selected and two new problems are created by impos­
ing an order on these operations: either operation u is carried out before 
operation v^ or operation v is carried out before operation u. The new 
problems are solved using Dantzig-Wolfe decomposition and this process 
continues until the branching tree has been thoroughly explored. The 
lower bound may be used to prune branches from the tree. 

To respect the order imposed by the branching, precedence constraints 
are added between operations carried out on one machine. These con­
straints are easily handled in the subproblem solution. Dynamic pro­
gramming states that do not satisfy constraints are not constructed. 
The subproblem then becomes a sequencing problem on a single ma­
chine with time and precedence constraints (n | r̂ ,̂ d^, prec | ^ 9u{Cu)) -

An optimal schedule for the job shop problem of Figure 10,1, with the 
objective Cmax̂  is illustrated in Figure 10.3. The optimal schedule ends 
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Figure 10.3. Optimal solution for objective On 

at time 6. For this example, the Dantzig-Wolfe solution combines two 
schedules for each machine 

Ci 
- 0 . 5 

0,5 

+ 0.5 

+ 0.5 

This solution is infeasible because operations 1 and 3 are carried out 
concurrently on machine 1, and operations 2 and 4 are carried out 
concurrently on machine 2. An optimal, feasible solution is then ob­
tained using the branching tree. Finally, note that, for this example, 
the Dantzig-Wolfe decomposition provides a lower bound of 5, while an 
approach ignoring the precedence constraints would provide a bound 
of 4. 

3.4 Cmax objective 

The present formulation can be used to model problems with objec­
tives of type Cmax if we set gu{Cu) = Cw The master problem then 
becomes: 

s.t. Cn 

min Cmax 

u 1 N 

constraints (10.1 

(10.14) 

(10.15) 

(10.9) and (10.10). 

Another formulation, providing a better bound in the linear relaxation 
of the Dantzig Wolfe decomposition, has been developed for this specific 
objective. In this formulation, the objective is a function of the weighted 
mean completion time for each operation. The order of operations is 
not the same in the generated schedules. Some schedules for machine 
i may have operation u as their final operation, while others may have 
operation v y^ u diS their final operation. The mean completion time for 
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operations u and v may be far smaller than the mean completion time 
for all operations on machine i. 

It would be better to express makespan constraints as a function of 
the completion time for each machine. To accomplish this, a fictitious 
operation is added for each machine, i.e., u = N + l,N + 2^.,.^N + m. 
We set pN-^i = 0, TN+i =" m^Xy^ii^^iVu + Pu^ dN+i = max^|^^^^ d^, i = 
1 , . . . , m and require that the operation N + i he the last carried out on 
machine i. 

Constraints (10.15) of the master problem are then replaced by 

Cmax>X^y/.C^ u = N + l,,,,,N + m. (10.16) 

A dual variable 7̂  is defined for each machine. The objective of sub-
problem Si is to minimize the weighted sum of the operation completion 
times (n | ru^du^pvec \ J2^u^u) where 

u \ iu = i and u < N^ 

u = N + i. 

The cost function is also irregular in the operation completion times and 
the same dynamic programming algorithm described in Section 3.2 can 
be applied. 

With this formulation, the Dantzig-Wolfe solution for the problem 
illustrated in Figure 10.1 has a cost of 6. 

This solution, which is optimal for the Dantzig-Wolfe decomposition, has 
the same cost as the optimal solution of the job shop problem. 

4. Implementation issues 
An exact algorithm for the job shop problem has been implemented 

using three types of objectives: 

C'max* We set gu{Cu) = Cu and modify the formulation as described in 
Section 3.4. 
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Tmax' We set gu{Cu) = inax{Cu — c^ ,̂0} where d^ is the latest time at 
which operation u may terminate and not be late. 

JIT (Just-In-Time): We set gu{Cu) — \Cu — d'u\ where d̂^ is the desired 
termination time for operation u, A penalty is paid if operation u 
terminates before or after time d^. Different penalty costs can be 
used for earliness and tardiness without increasing the complexity 
of the solution approach. 

The algorithm uses Dantzig-Wolfe decomposition and a branching 
strategy based on conflict resolution. It implements several exact and 
heuristic rules to accelerate the solution process. 

4.1 Overview 

An upper bound ŝup is provided as an input to the optimization 
algorithm. This bound may be obtained using heuristic methods. A 
three-step procedure is executed at each branching node. 

The first step tightens time windows [ru^du] using the upper bound, 
the precedence constraints of the problem, those imposed by the branch­
ing procedure, and others that can be deduced from rules. Problem fea­
sibility tests are carried out. If such tests conclude that the problem is 
infeasible, the node is abandoned. 

The second step computes a solution to the relaxed job shop problem 
obtained from the Dantzig-Wolfe decomposition. Two cases are possible: 

• The solution process is completed with the proof that no solution 
for the relaxation is possible. In this case, there is no solution to the 
job shop problem at the current node, and the node is abandoned. 

• A solution is found for the relaxation; the process is halted, al­
though optimality is not necessarily obtained. While a solution of 
the relaxation satisfies time and precedence constraints of the job 
shop problem, it may violate the machine constraints. If the pro­
cess is stopped prior to optimality, the cost of the solution is not 
a lower bound for the current node. A lower bound, however, is of 
little interest because its cost is necessarily inferior to the Zsup and 
is not sufficient to eliminate the node at this stage. In fact, any 
solution to the relaxation has a cost less than 2:sup as it satisfies the 
time constraints that were tightened using the value of z^up — 1-

The third step apphes a heuristic to calculate a solution that satisfies 
all constraints of the job shop problem, using the solution obtained in 
step 2. Once again, two cases are possible: 
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• A solution is found for the job shop problem. In this case, the upper 
bound is adjusted. Furthermore, branching nodes that have been 
solved to optimality and that have a lower bound greater than or 
equal to the new upper bound are eliminated. If the current node 
cannot be eliminated, the three-step procedure for processing a 
branching node is restarted with the new value of ŝup-

• No solution to the job shop problem is found. In this case, a pair 
of operations that conflict on one machine is selected. Two new 
problems are created by imposing an order on these two operations. 

The branching tree is explored depth-first to find feasible solutions 
as quickly as possible. The advantage of proceeding in this way is that 
the operation time windows can be tightened, reducing the number of 
dynamic programming states. The following sections contain further 
details on the steps of the algorithm. 

4,2 Preprocessing of the branching nodes 
Before starting the solution process at a branching node, rules are 

applied to find precedence constraints and tighten time windows. An 
efficient implementation of these rules is described in Brucker, Jurisch 
and Sievers (1994); Carlier and Pinson (1990). In addition, the feasibil­
ity of each single-machine sequencing problem is verified, using calls to 
subproblems if necessary. 

Precedence constraints 
Let Succ(i/) denote the set of operations that must be carried out on 

machine iu after operation u^ and Prec('u) the set of operations that must 
be carried out on machine iu before operation u. Operation v G Prec(u) 
if and only ii u E Succ(t'). 

Precedence relations may be deduced from simple rules. In particular, 
V G Succ('u) if u 7̂  -?;, iu — iy Q̂ d̂ if one of the following conditions holds: 

• The relation u —^ v is imposed by the branching. 

• By the time constraints, operation v cannot be carried out before 
operation u: Ty + py + Pu > dw 

• The relation u —^ v may be obtained by transitivity: 3w \ u e 
Succ(tt;) and w G Succ(t'). 

Other precedence constraints are deduced from more complex rules 
involving blocks of operations carried out on the same machine. Let X 
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be a subset of operations to be carried out on the same machine. Let 
rx = miuy^x ry, dx = m^Xy^x dy and px = YlvexPv 

• If there is a set X of operations that must be carried out on machine 
iu^ such that u ^ X and 

min{rx, Vu} +Pu+Px > dx, 

then all operations in X must precede operation u, that is, u G 
Succ(t') for all v E: X. 

• If there exists a set X of operations that must be carried out on 
machine iu^ such that u ^ X and 

rx +Pu+Px > max{(ix, du}, 

then operation u must precede all operations in X, that is, v G 
Succ(ii) for all v E X, 

The problem is not feasible if the precedence constraints induce a 
cycle, that is, if there exists u, v such that u G Succ(^') and v G Succ(n). 

Time constraints 
The time intervals [r̂ i,(î ]̂ are tightened using the upper bound ŝup? 

the precedence constraints of the job shop problem and the precedence 
constraints among operations carried out on the same machine. 

The new earliest time TU to begin operation u is the largest of the 
following quantities: 

• di. - Vi,. -

r 

• Pu - '̂ sup + 1, (JIT objective), 

ry +Pv, ^v: {v,u) G A, 

m miuyexry + J2y^xPv^ MX: X C Prec('a). 

The new latest time du to terminate operation u is the smallest of the 
following quantities: 

• du, 

1, (Cmax objective), 

^ d'^ + Zsup - 1, (JIT, Tmax objectives), 

• dy - py, Mv: {u,v) G A, 

• max^;ex dy - YlvexPv^ \/X: X C Succ(i^). 

The problem is infeasible if an operation u can be found such that r^ + 
Pu > du> 
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4.3 Processing at a branching node 
Dantzig-Wolfe decomposition is applied to the job shop problem as­

sociated with the current node. 

Master problem 
At each iteration of the Dantzig-Wolfe algorithm, the master prob­

lem calls the subproblems to receive columns with negative marginal 
cost. In the case at hand, subproblems are solved using a computa­
tionally intensive dynamic programming algorithm. It is not necessary 
to solve subproblems exactly to obtain columns with negative marginal 
cost, especially during the initial iterations. Subproblems are solved 
heuristically by limiting the number of dynamic programming states. 

The limit on the number of states is controlled by a parameter passed 
to the subproblems from the master problem. The subproblem returns 
a boolean value indicating whether the state space has been explored 
completely or only partially. The master problem increases the limit if 
no further columns are generated or if the objective does not increase 
sufficiently. The optimal solution is found when all subproblems are 
solved exactly and generate no further columns. 

As discussed in Section 4.1, the problem is not necessarily solved to 
optimality. Before raising the limit on the number of dynamic program­
ming states, the feasibility of the relaxed master problem is verified. If 
the problem is feasible, column generation terminates and the heuristic 
search for a feasible solution to the job shop problem begins immediately 
(Section 4.4). 

Subproblem 
The subproblem is a sequencing problem on a single machine, (n | r̂ ,̂ 

du^ prec I Yl 9ui^u)) ^ ^^^ is solved by dynamic programming. States are 
eliminated using both exact and heuristic criteria. 

Exact criteria ensure that eliminated states cannot lead to an optimal 
solution. Only states that satisfy the precedence constraints are con­
structed. Several of these states are eliminated using rules based on the 
time constraints. These rules are given in Gelinas and Soumis (1997), 
Other states are eliminated using bounds. The dual variable Â  of the 
master problem provides an upper bound on the cost of a schedule on 
machine i that may improve the solution to the master problem. A lower 
bound is computed for the cost of schedules constructed from a dynamic 
programming state. The state is eliminated if the lower bound is not 
promising. 
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Finally, states are eliminated using a heuristic criterion if their number 
exceeds the limit passed from the master problem. This criterion is based 
on the quality and feasibility of a state. States with a good lower bound 
and those that appropriately place operations that must terminate early 
are retained. When states are eliminated using the heuristic criterion, 
the subproblem solution may not be optimal, and the master problem is 
so notified. 

4*4 Branching node post-processing 

The Dantzig-Wolfe solution satisfies time and precedence constraints 
at a cost less than the upper bound Zgup- This solution will be used 
as a starting point for another solution that also satisfies the machine 
constraints. 

The disjunctive graph G — (y, (7 U D) associated with the job shop 
problem will be used in this regard. The nodes of the graph correspond to 
operations, including two fictitious operations representing the beginning 
and end of operations, V = { 0 , 1 , . . . , A/", *} . Execution times pu are 
associated with nodes of the graph. Arcs of the graph fall into two 
types. The set C of conjunctive arcs includes precedence arcs; arcs (0, u) 
where u is the first operation of a job; and arcs {u^ *) where u is the last 
operation of a job. The set D contains disjunctive arcs representing pairs 
of operations processed on the same machine. The arc pair {(n, t»), (̂ ', u)] 
is said to be resolved if one of the two arcs is selected and the other 
rejected. In selecting (̂ ,̂ t'), we require that operation u be performed 
before operation f, which corresponds to the addition of a precedence 
constraint (conjunctive arc) in the graph G. 

Some disjunctive arc pairs are resolved at the current node using rules 
stated in Section 4.2. To obtain a feasible solution, the rest of the dis­
junctive arcs are resolved temporarily, according to the order of the 
operations in the relaxed solution. 

u.-^v if Y. y^^u< E y^^v' 

A longest path problem with time windows is then solved from node 0 
to all other nodes. If the arrival time at each node is such that the 
operation may be carried out within the specified time interval, then a 
feasible solution has been found with a cost below the upper bound. The 
upper bound is then updated. 
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Local search 
The solution obtained to the longest path problem is then improved 

by inverting a disjunctive arc that has been resolved temporarily. Of 
interest are the arcs that belong to the longest path (if the solution is 
feasible) or to an infeasible path (if the solution is infeasible). The time 
gain obtained locally by inverting the disjunctive arcs is calculated. Let 
(n*, t'*) be the arc yielding the maximal gain. If this gain is positive, the 
arc is inverted and the longest path problem is solved on the new graph. 
The process terminates when there is no further local improvement. 

JIT objective 
A further stage occurs when a feasible solution is found for the ob­

jective JIT. The solution to the longest path algorithm places the op­
erations as early as possible within the time windows [ru^du]- A better 
solution can be obtained by delaying operations so that they end as 
close as possible to the desired termination time. The maximum tardi­
ness Tmax of an operation with respect to its desired termination time 
is calculated in the feasible solution. The time windows are then tem­
porarily tightened in such a way that this maximum tardiness is not 
exceeded: [r̂ ,̂ mm{du^ <̂^ + rmax}]; and a longest path problem is solved 
by pulling node * back toward the other nodes in the graph. The upper 
bound for the job shop problem is adjusted using this new solution. 

4.5 Branching strategies 
If no solution is found using the procedure described in Section 4.4, 

branching occurs on a pair of operations that are carried out on the same 
machine and in conflict in the relaxed solution. 

When there are many candidates when selecting a pair, we use the 
following rules: 

• reduce the set of candidates to a set of pairs in conflict on the 
longest path found in Section 4.4 if this set is not empty, 

• select the earliest scheduled pair in the set of candidates. 

5* Experimentation 
Numerical experiments were conducted using the Dantzig-Wolfe al­

gorithm implemented in C on a HP9000/735 computer. The following 
sections describe the test problems and present the results obtained. 



288 COL UMN GENERATION 

5.1 Test problems 
Problems with ten machines and up to 500 operations were generated 

and solved using Cmax? ^max â nd JIT objectives. Problem sizes are 
described in Table 10.1. 

Table 10.1. Sizes of the job shop problem instances. 

Number 
of machines 

10 
10 
10 
10 

Number 
of jobs 

250 
100 
30 
10 

Number of 
operations 

2 
3 
5 
10 

per job 
Total number 
of operations 

500 
300 
150 
100 

A problem is constructed as follows. First, the number of machines, 
the number of jobs, and the number of operations per job are established. 
For each operation, a machine is selected at random in such a way that no 
job has two operations on the same machine. The length of an operation 
is generated uniformly in the interval [1,100]. The times r̂ ^ are initialized 
to zero; the times du are initialized to a large value (co). To select 
the desired completion times for jobs and their mutually compatible 
operations, a feasible schedule is constructed using decision rules. The 
operation that can begin earliest is placed first. In the case of a tie, 
the operation in that job having the most outstanding work is selected. 
The completion time T for this schedule is used to generate times d'^^. 
Let ui, U25 • • •) ̂ n, be the operations in job j , in order. Times d'^ are 

generated in the interval [Y^j^LiPukJ^^h ^̂  addition, we set 

^uk ~ ^uk-i-i ~ Puk+i '> /c == rij - 1 , . . . , 1. 

The data d^ are ignored for the objective Cmax- If ^max is to be min­
imized, we desire that the processing of job j terminate no later than 
time d'^^ . If JIT is to be minimized, we desire that the processing begin 

at time d'^^ — Y^LiPu^ ^^d continue without stopping until time d'^^ . 
Ten problems are generated for each problem size, for a total of 40 job 

shop problems. Of particular interest are the job shop problems with 
many jobs and few operations per job. Such problems are easy to solve 
with the objective Cmax because machines can operate without stopping. 
The schedule constructed using decision rules is optimal for all problems 
having 30 jobs or more. Therefore, we only present results for 10-job 
problems using the objective Cmax-
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An upper bound is provided for the optimization algorithm. The 
schedule obtained with decision rules provides an upper bound for the 
objective Cmax- This bound is from 7% to 21% greater than the cost of 
the optimal solution for, 10-job problems. For T^ax and JIT, the upper 
bound is taken to be the optimal value plus 20%. (The optimal value 
is known because the algorithm has already been executed once using 
a large value as upper bound.) Future applications of the algorithm 
will require a heuristic procedure to produce a feasible solution for the 
objectives Tmax and JIT. The cost of this solution will be an upper 
bound that should be no more than 20% from the optimal solution. 

5,2 Numerical results 
This section first presents results for specific steps of the algorithm. It 

then presents results for the job shop problems and analyzes the behavior 
of the algorithm with different initial upper bounds. 

Solution of the Dantzig-Wolfe decomposition 
The relaxed job shop problem is generally not solved to optimality for 

the first branching node. The value of the lower bound that could be 
obtained from Dantzig-Wolfe decomposition was obtained in a separate 
calculation. Table 10.2 gives the lower bound and the cost of the optimal 
solution for 10- and 30-job problems. Since the dynamic programming 
algorithm requires too much memory for the 100- and 200-job problems, 
optimal solutions are not obtained for them. 

The lower bound is fairly distant from the optimal solution at the 
top of the branching tree, which provides justification for the solution 
approach presented here. We don't use much effort to get exact solu­
tions to the Dantzig-Wolfe relaxation at the top of the tree. The job 
shop problem becomes more highly constrained at the lower level of the 
tree, as branching decisions are taken and feasible solutions are found. 
So, lower bounds become easier to get by exactly solving the Dantzig-
Wolfe relaxation and are of better quality. This bound eliminates nodes 
associated with these more constrained problems. 

On the other hand, the Dantzig-Wolfe solution is very useful for find­
ing feasible solutions at each node of the branching tree, and is used to 
establish the order of operations in a schedule constructed heuristically. 

Dynamic programming 
Subproblems are solved using a dynamic programming algorithm. 

Two statistics are particularly germane as measures of the problem dif­
ficulty: the number of states and the number of labels. A state is asso-



290 COLUMN GENERATION 

Table 10.2. Lower bound from Dantzig-Wolfe decomposition. 

Oper 

30x 5 

10x10 

^ m a x 

DW 

1 -^ 
-
-
-
-
-
-
-
-
-_ 

717.9 
792.0 
750.0 
742.8 
825.0 
625.6 
689.3 
743.2 
841.0 
747.0 

Opt] 
^\ 
-
-

" 
-
-
-
-
-

-J 
~ 7 9 2 | 

867 
810 
845 
885 
728 
811 
840 
855 
766 

J- max 

DW 
164.0 
127.0 
99.6 

285.1 
67.0 

159.1 
72.7 

112.7 
91.6 

134.0 
14.5 
53.1 
0.0 
2.4 

78.6 
14.8 
10.9 
26.1 
24.9 
36.6 

Opt 
174 
156 
205 
346 

67 
188 
121 
199 
218 
146 
80 
69 
6 

99 
221 

90 
109 
108 
95 

119 

JIT 

DW 
135.4 
109.3 
117.7 
285.2 
133.2 
159.1 
87.1 

114.5 
127.6 
134.0 
69.2 

106.6 
79.0 
75.7 
97.2 
60.9 
68.6 
70.5 
79.6 

1 102.7 

Opt 
~235~ 

197 
220 
346 
196 
188 
152 
199 
278 
153 
172 
172 
155 
167 
266 
162 
166 
190 
207 
208 

ciated with a set of operations. A cost function is associated with each 
state. The cost function is piecewise hnear and represented by a hst of 
labels, one label per piece. At iteration k of the dynamic programming 
algorithm, all states associated with sets of k operations are considered. 
In a job shop problem with 10 machines, 100 jobs and 3 operations per 
job, there are a total of 300 operations and an average of 30 operations 
per machine. Consider a subproblem with 30 operations. At iteration 10 
of the dynamic programming algorithm, there are a possible Cfg states, 
that is more than 30 milHon states. While exact criteria can eliminate 
states, the number of them that remain to be considered in an exact 
procedure may be very large. The proposed algorithm uses heuristic 
criteria to eliminate states. 

Table 10.3 gives the average and maximum number of states con­
structed in one iteration of the dynamic programming algorithm during 
the solution of the job shop problems. In all dynamic programming iter-
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Table 10.3. Dynamic programming statistics. 

Oper 

250x 2 
lOOx 3 
30x 5 
1 0 x l o | 

^ m a x 

1 States 
Avg Max 

1 3.9 15 

Labels 1 
Avg Max 

2.1 231 

-tmax 

States 
Avg Max 

11.8 16 
11.0 233 
6.5 133 

1 3.6 16 

Labels 1 
Avg Max 

2.8 51 
2.7 42 
2.0 27 
2.1 241 

1 JIT 
1 States 
Avg Max 

11.3 16 
9.3 120 
5.2 109 

1 3.5 18 

Labels 
Avg Max 

2.6 59 
2.7 47 
2.2 34 
2.4 31 

ations in all problems solved, no more than 233 states (i.e., a very small 
number) were constructed. This was sufficient, however, to find a feasi­
ble solution to the relaxed job shop problem or prove that no solutions 
exists. 

To prove that there are no solutions to the relaxed problem, the sub-
problems must be solved exactly. The implementation of the algorithm 
increases the limit on the number of states until no further elimina­
tion occurs using heuristic criteria. While such a procedure may require 
that a large number of states be considered, this did not occur in the 
numerical experiments conducted for this study. Two reasons may ex­
plain this. First, the relaxed job shop problem is almost always feasible 
when Dantzig-Wolfe decomposition is applied. Rules applied in the pre­
processing stage help to identify infeasible job shop problems. If the 
node is not eliminated using these rules, a solution is usually found to 
the decomposition. Second, when the relaxation has no solution, the 
subproblems are highly constrained and states are eliminated using ex­
act criteria that are highly effective under the circumstances. 

The table also gives the mean and maximum number of labels required 
to represent the cost function attached to a state. The number of labels 
increases with the number of operations and with the width of the time 
windows (Gelinas and Soumis, 1997). Larger numbers of labels imply 
greater calculations and manipulations in the dynamic programming al­
gorithm. The average number of labels per state was low in problems 
solved for this study. 

Elimination of nodes in branching tree 
Figure 10.4 illustrates the branching tree obtained for one of the 250-

job problems using the objective Tmax- Nodes are numbered in the order 
in which they were explored. The value of the initial upper bound is 432. 
The relaxed job shop problem is not solved to optimality for the initial 
nodes; a lower bound of 360 is obtained at the fifth node. Going down 
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0 
Infeasible 

UB = 432 ^ O ; 

Infeasible 

.0 
Q)^ UB = 412 

B = Infeasible 

UB = 403 ( 8 

LB = 360 
6 ) UB = 363 

Infeasible 

0" XB = 360 
UB = 363 

LB = 360 
UB = 360 

Figure 10.4- Branching tree. 

the tree, feasible solutions are found with respective costs of 412, 403, 
363 and finally 360. Nodes 7, 6 and 5 are then eliminated using the 
lower bound. While exploration continues from node 4, the new nodes 
are found to be infeasible when the rules from the pre-processing stage 
are apphed. This tree contains 11 explored nodes, four nodes ehminated 
in the preprocessing stage and three nodes eliminated by the Dantzig-
Wolfe solution. 

Table 10.4 gives the percentage of nodes eliminated during solution of 
the various job shop problems using the three objectives. 

Tot: percentage of the nodes ehminated. 

Pre: percentage of the nodes ehminated in the pre-processing stage. 

Table 10.4- Percentage of eliminated branching nodes. 

Oper 

250x 2 
lOOx 3 
30x 5 
10x10 

Tot 

1 
-
-

51 

^ m a x 

Pre DW 

- 1 
-
_ 

47 4 

Tot 
82 
78 
63 
51 

-'max 

Pre 
21 
21 
35 
48 

DW 
61 
57 
28 

3 

Tot 
57 
53 
54 
51 

JIT 

Pre 
43 
41 
43 
48 

DW 
14 
12 
11 
3 
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D W : percentage of the nodes eliminated by the Dantzig-Wolfe solution. 

Percentages of the eliminated nodes, both overall and by the Dantzig-
Wolfe solution, were observed to be higher for problems having few oper­
ations per job. The decomposition proposed here is more appropriate for 
problems of this type. The master problem selects convex combinations 
of schedules for a single machine so as to satisfy precedence constraints. 
It ignores disjunctive constraints for problems of sequencing on a single 
machine. A solution to the relaxed problem may differ significantly from 
a feasible solution to the job shop problem if there are many precedence 
constraints. 

Results for the job shop problems 
The algorithm was used to solve all job shop problems using the three 

objectives. Only one problem, with objective JIT, was not solved to 
optimality. Results are presented in Tables 10.5, 10.6 and 10.7. These 
tables contain the following information: 

M a x Work: maximum total processing time on a single machine 

= max^=i,...,^{^^|.^^^p^}. 

U B : upper bound. 

Opt: cost of the optimal solution, or of the best solution if optimahty 
is not attained. 

Ut i lMach: percentage utilization of machines. Let T be the value of 
C'max in the optimal solution. The mean percentage utilization 
(Avg) and maximum percentage utilization (Max) of the machines 
are calculated for the interval [0 , r ] . 

I t e r D W : total number of iterations in the Dantzig-Wolfe algorithm. 

B B : total number of nodes explored in the branching tree. 

Cpu: CPU time in seconds. It indicates the time required to solve the 
master problem (TM), the subproblems (TS), and the total time 
(TT) . 

All problems were solved in less than 20 minutes for the objectives 
C'max and Tmax; most problems were solved in less than one hour for the 
objective J IT. Two 100-job problems required much more CPU time for 
the J IT objective; one of these problems was not solved to optimality. 
In fact, the J IT objective is more difficult to optimize as it is sensitive 
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Table 10.5. Numerical results for the objective On 

Oper 

10x10 

MaxWork 

wr 
652 
750 
673 
679 
599 
610 
706 
677 
682 

UB 

~96Ö" 
982 
960 
937 
1016 
780 
896 
975 
945 
873 

Opt 

"T92" 
867 
810 
845 
885 
728 
811 
840 
855 
776 

UtilMach 

Avg 

"eTg" 
60.4 
62.1 
62.8 
56.8 
66.1 

61.5 
63.8 

63.9 
64.0 

Max 

~W2 
75.2 
92.6 
79.6 
76.7 
82.3 
75.2 

84.0 
79.2 

87.9 

IterDW 

775" 
1340 
1218 
2568 
1195 
555 
2138 

6048 

3039 
311 

BB 

~im 
310 
286 
622 
248 
122 
530 
1555 
852 
66 

Cpu (sees) 
TM 

IW 
194 
164 
529 
235 
73 
329 
927 
387 
38 

TS TT 

7 120 
12 216 
10 184 
28 574 
16 258 
4 82 
20 366 
50 1026 
20 435 
3 42 

to operations that end late or begin too early in the schedule. The cost 
of the solution using Tmax is a lower bound for JIT. 

Table 10.5 indicates the maximum operation time on a single ma­
chine (MaxWork). In fact, this number is a lower bound for Cmax- The 
precedence constraints cause waiting times on the machines, so that the 
cost of the optimal solution is well above this bound. The percentage 
utilization of the machines decreases when changing the objective from 
C'max to Tinax ^nd to JIT. The objective Cmax produces better machine 
utilization because the optimal schedule compresses operations on the 
bottleneck machine as much as possible. When the objective JIT is 
used, it may be advantageous to create waiting times on machines, so 
that operations begin and end at the desired times. 

The algorithm spends most of its time solving the master problem. 
Little time is spent solving subproblems because the number of dynamic 
programming states is restricted. The difference between the total time 
(TT) and time spent solving the master problem (TM) and the subprob­
lems (TS) is accounted for by pre- and post-processing at the branching 
nodes. 

Behavior of the algorithm using different starting val­
ues 

Table 10.8 presents results obtained using various starting values of 
the upper bound for the objective JIT. The algorithm was executed 
once using an upper bound of 1000. Later executions used tighter upper 
bounds, at 20%, 10% and 5% of the optimal value. With an improved 
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Table 10.6. Numerical results for the objective Tm 

Oper 

250x 2 

lOOx 3 

30x 5 

10x10 

UB 

594 
269 
129 
225 
410 
432 
219 
250 
542 
480 
250 
236 
276 
300 
128 
255 
249 
203 
254 
98 
209 
188 
246 
416 
81 
226 
146 
239 
262 
176 
96 
83 
8 

119 
266 
108 
131 
130 
114 
143 

Opt 

495 
224 
107 
187 
341 
360 
182 
208 
451 
400 
208 
196 
230 
250 
106 
212 
207 
169 
211 
81 
174 
156 
205 
346 
67 
188 
121 
199 
218 
146 
80 
69 
6 
99 
221 
90 
109 
108 
95 
119 

UtilMach 
Avg 

77.7 
72.8 
78.0 
77.3 
77.4 
76.5 
75.7 
78.0 
76.7 
80.1 
72.7 
69.9 
74.6 
73.3 
83.5 
76.0 
75.2 
72.1 
66.8 
68.6 
71=5 
68.9 
65.2 
52.9 
64.9 
70.1 
74.9 
74.0 
70.8 
61.5 
53.7 
53.3 
54.3 
52.3 
50.8 
58.6 
54.8 
51.8 
55.5 
55.7 

Max 

87.2 
98.4 
99.2 
97.2 
99.9 
95.8 
99.4 
95.5 
98.2 
92.0 
96.9 
93.1 
92.7 
91.3 
98.1 
98.0 
92.6 
96.3 
94.2 
98.8 
90.1 
91,6 
94.4 
77.0 
95.6 
97.2 
97.8 
85.4 
90.3 
92.5 
68.6 
66.3 
81.0 
66.4 
68.6 
73.0 
67.0 
68.2 
68.8 
76.5 

IterDW 

17~ 
10 
45 
62 
45 
91 
61 
202 
28 
71 
339 
470 
297 
91 
693 
161 
105 
89 
35 
148 
417 
406 
123 
132 
377 

2175 
406 
221 
1001 
391 
2206 
82 
116 

2204 
1925 
1426 
753 

3184 
1478 
303 

BB 

F 
1 
11 
9 
3 
11 
10 
37 
1 
1 

103 
163 
77 
18 
318 
37 
18 
29 
2 
31 
177 
173 
42 
51 
126 
877 
138 
67 
280 
102 
442 
16 
15 
375 
364 
279 
149 
703 
326 
50 

Cpu (sees) 
TM 

8~ 
4 
46 
62 
40 
84 
106 
723 
26 
53 
639 
839 
474 
170 
878 
393 
153 
182 
28 
346 
113 
103 
61 
58 
66 
315 
101 
69 
244 
89 
481 
8 
10 
513 
514 
247 
147 
586 
240 
51 

TS 

~TÖ~ 
3 
15 
21 
17 
48 
22 
90 
13 
32 
50 
61 
45 
18 
60 
29 
17 
14 
6 
23 
12 
10 
5 
5 
7 
41 
9 
7 
31 
10 
22 
1 
1 
26 
31 
12 
8 
33 
14 
3 

TT 

18~ 
8 
65 
86 
61 
138 
136 
835 
41 
87 
715 
938 
532 
190 

1031 
429 
174 
200 
35 
375 
136 
122 
68 
65 
83 
469 
120 
81 
293 
107 
518 
10 
12 
550 
556 
269 
159 
641 
264 
56 
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Table 10.7. Numerical results for the objective JIT. 

Oper 

250x 2 

lOOx 3 

30x 5 

10x10 

UB 

~594~ 
269 
329 
321 
410 
432 
255 
305 
542 
480 
320 
294 
305 
326 
280 
255 
249 
249 
254 
336 
282 
237 
264 
416 
236 
226 
183 
239 
334 
184 
172 
172 
155 
167 
266 
162 
166 
190 
207 
208 

Opt 

495 
224 
274 
267 
341 
360 
212 
254 
451 
400 
266 
245 
254 
271 
233 
216* 
207 
207 
211 
280 
235 
197 
220 
346 
196 
188 
152 
199 
278 
153 
143 
143 
129 
139 
221 
135 
138 
158 
172 
173 

UtilMach 
Avg 

76.3 
70.5 
72.6 
73.5 
70.3 
72.1 
72.2 
75.8 
69.1 
76.9 
66.6 
66.8 
72.1 
70.8 
75.6 
70.2 
73.9 
68.3 
65.3 
62.6 
64.2 
66.2 
58.7 
53.8 
58.0 
62.0 
71.7 
68.9 
63.5 
58.7 
48.5 
47.9 
46.6 
50.3 
41.8 
53.1 
48.2 
48.0 
50.5 
48.1 

Max 

85.6 
95.3 
92.3 
92.3 
90.8 
90.3 
94.8 
92.8 
88.4 
88.4 
88.7 
89.0 
89.5 
88.1 
88.8 
90.5 
91.1 
91.2 
92.0 
90.2 
80.8 
88.0 
85.0 
78.3 
85.5 
86.0 
93.6 
79.5 
80.9 
88.3 
62.0 
59.6 
69.5 
63.9 
56.5 
66.0 
59.0 
63.2 
62.6 
66.0 

IterDW 

286 
271 
88 
366 
105 
380 
824 
992 
171 
293 

8453 
723 
665 
423 
485 

21148 
466 
2341 
363 
357 

11310 
976 
219 
349 
429 
1338 
755 
642 
937 
721 

4240 
723 
59 
722 
1766 
2136 
601 
2187 
5054 
671 

BB 

3Ö~ 
9 
13 
41 
5 
66 
183 
163 
10 
25 

2156 
176 
139 
79 
121 

5000 
111 
645 
46 
7 

3281 
300 
50 
103 
108 
503 
172 
165 
280 
157 
766 
131 
3 

129 
313 
416 
91 
338 
1081 
106 

Cpu (sees) 
TM 

749 
107 
99 
392 
137 

1052 
448 
1234 
367 
726 

16629 
1339 
1203 
992 
680 

23159 
793 
2240 
241 
328 
2903 
200 
117 
102 
61 
242 
163 
133 
237 
134 

1102 
125 
38 
132 
495 
507 
126 
549 
1157 
88 

TS 

176 
70 
29 
117 
43 
206 
137 
306 
88 
153 

1397 
106 
100 
83 
64 

1958 
64 
202 
36 
65 
322 
25 
8 
14 
7 
28 
14 
14 
27 
13 
44 
6 
1 
7 
26 
21 
5 
29 
59 
6 

TT 

959 
242 
149 
579 
193 
1333 
960 
1753 
475 
911 

18926 
1506 
1353 
1096 
774 

30542 
897 
2758 
298 
404 
3437 
247 
128 
121 
77 
329 
200 
162 
283 
163 

1173 
137 
40 
144 
531 
542 
135 
590 
1253 
98 

* : Not optimal 
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Table 10.8. Behavior of the algorithm using different starting values for the objective 
JIT. 

Oper 

250x 2 

lOOx 3 

30x 5 

'̂ sup -

BB 
~43~ 
15 
7 
67 
3 

134 
176 
163 
4 
1 

401 
276 
216 
99 
107 
921 
189 
332 
96 
25 
418 
247 
158 
59 
91 
600 
572 
289 
305 
305 

= 1000 

Cpu 
1368 
388 
343 
1286 
499 
2337 
4082 

7073 
294 
773 
4375 
5478 
3385 
1752 

1073 
7434 

2336 

3606 

1346 
1150 

482 
372 
324 
147 
173 
528 
679 
319 
430 
664 

'̂ sup — 

BB 

~^ör 
9 
13 
41 
5 
66 
183 
163 
10 
25 

2156 
176 
139 
79 
121 
-

Ill 
645 
46 
7 

3281 

300 
50 
103 
108 
503 
172 
165 
280 
157 

1.20zopt 

Cpu 
959 
242 
149 
579 
193 
1333 
960 
1753 
475 
911 

18926 
1506 
1353 
1096 
774 
-

897 
2758 

298 
404 
3437 
245 
128 
121 
77 
329 
200 
162 
283 
163 

^sxxp ~ 

BB 
^ 5 ~ ~ 
59 
5 
45 
1 
55 
113 
231 
10 
24 
346 
97 
170 
104 
25 
811 
69 
220 
58 
27 
226 
108 
111 
44 
57 
151 
241 
65 
233 
66 

l.lOZopt 

Cpu 
443" 
429 
46 
343 
68 
746 
701 
1976 

279 
524 
1642 

748 
990 
770 
245 
5235 
457 
1223 

375 
305 
258 
100 
221 
76 
55 
105 
262 
79 
258 
61 

'̂ sup -

BB 
~w 
19 
5 
19 
1 
51 
49 
98 
6 
15 
273 
329 
70 
75 
135 
165 
51 
199 
21 
18 
217 
121 
36 
11 
148 
178 
43 
109 
144 
15 

= l.OS^opt 

Cpu 
59r 
100 
29 
137 
28 
535 
288 
774 
143 
339 
1784 

4308 
486 
715 
486 
1002 

407 
967 
123 
150 
240 
66 
57 
28 
103 
121 
55 
86 
142 
15 

bound, time windows may be narrower. Furthermore, the branching tree 
is smaller and solution time is faster. 

Some exceptions, however, can be observed. The algorithm presented 
here searches the branching tree using a depth first strategy and com-
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Table 10.. continued 

Oper 

10x10 

'̂ sup ~ 

BB 
^706" 
91 
36 
145 
645 
890 
158 
1332 
1072 
61 

OÖÖÖ 

Cpu 

l^ee" 
135 
124 
233 
1112 
989 
242 
1610 
1243 
136 

^sup — 

BB 
^66~ 
131 
3 

129 
313 
416 
91 
338 
1081 
106 

1.202:opt 

Cpu 
1173 
137 
40 
144 
531 
542 
135 
590 
1253 

98 

'̂ sup ~ 

BB 
"648"" 
85 
23 
140 
383 
239 
114 
159 
904 
70 

= l.lÔ opt 

Cpu 

nie 
96 
41 
184 
691 
265 
198 
183 
968 
48 

'̂ sup — 

BB 
~619" 
33 
21 
119 
125 
407 
64 
349 
1322 

18 

1.05zopt 

Cpu 
987 
36 
14 
162 
243 
505 
75 
443 
1326 
18 

putes feasible solutions using a heuristic. If good solutions are found 
along the initial branches explored, the algorithm gives good results re­
gardless of the starting value. The converse is true as well: even with 
a good starting value, it is possible to select a bad search direction and 
explore many nodes before finding good solutions. This seems to have 
been the case for the two 100-job problems that are very difficult to solve 
starting from a value situated 20% from the optimal value. These two 
problems were solved much more easily using a different starting value. 

Such exceptions apart, better bounds generally yield better results. 
One possible fruitful approach could be to develop effective heuristic 
methods for finding good upper bounds before the optimization methods 
are called upon. Interestingly, however, the algorithm managed to solve 
all problems in reasonable times, even with very poor bounds. 

6- Conclusion 

This study has presented a formulation of the job shop problem that 
uses Dantzig-Wolfe decomposition. This approach breaks down the 
problem of coordination between machines and procedures to construct 
a schedule for each machine. In this way, an efficient algorithm may be 
applied to each problem component. Exchange of information between 
the master problem and the subproblems produces better lower bounds 
than approaches that treat each machine independently. 

The algorithm presented here uses Dantzig-Wolfe decomposition and a 
branching strategy based on conflict solution procedure. We measure the 
effort provided at each stage of the resolution. While the optimal value 
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of the Dantzig-Wolfe decomposition is a lower bound for the job shop 
problem, this bound is not efficient (especially for the initial branching 
nodes). Importantly, good bounds for the job shop problem are difficult 
to obtain, even with other formulations. Therefore, rather than putting 
considerable effort into finding lower bounds, this approach settles for a 
solution whose cost falls below the upper bound. Such a solution forms 
the basis of a heuristic schedule construction method for the job shop 
problem. 

Subproblems in the decomposition are solved using dynamic program­
ming. This technique is rarely used in sequencing problems because the 
number of states grows too quickly. The approach presented here ap­
plies this technique successfully by controlling the size of the state space 
to be explored. Even when only a small number of states are explored, 
the dynamic programming algorithm produces good schedules for the 
master problem. 

The algorithm has been tested on 10-machine problems using three 
objectives: Cmax, ^max and an objective consistent with the Just-In-
Time philosophy. Interesting problems for the objective Cmax have as 
many jobs as machines. There exist methods that are better than ours at 
solving such problems. Nevertheless, the present algorithm has solved 
problems involving 10 jobs and 10 operations per job in less than 20 
minutes each. 

This algorithm is particularly efficient for problems involving many 
jobs and few operations per job. Such problems arise frequently in in­
dustry, as machines are increasingly versatile and jobs are processed with 
few changes of machine. Objectives other than Cmax (such as minimiza­
tion of delivery delays or storage periods) in fact appear to be more 
interesting in practice. Most existing methods consider the objective 
Cmax ŝ nd are poorly adapted to other objectives, especially when these 
objectives involve irregular functions of the operation completion times. 
The algorithm described here can handle such objectives. Finally, prob­
lems of up to 500 operations were solved using an objective consistent 
with a Just-In-Time approach. 
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