
Chapter 10

DANTZIG-WOLFE DECOMPOSITION
FOR JOB SHOP SCHEDULING

Sylvie Gelinas
Frangois Soumis

A b s t r a c t This chapter presents a formulation for the job shop problem based
on Dantzig-Wolfe decomposition with a subproblem for each machine.
Each subproblem is a sequencing problem on a single machine with time
windows. The formulation is used within an exact algorithm capable of
solving problems with objectives Cmax, T'max, as well as an objective
consistent with the Just-In-Time principle. This objective involves an
irregular cost function of operation completion times. Numerical re­
sults are presented for 2 to 10 machine problems involving up to 500
operations.

1. Introduction
The job shop problem is a classical scheduhng problem (French, 1982)

that consists of scheduling n jobs on m machines. A single machine pro­
cesses one job at a time and a job is processed by one machine at a time.
Processing of one job on one machine is called an operation. The length
of an operation is fixed; once begun, an operation may not be inter­
rupted. The sequence of machines is known for each job. This sequence
defines precedence constraints between the operations. The sequence of
jobs on each machine must be determined so as to minimize a function
of the operation completion times. This chapter considers problems in
which jobs do not necessarily involve operations on all machines, but
only on a subset of machines. This problem is occasionally referred to
as the general job shop problem.

The problems considered in this chapter can be classified using the clas­
sical notation such as (J|ri,di|Cmax), {J\n,di\Tmax) and {J\ri,di\JlT).
The job shop problem is NP-hard in the strong sense (Rinnooy Kan,
1976; Garey and Johnson, 1979) and is one of the hardest problems to

272 COL UMN GENERATION

solve in practice. The most successful exact algorithms use a branch and
bound procedure. See McMahon and Florian (1975); Lageweg, Lenstra
and Rinnooy Kan (1977), Barker and McMahon (1985); Carlier and
Pinson (1989), and Brucker, Jurisch and Sievers (1994).

Three branching schemes are generally used: conflict resolution in the
disjunctive graph (Roy and Sussman, 1964), generation of active sched­
ules (Giffler and Thompson, 1960), and time oriented branching (Marten
and Shmoys, 1996). The conflict resolution scheme produces a complete
schedule at each node of the branch tree; schedules thus produced may,
however, violate the machine constraints. Two descendants are obtained
by selecting two operations in conflict and imposing an order on them.
In the generation of active schedules scheme, schedules are constructed
sequentially from the root of the tree to a terminal node. A node of
the branch tree is associated with a feasible schedule for a subset of op­
erations. Barker and McMahon (1985), by contrast, propose a scheme
that obtains a feasible schedule for all operations at each node of the
branch tree. This procedure branches by rearranging operations in a
critical block to yield an improved schedule. The head-tail adjustment
proposed by Brinkkotter and Bruckner (2001) is also of this type.

A lower bound may be obtained by relaxing the machine constraints
for all machines except one, to yield m scheduling problems on a sin­
gle machine with time and precedence constraints (n|r^,(i2,prec|Cmax)-
While this problem is NP-hard, even large instances of it may be solved
efliciently (Carlier, 1982; McMahon and Florian, 1975). The maximum
value found for the m problems gives a lower bound for the job shop
problem. Lageweg, Lenstra and Rinnooy Kan (1977) discuss this bound,
as well as many others obtained by relaxing one or more aspects of the
scheduling problem on one machine. Balas, Lenstra and Vazacopou-
los (1995) propose an improvement that considers delayed precedence
constraints between operations. They used the resulted bound within
the shifting bottleneck heuristic of Adams, Balas and Zawack (1988).
Brucker and Jurisch (1993) obtain a bound derived from two-job schedul­
ing problems. Problems are solved in polynomial time using a graphical
method. Numerical results show that the bound obtained in this way is
superior to that obtained from single-machine scheduling problems if the
ratio between the number of machines and the number of jobs is large.

Other authors propose a relaxation of the problem based on a math­
ematical formulation. Fisher (1973) uses Lagrangian relaxation to solve
problems with min-sum type objectives. He dialyzes the machine con­
straints and conserves precedence constraints. This method is tested
on eight problems involving up to five jobs and four machines. Hoit-
omt et al. (1993) present an augmented Lagrangian approach for the

10 Dantzig-Wolfe Decomposition for Job Shop Scheduling 273

weighted quadratic tardiness job shop problem. They obtained feasible
solutions within 4% of their respective lower bounds for 125-145 job
problems with 1 to 3 operations per job. Fisher et al. (1983) propose
two aggregate-constraint formulations for the objective Cmax, in which
either the precedence or machine constraints are grouped into a linear
combination. While these formulations yield a better bound than those
obtained from single-machine scheduling problems or Lagrangian relax­
ation, the effort required discourages any search beyond the root of the
search tree.

Currently available exact methods are not capable of solving large-
scale problems. Carher and Pinson (1989) solved the famous 10-machine,
10-job problem of Muth and Thompson (1963), more than 25 years af­
ter its pubhcation. Applegate and Cook (1991) have solved some 150,
225-operation problems using many families of cutting phases and some
good heuristics to find feasible solutions. However, some problems of
150, 200, 225-operations stayed unsolved. Brucker et al. (1994) have
solved problems having up to 300 operations on a Sun 4/20 workstation.
Optimal solutions of some of these problems require close to five days of
CPU time.

In view of the difficulty of the job shop problem, algorithms should be
developed to address the special structure of the problems encountered
in industry. This chapter describes an efficient exact algorithm to solve
problems with many jobs and few operations per job. Such problems
appear more and more frequently in manufacturing, where increasingly
versatile machines are capable of processing jobs with few changes per
machine. The real problems from Pratt & Witney presented in Hoitomt
et al. (1993) have this property (1 to 3 operations per job).

Most algorithms are designed to minimize the total length of opera­
tions (Cmax) a.nd are poorly adapted to other objectives. In practice,
however, other objectives such as minimizing inventory costs or penal­
ties arising from delivery delays are frequently more interesting. While
the objective Tmax has been examined in the context of the one-machine
scheduling problem, it has received httle attention with regard to the
general job shop problem. Furthermore, the literature contains virtu­
ally no discussion on exact methods for irregular functions of comple­
tion times. This chapter discusses objectives such as. the total length
of operations (Cmax)? the maximum tardiness (T^ax) and an objective
consistent with the Just-In-Time principle.

The algorithm presented here is of the branch and bound variety. A
lower bound is obtained using Dantzig-Wolfe decomposition, (Dantzig
and Wolfe, 1960). Unlike Fisher, we use a primal approach and relax
precedence constraints rather than machine constraints. A primal ap-

274 COLUMN GENERATION

proach yields faster convergence; furthermore, precedence constraints
play a reduced role in problems involving few operations per job. The
solution to the master problem provides a lower bound for the job shop
problem, which is incorporated into a branching scheme based on con­
flict resolution. This formulation can be adapted to several objectives,
including irregular functions of completion times. This is not the case
for the aggregate-constraint formulation of Fisher et al. (1983), which
is only valid for minimizing Cmax-

The Dantzig-Wolfe decomposition was used for parallel machine sched­
uling problems by van den Akker et al. (1995) and Chen and Powell
(1999a,b, 2003). This scheduhng problem does not involve precedence
constraints and is simpler than the job shop scheduling problem. The
column generation algorithms proposed by these authors are straightfor­
ward translations of the algorithm for vehicle routing problems presented
by Desrochers et al. (1992). The present chapter proposes a column gen­
eration algorithm for a more complex problem.

More references on methods using constraint programming, meta-
heuristics, neural networks, can be found in surveys on the job shop
scheduhng problem by Blazewicz et al. (1996) and Join and Meeron
(1999). More recent work using constraint propagation was presented
by Dorndorf et al. (2000, 2002).

2. Mathematical formulation
We consider n jobs (index j) , m machines (index i) and N operations

(indices u^ v). Let pu be the time required for operation u^ iu the machine
on which operation u is to be carried out, Vu the earliest time at which
operation u may begin and du the latest time at which operation u may
end.

Precedence relations are contained in the set

A = {(?i, v)\u and v are successive operations of the same job,

and u preceeds v}

and pairs of operations carried out on machine i are contained in set

Bi = {{'̂) v} \ u y^ v^ and iu = iv =" i}) i = 1 , . . . , m.

The job shop problem is formulated using a min-max type objective
function. We consider a function gu{Cu) of completion time Cu for op­
eration u. We assume that the function gu{Cu) is piecewise hnear, but
not necessarily monotone. We define ^max, a variable that takes the
maximum value of the quantities gu{Cu) for all operations u.

We define the following variables,

10 Dantzig-Wolfe Decomposition for Job Shop Scheduling 275

Cu* completion time for operation Uj u = 1^... jN^

^max» cost of the solution.

The job shop problem can be formulated as follows.

min^max (10.1)
S.t. •gm^x>9u{Cu) U=1,,,,,N, (10.2)

Cu<Cy-py {u,v)eA, (10.3)

ru+Pu<Cu<du u = l,.,,N, (10.4)

Cu<Cv-pvyCv< Cu -Pu {u,v} e Bi, i ==: l , . . . , m . (10.5)

We minimize a min-max type function of the operation completion
times (10.1)-(10.2) under precedence constraints (10.3), time constraints
(10.4) and machine constraints (10.5). The machine constraints are dis­
junctive and require that two operations carried out on the same machine
may not occur at the same time. These constraints make the problem
non-linear and hence difficult to solve. The next section reformulates
the job shop problem using Dantzig-Wolfe decomposition.

3, Decomposition
We have formulated the job shop problem as a non-linear problem

with disjunctive constraints. Relaxing the precedence constraints yields
a problem that is separable by machine. Each problem corresponds to
a single-machine scheduling problem whose solution provides a lower
bound on the job shop problem. This idea is apphed within the frame­
work of Dantzig-Wolfe decomposition.

Constraints used to compute the objective (10.2), as well as the prece­
dence constraints (10.3), are left in the master problem. The time con­
straints (10.4) and machine constraints (10.5) are transferred to the sub-
problems. Each subproblem generates schedules for one machine. The
master problem selects a convex combination of the generated schedules
that satisfies the precedence constraints. The Dantzig-Wolfe decompo­
sition provides the optimal solution for a linear problem, and for the job
shop problem, it provides a lower bound. This bound is better than that
obtained by ignoring the precedence constraints, because of the exchange
of information between the master problem and the subproblems.

3.1 Master problem
The following notation is used in the master problem formulation.

Clii set of schedules that satisfy the time constraints (10.4) and machine
constraints (10.5) for machine i, i — 1, . . . ,m,

276 COLUMN GENERATION

C!^i completion time for operation u in schedule /i, u = 1,...,A^,

Hfi : variable associated with schedule /i, V/i E Hi, i — 1 , . . . , m.

The master problem is then:

s.t.

mmpmax

E yhCu< E yhCl:-Pv y{u,v)€A,

E y/i = 1 i = l , . . . ,m,
heüi

Vh > 0, v/i e Oi, i = l,

(10.6)

(10.7)

(10.8)

(10.9)

, m.
(10.10)

The master problem is formulated using variables associated with
schedules for a single machine. Its objective is to find a convex com­
bination of schedules for each machine such that the precedence con­
straints (10.8) are satisfied and the cost (10.6)-(10.7) is minimized. The
convex combination constraints are given by (10.9) and (10.10).

The set of schedules for machine i is not convex, because of the ma­
chine constraints (which are disjunctive). This set contains a polytope
for each ordering; each point in a polytope corresponds to a schedule
for the ordering associated with the polytope. Polytopes are bounded,
because of the time windows and have a finite number of extreme points

Machine 1 Machine 2

Jobl / O-

Job 2

2
[0,8]

\ /
I I

3

\ [0,8] /

2] \
~2

[2, 10]

-^, ^ (4

\ [2,10]/

Figure 10.1. A job shop problem.

10 Dantzig-Wolfe Decomposition for Job Shop Scheduling 277

1

8 -

6 -

4 -

2 -

\

, _

\ \ N N. \

i
1

3

1
1

^ ^ 1

c

Set of feasible schedules

Convex envelope of feasible schedules

Figure 10.2. Schedules for machine 1.

and no extreme rays. The master problem obtains schedules as convex
combinations of points in the set fi^. These schedules belong to the con­
vex envelope of f̂ ,̂ but not necessarily to the set Q^i itself. Conv(n^),
the convex envelope of f]̂ is the convex combination of a finite set of
extreme points; the union of the finite number of orderings on machine
i of the finite set of extreme points of the polytope for this ordering.
Because Vti C Conv(n^), Dantzig-Wolfe decomposition provides a lower
bound for the job shop problem.

A job shop problem with two jobs, two machines and four operations
is illustrated in Figure 10.1. All operations last two units of time. Job
processing may begin at time 0, and must be completed by time 10.
Figure 10.2 illustrates all feasible schedules for machine 1, which make up
two polytopes associated either with the ordering 1-3 or the ordering 3-1.
Each point in the set corresponds to a schedule for these two operations.
The convex envelope of this set contains schedules that may be selected
in the solution of the Dantzig-Wolfe decomposition.

Since there is a large number of sequences for each machine, it is
impossible to enumerate all of them in a job shop problem unless the
number of operations on each machine is very small. There is an even
greater number of extreme schedules, which represent extreme points of

278 COL UMN GENERATION

schedule polytopes for all sequences. The master problem considers only
a subset of schedules for each machine. New schedules are generated by
subproblems as necessary.

3.2 Subproblems

Subproblem Si finds the schedule at minimum marginal cost for ma­
chine i. Dual variables for the master problem are denoted as follows:

7̂ i > 0 -u = 1 , . . . , A/', Constraints for computing the objective (10.7),

(^uv ^ 0 (u^v) G A, Precedence constraints (10.8),

Â i = 1 , . . . , m. Convexity constraints (10.9).

Column /i* of minimum reduced cost Ch* for subproblem Si is such that

c/.* = min̂ 1 Y.^^Su{Cli)+ J2 Yl ^^^^^
(^lilin^i u\iu=iv\{u,v)eA

~ 2^ Z ^ ^vuC^ - Xi
u\iu=i v\(v,u)eA

(^w|z-u=z u\iu=i \v\{u,v)eA v\{v,u)eA

E (7«5u(C^) + «̂ «C)̂ = mm
u\iu=i

> - Xi

>-Xi

where Wu = Ev\iu,v)eA^uv - Ev\{v,u)eA^vu
and g'^iCli) = -fu9u{Cll) + WuCt u=l,,,,,N,

Subproblem Si is formulated as follows:

min E g'uiCu) (10.11)

u\iu=i

s.t. ru-\-pu<Cu<du u\iu^i, (10.12)

Cu <Cy-pvVCy<Cu~Pu {u, ^} G A- (10.13)

This subproblem is a sequencing problem on a single machine with
time constraints and an objective of minimizing a piecewise linear func­
tion of the completion times: n\ru^du\Ylgu{Cu)' The problem is difficult

10 Dantzig-Wolfe Decomposition for Job Shop Scheduling 279

because the cost function is irregular (the weights Wu may be positive or
negative and the function gu{Cu) is an irregular function). This problem
is solved using a dynamic programming algorithm. A dynamic program­
ming state is associated with a set of operations X and cost function
Gx{t)' The function Gxif) gives the minimum cost of a feasible sched­
ule that carries out all operations of X and ends at the latest at time
t. The functions Gx{t) are evaluated by stages. At stage /c, functions
are evaluated for sets having k operations, using function values for sets
containing (fc — 1) operations. Details of the algorithm may be found in
Gelinas and Soumis (1997).

At each iteration of the Dantzig-Wolfe algorithm, the master problem
is solved using the simplex algorithm. The solution provides the values
of the dual variables, which are then used in the subproblems to obtain
new schedules, that is, new columns for the master problem. Columns
are added to the master problem if their marginal cost is negative, giving
rise to a new iteration. The procedure terminates when each subproblem
generates a column with nonnegative marginal cost. The solution to the
master problem is then the optimal solution for all columns, whether or
not they are considered explicitly.

3,3 Branching
Dantzig-Wolfe decomposition provides a lower bound for the job shop

problem. Although the solution satisfies the precedence and time con­
straints, it may violate the machine constraints because Qi C Conv(f2^).
If all machine constraints are satisfied, the solution is optimal for the job
shop problem. Otherwise, there are operations carried out concurrently
on the same machine. In this case, a pair (n, v) of operations that conflict
on one machine is selected and two new problems are created by impos­
ing an order on these operations: either operation u is carried out before
operation v^ or operation v is carried out before operation u. The new
problems are solved using Dantzig-Wolfe decomposition and this process
continues until the branching tree has been thoroughly explored. The
lower bound may be used to prune branches from the tree.

To respect the order imposed by the branching, precedence constraints
are added between operations carried out on one machine. These con­
straints are easily handled in the subproblem solution. Dynamic pro­
gramming states that do not satisfy constraints are not constructed.
The subproblem then becomes a sequencing problem on a single ma­
chine with time and precedence constraints (n | r̂ ,̂ d^, prec | ^ 9u{Cu)) -

An optimal schedule for the job shop problem of Figure 10,1, with the
objective Cmax̂ is illustrated in Figure 10.3. The optimal schedule ends

280 COLUMN GENERATION

Machine '

Machine 2

1

1 1

3

2

1 1

4

1 1
0 2 4 6

Figure 10.3. Optimal solution for objective On

at time 6. For this example, the Dantzig-Wolfe solution combines two
schedules for each machine

Ci
- 0 . 5

0,5

+ 0.5

+ 0.5

This solution is infeasible because operations 1 and 3 are carried out
concurrently on machine 1, and operations 2 and 4 are carried out
concurrently on machine 2. An optimal, feasible solution is then ob­
tained using the branching tree. Finally, note that, for this example,
the Dantzig-Wolfe decomposition provides a lower bound of 5, while an
approach ignoring the precedence constraints would provide a bound
of 4.

3.4 Cmax objective

The present formulation can be used to model problems with objec­
tives of type Cmax if we set gu{Cu) = Cw The master problem then
becomes:

s.t. Cn

min Cmax

u 1 N

constraints (10.1

(10.14)

(10.15)

(10.9) and (10.10).

Another formulation, providing a better bound in the linear relaxation
of the Dantzig Wolfe decomposition, has been developed for this specific
objective. In this formulation, the objective is a function of the weighted
mean completion time for each operation. The order of operations is
not the same in the generated schedules. Some schedules for machine
i may have operation u as their final operation, while others may have
operation v y^ u diS their final operation. The mean completion time for

10 Dantzig-Wolfe Decomposition for Job Shop Scheduling 281

operations u and v may be far smaller than the mean completion time
for all operations on machine i.

It would be better to express makespan constraints as a function of
the completion time for each machine. To accomplish this, a fictitious
operation is added for each machine, i.e., u = N + l,N + 2^.,.^N + m.
We set pN-^i = 0, TN+i =" m^Xy^ii^^iVu + Pu^ dN+i = max^|^^^^ d^, i =
1 , . . . , m and require that the operation N + i he the last carried out on
machine i.

Constraints (10.15) of the master problem are then replaced by

Cmax>X^y/.C^ u = N + l,,,,,N + m. (10.16)

A dual variable 7̂ is defined for each machine. The objective of sub-
problem Si is to minimize the weighted sum of the operation completion
times (n | ru^du^pvec \ J2^u^u) where

u \ iu = i and u < N^

u = N + i.

The cost function is also irregular in the operation completion times and
the same dynamic programming algorithm described in Section 3.2 can
be applied.

With this formulation, the Dantzig-Wolfe solution for the problem
illustrated in Figure 10.1 has a cost of 6.

This solution, which is optimal for the Dantzig-Wolfe decomposition, has
the same cost as the optimal solution of the job shop problem.

4. Implementation issues
An exact algorithm for the job shop problem has been implemented

using three types of objectives:

C'max* We set gu{Cu) = Cu and modify the formulation as described in
Section 3.4.

282 COL UMN GENERA TION

Tmax' We set gu{Cu) = inax{Cu — c^ ,̂0} where d^ is the latest time at
which operation u may terminate and not be late.

JIT (Just-In-Time): We set gu{Cu) — \Cu — d'u\ where d̂^ is the desired
termination time for operation u, A penalty is paid if operation u
terminates before or after time d^. Different penalty costs can be
used for earliness and tardiness without increasing the complexity
of the solution approach.

The algorithm uses Dantzig-Wolfe decomposition and a branching
strategy based on conflict resolution. It implements several exact and
heuristic rules to accelerate the solution process.

4.1 Overview

An upper bound ŝup is provided as an input to the optimization
algorithm. This bound may be obtained using heuristic methods. A
three-step procedure is executed at each branching node.

The first step tightens time windows [ru^du] using the upper bound,
the precedence constraints of the problem, those imposed by the branch­
ing procedure, and others that can be deduced from rules. Problem fea­
sibility tests are carried out. If such tests conclude that the problem is
infeasible, the node is abandoned.

The second step computes a solution to the relaxed job shop problem
obtained from the Dantzig-Wolfe decomposition. Two cases are possible:

• The solution process is completed with the proof that no solution
for the relaxation is possible. In this case, there is no solution to the
job shop problem at the current node, and the node is abandoned.

• A solution is found for the relaxation; the process is halted, al­
though optimality is not necessarily obtained. While a solution of
the relaxation satisfies time and precedence constraints of the job
shop problem, it may violate the machine constraints. If the pro­
cess is stopped prior to optimality, the cost of the solution is not
a lower bound for the current node. A lower bound, however, is of
little interest because its cost is necessarily inferior to the Zsup and
is not sufficient to eliminate the node at this stage. In fact, any
solution to the relaxation has a cost less than 2:sup as it satisfies the
time constraints that were tightened using the value of z^up — 1-

The third step apphes a heuristic to calculate a solution that satisfies
all constraints of the job shop problem, using the solution obtained in
step 2. Once again, two cases are possible:

10 Dantzig-Wolfe Decomposition for Job Shop Scheduling 283

• A solution is found for the job shop problem. In this case, the upper
bound is adjusted. Furthermore, branching nodes that have been
solved to optimality and that have a lower bound greater than or
equal to the new upper bound are eliminated. If the current node
cannot be eliminated, the three-step procedure for processing a
branching node is restarted with the new value of ŝup-

• No solution to the job shop problem is found. In this case, a pair
of operations that conflict on one machine is selected. Two new
problems are created by imposing an order on these two operations.

The branching tree is explored depth-first to find feasible solutions
as quickly as possible. The advantage of proceeding in this way is that
the operation time windows can be tightened, reducing the number of
dynamic programming states. The following sections contain further
details on the steps of the algorithm.

4,2 Preprocessing of the branching nodes
Before starting the solution process at a branching node, rules are

applied to find precedence constraints and tighten time windows. An
efficient implementation of these rules is described in Brucker, Jurisch
and Sievers (1994); Carlier and Pinson (1990). In addition, the feasibil­
ity of each single-machine sequencing problem is verified, using calls to
subproblems if necessary.

Precedence constraints
Let Succ(i/) denote the set of operations that must be carried out on

machine iu after operation u^ and Prec('u) the set of operations that must
be carried out on machine iu before operation u. Operation v G Prec(u)
if and only ii u E Succ(t').

Precedence relations may be deduced from simple rules. In particular,
V G Succ('u) if u 7̂ -?;, iu — iy Q̂ d̂ if one of the following conditions holds:

• The relation u —^ v is imposed by the branching.

• By the time constraints, operation v cannot be carried out before
operation u: Ty + py + Pu > dw

• The relation u —^ v may be obtained by transitivity: 3w \ u e
Succ(tt;) and w G Succ(t').

Other precedence constraints are deduced from more complex rules
involving blocks of operations carried out on the same machine. Let X

284 COL UMN GENERA TION

be a subset of operations to be carried out on the same machine. Let
rx = miuy^x ry, dx = m^Xy^x dy and px = YlvexPv

• If there is a set X of operations that must be carried out on machine
iu^ such that u ^ X and

min{rx, Vu} +Pu+Px > dx,

then all operations in X must precede operation u, that is, u G
Succ(t') for all v E: X.

• If there exists a set X of operations that must be carried out on
machine iu^ such that u ^ X and

rx +Pu+Px > max{(ix, du},

then operation u must precede all operations in X, that is, v G
Succ(ii) for all v E X,

The problem is not feasible if the precedence constraints induce a
cycle, that is, if there exists u, v such that u G Succ(^') and v G Succ(n).

Time constraints
The time intervals [r̂ i,(î]̂ are tightened using the upper bound ŝup?

the precedence constraints of the job shop problem and the precedence
constraints among operations carried out on the same machine.

The new earliest time TU to begin operation u is the largest of the
following quantities:

• di. - Vi,. -

r

• Pu - '̂ sup + 1, (JIT objective),

ry +Pv, ^v: {v,u) G A,

m miuyexry + J2y^xPv^ MX: X C Prec('a).

The new latest time du to terminate operation u is the smallest of the
following quantities:

• du,

1, (Cmax objective),

^ d'^ + Zsup - 1, (JIT, Tmax objectives),

• dy - py, Mv: {u,v) G A,

• max^;ex dy - YlvexPv^ \/X: X C Succ(i^).

The problem is infeasible if an operation u can be found such that r^ +
Pu > du>

10 Dantzig-Wolfe Decomposition for Job Shop Scheduling 285

4.3 Processing at a branching node
Dantzig-Wolfe decomposition is applied to the job shop problem as­

sociated with the current node.

Master problem
At each iteration of the Dantzig-Wolfe algorithm, the master prob­

lem calls the subproblems to receive columns with negative marginal
cost. In the case at hand, subproblems are solved using a computa­
tionally intensive dynamic programming algorithm. It is not necessary
to solve subproblems exactly to obtain columns with negative marginal
cost, especially during the initial iterations. Subproblems are solved
heuristically by limiting the number of dynamic programming states.

The limit on the number of states is controlled by a parameter passed
to the subproblems from the master problem. The subproblem returns
a boolean value indicating whether the state space has been explored
completely or only partially. The master problem increases the limit if
no further columns are generated or if the objective does not increase
sufficiently. The optimal solution is found when all subproblems are
solved exactly and generate no further columns.

As discussed in Section 4.1, the problem is not necessarily solved to
optimality. Before raising the limit on the number of dynamic program­
ming states, the feasibility of the relaxed master problem is verified. If
the problem is feasible, column generation terminates and the heuristic
search for a feasible solution to the job shop problem begins immediately
(Section 4.4).

Subproblem
The subproblem is a sequencing problem on a single machine, (n | r̂ ,̂

du^ prec I Yl 9ui^u)) ^ ^^^ is solved by dynamic programming. States are
eliminated using both exact and heuristic criteria.

Exact criteria ensure that eliminated states cannot lead to an optimal
solution. Only states that satisfy the precedence constraints are con­
structed. Several of these states are eliminated using rules based on the
time constraints. These rules are given in Gelinas and Soumis (1997),
Other states are eliminated using bounds. The dual variable Â of the
master problem provides an upper bound on the cost of a schedule on
machine i that may improve the solution to the master problem. A lower
bound is computed for the cost of schedules constructed from a dynamic
programming state. The state is eliminated if the lower bound is not
promising.

286 COL UMN GENERA TION

Finally, states are eliminated using a heuristic criterion if their number
exceeds the limit passed from the master problem. This criterion is based
on the quality and feasibility of a state. States with a good lower bound
and those that appropriately place operations that must terminate early
are retained. When states are eliminated using the heuristic criterion,
the subproblem solution may not be optimal, and the master problem is
so notified.

4*4 Branching node post-processing

The Dantzig-Wolfe solution satisfies time and precedence constraints
at a cost less than the upper bound Zgup- This solution will be used
as a starting point for another solution that also satisfies the machine
constraints.

The disjunctive graph G — (y, (7 U D) associated with the job shop
problem will be used in this regard. The nodes of the graph correspond to
operations, including two fictitious operations representing the beginning
and end of operations, V = { 0 , 1 , . . . , A/", *} . Execution times pu are
associated with nodes of the graph. Arcs of the graph fall into two
types. The set C of conjunctive arcs includes precedence arcs; arcs (0, u)
where u is the first operation of a job; and arcs {u^ *) where u is the last
operation of a job. The set D contains disjunctive arcs representing pairs
of operations processed on the same machine. The arc pair {(n, t»), (̂ ', u)]
is said to be resolved if one of the two arcs is selected and the other
rejected. In selecting (̂ ,̂ t'), we require that operation u be performed
before operation f, which corresponds to the addition of a precedence
constraint (conjunctive arc) in the graph G.

Some disjunctive arc pairs are resolved at the current node using rules
stated in Section 4.2. To obtain a feasible solution, the rest of the dis­
junctive arcs are resolved temporarily, according to the order of the
operations in the relaxed solution.

u.-^v if Y. y^^u< E y^^v'

A longest path problem with time windows is then solved from node 0
to all other nodes. If the arrival time at each node is such that the
operation may be carried out within the specified time interval, then a
feasible solution has been found with a cost below the upper bound. The
upper bound is then updated.

10 Dantzig-Wolfe Decomposition for Job Shop Scheduling 287

Local search
The solution obtained to the longest path problem is then improved

by inverting a disjunctive arc that has been resolved temporarily. Of
interest are the arcs that belong to the longest path (if the solution is
feasible) or to an infeasible path (if the solution is infeasible). The time
gain obtained locally by inverting the disjunctive arcs is calculated. Let
(n*, t'*) be the arc yielding the maximal gain. If this gain is positive, the
arc is inverted and the longest path problem is solved on the new graph.
The process terminates when there is no further local improvement.

JIT objective
A further stage occurs when a feasible solution is found for the ob­

jective JIT. The solution to the longest path algorithm places the op­
erations as early as possible within the time windows [ru^du]- A better
solution can be obtained by delaying operations so that they end as
close as possible to the desired termination time. The maximum tardi­
ness Tmax of an operation with respect to its desired termination time
is calculated in the feasible solution. The time windows are then tem­
porarily tightened in such a way that this maximum tardiness is not
exceeded: [r̂ ,̂ mm{du^ <̂^ + rmax}]; and a longest path problem is solved
by pulling node * back toward the other nodes in the graph. The upper
bound for the job shop problem is adjusted using this new solution.

4.5 Branching strategies
If no solution is found using the procedure described in Section 4.4,

branching occurs on a pair of operations that are carried out on the same
machine and in conflict in the relaxed solution.

When there are many candidates when selecting a pair, we use the
following rules:

• reduce the set of candidates to a set of pairs in conflict on the
longest path found in Section 4.4 if this set is not empty,

• select the earliest scheduled pair in the set of candidates.

5* Experimentation
Numerical experiments were conducted using the Dantzig-Wolfe al­

gorithm implemented in C on a HP9000/735 computer. The following
sections describe the test problems and present the results obtained.

288 COL UMN GENERATION

5.1 Test problems
Problems with ten machines and up to 500 operations were generated

and solved using Cmax? ^max â nd JIT objectives. Problem sizes are
described in Table 10.1.

Table 10.1. Sizes of the job shop problem instances.

Number
of machines

10
10
10
10

Number
of jobs

250
100
30
10

Number of
operations

2
3
5
10

per job
Total number
of operations

500
300
150
100

A problem is constructed as follows. First, the number of machines,
the number of jobs, and the number of operations per job are established.
For each operation, a machine is selected at random in such a way that no
job has two operations on the same machine. The length of an operation
is generated uniformly in the interval [1,100]. The times r̂ ^ are initialized
to zero; the times du are initialized to a large value (co). To select
the desired completion times for jobs and their mutually compatible
operations, a feasible schedule is constructed using decision rules. The
operation that can begin earliest is placed first. In the case of a tie,
the operation in that job having the most outstanding work is selected.
The completion time T for this schedule is used to generate times d'^^.
Let ui, U25 • • •) ̂ n, be the operations in job j , in order. Times d'^ are

generated in the interval [Y^j^LiPukJ^^h ^̂ addition, we set

^uk ~ ^uk-i-i ~ Puk+i '> /c == rij - 1 , . . . , 1.

The data d^ are ignored for the objective Cmax- If ^max is to be min­
imized, we desire that the processing of job j terminate no later than
time d'^^ . If JIT is to be minimized, we desire that the processing begin

at time d'^^ — Y^LiPu^ ^^d continue without stopping until time d'^^ .
Ten problems are generated for each problem size, for a total of 40 job

shop problems. Of particular interest are the job shop problems with
many jobs and few operations per job. Such problems are easy to solve
with the objective Cmax because machines can operate without stopping.
The schedule constructed using decision rules is optimal for all problems
having 30 jobs or more. Therefore, we only present results for 10-job
problems using the objective Cmax-

10 Dantzig-Wolfe Decomposition for Job Shop Scheduling 289

An upper bound is provided for the optimization algorithm. The
schedule obtained with decision rules provides an upper bound for the
objective Cmax- This bound is from 7% to 21% greater than the cost of
the optimal solution for, 10-job problems. For T^ax and JIT, the upper
bound is taken to be the optimal value plus 20%. (The optimal value
is known because the algorithm has already been executed once using
a large value as upper bound.) Future applications of the algorithm
will require a heuristic procedure to produce a feasible solution for the
objectives Tmax and JIT. The cost of this solution will be an upper
bound that should be no more than 20% from the optimal solution.

5,2 Numerical results
This section first presents results for specific steps of the algorithm. It

then presents results for the job shop problems and analyzes the behavior
of the algorithm with different initial upper bounds.

Solution of the Dantzig-Wolfe decomposition
The relaxed job shop problem is generally not solved to optimality for

the first branching node. The value of the lower bound that could be
obtained from Dantzig-Wolfe decomposition was obtained in a separate
calculation. Table 10.2 gives the lower bound and the cost of the optimal
solution for 10- and 30-job problems. Since the dynamic programming
algorithm requires too much memory for the 100- and 200-job problems,
optimal solutions are not obtained for them.

The lower bound is fairly distant from the optimal solution at the
top of the branching tree, which provides justification for the solution
approach presented here. We don't use much effort to get exact solu­
tions to the Dantzig-Wolfe relaxation at the top of the tree. The job
shop problem becomes more highly constrained at the lower level of the
tree, as branching decisions are taken and feasible solutions are found.
So, lower bounds become easier to get by exactly solving the Dantzig-
Wolfe relaxation and are of better quality. This bound eliminates nodes
associated with these more constrained problems.

On the other hand, the Dantzig-Wolfe solution is very useful for find­
ing feasible solutions at each node of the branching tree, and is used to
establish the order of operations in a schedule constructed heuristically.

Dynamic programming
Subproblems are solved using a dynamic programming algorithm.

Two statistics are particularly germane as measures of the problem dif­
ficulty: the number of states and the number of labels. A state is asso-

290 COLUMN GENERATION

Table 10.2. Lower bound from Dantzig-Wolfe decomposition.

Oper

30x 5

10x10

^ m a x

DW

1 -^
-
-
-
-
-
-
-
-
-_

717.9
792.0
750.0
742.8
825.0
625.6
689.3
743.2
841.0
747.0

Opt]
^\
-
-

"
-
-
-
-
-

-J
~ 7 9 2 |

867
810
845
885
728
811
840
855
766

J- max

DW
164.0
127.0
99.6

285.1
67.0

159.1
72.7

112.7
91.6

134.0
14.5
53.1
0.0
2.4

78.6
14.8
10.9
26.1
24.9
36.6

Opt
174
156
205
346

67
188
121
199
218
146
80
69
6

99
221

90
109
108
95

119

JIT

DW
135.4
109.3
117.7
285.2
133.2
159.1
87.1

114.5
127.6
134.0
69.2

106.6
79.0
75.7
97.2
60.9
68.6
70.5
79.6

1 102.7

Opt
~235~

197
220
346
196
188
152
199
278
153
172
172
155
167
266
162
166
190
207
208

ciated with a set of operations. A cost function is associated with each
state. The cost function is piecewise hnear and represented by a hst of
labels, one label per piece. At iteration k of the dynamic programming
algorithm, all states associated with sets of k operations are considered.
In a job shop problem with 10 machines, 100 jobs and 3 operations per
job, there are a total of 300 operations and an average of 30 operations
per machine. Consider a subproblem with 30 operations. At iteration 10
of the dynamic programming algorithm, there are a possible Cfg states,
that is more than 30 milHon states. While exact criteria can eliminate
states, the number of them that remain to be considered in an exact
procedure may be very large. The proposed algorithm uses heuristic
criteria to eliminate states.

Table 10.3 gives the average and maximum number of states con­
structed in one iteration of the dynamic programming algorithm during
the solution of the job shop problems. In all dynamic programming iter-

10 Dantzig-Wolfe Decomposition for Job Shop Scheduling 291

Table 10.3. Dynamic programming statistics.

Oper

250x 2
lOOx 3
30x 5
1 0 x l o |

^ m a x

1 States
Avg Max

1 3.9 15

Labels 1
Avg Max

2.1 231

-tmax

States
Avg Max

11.8 16
11.0 233
6.5 133

1 3.6 16

Labels 1
Avg Max

2.8 51
2.7 42
2.0 27
2.1 241

1 JIT
1 States
Avg Max

11.3 16
9.3 120
5.2 109

1 3.5 18

Labels
Avg Max

2.6 59
2.7 47
2.2 34
2.4 31

ations in all problems solved, no more than 233 states (i.e., a very small
number) were constructed. This was sufficient, however, to find a feasi­
ble solution to the relaxed job shop problem or prove that no solutions
exists.

To prove that there are no solutions to the relaxed problem, the sub-
problems must be solved exactly. The implementation of the algorithm
increases the limit on the number of states until no further elimina­
tion occurs using heuristic criteria. While such a procedure may require
that a large number of states be considered, this did not occur in the
numerical experiments conducted for this study. Two reasons may ex­
plain this. First, the relaxed job shop problem is almost always feasible
when Dantzig-Wolfe decomposition is applied. Rules applied in the pre­
processing stage help to identify infeasible job shop problems. If the
node is not eliminated using these rules, a solution is usually found to
the decomposition. Second, when the relaxation has no solution, the
subproblems are highly constrained and states are eliminated using ex­
act criteria that are highly effective under the circumstances.

The table also gives the mean and maximum number of labels required
to represent the cost function attached to a state. The number of labels
increases with the number of operations and with the width of the time
windows (Gelinas and Soumis, 1997). Larger numbers of labels imply
greater calculations and manipulations in the dynamic programming al­
gorithm. The average number of labels per state was low in problems
solved for this study.

Elimination of nodes in branching tree
Figure 10.4 illustrates the branching tree obtained for one of the 250-

job problems using the objective Tmax- Nodes are numbered in the order
in which they were explored. The value of the initial upper bound is 432.
The relaxed job shop problem is not solved to optimality for the initial
nodes; a lower bound of 360 is obtained at the fifth node. Going down

292 COLUMN GENERATION

0
Infeasible

UB = 432 ^ O ;

Infeasible

.0
Q)^ UB = 412

B = Infeasible

UB = 403 (8

LB = 360
6) UB = 363

Infeasible

0" XB = 360
UB = 363

LB = 360
UB = 360

Figure 10.4- Branching tree.

the tree, feasible solutions are found with respective costs of 412, 403,
363 and finally 360. Nodes 7, 6 and 5 are then eliminated using the
lower bound. While exploration continues from node 4, the new nodes
are found to be infeasible when the rules from the pre-processing stage
are apphed. This tree contains 11 explored nodes, four nodes ehminated
in the preprocessing stage and three nodes eliminated by the Dantzig-
Wolfe solution.

Table 10.4 gives the percentage of nodes eliminated during solution of
the various job shop problems using the three objectives.

Tot: percentage of the nodes ehminated.

Pre: percentage of the nodes ehminated in the pre-processing stage.

Table 10.4- Percentage of eliminated branching nodes.

Oper

250x 2
lOOx 3
30x 5
10x10

Tot

1
-
-

51

^ m a x

Pre DW

- 1
-
_

47 4

Tot
82
78
63
51

-'max

Pre
21
21
35
48

DW
61
57
28

3

Tot
57
53
54
51

JIT

Pre
43
41
43
48

DW
14
12
11
3

10 Dantzig-Wolfe Decomposition for Job Shop Scheduling 293

D W : percentage of the nodes eliminated by the Dantzig-Wolfe solution.

Percentages of the eliminated nodes, both overall and by the Dantzig-
Wolfe solution, were observed to be higher for problems having few oper­
ations per job. The decomposition proposed here is more appropriate for
problems of this type. The master problem selects convex combinations
of schedules for a single machine so as to satisfy precedence constraints.
It ignores disjunctive constraints for problems of sequencing on a single
machine. A solution to the relaxed problem may differ significantly from
a feasible solution to the job shop problem if there are many precedence
constraints.

Results for the job shop problems
The algorithm was used to solve all job shop problems using the three

objectives. Only one problem, with objective JIT, was not solved to
optimality. Results are presented in Tables 10.5, 10.6 and 10.7. These
tables contain the following information:

M a x Work: maximum total processing time on a single machine

= max^=i,...,^{^^|.^^^p^}.

U B : upper bound.

Opt: cost of the optimal solution, or of the best solution if optimahty
is not attained.

Ut i lMach: percentage utilization of machines. Let T be the value of
C'max in the optimal solution. The mean percentage utilization
(Avg) and maximum percentage utilization (Max) of the machines
are calculated for the interval [0 , r] .

I t e r D W : total number of iterations in the Dantzig-Wolfe algorithm.

B B : total number of nodes explored in the branching tree.

Cpu: CPU time in seconds. It indicates the time required to solve the
master problem (TM), the subproblems (TS), and the total time
(TT) .

All problems were solved in less than 20 minutes for the objectives
C'max and Tmax; most problems were solved in less than one hour for the
objective J IT. Two 100-job problems required much more CPU time for
the J IT objective; one of these problems was not solved to optimality.
In fact, the J IT objective is more difficult to optimize as it is sensitive

294 COLUMN GENERATION

Table 10.5. Numerical results for the objective On

Oper

10x10

MaxWork

wr
652
750
673
679
599
610
706
677
682

UB

~96Ö"
982
960
937
1016
780
896
975
945
873

Opt

"T92"
867
810
845
885
728
811
840
855
776

UtilMach

Avg

"eTg"
60.4
62.1
62.8
56.8
66.1

61.5
63.8

63.9
64.0

Max

~W2
75.2
92.6
79.6
76.7
82.3
75.2

84.0
79.2

87.9

IterDW

775"
1340
1218
2568
1195
555
2138

6048

3039
311

BB

~im
310
286
622
248
122
530
1555
852
66

Cpu (sees)
TM

IW
194
164
529
235
73
329
927
387
38

TS TT

7 120
12 216
10 184
28 574
16 258
4 82
20 366
50 1026
20 435
3 42

to operations that end late or begin too early in the schedule. The cost
of the solution using Tmax is a lower bound for JIT.

Table 10.5 indicates the maximum operation time on a single ma­
chine (MaxWork). In fact, this number is a lower bound for Cmax- The
precedence constraints cause waiting times on the machines, so that the
cost of the optimal solution is well above this bound. The percentage
utilization of the machines decreases when changing the objective from
C'max to Tinax ^nd to JIT. The objective Cmax produces better machine
utilization because the optimal schedule compresses operations on the
bottleneck machine as much as possible. When the objective JIT is
used, it may be advantageous to create waiting times on machines, so
that operations begin and end at the desired times.

The algorithm spends most of its time solving the master problem.
Little time is spent solving subproblems because the number of dynamic
programming states is restricted. The difference between the total time
(TT) and time spent solving the master problem (TM) and the subprob­
lems (TS) is accounted for by pre- and post-processing at the branching
nodes.

Behavior of the algorithm using different starting val­
ues

Table 10.8 presents results obtained using various starting values of
the upper bound for the objective JIT. The algorithm was executed
once using an upper bound of 1000. Later executions used tighter upper
bounds, at 20%, 10% and 5% of the optimal value. With an improved

10 Dantzig-Wolfe Decomposition for Job Shop Scheduling 295

Table 10.6. Numerical results for the objective Tm

Oper

250x 2

lOOx 3

30x 5

10x10

UB

594
269
129
225
410
432
219
250
542
480
250
236
276
300
128
255
249
203
254
98
209
188
246
416
81
226
146
239
262
176
96
83
8

119
266
108
131
130
114
143

Opt

495
224
107
187
341
360
182
208
451
400
208
196
230
250
106
212
207
169
211
81
174
156
205
346
67
188
121
199
218
146
80
69
6
99
221
90
109
108
95
119

UtilMach
Avg

77.7
72.8
78.0
77.3
77.4
76.5
75.7
78.0
76.7
80.1
72.7
69.9
74.6
73.3
83.5
76.0
75.2
72.1
66.8
68.6
71=5
68.9
65.2
52.9
64.9
70.1
74.9
74.0
70.8
61.5
53.7
53.3
54.3
52.3
50.8
58.6
54.8
51.8
55.5
55.7

Max

87.2
98.4
99.2
97.2
99.9
95.8
99.4
95.5
98.2
92.0
96.9
93.1
92.7
91.3
98.1
98.0
92.6
96.3
94.2
98.8
90.1
91,6
94.4
77.0
95.6
97.2
97.8
85.4
90.3
92.5
68.6
66.3
81.0
66.4
68.6
73.0
67.0
68.2
68.8
76.5

IterDW

17~
10
45
62
45
91
61
202
28
71
339
470
297
91
693
161
105
89
35
148
417
406
123
132
377

2175
406
221
1001
391
2206
82
116

2204
1925
1426
753

3184
1478
303

BB

F
1
11
9
3
11
10
37
1
1

103
163
77
18
318
37
18
29
2
31
177
173
42
51
126
877
138
67
280
102
442
16
15
375
364
279
149
703
326
50

Cpu (sees)
TM

8~
4
46
62
40
84
106
723
26
53
639
839
474
170
878
393
153
182
28
346
113
103
61
58
66
315
101
69
244
89
481
8
10
513
514
247
147
586
240
51

TS

~TÖ~
3
15
21
17
48
22
90
13
32
50
61
45
18
60
29
17
14
6
23
12
10
5
5
7
41
9
7
31
10
22
1
1
26
31
12
8
33
14
3

TT

18~
8
65
86
61
138
136
835
41
87
715
938
532
190

1031
429
174
200
35
375
136
122
68
65
83
469
120
81
293
107
518
10
12
550
556
269
159
641
264
56

296 COLUMN GENERATION

Table 10.7. Numerical results for the objective JIT.

Oper

250x 2

lOOx 3

30x 5

10x10

UB

~594~
269
329
321
410
432
255
305
542
480
320
294
305
326
280
255
249
249
254
336
282
237
264
416
236
226
183
239
334
184
172
172
155
167
266
162
166
190
207
208

Opt

495
224
274
267
341
360
212
254
451
400
266
245
254
271
233
216*
207
207
211
280
235
197
220
346
196
188
152
199
278
153
143
143
129
139
221
135
138
158
172
173

UtilMach
Avg

76.3
70.5
72.6
73.5
70.3
72.1
72.2
75.8
69.1
76.9
66.6
66.8
72.1
70.8
75.6
70.2
73.9
68.3
65.3
62.6
64.2
66.2
58.7
53.8
58.0
62.0
71.7
68.9
63.5
58.7
48.5
47.9
46.6
50.3
41.8
53.1
48.2
48.0
50.5
48.1

Max

85.6
95.3
92.3
92.3
90.8
90.3
94.8
92.8
88.4
88.4
88.7
89.0
89.5
88.1
88.8
90.5
91.1
91.2
92.0
90.2
80.8
88.0
85.0
78.3
85.5
86.0
93.6
79.5
80.9
88.3
62.0
59.6
69.5
63.9
56.5
66.0
59.0
63.2
62.6
66.0

IterDW

286
271
88
366
105
380
824
992
171
293

8453
723
665
423
485

21148
466
2341
363
357

11310
976
219
349
429
1338
755
642
937
721

4240
723
59
722
1766
2136
601
2187
5054
671

BB

3Ö~
9
13
41
5
66
183
163
10
25

2156
176
139
79
121

5000
111
645
46
7

3281
300
50
103
108
503
172
165
280
157
766
131
3

129
313
416
91
338
1081
106

Cpu (sees)
TM

749
107
99
392
137

1052
448
1234
367
726

16629
1339
1203
992
680

23159
793
2240
241
328
2903
200
117
102
61
242
163
133
237
134

1102
125
38
132
495
507
126
549
1157
88

TS

176
70
29
117
43
206
137
306
88
153

1397
106
100
83
64

1958
64
202
36
65
322
25
8
14
7
28
14
14
27
13
44
6
1
7
26
21
5
29
59
6

TT

959
242
149
579
193
1333
960
1753
475
911

18926
1506
1353
1096
774

30542
897
2758
298
404
3437
247
128
121
77
329
200
162
283
163

1173
137
40
144
531
542
135
590
1253
98

* : Not optimal

10 Dantzig-Wolfe Decomposition for Job Shop Scheduling 297

Table 10.8. Behavior of the algorithm using different starting values for the objective
JIT.

Oper

250x 2

lOOx 3

30x 5

'̂ sup -

BB
~43~
15
7
67
3

134
176
163
4
1

401
276
216
99
107
921
189
332
96
25
418
247
158
59
91
600
572
289
305
305

= 1000

Cpu
1368
388
343
1286
499
2337
4082

7073
294
773
4375
5478
3385
1752

1073
7434

2336

3606

1346
1150

482
372
324
147
173
528
679
319
430
664

'̂ sup —

BB

~^ör
9
13
41
5
66
183
163
10
25

2156
176
139
79
121
-

Ill
645
46
7

3281

300
50
103
108
503
172
165
280
157

1.20zopt

Cpu
959
242
149
579
193
1333
960
1753
475
911

18926
1506
1353
1096
774
-

897
2758

298
404
3437
245
128
121
77
329
200
162
283
163

^sxxp ~

BB
^ 5 ~ ~
59
5
45
1
55
113
231
10
24
346
97
170
104
25
811
69
220
58
27
226
108
111
44
57
151
241
65
233
66

l.lOZopt

Cpu
443"
429
46
343
68
746
701
1976

279
524
1642

748
990
770
245
5235
457
1223

375
305
258
100
221
76
55
105
262
79
258
61

'̂ sup -

BB
~w
19
5
19
1
51
49
98
6
15
273
329
70
75
135
165
51
199
21
18
217
121
36
11
148
178
43
109
144
15

= l.OS^opt

Cpu
59r
100
29
137
28
535
288
774
143
339
1784

4308
486
715
486
1002

407
967
123
150
240
66
57
28
103
121
55
86
142
15

bound, time windows may be narrower. Furthermore, the branching tree
is smaller and solution time is faster.

Some exceptions, however, can be observed. The algorithm presented
here searches the branching tree using a depth first strategy and com-

298 COLUMN GENERATION

Table 10.. continued

Oper

10x10

'̂ sup ~

BB
^706"
91
36
145
645
890
158
1332
1072
61

OÖÖÖ

Cpu

l^ee"
135
124
233
1112
989
242
1610
1243
136

^sup —

BB
^66~
131
3

129
313
416
91
338
1081
106

1.202:opt

Cpu
1173
137
40
144
531
542
135
590
1253

98

'̂ sup ~

BB
"648""
85
23
140
383
239
114
159
904
70

= l.lÔ opt

Cpu

nie
96
41
184
691
265
198
183
968
48

'̂ sup —

BB
~619"
33
21
119
125
407
64
349
1322

18

1.05zopt

Cpu
987
36
14
162
243
505
75
443
1326
18

putes feasible solutions using a heuristic. If good solutions are found
along the initial branches explored, the algorithm gives good results re­
gardless of the starting value. The converse is true as well: even with
a good starting value, it is possible to select a bad search direction and
explore many nodes before finding good solutions. This seems to have
been the case for the two 100-job problems that are very difficult to solve
starting from a value situated 20% from the optimal value. These two
problems were solved much more easily using a different starting value.

Such exceptions apart, better bounds generally yield better results.
One possible fruitful approach could be to develop effective heuristic
methods for finding good upper bounds before the optimization methods
are called upon. Interestingly, however, the algorithm managed to solve
all problems in reasonable times, even with very poor bounds.

6- Conclusion

This study has presented a formulation of the job shop problem that
uses Dantzig-Wolfe decomposition. This approach breaks down the
problem of coordination between machines and procedures to construct
a schedule for each machine. In this way, an efficient algorithm may be
applied to each problem component. Exchange of information between
the master problem and the subproblems produces better lower bounds
than approaches that treat each machine independently.

The algorithm presented here uses Dantzig-Wolfe decomposition and a
branching strategy based on conflict solution procedure. We measure the
effort provided at each stage of the resolution. While the optimal value

10 Dantzig-Wolfe Decomposition for Job Shop Scheduling 299

of the Dantzig-Wolfe decomposition is a lower bound for the job shop
problem, this bound is not efficient (especially for the initial branching
nodes). Importantly, good bounds for the job shop problem are difficult
to obtain, even with other formulations. Therefore, rather than putting
considerable effort into finding lower bounds, this approach settles for a
solution whose cost falls below the upper bound. Such a solution forms
the basis of a heuristic schedule construction method for the job shop
problem.

Subproblems in the decomposition are solved using dynamic program­
ming. This technique is rarely used in sequencing problems because the
number of states grows too quickly. The approach presented here ap­
plies this technique successfully by controlling the size of the state space
to be explored. Even when only a small number of states are explored,
the dynamic programming algorithm produces good schedules for the
master problem.

The algorithm has been tested on 10-machine problems using three
objectives: Cmax, ^max and an objective consistent with the Just-In-
Time philosophy. Interesting problems for the objective Cmax have as
many jobs as machines. There exist methods that are better than ours at
solving such problems. Nevertheless, the present algorithm has solved
problems involving 10 jobs and 10 operations per job in less than 20
minutes each.

This algorithm is particularly efficient for problems involving many
jobs and few operations per job. Such problems arise frequently in in­
dustry, as machines are increasingly versatile and jobs are processed with
few changes of machine. Objectives other than Cmax (such as minimiza­
tion of delivery delays or storage periods) in fact appear to be more
interesting in practice. Most existing methods consider the objective
Cmax ŝ nd are poorly adapted to other objectives, especially when these
objectives involve irregular functions of the operation completion times.
The algorithm described here can handle such objectives. Finally, prob­
lems of up to 500 operations were solved using an objective consistent
with a Just-In-Time approach.

References
Adams, J., Balas, E., and Zawack, D. (1988). The shifting bottleneck

procedure for job shop scheduling. Management Science^ 34(3):391-
401.

Applegate, D. and Cook, W. (1991). A computational study of the job-
shop scheduling problem. Journal on Computing^ 3(2): 149-157.

300 COL UMN GENERA TION

Balas, E., Lenstra, J.K., and Vazacopoulos, A. (1995). One machine
scheduling with delayed precedence constraints. Management Science,
41(1):94-109.

Barker J.R. and McMahon, G.B. (1985). Scheduling the general job-
shop. Management Science, 31(5):594-598.

Blazewicz, J., Domscke, W., and Pesch, E. (1996). The job shop schedul­
ing problem: Conventional and new solution techniques. European
Journal of Operational Research, 93:1-33.

Brinkkotter, W. and Bruckner, P. (2001). Solving open benchmark in­
stances for the job-shop by parallel head-tail adjustment. Journal of
Scheduling, 4(l):53-64.

Brucker, P. and Jurisch, B. (1993). A new lower bound for the job-
shop scheduling problem. European Journal of Operational Research,
64:156-167.

Brucker, P., Jurisch, B., and Sievers, B (1994). A branch and bound al­
gorithm for the job-shop scheduling problem. Discrete Applied Math­
ematics, 49:107-127.

Carlier, J. (1982). The one-machine sequencing problem. European Jour­
nal of Operational Research, 11:42-47.

Carlier, J. and Pinson, E. (1989). An algorithm for solving the job-shop
problem. Management Science, 35(2):164-176.

Carlier, J. and Pinson, E. (1990). A practical use of Jackson's preemp­
tive schedule for solving the job shop problem. Annals of Operations
Research, 26:269-287.

Chen, Z,-L. and Powell W.B. (1999a). A column generation based decom­
position algorithm for parallel machine just-in-time scheduling prob­
lem. European Journal of Operational Research, 116:220-232.

Chen, Z.-L. and Powell W.B. (1999b). Solving parallel machine schedul­
ing problems by column generation. INFORMS Journal on Comput­
ing, ll(l):79-94.

Chen, Z.-L. and Powell W.B. (2003). Exact algorithms for scheduling
multiple famihes of jobs on parallel machines. Naval Research Logis­
tics, 50(7):823-840.

Dantzig, G.B. and Wolfe, P. (1960). Decomposition principle for hnear
programs. Operations Research, 8:101-111.

10 Dantzig-Wolfe Decomposition for Job Shop Scheduling 301

Desrochers, M., Desrosiers, J., and Solomon, M. (1992). A new optimiza­
tion algorithm for the vehicle routing problem with time windows.
Operations Research^ 40:342-354.

Dorndorf, V. Pesch, E., and Phan-Huy, T. (2000). Constraint propa­
gation techniques for the disjunctive scheduUng problem. Artificial
Intelligence, 122(l-2):189-240.

Dorndorf, V. Pesch, E., and Phan-Huy, T. (2002). Constraint propaga­
tion and problem decomposition: A preprocessing procedure for the
job-shop problem. Annals of Operations Research, 115(1-4):125-145.

Fisher, M.L. (1973). Optimal solution of scheduling problems using La­
grange multipliers—Part 1. Operations Research, 21:1114-1127.

Fisher, M.L., Lageweg, B.J., Lenstra, J.K., and Rinnooy Kan, A.H.G.
(1983). Surrogate duality relaxation for job shop scheduhng. Discrete
Applied Mathematics, 5:65-75.

French, S. (1982). Sequencing and Scheduling: An Introduction to the
Mathematics of the Job-Shop, Wiley, New York.

Carey, M.R. and Johnson, D.S. (1979). Computers and Intractability,
W.H. Freeman and Co., San Francisco.

Cehnas, S. and Soumis, F. (1997). A dynamic programming algorithm
for single machine scheduling with ready times and deadline to mini­
mize total weighted completion time. MIS Collection in the Annals of
Operation Research, 69:135-156.

Giffler, B. and Thompson, C.L. (1960). Algorithms for solving produc­
tion scheduling problems. Operations Research, 8:487-503.

Hoitomt, D.J., Luh, P.B., and Pattipati, K.R. (1993). A practical
approach to job-shop scheduhng problems. IEEE Transactions on
Robotics and Automation, 9(1):1-13.

Join, A.S. and Meeran, S. (1999). Deterministic job-shop scheduling:
Past, present and future. European Journal of Operational Research,
113(2):390-434.

Lageweg, B.J., Lenstra, J.K., and Rinnooy Kan, A.H.G. (1977). Job-
shop scheduling by implicit enumeration. Management Science, 24(4):
441-450.

Martin, P. and Shmoys, D.B. (1996). A new approach to computing
optimal schedule for the job-shop scheduling problem. Proceedings of
the 5̂ ^ International IP CO conference, pp. 389-403.

302 COL UMN GENERA TION

McMahon, G. and Florian, M. (1975). On scheduling with ready times
and due dates to minimize maximum lateness. Operations Research^
23(3):475-482.

Muth, J.F. and Thompson, G.L. (1963). Industrial Scheduling, Engle-
wood Cliffs, New Jersey, Prentice-Hall.

Rinnooy Kan, A.H.G. (1976). Machine Scheduling Problems: Classifi­
cation, Complexity and Computations, The Hague, The Netherlands,
Martinus Nijhoff, 39.

Roy, B. and Sussman, B. (1964). Les problemes d'ordonnancement avec
contraintes disjonctives. NoteDS No.9 bis, SEMA, Paris.

van den Akker, J.M., Hoogeveen, J.A., and van de Velde, S.L. (1995).
Parallel machine scheduling by column generation. Technical Re­
port,, Center for Operations Research and Econometrics, Universite
Catholique de Lou vain, Belgium.

